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ABSTRACT

Next-generation DNA sequencing has allowed us to extract vast quantities
of functional information from genetic systems. However, natural systems
represent only a fraction of all possible DNA sequences. Our understand-
ing of how genomes function is limited by our ability to make modifi-
cations and test hypotheses. Multiplexed DNA synthesis now allows us
to generate thousands of computationally designed sequences, each repre-
senting a physical hypothesis to test. Here, we combine DNA sequencing
and synthesis technologies to design, make, and measure the behavior of
thousands of new genetic elements in the bacterium E. coli.

We begin by quantifying the interactions between regulatory elements
that control transcription and translation and show that these interactions
create large deviations from the predicted behavior of individual elements.
Regulatory elements also interact with the codons of the genes they con-
trol. We show that rare codon usage at the beginning of genes unexpectedly
leads to a strong increase in protein translation due to the relationship be-
tween codon rarity, genomic nucleotide bias, and mRNA structure. We next
examine the behavior of regulatory elements that bind transcription factors
by designing and synthesizing over 100,000 transcriptional circuits. From
each circuit we measure repression, activation, and small-molecule induc-
tion, deriving relationships between DNA sequence features and functional



properties including cooperativity, sensitivity, and dynamic range of gene
expression response.

Finally, as the scale and speed of DNA synthesis and functional readout
continues to increase, our ability to computationally design and analyze
genetic systems has become the bottleneck. We have built software to pre-
dict and design individual genetic elements in high throughput (Promuter)
as well as software to analyze and compare hundreds of evolved or en-
gineered bacterial whole genomes (Millstone). As generating high dimen-
sional datasets becomes exponentially easier than designing experiments
and extracting knowledge, bioinformatics, machine learning, and data sci-

ence will become the primary tools we use to pose new hypotheses and
build models of biology.
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“What lies at the heart of every living thing is not a fire,
not warm breath, not a ‘spark of life.”

It is information, words, instructions.

If you want to understand life,

don’t think about vibrant, throbbing gels and oozes,
think about information technology.”

— Richard Dawkins
“Torture the data, and it will confess to anything.”

— Ronald Coase
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INTRODUCTION

Next-generation DNA sequencing has revolutionized the scale at which we study
molecular biological systems. In addition to directly reading out the sequences of
genes and genomes, functional genomics tools like RNA-seq, CHIP-seq, DNase-
seq, ART-seq, NET-seq, bisulfite sequencing, and dozens more all couple mea-
surement of various cellular functions to high-throughput DNA readout[104]. By
turning a variety of different cellular information into a DNA signal, we can now
extract vast quantities of functional information from genetic systems.

However, natural systems represent only a fraction of all possible DNA se-
quences, and understanding the function of unknown and novel sequence - new
viral strains, de novo mutations in genetic disease and cancer, new bacteria resis-
tant to antibiotics - are often of primary importance to biology. From single base
changes to newly sequenced genomes, our understanding of how genotypes map
to phenotypes is limited by our ability to make modifications and test hypotheses.
Until recently, de novo DNA synthesis has been limited to slow, expensive, and
relatively short column-based oligonucleotide synthesis. Recently, technological
advances[51] now allow us to design and generate libraries of thousands of com-
putationally designed DNA sequences that are hundreds of nucleotides in length.
Each of these DNA sequences represents the physical instance of a hypothesis to
test[42] (Figure 1.1).

Natural Sequence Low-throughput Synthesis Multiplex Designed Library

Figure 1.1: Left: Natural sequence is insufficient for understanding complex sequence-
behavior relationships because of coalescence and evolutionary constraints.
Middle: Low-throughput synthetic biology is constrained by the speed of as-
sembly and measurement. Right: Rational synthesis and measurement of large
DNA libraries can efficiently extract emergent properties and iteratively test
models.

Here, we combine oligonucleotide libraries with a novel method we developed
called FlowSeq, which can accurately measure protein expression from large li-

17
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INTRODUCTION

braries of genetic variants using a fluorescent reporter construct. FlowSeq com-
bines fluorescence activated cell sorting (FACS) and a multiplexed barcoded DNA
sequence readout. In the first part of this thesis, composing 3 chapters, we com-
bine DNA synthesis with FlowSeq to design, make, and measure the behavior
of thousands of new genetic elements in the bacterium E. coli. First, in Chapter
2, we synthesize combinations of regulatory elements that control transcription
and translation and examine their composability. We show that the interactions
between these elements create large deviations from the predicted behavior of in-
dividual elements, suggesting that regulatory sequences are not easily separated
into composable parts. Though we found that these interactions were complex
and context sensitive, the scale of our assay allowed us to begin unraveling the
mechanisms by which they occur. The work also suggests that while we can use
these sequences to understand the molecular mechanisms of gene regulation, de-
signing and testing many DNA sequences simultaneously lets us make multiple
‘shots on goal’ for achieving the desired function.

The genetic code is redundant—multiple codons can code for the same amino
acid. So-called synonymous codon changes within genes can nonetheless have
substantial affects on protein expression, which have been attributed to changes
in the structure of 5" messenger RNAs, among other factors. In Chapter 3, we use
oligonucleotide library synthesis and FlowSeq to show that rare codon usage at the
beginning of genes unexpectedly leads to a strong increase in protein translation.
We used a synthetic combinatorial library of promoters, ribosome binding sites,
and codon variants to separate out the effects of codon adaptation and mRNA
folding, and show the increase in gene expression is due not to rare codons di-
rectly, but due to the relationship between codon rarity, genomic nucleotide bias,
and 5" mRNA structure.

In Chapter 4, we examine the behavior of regulatory elements that bind tran-
scription factors by designing and synthesizing over 100,000 transcriptianal cir-
cuits consisting of a transcription factor and a fluorescent reporter output. From
each circuit we measure repression, activation, and small-molecule induction, de-
riving relationships between DNA sequence features and functional properties
including cooperativity, sensitivity, and dynamic range of gene expression re-
sponse. For all 8 different transcription factors and 3 promoters, we show that new
functional regulatory elements that can reached in as few as 5 single nucleotide
changes. In addition to being useful in their own right as synthetic biological parts,
a quantitative understanding of the behavior of these circuits and their constitu-
tive elements helps us to understand the evolution and functional landscape of
genetic regulation.

Finally, as the scale and speed of DNA synthesis and functional readout contin-
ues to increase, our ability to computationally design and analyze genetic sytstems
has become the bottleneck. To this end, we have built software to predict and de-
sign individual genetic elements in high throughput (Promuter, described as part
of our regulatory circuit study in Chapter 4). In the second part of the thesis,
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Chapter 5, we describe Millstone, another software package we have built to an-
alyze and compare hundreds of evolved or engineered bacterial whole genomes.
This software comes out of several years of genome evolution and engineering
experiments undertaken by our lab[27, 48, 49]. The cost of modifying genomes
using synthetic DNA and then sequencing them has become faster and cheaper,
to the extent that individual E. coli genomes, when sequenced in bulk, cost under
$20 USD each. At the scale of hundreds of bacterial genomes, indentifying and an-
notating the functions of genomic changes, comparing mutations among multiple
clones, and tracing the genotypes and phenotypes of many iteratively engineered
genomic versions becomes extremely computationally unwieldly without an inte-
grated computational tool. Built to solve this isssue, Millstone is a web-based plat-
form for multiplex mutation analysis and iterative genome engineering. Millstone
integrates alignment, variant-calling, genotype comparison, and visualization for
hundreds of microbial genomic samples. We show how Millstone has been used in
in-house genome engineering projects and also describe its use in reanalyzing a
published genome evolution dataset composed of over 100 experimentally evolved
strains[93].

As studies like those described here generate ever increasing amounts of high-
dimensional data, the challenge will become the design of these large experiments
and the extraction of knowledge from them. Implicit in this work is the notion of
a high-throughput “design, build, test, and learn” cycle where each step is com-
putationally driven and each cycle extends our ability to understand, predict, and
ultimately design genetic systems across all scales. Not only will bioinformatics,
machine learning, and data science rapidly become essential for understanding
genetic systems, but they will increasingly be the tool with which we pose hy-
potheses and build models of biology.
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ABSTRACT

The inability to predict heterologous gene expression levels precisely hinders our
ability to engineer biological systems. Using well-characterized regulatory ele-
ments offers a potential solution only if such elements behave predictably when
combined. We synthesized 12,563 combinations of common promoters and ribo-
some binding sites and simultaneously measured DNA, RNA, and protein levels
from the entire library. Using a simple model, we found that RNA and protein
expression were within twofold of expected levels 80% and 64% of the time, re-
spectively. The large dataset allowed quantitation of global effects, such as trans-
lation rate on mRNA stability and mRNA secondary structure on translation rate.
However, the worst 5% of constructs deviated from prediction by 13-fold on av-
erage, which could hinder large-scale genetic engineering projects. The ease and
scale this of approach indicates that rather than relying on prediction or standard-
ization, we can screen synthetic libraries for desired behavior.
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COMPOSABILITY OF REGULATORY SEQUENCES IN E. COLI

2.1 INTRODUCTION

Organisms can be engineered to produce chemical, material, fuel, and medical
products that are often superior to non-biological alternatives [63]. Biotechnolo-
gists have sought to discover, improve, and industrialize such products through
the use of recombinant DNA technologies [18, 38]. In recent years, these efforts
have increased in complexity from expressing a few genes at once to optimiz-
ing multi-component circuits and pathways [19, 9o, 92, 98]. To reliably attain de-
sired system-level function, careful and time-consuming optimization of individ-
ual components is required [13, 57, 71, 88].

To mitigate this slow trial-and-error optimization, two dominant approaches
have taken hold. The first approach seeks to predict expression levels by eluci-
dating the biophysical relationships between sequence and function. For example,
several groups have modified promoters [64] and ribosome binding sites [8, 61,
76] (RBSs) to see how small sequence changes affect transcription or translation.
Such studies are fundamentally challenging due to the vastness of sequence space.
In addition, because these approaches mostly look at either transcription or trans-
lation individually, they are rarely able to investigate interactions between these
processes.

The second approach uses combinations of individually characterized elements
to attain desired expression without directly considering their DNA sequences [2,
5, 6, 17, 25, 32, 74, 77, 105]. Current efforts have focused on approaches to limit the
number of time-consuming steps required to characterize potential interactions
and on identifying existing or engineered elements that act predictably when used
in combination [59, 60]. However, these studies still suggest there are enough
idiosyncratic interactions and context effects that it will be necessary to construct
and measure many variants of a circuit to achieve desired function [40]. For larger
circuits, such approaches are necessarily limited in scope due to the difficulty in
measuring large numbers of combinations [59, 60].

Here we overcome previous limitations in generating and measuring large num-
bers of regulatory elements by combining recent advances in DNA synthesis with
novel multiplexed methods for measuring DNA, RNA, and protein levels simulta-
neously using next-generation sequencing. We use the method to characterize all
combinations of 114 promoters and 111 ribosome binding sites and quantify how
often simple measures of promoter and RBS strengths can accurately predict gene
expression when used in combination. In addition, since we measure both RNA
and protein levels across the library, we can also quantify how translation affects
mRNA levels and how mRNA secondary structure affects translation efficiency. Fi-
nally, the size of the characterized library also provides a resource for researchers
seeking to achieve particular expression levels. In lieu of using standardized ele-
ments or prediction-based design, library synthesis and screening allows precise
tuning of expression in arbitrary contexts.



2.2 RESULTS

2.2 RESULTS
2.2.1 Library Design, Construction, and Initial Characterization.

To systematically explore the effects of regulatory element composition, we de-
signed and synthesized all combinations of 114 promoters with 111 RBSs (12,653
constructs in total; one combination resulted in an incompatible restriction site).
We used go promoters from an existing library from BioFAB, 17 promoters from
the Anderson promoter library on the BioBricks registry, 6 promoters from com-
mon cloning vectors, and a spacer sequence chosen as a negative control. From
RBSs, we used 55 RBSs from the BioFAB library, 31 from the Anderson BioBrick
library, 13 from the Salis RBS Calculator expected to give a range of expression,
12 commonly used RBSs from cloning vectors and the BioBrick Registry, and one
sequence chosen as a negative control (reverse complement of canonical RBS se-
quence). We synthesized the construct library using Agilent’s OLS technology [51]
and cloned at ~50x coverage into a custom medium-copy vector (pGERC) where
the constructs drive expression of super-folder GFP [66] (Fig. A.1). pGERC also
contains an mCherry [84] reporter under constant expression by Prri0-1 [22] to
act as a control for extrinsic noise (Fig. 2.1A). We grew the library to early expo-
nential phase and characterized expression levels by flow cytometry. As expected,
cells in the library expressed constant levels of mCherry, while expression levels
of GFP varied over four orders of magnitude (Fig. 2.1B). We sequence-verified 282
colonies and found that 154 (55%) were error-free. We measured fluorescence lev-
els of 144 of the unique error-free colonies individually to act as a defined set of
controls (Fig. 2.1C).

2.2.2  Multiplexed Measurements of DNA, RNA and Protein Levels.

We grew the entire pooled library to early exponential phase and performed mul-
tiplexed measurements of the steady-state DNA, RNA, and protein levels. We
used DNASeq and RNASeq to obtain steady-state DNA and RNA levels across
the library [64]. For obtaining protein levels, we used FlowSeq, which combines
fluorescence activated cell sorting and high-throughput DNA sequencing and is
similar in design to recently published work [69, 81]. Briefly, we sorted cells into
12 log-spaced bins of varying GFP/mCherry ratios, isolated, amplified, and bar-
coded DNA from each of the bins, and then used high-throughput sequencing to
count the number constructs that fell into each bin (Fig. 2.1A and D). Using the
read counts from each of the bins, we reconstructed the average expression level
for each construct. Because our library contains a mixture of perfect and imperfect
constructs, we only use reads that match the full designed sequences perfectly and
thus filter out the effects of synthesis error.
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Figure 2.1: Library characterization and workflow. (a) We synthesized all combinations of 114 promoters and 111 ribosome binding sites to
create a 12,653 construct library. The library was then cloned into an expression plasmid to express super-folder GFP; mCherry
was also independently expressed from a constitutive promoter to act as an intracellular control. The cell library was harvested
for DNASeq, RNASeq, and FlowSeq to quantify DNA, RNA, and protein levels for each construct. In FlowSeq, cells were first
sorted into bins of varying GFP to mCherry ratios, barcoded, and sequenced to reconstruct protein levels for each individual
construct. (b) GFP expression levels for the library varied over ~4 order of magnitude compared to a relatively constant red
fluorescence (inset). (c) 144 sequence-verified clones were individually subjected to flow cytometry analysis to act as controls.
Displayed are GFP levels of two representative clones, Poo7-Ro65 (left) and Po81-Ro62 (right), which show that individual
constructs generally fall into 2-3 bins. (d) The library is split into 12 log-spaced bins based on GFP to RFP ratio (top). Individual
bins have large differences in the number of cells that fall into each one (bottom).
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Using DNASeq, we detected 98.5% of constructs and displayed high concor-
dance between technical replicates (R? = 0.997; Fig. A.2). Most of the missing
constructs and constructs with few DNA reads (which prevented accurate RNA
level measurements) were expected to have very high expression levels indicating
either growth defects or cloning issues (Fig. A.4 and Fig. A.5). RNA level calcu-
lations also showed high concordance between technical replicates (R? = 0.995;
Fig. A.5). Overall, RNA levels varied by 3 orders of magnitude, but within a sin-
gle promoter the coefficient of variation was only 0.63 (2.2 (left) and Sy). RNASeq
data also allowed us to identify dominant transcriptional start sites for most pro-
moters (Fig. A.6). 87% of all promoters had one dominant start position (>60%
of all mapped reads). Two promoters (marked with a * in Fig. A.6) had very few
uniquely mapping reads, did not show a strong start site, and showed unrealis-
tic translation efficiency calculations. These observations indicated that we were
missing most of the RNA (but not protein) reads from these promoters possibly
because of transcription starting after the end of the barcode sequence preventing
unique identification. The 222 constructs (1.7%) containing these promoters were
removed from all analyses.

Using FlowSeq, we were able to reconstruct expected protein levels for 94% of
the constructs (2.2 (right)). As expected, individual constructs mostly fell into 1-
3 contiguous flow-sorted bins (Fig. A.8). The average protein expression levels
displayed a large range and were highly correlated with the independently char-
acterized constructs (R? = 0.94; 2.3A and Fig. A.g). Due to the boundaries of our
sorted bins, we determined that accurate quantitation was limited within a maxi-
mum and minimum range; 6.5% of the constructs were above and 14% were below
this range (Fig. A.g). Again, most constructs with missing measurements (insuf-
ficient or zero reads) contained combinations of strong promoters and RBSs. We
calculated average promoter and RBS strengths by averaging transcription levels
and translation efficiency (protein/RNA), respectively. Promoter and RBSs were
ordered and named based on their relative deviation from the average element
(see Chapter A).

Finally, we spiked in 42 of the individual clones into a separate library (not ana-
lyzed here) and performed DNASeq, RNASeq, and FlowSeq to test reproducibility
in biological replicates. Once again, protein levels were highly correlated with the
individual measurements (R?> = 0.91; Fig. 2.3C). Reconstructed values for RNA
and protein levels also matched well between independent runs (R? = 0.89 and
0.90, respectively; 2.3B and D).

2.2.3 Composability of Gene Expression.

Our large dataset allows us to measure the extent to which combining regulatory
elements led to predictable outcomes. Using a simple model for gene expression
where promoter strengths determine RNA levels and RBS strengths determine
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Figure 2.2: RNA and Protein Level Grids. The RNA (left) and protein (right) levels for all 12,653 constructs are plotted on a grid according
to the identity of construct’s promoter (y-axis) and RBS (x-axis). Promoters and RBSs are sorted by average RNA and protein
abundance, respectively. Grey boxes indicate constructs that were below empirically determined cutoffs. Scale bars for RNA
(RNA:DNA ratio) and protein (RFU of GFP:RFP ratio) levels are shown at the right.
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One construct out of 142 is missing because it had insufficient reads in the
FlowSeq analysis. (b) RNA levels for 41 constructs as measured in our library
plotted against control constructs spiked into a separate library. One construct
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16.)
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Low RNA Med RNA High RNA

0.5 £ 0.13 2.1 £+ 0.53 6.9 = 1.73
107 69 23

Po41-Ro34 Po84-Roo2 Pog2-Ro22

Low Protein Pos1-Ro32 Po70-Roo6 Pogs-Roo2

7,393 £ 1848 Pog2-Ro13 Po61-Rog0 Pog7-Ro39
95 178 157

Pos5-Ro32 Pozo-Ro31 Po86-Ro28

Med Protein Po17-R107 Po35-R107 P109-Ro15

39,450 £ 9863 Po22-Rog6 Po6o-Ro8g Pog4-Roo6
3 252 338

Po18-R110 Pos5-Ros5 Po89-Ros2

High Protein Po29-R108 Pog9-Rogo Po77-R100

152,484 £ 38,121 Po31-R102 Pos6-Ro86 Po86-Ros5

Table 2.1: Lookup table of requlatory elements for given RNA and protein levels. We chose three
levels of low (17th percentile), medium (50th percentile), and high (83th per-
centile) RNA and protein levels and determined how many promoter-RBS com-
binations fall within 25% of those desired levels. The total number of combi-
nations that fall within each range is shown, along with three examples from
each group. RNA levels are given as the measured RNA:DNA ratio and protein
levels in relative fluorescence units.

translation efficiencies, we reconstructed expected expression across all constructs
and compared them to measurements (2.4). We find that 80% of RNA and 64% of
protein levels fall within 2x of the model predictions, and display an R? of 0.92
and 0.76 for RNA and protein respectively (Fig. A.10A,B).

When unexpected levels of expression do occur, they can be quite large; the
largest 5% of protein model deviations are off by an average of 13-fold. Such
unpredictability makes precise engineering of large systems intractable. The ease
and scale of these measurements indicate that rather than using prediction or stan-
dardization to construct a single design, we can construct a library to screen for
desired expression levels when optimizing large genetic systems. Desired RNA
and protein levels for an entire pathway of genes could be chosen from measure-
ments across subsets of promoters and RBSs for each gene. For example, given a
desired protein level, we can choose from many sequence-divergent promoter-RBS
combinations that achieve desired transcription and translation strengths of GFP
(Table 2.1).

2.2.4 Interactions between RNA and protein levels.

We conducted a more detailed ANOVA [60] where both RNA and protein levels
are independently determined by both promoter and RBS identity. This model
is able to take into account effects such as the dependency of RNA levels on
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translation rate. We found that the model resulted in a modestly better fit (RNA
R? = 0.96; Protein R? = 0.82, Fig. A.10C,D). Analysis of explained variance
showed that 92% of the RNA levels can be explained by the promoter choice, while
only 4% by the RBS choice, and the remaining 4% is unexplained (2.5A). For pro-
tein levels, both promoter choice (54% explained variation) and RBS choice (30%)
are important, but a larger portion remains unexplained (16.7%). To better under-
stand how factors such as RBS choice can affect RNA levels, we examined interac-
tions between RNA and protein levels. For example, several previous studies in E.
coli and B. subtilis have shown that for particular model transcripts, increased ri-
bosome binding or occupancy may enhance mRNA stability [7, 102]. Such studies
have been hard to interpret due to the complex interactions between the ribosome,
RNA degradation machinery, and the transcript. We indeed find a significant and
prevalent correlation between mRNA stability and RBS strength across all pro-
moters. Given the size and sequence diversity of our library, it is likely that RBS
strength is responsible for increased mRNA levels. Overall, we find a ~10-fold in-
crease in translation efficiency correlates to a ~3-fold increase in RNA abundance
(2.5B). However, the effect is limited at the extremes; the difference between the
weakest and strongest RBSs (an 87x increase in translation efficiency) corresponds
to only a ~4.3-fold increase in mRNA. As another example, many groups have
found that secondary structure across the 5° UTR and initial coding sequence can
hinder effective translation [1, 28, 47, 76, 100]. In our data, we find that the cor-
relation between secondary structure free energy across the UTR-GFP interface is
significant (2.5C). However, this metric of secondary structure is neither necessary
nor sufficient, as many sequences with high secondary structure do not display
reductions in expected expression and vice-versa. Improved models for how sec-
ondary structure interacts with ribosome binding could increase this correlation

[76].

2.3 DISCUSSION

Here we developed a method to characterize transcription and translation rates of
thousands of synthetic regulatory elements simultaneously. We used this method
to characterize the extent to which promoters and RBSs can be naturally composed.
This large library can be used to as a basis for titrating expression using sequence
divergent promoter RBS pairs for recombinant expression in E. coli and the ex-
pression data can be used to further refine models of how sequence composition
determines levels of gene expression.

Here we do not examine how expression is altered by a gene?s amino acid com-
position and codon usage, which are known to have large effects [1, 28, 47, 60, 100].
In follow-up work we explore the influence of these two factors across a matrix
of coding sequences, promoters and ribosome binding sites2. Another limitation
of our current approach is that we do not examine how expression affects cellu-
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Figure 2.5: ANOVA Explained Variance and Composition Effects of Promoter/RBS pairs. (a) Ex-
plained variance (as percentages of sum of squared deviations) for RNA and
protein measurements using ANOVA. Left pie chart shows partitioned vari-
ance for RNA measurements, while the right chart is for protein measurements.
‘Residual’ indicates the unexplained variance in the model. (b) Deviation from
expected RNA level is correlated with RBS strength. RBSs are partitioned into
5 groups based on increasing average translation strength. (c) Free energy of
a transcript’s 5’ secondary structure (TSS to +30 of sfGFP) is correlated with
average deviation from expected protein level. Average deviations are parti-
tioned into 6 equal ranges. Brackets at top indicate 2-sample Student t-tests
with p-values < 2e-5 (**) and < 0.02 (*). Box plot displays median with hinges
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1.5 times the inter-quartile range, with outliers shown as points.
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lar growth rate. Highly expressed constructs might impair the growth rate and
decrease steady-state dilution of cellular contents, which would lead to an overes-
timation of transcription and translation strengths. We analyze only promoter and
RBS pairings here, but future studies can test large numbers of any composable
genetic designs to broadly assess their effectiveness [60].

The methods developed here should be extendable to any organism that is
amenable to FACS and RNASeq, such as other bacteria, yeast, and mammalian
cell lines. In addition, our methods can also used to optimize more complex
phenomena including inducible expression, gene circuits, and time-dependent re-
sponses. Finally, improvements in the quality and length of synthetic oligo pools
can also extend such analyses to the characterization of regulatory protein variants
or longer-range interactions.

2.4 MATERIALS AND METHODS
2.4.1 Strains, Library Construction, and Growth Conditions

We used E. coli MG1655 (Yale CGSC No. 6300) for all experiments. The oligo li-
brary was constructed by Agilent Technologies (USA) using their Oligo Library
Synthesis (OLS) process [51]. The design of pGERC is based on the synthetic plas-
mid pZS-123 [22], which allows independent expression from three promoters,
and was synthesized by DNA 2.0 (USA). The amplified OLS pool was first sub-
cloned into 5-alpha Electrocompetent E. coli (NEB) (giving an initial library size of
~600,000 colonies), purified, and re-transformed into MG1655 and several aliquots
were frozen. Overnight cultures from both pooled experiments and individual
clones were first diluted 1000x grown at 30°C in LB-Miller media shaking at 250
RPM for 2-3 hours until reaching an OD(60oonm) of 0.15-0.25. Detailed information
can be found in ChapterA.

2.4.2 DNASeq and RNASeq

From a single 300 mL culture of the library, pellets from four 50 mL aliquots of cul-
ture were frozen in liquid nitrogen with the remaining culture saved for FlowSeq.
Two technical replicates of DNA and RNA were isolated by Qiagen DNA and RNA
Midiprep Kits (USA). Ribosomal RNA was removed by Ribo-Zero rRNA removal
kit for meta-bacteria (Epicentre, USA). 5’ triphosphates were monophosphorylated
by 5" polyphosphatase (Epicentre) and then ligated to an RNA adaptor using T4
RNA Ligase (Epicentre). First strand cDNA was made from a specific primer in
sfGFP. Both DNA and cDNA were amplified and monitored by real-time PCR to
prevent over-amplification. [llumina adaptors and barcodes were then added, and
sequencing was performed on a HiSeq 2000 in two separate PE100 lanes. A sep-
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arate library that contained spike-ins from the 42 colonies underwent the same
procedure. Detailed information can be found in ChapterA.

2.4.3 FlowSeq

We used somL of the library culture as prepared above for analysis by FlowSeq.
We flow-sorted the cells into 12 log-spaced bins in three sequential runs sort-
ing four bins each. Cells were then grown overnight to saturation and plasmid
prepped by Qiagen Miniprep kit. A small aliquot was diluted, regrown, and sub-
jected to flow cytometry to verify proper sorting. All data from library measure-
ments are reported in GFP:RFP ratio units, which range from 1 to 255,000. The
12 minipreps were amplified again by real-time PCR, barcoded, and sequenced
on a single lane PE1oo on a HiSeq 2000. Detailed information can be found in
ChapterA.

2.4.4 Data Analysis

Reads from all experiments were first aligned using SeqPrep [87] to form paired-
end contigs for improved accuracy. Custom software was written to identify unique
contigs and map them to library members using bowtie [50] and grep. DNASeq
and RNASeq contigs were counted where reads mapped uniquely and contained
less than 3 mismatches. In addition, DNA contamination from RNASeq reads were
identified and removed. Statistics, graphs, and tables were all generated using cus-
tom software written in Python, R, and the ggplot2 package. Detailed information
can be found in ChapterA.
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ABSTRACT

Most amino acids are encoded by multiple codons, and codon choice has strong
effects on protein expression. Rare codons are enriched at the N terminus of genes
in most organisms, although the causes and effects of this bias are unclear. Here,
we measure expression from >14,000 synthetic reporters in Escherichia coli and
show that using N-terminal rare codons instead of common ones increases expres-
sion by ~14-fold (median 4-fold). We quantify how individual N-terminal codons
affect expression and show that these effects shape the sequence of natural genes.
Finally, we demonstrate that reduced RNA structure and not codon rarity itself is
responsible for expression increases. Our observations resolve controversies over
the roles of N-terminal codon bias and suggest a straightforward method for opti-
mizing heterologous gene expression in bacteria.
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3.1 INTRODUCTION

Codon usage is biased in natural genes and can strongly affect heterologous ex-
pression [67]. Many organisms are enriched for poorly-adapted codons at the N-
terminus of genes[1, 11, 65, 94]. Several studies suggest that these codons slow ri-
bosomal elongation during initiation and lead to increased translational efficiency
[52, 65, 94]. Most organisms also display reduced mRNA secondary structure at
the N-terminus [28], and studies using synthetic codon gene variants have resulted
in conflicting theories on which mechanisms are causal for expression changes [47].
Information about the causes and effects of codon bias has been restricted to rela-
tionships inferred from natural sequences using genome-wide correlation[1, 11, 70,
78, 94], conservation among species [65], or relatively small libraries of synthetic
genes with synonymous codon changes [1, 47, 62, 89, 95, 100, 107]. Here, we sep-
arate and quantify the factors controlling expression at the N-terminus of genes
in E. coli by building and measuring expression from a large synthetic library of
defined sequences.

3.2 RESULTS

We used array-based oligonucleotide libraries [51] to generate 14,234 combinations
of promoters, ribosome binding sites (RBSs), and 11 N-terminal codons in front of
super-folder GFP (sfGFP) on a plasmid that constitutively co-expresses mCherry
(Fig. B.1) [43, 66, 79]. The sequences for the N-terminal peptides correspond to
the first 11 amino acids (including the initiating methionine) of 137 endogenous
E. coli essential genes [101] that utilize the entire codon repertoire (Fig. B.2). We
expressed these sfGFP fusions from two promoters and three RBSs of varying
strengths [43]. We also included the natural RBS for each endogenous gene. For
each combination of promoter, RBS, and peptide sequence, we designed a set of 13
codon variants to represent a wide range of codon usages and secondary structure
free energies across the translation initiation region. We studied the interactions
between the 5 untranslated region (UTR) and N-terminal codon usage because
initiation is thought to be the rate-limiting step for translation [67], this region
has been previously implicated in determining most expression variation [47], N-
terminal codons are more highly conserved [31], and rare codons are enriched at
the N-terminus of natural genes and especially those that are highly expressed

94l

3.2.1  Library Measurement

We measured DNA, RNA, and protein levels from the entire library using a mul-
tiplex assay (Figs. 3.1C, B.3, B.4) [43]. DNA and RNA levels were determined
using DNASeq and RNASeq. Protein levels were determined by FlowSeq; 7327
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(51.5%) constructs were within the quantitative range of our assay (R?> = 0.955,
p < 2x 1016, Fig. B.5). We normalized the expression measurements across
each 13-member codon variant set as fold change from log-average to control for
changes in promoters, RBSs, and peptide sequence (Fig B.6).

3.2.2 Rare codons correlate with increased expression

Changing synonymous codon usage in the 11-aa N-terminal peptide resulted in a
mean 60-fold increase in protein abundance from the weakest to strongest codon
variant even though >96% of the gene remained unchanged. For over 160 codon
variant sets (25% of sets within range), the difference was >100-fold. For each
codon variant set, we included sequences encoding the most common or rare
synonymous codon in E. coli for every amino acid. The rare codon constructs
displayed a mean 14-fold (median 4-fold) increase in protein abundance compared
to common codon constructs (Fig. 3.1A; p < 2 x 1071, two-tailed T-test) even
though common codons are generally thought to increase protein expression and
fitness [26, 67, 70, 82].

3.2.3 Codon Usage Metrics, Codon Ramp, and Motif Analysis

To understand why rare codons cause increased expression, we first examined
several codon usage metrics, but they could only explain <5% of expression dif-
ferences (Fig B.7A). New metrics that take into account both tRNA availability
and usage (nTE) show stronger N-terminal enrichment [65]. We calculated nTE
scores for E. coli and found that nTE scores were similar to the tRNA adaptation
index (tAl) (R?> = 0.847, p < 2 x 1071), did not correlate well with N-terminal
codon enrichment in the E. coli genome (R? = 0.107, p = 0.00654), and did not
significantly correlate with codons that increased protein expression in our data
set (R? = 0.024, p = 0.124). Others have proposed that slow ribosome progres-
sion at the N-terminus due to rare codons increases translational efficiency [62, 94,
95]. This ‘codon ramp’ hypothesis should apply primarily in the context of strong
translation, but we found that using rare codons at the N-terminus increases ex-
pression regardless of translation strength (Fig. 3.1B). Finally, ribosome occupancy
profiling in E. coli has shown that tRNA abundance does not correlate to transla-
' tion rate, but that specific rare codons can create internal Shine-Dalgarno-like mo-
tifs that can alter translational efficiency [52]. We looked for an association between
the presence of internal Shine-Dalgarno-like motifs and changes in expression,
and found it to be weak but statistically significant (R? = 0.002, p < 1.3 x 1075).
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Figure 3.1: Gene expression measurements of the reporter library. (A) N-terminal peptide se-
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when compared to the most common ones (C). (B) Fold change in expression
between C and R codon variants is largely independent of RBS strength. (C)
Protein expression of the library (as measured by the sfGFP:mCherry ratio) cov-
ers a ~200-fold range. 13-member codon variant sets are grouped into columns
by promoter/RBS combination (right). Codon variants include C, R, wild-type
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gray squares correspond to duplicate constructs.



3.2 RESULTS

3.2.4 Individual Codon Effects

We built a simple linear regression model correlating the use of each individual
synonymous codon with expression changes (Fig. 3.2A, Fig. B.8). For most amino
acids, we found a link between the rarity of the codon and increased expression
(Fig. 3.2B). There is a strong correlation between codons that affected expression
and their relative N-terminal enrichment in E. coli (R?> = 0.73, p < 23X 10~%;
Fig. 3.2C). Using relative translation efficiency instead of relative expression pro-
duced similar results (Fig. B.g). Decreased GC-content correlated with increased
protein expression (R? = 0.12, p < 2 x 107'%; Fig. 3.3A). Rare codons in E. coli
are frequently A/T-rich at the third position, and codons ending in A/T more fre-
quently correlate with increased expression than synonymous codons ending in
G/C. (Fig. B.10). This association suggested a link to mRNA transcript secondary
structure [47], and so we computationally predicted RNA structure over the first
120 bases of each transcript using NUPACK [103]. We found that increased sec-
ondary structure was correlated with decreased expression, explaining more vari-
ation than any other variable we measured (R? = 0.34, p < 2 x 107%; Fig. 3.3A).
We made a similar linear regression model relating individual codon substitution
to change in secondary structure free energy rather than expression levels, and
found a strong correlation between codons that decreased secondary structure and
those that increased protein expression (R? = 0.87, p < 2 x 10~1°; Fig. 3.3B). Ad-
ditionally, codon adaptation metrics at the N-terminus correlate as well to change
in secondary structure free energy as they do to change in protein expression (Fig.
B.7B).

3.2.5 mRNA secondary structure at N-terminus is responsible

We used multiple regression to control for the secondary structure changes be-
tween codon variants and found that no relationship remained between N-terminal
codon adaptation and increased expression (R? = 0.05, p = 0.197; Fig. 3.3D). Ad-
ditionally, constructs with constant tAl still show a correlation between expression
and secondary structure, but constructs with constant secondary structure have no
correlation between tAl and expression. (Fig. 3.3E, F). Finally, if secondary struc-
ture is the dominant factor, we would expect a disproportionate enrichment of A
over T due to G-U wobble pairing. Indeed, nucleotide triplets with A at the wob-
ble position were more consistently correlated with expression our dataset and
with enrichment at the N-terminus of E. coli genes (Fig. B.3).

Kudla et al. show that local RNA structure in the region between -4 to +38 of
translation start is most correlated with expression change [47]. Our data indicate
that the region centered on +10 is most correlated with expression changes (Fig.
3.4, Figs. B.12,B.13,B.14), closely matching in-vitro translation studies [96]. This re-
gion remained the most correlated for the subset of constructs with no change in
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total free energy of folding across the N-terminal region (Figs. B.15,B.16). While
secondary structure is known to affect the RBS [86], when altering only codon
usage, RNA structure after the start codon, and not at the RBS, is the major con-
tributor to expression differences. A multiple linear regression model that com-
bines promoter and RBS choice, as well as N-terminal secondary structure and
GC content still explains only 54% of variation in expression levels. Amino acid
composition effects on sfGFP folding and inadequacies in computational RNA
structure prediction could be partially responsible. However, there are likely ad-

. ditional effects left to uncover, and the extent to which codon usage beyond the

N-terminal region alters gene expression remains unresolved [47, 95].

3.3 DISCUSSION

The N-terminus of genes in almost all bacteria display reduced secondary struc-
ture, but enrichment of poorly-adapted N-terminal codons are only found in bac-
teria with GC content of at least 50% [1]. Recent work further shows that AT-rich
codons as opposed to rare codons themselves are preferentially selected, thus im-
plicating secondary structure as the driving force for N-terminal codon selection in
most bacteria [11]. Despite mechanistic differences in translation between prokary-
otes and eukaryotes, both single- and multi-cell eukaryotes also have reduced N-
terminal secondary structure [28]. For synthetic GFP templates in yeast, secondary
structure is more correlated with expression changes than codon adaptation met-
rics [78]. Here, we do not examine other factors that might shape natural sequence
such as codon pair bias [20, 67], co-translational folding [41, 65, 107], or growth
conditions [89, 100]. Natural genomic sequence is often not suited to distinguish
between conflicting hypotheses of how sequence affects function; multiplexed as-
says of large synthetic DNA libraries provide a powerful method to examine such
hypotheses in a controlled manner.
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ABSTRACT

Despite our deep knowledge of the individual DNA motifs and proteins involved
in transcriptional regulation, our ability to identify and predict the function of
transcriptional regulatory elements remains limited. Here we computationally de-
signed and synthesized 135,016 divergent dual-promoter transcriptional circuits
for 8 different prokaryotic transcription factors (TFs), and then measured repres-
sion, activation, and small-molecule induction across the entire library in a single
experiment. Our system allowed measurement of input/output induction and re-
pression curves for over 5,000 cis-regulatory regions in E. coli, each containing one
or more TF binding sites. We quantify how binding site strength, location, and co-
ordination affect functional properties like cooperativity, sensitivity, and dynamic
range of gene expression response. Across all transcription factors and promoter
backgrounds we found functional regulatory elements that can be created from
existing sequence by as few as 5 single nucleotide changes, suggesting that new
transcriptional regulatory elements are shallow in sequence space and easily ac-
cessible to evolution.
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4.1 INTRODUCTION

Transcriptional cis-regulatory elements are the primary means by which cells con-
trol gene expression and direct information flow. The architecture and interac-
tions of these elements underpin the behavior of natural genetic networks and the
adaptation of organisms to new environments. In bacteria, such elements include
transcription factor binding sites and promoters. Bacterial genetic elements choreo-
graph all aspects of the cell, including genetic programs for virulence, metabolism,
and antibiotic resistance. In addition to studying the evolution and function of
natural elements, knowledge of how to quantitatively design and tune synthetic
genetic elements is of interest to biotechnology. For example, they are used in
small-molecule sensors in diagnostics and biomanufacturing, where precise mea-
surement of proteins and metabolites or control of input-output relationships are
required.

As non-coding DNA, cis-regulatory elements lack the defined codon-based struc-
ture of the genes they control, and are instead loosely treated as ensembles of short
sequence motifs to which various proteins bind, recruiting RNA polymerase or
inhibiting the initiation of transcription. The strength and relative positioning of
these motifs is the primary means by which they are identified as functional. How-
ever, transcriptional regulation and initiation is an intricate process that relies on
the interactions of numerous DNA and protein components[14, 75]. These DNA
sequences and their protein partners have been studied since the discovery of the
lac operon by Jacob and Monod [34, 35] and the dissection of the cI repressor in
the lambda phage by Ptashne and colleagues[68]. However, even in humble E. coli,
new insights on the relationships between regulatory sequence and function are
still being discovered[97]. Though many previous studies have attempted to under-
stand the architecture of regulatory elements by randomizing short sequences|39,
64, 85] and combinatorially assembling small pre-existing DNA fragments[29, 54],
we still do not possess the knowledge to quantitatively predict the strength and
function of genetic elements from sequence[43] nor can we effectively engineer
new functional elements from knowledge of motifs alone.

4.2 EXPERIMENTAL DESIGN
4.2.1  Design of the Expression System and Choice of Transcription Factors

Here, we use a large library of computationally-designed dual-promoter regions
to explore the quantitative relationship between cis-regulatory sequence, transcrip-
tion factor expression, and gene expression output in a single experiment. Each
cis-regulatory region is synthesized as an oligonucleotide which is cloned into a
plasmid containing one of 8 distinct transcription factor genes and a superfolder
green fluorescent protein (sfGFP). Each oligonucleotide contains an upstream-
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facing promoter (the P promoter) driving the transcription factor gene while a
second downstream-facing promoter (the Pz promoter) simultaneously drives the
sfGFP reporter construct. A constitutively-expressed mCherry gene elsewhere on
the plasmid serves as a copy-number control (Fig.4.1A). By adding a transcrip-
tion factor binding site to the right promoter and varying the strength of the
left promoter, we measure a response function which relates the expression of
the transcription factor to the expression of sfGFP (Fig.4.1C) so that repression
or activation of sfGFP expression by the TF can be measured. We chose 8 differ-
ent transcription factors, including one built from a synthetic zinc-finger array,
four different cI repressors from lambda-like phages[10, 15, 16, 45, 58], the well-
studied inducible transcription factors lacl and tetR, and the transcription factor
acuR, which responds to the presence of acrylate, a chemical monomer used in
the manufacture of bioplastics[72, 73]. For 3 transcription factors which respond
to small molecules (lacl, tetR, and acuR), we additionally examine the response of
the systems to various concentrations of inducer molecule (Fig.4.1B, Table C.1).

4.2.2  Multiplex Sequence Design using Promuter

To design our cis-regulatory regions, we took a high-throughput rational forward-
engineering approach. We built a software package called Promuter which compu-
tationally generates and scores promoters to meet specified sequence constraints
(Section C.1.1 and Figure C.1). We generated 8,430 Pr promoters which vary in
their basal transcription strength as well as the identity, strength, location and mul-
tiplicity of their transcription factor binding sites. These promoters were then com-
binatorially paired with P; promoter variants in silico to generate 135,016 230bp
oligonucleotide sequences, so that each oligo encodes two divergent promoters
separated by a strong terminator (Fig.4.1A). These oligos were then synthesized
in a pooled library using Agilent OLS[51]. We include a variety of control con-
structs to test that there is minimal interaction between the Pr and P regulatory
regions and to separately measure Pr and P; expression outside of the divergent
promoter context. We also include sublibraries of all single base pair mutants for
the three right-facing "base’ promoters to which the TF binding sites are added
(Pro-r2) and all single base pair mutants for a separate set of natural promoters,
each known to respond to one TE.

4.3 RESULTS
4.3.1 Library Measurement using FlowSeq
We simultaneously measured sfGFP expression level from all constructs using

FlowSeq, a multiplex assay described previously[43]. FlowSeq allows us to perform
discretized flow cytometry measurements from a large library of distinct DNA
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Figure 4.1: Measuring repression and’ induction across a library of synthesized dual-

promoter constructs. (A) Each synthesized oligonucleotide contains two diver-
gent promoters cloned into a plasmid with a sfGFP reporter and a transcrip-
tion factor (TF). An upstream P promoter of varying transcriptional strength
drives the TF and an upstream Pr promoter drives sfGFP, and each Pr pro-
moter variant is computationally designed to add one or more TF binding
sites. Cells are transformed in a library so that each contains copies of a single
plasmid with an oligonucleotide containing a P; Prpair. The ratio of sfGFP to
mCherry expression is measured to control for plasmid copy number. (B) Con-
structs are measured by FlowSeq, in which cells are FACS-sorted into quanti-
tative bins with different sfGFP/mCherry ratios (colored regions along y axis)
followed by pooled plasmid sequencing per bin. Performing the library mea-
surement in different concentrations of a small molecule inducer (x axis) gener-
ates an induction response curve for each PPy library member. (C). Compar-
ing multiple oligonucleotide constructs with a single Pg promoter and a series
of increasingly strongP;, promoters generates a repression curve.
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constructs simultaneously by separating cells into quantitative bins using FACS
and then sequencing the bins separately. FlowSeq was performed in two distinct
biological replicates. For 3 transcription factors which respond to small molecules

(lacl, tetR, and acuR), we additionally performed FlowSeq in media containing

4 different concentrations of the inducer molecule (IPTG, aTC, and acrylic acid,
respectively). Our measurements were highly accurate across a ~2000-fold range
of sfGFP expression, both compared to a subset of individually measured flow-
cytometry controls (R? = 0.957) and between biological replicates (Figure C.2).

4.3.2 Factors controlling transcriptional repression

This in silico design and multiplex measurement approach successfully identified
over 700 synthetic cis-regulatory sequences which repress sfGFP expression with
>10-fold dynamic range. 300 promoters repressed sfGFP expression over 30-fold,
and several promoters were identified with an excess of 300-fold repression (Fig-
ures 4.2, C.4). Of all TFs measured, thecl repressors had the highest dynamic
range but also proved to be toxic at the highest expression levels (Figure C.3); our
assay allows the identification of the window of TF expression within which they
maximally repress the promoter but do not incur a fitness cost to the cell.

Using Promuter, we placed TF binding sites at various locations throughout the
3 'base’” promoters, Pro — Prp, and categorized each individual placement as up-
stream, central, or downstream, relative to the core -35 and -10 motifs of theoy,
RNA polymerase subunit. '‘Double’ TF placements were generated from combina-
tions of individual placements in these different classes, such that every promoter
with two TFBS is made by combining the mutations required to generate two
individual binding sites. Across all 8 TFs, we identified strong repression in all
binding configurations, but saw clear trends in the effects of individual place-
ments and their combinations (Figures 4.2, C.4). For example, TFBS placement
upstream of the -35 do not strongly repress transcription by themselves, but when
placed in combination with a secondary binding site either central to or upstream
of the core promoter, they increase the fold-repression in a cooperative manner.
As expected, adding two strong TF binding sites generate promoters that repress
more strongly, are more sensitive, and are more cooperative in their response to
TF concentration (Figure C.6).

Fold repression correlates well to motif strength as compared to the consensus
(calculated from literature and natural sequences), although some promoters seem
to successfully repress despite their weak TFBS motifs, while for others, strong
motifs are necessary but not sufficient. Indeed, many motifs predicted to be strong
do not repress expression, or repress well when located in some positions but not
others. Across all TFs there are no major trends for TFBS positioning (Figure 4.3A),
but individual TFs seem to have positional preferences when only strong motifs
are considered (Figure C.7).
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4.3.3 Transcriptional Activation from cly34 and a ZFP-w fusion

Lambdoid phage cl repressors have the capacity to activate transcription when
their binding site is properly placed with respect to the -35 motif, [16] and we
generated several promoters using the precise binding locations specified in the
literature. For the cly3s transcription factor we identified several promoters that
can be activated in this manner, but only when placed upon the weakest right
promoter, Ro. When combined with additional binding sites at different locations
within the promoters, these activating sites generally ceased to function (Figure
C.8). We did not identify TF binding site placements that worked as transcrip-
tional activators for the other three lambdoid cI repressors, suggesting that factors
beyond the strength and location of the binding motif influence their ability to
activate transcription.

In addition to activation from cly34, we also tested a synthetic transcriptional
activator built by fusing a synthetic zinc finger array to the w subunit of RNA
polymerase[24]. This zinc finger was also able to recruit the RNA polymerase
when its binding site was placed far upstream of the -35, but acted as a modest
repressor (maximum 10-fold) when placed in locations closer to the core promoter.

4.3-4 Evolvability of Transcriptional Regulation

Promuter uses the motif constraints to build a mutation landscape and conser-
vatively mutates the ‘base’ Pr promoters to generate transcription factor bind-
ing sites with as few mutations as possible. As we intelligently sample the lo-
cal sequence space around each promoter for predicted regulatory elements, we
build a map of the functional landscape of each promoter in a manner analo-
gous to an evolutionary search, posing questions of evolvability and epistasis in
cis-regulation. In all three promoters and across all 8 transcription factor motifs,
we find that it is possible to generate TF binding sites which repress transcrip-
tion at least 5-fold with as few as 5 single base pair changes. We also see that
the maximum level of repression for each factor is achievable with approximately
10 nucleotide mutations (Figure 4.4). It has been shown through transcriptional
profiling that experimentally evolved strains of E. coli are capable of ‘rewiring’
regulatory connections in a widespread manner [21]. However, it was not clear
how this rewiring occurred, or if it was possible to generate new cis-regulation
across the genome on such a relatively short time scale. This finding highlights
that functional regulatory elements are shallow in sequence space and accessi-
ble to evolution. Further, it allows us to pinpoint regions of non-coding sequence
which are most capable of being converted into new regulatory elements.
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Figure 4.4: Mutations required to create new transcriptional regulation. Effect of TFBS place-
ment on promoter strength and repression is compared to the number of single
base changes required to place the site. 5-fold or greater repression (dots out-
lined in black) can be achieved with only 5 mutations, and maximal repression
is achieved in 10 mutations.

4.3.5 Changes in Basal Promoter Strength Accounts for the Majority of Repression Dif-
ferences

TF binding site placement changed basal expression in a promoter-specific man-
ner. The -35, -10 and UP elements were maintained by Promuter when adding TF
binding sites, which shows that despite a lack of sequence conservation in these
regions, even small modifications can strongly effect expression. Promoter Ry is
sensitive to mutations across the entire cis-regulatory sequence, and based on
single-base-pair scanning mutagenesis, strengthening the -35 and -10 07 binding
motifs strongly increase expression, suggesting that RNA polymerase recruitment
is the major limit to expression level in Ry . However, promoter R; is relatively
insensitive to single base pair mutations, especially mutations expected to affect
the -35 and -10 regions. It also shows a marked increase in strength when the
region downstream of its -10 is modified (Figure 4.5). Taken together these obser-
vations suggest that expression from R;is limited not by recruitment of the RNA
polymerase but instead by formation of the open complex and selection of the
TSS, which is highly dependent upon this region[97]. Based on average per-base
effects from both the TFBS placements and single base mutations, removing a trin-
ucleotide T repeat upstream of the TSS and reducing high GC content downstream
of the TSS both seem to strongly increase basal transcription.
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base effects of mutation on basal transcription strength vary between promoters. Single base pair changes and their fold-change
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changing a base when all TF placements that modify that base are considered. The predicted TSS base is shown in red and the
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4.3.6 Induction Strength, Sensitivity, and Cooperativity

Of the 6,247 dual-promoter circuits repressed by the three small molecule in-
ducible TFs, 130 responded to induction with >10-fold increase in expression, cor-
responding to 34 Pr sequences with distinct TF binding site configurations (Figure
4.6A). Across the entire library, we calculated functional properties of these cir-
cuits including cooperativity, sensitivity to transcription factor concentration, and
sensitivity to inducer concentration. Sensitivity to inducer molecule varied widely,
with some promoters responding to 100-fold less inducer than others (Figure 4.6B).
Promoters that were more sensitive tended to induce expression linearly across a
wide range, while the least sensitive promoters responded rapidly, showing that
more cooperative repressor binding makes the promoter less sensitive to inducer
(Figure 4.6C). Maximal fold induction closely matched fold-repression, suggesting
that induction completely relieved repression in most cases. Strikingly, the effect of
increasing transcription factor concentration varied depending on TF identity and
promoter architecture. Many inducible promoters were insensitive to increases in

TF concentration, suggesting a high affinity of the TF for the binding site, while -

for others, increases in available TF concentration caused increased repression.
Surprisingly, some TF sites showed a decrease in fold-repression with increased
TF concentration, due to a reduction in fully induced expression (increasing [TF]
decreases b in Figure 4.6B, bottom panels of Figure C.9). This could be the result
of a binding site that has a weak affinity for the ligand-bound conformation of
the TF or alterations in the binding site affinity due to DNA supercoiling at the
upstream Py promoter.

4.4 DISCUSSION

Here we show that mutliplex sequence design, synthesis, and measurement can
uncover complex relationships between regulatory DNA architecture and detailed
functional properties. In addition to improving our mechanistic understanding of
how regulatory sequences function and interact, the diverse regulatory behaviors
in this library will serve as a valuable resource for synthetic biology, including the
development of synthetic prokaryotic circuits for environmental sensing and actu-
ation[44]. This work also enables the development of more quantitative metabolic
sensor-selector systems[73, 91] that can respond with increased or decreased sen-
sitivity or cooperativity to small molecules. In particular, we chose to examine
the acuR acrylate sensor in this study as it is directly applicable to biomaterials
production. Sequence-to-function relationships uncovered by this library also will
allow for better prediction of the effects of natural mutation on gene expression,
especially if machine learning techniques can be applied to these data and com-
pared back to natural genomic sequence.
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Figure 4.6: Induction Strength, Sensitivity, and Cooperativity. (A) Dynamic Ranges of Induc-
tion for 6,247 dual-promoter constructs. Each point represents one dual pro-
moter construct combining both a P; and Pr promoter set, generated using
Promuter. The shape of each point corresponds to a single or double motif,
and the color corresponds to the location(s) of the motif(s). The X axis mea-
sures sfGFP in the absence of TF expression, and the Y axis measures sfGFP
under maximal TF expression. Points along the diagonal are unaffected by TF
expression, while points below are repressed and points above are activated.
An open circle corresponds to the unmodified promoter. Dotted diagonal lines
correspond to 10x activation, and 10, 30, and 100x repression.



4.4 DISCUSSION

Going forward, we can use the knowledge gained from these measurements to
improve sequence-to-function design and and prediction software like Promuter.
By performing multiple rounds of this design, build, and test process, we can it-
eratively learn new rules and improve the predictive power and design accuracy
of these algorithms. Promuter could be expanded into a general tool to make con-
servative mutations to natural sequences that have desired effects on regulatory
function in the context of larger genomic systems or whole re-engineered genomes.
By performing an informed and targeted search of sequence space instead of an
exhaustive one, we avoid the curse of dimensionality inherent in the exploration
of DNA sequence space. This allows us to achieve a broader understanding of
regulatory element evolution, function, and design than would possible by an ex-
haustive sequence screen. Targetted design and synthesis of sequence libraries can
be applied to a diverse set of biological problems beyond regulatory elements, in-
cluding protein structure, exon splicing, transcriptional network perturbation, and
genome engineering.
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MILLSTONE: SOFTWARE FOR MULTIPLEX MICROBIAL
GENOME ANALYSIS AND ENGINEERING
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ABSTRACT

Inexpensive DNA sequencing and advances in genome editing have made com-
_putational analysis a rate-limiting step in microbial genome engineering. We de-
scribe Millstone, a web-based platform for multiplex mutation analysis and itera-
tive genome engineering. Millstone integrates alignment, variant-calling, genotype
comparison, and visualization for hundreds of microbial genomic samples. To fa-
cilitate iterative genome editing, Millstone can design targeted mutations and re-
versions and generate and track new reference genomes. Millstone is open source
and is easily deployable on a desktop, a cluster, or an Amazon Machine Image
(AMI), making it a scalable solution for any lab.
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5.1 INTRODUCTION

Microbial populations possess a staggering amount of genomic diversity, enabling
them to evolve and adapt to diverse environments. In addition to studying natu-
ral evolution, biologists can generate targeted genomic diversity in a population of
cells and then screen or select for phenotypes which are useful for biotechnology
or for answering basic biological questions. The falling cost of writing and read-
ing microbial genomes has made it possible to generate billions of combinatorial
genomic variants per day at specific loci [33, 37, 99] and to sequence entire E. coli
genomes for less than $25 per sample [g, 80].

As multiplex genome editing and inexpensive multiplex sample preparation
have become cheaper and faster, computational analysis is increasingly a bottle-
neck when mapping genotypes to phenotypes across many samples. Going from
raw DNA sequence to annotated genomes and variants requires the integration
of a large number of disparate tools, usually assembled into an ad-hoc pipeline
by individual labs and followed by time-intensive manual confirmation of vari-
ants. There remains a critical need for an integrated solution optimized for large
amounts of data, capable of comparative analysis among multiple genomes, and
supporting features such as interactive querying and data visualization, collabora-
tion, iteration and genome versioning, and the design of additional mutations or
reversionsD.1.

To solve these problems, we have developed Millstone, a web-based platform
for iterative genome engineering and mutation analysis that can handle the com-
plexity of alignment, variant-calling, comparison, and versioning for hundreds of
evolved or rationally modified microbial genomes, as well as the design of oligonu-
cleotide libraries for targeting mutations in the next round of experiments.

5.2 WORKFLOW AND FEATURES

Millstone was designed to eliminate the complicated infrastructure, installation,
and configuration requirements for multiplex whole-genome sequencing analy-
ses, minimizing the time between sequence upload and delivery of searchable,
annotated, and visualizable results. After a researcher uploads .fastq reads de-
rived from evolved or engineered genome sequences, Millstone automates read
alignment and variant calling, automatically processing hundreds of microbial
genomes. One hundred genomes can be aligned and analyzed in 2 hours at the
cost of $5 in compute resources (D.6.2.2). The researcher can then explore and
compare variants across samples. A rich user interface and query language facili-
tate drilling down into evidence for individual variants and visualizing raw read
alignments. Variants can be grouped into semantically-related variant sets. Finally,
a variant set can be used to generate oligonucleotides for follow-up experiments
and to create new versions of reference genomes. (Fig. 5.1).
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Figure 5.1: Millstone enables rapid iterative genome analysis and engineering. (A). To use
Millstone, a researcher provides a reference genome and multiplexed next-
generation sequencing data for many individual genomic clones, arrived at
either via long-term evolution or targeted genome engineering. Millstone
performs alignment and variant calling for both short polymorphisms and
large structural variants and then assigns predicted effets based on provided
genome annotations. A unified data model relates sample genotype, pheno-
type, and variant annotation data. Variants can then be queried, filtered, and
grouped into sets for export, triage, and analysis. These variant sets can be used
to create additional MAGE oligos to recreate or revert mutations or be used to
generate new reference genomes for further rounds of the cycle. (B). A com-
bined screenshot of the Millstone analysis and visualize views (condensed and
cropped for clarity). A custom query language allows searching and filtering
over the data. As with all genomics pipelines, variant calls sometimes require
visual inspection and comparison. Millstone’s variant analysis view provides
programmatically-generated links to visualizations of the relevant read align-
ments in Jbrowse.
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5.2.1  Deployment

Researchers can provision a fully-configured private instance of Millstone running
on Amazon Web Services (AWS) in minutes and can specify compute, memory,
and disk requirements to match project needs. The software can also be deployed
on a laptop or an in-house cluster. We recommend AWS for most users and main-
tain a public release of an Amazon Machine Image (AMI) preconfigured with the
latest stable version of Millstone which allows a lab to provision a private instance
of Millstone in minutes D.6.2.2.

5.3 APPLICATIONS
5.3.1 Genome engineering to reassign the genetic code

Millstone provides end-to-end support for the iterative process of genome-scale
engineering, from confirming designed mutations to debugging fitness defects. In
Lajoie et al.[49], we engineered a strain of E. coli for which all 321 UAG stop
codons in the genome were replaced with a synonymous UAA stop codon. Ini-
tially, custom scripts were used to analyze the next-generation sequencing data
from 76 genomes produced along the UAG replacement lineage. These analyses
were slow and error-prone, and it became challenging to quickly visualize and
compare evidence for mutational events. This crude pipeline provided the im-
petus for developing Millstone. Here, using the latest version of Millstone, we
re-analyzed the initial, intermediate and final genomes in a single day (Fig. 5.2A).
Further, Millstone allowed us to annotate and rank the 355 off-target mutations in
the final strain according to predicted effect. In Kuznetsov et al. (in preparation)
we describe how we tested combinatorial reversions of the highest ranked targets
and iteratively used Millstone to improve the strain fitness. Millstone allowed us
to rapidly compare genomes constructed in each MAGE experiment to each other
and to previous generations, enabling the rapid iteration of this rational strain
improvement process (Fig. 5.2A).

5.3.2 Rapid analysis of long-term evolution experimental data

Millstone can also be used to analyze genomic variation arising from samples
undergoing directed laboratory evolution. In Tenaillon et al.[93], 115 strains of E.
coli were grown at high temperature for over 2,000 generations in an attempt to
identify convergent evolutionary responses to this environmental challenge. This
impressive effort required their team to develop a custom sequencing analysis
pipeline involving over half a dozen tools combined with custom software, fol-
lowed by painstaking manual validation and visual confirmation of all 1331 vari-
ants. We reanalyzed the raw data from this project in Millstone and identified



5.4 DISCUSSION

99.7% of SNVs and 83% of structural variants identified in the original study, as
well as 2 additional mutations that were unidentified in the original work (Fig.
5.2B). On an Amazon AWS instance, the entire process from sample upload to the
triaging of variants across all strains took a single day.

5.4 DISCUSSION

New technologies for constructing, screening, and selecting genomes now allow
for increasingly complex functional genomics studies and bioengineering endeav-
ors. As the sequence constraints of the genome come into focus, the promise of
designing new organisms that can address humanity’s medical and material needs
[30, 49] is becoming a reality. The path forward requires rapid construction and
characterization of successive versions of genomes. Millstone’s analysis and explo-
ration features are complemented by features for refining reference assemblies to
accurately represent all SNPs and structural events in lab-generated strains and
allow maintaining a version history of these refined genomes.

Whether analzying rational designs or evolved strains, researchers can use all
or a subset of Millstone’s features. For example, researchers who already have
raw sequencing data from as many as hundreds of genomes can use Millstone to
identify and explore mutations. We have reduced the barrier for other labs to get
started with Millstone by making the software deployable on Amazon Web Ser-
vices (AWS). Instructions and an online demo are available at http://churchlab.
github.io/millstone.
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Figure 5.2: Millstone accurately detects genomic variants and can iteratively version genomes.

(A). Millstone was used to analyze genomic clones involved in generating a

genomically recoded organism. MAGE and CAGE were used to generate the
C321AA strain of E. coli[49]. With sequencing data from these strains, Millstone
confirmed designed mutations, identified and annotated unintended ones, and
generated a new reference genome. Further reversion of annotated variants
was performed with MAGE to improve the strain’s fitness, and a final refer-

ence genome was generated. (B). Millstone automates finding variants across

hundreds of strains. Applied to the Tenaillon et al. dataset[93], Millstone re-

ports all SNVs found by the Tenaillon pipeline, including some not identified

in the original study.
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SUPPLEMENTAL INFORMATION FOR CHAPTER 2

This appendix contains the extended experimental methods, extended data an-
alytical methods, and additional figures for Chapter 2. It is adapted from the
supplemental information included with Kosuri et al.

A.1 EXTENDED EXPERIMENTAL METHODS
A.1.1  Reporter Construction

The gene expression reporter construct (PGERC) used in all experiments follows
the design of the pZS2-123 plasmid that drives independent expression of three
fluorescent proteins from Cox et al[22]. Briefly, we began with the divergent pro-
moter portion of pZS2-123, which has insulated sequences to express CFP with
PLtetO-1 and YFP with PLlacO-1. We replaced the CFP, with a codon-optimized
version of mCherry[84], and replaced the YFP with a codon-optimized version
of superfolder GFP (sfGFP)[66]. We replaced PLlacO-1 with the EM7 promoter
to avoid issues of endogenous regulation by the Lac repressor in MG1655. We
also removed an Ascl recognition site in the intergenic space, and placed an Ascl
recognition site directly upstream of the EM7 promoter and an Ndel recognition
site at the start of the sfGFP sequence. These sites are used for cloning library
components upstream of the sfGFP sequence. The whole construct is flanked by
Xhol and NotI on the left, and PacI and Xbal on the right, and was constructed by
DNA 2.0 (USA) in their pJ251 backbone that has a low-copy number p15A origin
of replication and a kanamycin resistance marker.

A.1.2  Library Design, Construction, and Cloning

The library was constructed by combining 114 promoter sequences with 111 RBS
sequences. Promoter sequences were chosen from existing libraries such as the
BIOFAB [25], a few control promoters (including an inactive spacer), and a set
of promoters from Chris Anderson’s promoter library from the BioBricks registry
(53). We added a five base barcode and then checked for restriction site compatibil-
ity (Ascl and Ndel) to generate the final promoter library. The ribosome binding
site library contains RBSs from BioFAB [4], control RBSs, Chris Anderson’s RBS
library from the BioBricks registry [3], and sequences generated by Howard Salis’s
RBS Library calculator [76]. The promoters and RBSs were filtered for restriction
sites and to ensure that all pairwise Levenshtein distances are greater than 1. In
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addition, all RBSs have bases ‘CAT’ replacing the terminal 3 bases prior to the
coding sequence to allow for cloning using the Ndel site for a total of 111 RBSs.
Finally, each promoter is crossed by all RBSs to form a final library of 12,653 pro-
moter + RBS combinations. One combination was removed because the junction
resulted in a disallowed restriction site. All constructs were flanked by restriction
enzyme sites (Ascl and Ndel) and the following PCR primer binding sites:

skpp-202-F AATCCTTGCGTCAATGGTTC
skpp-202-R GGGTTCTCGGATTTTACACG

The oligo library was constructed by Agilent Technologies (USA) using their
Oligo Library Synthesis (OLS) process [51], and was delivered as a ~1 picomole
lyophilized oligo pool. The library was amplified from the oligo pool using biotiny-
lated primers, digested with Ascl and Ndel (New England Biolabs, USA), and the
resulting ends were removed by Invitrogen (USA) M-270 streptavidin beads. The
plasmid backbone was also amplified by PCR using biotinylated primers, digested
with the same restriction enzymes, and cleaned again by streptavidin beads. We
then ligated the library and plasmid backbone using T4 DNA Ligase (NEB) and
cloned into 5-alpha electrocompetent cells (NEB) resulting in ~600,000 clones. The
library was grown under kanamycin selection, and plasmids were isolated using
Qiagen Miniprep kit. The plasmid library was re-transformed into E. coli MG1655
(Yale CGSC No. 6300) (>3 million clones). We froze several aliquots of this library
and used these aliquots for all subsequent experiments.

A.1.3  Control colonies and flow cytometry

We plated the transformed MG1655 library and Sanger sequenced 282 clones. 154
of 282 (55%) of these clones matched the designed sequences exactly. 144 sequence-
perfect clones (2 clones were duplicates) were inoculated from glycerol stocks into
200 pL of LB with kanamycin and grown overnight at 30 °C with shaking in 96-
well culture plates. The cells were then backdiluted 1:1000 into 200 uL. LB with
kanamycin and grown for 3.5 hours, until the cells reached an OD60oo of ~0.15-
0.25. The cells were then immediately put on ice, pelleted by centrifugation, and
diluted 1000-fold in ice-cold PBS. We measured RFP and GFP fluorescence levels
using a BD FACS LSRFortessa flow cytometer with a high throughput sampling at-
tachment (30,000 events per observation). Events were gated on forward and side
scatter to exclude debris, dead cells, and doublets. The overnight growth, back-
dilution, and flow cytometry procedure was performed four times from different
back-dilutions on two separate days.

A.1.4 Library growth and FlowSeq

A 300 mL culture was inoculated with 1 mL of overnight library culture grown
overnight at 30°C from a frozen aliquot. The culture was grown 3.5 hours to an
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ODé60o of 0.2 at 30°C and shaking at 250 RPM. The culture was quickly brought
to 4°C in an ice-slurry. Five 50 mL aliquots were pelleted. Four were snap-frozen
in liquid nitrogen, while one was resuspended in somL ice-cold PBS. The library
in PBS was directly subjected to FlowSeq. We conducted three consecutive flow
sorts on a BD FACSAria IIu while keeping cells at 4°C. Each run sorted four non-
adjacent log-spaced bins based on GFP:RFP Ratio. We sorted one million cells
for the first bin (lowest ratio) because it had the most cells in it. For all other
bins, we sorted 250,000 cells, except for the last two bins where we sorted 100,000
cells each. Cells were grown overnight with shaking at room temperature to mini-
mize growth rate differences, and plasmids were isolated using a Qiagen miniprep
kit. Each bin was separately amplified for 5 cycles by RT-PCR to prevent over-
amplification using Kapa SybrFast RT-PCR master mix. The reverse primer was
an equimolar mixture of five separate sequences to allow frame-shifting to give
better sequence distributions during read 2 of sequencing:

FlowSeq-F: AATGATACGGCGACCACCGAGATCTACACTGAAGCACAGCAGCTCTTCGCCTTTACGCATATG
FlowSeq-RO: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGACAATGAAAAGCTTAGTCATGGCG
FlowSeq-R1: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGACAATGAAAAGCTTAGTCATGGCG
FlowSeq-R2: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATGACAATGAAAAGCTTAGTCATGGCG
FlowSeq-R3: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCATGACAATGAAAAGCTTAGTCATGGCG
FlowSeq-R4: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCATGACAATGAAAAGCTTAGTCATGGCG
FlowSeq-R5: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCATTGACAATGAAAAGCTTAGTCATGGCG
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A final RT-PCR step added barcodes to each binned construct using the follow-
ing primers:

FlowSeq-F: AATGATACGGCGACCACCGAGATCTACACTGAAGCACAGCAGCTCTTCGCCTTTACGCATATG
Bin 1 FlowSeq-R-index_6nt_1
CAAGCAGAAGACGGCATACGAGATtcaggtGTGACTGGAGTTCAGACGTGT
Bin 2 FlowSeq-R-index_6nt_2
CAAGCAGAAGACGGCATACGAGATaagcgtGTGACTGGAGTTCAGACGTGT
Bin 3 FlowSeq-R-index_6nt_3
CAAGCAGAAGACGGCATACGAGATgtcgatGTGACTGGAGTTCAGACGTGT
Bin 4 FlowSeq-R-index_6nt_4
CAAGCAGAAGACGGCATACGAGATgccttgGTGACTGGAGTTCAGACGTGT
Bin 5 FlowSeq-R-index_6nt_7
CAAGCAGAAGACGGCATACGAGATggtaagGTGACTGGAGTTCAGACGTGT
Bin 6 FlowSeq-R-index_6nt_9
CAAGCAGAAGACGGCATACGAGATgattgcGTGACTGGAGTTCAGACGTGT
Bin 7 FlowSeqg-R-index_6nt_11
CAAGCAGAAGACGGCATACGAGATcggtccGTGACTGGAGTTCAGACGTGT
Bin 8 FlowSeq-R-index_6nt_13
CAAGCAGAAGACGGCATACGAGATgcaaccGTGACTGGAGTTCAGACGTGT
Bin 9 FlowSeq-R-index_6nt_15
CAAGCAGAAGACGGCATACGAGATatgaacGTGACTGGAGTTCAGACGTGT
Bin 10 FlowSeq-R-index_6nt_16
CAAGCAGAAGACGGCATACGAGATcttataGTGACTGGAGTTCAGACGTGT
Bin 11 FlowSeq-R-index_6nt_17
CAAGCAGAAGACGGCATACGAGATagcagaGTGACTGGAGTTCAGACGTGT
Bin 12 FlowSeq-R-index_6nt_20
CAAGCAGAAGACGGCATACGAGATCcaataaGTGACTGGAGTTCAGACGTGT

The amplified bins were quantitated using the Kapa Library Quantification Kit,
and mixed in equimolar ratios before sequencing all twelve on a single HiSeq
2000 paired-end 100 bp lane with the following sequencing primers:

Custom Read 1: 5’ GAAGCACAGCAGCTCTTCGCCTTTACGCATATG
ITlumina Multiplexing Read 2: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
Illumina Multiplexing Index Read: GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

A.1.5 Spike-in controls
A separate library underwent the same procedure. Prior to back-dilution, we

spiked in a subset of 42 of the perfect sequences and performed all procedures
including DNASeq, RNASeq, and FlowSeq identically.

A.1.6 DNASeq & RNASeq

For DNASeq, we isolated plasmids using a Qiagen midiprep kit from two frozen
cell pellets from the 50 mL library growth culture. We amplified the library as
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we did in the FlowSeq experiment, using only primers FlowSeqg-R-index_ént_1
and FlowSeq-R-index_ént_4. We also processed the spike-in libraries similarly, but
using FlowSeq-R-index_ént_15 and FlowSeq-R-index_6ént_16. All four DNASeq
libraries were run on a single lane in the same HiSeq run as the FlowSeq data.

For RNASeq, we used the remaining two cell pellets and first isolated total RNA
using a Qiagen RNEasy Midi Kit, and removed ribosomal RNA using Epicentre’s
Ribo-Zero rRNA Magnetic Removal Kit for Meta-Bacteria as per manufacturer’s
instructions. Then we used 250 ng of mRNA and removed the 5’ triphosphate
group with RNA 5" Polyphosphatase (Epicentre) as follows:

soul. RNA (250ng)

6uL RNA Polyphosphatase

10x Reaction Buffer

1.5pL RiboGuard RNase Inhibitor (Epicentre)
3uL RNA 5’ Polyphosphatase (60 Units)

37°C for 30 minutes

The resulting reaction was cleaned up using a Qiagen RNAEasy MinElute Kit.
Then we ligated the following RNA adaptor to the processed mRNA:

RNA ligation primer GACAAUGAAAAGCUUAGUCAUGGCGNN

The two trailing Ns indicate degenerate bases that are used to greatly reduce
biases in found in RNA ligation efficiency across different templates [36]. We used
the following procedure for ligation using T4 RNA Ligase (Epicentre):

1opL RNA from previous step

2pL 250pM RNA oligo

2pL 10X Ligase buffer

2pL 10U T4 RNA Ligase (Epicenter)

2pL 1omM ATP

1pL RiboGuard RNase Inhibitor (Epicentre)
1ul DMSO

25°C for 3 hours

The resulting reaction was cleaned up again using Qiagen RNAEasy Minelute Kit.
To make cDNA, we used Invitrogen’s SuperScript III with the following proce-

dure:
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1. We added the following components to a nuclease-free microcentrifuge tube:
o.2pL of 1opM RT-Primer
2 pmol of RT primer: ACCGTTGACATCACCATCCAGTTCC
12pL RNA from RNA ligation reaction
1 pl 10 mM dNTP Mix

2. We heated mixture to 65°C for 5 minutes and incubated on ice for 1 minute.

3. We collected the contents of the tube by brief centrifugation and added:
© 4 pl 5X First-Strand Buffer
1pl o1 M DIT
1 pul RNaseOUT Recombinant RNase Inhibitor (Invitrogen 40 units/pl).
1 pl of SuperScript™ III RT (200 units/ul)

4. We mixed by pipetting gently up and down.

5. We incubated at 55°C for 60 min.

6. We inactivated the reaction by heating at 70°C for 15 min

7. We added 1 pl (2 units) of E. coli RNase H and incubated at 37°C for 20 min.

The resulting cDNA was amplified using the same procedures as DNASeq and
FlowSeq, and using the same barcodes for technical and spike-in replicates on a
separate lane of the same HiSeq 2000 run.

A2 DATA ANALYSIS
a.2.1  Contig formation and trimming

We used a modified version of SeqPrep [87] and custom Python scripts to pair and
trim reads into contigs with increased sequencing fidelity for regions of paired-
end coverage. Each set of two paired-end 100 bp reads were aligned and merged
into a contig based on their overlapping sequence. The adapter and constant
primer sequences were trimmed from both ends of the contig. If only a portion
of the adapter sequence was identifiable then the cloning restriction sites were
used to identify the region for trimming. Reads that did not pair were discarded,
as all sequences are under 200 bp and thus contigs should be created where the
two paired reads overlap. Additionally, the first two bases of RNA contigs were
trimmed, corresponding to the two degenerate ligated bases used in the experi-
mental protocols.

Deduplication and sorting of unique contigs to library After trimming, occur-
rences of each unique contig were counted per bin and merged to generate a
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vector of 12 numbers corresponding to the occurrences per bin per contig. These
unique contigs were then aligned to the Promoter + RBS sequence library. In the
case of the protein data, grep and USEARCH 5.2.32 were used. We aligned all
unique contigs, but used the intersection of three criteria to filter for downstream
analysis. Contigs were required to: (1) be perfect end-to-end matches to the library,
(2) consist of at least 100 occurrences, and (3) occur in multiple bins, excepting the
final bin. In the case of DNASeq and RNASeq data, Bowtie[50] was used. We fil-
tered matching contigs on three criteria: contigs (1) were allowed no more than
3 mismatches, (2) were required to match best to only one library combination,
and (3) to remove DNA contamination, contigs were required to begin at least
two bases into a library combination and match up until the very end of the RBS
(corresponding to the start codon).

A.2.2 Protein Level Calculation

To calculate protein expression levels for each construct, we first normalized the
counts from each bin to one another using the total fraction of cells in the library
that fell into each particular bin. We defined the fraction of cells sorted in each bin
as fj, so that E]- a;; = 1, and the number of occurrences of sequence i in each bin
j as c;;. Then normalized fractional contribution of each bin j per sequence i, a;; is
calculated as:

G
Ui 7 i Cij

so that }_;a;; = 1 for all i.

Once the compensated bin distributions were calculated, we used the median
fluorescence level in each bin as the value for all observations in that bin. We
defined the center of the measurement range for each sorted bin j as m;. The
protein level, p; was then calculated as:

pi = exp [E (a5 log'(mf))]

j
A.2.3  FlowSeq Minimum and maximum cutoff

Due to the placement of the bin cutoffs during sorting, there were upper and lower
boundaries on the linear measurement range for protein level. These thresholds
were empirically determined to be two times the minimum protein level and g9%
of the maximum protein level (noted with a dotted line in Fig. A.10). 14.3% of
constructs were below this range and 6.5% were above. These out-of-range data
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were not used to calculate ordering or average strength of promoters and RBSs,
though we do display them as measured in Figs. 2.2 & 2.3.

A.2.4 Calculation of Transcription Start Sites

Using the RNA contigs aligned to the library, we determined the transcription
start sites (TSS) for each promoter. After filtering RNA contigs as described above,
the transcription start site for each unique sequence was determined, relative
to the RBS + Promoter junction. RNA contigs could in most cases be assigned
uniquely to an RBS + Promoter pair because of the unique barcode appended to
the end of every promoter sequence. To calculate a single transcription start site
per promoter, the alignment offset of each RNA contig against its DNA sequence
was recorded. 87% of all promoters had one dominant start position (>60% of all
mapped contigs). The most prevalent start site was used to calculate the RNA
secondary structure as described below. Two promoters (marked with a * in Fig.
A.7) had very few uniquely mapping contigs, did not show a strong start site,
and showed unrealistic translation efficiency calculations. These observations in-
dicated that we were missing most of the RNA data (but not protein data) from
these promoters because of transcription starting after the end of the barcode se-
quence. The 222 constructs (1.7%) containing these promoters were removed from
all analyses.

A.2.5 RNA Level Calculation

RNA Levels were calculated separately for each technical replicate, using a ratio
of normalized RNA to normalized DNA:

RNA; — Ci,RNA CiDNA
"7 X CRNA" Y.cpNa

where i is each individual construct, c; is the number of DNA or RNA contigs
for construct i, and } crna and Y} cpyaare the total number of sequenced and
merged RNA and DNA contigs prior to filtering. The RNA levels between the
replicates showed a high level of correlation (R?=0.992) and were averaged.

A.2.6 Filtering of RNASeq and DNASeq Data

RNA and DNA data was adjusted or discarded from some constructs based on low
contig counts. 184 constructs (1.4%) did not have at least 10 DNA contig counts
in both replicates, and were discarded. Seven additional constructs (0.7%) had
fewer than 20 RNA contig counts and also had fewer than 50 DNA contig counts
and were also discarded. 275 constructs (2.2%) had sufficient DNA but insufficient
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RNA contig counts , and so their RNA contig counts were set to 10 (separately for
each technical replicate) for purposes of RNA level calculation described above.

A.2.7 Calculation of Average Transcription/Translation Levels

Average transcription and translation levels were calculated for all Promoters and
RBSs respectively. To calculate the average promoter transcription level, the ge-
ometric mean of the RNA level was calculated across each promoter, excluding
constructs with insufficient RNASeq/DNASeq contig counts as described above.
To calculate the average RBS translation level, the translation efficiency was first
calculated per construct as the ratio of protein level to RNA level. The average
translation level for each RBS was then calculated as the geometric mean of this
translation efficiency. Constructs with protein levels above and below the afore-
mentioned minimum and maximum thresholds were excluded from this calcula-
tion, as were constructs with insufficient RNASeq/DNASeq contig counts.

A.2.8 Element ordering

Because we did not want missing constructs with strongly expressing Promoter
and RBS elements to influence the element ordering, we used the average devia-
tion from mean values across all elements for ranking purposes.

The naming and ordering of each Promoter was determined as:

1 1
0p = 11_ Z In (RNAp,r) — n—p ;h’l (RNAp,r)
ror

where 1, and n, are the number of RBS and Promoter elements respectively,
and RNA,, is the RNA level for a Promoter/RBS combination. This ranks the
promoters by how much each Promoter/RBS construct deviates from the average
RNA level across all RBSs. Promoters were sorted and named Ec-TTL-P### (E.
coli Transcription/Translation Library Promoter #), from oo1 to 7, based on their
rank-ordered o, value.

RBSs were ordered similarly, with the equation:

0=~ Y |In(PROT;,) — 1 Y In (PROT,,)
np 5 ny 5

where PROT,,, is the Protein level for a Promoter/RBS combination. This ranks
the RBSs by how much each Promoter/RBS construct deviates from the average
protein level across all promoters. Individual RBS were ordered from oo1 to n,
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based on o,, as Ec-TTL-R### (E. coli Transcription/Translation Library Ribosome
Binding Site #).

A.2.9 Calculation of Secondary Structure

The 5" UTRs used for secondary structure free energy determination were taken
from the start of the dominant transcription start site to 30 bases into the cod-
ing sequence of sfGFP. Free energy of 5" UTR regions were calculated using UN-

AFOLD’s(56) “hybrid-ss-min -NA=RNA” command line program with default
parameterizations.

A.2.10 Simple model of transcription and translation

To create a simple prediction for protein level, we took the product of the mean
transcription per promoter and the mean normalized translation (i.e. translation
efficiency) per RBS:

1
in (TRX; ) = o L In (RN 4y)

PROT,, r)

in (TLX, ) = Eln ( RNA

p@, = exp [ln (ﬁr) +In ("—F@)]

A.2.11  Linear Modeling (ANOVA)

We also constructed a linear model to determine the contribution of Promoter and
RBS to both protein level and RNA expression level:

log (PROT,,) = a+ P, + R,

log (PROTy,) = &+ P, + R,

where « is the average signal, P, is the p" promoter and R, is the r'" RBS.
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A.2.12 Statistical Analysis Software

All statistics and tables described above were generated using custom software
written in Python and R. Graphs were generated using the ggplot2 package in R.

A.3 SUPPLEMENTAL FIGURES
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Figure A.1: Plasmid Map of pGERC. A plasmid map showing the sequence of pGERC
(based on pZS-123) including the plasmid backbone in gray with Kanamycin
resistance cassette, origin of replication, and terminators. The two fluorescent
protein CDS regions are shown in yellow, while promoter and RBS regions
are shown in green. Terminators for the fluorescent protein coding regions are
shown in red.
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Figure A.2: DNA technical replicate 1 & 2. Observation frequency of library members across
two technical replicates of DNA isolation, amplification, and sequencing are
plotted against one another. The R2 of the linear model is 0.997. (F-test, p-
value: < 2.2e-16)
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Figure A.3: Distribution of contig counts for observed members of the library. Library members
with 5 or more counts across both replicates are binned and plotted on the
histogram. 183 constructs were below the threshold and not plotted.
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Figure A.4: Distribution of DNA Contigs by construct. Contig counts are displayed by color
for each construct. Constructs are labeled by promoter (y-axis) and RBS (x-
axis) and ordered as in Figs. 2.2 and 2.3. Dark grey boxes are unobserved con-
tigs as well as one combination (040P-093R) that was not synthesized due to
restriction site incompatibility. Most constructs with few contigs contain com-
binations of strong promoters and RBSs, potentially indicating that the high
level of gene expression from these constructs affects growth and viability.
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Figure A.5: DNASeq ratio calculated separately for each technical replicate. The RNA levels, as
measured by the RNASeq:DNASeq ratios are plotted for two technical repli-
cates and showed a high degree of concordance (R? = 0.99. F-test, p-value: <
2.2e-16).
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Figure A.6: Transcription start site analysis. The measured start positions from RNA contigs
for each promoter are plotted, with more brightly colored squares indicating
more common start sites. All positions are relative to the junction between
the promoter-specific barcode and the RBS (see schematic at bottom). The 5-
base promoter-specific barcode sequence allows promoter identification for
RNA contigs that begin after the end of the functional promoter region. If an
RNA contig begins more than 2 bases into the barcode, it cannot be mapped
uniquely; those contigs are discarded. The first two constructs (top) were re-
moved from further analysis due to start sites that presumably started after
the barcode (see Chapter A.2.4); these are marked by three asterisks.
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Figure A.7: RNA levels across each promoter and RBS. Mean RNA levels across all promoters
(blue circles) and RBSs (red cirles) are plotted with lines corresponding to 10th
and goth percentile values. Promoter identity is tightly correlated to RNA

level, while RBS identity has a slight effect positive effect, albeit with large
variation.
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Figure A.8: Percentages of contigs falling into each of the 12 bins across all constructs. 11,981
constructs are shown on the x-axis, ordered by increasing protein level as
estimated by FlowSeq. White dotted lines show the high and low protein
level cutoffs, beyond which constructs cannot be accurately measured. Contigs
for most constructs fall into a few contiguous bins, suggesting a continuous

distribution of gene expression level among cells harboring the same construct.

735 Constructs with fewer than 100 counts or constructs whose contigs fell
entirely into one bin (save the final bin) were discarded from analysis and are
not shown here.
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Figure A.g: Protein levels across each Promoter and RBS. Mean Protein levels across all pro-

moters (blue circles) and RBSs (red cirles) are plotted with lines corresponding
to 10th and goth percentile values.
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Figure A.10: Comparison of simple and ANOVA models. For each construct, we plotted pre-
dicted versus observed protein and RNA levels for the simple Promoter +
RBS model (top) and the ANOVA model (bottom). Red points are those out-
side of the linear range of our FlowSeq measurement.
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This appendix contains the extended experimental methods, extended data an-
alytical methods, and additional figures for Chapter 3. It is adapted from the
supplemental information included with Goodman et al.

B.1 EXTENDED EXPERIMENTAL METHODS
B.1.1 Reporter Construct

We used the same reporter strain, pGERCA. Briefly, pGERC allows for indepen-
dent expression of mCherry from the Pp;,;0_1 promoter and the divergent expres-
sion of sfGFP with a replaceable promoter-RBS-peptide sequence driving expres-
sion. The design of this plasmid is based on pZS2-123 from Cox et al. [22], and
uses a p15A origin of replication with a kanamycin resistance cassette.

B.1.2 Library Design, Construction and Cloning

We chose two promoters (BBaJ23100 and BBaJ23108) and three RBSs (BBa_Boo32,
BBa_Boo30, BBa_Bo034) from the Registry of Biological Parts that we previously
characterized [43]. We used the first 11 amino acids including the initiating me-
thionine from 137 essential genes in E. coli [101]. In addition, we added a fourth
RBS that represented the natural RBS for each of the 137 genes by taking the 20bp
sequence upstream of the start codon from the E. coli genome sequence [12]. For
each promoter and RBS pair, we generated 13 variants where we changed codons
used to encode the peptide, though always keeping the start codon as ATG. We
refer to these 13 variants as a codon variant set, and in each set we included the
natural sequence encoded on the genome (wt), a variant that only used the most
common codon on the E. coli genome for each amino acid (C), and a variant that
used the least common codon (R). In addition, we computationally generated 500
codon variants where each codon was chosen by a biased random pick based
on natural genomic frequencies of codons encoding a particular amino acid. We
used UNAFOLD [56] to predict free energy of folding for each RBS-codon variant,
sorted the 500 based on this free energy, and took every soth variant to give a
total of 10 variants spanning a range of free energies. Finally, all sequences were
flanked by Ascl and Ndel, as well as sequences to allow for PCR amplification
(skpp-203-F; TGT CGT GCC TCT TTA TCT GT & skpp-203-R; GCT TCG GTG
TAT CGG AAA TG).
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We synthesized and cloned the oligo library as previously described in Kosuri
et al. [43]. Briefly, the oligo library was synthesized on DNA microarrays, cleaved,
and lyophilized as a pool by Agilent Technologies (USA). The library was ampli-
fied by limited-cycle PCR using real-time PCR, cloned into pGERC at ~50 fold
clonal coverage, and transformed into E. coli MG1655 (Yale CGSC No. 6300). We
kept several frozen aliquots of the initial library for all subsequent experiments.

B.1.3 Control Colonies and Flow Cytometry

We plated the transformed MG1655 library and Sanger sequenced 282 clones, and
found that 131 (46%) were error-free, and one sequence had two perfect duplicate
clones. These sequence-perfect clones were inoculated from glycerol stocks into
200 pL of LB with kanamycin (50 pg/mL) and grown overnight at 30°C with shak-
ing in g6-well culture plates. The cells were then backdiluted 1:1000 in 200 pL LB
with kanamycin and grown for 3.5 hours, until the cells reached an of ~o.15-0.25.
The cells were then immediately put on ice, pelleted by centrifugation, and diluted
1000-fold in ice-cold PBS. We measured mCherry and sfGFP fluorescence levels
using a BD FACS LSRFortessa flow cytometer with a high-throughput sampling
attachment (at least 30,000 events per observation). Events were gated on forward
and side scatter to exclude debris, dead cells, and doublets. The overnight growth,
backdilution, and flow cytometry procedure was performed on four separate days
from two fresh back-dilutions per day, for a total of 8 replicates per clone. 7 clones
were highly variable between replicates and were removed.

B.1.4 Library Growth and FlowSeq

The library was grown, sorted, and sequenced exactly as in Kosuri et al. [43].
Briefly, a frozen aliquot of the library was grown overnight at 30°C. o.5mL of the
overnight culture was backdiluted in 30omL of pre-warmed LB with kanamycin
(50 pg/mL), and grown shaking at 250 RPM and 30°C to an ODsgg of 0.2. The cul-
ture was immediately cooled in an ice-water slurry. Five 50 mL aliquots were pel-
leted by centrifugation, and four were snap frozen in liquid nitrogen. One aliquot
was resuspended in 50 mL of ice-cold PBS, which was then directly put into the
FlowSeq protocol. For FlowSeq, cells were sorted using three consecutive runs at
4°C on a BD FACSAria ITu. Each run sorted four non-adjacent log-spaced bins
of varying sfGFP:mCherry ratio. One million cells were sorted in bin 1, 250,000
in bins 2-10, and 100,000 cells in bins 11 and 12. Cells in all bins were grown
overnight while shaking in room temperature LB to minimize growth rate differ-
ences. Plasmids were isolated, and constructs were PCR amplified using limited-
cycle RT-PCR to add barcodes and primer sequences for Illumina sequencing. All
12 bins were sequenced on a single lane of a HiSeq 2000 paired-end 100nt lane.



B.2 DATA ANALYSIS

B.1.5 DNASeq and RNASeq

Both DNA and RNASeq experiments were done as previously described [101].
Briefly, for DNASeq, we isolated plasmids from two frozen cell pellets from the 50
mL library growth culture using a Qiagen midiprep kit. We amplified the library
as we did in the FlowSeq experiment, using two separate barcodes. Both DNASeq
libraries were run on a separate lane in the same HiSeq run as the FlowSeq data.
RNAseq was done by isolating RNA independently from two 5omL frozen pellets
and removing rRNA, removing 5’ triphosphate using RNA 5’ Polyphosphatase.
Then we ligated a RNA primer with two bases of 3" degeneracy to control for lig-
ation biases using T4 RNA Ligase [87]. Then we used SuperScript III (Invitrogen)
to make cDNA, amplified, barcoded, and sequenced RNA again using a separate
lane in the same HiSeq run as the FlowSeq data.

B.2 DATA ANALYSIS
B.2.1 Contig building and trimming

Contig building and trimming was done exactly as reported in Kosuri et al. [43].
Briefly, we used a custom modified version of SeqPrep [43] and custom scripts
to pair and trim reads into contigs to increase sequencing fidelity over regions of
paired-end coverage.

B.2.2 Deduplication and sorting of unique reads

After trimming, occurrences of each unique contig were counted per bin and
merged to generate a vector of 12 numbers corresponding to the count per bin per
merged contig. These unique de-duplicated contigs were then aligned to the Pro-
moter + RBS reference sequence library using Bowtie [50]. In the case of FlowSeq
contigs: first, contigs were required to be perfect end-to-end matches to a library
member, second, consist of at least 100 read pairs, and third, occur in multiple
bins, excepting the final bin. For DNA and RNA reads: first, no more than three
single base mismatches were allowed (no indels), second, were required to match
to only one reference sequence, and third, to remove potential DNA contamina-
tion, contigs were required to begin at least two bases into a library combination
and match up to the beginning of the sfGFP sequence.

B.2.3 Calculation of Transcription Start Sites

Using the RNA contigs aligned to the library, we determined the transcription
start sites (TSS) for each promoter. After filtering RNA reads as described above,
the transcription start site for each unique sequence was determined, relative to
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the RBS/Promoter junction. For every library member, we ensured that RNA reads
could be mapped uniquely due to a 5 base unique sequence appended after each
of the promoters. To calculate a single transcription start site per library member,
the alignment offset for each RNA read against its DNA sequence was recorded,
and the most frequent transcription start location was used for RNA secondary
structure prediction.

B.2.4 FlowSeq Measurement Reconstruction

Protein levels were reconstructed using the FlowSeq measurements exactly as in
Kosuri et al. [101]. Briefly, we calculated protein expression levels for each con-
struct by the normalized frequency of constructs in each sorted bin, multiplied by
the log-mean fluorescence level per bin.

B.2.5 FlowSeq Measurement Boundaries

Due to the bin-based sorting procedure, constructs falling entirely into the low-
est or highest bin cannot be accurately measured. Any constructs whose recon-
structed fluorescence level fell below the middle of the second bin (< 1584 RFU)
were considered below measurement range. Any constructs where > 95% of reads
fell into the final bin (RFU 2 255,000) were considered above measurement range.
Values for these constructs were still factored into normalization measurements if
at least half of the codon variants in a set were within measurement range.

B.2.6 Expression Normalization

We normalized our expression measurements across each 13-member codon vari-
ant set to control for potential differences in sfGFP fluorescence that might result
from changing the amino acid sequence of the N-terminal peptide. We first took
the log-mean of all 13 FlowSeq measurements as the average, and subtracted the
log fluorescence measurement for each from that average, to get the logarithmic
fold-change from average. We only considered codon variant sets where at least
50 percent of constructs were within measurement range.

B.2.7 Individual Codon Correlations

For every codon we conducted a linear regression where we first took all con-
structs containing at least one instance of the amino acid encoded by the codon
and where at least 5 of the 13 set members were within expression range. We
regressed the frequency of each codon against the logarithmic fold-change from
average expression. The slope of the regression (labeled in the figures and text as
the “Mean Fold-Change in Expression Due to Codon Substitution”) thus repre-
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sents the average fold-change in expression after using one additional instance of
the codon in lieu of another synonymous codon. A Bonferroni correction (p/58 ,
for 58 codons w/ synonymous substitutions possible) was applied to each of the
p-values.

B.2.8 Shine Dalgarno motifs

We used an approach similar to the one employed by Li et al. [52]. We began
by finding the free energy of hybridization between the 8-base pair anti-Shine
Dalgarno sequence (CCTCCTTA) and each of the nucleotide hexamers. For each
construct we summed these hybridization scores for every hexamer starting at
position -2 relative to ATG up to +32 (each variable region extends from +3 to
+33). We then normalized the summed hybridization scores among each of the
codon variants per set and performed a linear regression between the difference
in hybridization score and the logarithmic fold change in protein expression.

B.2.9 Normalized Translation Efficiency (nTE)

Pechmann et al. recently described a new metric, the normalized translation effi-
ciency or nTE, which is the tAl score adjusted for codon demand (i.e. expression
level) as well as tRNA supply [65]. Using the mRNA measurements from Shi-
roguchi et al. [83] and protein and mRNA measurements from Lu et al. [55], we
calculated multiple different nTE statistics as they described. We removed pseu-
dogenes, genes with known frameshifts, and for calculations involving the expres-
sion measurements, only included genes where measurements were provided.

Upon correlation with our per-codon expression metric (Fig. 3.2A), nTEs de-
rived from all expression measures performed similarly to the tAl, and the protein
measurements from Lu et al. [55] generated nTE scores with the best, albeit still
insignificant p-value (R? = 0.0241, p = 0.124). This nTE score was also weakly
yet significantly correlated with RSCU (R? = 0.206, p = 1.76 x 10~*) and genomic
N-terminal codon enrichment (R? = 0.107, p = 6.54 x 10~3). However, the unad-
justed tAl score performed better in these correlations than any of the nTE metrics,
including per-codon expression with our data (R?> = 0.0438, p = 0.111) and codon
frequency enrichment at the N-terminus (R? = 0.114, p = 5.10 x 1073).

B.2.10 Transcript Secondary Structure Prediction

First, we used our mRNA sequencing data to find the most frequent transcription
start site for each construct. We then used the NUPACK software [103] to find
the minimum free energy of folding for the mRNA transcript of every construct,
using the sequence starting from the computed transcription start site (TSS) to 96
bases into the sfGFP protein, for a total of at least 149 bases per construct. The
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mfe program within NUPACK was used, at a temperature of 37°C, with contri-
butions from dangling ends (-dangles all) included. We used 37°C because the
most commonly used RNA model can only calculate structure at that tempera-
ture. Secondary structure was also calculated starting at -20 before the ATG for
every construct, instead of computing individual transcription start sites. These
measurements were extremely similar ( R? = 0.9385) and did not change the anal-
yses, and secondary structure predicted from the TSS was used.

B.2.11  Window Structure Prediction

For each construct, we first computed the pair probabilities using the NUPACK
pairs command. This generates the probability of hybridization between every pair
of bases i and j for the entire RNA sequence of length [, from the transcription
start site to 96 bases into the sfGFP protein. From this we calculated the pairing
probability for each base, the probability of base pairing with any other base in
the transcript:

N
pi= )P
=1

We then took a windowed average of the pairing probabilities for each base over
a sliding window of size w, to generate wp;, where each the window pairing prob-
ability is centered, rounding down, at base i. We calculated these measurements
for a w of 5, 10, 20, and 40 bases.

Next, we calculated the fold change in window relative hybridization proba-
bility rhp; by comparing the pairing probability of each window with the same
window position for other constructs in the codon variant set, and log-adjusting
the measurements to get logarithmic fold change:

i1 l0g1g (wpis)
thpic = 1ogy (wpic) — = lengtli(;(c) ’

Here c is a single construct, andC is the set of all 13 constructs in the codon variant
set (same promoter, same RBS, different synonymous codon usage).

This window relative hybridization probability represents the relative probabil-
ity that bases within window are paired, compared to other synonymous codon
variants with the same UTR. This value is lower than zero if the region is less
likely to be folded, and higher than zero if the region is more likely to be folded.
It does not explicitly consider the strength of folding energy (due to GC content
differences, for instance).
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We chose this metric rather than local window folding because it represents a
more global picture of RNA folding, as pairings between bases inside and outside
of the window are captured, whereas with local folding in the window, any inter-
actions outside of the window are not considered. This allows smaller windows
to be used with more accuracy, and allowed us to assay how codons within the
N-terminus might hybridize to nucleotides both in the constant sfGFP sequence
and in the upstream RBS.

B.2.12 Multiple Linear Model

We used multiple linear regression to explain the log-adjusted protein expression
levels for codon variant sets within the range of our assay. We used promoter iden-
tity, RBS identity, codon GC content, and N-terminal folding energy as regressors,
and included second-order interaction terms. We then applied Type II ANOVA
to find the explained sum of squares, which was 0.541. We excluded wild-type
RBSs from our regression as each wild-type RBS is only ever used with its cognate
peptide sequence, which would unbalance our data. Promoter choice explained
28.6% of variation, followed by folding energy (11.7%), RBS choice (10.9%), and
GC content (1.94%). While interaction terms were statistically significant, no in-
dividual interaction explained more than 0.385% of variation. 45.8% of variation
was unexplained (residual sum of squares). We did not include tAI or CAI in our
multivariate regressions because after comparing models with and without these
regressors using ANOVA, we found that they did not significantly improve the
fit.

B.3 SUPPLEMENTAL FIGURES
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Figure B.1: Diagram of Expression System and Library Design. Each library construct con-
tained a promoter, RBS, and 11 codon N-terminal peptide (including the initi-
ating "ATG’). The peptide sequences correspond to the N-terminus of 137 nat-
ural E. coli genes. For each promoter/RBS/peptide combination, we encoded
13 codon variants including the most common codons (C), most rare codons
(R), wild-type sequence (wt), and codon variants with variable secondary struc-
tures (AG). The library was cloned in-frame with superfolder GFP (sfGFP). The
GFP expression level is compared via relative fluorescence to a constitutively
co-expressed mCherry protein.
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Figure B.2: Codon Frequencies in Library. The codon frequencies across the entire reporter library are representative of natural E. coli codon
frequency distributions. Bar heights represent the percentage of total occurrences of the amino acid, and numbers above each
bar is the absolute number of occurrences. Bars for each codon are colored by their relative synonymous codon usage (RSCU).
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Figure B.3: RNA Abundance by Promoter. The relative RNA abundance for all constructs
expressed as a ratio of RNA to DNA contig count show that the promoters
strengths are different.
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Figure B.4: RNA and DNA Abundance. (A) Relative RNA abundances (ratio of RNA to

DNA contig counts) for each construct are displayed grouped by promoter
and RBS identities. (B) Same plot as in (A) but displaying DNA abundances
for each construct. Labels at the right are the same as in Figure 1E, where

promoter identity is the first column and RBS identity is the second column.

DNA abundances varied due to differences in DNA synthesis efficiencies as
well as lower growth rate for very highly expressed genes.
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Figure B.5: All Flow Cytometry Controls. FlowSeq estimates of fluorescence ratio correlate
well (Rz2 = 0.955, p < 2x10-16) with individually measured fluorescence ratios
from sequence-verified clones. 51 constructs that were outside of the quantita-
tive FlowSeq range are shown in red.
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Figure B.6: Codon Variant Sets and Protein Fold Change. Each 13-member codon variant set is shown as a column, and each member is
colored according to its fold-change from the set log-mean. Labels at the right are the same as in Figure 1E, where promoter
identity is the first column and RBS identity is the second column. All variant sets are shown here, including those on the Low
Promoter / WT RBS and Low Promoter / Weak RBS combinations that are removed from Figure 1E. The sets where at least
half of the variants were below or above quantitative range are outlined in white, while sets within range are outlined in black.
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Codon Metrics versus Expression and Secondary Structure. Codon Metrics ver-
sus Expression and Secondary Structure. (A) The relationship between three
commonly used codon metrics and fold change in protein expression within
a codon variant set is fairly weak. (B) The relationship between these codon
metrics and change in the free energy of folding at the N-terminus within a
codon variant set is fairly similar. In both plots, codon variants that use rarest
codons only are red, and variants using only the most common variant are
blue, and all other constructs are in gray.
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Individual Codon Correlations. Codon variants containing increasing counts of
the five codons most correlated with increased (A) and decreased (B) expres-
sion are shown as red and blue boxplots, respectively. Each point represents a
single variant, and variants are grouped by the number of times they use each
codon, which is labeled at the top of each panel. Only variants with at least
one instance of the corresponding amino acid are plotted.
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Figure B.g: Rare codons increase translation efficiency. The average fold change in translation

efficiency (sfGFP fluorescence divided by mRNA level) is correlated with the
choice of codon for an amino acid. The y-axis is the slope of a linear model
linking codon use to relative translation efficiency. Codons are sorted left to
right by increasing genomic frequency, and colored according to their relative
synonymous codon usage (RSCU) in E. coli. These data can be compared with
Fig. 2A, which used protein levels instead of translation efficiency. All other
analyses using translational efficiency instead of protein levels display similar
correspondence.
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Figure B.1o: Comparison between rarity and GC content for synonymous codons. The relation-
ships between codon GC, genomic codon frequency, and codon correlation
with expression in our dataset are shown. Codon GC is plotted on the x-axis
relative to the median codon GC. For instance, glycine has four codons, GGN,
and the median number of GC nucleotides is 2.5. GGA and GGT would each
have a relative codon GC of -1/2, while GGG and GGC would each have a
relative GC of +1/2. Isoleucine has three codons, AAH, and has a median of
2 GC nucleotides. AAC has a relative GC of +1, and AAT and AAA have rela-
tive GCs of 0. The top panel shows each codon’s expression correlation (as in
Figure 2A) compared with relative GC, while the bottom panel shows each
codon’s relative genomic frequency compared with relative GC. The most
rare synonymous codons are in red, the most common are blue, and all other
codons are gray.
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Figure B.11: Triplet Enrichment. A comparison of the effects of nucleotide triplets in all

three frames on expression in our dataset (left) and those same triplets’ en-
richment at the N-terminus of all genes in E. coli (right). Triplets that are
in frame (i.e. codons, frame 0) are in the top row, triplets in frame +1 are
in the middle row, and in frame +2 are at the bottom. Triplets are grouped
(panels with gray labels) by their wobble base in each position — base 3 in
frame o, base 2 in frame +1, and base 3 in frame +2. On the left, the y-axis
represents the linear model slope as in Figure 2 and described in the text and
supplemental information. On the right, the y-axis represents the log2-fold
enrichment of triplets in the first 30 bases of all genes in E. coli. Triplets with
A at the wobble base position in all three frames are generally correlated with
increased expression in our data set, and are also enriched at the N-terminus
of natural genes.
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Figure B.12: Relative Hybridization for 5 bp Windows. The plots are the same as Figure 4, but
with different window sizes, where the x-axis position is the window center.
Across the x-axis are sliding window centers 5 bases in length. The window
most correlated with expression change is centered at least 10 bases into the
transcript, and not at the RBS or start codon.
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Figure B.13: Relative Hybridization for 20 bp Windows. The plots are the same as Figure
4, but with different window sizes, where the x-axis position is the window
center. Across the x-axis are sliding window centers 20 bases in length. The
window most correlated with expression change is centered at least 10 bases

into the transcript, and not at the RBS or start codon.
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Relative Hybridization for 40 bp Windows. The plots are the same as Figure
4, but with different window sizes, where the x-axis position is the window
center. Across the x-axis are sliding window centers 40 bases in length. The
window most correlated with expression change is centered at least 10 bases
into the transcript, and not at the RBS or start codon.
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Figure B.15:

RBS variable codons GFP
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Relative Hybridization for Constructs with no AG Change in 10 bp Windows. Sim-

ilar to Figure 4 and Fig S10, this figure shows considers only constructs with
no global AG change (i.e. within the green shaded region in Figure 3E). The
relative hybridization probability is defined as the change in probability of
bases within a 10 bp window being paired with any other base in the tran-
script. Across the x-axis are sliding window centers bases in length. In the
top panel, the best and worst 1% (28 measurements) of constructs ranked
by relative expression within a codon variant set are grouped and plotted
as blue and red ribbons, respectively. The ribbon tops and bottoms are one
standard deviation out from the mean, which is shown as a solid line. The
bottom panel shows the p-value for a linear model correlating hybridization
probability within that window to expression fold change for all constructs
with no global AG change.
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Relative Hybridization for Constructs with no AG Change in 20 bp Windows. Sim-
ilar to Figure 4 and Fig S1o, this figure shows considers only constructs with
no global AG change (i.e. within the green shaded region in Figure 3E). The
relative hybridization probability is defined as the change in probability of
bases within a 20 bp window being paired with any other base in the tran-
script. Across the x-axis are sliding window centers bases in length. In the
top panel, the best and worst 1% (28 measurements) of constructs ranked
by relative expression within a codon variant set are grouped and plotted
as blue and red ribbons, respectively. The ribbon tops and bottoms are one
standard deviation out from the mean, which is shown as a solid line. The
bottom panel shows the p-value for a linear model correlating hybridization
probability within that window to expression fold change for all constructs
with no global AG change.
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This appendix contains the extended supplemental information and additional
figures for Chapter 4.

C.1 SUPPLEMENTAL METHODS

c.1.1  Generation and Scoring of Promoters and DNA Regulatory Elements with Pro-
muter

Promuter uses strength and spacing of multiple position weight matrices to iden-
tify and score promoters and transcription factor binding sites. We use data from
our previous high-throughput studies[43] to train a model of transcriptional rate
based on sequence alone. To create new genetic elements, we then build a muta-
tional landscape in which certain mutations are favored and others are disfavored,
and iteratively search that landscape for combinations of mutations that satisfy
constraints, such as the creation or removal of regulatory elements, or the main-
tenance of the current transcriptional or translational rates. We used Promuter
to generate a wide range of circuit designs by modifying number, location, and
strength of binding sites.

Promoter begins with a starting sequence which is annotated with transcription
factor binding motifs and core promoter motifs from Promuter’s database (Fig-
ureC.1, step 1). Once the sequence is annotated, sequence constraints are applied.
In this example, the constraints include the removal of a tetR binding site upstream
of the -35, the addition of a lacl binding site in the central region of the core pro-
moter, and to maintain the motif scores of the -35 and -10 binding sites within
some acceptable range, so as not to ablate basal transcription. Next, the costraints
are combined into a mutational landscape (FigureC.1, step 2). Red grid squares
are bases that are unfavored in the landscape - they either represent currently cho-
sen bases that are essential to the tetR motif, mutations that would be deleterious
to the -35 promoter, or bases that currently unfavored in the lacl binding site mo-
tif. (3) Promuter samples combinations of mutations from this landscape, starting
with only a few, using a prioity queue of scored mutations combinations. It ap-
plies each combination of mutations and re-scores the new sequence as in step 1
and continues to retry new mutation sets of increasing size from the queue until
the constraints are met and an acceptable new sequence is generated.
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Inducer | aTC IPTG
(tetR) (lacl)

Acrylate
(acuR)

Conc.1 | 20nM 1 uM
Conc.2 | 150nM 10 UM
Conc. 3 | 300nM 100 pM
Conc. 4 | 450nM 1M

40 pM
200 pM
1000 pM
5000 pM

Table C.1: Inducer concentrations for each of the small-molecule inducers used in this
study. Each inducer concentration (1-4) corresponds to a separate FlowSeq sort-

ing experiment.

C.2 SUPPLEMENTAL FIGURES



C.2 SUPPLEMENTAL FIGURES
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Figure C.1: Design of Genetic Regulatory Elements with Promuter. See description in the text

(Section C.1.1).
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Figure C.2: Individual Flow Cytometry Controls. Individual constructs chosen at random
from the library were measured independently using Flow Cytometry and
were then compared to the mean flow cytometry bin measured by FlowSeq
(left). From these measurements, the maximum and minimum of each of the
12 bins was calculated using expectation-maximization over Dirichlet distribu-
tion and an estimated measurement was interpolated (right).
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Figure C.3: Library Sequencing Coverage and Fitness. (A) An overview of which sequences
were missing from library measurements across different TFs and induction
levels, suggesting toxicity effects of TF expression and inducer concentrations.
(B) A comparison of TF expression and number of sorted cells (approximated
by read count). Some TFs were toxic at high expression and were not seen in
the library.
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Figure C.4: Dynamic Ranges of Repression and Activation for 4,221 Prx variants. Each point represents one promoter variant based on

the Pro_gopromoter set, generated using Promuter. The shape of each point corresponds to a single or double motif, and the
color corresponds to the location(s) of the motif(s). The X axis measures sfGFP in the absence of TF expression, and the Y axis
measures sfGFP under maximal TF expression. Points along the diagonal are unaffected by TF expression, while points below
are repress and points above are activated. An open circle corresponds to the unmodified promoter. Dotted diagonal lines
correspond to 10x activation, and 10, 30, and 100X repression.
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Figure C.5: Change in Expression with TF Binding Site Placement. Placing individual TF binding sites has differing effects on each promoter’s
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and categorial location, either upstream of the -35, centrally positioned between the -35 and -10, or downstream of the -10.
Some TF binding sites have no effect on basal expression, others strongly modify the promoter’s ability to initiate transcription.

These effects are more consistent within promoters than within TFs.
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Figure C.6: Multiple TF binding sites confer increased TF sensitivity and repression cooperativity. (Left) Promoters with a single binding site
that are repressed >10-fold by the cly34 transcription factor. They repress transcription slowly over 4-5 successive TF expression
levels. (Right) Promoters with combinations of binding sites from the the set of promoters on the left. They respond to increased
TF expression much sooner, and rapidly turn off transcription from the promoter.
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Figure C.7: TF binding site position correlation with helical position. Center of TF binding site
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observed for that TF. Only promoters that have the potential to be repressed
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Figure C.8: Activation from clggand the ZFP-w fusion TFs. (A) Fully repressed and fully
expressed expression comparison (a subset of points from Figure C.4) for con-
structs that include TFBSs placed as activators. For the cI repressors a single
activating position (overlapping the -35) is thought to allow for recruitment of
the polymerase. For the ZFP fused to thew subunit of the RNA polymerase,
the activating position is farther upstream of the -35 site. Dotted lines corre-
spond to 5x and 10x activation (above the solid line) and repression (below
the solid line). (B) Examples of individual Flowseq response curves for 3 con-
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Figure C.9: Some TF binding sites show reduced induction capacity with increased TF concentra-
tion. In these figures, each panel consists of a set of divergent P /Prcircuits
with the same Pgpromoter and TF binding site. All 4 are sensitive to lacl and
IPTG. (Top Left & Top Right) In the top two panels, two TF binding sites lo-
cated centrally and downstream (top left) or upstream and downstream (top
right), fully induced expression (+IPTG) remains constant regardless of the
expression level of lacl, but the ‘floor” of repression drops as more TF is ex-
pressed. (Bottom Left & Bottom Right) In the bottom two panels, single TF
binding sites located upstream of the core promoter repress expression 10-20
fold in the absence of IPTG and at the lowest expression level of lacl. However,
as the concentration of Lacl is increased, the expression of sfGFP under full
IPTG induction drops, suggesting that lacl is still binding to the promoter in
the presence of IPTG.
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This appendix contains the extended supplemental information and additional
figures for Chapter 5. It is adapted from the supplemental information for a
manuscript which is in preparation.

D.1 TOOL COMPARISON

While other packages exist to solve the integration and automation of whole
genome resequencing and annotation, most of these tools are built for large diploid
genomes, usually Homo sapiens. Some tools, like Galaxy, allow users to create
their own custom pipelines without bash scripting, and do support the creation of
pipelines for microbial genomes. However, Galaxy requires that the user to under-
stand and optimize settings for each individual tool. Galaxy also does not allow
visualization or interactive querying of the output, and cannot generate new ref-
erence genomes or use the output of one round of sequencing to inform the next
round. Finally, because of Galaxy’s one-size-fits-all nature, optimizing pipeline
performance (via inline compression and piping of input and output streams) is
not possible.

Another recent tool, SPANDX, can also perform genome resequencing for multi-
ple strains simultaneously, but its widespread use is limited to the fact that it can
only be run on UNIX computing clusters running the venerable and closed-source
commercial PBS job scheduling system. SPANDx has no user interface or interac-
tive components, and so users are required to gather the data manually and run
the pipeline using a command line interface. Because we could not readily locate
a PBS system to test the pipeline on, we were not able to compare the output
between SPANDx and Millstone.

Breseq is purpose-built to perform haploid genome resequencing, but also has
some shortcomings. Most notably, it only works on single genomic samples, mak-
ing it challenging to compare alleles between samples. It also does not make use
of paired-end sequencing reads, limiting its usefulness for detecting structural
variation, and it cannot identify or place de-novo contigs or generate new refer-
ence genomes. And while BreSeq can be made to function on remote servers like
Amazon Web Services or university compute clusters, this requires the user to be
proficient in UNIX and capable of installing various dependencies. Millstone also
automates the process of copying data to the remove server via its web interface.
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Feature Millstone BreSeq SPANDx Galaxy
Variant Visualization X X

Multiple Sample Comparison | X X
Optimized for Large Datasets | X X X
Interactive Querying X

Structural Variant Detection | X X X
Genome Versioning X

Effect Prediction X X X X
Easy Deployment / Install X X X X
Scalability X X X
Data Sharing via Web X X X
Genome Editing )

Optimized for Microbial NGS | X X X

Free and Open Source X X X
Sharing / Collaboration X X

Table D.1: Comparison of features between Millstone and other microbial genome se-
quencing tools.

D.2 DATA MODEL

The data model at the core of the Millstone software was designed in response to
requirements including project organization, data storage, and user activities such
as uploading data, running analysis pipelines, exploring the resulting data, and
generating actionable outputs. Figure D.1 presents the major models and how they
are related to each other. Below, we focus on a few models at a time to explain
the role of each model and which requirements they were created in response
to. For clarity, we have omitted some models here. The full data model can be
studied from the declaration in the source code: https://github.com/churchlab/
millstone/blob/master/genome_designer/main/models.py.

D.2.1 Basic Scaffold Models

The parent model for all related data is a Project. A Project can have multiple
ReferenceGenomes and ExperimentSamples. Variants are described relative to a
single ReferenceGenome, in particular in the fields of position and ref_value.
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Figure D.1: Full data model.

D.2.2 Alignment and Variant-calling

Millstone allows a user to run an alignment of an ExperimentSample [fastq] data
against a specific ReferenceGenome [genbank or fasta]. Then, Variants are called,
describing the differences between the ExperimentSample and ReferenceGenome.
The AlignmentGroup model stores the data from an alignment. Since a Variant can
be called in multiple alignments, or uploaded by a user as a designed variant, we
include an intermediate data model VariantCallerCommonData which describes
which AlignmentGroups a Variant was called in and stores metadata provided by
the variant calling tool (e.g. Freebayes).
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Project —< ExperimentSample

A

ReferenceGenome

A

Variant

Figure D.2: Basic scaffold models.

D.2.3 Variant Data / per-sample Variant Data

Variants are effectively primitives in Millstone. A Variant, in combination with a
VariantAlternate, describes a specific genomic event. A Variant can be uploaded
by a user, or be called during alignment. The latter results in additional metadata
provided by different variant callers (multiple variant callers can call the same
Variant). This variant caller-specific metadata is stored in the VariantCallerCom-
monData model. Additionally, since we use variant callers on multiple samples at
the same time, we store the data about the presence/absence and additional data
describing confidence of the Variant’s occurrence in a particular ExperimentSam-
ple in a model called VariantEvidence.

D.2.4 VariantSet

VariantSets allow the user to organize Variants into groups and take actions on
groups of variants. A Variant can belong to more than one VariantSet. The Vari-
antSet concept is very similar to tags in other software contexts. The user can take
actions with these sets, including search by set, export set, print MAGE oligos, etc.

The VariantToVariantSet model represents each association between a Variant
and a VariantSet. Additionally, a VariantToVariantSet has a many-to-many relation
to ExperimentSample, which enables representing information like Variant x is in
VariantSet y for ExperimentSamples a, b, c.
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AlignmentGroup <] ExperimentSampieToAlignment f—— ExperimentSampie
Variant < variantcallercommonpata

Figure D.3: An AlignmentGroup connects scaffold models to called variants.

Variant ————< VariantAlternate

A

VariantCallerCommonData

A

ExperimentSample —< VariantEvidence

Figure D.4: A Variant describes a specific genomic event.

D.3 ANALYSIS PIPELINE

Millstone’s analysis pipeline can be broken into initial read alignment and align-
ment processing steps, followed by single nucleotide variant calling, structural
variant calling, and annotation of variants. In addition to annotating variants,
Millstone also annatates genomic regions with poor mapping quality, non-unique
alignments, and that have low or no coverage.

Initial read alignment is performed by BWA [53]. We use the package’s BWA-
MEM algorithm to place reads from a paired-end or single-end FASTQ file onto a
provided reference genome, which can either be in Genbank or FASTA format. The
SAMTOOLS package is used to sort and index the BAM alignment and remove
PCR duplicates (via rmdup). The MD flag in the BAM file is also filled in by
SAMTOOLS to allow for mutation visualization via Jbrowse. Multithreading at
the alignment and BAM processing steps is accomplished at a per-sample level.
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Variant o] VVariantToVariantSet  f————————3p| VariantSet

ExperimentSample

Figure D.5: A VariantSet allows grouping Variants.

Read group flags added by BWA allow the sample BAMs to be subsequently
merged for SNV calling.

For single nucleotide variant calling, we use Freebayes. In addition to being com-
pletely free and open source, unlike the GATK toolkit, Freebayes performs indel
realignment internally, avoiding a time-consuming indel realignment step usually
required in GATK-based WGS pipelines. All sample BAMs are merged via sample
read-groups and snps are separately called by region to allow multithreading.

For structural variant detection we use a combination of the Lumpy package
and a custom-built de-novo contig assembly and placement pipeline (see Contig
Assembly and Placement below). Lumpy structural variants are detected sepa-
rately for individual samples, which allows for multithreading. After all samples
are complete the single-sample VCFs are subsequently merged.

Variant annotation is performed by SnpEff. We generate a custom SnpEff genome
config file from a user-provided Genbank file, and run the merged VCF files (one
for SN'Vs across all samples, and another for SVs across all samples) through the
SnpEff software. The SnpEff effect prediction string is then parsed with regular
expressions to populate additional variant annotation INFO fields in the VCF and
in the variant database.

Custom software walks along each individual aligned BAM sample and identi-
fies regions that might be challenging to call variants within because they are low
coverage or non-unique. For this purpose we use the pysam SAMTOOLS API. For
low-quality mapping regions, we walk along each chromosome and flag contigu-
ous regions where more than 50% of the reads have less than a MAPQ score of
20. If less than 4 reads cover a genomic position, we mark it as low coverage, and
if 50% of reads map nonuniquely, then the region is marked as non-unique. In
addition to generating a BED file for visualization in Jbrowse, flags are assigned
to SNVs and SVs within these regions so that the user has the proper context in
which to assess the validity of the variant.
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D.4 QUERY LANGUAGE

A powerful, unique feature of Millstone is being able to filter and compare called
variants across all aligned samples. When analyzing engineered and evolved genomes,
questions of interest might include:

What are commonly mutated genes?
What fraction of my genomes successfully received target mutations?

What are the most common occurring SNVs?

Researchers can use Millstone’s Analyze view to filter through variant call data and
identify answers to these questions. The Analyze view provides an input box that
accepts queries in an intuitive syntax. Variants that match the filter are displayed
in a table, along with additional metadata requested by the user. The simplified
syntax allows users to specify boolean combinations of key op value statements
which are then converted on the backend into the correct SQL query. The syntax
is simpler than SQL and does not require knowledge of the underlying data table
structure.

The most basic query comes in the form:

key op value (e.g. POSITION = 16000)

Multiple conditions can be combined using logical operators:

condl logical_op cond2 (e.g. POSITION = 10000 & GT_TYPE = 2)

Additional example queries can be found by clicking on the arrow dropdown
in the filter box. All filter keys can be found by clicking on the Fields button in
the Analyze view. When uploading samples, users can provide custom keys that
will be recognized by the analysis engine. See the section on benchmarking search
functionality for a discussion of performance.

D.4.1 Implementation

There are two major aspects of the query language implementation: First is gen-
erating a materialized view representation of the underlying data offline, which
obviates the need to perform expensive JOINs. The second is parsing a user query
and converting into the equivalent SQL query to be executed against the material-
ized view.

The underlying data is stored in a normalized representation across multiple
tables in a PostgreSQL database as described in the D.2 section of the supplement.
Executing the a typical SQL query to filter across Variants requires performing
JOINSs across multiple tables. This becomes unwieldy with increasing dataset size.
For example, running Millstone on whole genome sequencing data from 68 strains
derived during the construction the genomically recoded organism [49] results in
5053 unique SNPs. While this is 68 x 5053 = 343604 combinations of Variant and
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ExperimentSample, the SQL query must typically JOIN across 10 different tables
in order to handle all parts of the filter. To mitigate this expensive JOIN require-
ment, we leverage the materialized views feature in PostgreSQL, which allows us to
perform the expensive JOIN offline, that is, not in response to a user query. The
resulting denormalized representation is then the target of converted user queries.

To parse a user query, we convert it into disjunctive normal form which can then
be converted into the corresponding SQL query against the materialized view.

Once the results are fetched from the database, they are cleaned up and pre-
pared for display by the frontend. Results are paginated so that only the number
of results that can be displayed in a single view the user interface are actually
queried and sent to the user interface and also giving a performance boost.

The user query is validated and then converted into disjunctive normal form
(DNF), an AND of OR statements. This is done by converting the query into
a symbolic representation and then using SymPy a python library for symbolic
mathematics to convert the query to DNF. The DNF can then be converted to a
SQL query.

D.4.2 Example Queries and Benchmarking

Configuration A: EC2 myg.2xlarge, 115 E. coli genomes, 4698 total events

Blank (get all results)
A: 3.63 sec

Get all SNPs that are homozygous alt (diploid calling mode).
GT_TYPE = 2
A: 3.62 sec

Get all SNPs with coverage at least 10 reads.
DP >= 10
A: 6.24 sec

Get SNPS that are called homozygous alt with at least read depth of 10
GT_TYPE = 2 & DP >= 10
A: 6.08 sec

Get SNPs in gene thrA
INFO_EFF_GENE = thrA
A: 3.69 sec
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D.5 CONTIG ASSEMBLY AND GENOME FINISHING
D.5.1 Quverview

Available tools for SNP and SV often do not identify complex events despite suf-
ficient information for these events being available in individual next-generation
sequencing reads. In particular, unmapped, clipped, and split reads may indicate
the presence of complex events. The bigger picture of contig assembly is to fit into
what we call genome finishing, or creating a new updated reference genome from
an existing reference and mutation data.

De-novo contigs are assembled from reads identified by their alignment to the
reference as being internal or proximal to structural variation. Each contig is then
decomposed into the reads that contributed to its assembly, which are used to
identify a left and right breakend in the reference. The reference sequences lead-
ing up to each of these two breakends is then located in the contig to identify
the position of the reference-contig junction in the assembled contig. Once junc-
tions between the contig and the reference are identified, the ends of the contig
homologous to the reference are excised and the novel sequence is called as an
insertion-type variant.

D.5.2 Structural Variant Indicating Reads

The identification of structural variation indicating reads resultant from an align-
ment is performed by selecting reads on the basis of belonging to one of five
improper-alignment classes: unmapped, clipped, discordant, split, and piled. Un-
mapped reads are those not mapped to the reference in the alignment. Clipped
reads are reads that are aligned up to a point in the reference after which the
remaining bases in the read are unmapped. Because read quality tends to fall off
towards the end of a read, most aligned reads end in a couple bases of clipping,
and so clipped reads are only identified as useful if they fall above thresholds for
the number of clipped bases and the average Phred score of the clipped bases.
Discordant reads have paired-end mates which map to the outside the range of
normal template lengths. Piled reads are groups of n reads that all stop mapping
to the reference at the same point, where n is above the piling threshold. The
piling threshold is set as three standard deviations above the mean read endpoint
pileup. Split reads are reads in which segments of the read are mapped to different
regions of the reference genome.

D.5.3 Algorithm

The structural variant indicating reads are aggregated into a single bam file with
their mate-pairs added. This bam is then used as input to Velvet[106], a de novo
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assembly program that constructs contigs using De Bruijn graphs. The contigs are
then evaluated for placement in the reference. First, the IDs of the reads that went
into the assembly of each contig are extracted. These IDs then queried in the align-
ment to determine the number of left and right read endpoints piled up at each
position in the reference. A breakend in the reference is called if the highest pileup
is significantly greater than the second highest pileup. If a left and right breakend
can be found, the mapped portion of the reads piled up at the reference breakends
are aligned to the contig, and left and right contig-reference junctions are called
at the positions of highest left and right read endpoint pileup in the contig. These
contig-reference junctions represent the ends of regions of reference homology in
the contig that flank the novel inserted sequence, and are removed. The remaining
sequence is called as an insertion-type variant, potentially compounded with a
deletion if the left and right breakends are not directly adjacent in the reference.

D.5.4 Genome Finishing

In whole genome assemblies, genome finishing typically refers to the process of
figuring out the remaining portions of the genome that may be more difficult to
sequence due to the context of the DNA. Issues such as GC-extremes and repeats
may complicate this. In the context of engineering microbial genomes, genome
finishing is the process of identifying the actual genome of a modified strain.

To implement genome finishing in Millstone, we combine results from SNV
and SV callers with the results from contig assembly to yield a new genome that
represents the best ground truth representation of the actual state of the genome
of the microbe of interest.

D.6 SYSTEM ARCHITECTURE

The design and implementation of Millstone was driven by two main goals: The
first was to enable execution of more sophisticated endeavors in iterative engi-
neering of microbial genomes through technologies like MAGE. The second was
to enable non-computational researchers and researchers outside of our lab to use
the types of methods we have developed and use extensively in our own lab. Both
of these goals required an integrated solution that automated boilerplate analy-
sis steps like genome alignment and variant calling and facilitated exploration of
results and visualization of evidence. Additionally, we wanted to make Millstone
scale well with increasing project requirements, as well as facilitate collaboration.
All of these needs pointed to implementing Millstone as a web wapplication. The
backend could reside in the cloud, an in-house cluster, or a local machine. A rich
interface could be provided through a web browser. Ultimately, Millstone could
be transitioned to deploying via Amazon Web Services, which enables scaling up
computational resources limited only by availability of funds allocated for com-
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putational spending, which can be significantly if not entirely covered by AWS
research grant credits available to academic institutions.

D.6.1 Software

Millstone is built using a stack of open source software tools. The back end
is primarily written in python and the front end is written in JavaScript and
HTML. Scaffolding for the application is provided by Django, a popular python
web framework with an extensive community of users and developers which re-
mains under active development. The software is open source and available at
https://github.com/churchlab/millstone

For data storage, we chose the PostgresSQL database management system, a
popular, well-supported and actively developed relational database. In addition,
PostgresSQL includes several non-relational features including support for JSON
columns and materialized views. JSON is important for storing the large amounts
of key-value data generated by different bioinformatic tools. Materialized views
allow us to solve the problem of expensive queries across many tables by pre-
computing a denormalized representation of variant data and storing them in a
single table. Specifics of how exploring variant data stored in a materialized view
are discussed in section D.4.

Several of the bioinformatic analysis steps in Millstone, including alignment and
variant calling, require several minutes to complete. We use Celery, a distributed
task queue, for queuing, executing, and tracking the status of jobs processed asyn-
chronously. Further, Celery integrates well with Django. Additionally, Celery can
be configured to have multiple workers than can execute in parallel, as limited by
the number of machine processor cores. In particular, we're able to take advantage
of this when Millstone is deployed to an Amazon EC2 machine having dozens of
cores.

D.6.2 Deployment on Amazon Web Services

The recommended method for deploying Millstone is through the Amazon cloud.
Millstone can also be deployed to a local server or to a laptop. We discuss these
options below.

The recommended method for deploying Millstone is for a new user to cre-
ate a new AWS instance using the publicly available Millstone Amazon Machine
Image (AMI). This requires very little configuration beyond choosing an Elastic
Cloud Compute (EC2) instance with adequate resources. Within a few minutes of
launching an instance of Millstone via Amazon, the user can navigate to the URL
of the newly instantiated virtual machine and observe the Millstone landing page.

Users can find the latest guide to deploying Millstone to AWS at http://millstone.

readthedocs.org
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D.6.2.1 Preparing an Amazon Machine Image

Millstone developers prepare the Amazon Machine Image using Cloudbiolinux
[46]. Cloudbiolinux makes deployment reproducible by allowing the developer
to create a versioned snapshot of configuration files that will download and in-
stall software dependencies. Cloudbiolinux offers custom configurations through
flavors. We have implemented a Millstone flavor and it is now available as part
of the Cloudbiolinux source. At time of writing, Millstone configuration files and
a README are located at https://github.com/chapmanb/cloudbiolinux/tree/
master/contrib/flavor/millstone.

D.6.2.2 Costs

The price of running Millstone on Amazon Web Services depends on the con-
figuration. A typical setup using a m3.medium EC2 instance and 100 GB of stor-
age costs $58.24 per month. This price can be significantly reduced by shutting
down the EC2 machine when it is not in use and other simple cost-saving mea-
sures discussed below. Additionally, Academic researchers may be able to entirely
cover the cost of using AWS resources by applying for an AWS Research Grant
at https://aws.amazon.com/grants/. In our own case, the development and use
of Amazon resources with Millstone over the past two years have entirely been
covered by Amazon research grants.

There are two main decisions with regard to cost: compute and storage. Com-
pute is charged per hour while the machine is turned on and depends on the
Elastic Cloud Compute (EC2) instance configuration chosen. EC2 prices currently
range from $0.013 per hour for a t2.micro instance up to $5.52 per hour for a
d2.8xlarge instance with 48 TB of storage with 36 vCPUs (approximately equiva-
lent to cores) and 244 GB of memory. Storage, provided by Amazon Elastic Block
Store (EBS) effectively serves as virtual external disks that can be provisioned
and moved between EC2 instances. SSD-backed storage is charged at $o.10 per
GB-month. Slower, magnetic drive backed storage costs $0.05 per GB-month. In-
termediate users of AWS can modify possible these configurations on a Millstone
instance at different stages of analysis without losing data, as discussed below.

For compute, we recommend at least an m3.medium instance, although Millstone
is designed to leverage multiple cores to parallelize certain tasks such as alignment
and variant calling. At time of writing, the price of running a m3.medium machine
is $0.067 per hour. Users should refer to the EC2 pricing guide (https://aws.
amazon.com/ec2/pricing/) for more information on pricing.

For storage, we have found it effective to allocate approximately three times the
size of the input genome sequencing data files via an SSD-backed EBS. This is done
at time of instance creation. A large portion of this requirement is allocated for
storing generated alignment files. A typical instance of Millstone requires between
100 GB and 1 TB of storage.
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Users who are more familiar with AWS can change the EC2 instance type and
storage requirements on an existing Millstone instance without losing data. This
is particularly advantageous to do once alignment and variant calling is complete
and only analysis and exploration is being performed. For example, in our own
use of Millstone, we will typically provision a highly compute-optimized machine
such as a c4.8xlarge to run alignment and variant calling. Then we will switch back
to an m3.medium machine for analysis. Running a c4.8xlarge machine is currently
priced at $1.763 per hour, and we are able to align and call variants for 96 E. coli
genomes in under 3 hours. We then switch the instance to m3.medium for follow-
up analysis. Before repeating an analysis, we will switch to a bigger instance.
Instructions on changing instance types are available in the online documentation
at http://millstone.readthedocs.org/.

D.6.3 Local Deployment

Millstone can be installed on a local server or laptop. The Millstone repository can
be cloned from our public Github repository at https://github.com/churchlab/
millstone. This requires additional steps for installing prerequisites as detailed in
the README.

147






BIBLIOGRAPHY

[1]

(2]

[3]

(4]

(5]

[7]

(8]

[9]

[10]

[11]

Malin Allert, J Colin Cox, and Homme W Hellinga. “Multifactorial Deter-
minants of Protein Expression in Prokaryotic Open Reading Frames.” In:
Journal of Molecular Biology 402.5 (Oct. 2010), pp. 905-918 (cit. on pp. 34, 40,
46).

H Alper, C Fischer, E Nevoigt, and G Stephanopoulos. “Tuning genetic con-
trol through promoter engineering.” In: Proceedings of the National Academy

of Sciences of the United States of America 102.36 (Sept. 2005), pp. 12678-12683
(cit. on p. 26).

J Christopher Anderson. Anderson Promoter Library, Registry of Standard Bio-
logical Parts. Tech. rep. (cit. on p. 77).

J Christopher Anderson. Anderson RBS Library, Registry of Standard Biological
Parts. Tech. rep. (cit. on p. 77).

Ernesto Andrianantoandro, Subhayu Basu, David K Karig, and Ron Weiss.
“Synthetic biology: new engineering rules for an emerging discipline.” In:
Molecular Systems Biology 2 (May 2006) (cit. on p. 26).

Adam Arkin. “Setting the standard in synthetic biology.” In: Nature Biotech-
nology 26.7 (July 2008), pp. 771-774 (cit. on p. 26).

T E Arnold, ] Yu, and J G Belasco. “mRNA stabilization by the ompA 5’
untranslated region: two protective elements hinder distinct pathways for
mRNA degradation.” In: RNA 4.3 (1998), pp. 319-330 (cit. on p. 34).

Doug Barrick, Keith Villanueba, John Childs, Rhonda Kalil, Thomas D
Schneider, Charles E Lawrence, Larry Gold, and Gary D Stormo. “Quanti-
tative analysis of ribosome binding sites in E.coli.” In: Nucleic Acids Research
22.7 (1994), pp. 1287-1295 (cit. on p. 26).

Michael Baym, Sergey Kryazhimskiy, Tami D Lieberman, Hattie Chung,

Michael M Desai, and Roy Kishony. Inexpensive Multiplexed Library Prepara-
tion for Megabase-Sized Genomes. Tech. rep. Jan. 2015 (cit. on p. 70).

N Benson, P Sugiono, and P Youderian. “DNA sequence determinants of
lambda repressor binding in vivo.” In: Genetics 118.1 (Jan. 1988), pp. 21-29
(cit. on p. 53).

K Bentele, P Saffert, R Rauscher, Z Ignatova, and N Bluthgen. “Efficient
translation initiation dictates codon usage at gene start.” In: Molecular Sys-
tems Biology 9.1 (Jan. 2013), pp. 675-675 (cit. on pp. 40, 46).

149



150 Bibliography

[12] F R Blattner et al. “The complete genome sequence of Escherichia coli K-
12.” In: Science (New York, NY) 277.5331 (Sept. 1997), pp. 1453—1462 (cit. on
P- 99)-

[13] ] Bonnet, P Subsoontorn, and D Endy. “Rewritable digital data storage in
live cells via engineered control of recombination directionality.” In: Pro-
ceedings of the National Academy of Sciences of the United States of America
109.23 (June 2012), pp. 8884-8889 (cit. on p. 26).

[14] Douglas F Browning and Stephen ] W Busby. “The regulation of bacte-
rial transcription initiation.” In: Nature Reviews Microbiology 2.1 (Jan. 2004),
Pp- 57-65 (cit. on p. 52).

[15] Tammy J Bullwinkle, Daniel Samorodnitsky, Rayna C Rosati, and Gerald B
Koudelka. “Determinants of Bacteriophage 933W Repressor DNA Binding
Specificity.” In: PLoS ONE 7.4 (Apr. 2012), 34563 (cit. on p. 53).

[16] F D Bushman and M Ptashne. “Activation of transcription by the bacterio-
phage 434 repressor.” In: Proceedings of the National Academy of Sciences of
the United States of America 83.24 (Dec. 1986), pp. 9353—9357 (cit. on pp. 53,
58).

[17] Barry Canton, Anna Labno, and Drew Endy. “Refinement and standardiza-
tion of synthetic biological parts and devices.” In: Nature Biotechnology 26.7
(July 2008), pp. 787-793 (cit. on p. 26).

[18] Robert Carlson. “Laying the foundations for a bio-economy.” In: Systems
and Synthetic Biology 1.3 (2007), pp. 109—117 (cit. on p. 26).

[19] Peter A Carr and George M Church. “Genome engineering.” In: Nature
Biotechnology 27.12 (Dec. 2009), pp- 1151-1162 (cit. on p. 26).

[20] ] Robert Coleman, Dimitris Papamichail, Steven Skiena, Bruce Futcher,
Eckard Wimmer, and Steffen Mueller. “Virus attenuation by genome-scale
changes in codon pair bias.” In: Science (New York, NY) 320.5884 (June 2008),
pp. 1784-1787 (cit. on p. 46).

[21] Tim F Cooper, Susanna K Remold, Richard E Lenski, and Dominique Schnei-
der. “Expression profiles reveal parallel evolution of epistatic interactions
involving the CRP regulon in Escherichia coli.” In: PLoS Genetics 4.2 (Feb.
2008), e35 (cit. on p. 58).

[22] Robert Sidney Cox, Mary ] Dunlop, and Michael B Elowitz. “A synthetic
three-color scaffold for monitoring genetic regulation and noise.” In: Jour-
nal of Biological Engineering 4.1 (2010), p. 10 (cit. on pp. 27, 36, 77, 99).

[23] Richard Dawkins. The Blind Watchmaker. Why the Evidence of Evolution
Reveals a Universe Without Design. W. W. Norton & Company, 1986 (cit.
on p. 7).



[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

Bibliography

S L Dove and A HOCHSCHILD. “Conversion of the omega subunit of
Escherichia coli RNA polymerase into a transcriptional activator or an acti-
vation target.” In: Genes and Development 12.5 (Mar. 1998), pp. 745-754 (cit.
on p. 58).

Drew Endy, Adam P Arkin, and Jay D Keasling. BIOFAB. Tech. rep. (cit. on
ppP- 26, 77).

M Gouy and C Gautier. “Codon usage in bacteria: correlation with gene
expressivity.” In: Nucleic Acids Research 10.22 (Nov. 1982), pp. 7055-7074
(cit. on p. 41).

Christopher ] Gregg, Marc ] Lajoie, Michael G Napolitano, Joshua A Mos-
berg, Daniel B Goodman, John Aach, Farren ] Isaacs, and George M Church.
“Rational optimization of tolC as a powerful dual selectable marker for
genome engineering.” In: Nucleic Acids Research 42.7 (2014), pp. 4779-4790
(cit. on p. 19).

Wanjun Gu, Tong Zhou, and Claus O Wilke. “A universal trend of reduced
mRNA stability near the translation-initiation site in prokaryotes and eu-
karyotes.” In: PLoS Computational Biology 6.2 (Feb. 2010), 1000664 (cit. on
PP- 34, 40, 46).

Cilin C Guet, Michael B Elowitz, Weihong Hsing, and Stanislas Leibler.
“Combinatorial synthesis of genetic networks.” In: Science (New York, NY)
296.5572 (May 2002), pp. 1466—1470 (cit. on p. 52).

Adrian D Haimovich, Paul Muir, and Farren ] Isaacs. “Genomes by de-
sign.” In: Nature Reviews Genetics 16.9 (2015), pp. 501-516 (cit. on p. 73).

D L Hartl, E N Moriyama, and S A Sawyer. “Selection intensity for codon
bias.” In: Genetics 138.1 (Sept. 1994), pp. 227-234 (cit. on p. 40).

Matthias Heinemann and Sven Panke. “Synthetic biology—putting engi-

neering into biology.” In: Bivinformatics (Oxford, England) 22.22 (2006), pp. 2790~

2799 (cit. on p. 26).

Farren ] Isaacs et al. “Precise manipulation of chromosomes in vivo enables
genome-wide codon replacement.” In: 333.6040 (2011), pp. 348-353 (cit. on
p- 70).

F JACOB, D PERRIN, C SANCHEZ, and ] MONOD. “[Operon: a group of

genes with the expression coordinated by an operator].” In: Comptes rendus
hebdomadaires des séances de I’ Académie des sciences 250 (Feb. 1960), pp. 1727-

1729 (cit. on p. 52).

F JACOB, A ULLMAN, and ] MONOD. “[THE PROMOTOR, A GENETIC
ELEMENT NECESSARY TO THE EXPRESSION OF AN OPERON].” In:
Comptes rendus hebdomadaires des séances de I’ Académie des sciences 258 (Mar.

1964), pp- 3125-3128 (cit. on p. 52).

151



152

Bibliography

[36]

[40]
[41]
[42]

[43]

[44]

[45]

Anitha D Jayaprakash, Omar Jabado, Brian D Brown, and Ravi Sachidanan-
dam. “Identification and remediation of biases in the activity of RNA lig-
ases in small-RNA deep sequencing.” In: Nucleic Acids Research 39.21 (Nov.
2011), e141—e141 (cit. on p. 81).

Wenyan Jiang, David Bikard, David Cox, Feng Zhang, and Luciano A Mar-
raffini. “RNA-guided editing of bacterial genomes using CRISPR-Cas sys-
tems.” In: Nature Biotechnology 31.3 (2013), pp. 233—239 (cit. on p. 70).

Jay D Keasling. “Manufacturing molecules through metabolic engineer-
ing.” In: Science (New York, NY) 330.6009 (2010), pp- 1355-1358 (cit. on p. 26).

Justin B Kinney, Anand Murugan, Curtis G Callan, and Edward C Cox.
“Using deep sequencing to characterize the biophysical mechanism of a
transcriptional regulatory sequence.” In: Proceedings of the National Academy
of Sciences of the United States of America 107.20 (2010), pp. 9158-9163 (cit. on

p. 52).

Joshua T Kittleson, Gabriel C Wu, and J Christopher Anderson. “Successes
and failures in modular genetic engineering.” In: Current opinion in chemical
biology (2012) (cit. on p. 26).

Anton A Komar. “A pause for thought along the co-translational folding
pathway.” In: Trends in biochemical sciences 34.1 (Jan. 2009), pp. 16—24 (cit. on
p. 46).

Sriram Kosuri and George M Church. “Large-scale de novo DNA synthesis:
technologies and applications.” In: Nature Methods 11.5 (May 2014), pp- 499
507 (cit. on p. 17).

Sriram Kosuri, Daniel B Goodman, Guillaume Cambray, Vivek K Mutalik,
Yuan Gao, Adam P Arkin, Drew Endy, and George M Church. “Compos-
ability of regulatory sequences controlling transcription and translation in
Escherichia coli.” In: Proceedings of the National Academy of Sciences of the
United States of America (Aug. 2013) (cit. on pp. 40, 52, 53, 99—101, 123).

Jonathan W Kotula, S Jordan Kerns, Lev A Shaket, Layla Siraj, James ]
Collins, Jeffrey C Way, and Pamela A Silver. “Programmable bacteria detect
and record an environmental signal in the mammalian gut.” In: Proceedings
of the National Academy of Sciences of the United States of America 111.13 (Apr.
2014), pp- 4838-4843 (cit. on p. 61).

Astrid P Koudelka, Lisa A Hufnagel, and Gerald B Koudelka. “Purification
and characterization of the repressor of the shiga toxin-encoding bacterio-
phage 933W: DNA binding, gene regulation, and autocleavage.” In: Journal
of Bacteriology 186.22 (Nov. 2004), pp. 7659-7669 (cit. on p. 53).



[46]

[47]

(48]

[49]

[52]

[53]

[54]

[55]

[56]

Bibliography

Konstantinos Krampis, Tim Booth, Brad Chapman, Bela Tiwari, Mesude
Bicak, Dawn Field, and Karen E Nelson. “Cloud BioLinux: pre-configured
and on-demand bioinformatics computing for the genomics community.”
In: BMC Bioinformatics 13.1 (2012), p. 42 (cit. on p. 146).

Grzegorz Kudla, Andrew W Murray, David Tollervey, and Joshua B Plotkin.
“Coding-sequence determinants of gene expression in Escherichia coli.” In:
Science (New York, NY) 324.5924 (Apr. 2009), pp. 255-258 (cit. on pp. 34, 40,
43, 46).

M | Lajoie, D Soll, and G M Church. “Overcoming challenges in engineer-
ing the genetic code.” In: Journal of Molecular Biology (2015) (cit. on p. 19).

Marc J Lajoie, Alexis ] Rovner, Daniel B Goodman, Hans-Rudolf Aerni,
Adrian D Haimovich, Gleb Kuznetsov, Jaron A Mercer, Harris H Wang,
Peter A Carr, Joshua A Mosberg, et al. “Genomically recoded organisms
expand biological functions.” In: Science (New York, NY) 342.6156 (2013),
Pp- 357-360 (cit. on pp. 19, 72-74, 141).

Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. “Ultrafast
and memory-efficient alignment of short DNA sequences to the human
genome.” In: Genome Biology 10.3 (2009), R25 (cit. on pp. 37, 83, 101).

Emily M LeProust, Bill ] Peck, Konstantin Spirin, Heather Brummel Mc-
Cuen, Bridget Moore, Eugeni Namsaraev, and Marvin H Caruthers. “Syn-
thesis of high-quality libraries of long (150mer) oligonucleotides by a novel
depurination controlled process.” In: Nucleic Acids Research 38.8 (May 2010),

PP- 2522-2540 (cit. on pp. 17, 27, 36, 40, 53, 78).

Gene-Wei Li, Eugene Oh, and Jonathan S Weissman. “The anti-Shine-Dalgarno

sequence drives translational pausing and codon choice in bacteria.” In: Na-
ture 484.7395 (Apr. 2012), pp. 538-541 (cit. on pp. 40, 41, 103).

Heng Li and Richard Durbin. “Fast and accurate short read alignment with
Burrows-Wheeler transform.” In: Bioinformatics (Oxford, England) 25.14 (2009),
pPp- 1754-1760 (cit. on p. 139).

Kevin D Litcofsky, Raffi B Afeyan, Russell ] Krom, Ahmad S Khalil, and
James J Collins. “Iterative plug-and-play methodology for constructing and
modifying synthetic gene networks.” In: Nature Methods 9.11 (Nov. 2012),
pp- 1077-1080 (cit. on p. 52).

Peng Lu, Christine Vogel, Rong Wang, Xin Yao, and Edward M Marcotte.
“Absolute protein expression profiling estimates the relative contributions
of transcriptional and translational regulation.” In: Nature Biotechnology 25.1
(Jan. 2007), pp. 117-124 (cit. on p. 103).

Nicholas R Markham and Michael Zuker. “UNAFold: software for nucleic
acid folding and hybridization.” In: Methods in molecular biology (Clifton, NJ)
453 (2008), pp. 3-31 (cit. on p. 99).

153



154

Bibliography

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Vincent J J] Martin, Douglas J Pitera, Sydnor T Withers, Jack D Newman,
and Jay D Keasling. “Engineering a mevalonate pathway in Escherichia coli
for production of terpenoids.” In: Nature Biotechnology 21.7 (2003), pp. 796—
802 (cit. on p. 26).

Steven A Mauro, David Pawlowski, and Gerald B Koudelka. “The role
of the minor groove substituents in indirect readout of DNA sequence
by 434 repressor.” In: The Journal of biological chemistry 278.15 (Apr. 2003),
PP- 12955-12960 (cit. on p. 53).

Vivek K Mutalik et al. “Precise and reliable gene expression via standard
transcription and translation initiation elements.” In: Nature Methods 10.4
(Apr. 2013), pp. 354360 (cit. on p. 26).

Vivek K Mutalik et al. “Quantitative estimation of activity and quality for
collections of functional genetic elements.” In: Nature Methods 10.4 (Apr.
2013), pp. 347-353 (cit. on pp. 26, 32, 34, 36).

Dokyun Na, Sunjae Lee, and Doheon Lee. “Mathematical modeling of
translation initiation for the estimation of its efficiency to computationally
design mRNA sequences with desired expression levels in prokaryotes.”
In: BMC systems biology 4 (2010), p. 71 (cit. on p. 26).

Sivan Navon and Yitzhak Pilpel. “The role of codon selection in regula-
tion of translation efficiency deduced from synthetic libraries.” In: Genome
Biology 12.2 (Feb. 2011), R12 (cit. on pp. 40, 41).

OECD. The Bioeconomy to 2030: Designing a Policy Agenda. OECD Publishing,
2009 (cit. on p. 26).

Rupali P Patwardhan, Choli Lee, Oren Litvin, David L Young, Dana Pe’er,
and Jay Shendure. “High-resolution analysis of DNA regulatory elements
by synthetic saturation mutagenesis.” In: Nature Biotechnology 27.12 (Jan.
2009), pp. 1173-1175 (cit. on pp. 26, 27, 52).

Sebastian Pechmann and Judith Frydman. “Evolutionary conservation of
codon optimality reveals hidden signatures of cotranslational folding.” In:
Nat Struct Mol Biol 20.2 (Feb. 2013), pp. 237-243 (cit. on pp. 40, 41, 46, 103).

Jean-Denis Pédelacq, St e phanie Cabantous, Timothy Tran, Thomas C Ter-
williger, and Geoffrey S Waldo. “Engineering and characterization of a
superfolder green fluorescent protein.” In: Nature Biotechnology 24.1 (Jan.
2006), pp. 79-88 (cit. on pp. 27, 40, 77).

Joshua B Plotkin and Grzegorz Kudla. “Synonymous but not the same: the
causes and consequences of codon bias.” In: Nat Rev Genet 12.1 (Jan. 2011),
PP- 32—42 (cit. on pp. 40, 41, 46).

Mark Ptashne. A Genetic Switch. Phage Lambda Revisited. CSHL Press,
1986 (cit. on p. 52).



[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

(78]

[79]

Bibliography

Tali Raveh-Sadka, Michal Levo, Uri Shabi, Boaz Shany, Leeat Keren, Maya
Lotan-Pompan, Danny Zeevi, Eilon Sharon, Adina Weinberger, and Eran
Segal. “Manipulating nucleosome disfavoring sequences allows fine-tune
regulation of gene expression in yeast.” In: Nature Genetics 44.7 (2012),
Pp- 743-750 (cit. on p. 27).

Mario dos Reis, Renos Savva, and Lorenz Wernisch. “Solving the riddle of
codon usage preferences: a test for translational selection.” In: Nucleic Acids
Research 32.17 (2004), pp- 5036—5044 (cit. on pp. 40, 41).

Dae-Kyun Ro et al. “Production of the antimalarial drug precursor artemisinic

acid in engineered yeast.” In: Nature 440.7086 (2006), pp. 940-943 (cit. on
p- 26).

Jameson K Rogers and George M Church. “Genetically encoded sensors
enable real-time observation of metabolite production.” In: Proceedings of
the National Academy of Sciences of the United States of America 113.9 (Mar.
2016), pp. 2388-2393 (cit. on p. 53).

Jameson K Rogers, Christopher D Guzman, Noah D Taylor, Srivatsan Ra-
man, Kelley Anderson, and George M Church. “Synthetic biosensors for
precise gene control and real-time monitoring of metabolites.” In: Nucleic
Acids Research 43.15 (Sept. 2015), pp. 7648-7660 (cit. on pp. 53, 61).

Nitzan Rosenfeld, Jonathan W Young, Uri Alon, Peter S Swain, and Michael
B Elowitz. “Accurate prediction of gene feedback circuit behavior from
component properties.” In: Molecular Systems Biology 3 (Nov. 2007), p. 143
(cit. on p. 26).

Emily F Ruff, M Thomas Record, and Irina Artsimovitch. “Initial events in
bacterial transcription initiation.” In: Biomolecules 5.2 (2015), pp. 1035-1062
(cit. on p. 52).

Howard M Salis, Ethan A Mirsky, and Christopher A Voigt. “Automated
design of synthetic ribosome binding sites to control protein expression.”
In: Nature Biotechnology 27.10 (2009), pp. 946—950 (cit. on pp. 26, 34, 77).

Luis Serrano. “Synthetic biology: promises and challenges.” In: Molecular
Systems Biology 3 (2007), p. 158 (cit. on p. 26).

Premal Shah, Yang Ding, Malwina Niemczyk, Grzegorz Kudla, and Joshua
B Plotkin. “Rate-Limiting Steps in Yeast Protein Translation.” In: Cell 153.7
(June 2013), pp. 1589-1601 (cit. on pp. 40, 46).

Nathan C Shaner, Michael Z Lin, Michael R McKeown, Paul A Steinbach,
Kristin L Hazelwood, Michael W Davidson, and Roger Y Tsien. “Improv-
ing the photostability of bright monomeric orange and red fluorescent pro-
teins.” In: Nature Methods 5.6 (2008), pp. 545-551 (cit. on p. 40).

155



156

Bibliography

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]
[88]

[89]

[90]

Elaine B Shapland et al. “Low-Cost, High-Throughput Sequencing of DNA
Assemblies Using a Highly Multiplexed Nextera Process.” In: ACS Syn-
thetic Biology 4.7 (July 2015), pp. 860-866 (cit. on p. 70).

Eilon Sharon, Yael Kalma, Ayala Sharp, Tali Raveh-Sadka, Michal Levo,
Danny Zeevi, Leeat Keren, Zohar Yakhini, Adina Weinberger, and Eran Se-
gal. “Inferring gene regulatory logic from high-throughput measurements
of thousands of systematically designed promoters.” In: Nature Biotechnol-
0gYy 30.6 (2012), pp. 521530 (cit. on p. 27).

P M Sharp, T M Tuohy, and K R Mosurski. “Codon usage in yeast: clus-
ter analysis clearly differentiates highly and lowly expressed genes.” In:
Nucleic Acids Research 14.13 (July 1986), pp. 5125-5143 (cit. on p. 41).

Katsuyuki Shiroguchi, Tony Z Jia, Peter A Sims, and X Sunney Xie. “Digi-
tal RNA sequencing minimizes sequence-dependent bias and amplification
noise with optimized single-molecule barcodes.” In: Proceedings of the Na-
tional Academy of Sciences of the United States of America 109.4 (Jan. 2012),
Pp- 1347-1352 (cit. on p. 103).

Xiaokun Shu, Nathan C Shaner, Corinne A Yarbrough, Roger Y Tsien, and S
James Remington. “Novel chromophores and buried charges control color
in mFruits.” In: Biochemistry 45.32 (2006), pp. 9639—9647 (cit. on pp. 27, 77).

Ryan K Shultzaberger, Daniel S Malashock, Jack F Kirsch, and Michael
B Eisen. “The fitness landscapes of cis-acting binding sites in different
promoter and environmental contexts.” In: PLoS Genetics 6.7 (July 2010),
€1001042 (cit. on p. 52).

M H de Smit and ] van Duin. “Secondary structure of the ribosome binding
site determines translational efficiency: a quantitative analysis.” In: Proceed-
ings of the National Academy of Sciences of the United States of America 87.19
(Oct. 1990), pp. 76687672 (cit. on p. 46).

John St. John. SeqPrep. Tech. rep. (cit. on pp. 37, 82, 101).

Eric] Steen, Yisheng Kang, Gregory Bokinsky, Zhihao Hu, Andreas Schirmer,
Amy McClure, Stephen B Del Cardayre, and Jay D Keasling. “Microbial
production of fatty-acid-derived fuels and chemicals from plant biomass.”
In: Nature 463.7280 (2010), pp- 559-562 (cit. on p. 26).

Arvind R Subramaniam, Tao Pan, and Philippe Cluzel. “Environmental
perturbations lift the degeneracy of the genetic code to regulate protein
levels in bacteria.” In: Proceedings of the National Academy of Sciences of the
United States of America 110.6 (Feb. 2013), pp. 2419-2424 (cit. on pp. 40, 46).

Jeffrey ] Tabor, Howard M Salis, Zachary Booth Simpson, Aaron A Cheva-
lier, Anselm Levskaya, Edward M Marcotte, Christopher A Voigt, and An-
drew D Ellington. “A synthetic genetic edge detection program.” In: Cell
137.7 (2009), pp- 1272-1281 (cit. on p. 26).



[91]

[92]

(93]

[94]

[95]

[96]

{971

[98]

[99]

[100]

Bibliography

Noah D Taylor et al. “Engineering an allosteric transcription factor to re-
spond to new ligands.” In: Nature Methods 13.2 (Feb. 2016), pp. 177-183
(cit. on p. 61).

Karsten Temme, Dehua Zhao, and Christopher A Voigt. “Refactoring the
nitrogen fixation gene cluster from Klebsiella oxytoca.” In: Proceedings of
the National Academy of Sciences of the United States of America 109.18 (2012),

pp- 7085-7090 (cit. on p. 26).

O Tenaillon, A Rodriguez-Verdugo, R L Gaut, P Mcdonald, A F Bennett, -

A D Long, and B S Gaut. “The Molecular Diversity of Adaptive Conver-
gence.” In: Science (New York, NY) 335.6067 (Jan. 2012), pp. 457-461 (cit. on
PP 19, 72, 74)-

Tamir Tuller, Asaf Carmi, Kalin Vestsigian, Sivan Navon, Yuval Dorfan,
John Zaborske, Tao Pan, Orna Dahan, Itay Furman, and Yitzhak Pilpel.
“An evolutionarily conserved mechanism for controlling the efficiency of
protein translation.” In: Cell 141.2 (Apr. 2010), pp. 344-354 (cit. on pp. 40,
41).

Tamir Tuller, Yedael Y Waldman, Martin Kupiec, and Eytan Ruppin. “Trans-
lation efficiency is determined by both codon bias and folding energy.” In:
Proceedings of the National Academy of Sciences of the United States of America
107.8 (Feb. 2010), pp. 3645-3650 (cit. on pp. 40, 41, 46).

Dieter Voges, Manfred Watzele, Cordula Nemetz, Sabine Wizemann, and
Bernd Buchberger. “Analyzing and enhancing mRNA translational effi-
ciency in an Escherichia coli in vitro expression system.” In: Biochem Bio-
phys Res Commun 318.2 (May 2004), pp. 601-614 (cit. on p. 43).

Irina O Vvedenskaya, Yuanchao Zhang, Seth R Goldman, Anna Valenti,
Valeria Visone, Deanne M Taylor, Richard H Ebright, and Bryce E Nick-
els. “Massively Systematic Transcript End Readout, "M ASTER": Transcrip-
tion Start Site Selection, Transcriptional Slippage, and Transcript Yields.”
In: Molecular Cell 60.6 (Dec. 2015), pp. 953-965 (cit. on pp. 52, 59).

Harris H Wang, Farren ] Isaacs, Peter A Carr, Zachary Z Sun, George Xu,
Craig R Forest, and George M Church. “Programming cells by multiplex
genome engineering and accelerated evolution.” In: Nature 460.7257 (Aug.
2009), pp- 894-898 (cit. on p. 26).

Harris H Wang, Farren ] Isaacs, Peter A Carr, Zachary Z Sun, George Xu,
Craig R Forest, and George M Church. “Programming cells by multiplex
genome engineering and accelerated evolution.” In: Nature 460.7257 (2009),
pp- 894-898 (cit. on p. 70).

Mark Welch, Sridhar Govindarajan, Jon E Ness, Alan Villalobos, Austin
Gurney, Jeremy Minshull, and Claes Gustafsson. “Design parameters to
control synthetic gene expression in Escherichia coli.” In: PLoS ONE 4.9
(Sept. 2009), e7002 (cit. on pp. 34, 40, 46).

157



158

Bibliography

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Yukiko Yamazaki, Hironori Niki, and Jun-ichi Kato. “Profiling of Escherichia
coli Chromosome database.” In: Methods in molecular biology (Clifton, NJ) 416

(2008), pp- 385-389 (cit. on pp. 40, 99, 101, 102).

O Yarchuk, N Jacques, J Guillerez, and M Dreyfus. “Interdependence of

translation, transcription and mRNA degradation in the lacZ gene.” In:

Journal of Molecular Biology 226.3 (1992), pp. 581-596 (cit. on p. 34).

Joseph N Zadeh, Conrad D Steenberg, Justin S Bois, Brian R Wolfe, Mar-
shall B Pierce, Asif R Khan, Robert M Dirks, and Niles A Pierce. “NUPACK:
Analysis and design of nucleic acid systems.” In: Journal of computational
chemistry 32.1 (Jan. 2011), pp. 170-173 (cit. on pp. 43, 103).

Gabriel E Zentner and Steven Henikoff. “High-resolution digital profiling
of the epigenome.” In: Nature Reviews Genetics 15.12 (Dec. 2014), pp. 814~
827 (cit. on p. 17).

Gabriel E Zentner and Steven Henikoff. “High-resolution digital profiling
of the epigenome.” In: Nature Reviews Genetics 15.12 (Dec. 2014), pp. 814~
827 (cit. on p. 26).

Daniel R Zerbino and Ewan Birney. “Velvet: algorithms for de novo short
read assembly using de Bruijn graphs.” In: Genome Research 18.5 (May 2008),
pp- 821-829 (cit. on p. 143).

Mian Zhou, Jinhu Guo, Joonseok Cha, Michael Chae, She Chen, Jose M
Barral, Matthew S Sachs, and Yi Liu. “Non-optimal codon usage affects ex-
pression, structure and function of clock protein FRQ.” In: Nature 495.7439
(Mar. 2013), pp. 111-115 (cit. on pp. 40, 46).



