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Abstract

The first chapter explores strategic insurer pricing in response to consumer inertia. A growing
literature has documented evidence that consumers in health insurance markets are inertial, or
behave as though they face substantial switching costs in choosing a health insurance plan. I
investigate whether the private firms that provide prescription drug insurance through Medicare
Part D exploit this inertia when setting prices. I first document descriptive evidence consistent with
insurers initially setting low prices in order to "invest" in future demand before later raising prices
to "harvest" inertial consumers. I then apply a two-step estimation approach following Bajari,
Benkard and Levin (2007) to explore the implications of these invest and harvest incentives for
equilibrium pricing, finding that on net, demand inertia reduces equilibrium prices (i.e. the invest
incentive dominates the harvest incentive). Finally, I evaluate welfare consequences of policies that
could be used to co'nstrain insurers' ability to conduct such "invest-then-harvest" pricing patterns.
I find, for example, that a policy change to cap premium increases would improve consumer welfare
by both lowering average premiums and smoothing prices over time.

Motivated by prior work on market size spurring innovation, the second chapter (co-authored
with Manuel Hermosilla) explores the role of increased downstream demand in facilitating inter-
firm cooperation in the pharmaceutical industry, where licensing is a common form of collaboration
between upstream innovators and downstream commercializers. We propose a simple model of
licensing with heterogeneous match quality which predicts that positive demand shocks will in-
crease the likelihood of licensing and improve match quality by reducing the relative importance
of transaction costs. We then use the differential impacts of the introduction of Medicare Part D
across drug categories 'targeting different ages of consumers as a source of variation in demand, and
document empirical evidence consistent with the model.

Using US county-level data on physician stock from the Area Resource File, the third chapter is
devoted to uncovering and understanding the differential effects of medical schools on the supply of
physician across regions. I use a difference-in-difference framework to compare changes in physician
supply in areas closer to new medical school entries with regions further away. I find that a new
medical school increased the physician supply by one to three times the county average level in
the county where the medical school was located, relative to other counties. The broader regional
effect was smaller but still substantial - a new medical school increased physician supply by one
fourth to two thirds of the sample average in counties within 50 miles, relative to counties farther
away. When tracking the effect over time, I find that a new medical school had the same impact
in the year of entry and in the following 20 years, which indicates that most of the impacts could
be attributed to the immediate responses. I find no effect on the physician supply in most of the
pre-entry years, which supports the identifying assumption that locations of new medical schools
were not correlated with other underlying determinants of physician supply.
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Chapter 1

Supply Response to Consumer

Inertia: Strategic Pricing in Medicare

Part D

1.1 Introduction

A growing literature has documented evidence that consumers in health insurance markets behave

as if they face substantial switching costs when choosing health insurance plans. In this paper, I

investigate whether private firms exploit this type of consumer inertia when setting prices for health

insurance products and analyze'the resulting welfare and policy implications. My empirical setting

is Medicare Part D, a public program in which private insurers under contract with the govern-

ment provide outpatient prescription drug insurance to more than 30 million Medicare beneficiaries

(Hoadley et al., 2014).

Consumer inertia is a well-recognized feature of Medicare Part D, where standard enrollees only

need to actively choose plans when they first join the program and are subsequently defaulted into

previous choices unless they choose to switch. Hoadley et al. (2012) document the low frequency

of switching despite large changes in plan premiums. Miller and Yeo (2015a) and Polyakova (2015)

both identify substantial switching costs among Part D enrollees and estimate significant welfare

loss because switching costs tend to prevent consumers from re-optimizing and to lock them into

sub-optimal plans.

0I am greatly indebted to my advisors Amy Finkelstein, Heidi Williams and Paulo Somaini for their invaluable

guidance and support throughout this project. I thank Nikhil Agarwal, Jie Bai, Joseph Doyle, Esther Duflo, Glenn

Ellison, Sara Fisher Ellison, Jonathan Gruber, Gaston Illanes, Yusuke Narita, Manisha Padi, Ariel Pakes, Maria

Polyakova, Jim Poterba, Brendan Price, Michael Whinston, Hongkai Zhang and participants at the MIT Public

Finance and Industrial Organization field lunches and workshops for very helpful comments, suggestions and dis-

cussions. I also thank Mohan Ramanujan and Jean Roth at NBER, and Sarah Brunsberg and Kelly McMaken at

ResDAC for their help with navigating the Medicare data. I gratefully acknowledge the generous support from the

MIT George and Obie Shultz Fund.
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Building on prior evidence of inertia in consumer demand in the context of Medicare Part D, my

paper proceeds in three steps. First, I use administrative micro-data on Medicare beneficiaries and

their plan choices to document descriptive facts that are consistent with the theoretical framework

outlined by Klemperer (1987). The key idea of Klemperer (1987)'s framework is that, in the presence

of demand inertia, insurers initially set low prices in order to "invest" in future demand before raising

prices to "harvest" inertial consumers. I start by testing for this "invest-then-harvest" pricing pattern

(also known as "bait-and-switch" or "bargains-then-ripoffs" pricing) by using a measure of markup

or variable profit margin to eliminate potential confounding variations in cost and subsidy that

affect insurers' pricing decisions. I document descriptive evidence consistent with insurers initially

setting low prices in order to invest in future demand before later raising prices to harvest inertial

consumers. Indeed, insurers charge lower markups when plans first enter and increase markups

afterward; even the same insurer charges 148 dollars lower in annual markups for entrant plans

than incumbent plans offering similar coverage. This difference in markup is over 30 percent of

the average annual premium during the sample period. Such a striking invest-then-harvest pricing

pattern rejects the null of no strategic response and provides suggestive evidence that insurers

account for inertia when setting prices.

My finding confirms the public suspicion of Part D sponsors' "bait-and-switch" tactic. According

to a Boston Globe article by Krasner (2006), the start-up of Medicare Part D was seen as "a once-in-

a-lifetime opportunity" to attract new customers for Humana, one of the biggest insurers operating

in Medicare Part D. The article notes that Humana tends to introduce plans at low prices, which

are subsequently increased by a large margin.1 One health-care analyst's response to Humana's

pricing is very telling: "That's not an acceptable inflationary increase in prices. That's sucker them

in and you just start raising the prices." A Humana spokesman blamed the price increase on the

government's subsidy formula, but that contention was disputed by an actuary from the Centers

for Medicare and Medicaid Services (Krasner, 2006).

Insurers' invest-then-harvest pricing has important welfare implications. On one hand, dynamic

choice inefficiency arises as consumers' plan choices tend not to remain optimal after price changes,
but switching frictions prevent many from taking advantage of re-optimization. On the other hand,
it is an empirical question whether the invest or harvest incentive dominates and whether prices

are higher or lower compared with the benchmark with no inertia. To explore the implications of

these invest and harvest incentives for equilibrium pricing, I propose and estimate a dynamic model

of insurers' pricing decisions that incorporates consumer inertia and adverse selection. Following

Bajari et al. (2007)'s two-step estimation approach, I uncover insurers' discount factor, which tells

us how much firms value future profits relative to current profits and quantifies their incentive to

invest in future demand. As a result, the identification comes from the observed price or markup

levels. Intuitively, the more insurers care about the future, the stronger invest incentive they face

and the lower they set their premiums. The structural estimation reveals a strong invest incentive

'For example, premiums of Humana Standard, with over 2 million enrollees, increased by 60 percent on average

between 2006 and 2007 and by 466 percent in seven regions (Krasner, 2006).
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for insurers, which is consistent with low markups observed early on.

I apply this dynamic model to answer two important economic questions. First, what is the

net effect of strategic pricing in response to inertia on equilibrium prices? In other words, do

switching costs toughen or soften competition? It is an empirical question and depends on which

of the following incentive dominates - the incentive to price low to invest in future demand, or the

incentive to harvest inertial incumbent consumers. To quantify insurers' trade-off between these

counteracting incentives, I decompose observed pricing patterns by comparing this dynamic model

with a counter-factual benchmark without inertia and with a counter-factual in which insurers are

myopic and do not invest in future demand. Comparisons show that on net, demand inertia tough-

ens competition and reduces equilibrium prices in this setting, i.e. the invest incentive dominates

the harvest incentive.

Finally, I apply the model to understand the potential role of government regulations. What

are the price and welfare consequences of policies that could be used to constrain insurers' ability

to exploit inertia using the "invest-then-harvest" pricing tactic? Even if there are policies that

can effectively reduce the scope of investing and harvesting, the effects of government intervention

are not directly intuitive. In fact, the effects are ambiguous ex-ante because pricing response to

inertia creates two offsetting effects on consumer welfare. On one hand, price increases create

dynamic choice inefficiency in consumer choice in the presence of switching frictions. On the other

hand, the structural estimation suggests that inertia reduces prices as insurers face very strong

incentives to invest in future profits. The desirability of government intervention depends on how

effectively each policy can smooth prices over time without increasing average price levels. In order

to assess desirability of government intervention, I first consider the most natural and straight-

forward policy, which is to cap the rate of annual premium increases at ten percent.2 A second

policy I consider is to offer a public option at a low price to compete with private insurers. An

inexpensive public option would not only restrain room for increasing prices later on, but would

also reduce the incentive to invest in future demand early on. I also consider the effects of removing

risk sharing and fully exposing insurers to excessive losses and gains from their pricing decisions.

A caveat with the last two policies is that public options and risk corridors are important policy

instruments with many potential effects other than influencing insurer response to inertia, and my

analysis here only speaks to one of many aspects of their effects. Among these policies, I find that a

policy change to cap premium increases would be the most effective in improving consumer welfare

by both lowering average premiums and smoothing prices over time. Offering a low-price public

option lowers average prices and increases consumer welfare, but such welfare gains are dominated

by the extra social cost of offering the public plan. Removing risk sharing has little impact on

welfare but transfers money from the government to insurers because with risk sharing, taxes on

excessive gains outweigh subsidies on excessive losses, both in the model and empirically.

2 This policy experiment is similar in nature to the "Effective Rate Review" policy under the Affordable Care

Act, which ensures that "in any State, any proposed rate increase by individual or small group market insurers

at or above 10 percent will be scrutinized by independent experts to make sure it is justified". See CMS report:

http: //www. cms. gov/CCIIO/Resources/Fact-Sheets-and-FAQs/rate-review-fact-sheet.html.
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My work builds on multiple literatures and contributes to the general understanding of supply

in privatized health insurance markets, often with switching frictions. In recent years, we have seen

a growing role for non-group insurance over typical employer-based and traditional government-

provided insurance. For example, the Affordable Care Act establishes state-based health insurance

exchanges where individuals and small business can choose from plans provided by private insur-

ers. Therefore, it is increasingly important to understand how the private supply side operates in

health insurance markets with switching frictions. First, my paper builds on the growing litera-

ture on consumer inertia and choice frictions in general3 in insurance markets, including Medicare

Part D and other health insurance settings. Polyakova (2015) models inertial consumers facing a

switching cost and estimates switching costs to be two to four times as high as annual premiums

among Medicare Part D enrollees. Ho et al. (2015) study inattention as a crucial driver of ob-

served inertia and analyze its implications for prices, consumer out-of-pocket costs and government

subsidy. Switching friction is a general feature of a variety of insurance markets with defaults,
not limited to prescription drugs for the elderly. For example, Nosal (2012) estimates switching

cost in Medicare Advantage, while Handel (2014) provides evidence of consumer inertia among a

large firm's employees in choosing from employer-provided insurance plans. The contribution of my

paper is to build on these studies and develop a structural model of dynamic pricing that allows

me to simulate supply-side policy counter-factuals.

Furthermore, my work contributes to recent studies on insurance supply in privatized health

insurance markets and its interactions with government regulations. Abaluck and Gruber (2013)

conclude that the increased welfare loss from choice inconsistency in Medicare Part D is largely

driven by supply-side changes, indicating the importance of understanding insurers' behavior. Er-

icson (2014) is the first to examine strategic pricing in response to inertia in Medicare Part D,
documenting evidence of increasing premiums that is consistent with insurers exploiting inertia in

pricing. Miller (2014) studies the role of inertia as well as government subsidy in insurers' plan

offering and welfare in Medicare Advantage. Shepard (2015) studies insurers' competition over

hospital networks in response to adverse selection. Starc (2014) analyzes the impact of imperfect

competition on consumer welfare in Medigap. Decarolis (2015) identifies insurers' strategic response

to the low-income subsidy system in their plan offering and pricing. Decarolis et al. (2015) and

Miller (2015) study the welfare impacts of the current subsidy policy in Medicare Part D. Ericson

and Starc (2015) examine the impacts of pricing regulations in Massachusetts's health insurance

exchange. Miller and Yeo (2015b) analyze the effect of introducing a public option alongside pri-

vate insurers in Medicare Part D. Building on these papers, my study investigates insurers' pricing

response to inertia and analyzes policy counter-factuals where such strategic pricing interacts with

pricing regulation, additional competition from a public option, etc.

Finally, this study is related to both theory and empirical literatures on firm strategy in the

3 This growing body of literature examines inefficiency or sub-optimality of enrollees' plan choices in Medicare

Part D (Heiss et al., 2008, 2013; Abaluck and Gruber, 2011, 2013; Kesternich et al., 2013; Kling et al., 2012; Ketcham

et al., 2012, 2015).
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presence of switching costs (Farrell and Klemperer, 2007, provide a review). Klemperer (1987) uses

a two-period model to discuss the general intuition for firms' pricing incentives when consumers face

switching cost - the incentive to invest in future demand by charging low prices, and the incentive to

harvest inertial incumbent enrollees by charging high prices. Beggs and Klemperer (1992) illustrate

how these two incentives interact in an infinite-period model with horizontal differentiation and

infinite switching costs, and show analytically that the harvest incentive always dominates and

switching costs soften competition. My study builds on Dube et al. (2009) and Arie and Grieco

(2014), both of which relax the crucial assumption of infinite switching cost and show that switching

costs do not necessarily soften competition and can actually reduce equilibrium prices. Empirical

evidence of strategic pricing in response to inertia is established in the bank deposit market (Sharpe,

1997), in the credit card market (Stango, 2002), in electricity markets (Waterson, 2003), in phone

services (Knittel, 1997; Shi et al., 2006; Viard, 2007; Park, 2010), in the software market (Larkin,

2008), and recently in insurance markets (Ericson, 2014; Miller, 2014). My paper adds to the recent

extension of this literature to the health insurance sector, an important market featuring consumer

switching cost.

The rest of this paper is organized as follows. Section 1.2 describes the empirical setting and

data. Section 1.3 discusses important intuitions from relevant theory papers. Section 1.4 presents

descriptive evidence and discusses alternative explanations. Section 1.5 lays out the structural

model. Section 1.6 describes the empirical strategy and presents estimation results. Section 1.7

conducts counter-factual analysis of policy experiments. Section 1.8 concludes.

1.2 Empirical Setting and Data

1.2.1 Institutional Features of Medicare Part D

Medicare is a public health insurance program for the elderly and the disabled in the US. Medicare

Parts A and B have covered hospital and physician services since the program's inception in 1965,

but prescription drug coverage was not provided until the introduction of Medicare Part D in 2006.

Providing outpatient prescription drug insurance to the elderly and the disabled, Medicare Part

D is a large program in terms of both enrollment and spending. The Congressional Budget Office

reports that in 2014, there were 37 million Medicare beneficiaries enrolled in Part D (Hoadley et al.,

2014), and the Congressional Budget Office (CBO) estimates the program cost around 65 billion
4dollars

Unlike Medicare Parts A and B and other traditional government insurance programs, Part D

is not delivered directly by the government, but rather by private insurers under contract with the

government. These companies offer Medicare beneficiaries a choice between two types of prescrip-

tion drug plans: bundled medical insurance and prescription drug benefits through the Medicare

Advantage Prescription Drug plans (MA-PDs) that were in place prior to the deployment of Part D

4 See Congressional Budget Office's Medicare Baseline Projection Reports in March 2015: http://www.cbo. gov/

publication/44205.
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under Medicare Advantage5 and the stand-alone prescription drug coverage-only plans introduced

in 2006. These stand-alone prescription drug plans (PDPs) are the focus of the present study.

Of all Medicare beneficiaries who have private prescription drug coverage, about 62 percent

were enrolled in stand-alone prescription drug plans in 2012 (Hoadley et al., 2012). Stand-alone

plans are offered in 34 geographically-defined markets within the continental United States. Plans

in each market are offered by private insurers that are regulated by the government through the

Centers for Medicare and Medicaid Services (CMS). In a typical market, approximately 20 firms

offer more than 30 plans that are differentiated in terms of coverage. There are two broad types

of prescription drug plans: basic plans that provide coverage actuarially equivalent to the required

minimum coverage as per the defined standard benefit set by the CMS and so-called "enhanced-

benefit" plans that offer offer supplemental coverage on top of the minimum required coverage.

Supplemental coverage relative to the defined standard benefit includes reduced deductible, partial

or full coverage in the donut hole, reduced cost sharing, etc.

There are two types of Medicare beneficiaries, and I conceptualize the demand systems for both

types based on the institutional setting in the structural model. Standard beneficiaries become

eligible for Medicare at age 65. Enrollment takes place annually during an open enrollment period.

After standard enrollees become eligible and first join Part D, they have to actively choose their

prescription drug plans. In years after this initial enrollment, standard beneficiaries are defaulted

into their previous plans unless they actively switch. Low-income enrollees are eligible through

the low-income subsidy (LIS) system. Unlike standard beneficiaries, low-income enrollees do not

need to choose their own plans or pay their own premiums and out-of-pocket costs. Instead, the

government pays all or part of their premiums and out-of-pocket costs and randomly assigns them

to basic plans priced below market average. Within both groups of beneficiaries, a small fraction

of beneficiaries leave and a slightly higher fraction of new beneficiaries arrive annually: the annual

attrition rate is around eight percent for standard enrollees and around ten percent for low-income

enrollees; the annual arrival rate is around ten percent for standard enrollees and around thirteen

percent for low-income enrollees.

Insurers can enter any market and offer one or more plans in each market. Within each market,
price discrimination is not allowed and the same plan must be offered at the same price to both

incumbent enrollees and newcomers. Premiums are set annually in two components - a basic pre-

mium for basic coverage, which applies to all plans, and a supplemental premium for supplemental

coverage, which applies only to enhanced-benefit plans. Basic and supplemental premiums are set

simultaneously, but in different manners. Supplemental premiums are set directly by insurers, while

basic premiums are set through a centralized bidding process. Each year before the new enrollment

cycle starts, insurers submit bids to the CMS for basic premiums. The CMS then computes the

basic premiums for each plan as the insurer's bid minus the national average bid plus some base

5 Medicare Advantage (MA) is a health insurance program of managed health care (preferred provider organization

(PPO) or health maintenance organization (HMO)) that serves as a substitute for Medicare Parts A and B Medicare

benefits.
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premium adjustments. 6 This is referred to as a bidding process because basic plans that bid below

market average win a share of low-income enrollees.

Insurer revenue is generated by enrollee premiums and three types of government subsidies. The

government provides these subsidies to mitigate adverse selection and to partially insure insurers

against excessive losses. First, plans are paid risk-adjusted subsidies based on each enrollee's

health status or risk in terms of drug spending. Second, individual reinsurance covers 80 percent

of catastrophic spending. Finally, risk corridors provide risk sharing between the government

and insurers - excessive losses are partially compensated and excessive profits are taxed. Despite

the complexity of the subsidy regime, variable profit or markup is still an increasing function of

premiums, given any enrollee. In other words, the standard trade-off between a higher markup

versus a higher market share still holds in this setting.

1.2.2 Data

I use administrative data provided by the Centers for Medicare and Medicaid Services (CMS)

on Medicare beneficiaries (henceforth "beneficiary files") and insurance plans (henceforth "plan

files"). The beneficiary files cover a 20 percent random sample of Medicare beneficiaries from

2006 to 2011. For each year, this sample includes on average about 2.2 million standard enrollees

and about 2 million low-income enrollees who are enrolled in stand-alone prescription drug plans.

These beneficiary files include variables on enrollee demographics such as age, gender and race;

on prescription drug plan choices in each year; and details on drug expenditures. The plans files

include information on plan premiums and financial characteristics, such as a plan's deductible,

gap coverage and tiered cost sharing. The recently released plan bridge files provide a crosswalk to

unencrypted insurer and plan names, which allows me to identify the same insurer and plan across

markets.

In descriptive evidence, I focus on a measure of markup or variable profit margin among stan-

dard enrollees to get rid of potential confounding variations in cost and subsidy that affect insurers'

pricing decisions. I construct markups for each plan, averaged across its standard (low-income) en-

rollees, as the plan's premium plus the average risk-adjusted subsidy minus the expected cost, where

the expected cost is defined as expected claims cost adjusted for pharmaceutical rebates, variable

administrative cost and individual reinsurance. Details on the construction of expected claims cost

will be discussed in Section 1.5.2. This markup measure incorporates the above-mentioned individ-

ual reinsurance and risk-adjusted subsidy. Individual reinsurance for catastrophic drug expenditure

is computed using information on drug claims. To compute risk-adjusted subsidies in each year, I

use the corresponding risk adjustment software from the CMS to compute the "risk score" for each

enrollee. The CMS computes this risk score as a comprehensive summary of enrollee risk in terms

of predicted drug spending and uses it to determine the amount of direct subsidy to pay insurers

for each enrollee.7

Base premium is about one third of the enrollment-weighted national average bid.
7 The CMS computes risk scores in each year using the corresponding software to predict each beneficiary's
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Table 1.1 reports market-year level summary statistics. Panel A of Table 1.1 reports summary

statistics on market structure, including numbers of insurers and plans, the Herfindahl index, and

enrollment-weighted average premiums. The average number of number of insurers offering stand-

alone plans in a market is 21, and there is meaningful variation across markets, ranging from 11 to

29. Most markets have more than 30 stand-alone plans, about half of which are basic plans and the

other half of which are enhanced-benefit plans. There is also substantial cross-market variation in

these numbers of plans. Part D markets are on average moderately concentrated, with a Herfindahl

index of 0.22. There is some variation in premium levels across markets and a general increasing

trend over time: enrollment-weighted average premium increased from 329 dollars in 2006 to 507

dollars in 2011.

Panels B and C of Table 1.1 report summary statistics on standard and low-income Medicare

beneficiaries at the market level, including population size, annual attrition and arrival rates, and

the share choosing stand-alone plans. Numbers of beneficiaries correspond to the 20% random

sample, and should be multiplied by 5 to get actual Medicare population sizes. Arrival and attrition

rates are relative to one-year lagged population sizes. Shares in stand-alone plans are calculated as

out of the entire population of standard or low-income Medicare beneficiaries, including those with

stand-alone plans, those with bundled coverage under Medicare Advantage, those with coverage

provided by employers or third parties, and those without any prescription drug coverage. For

both types of enrollees, the average attrition and arrival rates, as well as the share choosing stand-

alone plans, do not vary much over time within each market. Therefore, I take these rates as

constant for each market for the structural estimation.

Table 1.2 reports summary statistics on stand-alone plans, first pooled across years and then

by year. The first row summarizes pooled data from 2006 to 2011, and each other row corresponds

to a single year. The first column is the total number of plans. There were 1429 plans in 2006, and

the decline in the number of plans over time is mostly driven by consolidations rather than exits.

The second column reports numbers of plan entries, which were concentrated in 2006 and 2007.

There were relatively few entrants overall after 2009. The third column reports numbers of plan

exits, which are relatively low compared with the number of plans. Total premium is the annual

total premium, which is the combined value of basic premium and supplemental premium.

As a simplification of my analysis, I focus on strategic pricing in this paper and abstract away

from a second strategic response to inertia: since price discrimination across new and old enrollees

is banned, firms face an incentive to continuously introduce new plans that can be priced low to

"invest" in future demand while charging higher premiums to incumbent consumers. Many plans

prescription drug spending in year t as a function of their inpatient and outpatient diagnoses from year t-1 and

demographic information and uses these risk scores to determine risk-adjusted subsidy to insurers for each enrollee.

To compute risk-adjusted subsidy in each year between 2006-2011, I use the corresponding RxHCC risk adjustment

model from http: //www. cms. gov/edicare/Health-Plans/MedicareAdtgSpecRateStats/Risk-Adjustors-Items/
Risk2006-2011.html (retrieved June, 2014; last accessed October, 2015). Einav et al. (forthcoming) also use CMS

software to compute risk scores as a proxy for individual predicted drug spending, and they use the 2012 model to

compute risk scores for enrollees in 2006-2011 to consistently compare health status across years.
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similar in coverage were forced to consolidate to comply with the "meaningful-difference" regulation,

which was introduced in 2010 by the CMS to limit strategic entry behavior by requiring new plans to

be sufficiently differentiated in coverage from existing plans by the same insurer. Although strategic

plan entry is another important margins of firms' strategic behavior8 , I abstract away from it and

focus on pricing here - i.e., conditional on the set of plans being offered, withdrawn and consolidated

each year, how do firms price their plans? I include all prescription drug plans, including both non-

consolidated and consolidated plans for the analysis. In order to link consolidated plans over time

and to control for plan fixed effects for regression analysis later, I use each plan's most recent plan

ID as its unique identifier.

1.3 Conceptual Framework

Klemperer (1987) discusses the general intuition for two counteracting incentives that firms face

in the presence of consumer inertia, or when consumers behave as if they face switching costs.

In the benchmark case without switching costs, demand in different periods is independent and

so are firms' optimal strategies. However, when consumers face switching costs, demand is sticky

over time,, which creates two opposing incentives for firms: on one hand, firms want to charge low

prices to "invest" in future demand, but on the other hand, firms want to charge higher prices to

"harvest" inertial incumbent consumers. In a simple two-period model, firms only face the "invest"

incentive in the first period and only face the "harvest" incentive in the second period. As a result,

equilibrium price follows an "invest-then-harvest" pattern - firms charge low prices initially and

increase prices afterward.

While a two-period model highlights the key trade-off firms face, a more realistic approximation

of real markets is an infinite-period model, in which the invest and harvest incentives coexist.

Beggs and Klemperer (1992) show how these two incentives interact in an infinite-period model

with horizontal-differentiated products and consumers who are subject to switching costs. They

solve for the unique Markov Perfect Nash Equilibrium under a critical assumption of perfect lock-in

- i.e., consumers never switch because they are subject to infinitely large switching costs. In this

equilibrium, prices are higher than the benchmark case without switching costs. This is not likely

the case in a real-world context such as Medicare Part D, in which switching costs are not infinite

as evidenced by the fact that some consumers do switch plans.

Dub6 et al. (2009) relax this crucial assumption of infinite switching costs and examine an

infinite-period model with switching costs and vertical differentiation. The authors establish the

existence of a Markov Perfect Equilibrium and numerically solve for equilibrium prices as functions

of switching costs. Applying this model to the markets of orange juice and margarine and using the

empirically estimated level of switching costs in model simulations, they find equilibrium prices to be

18% lower than the case without switching costs, which reflects that the invest incentive dominates

8 1n a separate project, I document descriptive evidence consistent with such strategic entry and product prolifer-

ation.
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because of "the strategic effects of firms lowering their prices to defend themselves against other

firms' attempts to steal customers". Moreover, the authors show that depending on the magnitude

of switching costs, equilibrium prices can be higher or lower than the case without switching costs.

For example, when switching costs are sufficiently large or even infinite, the harvest incentive

dominates and prices are higher than the case without switching costs. In other words, with finite

switching costs, it is an empirical question whether the invest or harvest incentive dominates. My

supply model in Section 1.5 similarly features finite switching costs, and I will investigate this

question empirically in the setting of Medicare Part D.

Applying these intuitions to the setting of Medicare Part D, plans only face the invest incentive

when they first enter and face both the invest and harvest incentives in subsequent periods. There-

fore, prices or markups should be lower when plans initially enter than in subsequent periods, and

they should also be lower compared to incumbent plans. Because the invest and harvest incentives

coexist every year except for the first, whether inertia leads to higher or lower equilibrium prices is

an empirical question.

1.4 Descriptive evidence

1.4.1 Switching Costs

To lay the framework for my analysis of strategic pricing, I first summarize the existing evidence of

consumer inertia and present some corroborative evidence. Polyakova (2015) documents evidence

of consumer inertia in Medicare Part D, and estimates the magnitude of switching costs to be two to

four times as high as average annual premiums. As corroborative evidence of this type of consumer

inertia, Table 1.3 shows, separately for different cohorts of standard beneficiaries, the enrollment

shares as of 2011 by plans introduced in each year. Note that most plans were introduced in 2006

and fewer plans were introduced in subsequent years, partly contributing to higher shares in plans

introduced in 2006 among all cohorts of enrollees. Interestingly, the percentage enrolled in the

oldest plans (introduced in 2006) declines for younger cohorts of beneficiaries (84% among the 2006

cohort of enrollees and 72% among the 2011 cohort). Moreover, new cohorts of consumers are more

likely to choose newly introduced plans. For example, the 2007 cohort is more likely to. choose

plans introduced in 2007 than the 2006 cohort. Similarly, the 2008 cohort is more likely than the

2006 and 2007 cohorts to choose plans introduced in 2008, and so forth. These statistics provide

corroborative evidence that consumer inertia matters from the insurers' perspective.

1.4.2 Invest-then-Harvest Pricing

Figure 1-1, which displays enrollment-weighted markups over time for plans introduced in different

years, shows two notable patterns. First, there is a general increasing trend: markups tend to

increase as plans age. As I will show below, this increasing trend is robust across a variety of

specifications. Second, within most years, entrants are priced lower than incumbent plans by a
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substantial margin. These patterns are consistent with the invest-then-harvest predictions discussed

in Section 1.3.

To formalize this invest-then-harvest pricing pattern, I estimate regressions that compare markups

between plans that have just entered the market and incumbent plans.

Markupkjmt = a +31{ Entry}kjmt + Coveragekjmt'y + Sm + At + k + ekjrt (1.1)

MarkuPkjmt is markup averaged across standard enrollees for plan j offered by firm k in market

m in year t. 1{Entry}kjmt is a dummy indicating whether plan j first entered market m in year t.

Coverage~kmt includes plan features, such as deductible level, whether the plan offers gap coverage

and tiered cost sharing.

Table 1.4 reports ordinary least squares estimates of / from four specifications. Column (1)

shows the raw correlation between markup and the entry dummy. Column (2) adds market and year

fixed effects to account for potential differences across markets and over time that affect both entry

and plan pricing. Column (3) adds insurer fixed effects to account for unobserved time-invariant

heterogeneity at the insurer level. Column (4), which adds controls for plan coverage, compares

plans within insurer and controlling for coverage. Consistent with the prediction in Section 1.3,

these regression estimates suggest that the same insurer charges significantly lower markups on new

plans than on incumbent plans with the same characteristics. Within the same insurer and year

controlling for plan characteristics, markup is 148 dollars lower on entrant plans than incumbent

plans, which is high relative to the average annual premium of 372 dollars.

1.4.3 Addressing Alternative Explanations

While the empirical invest-then-harvest pricing patterns documented in Section 1.4.2 are consistent

with firms exploiting consumer inertia to maximize profits dynamically, such pricing patterns might

also be rationalized by alternative explanations. First, since Medicare Part D is a new market,

insurers might not be well-informed about cost, which could cause them to under-price initially

and adjust prices upward as they learn about cost over time. Relatedly, in a learning-by-doing

story, insurers might set low prices and invest in market shares in order to learn more quickly

about cost. Finally, as Decarolis (2015) shows, the low-income-subsidy system also contributes to

premium increases over time.

I have no intention of running a horse race to rule out these potential alternative explanations.

It seems likely that insurer responses to inertia as well as these alternative stories are all empirically

relevant to some extent. However, I argue that these alternative stories seem unlikely to explain

the pricing patterns documented in Section 1.4.2. First, in the story of learning about cost, it is

not clear why firms would systematically underestimate cost. Moreover, I find that even within

the same firm, significantly lower markups are charged for entrant plans than for incumbent plans,

contradicting the notion of learning about cost. Such within-firm comparisons also help contradict

the learning-by-doing story.
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In order to formally assess the robustness of my results to these alternative explanations, I test

for evidence of the invest-then-harvest pricing pattern on subsamples of plans for which these alter-

native explanations are arguably not relevant. Table 1.5 summarizes these estimates for Equation

1.1 using subsamples. To address the first alternative explanation that firms learn about cost, the

first three columns of Table 1.5 focus on subsamples of plans offered by insurers who are arguably

well-informed about the cost of supplying prescription drug insurance to Medicare beneficiaries.

Column (1) restricts the sample to plans offered by insurers that were major sponsors9 of Medicare

Advantage prior to 2006 and that provided prescription drug insurance bundled with medical in-

surance to Medicare beneficiaries. Column (2) restricts the sample to plans offered by insurers with

prior experience in Medicare Advantage. Column (3) restricts the sample to plans offered by in-

surers with prior experience in providing insurance coverage to Medicare beneficiaries. These three

subsamples are not subject to the concern that insurers are not informed about cost. To address

the second alternative explanation or the learning-by-doing story, Column (4) reports estimates

using a subsample of plans offered by insurers that are already experienced in Part D. Specifically,
I assume that the benefit from such learning diminishes after the insurer serves many enrollees,
which motivates restricting the sample of plans to those offered by insurers that have served at

least 5000 enrollees before in the same market. Finally, to address potential confounding effects

from the low-income-subsidy system, I use the subsample of enhanced-benefit plans, which are not

eligible to receive low-income enrollees.

As shown in Table 1.5, the estimated coefficient-or the difference in annual markup between

entrants and incumbent plans, holding the insurer and plan coverage as fixed, ranges from -$134

to -$187, which is not much different from the estimate of -$148 on the full sample of plans. In

other words, the result that markups are much lower on entrant plans than incumbent plans is

robust to focusing on subsamples of plans where these alternative explanations are less relevant.

This suggests that the empirical pricing pattern we observe is largely driven by strategic responses

to consumer inertia rather than by these alternative explanations.

1.5 Model

My descriptive evidence in Section 1.4 rejects the null of no strategic response to inertia and

is consistent with firms exploiting consumer inertia to maximize profits dynamically. To explore

insurers' trade-offs between the invest and harvest incentives, I develop a dynamic model of insurers'

pricing decisions that incorporates demand inertia and adverse selection. Structural estimation of

this model in Section 1.6 uncovers insurers' discount factor, which quantifies the strength of the

invest incentive. In Section 1.7 1 further decompose observed pricing patterns to quantify insurers'

trade-offs between invest and harvest incentives by comparing this' model with a counter-factual

benchmark with no inertia and with a counter-factual case where insurers are myopic and face no

invest incentive. Finally, in Section 1.7 I simulate the price and welfare consequences of several

9 Seven biggest sponsors in terms of market shares as of 2005 according to Gold (2006)
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policy experiments that could be used to constrain insurers' ability to exploit inertia.

1.5.1 Demand

As described in Section 1.2, there are two types of Medicare beneficiaries - standard enrollees

and low-income enrollees - and I conceptualize the demand system for each type based on the

institutional setting. I start with demand for standard beneficiaries, who make their own plan

choices and are defaulted into their previous choices unless they actively switch. Since the focus of

this study is on understanding firm pricing, I use the demand model and estimates from Polyakova

(2015) for standard enrollees. In her model, standard enrollees are myopicio and choose a plan

to maximize current utility, subject to switching costs. Let i denote individual, j plan, k insurer,

m market (region) and t year. Individual i's utility" from choosing plan j in year t is as follows,

where pkat is annual premium, Okjt is characteristics of the plan, and 1{Default}ikjt is an indicator

of whether consumer i is defaulted into plan j at time t. This default dummy is omitted for new

enrollees, who are not defaulted into any plans.

Uikjt = -'Pkjt + AItjkJt -- Yit1{Default}ikjt - Ait1{Insurer}k + Eikjt (1.2)

In this logit model, Eikjt is independent and identically distributed with a Type 1 Extreme

Value distribution function." Okkt includes the following characteristics that are feasibly observed

by beneficiaries when they are making their choices: the deductible, the initial coverage limit,

whether the plan offers coverage in the gap, whether the plan uses fixed dollar co-payments or

coinsurance percentages, and whether the plan is eligible for getting low-income subsidy enrollees.

Preferences over plan coverage fit depend on the individual's demographics and health risk, Dit =

1 0 0ne concern is that consumers can be forward-looking about changes in plan prices and their own health risk in

the future. The latter is allowed by controlling for age, while consumers forward-looking about future price changes

will be less likely to start with a cheap plan, which should dampen insurers' incentives to invest in market shares.

However, as Handel (2014) argues, consumers make very poor decisions if we consider forward-looking demand.

Moreover, dynamic demand adds additional complexity while dynamic supply is already computationally demanding.

In fact, in dynamic games literature on durable goods, experience goods and network goods, it is fairly standard to

assume myopic demand.
"Polyakova (2015) points out "this formulation assumes that individuals choose the option with the highest

"perceived" utility, which may not necessarily correspond to the highest "objective" valuation of plans as financial

contracts (indeed, Abaluck and Gruber (2011, 2013) suggest that beneficiaries are choosing their plans inconsistently

with the objective efficiency frontier)".
1 2Polyakova (2015) models choice among stand-alone prescription plans and does not include the outside option.

I use a similar linear regression to predict, separately for incumbent and new beneficiaries, the share choosing to

enroll in stand-alone plans instead of bundled coverage or no coverage, based on prices, number of plans, market fixed

effects, etc. Estimates show that market fixed effect explains 66 percent for newcomers and 95 percent for incumbent

enrollees. Details will be discussed in the Appendix. Alternatively, I can re-estimate the demand model using a nested

logit model, in which beneficiaries first choose between not enrolling in prescription coverage, enrolling in bundled

coverage and enrolling in stand-alone coverage, and then choose a plan if they choose any coverage in the first step.

Since I focus on supply of stand-alone plans, I choose to take the simplistic approach instead to abstract away from

the complexity of modeling demand for both bundled and stand-alone coverage.
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{ ageit,genderiraces, risk scoreit, esrd indicatorit}, where risk score is a measure of each beneficiary's

health risk in terms of drug spending and esrd indicator is a dummy for end-stage renal disease.

There are random coefficients in preferences over deductible, initial coverage limit and gap coverage:

flit = irI3Dit + #,O where 0./ - N( i/, a2). Switching costs -yit and preference over insurers Ait also
depend on individual demographics and health risk: yit = ryDit + 1 fY, and Ait = 7rADit + vpA.13

Standard consumer i's probability of choosing plan j depends on plan features as well as the

default plan 1, which I denote as P(p, 1) and which follows the logit form. Active consumers

without default plans face an unconditional choice probability P(p). Aggregating individual choice

probabilities, the share of standard enrollees choosing plan j in year t Skjt() is derived as follows.

Skt(P, Stl1) = E St_1P (p, )+ P (P) (1.3)
1 -A +p /I1JM-A+p

Skjt() is a function of prices p, lagged shares St-1, the attrition rate of standard enrollees A and

the arrival rate M. Because attrition and arrival rates do not vary much empirically within each mar-

ket, I take A and p as exogenous and suppress their notations for this share function Skit(p, St-).
Let J(m) denote the set of plans in market m. The first component of Equation 1.3 is the sum-

mation of shares across incumbent enrollees defaulted into different plans (e . Su-iPj(p, 1))
weighted by the fraction of incumbent beneficiaries (1-), while the second component repre-

sents the share among new beneficiaries without defaults (or the unconditional choice probability

P(p)) weighted by the fraction of new beneficiaries (1 I ). In other words, other than prices,
lagged market shares are important in determining current shares of standard enrollees because

incumbent consumers' choice probability P (p, 1) is biased toward the lagged choice or default plan

1. The importance of lagged shares is slightly depreciated by attrition of incumbent enrollees (A)
and arrival of new enrollees (p): empirically 1-\ is approximately 0.90 in my data.

Although only around 20 percent of Medicare beneficiaries are low-income enrollees, they ac-
count for over 40 percent of enrollment in stand-alone prescription plans. Therefore, it is important

to include profits from the population of low-income enrollees when modeling insurers' profit max-
imization problem. Unlike standard beneficiaries, low-income enrollees do not need to choose their

own plans. Instead, the Centers for Medicare & Medicaid Services randomly assigns them to eligible

plans when they first qualify for the low-income subsidy or when their previous plans are no longer

eligible for receiving low-income enrollment. Low-income enrollees are evenly divided into eligible

plans - basic plans priced below market average - except that an insurer eligible both in the last

period and the current period keeps its incumbent low-income enrollees on top of this random as-

signment. 14 Based on how low-income enrollees are automatically allocated across plans in reality,

1 3More specifically, preference over the two biggest insurers depend on Di while preferences over other insurers

follow the form of standard fixed effects.
1 4In 2 006, low income enrollees were randomly assigned to basic plans pricing below market average. In subsequent

years, insurers keep previously assigned low-income enrollees conditional on having a basic plan pricing below the

benchmark, where the benchmark is weighted by lagged low-income enrollment. Except for these enrollees who stay

with a below-benchmark basic plan, low-income enrollees are again randomly assigned to basic plans pricing below
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I model their discrete and mechanical demand, which depends on lagged low-income shares other

than current plan bids for basic premiums.

Let ALIS denote the attrition rate of low-income enrollees and pLIS the arrival rate. The share

of low-income enrollees assigned to basic plan j in year t SOit () is computed as follows, where

O = 1j- ,\Is is the share of incumbent enrollees and 1 - w = 1- LIS is the share of

newcomers. The benchmark brnt is the average bid among basic plans weighted by lagged low-

income enrollment. JB(m) is the set of basic plans in market m. Nmt = EZljB(m) 1{bit < 67t} is

the number of basic plans pricing below benchmark. Seas.ign is the share of low-income enrollees

who need re-assignment because their former insurers lost below-benchmark status.15

0 bkjt > bmj

CLI (S~ - (WS4 s29' f + 1 - w)/Nmt bkjt b.rnt, bkj't-1 > bmt-iVj' E JB(k)
Skt (p, St_1) =

kt'wS! + (WS i" n + 1 - w)/Nm1 t bkjt bmt, bkjt-1 bmt-1

j',t (WSR2"ss'+1 - W)/Nmt bkjt : bmt, bkt-1 > bmt-i, bkjt-I < bmt-1

(1.4)

In the first case in Equation 1.4, basic plan j prices above the benchmark and receives no low-

income enrollees. In the second case, basic plan j prices below benchmark, and the insurer k had

no plans pricing below benchmark in the previous year. In this case, plan j receives an even share

of incumbent low-income enrollees who need to be re-assigned (WSReassin) plus new low-income

enrollees (1 - w). In the third case, basic plan j prices below benchmark, and it also priced below

benchmark in the previous year. In this case, plan j receives an even share of randomly assigned

enrollees as in the second case, while keeping its incumbent low-income enrollees (wSgfi 1 ). In the

final case, basic plan j prices below benchmark, and another plan j' by the same insurer prices

above benchmark but priced below benchmark in the previous year. In this case, plan j receives an

even share of randomly assigned enrollees as in the second case, plus it keeps incumbent low-income

enrollees within the same insurer (wS/j5L).

1.5.2 Cost

Medicare Part D is a health insurance market with the potential for adverse selection. In my

setting, health risk correlates with consumer preference as well as switching costs, as suggested

by the demand estimates. Moreover, Handel (2014) and Polyakova (2015) both conclude that the

benchmark. Low-income enrollees can choose to opt out of their assigned plans and choose a different plan and pay

the difference in premiums. Among low-income enrollees choosing stand-alone prescription drug plans, the empirical

fraction of "choosers" who have ever opted out increases over time from around 6% in 2006 to around 20% in 2010

(Summer et al., 2010). Such opting out behavior is not flagged in the administrative data, and cannot be identified

except for those who choose plans not eligible for low-income enrollees. Decarolis et al. (2015) model the demand

for such "choosers" based on the subsample for which opting out is observed in the data. I choose to model only the

random assignment and not such opting out behavior because it is not essential to my focus of strategic pricing in

response to inertia among standard enrollees.
1 This can be computed as nita" = E (m )1{ bkj't > bmt, Vj E JB(k)}S kt-i
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interaction between adverse selection and switching costs has important welfare implications, which

depend on the specific market setting. In order to account for this well-recognized issue, I follow

Starc (2014) to model adverse selection and allow claims cost to be endogenous to price. This

complication is a nuance rather than the focus of my model.

Conceptually, in the presence of adverse selection, consumers with different risks in terms of

drug expenditure sort into different plans based on coverage and prices. As a result, insurers'

claim costs depend on the types of consumers each plan gets, and therefore they are endogenous to

price, which affects consumers' sorting behavior. I start with constructing the claims cost measure

at the level of individual-plan pairs, before formulating endogenous claims cost at the plan level.

For each enrollee's drug expenditure, an insurer is responsible for covering the remaining after

subtracting the part paid out-of-pocket by the enrollee, the part covered by the government and

the part rebated by the pharmacy and pharmaceutical manufacturers. As described in Section 1.2,
the government provides three types of subsidies: risk-adjusted subsidies based on each enrollee's

health risk, individual reinsurance for catastrophic drug spending, and risk corridors that partially
compensate excessive losses and tax excessive profits. Individual reinsurance lowers insurer claims

cost, while risk-adjusted subsidy and risk corridors do not enter claims cost directly but enter the

profit function in other ways in Section 1.5.3. As for rebates, the claims data already incorporates

rebates from pharmacies but not rebates form pharmaceutical manufacturers, which I will adjust

for later using summary statistics from government reports.

Each individual's claims cost is constructed as total drug expenditure net of pharmacy rebates,
individual reinsurance from the government and the enrollee's out-of-pocket spending. Intuitively,
individual i's claims cost to plan j offered by insurer k is a function of both plan coverage (Xkjt)

and consumer demographics and health risk (Wit). Insurer fixed effects 6 k are included to account

for unobserved time-invariant heterogeneity in coverage or quality, such as broadness of pharmacy

network, generosity of formularies and quality of customer service, which vary across insurers.

Cikjt (Xkjt, Wit) = a + Xkjt3 + Wit-Y + 6k + 6ijt (1.5)

There are two important identifying assumptions embedded in this individual claims cost func-

tion. First, selection only works through observables. This is not a terrible assumption in this

setting, as Wit includes enrollee risk score, which is a comprehensive risk measure in terms of ex-

pected drug spending. Second, this function assumes that there is no plan-individual specific moral

hazard: while cost may depend on the plan's characteristics, the unexplained part of an individual's

cost does not depend on the plan chosen. To the extent that the variation in plan coverage is well

captured by both the detailed plan characteristics Xkjt and the insurer fixed effects included in the

cost function, this assumption is justified because the notion of moral hazard in insurance markets

typically refers to the fact that enrollees utilize more services with more generous coverage as they

face a lower marginal price.

Based on this individual cost function and the demand system outlined in Section 1.5.1, I

aggregate individual costs to get plan-level expected claims costs as follows. The cost (per enrollee)
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of plan j offered by insurer k depends on its coverage as well as the average characteristics of its

enrollees, which is endogenous to price and the resulting selection.

Ck-jt = a + Xkyt + E[WitIChoose Plan j]-y + 6 k (1.6)

For tractability of the supply model, in which the state space includes lagged market shares

by consumer type, I discretize types of standard enrollees based on risk score and gender.1 6 In

other words, instead of controlling for enrollee characteristics Wit continuously in estimating the

individual cost function 1.5, I drop Wit and estimate this function separately for each type of

consumers. Within each type, consumers are assumed to be homogeneous (up to random coefficients

in preferences) with cost realizations drawn from a common distribution. Low-income enrollees are

taken as homogeneous with a common cost distribution because of the automatic random allocation.

In order to get expected variable cost at the plan level, I adjust for two sources of variable cost

other than expected claims cost. First, I take variable administrative cost to be 16% of claims cost

based on estimates from other studies on similar markets: Starc (2014) estimates administrative

cost to be 16% of premiums on average in Medigap; Ho et al. (2015) use data from the National

Health Expenditure Survey to compute administrative cost to be 14-16% of total cost, and 16-19%

of non-administrative cost, averaged across Medicare Advantage plans and plans in Medicare Part

D. Second, I take rebates from pharmaceutical manufacturers to be 10% of total drug spending

based on summary statistics from government reports: Boards of Trustees (2012) reports that the

average manufacturer rebate rate, as a percentage of total prescription drug costs, ranged between

8.6 percent and 11.3 percent between 2006 and 2010.17

Other than expected variable cost, cost realizations also matter for insurers' dynamic profit

maximization because of risk corridors. Risk corridors provide risk sharing between the government

and insurers by partially compensating excessive losses and taxing excessive profits. In order to

account for this when estimating the supply model, I randomly draw realized cost from normal

distributions centered around expected cost and average across these random draws to get expected

insurer profit. The standard deviation of this distribution of plan-level cost is calculated using

standard deviation of individual cost and plan enrollment.

1.5.3 Supply

My model of insurers' strategic response to inertia in pricing builds on the work of Beggs and

Klemperer (1992) and Dube et al. (2009) and incorporates new features based on my empirical

setting. As in Dub6 et al. (2009), I consider an overlapping generations model with imperfect lock-

in. In this model, both single-product and multi-product insurance firms offer differentiated plans

6 Although the risk score is computed using demographics including gender, an OLS regression shows a small

difference in cost by gender even conditional on risk score. To fully capture the cost difference across genders, I group

standard consumers by gender in addition to risk score. I do not divide consumers by other demographic variables

because they do not appear significant in predicting cost after controlling for risk score.
1 7There is no need to adjust for pharmacy rebates, which are already net out in the claims data.
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and compete for consumers subject to switching cost. In each period, a fraction of old consumers

leave the market and new consumers arrive.

In order to focus on insurers' dynamic pricing decisions in the presence of inertia, I make

the following simplifying assumptions. First, I take plan characteristics as given, which is not a

bad approximation in my setting, as empirically insurers tend to adjust premiums instead of plan

characteristics. Second, I take market structure as given and abstract away from strategic entry.

This assumption is less innocuous because entry does happen empirically. Since price discrimination

is not allowed, firms face an incentive to continuously introduce new plans that can be priced low to

invest in future demand while also charging higher premiums to incumbent consumers. However,
the "meaningful-difference" regulation essentially put an end to such strategic entry, and the number

of plans remains quite stable afterward. Although the timing of this regulation is close to the end of

the sample period, it suffices in confirming that there will not be unobserved entry after the sample

period, as the supply model involves forward simulation for many more periods. In other words,
entry is less common in recent years and will continue to be less common looking-ahead. Relatedly,
I only model variable profits of insurers and not fixed costs, which are sunk costs and therefore

not relevant for pricing decisions. Third, I assume that insurers take the regulation environment as

given, without foresight of future policy changes. Finally, I assume pricing decisions are separately

made for stand-alone prescription drug plans and Medicare Advantage plans that bundle medical

insurance and prescription benefits. Although cannibalization between these two segments is a

concern, it is not essential to the invest-then-harvest pricing story, and I focus on the pricing of

stand-alone prescription drug plans and abstract away from modeling the demand and supply for

MA-PD plans.

1.5.3.1 Value Function

Insurers account for consumer inertia and, choose bids and supplemental premiums to maximize

discounted profits. As calculated in Equation 1.7, V(ak, O-k, 6, SVmto) is the expected present

value of profit for firm k in market m in year to, where a denotes pricing strategies, 6 denotes

insurers' annual discount factor, SV includes the state variables and II denotes annual variable

profit.

00

V(Ork, 0 -k, 6, SVmto) = E[Z 6Jtlkt(Ok, OCk, SVmt)] (1.7)
t=to

Since firms account for demand inertia, profits and pricing strategies are state-dependent. Be-

sides exogenous state variables, including plan characteristics and enrollee characteristics, because

of inertia (Beggs and Klemperer, 1992), SVmt also includes lagged market shares by consumer type,
which evolve deterministically based on the demand system in Section 1.5.1. Insurer profits and

pricing strategy depend on lagged market shares among both standard and low-income enrollees.

First, lagged standard enrollee shares matter because, intuitively, the harvest incentive depends on

how many standard enrollees an insurer has locked in. Second, lagged low-income enrollee shares
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also matter for insurer profits and pricing strategy due to the way low-income enrollees are assigned

as described in Section 1.5.1. In the presence of adverse selection, different types of enrollees differ

in cost and demand. Therefore, lagged shares of different types of enrollees arguably affect insurer

pricing differently, and I include lagged shares by consumer type to account for this. As a side note,

lagged market shares by consumer type pin down expected cost, and therefore there is no explicit

cost term in the value function.

Insurer k's pricing strategy Uk for all its plans (j E J(k)) is a mapping from states SVmt to

bids for basic premiums (bjt) and supplemental premiums (PSjt). More specifically, uk includes

bids for basic premiums for each plan bj (SVmt, Ejt) = f(SVmt) + Ejt and supplemental premiums

for each enhanced-benefit plan PSj (SVmt, jt) = h(SVnt) + Ejt. 18

1.5.3.2 Annual Profit Function

Firm k's annual variable profit consists of profits from all its plans in market m, j E Jm (k). In

other words, multi-product firms jointly maximize profit across all plans. Plan j's total profits

include profits from different groups of enrollees 10 t, where 6 represents discrete types of standard

enrollees and the group of low-income enrollees. F(.) is a function representing adjustments from

the risk corridors, which partially compensate for excessive losses and tax excessive gains.

Ikt(b, PS, SVmt) = ( (S (b, PS, SVmt)) (1.8)
jEJ(k) 0

Plan j's (pre-risk-corridor) profit from each enrollee type can be calculated as enrollment times

markup.

niot(b, PS, SVmt) = Mo tcit(b,PS, St_1)Markup t(b, PS, SVmt) (1-9)

mAt denotes the population of each type of enrollee within market m in year t. S denotes

shares of each type of enrollee choosing plan j in year t, which is calculated based on the demand

system as shown in Equations 1.3 and 1.4. Markup on each enrollee type is equal to total premium

minus expected cost plus risk-adjusted subsidy. Expected cost is constructed in Section 1.5.2, while

premiums and subsidies are computed following the actual process of setting prices and government

subsidy. Each year before enrollment takes place, for each plan j E Jm(k), insurer k submits a bid

bjt for its basic premium and sets directly the supplemental premium PSjt if it is a enhanced-benefit

plan. The CMS computes basic premium as PBjt = bjt- (national average bid - base premium),

where base premium is a fixed fraction of national average bid. Enrollees face a total premium

Pjt = PBjt + PSjt, where PSjt = 0 for basic plans. In order to mitigate adverse selection in this

market, the government computes a risk score for each enrollee rit, based on demographics and

medical history, and pays risk-adjusted subsidy ritbjt - PBjt to the insurer. For an average enrollee

18 The interpretation for Ejt is managerial mistake or specification error, and is assumed to be drawn independently

across plans and years from a normal distribution centered around zero.
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with a risk score of one, the sum of basic premium and risk-adjusted subsidy is equal to the bid

for basic premium. In other words, although risk-adjusted subsidy is endogenous to plan bids for

basic premiums, insurers still face the standard trade-off between a higher markup (as a result of

both a higher enrollee premium and a higher government subsidy) and a higher market share when

setting prices.

I restrict insurers' strategies to be Markovian because the full set of dynamic Nash equilibria is

unbounded and complicated. The Markov-Perfect Nash Equilibrium requires V(k, 0'-, 6, SVrt)>

V(lO, -k, 6, SVmt) given competitors' strategies 0--k for all states and alternative strategies o',
i.e. each insurer's strategy has to be optimal given competitor's strategies.

1.6 Structural Estimation

1.6.1 Demand Estimation

Table 1.6 reports Polyakova (2015)'s simulated maximum-likelihood estimates on a few important

demand parameters. Estimates for the price coefficient and the switching cost dummy are relatively

robust across specifications. Besides including a rich set of plan features in all specifications,
Columns (3) and (4) include more insurer fixed effects than the first two columns19 to address

the concern with unobserved insurer quality affecting both premiums and demand. Moreover,
Columns (2) and (4) use lagged cost as an instrument for plan premium to address the concern with

unobserved plan quality affecting both premiums and demand. Both instrumenting and controlling

for more insurer fixed effects only increase the magnitude of the premium coefficient slightly, which

confirms that including rich plan characteristics leaves little room for unobserved insurer and plan

quality to affect both pricing and demand.

Controlling for more insurer fixed effects reduces the magnitude of the intercept for the switching

cost term from 5.6 to 5.1, or reduces the implied switching cost for a 75 year-old female enrollee

with average risk from $1330 to $1164. This difference suggests that there is unobserved quality at

the insurer level that enrollees persistently value over time, and it is important to account for those

unobservables with insurer dummies. Therefore, I choose the last specification with instruments

for premium and ten insurer fixed effects as input for my supply estimation.

1.6.2 Cost Estimation

Figure 1-2(a) visually summarizes the individual cost estimation results. This figure reports, for

each type of enrollee, expected cost to a basic plan offering minimum coverage and to an enhanced-

benefit plan with more generous coverage (zero deductible and gap coverage). Standard enrollees

are divided into groups with low, medium and high risk scores. In addition to these expected cost

measures, Figure 1-2(b) adds switching cost in dollars and willingness-to-pay for more generous

1 9 Columns (1) and (2) include three insurer fixed effects by including dummies for the two biggest insurers (the

omitted category consists of all other insurers), while Columns (3) and (4) include three insurer fixed effects by

including dummies for the nine biggest insurers (the omitted category consists of all other insurers).
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coverage. There is a significant correlation between cost and willingness-to-pay for extra coverage

across different types of plans. There is also a small positive correlation between cost and switching

cost, but this is less strong than the correlation between cost and willingness-to-pay.

Figure 1-2 pools female and male enrollees for simplicity, and Appendix Figure 1-3 also breaks

down by gender in addition to risk score. The patterns look similar - there is a lot of cost hetero-

geneity across enrollee types, and cost correlates strongly with preference and weakly with switching

cost. More details on the estimation results are reported in Appendix Table 1.13.

1.6.3 Supply Estimation

Estimating parameters of dynamic games and computing equilibria are computationally demanding

(Benkard, 2004; Bajari et al., 2010). The large number of insurers in Part D markets makes it

even more difficult computationally. Instead of solving for the equilibrium of the supply model,

I follow Bajari et al. (2007)'s two-step approach to uncover insurers' valuation of future profits.

Essentially, this approach minimizes the violation of insurer rationality by finding the parameter

value or insurers' discount factor such that the observed pricing strategies are closest to equilibrium

strategies. This approach is implemented in two steps. In the first step, I empirically estimate

how insurers price their plans by regressing premiums on relevant state variables. Such reduced-

form estimates empirically correlate insurers' actions to states and characterize insurers' strategies

c-(SV), which are also referred to as the empirical policy functions.

In the second step, I take competitors' strategies as given by these empirical strategies character-

ized in the first step and forward simulate to construct insurers' discounted profits V(Uk, 6 6, SV)

as in Equation 1.7 given a discount factor. This simulated value function can be constructed using

both each insurer's empirical strategy and alternative strategies. Imposing rationality or optimality

on insurers' decisions based on the definition of MPNE in Section 1.5.3, I estimate the discount

factor 6 such that profitable deviations from empirical policies are minimized, i.e. the empirical

strategies reflect minimum violation of rationality.

In other words, I assume the insurers solve the dynamic pricing game in Section 1.5.3 and

set their pricing strategies accordingly, and I look for parameters of the supply model such that

insurers' pricing behavior is optimal. Besides model assumptions in Section 1.5.3 and the following

functional form assumption in Section 1.6.3.1, this estimation approach requires that insurers in all

markets play the same equilibrium strategies so that data from all markets can be used to jointly

characterize empirical pricing strategies in the first step.

1.6.3.1 Step One: Empirical Pricing Policy Function

I let the data reveal insurers' empirical pricing strategies by estimating prices or premiums as

functions of shares as well as other determinants of pricing decisions as in equation 1.10. Premiums

Pjt include bids for basic premium bjt for basic plans and supplemental premiums PSjt for enhanced-

benefit plans. The controls include own lagged shares by enrollee type S and shares of other plans

offered by the same insurer Sk-jt, plan characteristics Xjt, and insurer fixed effects to account for
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unobserved heterogeneity across insurers that affect both shares and pricing decisions. The residual

is assumed to be normally distributed, and I use the estimated standard deviation to get random

draws for competitors' prices for forward simulations in the second step.

Pkit -- a + S / 0Sjt + + -I- XjtA +( -+Et (1.10)
0 0

These empirical policy functions condition on a coarser set of state variables than what is

required to compute a. Markovian strategy and are similar in nature to the notion of oblivious

strategy as formalized by Weintraub et al. (2008). As an approximation for Markov perfect equi-

libria, Weintraub et al. (2008) define oblivious equilibrium as an equilibrium in which each firm is

assumed to make decisions based on its own state and knowledge of the long-run average industry

state. The rationale for using a coarser set of state variables in my setting is the same as that for

computing oblivious equilibrium: realistically it is computationally infeasible to compute Markov

perfect equilibria when market sizes are large and the state space explodes even with 20 firms.

Such simplifications can actually provide good approximation to firms' equilibrium behavior. In

fact, Weintraub et al. (2008) show that the oblivious equilibrium approximates a Markov perfect

equilibrium as the number of firms grows.

I estimate empirical pricing strategies separately for three clusters of plans: basic plans offered

by single-product firms, basic plans offered by multiple-product firms, and enhanced-benefit plans

offered by multiple-product firms. Different factors are relevant for pricing across these clusters

of plans - for example, controls are different for single- versus multiple-product firms (shares of

other plans within firm are not relevant for the former). Therefore, I estimate the empirical pricing

functions separately for these three clusters of plans.

Table 1.7 summarizes my key coefficient estimates. Not surprisingly, plans with higher coverage

are more expensive: premiums decrease with deductible amount and increase with gap coverage.

Premiums also depend on lagged shares, but the coefficient varies across clusters of plans and types

of enrollees. Finally, the key takeaway is that the adjusted R2 is reasonably high, meaning that

this first step is doing a good job at predicting what firms do based on these observable factors,

which is a prerequisite for feeding these empirical policy functions into the second step to estimate

firms' discount factor.

1.6.3.2 Step Two: Uncover Insurers' Discount Factor

Given the discount factor and pricing strategies, I can forward simulate to get the empirical value

function for insurer k, the empirical counterpart to the value function in Equation 1.7.

00

V(Ck, 0-k, 6, SVmto) = En[E 6t FIkt(c(k, O-k, SVmt)ISVmt] (1.11)
t=to

I take competitors' strategies U-k as given by empirical pricing strategies estimated from the

first step and consider each insurer's optimization problem separately. In order to compute this
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simulated value function for each possible Uk, including the empirical strategy and alternative

strategies, I forward simulate 500 times and take the average across simulations to get V. The

discount factor can be estimated using the simulated minimum distance estimator as follows, where

N is the number of states times the number of alternative-strategies considered.

S = argmin 1 (min{V(&k, &k,.: 5, SVmt) - V(&k, &-k, 6, SVmt), 0})
&kSV-mt

Intuitively, the discount factor reflects minimum violation of insurer rationality by minimizing

room for profitable deviations. The objective function is the average forgone profit by choosing

empirical strategies &k, compared with alternative strategies &k. Since MPNE requirement applies

to all possible alternative strategies, alternative strategies can be any perturbations of empirical

strategies. Therefore, I consider single-period deviations from the empirical policy functions for

simplicity and consider 100 alternative strategies for each insurer.

Conceptually, the discount factor tells us how much insurers care about future profits and

therefore how strong the invest incentive is. The identification comes from the observed price or

markup levels - intuitively, the more insurers care about the future, the stronger invest incentive

they face and the lower they set the premiums. Table 1.8 reports the estimated S of 0.9462, which

suggests that insurers value future profits strongly and therefore face a strong invest incentive. The

standard error is bootstrapped.

1.7 Counter-factual Analysis

Section 1.4 shows a striking invest-then-harvest pricing pattern that is consistent with insurers

exploiting consumer inertia. Structural estimation in Section 1.6 uncovers a high discount factor,

indicating that insurers have very strong incentives to invest in future demand. Should we worry

about such invest-then-harvest pricing among Part D sponsors? On one hand, price increases

over time create dynamic choice inefficiency in consumer choice in the presence of inertia. On the

other hand, the net effect on consumer welfare also depends on whether switching costs toughen

or soften competition. In this section, I apply the dynamic supply model above to answer two

important economic questions. First, what is the net effect of strategic pricing in response to

inertia on equilibrium prices? This is an empirical question and depends on whether the invest

or the harvest incentive dominates. To quantify insurers' trade-off between these counteracting

incentives, I decompose the observed pricing patterns into components attributed to invest and

2 0 One potential concern is that such a high annual discount rate cannot be reconciled with the fact that many

Part D sponsors are publicly traded and have high rates of returns on investment. However, it should be noted that

I estimate a common discount rate for all insurers in this market for computational feasibility. While the discount

factor or rate of return might vary across insurers empirically, this estimate represents the average discount factor

across insurers. Furthermore, even for big insurers such as Humana, the annual rate of return is not much higher

than that implied than the estimated discount factor. For example, Humana's recent annual return on investment

ranges from 6.37% to 7.91% based on http: //csimarket.com/stocks/HUM-Return-on-Investment-ROI.html.
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harvest incentives in Section 1.7.1. Second, what are consequences of policies that could be used

to constrain insurers' ability to exploit inertia using the "invest-then-harvest" pricing tactic? To

evaluate the desirability of government intervention, I simulate the effects of three policies on prices

and welfare, including two policies implemented or proposed under the Affordable Care Act.

1.7.1 Do Switching Costs Lead to Higher or Lower Prices?

The competitive effect of switching costs is ambiguous and depends on whether the invest incentive

or the harvest incentive dominates. While Beggs and Klemperer (1992) show that the harvest

incentives always dominates when consumers are perfectly inertia and switching costs are infinite,

this is not necessarily true when consumers are subject to finite switching costs. In fact, Dub6 et al.

(2009) show that depending on the magnitude of switching costs, equilibrium prices can be higher or

lower than the case without switching costs. Contrary to conventional wisdom that switching costs

soften competition, the authors show examples where inertia reduces equilibrium prices. When

switching costs are finite, firms face incentives to price low not only to attract new consumers but

also to attract consumers currently attached to competitors. Arie and Grieco (2014) highlight the

"compensating" effect, or the incentive to induce competitors' consumers to switch products, as the

key contributing factor to lower price levels.

In order to decompose the effects of the invest and harvest incentives on driving prices, I

compare prices in the model with inertia with two counter-factual benchmarks, one without inertia

and one in which insurers are myopic. In the dynamic model with inertia, insurers are subject

to both the invest and harvest incentives when setting prices. In the counter-factual benchmark

with no inertia, insurers are subject to neither the invest incentive nor the harvest incentive. In the

counter-factual with myopic insurers, insurers face no invest incentive and only the harvest incentive.

The comparison between the dynamic model with consumer inertia and these two counter-factual

benchmarks helps decompose insurers' trade-off between the invest and harvest incentives.

In the counter-factual benchmark with no inertia, standard enrollees' demand is different from

Section 1.5.1 because their utility, which is described below by Equation 1.12, no longer includes

switching costs as in Equation 1.2.

Uikjt = -- Pkjt + Oit$kjt Ait1Insurerlk Eikjt (1.12)

In the counter-factual with myopic insurers, demand is the same as in Section 1.5.1, but now

the discount factor 6 = 0 in the supply model, and insurers set prices only to maximize annual

variable profits without any consideration for future profits.

Table 1.9 reports enrollment-weighted equilibrium markups among standard enrollees in a sim-

plified two-period model with inertia corresponding to the actual setting, in the counter-factual

benchmark with no switching costs and in the counter-factual with myopic insurers. Consistent

with the invest-then-harvest intuition, in the model with inertia we see low prices (small and nega-

tive average markup) in the first year but high prices (high average markup) in the second period.
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Interestingly, average markup is lower than the benchmark with no inertia, which indicates that

the invest incentive dominates the harvest incentive and that inertia toughens competition. A com-

parison between the model with inertia and the counter-factual benchmark without inertia in the

first year shows that the invest incentive accounts for a drop of around $300 in markup. Another

comparison between the model with inertia and the counter-factual with myopic insurers in the

second year shows that the harvest incentive accounts for an increase of around $100 in markup.

These comparisons show that the invest incentive dominates the harvest incentive and that switch-

ing costs make the market more competitive. These findings contradict the conventional wisdom

that switching costs soften competition, and confirm the conclusions of Dub6 et al. (2009) and Arie

and Grieco (2014).

1.7.2 Policy Experiments

The effects of government intervention are not directly intuitive and are in fact ambiguous ex-ante,

because pricing response to inertia creates two offsetting effects on consumer welfare. On one hand,

price increases create dynamic choice inefficiency in consumer choice in the presence of switch-

ing frictions. On the other hand, the structural estimation suggests that inertia reduces prices

as insurers face very strong incentives to invest in future profits. The desirability of government

intervention depends on how effectively each policy can smooth prices over time without increasing

average price levels. In this section, I apply my model to understand the potential role of govern-

ment intervention by simulating the price and welfare consequences of policy experiments where

the government restricts insurers' ability to exploit consumer inertia with the invest-then-harvest

pricing tactic.

First, the most straight-forward way to constrain insurers' invest-then-harvest pricing strategy

is to cap the annual increase in plan bids and supplemental premiums by a certain percentage.. This

cap directly curbs insurers' ability to harvest and raise prices later, and therefore also dampens

the invest incentive upon entry. In fact, the Affordable Care Act implements an "Effective Rate

Review" policy closely resembling a cap on annual premium increase: "any proposed rate increase

by individual or small group market insurers at or above 10 percent will be scrutinized by indepen-

dent experts to make sure it is justified" (U.S. Department of Health and Human Services, 2014).

Motivated by this policy, I consider a policy experiment in which firms can only increase bids and

supplemental premiums by up to 10 percent each year. The model is set up similarly to that in

Section 1.5, except that now there is a constraint that insurers' bids and supplemental premiums

cannot exceed 110 percent of those in the previous year.

A second policy I consider is to offer a public option at a low price to compete with private

insurers. Widely discussed in privatized insurance markets, public options were proposed as part

of the Affordable Care Act but were removed in the final reconciled bill. Intuitively, offering

an inexpensive public option increases competition, which restrains room for insurers to harvest

consumer inertia or charge high prices later on and, as a result, also weakens the invest incentive

early on. I consider a policy experiment in which the government adds a public option to the
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market, offering the minimum required coverage and priced at $300 in all years. The model is

similar to that in Section 1.5, except that now there is additional competition from this public

option.

Finally, I also consider the effects of removing risk sharing and fully exposing insurers to excessive

losses and gains from their pricing decisions. The risk corridors might have exacerbated insurers'

invest-then-harvest pricing tactic by making it less costly for insurers to price low initially to attract

consumers. However, risk corridors might also weaken the invest-then-harvest incentives because

insurer profits exceeding a threshold are taxed. The net effect is ambiguous and is an empirical

question. Given the importance of the risk corridors in this setting, I analyze this counter-factual

to understand the effect of this regulation (or its removal) on insurer pricing and consumer welfare.

The supply model remains the same as in Section 1.5, except that risk corridor adjustment F is

removed from the profit function in Equation 1.8. A caveat with the last two policy experiments

is that public options and risk corridors are big policy instruments with many potential effects

other than influencing insurer response to inertia, and my analysis here only speaks to one of many

aspects of their effects.

1.7.3 Implementation

The empirical policy functions estimated in Section 1.6.3.1 only characterize equilibrium strategies

in the empirical setting and can no longer be used as competitors' strategies in the counter-factuals.

Instead, I need to solve for the Markov Perfect Nash Equilibrium in each counter-factual. It is

computationally difficult to solve for the equilibrium in each game, given the large number of insurers

and the large number of parameters to solve for in the equilibrium strategy. For computational

feasibility, I restrict the set of strategies to follow the functional form of the empirical policy function.

I assume that in each counter-factual, equilibrium pricing strategies (bids for basic premiums and

supplemental premiums) take the functions form of the following, where I constrain the coefficients

on shares to change by the same proportion relative to the empirical coefficients and constrain

the coefficients on plan characteristics to change by the same proportion relative to the empirical

coefficients.

Pkjt = + Ek +Z E Sk+ Z'y6 S _t + Xit~\+Eit (1.13)
0 0

With this simplification, I forward simulate to get the expected value functions given the price

vector in the first year P and the coefficients that guide pricing strategies in subsequent periods. I

then iterate over insurers' optimal choices of initial prices and these parameters using the simulated

value functions until a fixed point is reached, which provides the equilibrium pricing strategies.

Given the solved equilibrium strategies, I move on to Section 1.7.4 and compute welfare.

For computational feasibility, I conduct counter-factual analysis on one representative market

with around a quarter of a million enrollees annually choosing stand-alone plans.21 The population

21Although I only perform the simulations on one representative market, I assume the same policy experiment is
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sizes of both standard and low-income enrollees are close to cross-market averages as reported in

Table 1.1. In addition, for computational feasibility given the large number of insurers, I report

results from simplified two-period models. Although the price levels would be more comparable to

the data in the model with a longer time horizon, two-period models already highlight intuitions

for the key economic forces, and the following qualitative interpretations are not an artifact of the

two-period set up. 2 As a benchmark for comparison, I also solve for the equilibrium in a two-period

game with the current setting, i.e. with consumer inertia, no cap on price increase, no public option

and with the current risk corridor set up.

1.7.4 Welfare Metrics

I evaluate effects of three policy experiments on prices as measured by enrollment-weighted pre-

miums and markup levels, as well as on social welfare, including consumer welfare, insurer profit

and government subsidy. I compute consumer welfare, insurer profit and government subsidy as

relevant to standard enrollees because the automatic allocation of low-income enrollees makes it

difficult to infer their preferences and to compute their welfare. In order to consistently compare

static and dynamic counter-factuals, I define these welfare measures on a per-period basis. Total

surplus W on a per-period basis can be calculated as follows, where CS denotes consumer surplus

in money metrics, H denotes total insurer profits, Subsidy denotes government subsidy, and A is

the social cost of raising public funds. I take A = 1.3, based on estimates in Hausman and Poterba

(1987).

W = CS + H - ASubsidy (1.14)

Whether consumer surplus should include switching costs depends on the underlying causes for

observed inertia (Handel, 2014, provides a detailed discussion). Such distinction is not crucial for

welfare analysis in my policy experiments, which all directly influence the supply side rather than

the demand side. Here I take switching costs as welfare-neutral, but when evaluating the robustness

of my results, I plan to consider switching costs as partly or fully welfare-relevant. When treated as

welfare neutral, switching costs do not count towards actual utility but do affect choice probabilities.

I simulate individual utilities and choices to compute consumer welfare in monetary terms after the

normalization over the absolute value of the price coefficient.

Insurer profits are calculated based on individual choice simulations above and using the relevant

profit functions. I compute pre-risk-corridor profits because risk corridor payments will be reported

separately as part of government subsidy. There are three types of subsidies relevant to standard

enrollees - risk-adjusted direct subsidy for each enrollee to insurers; risk corridor payments to

implemented throughout all markets and the national-average bid (used to transform bids to premiums and subsidies)

changes by the same proportion as in this market.
2 2While the two-period models suffice in illustrating the key insights, I am working on models with a longer time

horizon in order to verify the robustness of the conclusions and to provide a more realistic comparison with the data.
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insurers in cases of excessive losses (but the payment can go the other way if the insurer earns

excessive profits); and individual reinsurance to insurers, which covers 80 percent of catastrophic

drug expenditures. In the counter-factuals, I focus on direct subsidy and risk corridor payments,

which are endogenous to firms' pricing strategies. These subsidies can be computed similarly to the

profit term above on an per-year basis. The other subsidy, individual reinsurance, is not likely to

change much across counter-factuals and therefore is less interesting for the counter-factual exercise.

Following Decarolis et al. (2015), 1 compute government subsidy as relative to what would have

been spent subsidizing the same individuals in MA-PD instead, assuming that in the absence of

stand-alone plans, an enrollee would get prescription drug coverage through MA-PD plans instead.

1.7.5 Policy Experiment Results

Table 1.10 reports enrollment-weighted equilibrium markups among standard enrollees, first pre-

dicted by the model with inertia corresponding to the actual setting as the benchmark for com-

parison, then from three policy experiments: setting a cap on the percentage of annual premium

increase, providing a public option at a low price, and removing risk sharing between the govern-

ment and insurers. All three policies dampen the invest incentive in the first year and lead to higher

markups on average, to different degrees. All three policies also dampen the harvest incentive in

the second period and lead to lower markups on average, to different degrees.

In the counter-factual with a 10 percent cap on annual bid and supplemental premium increase,
average markup is higher relative to the benchmark case in the first year, but is lower in the

second year, which is consistent with the intuition that such a policy dampens the invest-then-

harvest incentives. The average price level is slightly lower than the benchmark without any policy

experiment. In the counter-factual where a public option is offered at a fixed price of $300, markups

in both periods are lower compared to the benchmark, but price in the second year is still much

higher than that in the first year. In the last counter-factual, where the risk corridor is removed,
prices are only slightly different from the benchmark, if noticeable. To sum up, capping annual

premium rise is the most effective in terms of both smoothing prices over time and constraining

average price levels. Offering a low-price public option constrains markup rise in the second year

but not by much. Removing the risk corridors has little impact on markups.

The prediction that the cap on annual premium increase rate can lower average prices is not as

intuitive as the other prediction on smoothing pricing dynamics. On one hand, capping the annual

premium increase constrains insurers' ability to raise premiums and harvest inertial incumbent

enrollees, which therefore tends to decrease price levels. On the other hand, given the reduced room

for harvesting, insurers now face weaker incentives to set low prices to invest in future demand. The

net impact on average price levels depends on the interactions of these two channels. Because there

is strong competition among Part D sponsors, the invest incentive turns out to be less sensitive to

this policy change than the harvest incentive, leading to a lower price level on average. One caveat

with this prediction is that it might be specific to the market structure of Part D, and therefore it

needs to be re-evaluated in other market settings.
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Table 1.11 reports simulated per-period consumer surplus for the benchmark model as well

as the three policy counter-factuals. For consumer surplus, I also show the difference between

each counter-factual and the benchmark and decompose this difference into the component driven

by changes in the share of standard enrollees choosing stand-alone prescription drug plans, the

component driven by changes in prices and the component driven by changes in choice efficiency.

Capping annual price increase results in the highest consumer welfare, which is largely due to the

direct effect of lower average prices and the resulting increase in enrollment, but there is also a

noticeable reduction in dynamic choice inefficiency. Offering a low-price public option increases

consumer surplus, which works mostly through enrollment in the public option, but there is also a

small reduction in dynamic choice inefficiency. Removing the risk corridors has little impact on all

margins.

Table 1.12 reports results on social welfare, including consumer surplus, insurer profit, subsidy

and social surplus. Capping premium increase is the most desirable in terms of both consumer and

social welfare. Offering a low-price public option improves consumer welfare, but such welfare gains

are dominated by the extra social cost of providing the public option. Removing the risk corridors

has little impact on consumer and social welfare but transfers money from the government to

insurers because with risk sharing, taxes on excessive gains outweigh subsidies on excessive losses

both in the model and empirically.

These policy experiments are informative about the desirability of each policy in terms of

restricting invest-then-harvest pricing and in terms of improving consumer welfare. Among the

policies I consider, a policy change to cap premium increases would be the most effective in im-

proving consumer welfare. This welfare increase comes from both smoother price dynamics and

lower average premiums. There are two important next steps to check the robustness of the policy

implications. First, I am working on models with a longer time horizon to evaluate the robustness of

my conclusions. While key insights from these policy experiments are intuitive and the qualitative

interpretations are not an artifact of the current two-period set up, some numbers might be different

when we consider a longer time horizon. For example, prices in the second year in the model with

inertia are higher than the counter-factual without inertia, which will change after allowing for a

longer and more realistic time horizon. Second, the timing of policy intervention matters and I

plan to evaluate effects of introducing the cap on annual premium increases at different points of

time.

1.8 Conclusion

A growing literature has documented evidence that consumers in health insurance markets behave

as if they face substantial switching costs when choosing health insurance plans. In this paper, I

investigate whether private insurers in Medicare Part D exploit this type of consumer inertia when

setting prices for insurance plans. I first document descriptive evidence consistent with insurers

initially setting low prices in order to invest in future demand before later raising prices to harvest

41



inertial consumers. To explore the implications of these invest and harvest incentives for equilibrium

pricing, I develop and estimate a dynamic model of insurers' pricing decisions that incorporates

demand inertia and adverse selection. I estimate a high discount factor among insurers, which is

indicative of a strong incentive to invest in future demand and is consistent with low prices observed

early on. I also find that on net, demand inertia reduces equilibrium prices, i.e. the invest incentive

dominates the harvest incentive. Finally, I evaluate welfare consequences of policies that could be

used to constrain insurers' ability to conduct such invest-then-harvest pricing patterns. Among the

policies that I analyze, I find that a policy change to cap premium increases would be the most

effective in improving consumer welfare by both lowering average premiums and smoothing prices

over time.
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Figure 1-1: Markup By Year of Entry
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Notes: This figure shows trends in average annual markup for plans introduced in cach year. The

horizontal axis is year and the vertical axis is annual markup among standard enrollees. Each data

point represents the enrollment-weighted average miarkup for a given cohort of plans in a given

year. Each line shows the trend in average annual markup for plans introduced in a specific year.

43



Figure 1-2: Expected Claims Cost, Switching Cost and Preference by Consumter Type

(a) Expected clains cost by consimer type: low, mediunn, and high risk scores
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Notes: Paiel (a) reports, for each type of enmollee, their expected claims cost to a basic plan

providlig the required minirnuni coverage or standard dwfind benefit (SDB) and to an enhanced-

benefit plan offering zero deductible and gap coverage on top of basic coverage. Standard enrollees

are divided into low-, medium- and high-risk groups based on their risk scores. Pantel (b) reports,

for each type of nrolle, the expected claiins cost as in Pael (a), switching cost in dollars, and

wi iinoness-to-pay for extra coverage (zerot deductibe amid gap coverage) relative to basic coverage.
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Table 1.1: Summary Statistics

Mean SD Mill Max

Panel A: Stand-alone Prescription Drug Plans
# Insurers 21 2.5 11 29
# Plans 47 8.2 27 66

wBasic Plans 24 4.0 15 36

# Enhanced-Benefit Plans 23 4.9 12 31
Herfindahl index 0.22 0.06 0.13 0.48

Average Annual Premium, 2006 329 36.5 270 413
Average Annual Premium, 2011 507 46.6 393 583

Panel B: Standard Medicare Beneficiaries

/ Beneficiaries 217;794 160,446 8,635 762,538
Annual Rival Rate 0.10 0.015 0.078 0.150
Annual Attrition Rate 0.08 0.007 0.061 0.098
Share in Stand-alone Plans, 2006 0.24 0.081 0.042 0.43
Share in Stand-alone Plans, 2011 0.26 0.063 0.18 0.42

Panel C: Low-income Medicare Beneficiaries
# Beneficiaries 59,738 51,148 2,822 267,848

Annual Rival Rate 0.13 0.022 0.092 0.25

Annual Attrition Rate 0.10 0.012 0.073 0.15
Share in Stand-alone Plans, 2006 0.88 0.098 0.52 1

Share in Stand-alone Plans, 2011 0.80 0.11 0.46 0.99

Notes: Panel A reports summary statistics for stand-alone plans across markets. The Herfindahl

Index is computed using enrollment of standard enrollees. Average premiums are weighted by

standard enrollment. Panels B and C report summary statistics on standard and low-income

Medicare beneficiaries at the market level. Numbers of beneficiaries correspond to the 20% random

sample and should be multiplied by 5 to get actual Medicare population size. Arrival and attrition

rates are relative to lagged population size. Shares in stand-alone plans are calculated as out of

the entire population of standard or low-income Medicare beneficiaries, including those with stand-

alone plans, those with bundled coverage under Medicare Advantage, those with coverage provided

by employers or third parties, and those without any prescription drug coverage.
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Table 1.2: Summary Statistics on Plans by Year

# Plans # Entries # Exits Total Premium Markup
Pooled 9490 371.9 47.5
2006 1429 1429 NA 329.0 -5.5
2007 1865 594 3 362.7 -55.4
2008 1824 201 86 408.1 4.2
2009 1687 53 83 476.6 71.9
2010 1576 107 24 503.3 148.8
2011 1109 22 95 507.1 121.3

Notes: The table reports summary statistics for all stand-alone prescription drug plans, first pooled

across years and then by year. Total premium is the total of annual basic premium and annual

supplemental premium. Premiums and markups are reported in enrollment-weighted averages.

Markup is defined in Section 1.2.2.

Table 1.3: Enrollment Shares as of 2011 by Beneficiary Cohort

Beneficiary Cohort 2006 2007 2008 2009 2010 2011
4 Standard Beneficiaries in PDPs 1,412,073 126,234 121,569 111,783 109,327 118,387
Share in plans introduced in 06 (%) 83.68 79.14 76.79 71.90 71.67 71.67
Share in plans introduced in 07 (%) 7.15 8.10 9.22 10.42 8.42 7.06
Share in plans introduced in 08 (%) 2.60 2.79 3.09 3.97 3.32 2.03
Share in plans introduced in 09 (%) 1.22 1.78 2.16 3.23 2.34 0.97
Share in plans introduced in 10 (%) 3.13 4.76 5.15 6.30 8.85 9.44
Share in plans introduced in 11 (%) 2.23 3.43 3.58 4.18 5.41 8.83

Notes: This table reports shares of standard enrollees choosing stand-alone plans by cohort of

beneficiaries (the columns) and by year of plan entry (the rows). Beneficiary cohort is the year

that the beneficiary first enrolls in a stand-alone prescription drug plan. Each cell reports the share

of the corresponding enrollee cohort choosing plans introduced in a certain year. The enrollment

shares in this table are computed as of 2011. For example, the first column shows that there were

about 1.4 million standard Medicare beneficiaries who first enrolled in stand-alone prescription drug

plans as standard enrollees in 2006. In 2011, among these standard beneficiaries, 83 percent were

enrolled in plans introduced in 2006, 7 percent were enrolled in plans introduced in 2007, and so

forth.
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Table 1.4: Comparing Markups Between Entrant Plans and Incumbent Plans

Markup (1) (2) (3) (4)
1{Entry}, =1 for entrants -82.7 -182.8 -158.1 -147.7

(64.9) (42.8) (30.8) (27.9)
Market FE x x x

Year FE x x x
Insurer FE x x

Plan Features x
N 9312 9312 9312 9312

Adjusted R2  0.024 0.173 0.268 0.688

Notes: The table reports the regression results for equation 1.1, using plan-year level observations

for all plans in the sample period 2006-2011. The regressor of interest is a dummy variable equal

to one if the plan enters in that year. All standard errors are clustered at the plan level. Column

(1) reports estimates without any controls. Column (2) controls for market and year fixed effects.

Column (3) also controls for insurer-fixed effects in addition to market and year fixed effects.

Column (4) adds controls for plan coverage, including deductible amount, whether the plan offers

gap coverage and tiered cost sharing. Standard errors are clustered at the insurer level.
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Table 1.5: Comparing Markups Between Entrant Plans and Incumbent Plans on Subsamples

Experienced Prior to Part D (4) Experi- (5)

(1) (2) (3) enced in Enhanced
Major MA MA Medicare Part D benefit
sponsors sponsors Sponsors plans

1{Entry}, =1 for entrants -186.6 -168.9 -168.6 -192.0 -134.3
(29.6) (25.1) (24.9) (30.5) (62.1)

N 2881 5339 5657 2918 4573
Adjusted R2  0.732 0.707 0.706 0.567 0.766

Notes: The table reports the regression results for equation 1.1, using plan-year level observations for

subsamples of plans in 2006-2011. The regressor of interest is a dummy variable equal to one if the

plan enters in that year. Controls include plan coverage, and market, insurer and year fixed effects.

Column (1) reports estimates using the subsample of plans offered by insurers that were major

sponsors in Medicare Advantage prior to 2006 and offered prescription drug coverage bundled with

medical coverage to the Medicare population. Column (2) reports estimates using the subsample

of plans offered by insurers with some experience in Medicare Advantage prior to 2006. Column

(3) reports estimates using the subsample of plans offered by insurers that provided insurance to

the Medicare population prior to 2006. Column (4) reports estimates using the subsample of plans

offered by insurers that have served at least 5000 Part D enrollees in the same market before.

Column (5) reports estimates using the subsample of enhanced-benefit plans only, which are not

eligible for random assignment of low-income beneficiaries. Standard errors are clustered at the

insurer level.
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Table 1.6: Polyakova (2015)'s Demand Estimates for Standard Enrollees

(1) (2) (3) (4)
Annual Premium, $100 -0.39 -0.45 -0.41 -0.50

(0.01) (0.01) (0.01) (0.01)
Default plan, 1/0 5.45 5.61 5.07 5.09

(0.25) (0.26) (0.26) (0.26)
x Health Risk Score 0.23 0.22 0.36 0.37

(0.06) (0.07) (0.07) (0.07)
Number of insurer FE 3 3 10 10
Use lagged cost as IV for Premium No Yes No Yes
Implied SC for 75yo female, av. risk $1506 $1330 $1392 $1164

Notes: The table reports estimation results for a few key coefficients from Polyakova (2015)'s sim-

ulated maximum likelihood estimation - coefficients on plan premium, on the default dummy, and

on the interaction of the default dummy and enrollee risk score. Columns 1 and 3 do not instrument

for annual premium, while columns 2 and 4 use lagged cost as an instrument for premium. Columns

1 and 2 control for insurer dummies for the 2 biggest insurers in each market (the omitted category

consists of all other insurers), while columns 3 and 4 control for insurer dummies for the 9 biggest

insurers in each market (the omitted category consists of all other insurers).
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Table 1.7: Empirical Pricing Strategies

Intercept

Plan Coverage

(%)
Deductible (in $100)

1{Gap coverage}

Lagged Shares By Type
Low risk share

Female low risk

Male medium risk

Female medium risk

Male high risk

Female high risk

Number of obs.
Adjusted R2

Single-plan
Insurers

Basic Plans
Bid for Pbasic

231.4
(133.9)

Multi-plan Insurers

Basic Plans
Bid for Pasic

1065.5
(679.2)

of Standard Enrollees (%)
4.1 -4.2

(3.3) (3.9)
-10.6 7.2
(3.9) (6.1)
3.2 0.8

(5.9) (2.7)
-10.2 -11.8
(5.3) (4.7)
-1.2 -1.7
(8.7) (4.2)
15.3 10.7
(6.4) (4.1)
677 2804
0.78 0.56

Enhanced-Benefit Plans
Bid for Pac PsuppementaL

1244.7 66.7
(238.91) (268.0)

-56.1
(17.3)
146.5
(29.3)

-16.6
(6.7)
3.1
(4.0)
-5.1

(10.9)
-9.8
(7.3)
11.5
(8.8)
1.9

(9.5)
3265
0.72

-18.9
(16.5)
95.5
(1s.0)

3.2
(3.2)
-1.1
(2.5)
-0.5

(5.7)
-16.9
(6.9)
20.5
(6.7)
-5.5
(8.9)
3278
0.69

Notes: The table reports key coefficient estimates from empirical pricing policy function estimation

for three clusters of plans, controlling for plan coverage and insurer fixed effects. All standard errors

are clustered at the insurer level.

Table 1.8: Structural Parameter Estimate

Coefficient Standard Error

Discount Factor (p) 0.946 0.073

Notes: The table reports the minimum-distance estimate for the discount factor and the boot-

strapped standard error.
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Table 1.9: Decomposition Results: Equilibrium Markup Levels

Model w. Restrict Insurers' Ability to Exploit Inertia
Average Markup Inertia Cap Annual Add Public Remove Risk

Price Rise Option Corridors
2006 -8 157 45 7
2007 403 164 346 398

Notes: The table reports enrollment-weighted average markups (among standard enrollees) in the

two-period model with consumer inertia, in the counter-factual benchmark without inertia and in

the counter-factual with myopic insurers.

Table 1.10: Counter-factual Policy Experiments: Equilibrium Markup Levels

Average Markup Model w. Restrict Insurers' Ability to Exploit Inertia
Inertia Cap Annual Add Public Remove Risk

Price Rise Option Corridors
2006 -8 157 45 7
2007 403 164 346 398

Notes: The table reports enrollment-weighted average markups (among standard enrollees) in the

two-period model with consumer inertia and in the counter-factual policy simulations.
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Table 1.11: Counter-factual Policy Experiments: Consumer Welfare

($Millions) Model w. Restrict Insurers' Ability to Exploit Inertia
Inertia Cap Annual Add Public Remove

Price Rise Option Risk
Corridors

Consumer Surplus 78.68 109.23 93.24 78.88
ACS 30.54 14.56 0.20
ACS due to AP 11.30 0.48 -1-42
ACS due to Achoice efficiency 6.87 3.60 1.52
ACS due to APDP share 12.37 10.48 0.10

Notes: The table reports consumer welfare estimates for the actual policy setting (as the benchmark

for comparison) and for policy counter-factuals (relative to the benchmark), all with a simplified

two-period setting. Consumer Surplus is as defined in Section 5.3 and is converted to a per-year

value so that it can be consistently compared across counter-factuals. The change in consumer

surplus resulting from each counter-factual policy is decomposed into three components - the dif-

ference due to enrollees opting in and out of stand-alone plans, the difference due to the resulting

equilibrium price changes, and the difference due to changes in consumers' plan choices.

Table 1.12: Counter-factual Policy Experiments: Social Welfare

e($illions) Model w. Restrict Insurers' Ability to Exploit Inertia
Inertia Cap Annual Add Public Remove

Price Rise Option Risk
Corridors

Consumer Surplus 78.68 109.23 93.24 78.88
Insurer Profit 14.43 16.01 9.98 46.60
Direct Subsidy 182.81 165.64 157.06 183.60
Subsidy for Public Option NA NA 13.75 NA
Total Direct Subsidy, rt MA-PD 2.88 -19.01 5.82 2.88
Risk Corridor Payments to insurers -30.34 -27.17 -31.30 0.00
Total Surplus 119.71 177.12 109.09 121.74
Public Option Share NA NA 0.08 NA

Notes: The table reports welfare estimates for the actual policy setting (as the benchmark for

comparison) and for policy counter-factuals, all with a simplified two-period setting. Consumer

Surplus, Insurer Profit, Direct Subsidy and Risk Corridor Payments are as defined in Section 5.3

and are all converted to a per-year value so that they can be consistently compared across counter-

factuals. Positive risk corridor payments mean that the government pays insurers in aggregate

while negative risk corridor payments mean that insurers pay the government in aggregate.
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1.9 Appendix

Figure 1-3: Expected clains cost. switching cost and preference by consumer type

C'.]
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Notes: This figure reports, for each type of enrollees, their expected cost. switching cost in dollars.

and willing1ness-to-pay for extra coverage: zero deductible and gap coverage, relative to basic cover-

age. In addition to the division into low-, medium- and high-risk groups based on their risk scores

as in Fioture 1-2, standard enrollees are also grouped by gender, which makes a snall difference in

terms of expected cost.

Table 1.13: Individual Cost Estimation

Low Risk-score M '. edium Risk-score High Risk-score Low-income

Male Femiale Male Female M a le Female Enrollees

Intercept 383 1 383.2 T 2 70)6.9 1145).2 10 71 10184

4) 444) (4.91) 3. 0) 0. 04) (4.85) (3.35)

Deductible -0.585 -0.451 -0.297 -0.234 0 0.056 0.248
(0.015) 0013) (0014) (1)0101 (0.02) (0013) (0.009)

Partial Gap Coy. 206.2 904.5 192.2 226.8 2664 314.1 594.2

(9 3) (7 18) 1 1 (5.0) 10.0) ((.0) (11.2)

F1ll Gap Cov. 637 3 653. 9 716.8 694.3 105 1. 8 1032.8 1490.0

(19.4) f15.2) (12. ( (1F.6) (.8.9) (264)
Number of obs. 58, 117 670,78 1 195 1 1 I. 6,9 11161410 1 2451 539 9,928 j35

Adjusted R2 0.O8 09 0.07 0.0 0.0 0.07 0.02

Notes: The table reports some key coefficients from tinlndividual cost (stination for Equation 1.5.

Insurer fixed effects are included. Standard errors are clustered at the insurer level.
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Chapter 2

Market Size and Innovation: The

Intermediary Role of Technology

Licensing

2.1 Introduction

Technological innovation is regarded as a primary source of improvements to economic welfare and

growth. This notion is particularly palpable in healthcare, where the availability of new treatments

can be directly linked to higher longevity, better clinical outcomes, and overall health improvements

(Murphy and Topel, 2003, 2006; Lichtenberg, 1996, 2010). Early insights (Schumpeter, 1942; Nord-

haus, 1969) and subsequent research converge on the idea that firms' aspiration to rip the monetary

rewards derived from commercialization constitutes a leading factor propelling the innovation of

new technologies. This suggests that larger market sizes exert a stronger pulling force, increasing

R&D investment and consequently, enabling higher innovation rates.

The causal impact of market size on innovation has been widely studied, primarily by an em-

pirical literature focusing on the identification of a key statistic: the elasticity of innovation to

market size. Due to its data richness and paramount importance, the pharmaceutical industry has

become a preferred arena for this type of research. Despite adopting a wide variety of empirical

approaches, studies in this realm can be partitioned in two broad groups according to the type of

metric employed to track innovative activity. The first group (Grabowski and Vernon, 2000; Gi-

accotto et al., 2005; Lichtenberg and Waldfogel, 2008; Yin, 2008, 2009; Civan and Maloney, 2009;

Kyle and McGahan, 2012; Blume-Kohout and Sood, 2013; Dranove et al., 2014) uses metrics based

on the amount R&D investment, or the quantity of inputs used in the innovation process. A second

group (Acemoglu and Linn, 2004; Finkelstein, 2004; Acemoglu et al., 2006; Cerda, 2007; De Mouzon

et al., 2015), concerns itself instead with the number of new therapies that reach the market. That

'This Chapter is co-authored with Manuel Hermosilla. We gratefully acknowledge the support of Kauff-

man Dissertation Fellowship and the Rustgi Family Fund in Entrepreneurship.
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is, the output of the process. Despite the fact that disparities in the assortment of empirical ap-

proaches and used metrics makes it hard to assess the consistency of the elasticity estimates in this

literature (De Mouzon et al., 2015), the role of market size has been invariably constrained to the

determination of R&D investment decisions, excluding the possibility that it could also operate by

altering the rate at which inputs are converted into outputs.

We argue that market size may not only impact innovative outcomes through the determination

of R&D investment decisions, but also through an intermediation effect: the facilitation of inter-firm

cooperation oriented at the development and commercialization of developing new technologies. It

has long been argued this type of cooperation can increase R&D productivity by pooling firms'

complementary capabilities (e.g., Teece, 1986; Gans et al., 2002; Spulber, 2014) implying that, by

fostering the exploitation of inter-firm complementarities, larger market sizes could be associated

to an improved rate of conversion of inputs into outputs. That is, market size may not only exert

pulling force on innovation, but also a catalyzing one. A direct corollary of this argument is that a

larger market sizes could be associated to higher rates of innovative output (i.e., new technologies

available to consumers) even if the amount of inputs (R&D investments) were to remain constant.

Productivity gains from inter-firm cooperation appear particularly relevant in the pharmaceuti-

cal industry, where clinical development requires the application of a wide range of skills and there

are important returns to experience and diversification (Cockburn and Henderson, 2001; Dranove

and Meltzer, 1994). Under the current industry configuration, highly specialized entrepreneurial

biotech firms focus on the early stages of the innovation, process, translating novel scientific insights

into embryonic technologies. These firms, however, typically lack a set of important capabilities

needed to develop compounds through late stages (Powell and Brantley, 1992; Powell, 1996). By

licensing their developing technologies, biotech firms are able to access these capabilities from ex-

perienced pharmaceutical commercializer partners, increasing the probability that a new treatment

will become available to consumers (Danzon et al., 2005) and/or do so in a shorter time frame. This

rationale is widely recognized and often made explicit when licensing agreements are announced.

For example, after a recent new alliance for the development of cancer targets between the young

biotech firm iTeos and the large pharmaceutical firm Pfizer was made public, an officer of the former

firm stated that "the oncologic expertise of Pfizer will help enable the acceleration and expansion

of the scope of iTeos' IDO1 and TDO2 programs."2

Set in the context of the pharmaceutical industry, we uncover a causal impact of market size on

the extent of inter-firm cooperation oriented at the innovation of new technologies. Our empirical

strategy exploits the impacts of the 2003 passage of Medicare Part D (henceforth "Part D") on

the patterns of drug candidate licensing. This program constituted a significant expansion of pre-

scription drug expenditure coverage for Medicare enrollees, increasing the expected US market size

for treatments targeting conditions that are more prevalent among the enrolled population. Since

Medicare primarily serves people 65 years and older, treatments for conditions with higher preva-

2See http://www.iteostherapeutics.com/iTeos-Therapeutis-Announces-License-and-Collaboration-with-Pfizer-

Inc.
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lence among elderly populations had a higher degree of exposure to the Part D shock. Following

the approach of previous research, we use health insurance and drug expenditure data to produce a

measure of shock exposure for each of the developing treatments in our sample. We then compare

rates of licensing activity before and after the program's enactment, across treatments with varying

degrees of exposure to the shock. Due to the international character of the drug candidate licensing

market and the irrelevance of Medicare insurance outside the US, we introduce a third dimension

of comparison: whether or not licensing agreements included the US among licensed territories.

Econometric results obtained with this triple-difference strategy suggest that the number of

licensing deals encompassing treatments with higher exposure increased by about 60% in the years

that followed the program's enactment. The effect was short-lived (5 years) and can be traced back

to as early as the couple years following the program's announcement. We use these results to derive

what is for us a clean estimate of a novel statistic -the elasticity of licensing-based cooperation to

market size- which results in value of 0.71. Even attaching modest productivity gains to inter-firm

cooperation, this estimate suggests that the intermediary role of market size could be a meaningful

determinant of overall innovative productivity.

The immediacy of the cooperation surge is an important component of the analysis: it implies

that the effect unfolded over a period of time in which, due to the relatively long times required for

the completion of each stage of the drug development process, the supply of developing treatments

available for licensing was fixed. Blume-Kohout and Sood (2013) and Dranove et al. (2014) analyze

the impact of Part D on R&D investment decisions, identifying a significant increase in new clinical

trials for treatments with higher exposure to the shock -a robust pull effect. This effect, however,

manifested itself with a lag: it was not present before 2006, and mostly noticeable after 2008, once

the bulk of the Part D-fueled surge in cooperation had already taken place. Consequently, our

results cannot be explained by an increased supply of developing compounds available for licensing

and therefore point to an impact operating over the intensive margin -an increase in probability

that each developing technology will be the subject of cooperation. Consistent with this finding,

we present a simple theoretical framework which establishes the intermediary role of technology

licensing holding constant the amount of inputs (R&D investment) used in the process.

We draw on the literature on Markets for Technology (MFT) to rationalize these results. A

central message from this stream from research is that inter-firm cooperation may be hindered by

the presence of important contracting frictions -broadly labeled as transaction costs- rooted on

problems such as costly search and negotiation, asymmetric information and bargaining power,

among others (Arora et al., 2001). The presence of transaction costs reduce the return to coopera-

tion and can often times preclude it (Spulber, 2014; Agrawal et al., 2014). As shown by the model,

transaction costs imply the existence of a pool of developing technologies for which cooperation is

not valuable enough. For these technologies, cooperation is precluded at the baseline market size

level. A larger market size facilitates cooperation by reducing the importance of transaction costs

relative to gains of cooperation. The model shows that, in absence of transaction costs, the iden-

tified Part D-fueled licensing surge could not be rationalized because all technologies would have
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been the subject of cooperation regardless of market size. A direct corollary is that the identified

elasticity of cooperation to market size is a function of both transaction costs and productivity

gains derived from cooperation.

Our model and empirical results further suggest that a larger market size help to material-

ize a second layer of productivity gains. These are based on an improved matching between the

characteristics of each developing technology and the capabilities contributed by the cooperat-

ing pharmaceutical commercializer. Drug candidates being developed at early stages (which in
the model we refer to as "technological cores") are developed into a set of different treatments

("sub-technologies") -fine-tuned versions of the compounds, optimized and tested in late stage clin-

ical trials for the treatment of specific conditions. First-best matching would pair each of these

treatments with the commercializer who possesses the best capabilities to develop each of them.

But since the treatments associated to a compound's may span diverse therapeutical areas, first-

best matching may require different complementary capabilities, and thus a different cooperating

commercializer for each of them. This unbundling of treatments into individual cooperation agree-

ments, however, would require incurring additional transaction costs. In analogous fashion to the

mechanics underlying the main effect, a larger market size may reduce the relative importance of

these additional transaction costs, prompting the unbundling of treatments into individual licensing

agreements. Our empirical results show that, following the program's passage, treatments licensed

for territories including the US and targeting a population with greater participation of Medicare

enrollees were significantly more likely to be packaged into narrower scope (often single-indication)

licensing deals than their non Medicare-oriented counterparts.

Gains derived from cooperative development and commercialization are not restricted to higher

productivity in the technical sense used here. The literature on MFT (Arora et al., 2001) and its

precursors (e.g. Teece, 1986) make this point emphatically: cooperation gains can also be derived

from the avoidance of duplicative investment in co-specialized assets (Teece, 1986) or the preser-

vation of downstream market power (Gans et al., 2002). Both of these types of gains are likely to

be relevant in the pharmaceutical industry, as prescription drug market tend to be concentrated

within each therapeutic area (Malerba and Orsenigo, 2002) and costly co-specialized assets (manu-

facturing facilities, branded reputation, specialized sales-forces) are required for commercialization

(Levine, 2009). Our analysis of section 2.7, however, suggests that these types of cooperation gains

were unlikely to have prompted the surge in cooperation following Part D's enactment. [better

closing for this paragraph: it must have been productivity gains, but say that we cannot prove that

undisputably.]

Our study offers three main contributions. First, it adds to the literature studying the function-

ing of Markets for Technology (MFT) by shedding some light on the role of downstream demand.

This literature has maintained a strong supply side emphasis or, in the words of Arora and Gam-

bardella (2010), "the factors that lead companies to license or sell technology, the implications

thereof [...] and the conditions that facilitate the rise of technology specialists." In the recent years

there have been several contributions (Cassiman and Veugelers, 2006; Forman et al., 2008; Cecca-
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gnoli et al., 2010, 2014; Ceccagnoli and Jiang, 2013) that address this gap by focusing on questions

related to how firms' characteristics (or the environment they operate on) may affect their demand

for external technology. We offer a more panoramic view, one in which firms on the demand side of

the MFT act as agents for commercialization, whose main role is to source embryonic technologies

from the MFT, contribute their capabilities to help and speed development, and allocate products

to consumer demand. Although we do not directly analyze these firms' behavior, we interpret the

vigorous cooperation response to Part D as a sign of them performing this role effectively. Care-

fully interpreted, the strong response is also a good sign in that it suggests that MFT could be

effectively performing a screening role: failed cooperation could in part signal the "weeding out"

of technologies pushed by innovators, for which market potential is not large enough to justify the

commercialization effort.

A second contribution is made to the literatures of endogenous growth (e.g., Romer, 1990;

Grossman and Helpman, 1991; Aghion and Howitt, 1992) and directed technical change (e.g.,

Samuelson, l'965; Drandakis and Phelps, 1966; Acemoglu, 2002), which view the pace of innovation

as function of expected market profits. Our results show that the formation of alliances can mediate

the relationship between R&D investments fueled by the expectations of higher returns and their

outcomes in terms of growth and technical change. With the exception of recent research by Akcigit

et al. (2013), this aspect has been largely missing from these literatures.

Our final contribution is to the analysis of the impacts of public policies on innovation. Ex-

isting research has identified various channels by which public policies could impact the rate and

direction of innovation. Finkelstein (2004) differentiates between static effects (utilization of cur-

rently available technologies) and dynamic effects (increased availability of new technologies in the

future) and shows that the latter can constitute an important fraction of the overall welfare effects

induced by the enactment of a public policy affecting health care utilization. The above-mentioned

research of BKS and DHG identify the dynamic effects triggered by Part D, which operate through

public insurance-based market size expansions. Lichtenberg and Waldfogel (2008) and Yin (2008)

quantify the dynamic impacts of the Orphan Drug Act, a public policy that increased market

size through a mixture of tax incentives, expedited development and longer market exclusivity for

therapies targeting rare diseases. Kyle and McGahan (2012) find that effective market size can

also be affected by the adherence of developing countries to protocols of intellectual property right

protection, and this can in turn fuel R&D spending. In all these cases, a common conclusion is that

the economic analysis of public policies should not only be based on their potential static impacts,

but also consider potentially large dynamic effects. Our results suggest that these dynamic impacts

may not only operate through the rate of future R&D investment, but also through the extent to

which inter-firm collaboration can exploit its potential returns.

The rest of the paper is organized as follows. Section 2.2 provides industry background, describ-

ing the sources and nature of gains derived from inter-firm cooperation. Section 2.3 presents an

analytical framework to guide the interpretation of results and formalize the intermediary role of

market size. Section 2.4 describes the Part D program and section 2.5 the available data samples.
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Our main results are presented in section 2.6. In section section 2.7 we investigate the hypothe-

sis that the licensing surge was driven by cooperation gains other than those related to innovative

productivity. In section 2.8 we perform a series of robustness checks, and in section 2.9 we conclude.

2.2 Industry background

During the late seventies and early eighties, the field of biotechnology produced huge leaps. They

opened the door to an alternative route to drug discovery -one that did not rely on access to the

proprietary chemical libraries that acted as potent entry barriers (Pisano, 2006). These events

prompted a reformatting of the pharmaceutical industry, which transitioned from a fully integrated

scheme (in which a few large pharmaceutical firms performed all stages of the R&D process and

commercialized approved compounds) into a vastly vertically-disintegrated one.3 Under the re-

sulting industry configuration, large pharmaceutical firms focus primarily on late stage R&D and

commercialization, while a fringe of highly-specialized entrepreneurial biotech firms on the early

stages of the process.

By several accounts, this industry ranks today amongst those with higher reliance on inter-

firm cooperation. Licensing of drug candidates constitutes a leading vehicle for it. In 2010 only,

there were transactions associated with potential value in excess of $40B (Giovanetti and Jaggi,

2013). In the remainder of this section we describe the source and nature of cooperation gains

in the pharmaceutical industry, as well as the nature of transaction costs that may hinder their

realization.

Innovative Productivity Gains

At a broad level, inter-firm cooperation create gains by enabling the exploitation of complementary

capabilities (Teece, 1986; Spulber, 2014). Biotech innovators possess narrow, compound-specific

technical expertise that is crucial to inform the design of clinical trials and modify the compound

when needed. 4 However, as noted by Cockburn and Henderson (2001), clinical development requires

the application of wide range of skills (e.g., clinical pharmacology, biostatistics, management and

logistics of large clinical trials, etc.), many of which biotech innovators often lack (Powell and

Brantley, 1992; Powell, 1996). This implies that development may either be less likely or take

longer to come to fruition when conducted in absence of cooperation. Licensing-based cooperation

grant biotech firms access to these complementary skills from large pharmaceutical partners.

Despite its wide recognition by academics and analysts, empirical identification of the causal

impact of pharmaceutical alliances on innovative productivity is challenging and supporting evi-

dence is mostly indirect. In a couple of highly cited studies, Rebecca Henderson and lain Cockburn

3 A full account of these events is beyond the scope of this paper. See Pisano (2006) for an excellent review.
4 Pisano (2006) notes that at the time a biotech compound is being developed, there is usually no other scientific

team in the world other than that of the originating biotech firm that has good enough working knowledge to navigate

the development process.
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show that large pharmaceutical firms benefit from both scale (i.e., total R&D spending) and scope

(i.e., diversity of research programs across therapeutical areas) economies. These may apply to the

number of compounds identified at discovery stage (Henderson and Cockburn, 1996), but also to

the probability of obtaining regulatory approval conditional on discovery (Cockburn and Hender-

son, 2001). In this case, the primary sources of gains are scope economies and overall experience

filling of regulatory approval requests.

The importance of scope economies can be rationalized because, given the interconnectedness

of biological systems, medical knowledge gained in one therapeutic area may also be useful in a

different one, or because the expertise devising and implementing complex clinical trials can also

transfer across targeted diseases and mechanisms of action. While these studies do not differentiate

between compounds developed under alliances and those discovered within developers' own labs,

they show that the experience gained by a long and diversified history of drug development con-

fers large pharmaceutical firms an innovative productivity advantage. Dranove and Meltzer (1994)

further show that these types of firms may also have the ability to speed up development of the

candidates they deem as more important.5 These findings resonate with the common assessment

of industry analysts, in that alliances with large pharmaceutical firms may "broaden and acceler-

ate their clinical development programs through the application of dedicated capital and clinical

expertise" (Kessel and Frank, 2007).

Danzon et al. (2005) provide what is, to the best of our knowledge, the most direct evidence of

the impact of alliances on productivity. They employ a research design along the lines of Cockburn

and Henderson (2001), but analyze a more recent sample of drug candidates, in a time period when

alliances are much more prevalent. Their basic results are largely consistent with those of Cockburn

and Henderson (2001). This is not only because overall and therapeutic-area specific experience

enable higher success rates, but also because these effects are shown to be stronger when, according

to the skill complementarity hypothesis, they are more needed (i.e., at more complex phase II and

III stages). More importantly, they observe that, in these late-stage trials, indications developed by

alliances have higher probabilities of success. This study, however, does little to address endogeneity

issues and thus results may represent biased estimates of the causal impact of alliances.

The primary source of bias to these estimates lies on a potential adverse selection problem

(Pisano, 1997; Arora et al., 2009; Hermosilla, 2015). The novelty and complexity of underlying

science may provide biotech innovators with an informational advantage over compounds' inherent

probabilities of success. These firms may exploit this informational asymmetry by licensing those

candidates with relatively poorer (privately observed) development success prospects, while devel-

oping those with better prospects on their own. In this way, biotech innovators would be able to

share the higher risks of candidates with poorer prospects, while retaining full ownership of those

5 As in the Henderson and Cockburn studies, Dranove and Meltzer (1994) do not differentiate between compounds

originated within the sponsoring firm and those in-licensed through an alliance. However, their sample covers a

time period in which the industry was vertically integrated and most of compounds were developed in-house. The

productivity advantages these studies identify accrue to the firms which now primarily act as commercializers (Pisano,

2006).
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with higher chances to reach the market. While available evidence for the relevance of this adverse

selection problem is mixed, it is clear that, however strong the problem really is, it does not negate

the existence of productivity gains derived from alliance-based cooperation. Much to the contrary,
the stronger a potential adverse selection problem may be, the larger productivity gains of alliances

would have to be in order to rationalize the results of Danzon et al. (2005). In the context of our
study, the relevant question is whether the Medicare-oriented licensing surge may have aggravated

a potential adverse selection problem and thus cancelled out innovative productivity gains. We

address this concern by looking at differences in contract termination rates but find no evidence to

support it.

Other Gains

While improved productivity is generally pointed out as a major source of cooperation gains in

this industry, it is by no means the only one. A second relevant source resides on the preservation

of downstream market power (Teece, 1986; Gans et al., 2002; Gans and Stern, 2003). In absence

of an alliance between an innovator and an incumbent commercializer, a new technology's market

launch creates competition and reduces market-wide profitability. Our results therefore imply that

while a larger market size may further the availability of new technologies to consumers; this may

not translate into overall lower prices.

The avoidance of duplicative investments constitutes another important source of gains Teece

(1986). In the drug development industry, large investments may be required to build production

facilities. Important investments may also be needed to assemble and train sales forces of medi-

cal representatives who promote drugs among prescribing physicians. Large pharmaceutical firms

invariably possess these assets, implying that cooperation avoids duplication of investment.

The presence of this type of gains introduces a challenge to our promoted implication, namely,
that a larger market size can prompt higher productivity and thus increase the number of new

technologies available to consumers even if R&D spending remains constant. This is so because it

suggests that the surge in licensing may not necessarily be driven by the gains associated to the

exploitation of innovative productivity gains, but instead, by the avoidance of duplicative invest-

ment. To address this concern we develop a proxy for the importance of investments in distribution

channels and examine the strength of the licensing surge across ranges of this distribution. If gains

based on avoiding duplicative investments were the primary driver we should observe that the surge

is concentrated (or at least, more pronounced) among compounds for which distribution require-

ments are relatively larger. Our results, however, point to the opposite scenario. We therefore

conclude that the exploitation of productivity gains plays the primary role.

Transaction costs

Despite the large potential gains, licensing-based cooperation may be precluded by the existence

of important contracting frictions, generically referred to as transaction costs (Arora et al., 2001;

Spulber, 2014). A primary friction resides on imperfect intellectual property rights. If this type
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of protection is not available, innovators may not be willing to engage in negotiations fearing the

risk of idea expropriation (Arrow, 1962). Even when intellectual property rights can be obtained,

uncertainty about its extent and scope may delay timely contracting (Gans et aL., 2008).

Costly and lengthy processes of search for partners (Hellmann, 2007; Bessen and Meurer, 2008;

Agrawal et al., 2014) and arduous contract negotiations imply monetary and alternative costs

(Lerner and Merges, 1998; Agrawal et al., 2014). For biotech firms, search may imply attending

industry conferences, preparing briefings, hiring legal counsel and intermediaries. These costs

may be compounded by the bargaining power asymmetry between biotech innovators and large

pharmaceutical commercializers (Lerner and Merges, 1998; Malerba and Orsenigo, 2002; Bosse and

Alvarez, 2010), which prompts some simultaneous negotiations with multiple potential partners in

order to improve their bargaining position against any one of them.

Negotiations entail comprehensive due diligence and agreement over a wide range of control and

residual rights (Lerner and Merges, 1998; Lerner and Malmendier, 2010), which aim to moderate the

issues of contract incompleteness and imperfections in technology transfer. 6 The negotiation process

is complex, primarily because the type of novel scientific knowledge underlying biotech candidates

is often hard to codify, communicate and absorb (Von Hippel, 1994; Spulber, 2014). Even when

negotiations come to fruition, it may be hard to provide detailed specifications to break the set of

required activities into independent tasks, prompting continuous engagement between parties and

further increasing the cost to collaborate (Arora et al., 2001). Anticipating these complications,

many firms may therefore choose to abstain from collaboration (Powell, 1996; Spulber, 2014).

In the next section we present an analytical framework that highlights the roles of productivity

gains and transaction costs as determinants of technology licensing. Consistent with the facts

described here, and in the spirit of previous research(Arora and Fosfuri, 2003;'Spulber, 2014), we

model contracting frictions as fixed cost to be paid whenever a new licensing agreement takes

place. Given the nature of our empirical exercise, however, we depart from previous literature

by broadening its definition. Previous literature has been primarily concerned with the innovator

firm's decision to license, and therefore defined the transaction cost as the cost incurred by this firm

solely. Instead, we are interested in characterizing the market fundamentals that make a licensing

agreement a jointly profitable enterprise. Consequently, we define the transaction cost as the sum

of costs incurred by both partnering firms.

2.3 Analytical framework

Basics

We outline a simple framework that illustrates the highlighted impacts of market size on licensing

incidence, unbundling of sub-technologies, and innovative productivity. We formulate these out-

VPreviously we asserted that the novelty and complexity of technologies may informational asymmetries and a

consequent adverse selection problem. These informational problems could also create moral hazard if biotech firms

become disengaged with the development process after licensing takes place.
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comes as a function of market size, transaction costs, and the existence of productivity gains from

cooperation. Given the nature of our empirical exercise, we find it useful to abstract from strategic

interactions and the mechanics by which rents are divided between contracting parties. We instead

assume that licensing-based cooperation will take place if productivity gains from cooperation are

large enough to offset transaction costs and that, in that case, firms will find a way to split rents.

We consider a development process comprised two stages, early and late. A unit mass continuum

of upstream innovator firms conducts early stage R&D. The input of this stage is a fixed amount

of R&D investment (equal for all firms); the output, a technological core X. Each innovator

firm develops a single core. Cores are understood as the basic implementation of a novel set of

technological ideas, which have the potential to provide value for consumers but do not do so at

the time the early stage concludes.

Immediately after the early stage is concluded, a set of I sub-technologies is identified from

each core at no cost. These are developed independently in the late stage in order to achieve

its potential of providing consumer value and so be commercialized. We normalize the cost of

developing each sub-technology through the late stage to zero. As we explain below, the outcome

of this stage is uncertain in that, after the stage is concluded, some sub-technologies are revealed

as unsuitable for commercialization. As mentioned above, technological cores can be assimilated

to drug compounds before they are optimized and tested for the treatment of a given condition,

whereas sub-technologies represent compounds' indications -fine-tuned versions of compounds that

are independently tested in clinical trials to assess their safety and efficacy in the treatment of

specific conditions.

There are as many downstream markets as sub-technologies across cores, and a one-to-one

mapping between sub-technologies and their specific targeted market. The identity of the market

targeted by each sub-technology is a priori uncertain, and revealed immediately prior to the start

of the late stage. For each sub-technology, the probability of targeting each market is the same.

The size of each market (denoted by d) is known throughout the process and distributed uniform

standard in the population. For analytical tractability, we set I = 2 and write X = (X1, X2), where

xi represents X's sub-technology i (i = 1, 2). The sizes of the targeted markets by each of these

are denoted d, and d2 , respectively.

The late stage can be carried out individually by each upstream innovator or cooperatively

under a licensing agreement between the innovator and a downstream commercializer. If licensing

takes place, a transaction cost , > 0 must be incurred. This transaction cost represents the sum of

costs incurred by both firms. There is a finite set of identical commercializers, but each has infinite

capacity to cooperate with innovators.

Late stage uncertainty plays in through the probability of observing a successful outcome in the

late stage. Each sub-technology is commercialized only if such outcome is observed. If this stage is
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carried out in absence of cooperation, this probability equals p.7 ,8 If there is a licensing agreement

in place, cooperation increases the probability of success to p + 6 C (0, 1). We further assume that

there are no production or commercialization costs, so total rewards to commercialization equal

market size. We refer to each sub-technology that reaches the market as a new technology product.

Panel A of table 2.1 summarizes the key elements from this environment. The expressions for the

expected number of new technology products (column 4) make it immediately clear that overall

innovative productivity depends on the extent of licensing.

To analyze the role of downstream demand in a way that fits our empirical context, we assume

that development and cooperation decisions are cleared in two consecutive periods. The economic

environments are as described above and identical in both periods, except for that in the second

period the downstream demand for a subset of markets is affected by a positive shock. In particular,

we assume that a randomly chosen half of all downstream markets is exposed to the shock. When

the shock is in place, the sizes of these markets increase permanently by a factor 9 > 1. This

structure generates a non-degenerate distribution of total core exposure to the shock in the second

period: half the cores has one of their sub-technologies exposed to the shock, a quarter has both sub-

technologies exposed, while the remaining quarter has none. Since exposed markets are randomly

determined, cores' total baseline market size (d, +d 2) is orthogonal to their degree of shock exposure.

Bundled licensing only

We first analyze the basic scenario in which licensing encompasses of all a core's sub-technologies.

To simplify the analysis, we focus on the case where 6 > , > 0, although qualitative results follow

through in other cases. Licensing takes place if the expected total gains of cooperation exceed

transaction costs. For cores with only one sub-technology exposed to the shock, this condition is

either (9d1 +d 2)6 > r. or (di +d 2 )6 > r, (depending on which sub-technology is exposed). For those

cores with both sub-technologies exposed to the shock, the condition is (d, + d2)06 > K, whereas

for cores with none of their sub-technologies exposed, it is (d, + d2 )J > ,. Integrating across the

distributions of market potential and shock exposure, the expected number of licensed cores when

the shock is in place is

L = 1 - )2 (2.1)
2 6

F(O) = 1 represents the shock's impact on the incidence of licensing. Before the shock is in

place (o = 1), F = l and L =1- , ) showing that the extent of licensing increases the smaller

transaction costs are relative to productivity gains derived from cooperation.

Through F, the arrival of the demand shock (0 > 1) reduces the importance of transaction costs

relative to productivity gains (F' < 0 in the relevant range), increasing the number of licensing

7 That is, we implicitly assume that the likelihood of commercialization is independent of each sub-technology's

targeted market's size. To insure the upstream innovators are willing to engage in the innovation process, we assume

that the R&D investment required to undertake the early stage does not exceed p.

8The main conclusions can also be obtained assuming heterogeneous success probabilities, or by assuming that

uncertainty operates as a determinant of realized market size through realized quality.
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deals. Note, however, that in the extreme case where transaction costs equal to zero, such effect is

not observed because all cores are the subject of cooperation at the baseline demand level. It follows

that the observed surge in licensing described by figure 2-4 (panel A) can only be rationalized if

transaction costs are large enough with respect to productivity gains derived from cooperation.

The intermediary role of technology licensing is transparentized by the expression for the ex-

pected number of new technology products, T = 2(p + 6L) -a linear combination of the lower and

upper productivity bounds, 2p and 2(p + 6), respectively. A higher rate of licensing brings T closer

to the upper bound. Using (2.1) we can write T as a function of the model's fundamentals, as

2

T = 2(p + 6) - p(0)2. (2.2)

The negative term reflects a deviation from the upper productivity bound caused by the presence

of transaction costs, which preclude some cooperation and therefore thwart the full realization of

productivity gains. Through the filter of F, a larger market size reduces the relative importance of

transaction costs, fosters inter-firm cooperation, and thus increases the amount of output obtained

from a each unit of input entered into the innovation process. Expression (2.2) also suggests that,
at least in the short term when early stage R&D expenditure remains constant, changes in the

number of observed licensing deals can be used as a proxy for changes in the expected number of

new technology products.

Bundled and unbundled licensing

We now relax the assumption of bundled-only licensing to illustrate the second layer of productiv-

ity gains -the improvement of the quality of matching between sub-technologies and cooperating

downstream commercializers. We do so by introducing the possibility of unbundled licensing: the

situation in which a core's two sub-technologies are licensed through separate deals, to two inde-

pendent cooperating commercializers.9

Our analysis is based on the following trade-off. Matching each of a core's sub-technologies to its

own specific best-suited cooperating commercializer translates into additional productivity gains but

requires incurring additional transaction costs. For the analysis, we set up an environment in which

the best-suited cooperating commercializer differs between each core's two sub-technologies, and

each licensing deal implies a separate transaction cost n. Thus, first-best matching always implies

unbundling but its viability requires productivity gains to be valued in excess of K compared to

bundled licensing and in excess of 2r to no licensing.

We introduce heterogeneity in matching quality by assuming that there are two types of commer-

cializers, A and B. These differ in their capabilities: those of A are best suited for the development

of x1, while those of B are best suited for X2. While arbitrary and unrealistic, this specification al-

lows us to formulate the condition determining the incidence of unbundling as one solely depending

9 This phenomenon is known as "indication splitting" in the drug development industry (Longman, 2006).
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on the elements already contained by the model.1 0,11

The suitability of each firm's capabilities with respect to the development of each sub-technology

operates through productivity profiles, which we characterize with the pairs (6+4), 6 -4)) for A and

(6 - 4, 6+ ) for B, with # E (0, min{l - p - 6, 6 - r}. This means that, when cooperating with

A, the probability that x1 will reach the market is p 6+4+ , while that of X2 is p +6- # (and vice

versa for cooperation with B).

Panel B of table 2.1 summarizes the key elements in this environment. The expected number

of new technology products (column 4) shows that in this case the upper bound on innovative

productivity is given by 2 (p + 6 + q). By imposing 6 > 4 through the upper bound on the domain

of #5, .we rule out the situation in which all licensing is unbundled and insure that unbundled

licensing always imposes a more stringent requirement over d, + d2 than bundled licensing. Thus,

to determine the set of unbundled cores we only need to check that unbundled licensing yields

higher expected total gains than bundled licensing. 12

This structure implies a simple assortment, which we describe graphically in figure 2-1 for

cores whose first sub-technology (x1 ) is exposed to the shock. Cores licensed as a bundle imply

cooperation with the best-suited commercializer for that sub-technology with the higher market

size, whereas unbundled licensing pairs each sub-technology with its best-suited commercializer.

When the shock is in place, this means that cores with d, > 9d2 are licensed to A, whereas those

for which d2 > 6di are licensed to B. As shown by figure, the arrival of the demand shock increases

overall and unbundled licensing, moving all lines closer to the origin. This illustrates our claim that

a larger market size translates into a two-layered impact on innovative productivity.

As in the bundled-only licensing case, integrating across the distributions of market potential

and the probability of exposure to demand shocks we can compute the expected number of new

technology products as a function of the modelis fundamentals, as

T = 2(p+ 6 +) - E(, 0, 6, 0)

with E(t, 0,6,4)) = 2KI(9) + (F( 0) . This formulation retains the key properties from

the bundled licensing only case, in that (i) the number of new technology products as a deviation

from the upper productivity bound, and (ii) a larger market size has no productivity impact if

transaction costs are null.

A direct implication of the demand shock's arrival is a shift in the relative unbundling incidence

of sub-technologies with and without exposure. This occurs because the unbundling rate of cores

with both their sub-technologies exposed to the shock increases, while that of cores with no exposed

1oThis characterization implies that commercializer A will always be better than B at developing xi (and vice

versa for X2) despite the fact that the targeted market by each sub-technology is randomly determined.

"A more realistic framework would, for example, sort sub-technologies according to a separate technical dimension

(e.g., drug delivery method), and then anchor commercializers' comparative advantages to it. We see no analytical

gains to introducing such additional structure.
1
2 The upper bound on the domain of 0 imposes # < 6 - r. to simplify the algebra. Replacing this with 0 < 3

produces no additional insight and does not change our conclusions.
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sub-technologies remains unaffected. This observation yields the prediction that when the demand

shock is in place, sub-technologies with shock exposure will be more likely to be observed in stand-

alone licensing deals than those without exposure.

To formalize this effect. we construct A as the difference between the number of sub-technologies

with and without exposure to the shock that are licensed through stand-alone (unbundled) deals.

This results in

A= - - (2.3)
20 0 20 0

Before the shock arrives (9 = 1), this difference is null, as exposure is random and affects 50%

of sub-technologies. After the shock arrives (9 > 1), in the presence of positive transaction costs,
this difference becomes positive. Again in this case, it can easily be seen that such effect can be

rationalized if transaction costs operate in the market. Our analysis of section 2.6 provides evidence

consistent with A > 0.

2.4 Medicare Part D

Medicare is an important social insurance program in the United States, which provides medical

insurance primarily for the elderly (65 years and older) and disabled. Since its creation in 1965,
Medicare has covered beneficiaries' inpatient and outpatient expenditure through Medicare Part A

and Part B, but offered little prescription drug coverage until recently. In December 2003, Medicare

Part D was enacted as part of the Medicare Modernization Act (MMA) to provide outpatient

prescription drug insurance to Medicare beneficiaries. The Act went through political debates and

almost got killed in the voting process. Until it was finally passed in December 2003, it was not

clear whether and how prescription drug coverage would be added. The program went into effect

in January 1, 2006.

Part D is a large-scale program, both in terms of the number of enrollees and its cost. In 2006,
there were 26 million Medicare beneficiaries enrolled in Part D. The annual program cost was about

$50 million in 2008 and about $63 billion in 2012, implying that the average expenditure per-patient

was close to $2,000 in 2008. The Office (2014) predicts that the total program costs will grow to

$76 billion by 2015.

By various accounts, Part D was a significant shock to the industry. Blume-Kohout and Sood

(2013) and Dranove and Meltzer (1994) find the program incentivized the innovation of more

prescription drugs targeting the conditions that are more prevalent among enrollees. The program

was also found to have increased prescription drug usage among enrollees by between 4.7% and 5.9%

(Ketcham and Simon, 2008; Yin et al., 2008). Because of the large percentage of the population

enrolled in Medicare and the fact that the government (as represented by Center for Medicare

and Medicaid Services) is prohibited by law from directly bargaining with pharmaceutical firms,
the anticipated increase in drug utilization could have been reasonably predicted to translate into

rising higher drug expenditure and commercialization profits for the diseases that are more prevalent
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among Medicare enrollees.

2.5 Data

Licensing deals

The main data source is Thomson Reuters Cortellis Life Sciences, a comprehensive repository

of licensing contracts. This data subscription service is widely used by industry practitioners to

inform strategic development decisions and prepare for negotiations. Our main set of results is

drawn from the "Recap i DEAL Builder" tool offered by the Cortellis subscription, which tracks

strategic alliance activity in the sector.13 Recap is known as the gold standard for actionable data

on biopharmaceutical deal making, as it contains information of over 40,000 alliances struck since

the early 1970s. 14

Our analysis focuses licensing-based alliances aimed to the development and commercialization

drug candidates. We focus on the deals that Cortellis reports with the labels of "development

and commercialization" and "commercialization" delas, as these refer to candidates for which the

pursued therapeutical applications have already been defined. These can be thought of as vertical

agreements, in which an innovator firm grants exclusive commercialization rights (within certain

territory) to another firm, which will further contribute to the development process and commer-

cialize the compound (if regulatory marketing approval is obtained). Other types of licensing based

alliances (joint ventures, contracted research, research tools) are better described as horizontal al-

liances and are typically observed at early stages, when a specific targeted disease has not been

defined. Our empirical strategy crucially relies on the ability to link the downstream market ex-

posure to the Part D shock (computed at the targeted disease level) to each compound's licensing

propensity, which is why we focus on the type of alliances that encompass a set of well-defined

targets.

Cortellis contains records for such deals 12,846. Each of these specifies a set of indications to

be developed and commercialized by the alliance. We drop the deals for which the list of licensed

indications is or contains missing data, as well as those for which we were not able to establish a

link to the variable measuring the exposure to the Part D shock. Since our focus is on the impact on

developing technologies, we also drop those that contained one or more indications with regulatory

marketing approval at the time the alliance was struck. Finally, we restrict the period of analysis to

1998-2014, which leaves us with a total of 4,533 contracts, trading the commercialization rights to

6,942 indications. On the resulting sample, each alliance encompasses 1.5 indications on average.

Because Part D impacted the demand of US consumers only, we differentiate between alliances

that included the US among licensed territories and those that did not. An alliance is coded as

1 3The Recap service was originally provided by a San Francisco based independent company (Recombinant Capital)

and later acquired by Deloitte, which later sold it to Thomson Reuters in 2013.
14The company obtains alliance information through Freedom of Information Act requests to the Securities and

Exchange Commission (SEC). Publicly traded firms are required by law to submit this information, while privately

held firms also have to in some states if they provide employees with stock option plans.
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including US territories if the "Included Territories" variable in the data contains "US," fNafta,"

"North America," or "World." About 32% of the alliances include the US territories and among

these, 85% provide worldwide commercialization rights. For ease, in the remainder we refer to

alliances including the US simply as "US alliances."

Table 2.2 presents the main descriptive statistics of the sample. Columns 1 and 2 present the

average number of new alliances registered each year. The number of US alliances is consistently

lower than that of non US alliances, reflecting the fact that the required capabilities to commer-

cialized compounds in different regions of the world besides the US may be reside in different firms

(Kyle, 2006). The number of contracts and indications (presented by columns 3 and 4) decreases

the more advanced the stage is. This reflects the joint effect of many indications "exiting the mar-

ket" early by striking licensing deals at the preclinical or phase I stages, and that due to failing to

deliver promising testing results and consequently seeing their development terminated. 15 Because

of this feature, all employed empirical specifications will include development stage fixed effects.

Finally, we note that the proportion of US alliances remains roughly constant throughout time

periods and across stages and do not significantly change when we instead look at the number of

licensed indications.

Exposure to the Part D shock

In order to size the magnitude of the demand shock posed by Part D across targeted conditions,
we adopt the approach used by previous research exploring the impacts of Part D, Duggan and

Scott-Morton (2010), Blume-Kohout and Sood (2013), and Dranove et al. (2014). In particular,
we create a variable that measures the participation of Medicare enrollees (as of 2003) within each

targeted condition. As in these previous papers, we label this variable "Medicare Market Share"

(MMS).

To construct this variable we utilize data from the Medical Expenditure Panel Survey (MEPS),

a large and representative sample of US individuals' medical services utilization, including infor-

mation about the types prescription drugs used and the availability and type of insurance. Using

MEPS insurance and conditions files, we compute MMS as the percentage of prescriptions in each

therapeutical class that were issued to enrolled in Medicare in 2003.17 Thus, the domain of MMS

is the unitary interval and a value of 0.5 for a specific condition indicates that 50% of the prescrip-

tions used to treat that condition in 2003 were issued to Medicare enrollees. This variable therefore

reflects the exposure of each of the indications licensed in our data had to the Part D shock: higher

MMS indications were more exposed to the shock than lower MMS ones. In section 2.8 we develop

two alternative measures of shock exposure and show that our qualitative results remain invariant.

Most of our analysis will rely on a dichotomic indicator that is activated if an indication's MMS

1 5 Development attrition is a well-known and pervasive feature of the drug development industry. See, for example,
DiMasi et al. (2003).

3'MEPS data are available for download at http://meps.ahrq.gov/mepsweb/.
17 For all calculations involving the MEPS data we weight individual quantities using reported individual repre-

sentativeness weights.
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score is above its distributionis median. We refer to the indications that satisfy this condition as

"Medicare-oriented."

A limitation of the MEPS data is that specific conditions suffered by each individual are not

reported by name or coded with high granularly. Instead, they are reported by their corresponding

ICD-9 therapeutic category.18 At its most granular level, the ICD9 categorization achieves a great

deal of precision. However, MEPS reports conditions are reported at their least granular, 3-digit

level, which has about 800 broad therapeutical categories. We thus bridge indications in our data

to MEPS insurance variability at this level. The 648 different conditions targeted by the indications

in the data cover 254 of such categories. 19

Figure 2-2 presents the kernel distribution of MMS scores across indications associated to the

compounds in the licensing data. Overall, there is substantial heterogeneity. Patterns of variation

result fairly intuitive, as the epidemiological characteristics of conditions with high MMS scores are

those one would tend associate with Medicare enrollees (i.e., 65 years and above). For example,

at the bottom of the distribution, with MMS scores below 0.1, we observe conditions like growth

hormone deficiency, attention deficit disorder and acne. With MMS scores between 0.2 and 0.3 there

are, for example, conditions like myopia and psoriasis. More Medicare-oriented diseases include

hyperlipidemia, chronic bronchitis and hypertension (MMS between 0.4 and 0.5). At the top of

the distribution there are conditions like cardiac failure, cataracts, Alzheimer's and Parkinson's

disease (all with MMS scores above 0.8), which are typically suffered by relatively older people.

The median of this distribution is 0.39.

One question regarding the MMS measure lies on its relationship with baseline demand. If MMS

exhibited a degree of correlation with baseline demand levels for targeted diseases our inference with

respect to the causal effect of Part D on licensing activity could be biased. To explore this possibility,

we again use the 2003 MEPS dataset to generate three proxies for baseline demand at the 3-digit

ICD9 level. For each of these categories we compute the (i) total number of patients consuming

medications, (ii) total number of prescriptions, and (iii) total prescription drug expenditure (i.e.,

sum of all payments issued to cover consumption). Figure 2-3 presents the scatter plot of each of

these variables (ranked) and MMS. There are no obvious correlations. We therefore continue our

analysis under the assumption that indications' exposure to the Part D demand shock (as measured

by MMS) is uncorrelated to baseline demand levels.

18 The International Statistical Classification of Diseases and Related Health Problems (ICD) is a widely used

therapeutical classification system maintained by the World Health Organization. According to the Organization's

website, about 70% of worldwide medical expenditure is codified using this system.
1 9The average number of conditions per category is 2.6.
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2.6 Empirical results

Licensing incidence

The empirical analysis of the impacts Part D on the drug candidate licensing market faces two

main challenges. The first corresponds to an aggregation problem: licensed indications through

a single deal may vary in their degree of Medicare orientation or shock exposure. As implied by

our theoretical framework, a second problem stems from the possibility that the set of licensed

indications may be endogenously determined. We first adopt the simple approach of assuming

that each indication's exposure to the shock is dichotomic and that the list of licensed indications

is exogenously determined. With this, we measure a deal's overall shock exposure through the

dichotomic variable DMMS, which equals one if at least one Medicare-oriented indication is included

in the deal. We let DMMS=1 if such type of indication is included, and DMMS=0 otherwise.

Below in this section we address the exogeneity assumption, and in section 2.8 relax the dichotomic

exposure measurement.

Figure 2-4 describes the total number of new licensing-based cooperation agreements signed

each year. Panel A focuses on deals including the US among licensed territories, whereas panel

B, on those deals that did not include the US. On each case, solid lines represent the number of

DMMS=1 deals and dashed lines that of DMMS=0 deals.

Among deals including the US (panel A), the number of deals with higher exposure to the

shock (DMMS=1) jumped immediately following the program's enactment, whereas those with

lesser exposure retained its gently increasing trend. Furthermore, since Medicare insurance is

irrelevant outside the US, the impact is only observed among deals that include the US among

licensed territories, as can be seen from comparing the patterns of panel A with those of panel B.

To investigate these trends econometrically, we generate the dependent variable NDMMS,USt,s

by aggregating the total new number of licensing deals observed within cells defined by the sub-

indexes. Differencing across stages (s) is important because, as seen from table 2.2, there is lower

availability of drug candidates at more advanced stages. This is also important because, due

to the large development attrition rates, the relevance of a shock to consumer demand is higher

for compounds at more advanced stages. Variation across years (t) is relevant because a firm's

propensity to license their technologies may be determined by the fluctuations of public investment

markets, as restricted access to public funds during macroeconomic downturns may render licensing

as a more viable source of funding (Lerner et al., 2003). Finally, we need to differentiate among

licenses that include the US (US=1) and those that do not (US=0).

This approach produces a total of 2 (DMMS) x 2 (US) x 17 (t) x 5 (s) = 340 observations. We

consider the time periods listed in table 1: 1998-2003 (j = 1), 2004-2008 (j = 2), 2009-2014 (j = 3),
defining the indicators PER for each. The definition of the second period is given by the date of

the program's enactment (December 2003) and by the fact that it encompasses a short enough time

frame in which the increased availability of Medicare-oriented indications or pull effects were had

not been meaningfully manifested (Blume-Kohout and Sood, 2013; Dranove et al., 2014).
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We estimate a negative binomial model with the following specification 20

NDMMs,Us,t,s = a1 + a2 - DMMS + a 2 - US - DMMS+

E 0, - DMMS -PERj + E o- - DMMS - PERj .US+ (2.4)
j=2,3 j=2,3

At + Ps + EDMMS,US,t,s-

The inclusion of the DMMS level controls for differing proportions of DMMS=1 and DMMS=0

new deals signed each year. Baseline effects associated to the variable US account for the differences

shown in table 2.2 -a systematically larger number of deals not including the US. The interaction

between US and DMMS controls for potential differences rooted on epidemiological profiles in the

US versus the rest of the world, but additionally, for those differences arising between the capabilities

of firms commercializing indications with high or low Medicare orientation in or outside the US

(Kyle, 2006).

The set of interactions between DMMS and the period indicators may capture differences

grounded on supply side factors (e.g., patterns of innovation imply a relative increase in the avail-

ability indications at different ends of the MMS distribution). Year fixed effects At control for the

effects of macroeconomic conditions described above and licensing stage it, fixed effects for the

varying availability of compounds at different stages. In all models, the main parameters of interest

are those associated with the coefficients for the triple interactions (oj) as they reflect, for each

time period, the increased number of Medicare-oriented licensing deals that include the US

This model falls short from a triple-diff specification as it does not contain interactions between

US and time period (or year) fixed effects, which may capture differences in the impacts of macroe-

conomic cycles for firms for US and ex-US firms. The reason behind this omission is that the number

of degrees of freedom per parameter significantly drops if including these interactions, causing the

maximum likelihood routine to enter non-convex zones. We nevertheless cluster standard errors

within DMMS/US/t cells to capture some of these effects. We also estimate linear models with the

same specification, both including and not including US/t interactions. In all cases and relevant

dimensions, results are qualitatively similar to the ones presented here.2 1

Results are presented in table 2.3. Coefficients of column 1 correspond to the full sample.

Parameters associated to the levels of DMMS and US are strongly significant and have the expected

signs. The coefficient for the interaction between DMMS and US is small and estimated imprecisely.

The negative and statistically significant coefficient associated to DMMSxPER 2 suggests that in

2004-2008 there was a relative decline in the number of Medicare-oriented deals not including the

US However, during this period, immediately following the passage of Part D, there was a relative

increase of such deals but which included the US, as reflected by the triple interaction o for that

same period. Indeed, this coefficient implies that during these years the average number of Medicare

oriented deals that included the US increased by an extra 68% relative to those that not include

20 The Poisson specification is not supported by the over-dispersion test. Only a small fraction of observations

(about 3%) are zeroes.
2 1These results are omitted here but available upon request.
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this territory.

As stated in the introduction, one important facet of this result is that the Part D-fueled surge

of US occurred before endogenous supply effects could have been manifested. Blume-Kohout and

Sood (2013) and Dranove et al. (2014) find that Part D spurred an increase in the number of

indications entered to clinical trial development. Both these studies find that these endogenous

supply effects manifested after 2006 and were most mostly visible after 2008. Due to the relatively

long development time frames, and according to the estimates presented by these studies, results

of column 1 suggest that the increase in licensing activity preceded the increased availability of

candidates being tested in clinical trials. Further evidence to this point is provided by the estimates

of column 2, which correspond to the model estimated on a shorter sample, 1998-2005. While

smaller in magnitude, the key parameter remains positive and strongly significant. When we re-

estimate the model on an even shorter sample (1998-2004), the effect remains robust and with a

similar size. 22

Parameter estimates presented in columns 3 and 4 further characterize the effects by narrowing

down the estimation samples according to the stage of development at licensing. The first contains

alliances for compounds in earlier stages of development (Discovery and Phase I clinical trials); the

second, those for compounds in later stages (Phase II and III). In both cases the coefficient for the

triple interaction for 2004-2008 is positive and estimated with high precision. Their comparison

suggests that the effect was stronger for late stage compounds, which is both consistent with the

fact that these face a higher conditional probability of reaching the market (hence their effective

exposure to the shock was higher) and that the more complex Phase II and Phase III trials are

those which may benefit the most from inter-firm collaboration (Danzon et al., 2005).

These estimates provide some insight regarding the nature of contracting frictions. If the most

prominent source of frictions preventing the timely occurrence of cooperation resided on factors

related to the process of search for a partner, such immediate reaction would be difficult to ratio-

nalize. In this case, we would expect US Medicare-oriented alliance formation to unfold gradually

as the results of more intense search efforts translate into new alliances. Similarly, if frictions in

this industry were primarily rooted on the lack of well-defined intellectual property protection due

to pending patents (Gans et al., 2008), we would not expect a reaction among compounds in early

stages, as these are still pending for many compounds in these stages (Mossinghoff, 1999; Patrick,
2013). Yet, we observe an immediate effect that also includes early stage candidates. These results

seem more consistent with frictions related to the negotiation of agreements. In particular, we con-

jecture that the increase in expected demand for Medicare-oriented indications may have widened of

the bargaining core, making it easier for parties to reach "fair terms" and so consummate alliances.23

A related mechanism Areducing Medicare-oriented indication.s market size uncertainty and thus

increasing its certainty equivalenti may have also helped firms reach successful negotiations.

22 These results are available upon request.
23 Agrawal et al. (2014) present evidence that "agreeing to fair terms" is an important factor behind unsuccessful

alliance negotiations.
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Elasticity of Licensing to Market Size

Our approach to measuring a deal's overall shock exposure does not allow us to directly compute a

licensing-to-market size elasticity. However, a back-of-the-envelope estimate is available by consid-

ering the individual MMS scores of all indications traded by deals including the US in the period

between 2004 and 2008. To do this, we compute the average market size change (AMSC) of each

set of deals (DDMMS, for DMMS=0,1) licensed in the US as

AMSCDMMS = M1+ MMS - 1}.
DDMMS1 dEEDIS iE-d

Where d indexes deals and i indications, Id represents the set of indications licensed through

deal d, and I*DDMAsI denotes the cardinality of each set. This gives us AMSCO = 0.21 and

AMSC1 = 1.17, suggesting that the market size of deals associated to DMMS=1 deals increased

96% more than that of DMMS=0 deals as a result of the programs enactment. Given our estimate

above, this implies an elasticity of licensing to market size of 0.71.

Unbundling

Our theoretical framework shows that one potential consequence of a larger expected market size

is the unbundling of sub-technologies with higher exposure to the shock. In this section we provide

additional context and evidence for this effect. In particular, based on expression (2.3), we provide

evidence for the idea that the passage of Part D may have prompted contracting firms to single

out Medicare-oriented indications into narrower-scope licensing agreements. As suggested by the

model, we interpret this evidence as a sign of improved matching between firms, and thus, as the

source of a second layer of productivity gains enabled by larger market sizes.

Likely due to data constraints, the issue of optimal bundling of indications into licensing deals

remains notoriously understudied. As shown by our model, a primary factor favoring bundling is

transaction costs. Unbundling implies that a compound's indications will be licensed through a

larger number of deals, which require firms to incur in larger transaction costs in the form of effort

and time spent searching for partners and negotiating contract terms.

Anecdotal evidence suggests additional frictions may arise at the post-licensing stage, as inde-

pendent commercializers of the compound's different indications can interfere which each otherhs

development 24 or cannibalize sales. For example, a widely publicized dispute between Amgen and

Johnson & Johnson 25 arose because both companies were simultaneously commercializing differ-

ent indications (under different packages and names) of recombinant human erythropoietin (EPO).

Amgen, who had the rights for kidney dialysis, alleged that Johnson & Johnson (with rights for

anemia, cancer, AIDS and surgery) marketed its product to induce off-label prescription to canni-

2 4These situations may arise because one company's clinical trials for the development of one of the compoundAs

indications may produce adverse toxicity data, forcing companies developing other indications to respond with coun-

tervailing evidence or by changing the product label.
2 5 See "Amgen Wins One Against Johnson & Johnson," The New York Times, December 19th, 1998.
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balize dialysis patients. On its part, Johnson & Johnson alleged that Amgen was slowing down the

approval process for the indications to which it had rights.

On the other hand, unbundling indications into independent agreements may be beneficial

because it enables a better matching between each indication and the capabilities of the partnering

company. Longman (2006) makes this rationale explicit writing that "[...] no company is equally

good at developing or selling these molecules in all the different indications." In our data, the

potential value of improved matching provided by unbundling is suggested by the observation that

in the 1998-2003 period, over 60% of US licensing deals including two or more indications spanned

multiple therapeutic areas.

Figure 2-5 illustrates our key empirical insight in this regard. This figure takes the total number

of indications licensed in the US each year, and dissects it in terms of the total number of licensed

indications by each contract. In particular, it presents the share of indications licensed each year by

contracts granting rights for a total of I indications, with I = 1 (solid line), 2+ (dashed line). Panel

A focuses on Medicare-oriented indications, while panel B on non Medicare-oriented ones. In the

former, there is a marked spike in the share of single indication contracts following the program's

passage. This pattern is absent from panel B. This suggests that indications with higher shock

exposure were more often unbundled than those with lower exposure.

Table 2.4 crystalizes these insights by presenting results from probit models that estimate the

probability of an indication being licensed by each type of contract. We first estimate an ordered

probit model (column 1) with a dependent variable I = 1, 2, 3+, and a probit model (column 2)

with a dependent variable the equals one if I > 1 (and zero otherwise). Both models use the same

triple-diff specification employed before, except for that in this case each observation represents

an indication.26 In this context, negative-signed coefficients for the interactions of DMMS, US

and the time period indicators reflect US commercialization rights to Medicare-oriented indications

were more likely to be granted through licensing contracts extending rights for a smaller set of

indications.

Both sets of results point to a relative increase in the unbundling of Medicare-oriented indica-

tions licensed for the US during the time period following the passage of Part D. In particular, the

estimates of column 2 suggest that, all else constant, the probability that these indications were

licensed through single-indication deals increased by 0.14 in 2004-2008 and by 0.13 in 2009-2014.

According to the standard errors, however, the latter increase is not statistically significant.

2.7 Other sources of cooperation gains

Our rhetoric and theoretical model justify the post-2003 increase in Medicare-oriented deals in the

US based on the realization innovative productivity gains. However, as described in section 2.2,
gains from cooperation can also stem from the avoidance of duplicative investment in complemen-

tary assets (such as distribution channels and brand equity), or the preservation of downstream

2 6Therefore, in this case DMMS=1 if an indication is Medicare-oriented.
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market power. Here we provide some evidence that counters the idea of either these sources being

the primary driver of the documented cooperation surge.

Market power

To analyze the role of downstream market power preservation we invoke the framework of Gans

et al. (2002), who conceptualize the incidence of cooperation as a function of the relative returns

of competition to those of cooperation. Since in more concentrated markets new competitors

will have a larger negative impact on incumbent profits, the relative returns to cooperation are

expected to increase with market concentration. Thus, if preventing the erosion of market profits

were a primary factor behind the licensing surge in Medicare-oriented markets, we would expect to

see a more pronounced effect among more concentrated markets. That is, this view conceptualizes

the surge in licensing-based cooperation as method to pre-empt competitive entry in those markets

whose size was magnified by the Part D shock.

To test this idea we construct a measure of market concentration from the 2003 MEPS prescrip-

tion drug consumption data. In addition to the purported use by each patient (as indicated by ICD9

codes), these data provides us with the National Drug Code associated to each consumed drug. The

structure of this code allows us to retrieve an index for the labeler (distributing firm) of each drug.

With this, we can compute the share of sales associated to each of these firms within each market,

as defined by ICD9 3-digit categories. Using these, we construct the Herfindahl-Hirschman Index

(HHI) of market concentration. 27 The resulting HHI variable has a low correlation to MMS (about

0.07 and not statistically significant) and does not exhibit significant correlations with baseline

demand (as revealed by an analysis analogous to that of figure 3b).

Since we cannot compute a concentration measure for ex-US markets, we are unable to specify

a regression model that exploits differences in concentration across markets. For this reason, our

test is based on replicating our main estimates of table 2.3 (column 1) on a sample that does not

include candidates licensed in the US that target the most concentrated markets. If pre-emptive

motives were at the hart of the cooperation surge, then estimates from this sample should point to

a significantly weaker increase in Medicare-oriented licensing following the program's enactment.

Results from columns 1 and 2 of table 2.7 suggest otherwise.

Columns 1 and 2 respectively present the estimates obtained when we remove the 25% and 50%

of US deals with higher associated HHI values.28 As expected, the triple interaction parameters

associated to US Medicare-oriented licensing in 2004-2008 are smaller than the 0.52 value of table

2.3 (column 1), but the differences are relatively small and the inferred Medicare-oriented licensing

surge remains strong among the set of deals targeting the markets with lower levels of concentration.

2 7 Recall that ICD9 3-digit categories represent the highest granularity at which we observe expenditure. Hence this

measure represents the tightest market definition we can implement using the MEPS data. As stated in a previous

footnote, the average number of conditions by ICD9 category is 2.6 in our data.
2 8To compute a deal's overall HHI we average all included indications' individual HHI values. When we instead

remove the 25% and 50% indications licensed in the US with higher HHI values, results are qualitatively similar.
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It should be noted that these results couldn't be used to argue that the preservation of down-

stream market power is an unimportant determinant of the incidence of cooperation. Gains derived

from securing market power may large enough to warrant a high rate of cooperation among more

concentrated markets even before the downstream demand shock came into place. If this were the

case, there would be few infra-marginal deals in concentrated markets to sustain the large docu-

mented Medicare-oriented cooperation surge. Nevertheless, we take the evidence presented here as

suggesting that the increased licensing activity was not articulated by pre-emptive motives.

Complementary assets

To assess the role of complementary assets as a driver for the documented licensing surge we

implement a test that adapts the logic used above. It is based on a measure constructed with the

goal of capturing the variation in the importance of complementary assets as they relate to market

distribution. We re-estimate our main specification on samples from which we remove the US deals

associated to larger cooperation gains as given by this metric. Our results suggest that the Part

D-fueled surge in cooperation did not focus on those deals thatUS could benefit the most from

avoiding duplicative investment on complementary assets.

Following Levine (2009), we develop a variable that counts the number of actively practicing

physicians in the US that are likely to prescribe treatments for a given indication. We label

this variable as the "number of prescribing physicians" (NPP). We exploit this type of variation

because NPP can be thought proxy for the total expenditure in detailing (personal selling through

sales representatives). This type of promotional expenditure represents the largest cost component

among direct-to-physician promotional activities (Wittink, 2002),29 which in turn represent the

largest cost component of the overall promotional costs associated to the commercialization of new

drugs (Donohue et al., 2007).

If commercialized in absence of cooperation, upstream innovators developing compounds as-

sociated to high-NPP indications will require larger investments in order to assemble and train

representatives. Furthermore, the promotional activities carried out by these sales forces will not

enjoy the lower average detailing costs derived from scope economies (i.e., promotion of multiple

compounds in a single visit) or the benefits of branded reputation germane to established commer-

cializers. It follows that gains of cooperation are higher for deals including indications with larger

NPP values. If this type of gains were the primary reason behind the Medicare-oriented licensing

surge, removing high-NPP US deals from the sample should identify a significantly milder increase

in Medicare-oriented licensing.

To construct NPP we obtained data on the number of actively practicing physicians by specialty

from the Association of American Medical Colleges "Physician Specialty Data Book" (Erikson et al.,
2012). This source lists 36 specialties with their respective number of physicians actively providing

patient care in the US (as of 2012). We then asked an expert to generate a mapping between targeted

conditions and physician specialties that are likely to prescribe treatments for each of them in the

2 9 See Manchanda and Honka (2005) for an excellent review on the extent, role of and attitudes towards detailing.
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US 30 Using this indication/specialty mapping, we identified the set of unique specialties associated

to each indication and generated NPP for each of these by summing the numbers of prescribing

physicians among specialties within the set. The correlation between NPP and MMS (at the

indication level) is about 0.02 and not statistically significant.

Estimates from columns 3 and 4 in table 2.7 are inconsistent with the hypothesis of a licensing

surge driven by the avoidance of this type of duplicative investment. 3 1 Much to the contrary, the

key triple interaction parameters for the period immediately following the program's enactment are

respectively 0.62 and 0.61, larger than that obtained from the full sample (0.52). With the same

caveat issued before (i.e., these results should not be taken to argue that complementary assets

related to market distribution are an unimportant source of cooperation gains), and together with

our results pertaining the role of market power, these results reinforce the idea that cooperation

gains based stemming from superior innovative productivity may have been the key articulating

force behind the documented licensing surge.

2.8 Robustness checks

Contract terminations and adverse selection

As we mentioned in section 2.2, the potential aggravation of an adverse selection problem could

undermine the realization of productivity gains derived from cooperation. This concern is partic-

ularly accentuated given the immediacy of the rise in Medicare-oriented licensing since ione may

presumei commercializers' drive to secure market presence in Medicare-oriented markets may have

lead to rushed negotiations at the expense of rigorous due diligence, therefore leading to poorer

selection standards and/or contract design. Here we provide some evidence that discredits this

hypothesis.

To do so, we turn to contract termination data. Cortellis reports the status of each deal (i.e.,

active/completed or terminated) at the time the data was downloaded, as well as the termination

dates for contracts encountering this outcome. It is well known that one leading reason for contract

terminations is the observation of poor clinical testing outcomes. Thus, one repercussion of a

potential strengthening of the adverse selection problem could be an increase in contract termination

rates among deals including Medicare-oriented indications.32

30 The mean number of physicians per specialty is about 17,000. The average number of specialties per indication

is 3.2.
3 1As before, these are obtained by respectively removing 25% and 50% of deals with higher NPP. A deal's overall

NPP value is computed by summing the number of prescribing physicians across the set of unique specialties across

all included indications (i.e., no double counting of specialties). Similar results are obtained by summing indications'

individual NPP values (i.e., allowing double counting) and by instead removing the 25% and 50% of indications with

higher NPP values.

32A second reason for terminations is the unilateral exercise of a termination clause (Lerner and Malmendier,

2010), typically triggered by updated information regarding the candidate's economic prospects. However, since

Part D improved market size expectations for Medicare-oriented indications, this factor is hard may partly offset the

observed effect. With the data at hand, we are unable to tease these two effects apart.
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Rates of terminations within 1, 2, 3, and 4 years of the contract signing date are reported in

table 2.5 for contracts including the US and signed in 1998-2010.33 Termination rates are increasing

in time frame used to measure them, reflecting the gradual arrival of new information, but also the

possibility that our data provider records terminations with a lag. Comparing rates across time

frames, it is observed that roughly half of 4-year terminations unfold over the first two years.

In order to assess whether Part D-fueled deals were associated with higher termination rates

we estimate probit models (at the licensing deal level) using as dependent variable an indicator

that is activated if a contract is terminated within each time frame. For conciseness, we focus on

terminations observed within 2 and 4 years. As before, we use triple difference specifications that

include year and licensing stage fixed effects and clusters standard errors within DMMS/t cells.

Results are presented in table 2.6.

A positive coefficient for the triple interacted variables would suggest that Part D-fueled deals

were more likely to be terminated. While positive, estimated coefficients are small (particularly

for the 4-year timeframe) and estimated imprecisely. Based on this evidence, we are reluctant to

support the idea that a deepening of a potential adverse selection problem eroded the productivity

gains associated to the surge in cooperation.

Alternative exposure measurements

To assess the robustness of our results to the measurement of exposure to the shock we consider two

alternative proxies. Before describing their computation, recall that the baseline MMS measure is

computed as the percentage of drug prescriptions within each therapeutic category that were issued

to individuals enrolled in Medicare. The first alternative measure (MMSEXP) is computed as the

share of prescription drug expenditure paid for by Medicare within each 3-digit ICD9 therapeutic

category; the second (MMSPAT), as the percentage of patients purchasing medications within

each category during each year that were enrolled in Medicare. Both measures are computed using

2003 MEPS prescription drug consumption and insurance data, and code an individual as enrolled

in Medicare if he/she was enrolled during at least one month during that year. 34 All measures are

significantly and highly correlated (i.e., correlations of 0.7 or more)

Columns 1-3 of table 2.8 reproduce our main result of Table 3 (column 1) using all each of

these measures. For ease of comparison, we also reproduce the original results in column 1. Results

are very similar across versions of the MMS variable, particularly in what regards the coefficient

associated to the triple interaction for period 2004-2008.

Non-prescribability

The coverage benefits granted by Part D to Medicare enrollees apply to prescription drug expendi-

tures. However, upon regulatory approval, many biotech compounds are live organisms, typically

administered intravenously in in-patient settings. This type of drug expenditure is covered by a

3 3 We restrict the sample to 2010 in order to compute 4-year terminations for all indications in the sample.
3Over 90% of individuals coded as enrollees in this way were enrolled full year.
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separate insurance program (Medicare Part B), which implies that our estimates may suffer from

an attenuation bias.

Our data does not allow us to ascertain the planned route of administration for each compound.

Thus, in order to ascertain the magnitude of this bias we conduct two indirect checks. First, we

use the MEPS pharmacy type information, which reports the types of pharmacy providers from

which the person's prescribed medicines were purchased (drugstore, mail, HMO/clinic/hospital,

etc.). For each 3-digit ICD9 category we compute the percentage of prescriptions purchase in in-

patient settings (HMOs, clinics, hospitals) and correlate it with MMS. No significant correlation is

observed.

Secondly, we re-estimate our main specification without including alliances including cancer

indications, as in-patient administration is by and large more common among cancer treatments.

Results are presented by column 4 of table 2.8. As expected, the coefficient for the triple interaction

is slightly larger, but of overall similar magnitude.

Non-dichotomic shock exposure

Our last check pertains the dichotomic measurement of Medicare orientation. Here we employ an

alternative empirical strategy to show that our main result holds when we instead consider a more

continuous measure.

Using the baseline MMS niieasure, we define an deal's degree of Medicare orientation based on

the MMS quintile associated with the highest-MMS indication included in the deal. With this,

deals with the lowest exposure to the shock are those that only include indications in the lowest

quintile of the MMS distribution. Alliances with the second highest level of exposure include at

least one indication in the second quintile of the distribution but no indication in upper quintile,

and so on.

For each of these 5 levels of Medicare-orientation we create an independent subsample including

both deals including and not including the US among licensed territories, and estimate a diff-in-diff

model with the following specification

cs,t,s = al +a2 -US -DMMS + 0 -US. PER + + p++ s,t,sl
j=2,3

where q indexes each quintile and N~s~ts in analogous form to our analysis of section 2.6.

For each subsample, coefficients represent the differential licensing patterns for development and

commercialization including and not including the US territories. A Part D-fueled surge of US

licensing would be consistent with estimates for 2 that increase across subsamples associated to

progressively higher Medicare orientation.

Results (presented in table 2.9) are largely consistent with this idea. Starting from a small and

imprecisely estimated a2 parameter in the first quintile subsample, estimates become progressively

larger and more precise through the fourth quintile. For deals with in the fifth quintile, the effect

is slightly smaller than in the third and fourth quintiles. A possible explanation for this stems
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from the higher share of cancer targets in this subsample. Since these are more often administered

intravenously than other therapies, for the reasons explained in the previous section, the Part D

shock may have been less relevant in their case.

2.9 Concluding remarks

Based on the early insights of Schumpeter (1942) and Nordhaus (1969), the idea that a larger size

of the downstream consumer market may increase the rate of technological innovation has received

a considerable amount of attention by researchers. The underlying model in this stream of research

is based on the pull effect exerted by market size: larger potential rewards to commercialization

justify larger amounts of R&D investment, which in turn translate into an increased availability of

new technology products for consumers. As embodied by strictly positive estimates for the elasticity

of innovation to market size, numerous studies provide empirical evidence to back this effect. In

this paper we argue that, in addition to pulling new technologies into the market, larger consumer

markets may catalyze the development process of technologies in embryonic state, increasing the

probability that they will reach the market and/or do so in a shorter period of time.

Our argument has two parts. First, inter-firm cooperation aimed at the development and

commercialization of new technologies enhances productivity by pooling complementary capabili-

ties. Second, a larger market size increases the extent and match quality of cooperation because

it reduces the relative importance of transaction costs in Markets for Technology. By analyzing

the impacts of Medicare Part D on the international drug candidate licensing market, we provide

compelling evidence to the latter point. Although we cannot provide conclusive evidence for the

existence of productivity gains derived from cooperation, a "ruling-out of alternatives" strategy pro-

vides some reassurance. Research from the fields of Strategy, Organizations, and Health Economics

also supports the claim.

Our theoretical analysis shows that the impacts of Medicare Part D on drug candidate licensing

can only be rationalized if transaction costs are meaningfully large. This suggests that policies

encouraging the timely and properly-matched cooperation between upstream innovators and down-

stream commercializers could have a positive impact on overall innovative productivity. Our results

from the pharmaceutical industry suggest that one important friction may be encountered in the

negotiation room, as firms try to "agree to fair terms." To address these, as discussed by Agrawal

et al. (2014), governmental intervention could take the form of "low cost, timely and predictable

dispute resolution mechanisms, and insurance against certain types of risks."

A natural way to further this research agenda would be to decompose the aggregate surge in

cooperation into firm-level responses and outcomes. As suggested by the insights of Ceccagnoli et al.

(2010), Ceccagnoli and Jiang (2013), and Ceccagnoli et al. (2014), organizational capabilities and

the nature and extent of downstream firms' internal R&D may be associated to varying marginal

returns to cooperation, leading to heterogeneous licensing responses. Such analysis would be useful

in order to evaluate the extent to which cooperation gains were realized, as well as the implications
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for the industrial organization of the downstream markets.
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Figure 2-1: Bundled and unbundled licensing upon the shock arrival
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Figure 2-2: Kernel density of MMS scores for conditions targeted by indications in the data
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Figure 2-3: MMS and proxies for baseline demand
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The vertical axis displays the ranking (re-scaled to the unitary interval) of each proxy within the total sample.
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I
Figure 2-4: Number of licensing contracts by degree of Medicare orientation (1998-2014)

Panel A: U.S. included Panel B: U.S. not included
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Figure 2-5: Medicare orientation and number of licensed indications (contracts including the US)

A. Medicare-oriented indications
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indications with MMS scores equal or lower than the median.. The vertical axis corresponds to the percentage of

indications (of each Medicare orientation level) that were alliances for the development and commercialization of a

total of 1, and 2+ indications.
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Table 2.1: Commercialization probabilities, gains, and the number of new technology products
(given di, d2 ).

(1) (2) (3) (4)
Probability of Expected Expected number of

commercialization total gains new technology products
X1 X2

Panel A: Bundled licensing only

No licensing p p p(d1 + d2 ) 2p

Bundled licensing p + 6 p + 6 (p + 6)(d1 + d 2 ) - 2(p + 6)

Panel B: Bundled and unbundled licensing

No licensing p p p(d1 + d2 ) 2p

Bundled licensing p+6+0 p+6-0$ (p +6)(d, + d2 ) 2(p + 6)

Ad > d2) +O(d1 - d2) - K

Bundled licensing p+6-0# p+6 +0 (p + 6)(di + d2) 2(p + 6)

(di < d2 ) +#(d 2 - di) - K

Unbundled licensing p + 6 + p + 6 + 0 (p + 6 + )(di + d2 ) - K 2(p + 6 + 0)
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Table 2.2: Main descriptive statistics.

(1) (2) (3) (4)
Compounds Indications

US included US not included US included US not included
Panel A: Distribution across time periods

1998-2003 69.2 162.7 116.2 276.8
2004-2008 112.2 170.0 180.6 250.8
2009-2014 79.3 209.2 114.7 289.8

Panel B: Distribution across development stages
Discovery 39.6 104.6 59.1 146.2

Phase I 13.1 25.5 19.4 38.0
Phase II 18.6 28.0 32.5 49.1
Phase III 10.2 15.8 17.1 26.8
Pre-registered 4.2 7.4 6.9 13.7

Total 1,452 3,081 2,288 4,654

The development stage at licensing corresponds to the most advanced development stage across the set of licensed

indications at the time the contract takes place. For a subset of licensed indications (1.3% of the total) Cortellis

was not able to elucidate the specific development stage and thus reported it as Aclinical.A We treat them as Phase I

indications. In our analysis, results do not qualitatively change when we drop the contracts through which they were

licensed.
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Table 2.3: Main results.

(1) (2) (3) (4)

DMMS 0.76*** 0.75*** 0.66*** 0.84***
(0.06) (0.06) (0.06) (0.12)

US -0.78*** -0.74*** -0.96*** -0.42***
(0.07) (0.10) (0.08) (0.10)

USxDMMS -0.05 -0.1 -0.1 -0.22
(0.09) (0.11) (0.09) (0.14)

DMMSxPER04_08 -0.20** -0.04 -0.09 -0.04
(0.08) (0.12) (0.09) (0.18)

DMMSxPER09-14 -0.12 -0.03 -0.12
(0.09) (0.11) (0.14)

USxDMMSxPER04_08 0.52*** 0.43*** 0.44*** 0.56***
(0.07) (0.08) (0.10) (0.12)

USxDMMSxPER09-14 -0.05 -0.07 -0.21
(0.12) (0.14) (0.21)

Sample All 1998-2005 Licensed at Licensed at
discovery phase II
or phase I or phase III

N 340 160 136 136

Negative binomial estimates using as dependent variable the number of licensing agreements, aggregated at the
DMMS/US/year/licensing stage level. DMMS is an indicator activated if the licensing contract includes at least one
indication with above-median MMS score. All models include year and licensing stage fixed effects. Standard errors
(clustered within DMMS/US/year cells) are presented in parentheses. Legend: *p < 0.1, **p < 0.05, ***p < 0.01.
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Table 2.4: Unbundling of indications.

(1) (2)
Model: Ordered Probit Probit
Dependent variable: I = 1, 2,3+ 1 if I > 1, 0 otherwise

DMMS -0.22*** -0.23***
(0.07) (0.06)

US -0.14 -0.17
(0.14) (0.13)

USxDMMS 0.18 0.22
(0.16) (0.14)

DMMS x PER04_08 0.08 0.09
(0.09) (0.09)

DMMSxPER09-14 0.12 0.14
(0.10) (0.09)

USxDMMSxPER04_08 -0.33* -0.38**
(0.19) (0.17)

US x DMMSx PER09_14 -0.26 -0.33
(0.23) (0.22)

N 6,942 6,942

Models estimated at the licensed indication level. DMMS is an indicator activated if the indication has above-

median MMS score. All models include year and licensing stage fixed effects, as well as interactions between the

indicators for time periods and the inclusion of the US among licensed territories. Standard errors (clustered within

DMMS/US/year cells) are presented in parentheses. Legend: *p < 0.1, **p < 0.05, ***p < 0.01.
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Table 2.5: Termination rates for contracts including the US.

(1) (2) (3) (4)
Year of Years from contract signing
contract 1 2 3 4
1998 0.04 0.08 0.10 0.12
1999 0.02 0.07 0.12 0.23
2000 0.01 0.08 0.16 0.21
2001 0.02 0.07 0.14 0.17
2002 0.02 0.07 0.09 0.12
2003 0.00 0.04 0.06 0.08
2004 0.01 0.02 0.05 0.07
2005 0.00 0.03 0.04 0.08
2006 0.00 0.02 0.03 0.04
2007 0.01 0.04 0.05 0.07
2008 0.00 0.01 0.02 0.06
2009 0.01 0.02 0.02 0.04
2010 0.00 0.01 0.01 0.01

92



Table 2.6: Termination rates and Medicare Orientation

(1) (2)
Observed within: 2 years 4 years

DMMS 0.09 0.09
(0.07) (0.07)

US 0.43*** 0.33***
(0.10) (0.08)

USxDMMS -0.16 -0.02
(0.12) (0.13)

DMMSxPER04_08 -0.09 -0.11
(0.22) (0.14)

DMMSxPER09_14 -0.18 0.06
(0.15) (0.12)

USxDMMSxPER04-08 0.25 0.06
(0.27) (0.21)

USxDMMSxPER09_14 0.08 -0.13
(0.22) (0.16)

N 3,445 3,445

Probit estimates using as dependent variable an indicator activated if the licensing contract is terminated within each

time frame from the contract signing date. Estimated at the licensing contract level. DMMS is an indicator activated

if the licensing contract includes at least one indication with above-median MMS score. All models include year and

licensing stage fixed effects, as well as interactions between the indicators for time periods and the inclusion of the

US among licensed territories. Standard errors (clustered within DMMS/US/year cells) are presented in parentheses.

Legend: *p < 0.1, **p < 0.05, ***p < 0.01.
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Table 2.7: Market power and complementary assets.

(1) (2) (3) (4)

DMMS 0.73*** 0.69*** 0.73*** 0.72***
(0.05) (0.05) (0.06) (0.06)

US -1.15*** -1.77*** -1.18*** -1.45***
(0.07) (0.09) (0.08) (0.10)

USxDMMS -0.13* -0.05 -0.14* -0.09
(0.08) (0.07) (0.08) (0.08)

DMMSxPER04-08 -0.08 -0.08 -0.10 -0.10
(0.08) (0.07) (0.09) (0.08)

DMMSxPERO9_14 0.12 0.33*** 0.00 -0.09
(0.09) (0.10) (0.10) (0.12)

USxDMMSxPER04-08 0.50*** 0.46*** 0.62*** 0.61***
(0.07) (0.06) (0.07) (0.08)

USxDMMSxPER09-14 -0.09 -0.04 0.12 0.13
(0.13) (0.10) (0.13) (0.13)

Deals removed 25% highest 50% highest 25% highest 50% highest
from full sample HHI HHI NPP NPP

N 340 340 340 340

Negative binomial estimates using as dependent variable the number of licensing agreements, aggregated at the

DMMS/US/year/licensing stage level. DMMS is an indicator activated if the licensing contract includes at least one

indication with above-median MMS score, implemented the median of each measurefis distribution. The construction

of HHI and NPP is described in the text. All models include year and licensing stage fixed effects. Standard errors

(clustered within DMMS/US/year cells) are presented in parentheses. Legend: *p < 0.1, **p < 0.05, ***p < 0.01.
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Table 2.8: Robustness (shock exposure and non-prescribability).

(1) (2) (3) (4)

DMMS 0.76*** 1.30*** 0.75*** 0.42***
(0.06) (0.08) (0.05) (0.07)

US -0.78*** -0.85*** -0.76*** -0.75***
(0.07) (0.08) (0.07) (0.07)

USxDMMS -0.05 0.03 -0.10 -0.09
(0.09) (0.09) (0.09) (0.11)

DMMSxPER04_08 -0.20** -0.41*** -0.19** -0.30***
(0.08) (0.09) (0.08) (0.09)

DMMSxPER09-14 -0.12 -0.32*** -0.14* -0.21*
(0.09) (0.10) (0.08) (0.11)

USxDMMSxPER04-08 0.52*** 0.53*** 0.53*** 0.66***
(0.07) (0.06) (0.07) (0.09)

USxDMMSxPER09_14 -0.05 -0.05 0.00 0.03
(0.12) (0.11) (0.12) (0.16)

Medicare orientation meassure Baseline MMSEXP MMSPAT Baseline

Deals removed from None None None Deals including

the full sample cancer indications

N 340 340 340 340

Negative binomial estimates using as dependent variable the number of licensing agreements, aggregated at the

DMMS/US/year/licensing stage level. DMMS is an indicator activated if the licensing contract includes at least

one indication with above-median MMS score, implemented the median of each measurefis distribution. All models

include year and licensing stage fixed effects. Standard errors (clustered within DMMS/US/year cells) are presented

in parentheses. Legend: *p < 0.1, **p < 0.05, ***p < 0.01.
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Table 2.9: Robustness (dichotomic exposure).

(1) (2) (3) (4) (5)

US -0.86*** -0.48** -0.91*** -0.80*** -0.87***
(0.13) (0.22) (0.09) (0.11) (0.09)

USxPER04_08 0.21 0.40* 0.51*** 0.52*** 0.44***
(0.18) (0.23) (0.12) (0.15) (0.11)

US x PER09_14 -0.22 -0.29 -0.01 -0.05 -0.16
(0.20) (0.30) (0.14) (0.21) (0.18)

Quintile of indication 1"t 2 nd 3 rd 4 th 5 th

with highest MMS

N 170 170 170 170 170

Negative binomial estimates using as dependent variable the number of licensing agreements, aggregated at the
US/year/licensing stage level. All models include year and licensing stage fixed effects. Standard errors (clustered by
year) are presented in parentheses. Legend: *p < 0.1, **p < 0.05, ***p < 0.01.
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Chapter 3

Regional Impacts of New Medical

School Entries on the Supply of

Physicians

3.1 Introduction

Do increases in the supply of physicians lead to changes in health expenditures and patientsA

health outcomes? This question relates to the controversial supplier-inducement hypothesis as an

explanation for the increase in health expenditure (Cromwell and Mitchell, 1986; Evans Robert,

1974; McGuire et al., 1988; Newhouse, 1992; Rice, 1983). Earlier empirical studies used cross-

national comparisons and took the supply of physicians as exogenous. Countries with more doctors

had lower health expenditure, but this result is very sensitive to the specification. In contrast, a

more robust result is that the number of doctors increased health expenditure in fee-for-service

reimbursement systems.

As a first step to investigating the effects of the supply of physicians on the quality and ef-

fectiveness of medical services, this study exploits regional variations in the supply of physicians

resulting from the large expansion of medical schools in the US during 1960-1980. Due to the lack

of data on health expenditures and other second stage outcomes dating back to before the 1980s,

this chapter focuses on uncovering and understanding the first stage, i.e., the differential effects of

medical schools on the supply of physician across geographical areas.

Previous studies, such as Fox and Richards Jr (1977), have shown large geographical variation in

the supply of physicians in the US. There have also been studies on what determines the geographical

distribution of physicians. Standard location theory has been used to predict and explain choices of

practice location by health professionals (Newhouse et al., 1982a,b; Rosenthal et al., 2005). They

incorporate location preferences into utility maximization and assume that a number of factors affect

the relative attractiveness of a certain location. Such factors vary across studies, and often include

income, quality of leisure, distance to central cities and workload. As Dussault and Franceschini
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(2006) point out, one implication of such models is that the distribution of health professionals

depends on amenities as well as demand.

Intuitively, we expect medical school entries to have an impact on the geographical distribution

of physicians and we expect the impact to be larger on physician supply in areas nearby. First of

all, expansion of medical schools brought in new research facilities and new residency positions, and

therefore had an immedicate and local effect in the region hosting the new medical school upon

the entry. Second, in the framework of location theory, entry of a new medical school changes

physicians' preference for working near vs. further away. Being closer to a teaching and research

facility is an amenity that makes a location more attractive. Being closer to other physicians and

health workers is another amenity, which, however, can work in both directions - physicians may

prefer working closer to peers for reasons including human capital spillovers, but they may also

prefer to work in areas with fewer competitors. Such effects took place upon the entry of a medical

school and could have affected areas nearby besides the county hosting the entrant. Finally, there

were smaller programs accompanying the expansion of medical schools, which are described in

Section 3. Such programs often offered financial support to medical students in return for service

in rural areas. Such programs could have resulted in faster growth in physicians in rural parts near

medical schools.

Since new medical schools were not randomly located, I adopt a difference-in-difference strategy

and try to detect breaks in any pre-existing differences across regions in the trend of physician

supply around the time of new medical school entries. The identifying assumption is that absent

the medical school expansion, any pre-existing differences would have continued on the same trends.

I use the regional variation in the proximity to new medical schools and estimate the effect of a

new medical school on physician supply in nearby areas. I first look at the effect in seven years to

capture both the immediate and lagged responses. Then I investigate how such regional impacts of

a new entry evolve over time (over 20 years), and also conduct a falsification test which confirms

that the medical schools did not have an impact on physician supply in a 20-year pre-period.

Two event studies show the proximity to new entries to be linked with faster growth in county-

level supply of physicians. Among five states which never had a medical school before 1967, two

that opened a first medical school in 1967 experienced faster growth in physician levels thereafter.

Among counties more than 300 miles from any medical school in 1960, those witnessing entries

of new medical schools within 100 miles experienced faster growth in physician supply after the

entries.

Using difference-in-difference regressions, I find that a new medical school increased physician

supply within that county by about 500 after seven years, relative to other counties. This was more

than 3 times the sample average. As for the number of physicians per 100,000 people, the increase

was around 100 and above the sample average. Using an alternative geographic unit for analysis, I

find that a new medical school increased physician supply by around 100 in counties within 50 miles,
relative to counties farther away, and this increase is 2/3 of the sample average. Considering the

number of physicians per 100,000 people, the increase was around 20 and about ACE of the sample
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average. These estimates suggest a strong positive regional effect on the supply of physicians. The

regional estimates are smaller than the local (specific to county) effects as expected.

I also investigate how such regional impacts evolved over time. I find that a new medical school

had similar impacts in the year of entry and in the next 20 years, which indicates that most of the

impacts could be attributed to the immediate responses. The new job openings and new facilities

brought by the new medical schools, and the attractiveness of working closer to a teaching and

research facilities and peers are the main reasons why physician supply grew faster in areas closer

to the newly established medical school, as opposed to the correlated location choices for education

and professional practice of medical students. I find new medical schools to have no effect on

the physician supply in most pre-entry years, which supports the hypothesis that locations of new

medical schools were not correlated with other underlying determinants of physician supply.

This study is devoted to uncovering and understanding the differential effects of medical schools

on the supply of physician across geographical units, as opposed to estimating the aggregate effects.

Caution should be taken in interpreting the results as the overall effects of medical school expansion

i it is plausible physician stock grew in all areas after the expansion, though the increase differed

across areas. Therefore, my analysis probably underestimates the full impact of medical school

expansion on the supply of physicians, but this does not harm the effectiveness and relevance of my

analysis in terms of understanding the impact of the medical school expansion on the geographical

variation of physicians.

The remainder of this paper is organized as follows. Section 3.2 describes the data. Section

3.3 introduces the institutional background and presents time-series evidence of the correlation

between medical school expansion and growth in physician supply. Section 3.4 illustrates two event

studies, which illustrate the regional impacts of medical schools. Section 3.5 discusses the empirical

strategies motivated by previous work and the event study results. Section 3.6 reports estimation

results, robustness checks and falsification checks. Section 3.7 concludes the study.

3.2 Institutional background

Due to publicly criticized shortage of physicians, there was a big federal push and authorized funding

for new medical schools during 1960-1980. In the 1940s, the public began to demand a larger supply

of physicians for several reasons - shortage of physicians, especially in rural and underserved areas,

growing health consciousness, and swelling college enrollments and thus more applicants. The issue

achieved center stage upon the publication of the Bane Report by the Surgeon GeneralAs Consultant

Group on Medical Education in 1959, which shocked the public by projecting a shortfall of 40, 000

physicians by 1975 and offered a blueprint for expanding existing medical schools and creating new

medical schools.

The immediate legislative consequence was the Health Professions Educational Assistance Act

of 1963, which funded establishment of new medical schools and larger enrollment size of existing

health programs, and also made federal loans available to medical students. This legislation was
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followed by revised acts in 1965 and more generous acts in 1968 and 1971 (Ludmerer, 1999).

There is no direct evidence about how the funding was distributed and how locations of new

medical schools were decided, and there are two important facts based on historical government

reports and media reports. First, the timing of these medical school constructions was relatively

concentrated, from 1960 to1980, and mostly from 1970 to 1980. Second, the federal government

decided which applicants got the funding for establishing new medical schools or expanding pre-

existing medical schools, and no evidence suggests any preference for location of new schools from

the federal governmentts side.

Some schools opened in areas where no medical schools ever existed, yet others located closer

to pre-existing medical schools. Figures 3-1, 3-2, and 3-3 illustrate the geographical distribution of

medical schools within the US in 1940, 1960 and 1980, respectively. Comparing these maps, there

was little change from 1940 to 1960, but there was noticeable development of new medical schools

from 1960 to 1980. As one example, between 1960 and 1980, Nevada and Arizona welcomed their

first medical schools, while CA and the east saw more medical schools entering in addition to their

previous medical schools. Figure 3-4 illustrates the geographical distribution of new medical schools

established between 1960 and 1980. We can see that they were more sparsely located in the west

and more spread out in the east.

3.3 Data

I use data on county-level number of active Non Federal M.D. physicians and population from the

2006 release of the Area Resource File by U.S. Department of Health and Human Services. Such

data is available on a decennial basis for earlier periods and on an annual basis for more recent

years. I use data from 1940, 1950, 1960, 1970, 1975, 1980, 1981-1986, 1988-1990, 1992-2000.

Census data from IPUMS provides an alternative source of data for physicians and population.

I use the 1940-2000 Census, combined with the sample weights, to compute county-level number of

physicians and population. The advantage about the census data is that it provides more potential

controls, such as the gender and age composition of the population, but the census data covers even

fewer years than the Area Resource File data and that the computed number of physicians contains

more measurement error. Worse still, its county code has not been matched with medical school

locations so can only be used for state-level regressions. Therefore, I report the main results using

the Area Resource File data, but also include results from IPUMS data as a robustness check. In

some of the analyses, I distinguish rural and urban areas, where the classification comes from the

earliest SEER Rural-Urban Continuum Codes, i.e., the Codes as of 1974.

Information about former and current medical schools in the US comes from online sources and

historical records such as of Medical Colleges of the United States and of foreign countries published

by the American Medical Association. This data includes information on the year of establishment

and year of exit for most medical schools that ever existed in the US. Unfortunately, I have no

information on the size of each medical school, so I can only use the establishment of new medical
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schools, but not the expansion in sizes of pre-existing medical schools as my source of variation.

Among all these medical schools, I exclude those not existing during my period of study (exiting

before 1930), those not recognized by the medical society, those that were forced to close due to

fraud, and those that only produced one class of graduates. I also dropped a few schools which no

longer exist and whose entering or exiting years are unknown. After these sample restrictions, we

are left with 173 medical schools existing after 1930. Out of these 173 medical schools, 170 are still

operating, 96 were established before 1960 and 47 were established between 1960 and 1980.

Federal legislation had an impact on both the number of medical schools and the number of

graduates. Figure 3-5, from ?, shows the supply of national medical school graduates increased

slowly during 1961-1970, sped up during the 1970s, slowed down in the early 1980s and stabilized

eventually. Figure 3-6 plots the time series trend for medical schools and physician stock (using

Area Resource File data), both showing a pattern of sharp increase between 1960 and 1980 and

stabilization afterward. There seems to be a lag in the growth of physician supply in response to

the expansion of medical schools. The number of medical schools increased drastically from 1960

to 1980 and stabilized after that, while the number of physicians increased slightly 1960-1970, more

abruptly after 1970 and stabilized by 2000.

Notably, the Health Professions Educational Assistance Act of 1976 claimed there was no longer

a shortage in the total supply of physicians in the United States, but geographical and specialty

maldistribution- Anot enough doctors in rural and inner-city areas, and there is a continuing decline

in the number of doctors practicing primary care.A The Act extended the National Health Service

Corps (NHSC) program, which aimed at recruiting and placing health professionals in critical

shortage areas. Scholarships were provided for students who agreed to serve in such areas on

completion of their education. The size of the project was small but it was projected to expand

fast. Such program designs aimed at increasing supply of physicians and other health workers

in rural and underserved parts of the US and might have led to differential results across rural

(medically underserved) and urban areas in the effects of medical school expansion, however, as

discussed in Section 3.6.4, I have not detested this in the data.

3.4 Identifying the Impact of Medical School Expansion: Exploit-

ing Geographical Variation of New Medical Schools

Inspired by Figures 3-1, 3-2, 3-3, and 3-4, I conduct two event studies below to investigate the

relation between the proximity to newly established medical schools and growth in physician supply.

These are not the most rigorous form of event studies, since I have less frequent data in earlier

years and around the entries.

Figures 3-7 and 3-8 report statistics for five states, Arizona, Nevada, Idano, Montana and

Wyoming, all of which never had any medical schools before 1967. Arizona and Nevada each wel-

comed their first medical school in 1967, while their close neighbors, Idaho, Montana and Wyoming,

have never had any medical schools till the present. Figure 3-7 shows the growth in number of physi-
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cians over time in these states around 1967. The dots are the data points from the available years,
with straight lines connecting these dots over time. The red vertical line marks the year 1967. The

lines stayed flat before 1967. There was an obvious upward trend for Arizona past 1967, a slight

upward trend for Nevada and almost flat trends for the three states that have never had a medical

school.

When I draw the same graph with the number of physicians per 100,000 people instead, the

pre-trends were different for these states i it was declining slightly for Arizona and Nevada before

1967, but increasing slightly for the other states. The number grew after 1967 for all states, while

the positive change in slope past 1967 was higher for Arizona. A simple difference-in-difference

interpretation of Figure 3-8 also suggests faster growth in physician supply in states after their first

medical school entries.

Since a state is probably too large a geographical unit to examine the regional or local impacts

of medical school entries, I conduct another event study on the county level. Define the control

group as the 108 counties more than 300 miles away from any medical school from 1960 to 1980,

and the treatment group as the 23 counties more than 300 miles away from any medical school

in 1960, but within 100 miles to the closest medical school in 1980. Within the treatment group,

define the year when the distance declined as t = 0. For the control group, take 1965 as t = 0. I

have tried other definitions and the patterns in Figures 3-9 and 3-10 are robust to choices of t = 0
for the control group.

Figures 3-9 and 3-10 present the growths in county-level physician supply for counties in both the

treatment and control group. The average level of physicians for the treatment counties is noisier,
since there are fewer counties in the treatment group than the control group. This, however, does

not prevent us from discovering obvious and interesting patterns. Physician supply (both number

and number per 100,000 individuals) in the control counties stayed almost flat over time. The

pre-entry trend for the treatment group was not much different from the control, but the supply of

physicians grew faster after t=0 and stayed at a higher level.

3.5 Empirical Strategy

Sharing the same nature as the event study exercise, I will compare changes in physician supply in

areas where new medical schools opened with other areas. An alternative strategy is to compare

changes in physician supply in regions closer to where a new medical school opened with regions

further away. The difference between the two is the choice of geographical unit.

In an ideal experiment, one would like to have the new medical schools randomly distributed.

There is no evidence that this really happened in reality. Areas differing in demographic and socio-

economic factors that might affect location choices of physicians (and health expenditures) might

also differed in the probability of establishing a new medical school. Therefore, I adopt a difference-

in-difference strategy is detect breaks in any pre-existing differences in the trend of physician supply

around the time of new medical school entries across regions. The identifying assumption is that
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absent medical school expansion, any pre-existing differences would have continued on the same

trends.

Finkelstein (2005) adopts a difference-in-difference approach in studying the aggregate effects of

health insurance, using the nationwide introduction of Medicare in 1965. Regional variation comes

from the fact that different fractions of elderly people had private health insurance across regions

before the introduction of Medicare. As the author points out, the empirical strategy is to compare

changes in outcomes in regions of the country where Medicare had a larger effect on the percentage

of the elderly with health insurance to areas where it had less of an effect. Duflo (2000) and Duflo

(2004) use a major shift in education policy in Indonesia to test the hypothesis that spending more

money on infrastructure can increase human capital and reduce poverty. The author evaluates the

effect of Indonesiais large school construction program by combining regional variation in program

intensity with differences across cohorts, and using a difference in difference estimator that controls

for (additive) systematic variation of education both across regions and across cohorts. My strategy

is similar to the abovementioned papers.

I first exploit the regional variation in the proximity to new medical school entries in estimating

Equation refeq:FS below. Following Duflo (2000)s falsification checks using cohorts, I also check

the pattern of effects over time (from 20 years into the past till 20 years into the future) in Equation

3.2 below.

3.5.1 Econometric Model

The basic regression equation for the impact of the medical school expansion on regional physician

supply is as follows.

Yit = aj + 6t + 0 * (Proximity to New Medical School)j,t_7 + -yXjt, (3.1)

This regression is either run on the state level, in which case j refers to state j, or on the county

level, in which case j refers to county j. The dependent variable is either the number of physicians

or the scaled number of physicians (i.e., per 100,000 people) in area j as of year t. aj are area

fixed effects. 6t are year fixed effects, which control for any nationwide trends in the growth of

physicians.

There are two alternative measures used as (Proximity to New Medical School),t-7, the number

of medical schools in area j as of year (t-7), or the number of medical schools within 50 miles of

county j as of year (t-7). Here we choose the seven-year lag of (ProximitytoNewMedicalSchool) to

capture both the immediate effects and the potential lagged effects which first took place when the

first class graduated. I will use (Proximity to New Medical School)j,t_, instead later to track the

effects over time to help interpret these effects separately, where the values of r are taken discretely

from -20 to 20.

Equation 3.1, although in the form of cumulative numbers, captures the impact of the medical

school expansion because first, only changes in the number of medical schools should have an effect
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on the supply of physicians by construction of this equation; and second, most of the variation

(change in number of medical schools) comes from the expansion period 1960-1980. To account

for potential serial correlation over time within areas, I allow for an arbitrary variance-covariance

matrix in the error structure within each area. To alleviate concerns that other factors might also

have been changing differentially across different areas over time, I also try to include a series of

time-varying state or county-level co-variates (Xjt). Constrained by the richness of historical data,
I control for population, gender composition and age distribution when using the census data and

control for population when using the Area Resource File Data.

To check the robustness of the results, I report in Section 3.6 the regression results using al-

ternative data sources (Area Resource File and IPUMS), using fewer or more years of the data

(1940-2000, or 1960-1990 to focus more narrowly on the expansion period), using alternative mea-

sures of physician supply(level or scaled level), and using alternative specifications (with or without

controls). The identification assumption, shared with other difference-in-difference estimations,
should not be taken for granted - the pattern of changes in physician supply could vary systemat-

ically across regions and over time. Consequently, I want to test implications of the identification

assumption, for example, if the parallel-trends hold, we should expect a zero coefficient if we run the

regression of current physician stock on medical schools 20 years into the future, because it should

not affect the present unless future medical school locations are correlated with other underlying

factors. Inspired by such an idea, I also estimate the following equation, which is a slight variant

of Equation 3.1.

Yjt = a3 + 6t + 3 * (Proximity to New Medical School)j,t-, + 'yXjt, (3.2)

Here the values of r are taken discretely from -20 to 20, where -r = 0, 1, ... , 20 are used to check

how the impacts of medical school expansion changed over time, while 'r = -20, -19, ... , -1 serve

as Placebo tests. I plot the coefficients 0, for T ranging from -20 to 20 in Section 3.6.4.

It is important to highlight several limitations of this research strategy and its implementation,
stated below and some are discussed again in combination with regression results in Section 3.6.

First, availability of data restricts my analysis. For example, my strategy does not capture the

size increase of pre-existing medical schools, but only the establishment of new medical schools.

Furthermore, physician data for earlier years (1940-1980) is available on a very infrequent basis

(every 10 years or 5 years), so we have a relatively small number of observations compared with

the number of controls (FE for each county and age distributions, for example).

Second, I want to re-emphasize that this study is intended as the first stage for examining the

effect of physician supply on health expenditures, instead of an attempt to estimate the full effects

of medical school expansion on physician supply. It is plausible physician stock grew in all areas

after the expansion, though the increase differed across areas. Therefore, my analysis probably

underestimates the full impact of medical school expansion on the supply of physicians, but this

does not harm the effectiveness and relevance of my exercise in providing a valid first stage for the

geographical variation of physicians.
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Third, it is not clear ex ante what makes the right geographical unit to use for measuring the

regional impacts of medical school expansion. As Pong and Pitblado (2001) point out, geopolitical

or administrative areas, such as counties and states, are artificial and not necessarily the most

appropriate units of analysis. States are usually too large and tend to hide regional variations,

while counties are usually too small to capture regional spillovers. Neither a state nor county might

be the right geographical division to run the regressions on. There is much discretion in the choice,

but I will describe results using three different units h state, county and counties within 50 miles

to new medical schools, and discuss my preference. Related to the second point, this does not

harm the effectiveness of the first-stage exercise as long as we detect differential regional effects

on the supply of physicians caused by geographical variation of medical schools unrelated to other

time-varying factors.

Finally, one would probably suspect that locations of new medical schools were endogenous, and

my DD strategy might fail if their locations were correlated with other time-varying determinants

of physician supply and second-stage outcomes. I will test for the hypothesis that locations of

medical schools were not correlated with other time-varying factors using the falsification tests in

Section 3.6.

3.6 Regression Results

Tables 3-1 to 3-8 report results from regressions estimating Equation 3.1. In every table, I investi-

gate the robustness of the results to several alternative specifications, each of which is reported in

a separate column. The results I report include the estimated coefficient 6, the standard variation,

F-statistics from the joint test of the reported coefficients equating zero, number of observations

used in the regression, and the mean of the dependent variable. All standard errors are clustered

at the area level, i.e., state-level for Tables 3-1, 3-2, 3-11, 3-12, and county-level for Tables 3-3-3-10.

Tables 3-1 and 3-2 report state-level regression results, i.e., effects of medical schools on the

physician stock within the state. The results are not consistent across physician measures i Table

3-1 shows that the number of physicians increased significantly with the number of medical schools,

however, Table 3-2 shows that the effect on number of physicians per 100,000 people is not statisti-

cally different from 0. This is not too surprising, given our earlier discussion that a state is usually

too large a geographical unit to use for examining regional variation.

As a result, I focus on county-level regressions. The empirical results from estimating Equation

3.1 on county-level data are readily apparent in Tables 3-3 to 3-8. Tables 3-3 and 3-4 report

the estimated local effects of new medical schools on the physician stock within the county, while

also controlling for the number of medical schools within the state. The first two rows report the

estimated coefficient on the number of medical schools within the state and its standard error, and

the next two rows report the estimated coefficient on the number of medical schools within the

county and its standard error. Taking the coefficients at face value, a new medical school increases

the physician supply within that county, relative to other counties, by about 500 (from preferred
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specifications 2 and 4) in seven years, which is above three times the average county-level physician

stock (reported in the last row).
As for the number of physicians per 100,000 people in Table 4, the coefficient is around 100 and

above the average across counties. The results are reasonably robust to alternative specifications

in both tables. After controlling for number of medical schools within the county, the number of

medical school within the state has no impact on physician supply. This also confirms our view

that state is not the appropriate geographical unit to use - it is too large to detect local effects.

Motivated by the second event study, and trying to detect broader regional effects, I report the

results using number of medical schools within 50 milesi as the variable of interest in Tables 5 and

6, while also controlling for medical schools within 100 and 200 miles. The results are robust across

specifications and similar to those in Tables 3-3 and 3-4, except that the magnitudes are smaller. A

new medical school increases physician supply by around 100 in counties within 50 miles, relative

to counties farther away, and this increase is two thirds of the sample average. Considering the

number of physicians per 100, 000 people, the increase is around 20 and about one fourth of the

sample average.

Tables 3-3 to 3-6 suggest a strong positive effect on the supply of physicians. These regional

estimates in Tables 3-5 and 3-6 are smaller than the local (specific to county) effects in Tables 3-3

and 3-4. This is as expected, since the mechanical effect that more facilities and more positions

opened at the county where the medical school operates, did not affect other nearby areas.

I prefer the results in Tables 3-5 and 3-6 over Tables 3-3 and 3-4 for two reasons: 1) The

regional impacts are more interesting compared to the more local impacts. 2) One may argue that

locations of new medical schools were potentially correlated with other time-varying determinants

of physician supply, but being more or less than 50 miles away from a new medical school was

arguably exogenous. I will test the validity of both approaches using falsification tests below.

One might suspect that, mechanically, being within 50 miles to a new medical school suffered

from the same endogeneity problem as the location of a medical school, since this sample included

locations of medical schools. In an attempt to address this challenge, I rerun the regressions on the

sub-sample excluding counties starting with medical schools. The results, as presented in Tables

3-7 and 3-8, are almost identical to Tables 3-5 and 3-6 i having a new medical school within 50

miles raised county-level number of physicians by 100-200, which was of the same magnitude as the

sample average; it raised the number of medical schools per 100,000 people by around 20, which was

around a quarter of county-level average. My interpretation of these results is that the endogeneity

issue is negligible in this case.

As discussed in the introduction and more elaborately in Section 3.3, there were programs

during the expansion period to attract new MDs to serve in rural areas upon graduation. Such

programs were small in size but it is of policy interest to know whether they made a difference.

To test this in my empirical framework, I add the interactions of rural counties with the medical

school measures to the regression in Tables 3-5 and 3-6, and report the results in Tables 3-9 and

'The distance is defined as the distance from this county to the nearest county that has a medical school.
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3-10.

The results show that the impacts in rural parts (the sum of the first two coefficients reported)

were not statistically different from 0, or that the regional effects were mostly on urban areas.

However, I hesitate to reach further conclusions about the effectiveness of the programs in rural

parts. The results show that there were no differential impacts across different geographical units

of the rural areas, which doesn't mean physician supply didn't grow in rural regions - it is likely

that all rural parts enjoyed similar gains in physician supply.

The county-level regressions using Area Resource File data shows a consistent pattern, while

state-level regressions show nothing. As a separate robustness check, I also run the state-level

regression using IPUMS data. The results are not very different from Tables 3-1 and 3-2, but

the additional controls of gender composition and age distribution make the effect on number of

physicians insignificant. Reading Tables 3-1, 3-2, 3-11 and 3-12 together, it is clear that a state is

too large a geographical unit to use for examining regional effects.

We are mostly interested in the regression results using county-level Area Resource File data.

As a falsification test, I estimate Equation 3.2. The values of r are taken discretely from -20 to 20,

where T = 0 to 20 is used to check how the impacts of medical school expansion changed over time,

while r = -20 to -1 serve as Placebo tests. I plot the coefficients f, for 0, ranging from -20 to 20

in Figures 11 to 12. I report the results on the level of physician supply only, since the regression

results have been qualitatively similar for number of physicians per 100,000 people.

The time pattern of i, is important for two reasons. First, it can help us check the validity

of our measure of medical school expansion d the number of medical schools in the future should

not have any impact on the supply of physicians now if the location of medical schools was not

correlated with other time-varying determinants of physician supply. Second, the pattern of #,
helps us understand how the effect evolves over time, and help us compare the relative magnitudes

of the immediate effects from lagged effects.

Figures 3-11 displays the estimated coefficients of Equation 3.2 using the number of medical

schools within the county and within the state as the d'ependent variables. The top panel of Figure

3-11 shows the time pattern for the differential local effect of medical school on the physician

supply within that county, relative to other counties, controlling for county fixed effects, year fixed

effects and population. The bottom panel of Figure 3-11 plots the time pattern for the effect of

a new medical school within the state, controlling for county fixed effects, year fixed effects and

population. The grey areas indicate the 95 percent confidence interval for each coefficient.

Consider first the top panel of Figure 3-11, the effect of medical school within the county. The

coefficient stayed stable for t = -20 to 0, i.e., the number of medical schools 20 years back had the

same effect as the number of medical schools now, or equivalently speaking, a new medical school had

the same impact on the physician supply within that county in the entry year and in the following 20

years. The trend sloped downward past t=0 and the coefficients became not statistically different

from 0 past t=5. The stable coefficients over time suggest that the differential regional effects

mostly came from the immediate responses, i.e., the more positions and more facilities brought in
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by the medical school and more physicians attracted by such amenities and locate nearby. The

zero coefficients for t >= 5 supports the hypothesis that locations of new medical schools were not

correlated with other underlying determinants of physician supply. This is reassuring and supports

the validity of equation 3.1 as our estimating equation and also a valid first stage when one examines

the impact of physician supply on medical spending and health outcomes.

The positive yet declining coefficients between t=O and t=5 are a bit puzzling. I hesitate to

make further interpretations and instead provide my speculation as follows. Since I am using the

year of establishment, not the year of announcement of an upcoming medical school, one may

suspect some anticipation effect to take place, i.e., physicians might adjust their location choices

in anticipation of new medical schools being built in the near future. Unfortunately, I do not have

year of announcement in the data so this is only a speculation. Figure 3-11 shows that the physician

supply responded partially a bit earlier than the year of establishment, and it only came into full

blown after the year establishment.

The bottom panel of Figure 3-11 is consistent with our estimation results from Tables 3-3 and

3-4 - after controlling for the number of medical schools within the county, the number of medical

schools within the state had no effect on county-level physician supply. The estimated coefficient

with controls was not statistically distinguishable from zero and stayed flat for all years. Figure 3-12

demonstrates this falsification exercise using the alternative geographical unit i counties within 50

miles to a new medical school. The estimates are smaller in magnitudes than estimates in the top

panel of Figure 3-11, but the patterns over time are reassuringly similar. The coefficients stayed

stable throughout t = -20 to t = -1, declined gradually from t = 0 forward and became not separable

from 0 around t = 8. Equivalently speaking, a new medical school had the same impact on the

physician supply within that county in the entry year and in the following 20 years, had some

effect a few years before the actual entry and had no effect in earlier periods. Again I speculate

the positive yet small coefficients between t=0 and t=10 to be the anticipation effects following the

announcement of the upcoming medical school, but I do not have the data to test this.

Time patterns in Figures 3-11 and 3-12 have lead to some conclusions, or at least partially

founded speculations, about the mechanisms underlying the effects. First, the stable coefficients

until t = 0 shows that a new medical school had the same impact in the year of entry and in the next

20 years. This indicates that the most of the impacts could be attributed to the immediate effects,
and the lagged effects did not play an important role. The new job opening and new facilities

brought in by the new medical schools, and the attractiveness of working closer to a teaching and

research facilities and peers were the main reasons why physician supply grew faster in areas closer

to the newly established medical school, rather than the correlated location choices of education

and professional practice by students at the new medical schools. Second, the zero coefficients for t

large enough supports the hypothesis that locations of new medical schools were not correlated with

other underlying determinants of physician supply and supports the validity of equation (1) as our

estimating equation. Third, the subdued yet still positive coefficients slightly past t = 0 indicate

some anticipation effects, that physicians began to adjust their location choices before the actually
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establishment of new medical schools. Whether and why this was the case needs testing with

additional data, such as data on when the establishment of new medical schools was announced.

As mentioned in Section 3.5, because of the low frequency of physician data for earlier years

(1940-1980), we have a relatively small number of observations compared with the number of control

variables. However, the results change little with and without the controls, using more or less years

of the data, and using alternative data sources. This is reassuring and confirms that the results do

not come from arbitrary specifications or data mining. Another concern is the potential endogeneity

in the locations of new medical schools, I test for the hypothesis that locations of medical schools

are not correlated with other time-varying factors in Section 3.6.4 above, and most of the results

do not reject this hypothesis.

3.7 Conclusion

Adopting a difference-in-difference style regression framework, I examine the differential impacts

of medical school expansion on the supply of physicians across geographical areas by comparing

changes in physician supply in areas closer to new medical school entries with regions further away.

I find that the entry of a new medical school increased the supply of physicians substantially more in

nearby areas. It increased the physician supply by one to three times (depending on which measure

of physician supply to use) the county average level in the county where the medical school was

located, compared with other counties. The broader regional effect was smaller but still substantial

- a new medical school increased physician supply by one fourth to two thirds of the sample average

in counties within 50 miles, relative to counties farther away. The slightly subdued estimates still

suggest a strong positive regional effect on the supply of physicians.

I also investigate how such regional impacts of a new medical school entry evolved over time. I

find that a new medical school had the same impact in the year of entry and in the following 20

years, which indicates that the most of the impacts took place immediately. In other words, the

new job opening and new facilities brought in by the new medical schools, and physicians attracted

by research facilities and peers nearby were the main reasons why physician supply grew faster

in areas closer to the newly established medical school. I find no effect on the physician supply

in most of the pre-entry years, which suggests that the locations of new medical schools are not

correlated with other underlying determinants of physician supply. Therefore, the expansion of

medical schools could potentially be used as an exogeneous source of variation for physician supply.

This study is devoted to understanding the differential effects of medical schools across geo-

graphical units on the supply of physicians, and caution should be taken in interpreting the results

as the overall effects of medical school expansion. It is plausible that all areas enjoyed growth

in physician supply after the expansion, though the magnitude of the effect differed across areas.

Therefore, my estimates could understate the full impact of medical school expansion on the sup-

ply of physicians, which, however, does not affect the effectiveness and relevance of this exercise in

providing a valid first stage for the cross-sectional variation of physicians. With historical data on

109



county-level health expenditures and other second-stage outcomes, we can further investigate the

impact of physician supply on these outcomes.
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Figure 3-1: Distribution of Medical Schools by county, 1940

Distribution of Number of Medical Schools in the US
County Level, 1940
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Figure 2: Distribution of Medical Schools by county, 1960
Distribution of Number of Medical Schools in the US

County Level, 1960
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Figure 3-2: Distribution of Medical Schools by county, 1960

Distribution of Number of Medical Schools in the US
County Level, 1960
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Figure 3-3: Distribution of Medical Schools by county, 1980
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Figure 3-4: Distribution of new medical schools by counties, established between 1960 and 1980

Distribution of New Medical Schools(Est. between 1960 and 1980) in the US
County Level, 1980

Note: Figure 4 illustrates the geographical distribution of new medical schools established between 1960 and 1980.
We can see that they are more sparsely located in the west and more spread out in the east.
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Figure 3-5: Time Series Rend of Medical School Graduates in the U.S.: From 1961-62 to 2005-06

Time Series Trend of Medical School Graduates in the U.S.

From 1961-62 io 2005-06

14000
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Note: Tis graph is Figure 3 from Dill and Salsbeig (2008). using data from the Association of
Amercan Medical Colleges (AAMC)Y It shows that national number of medical graduates grew
slowly before 1970 and increased drastically from 1969 to 1978, grew slightly slower from 1978
to 1985 and stabilized thereafter.
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Figure 3-6: Number of Medical Schools and Number of Physicians per 100,000 people

Number of Medical Schools and Number of Physicians per 100,000 people

National Time Series Trend: # Medical Schools and # Physicians per OA5 people
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year
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Note: Figure 6 shows the national time series patterns for both the to)ta number of medical schools
and the number of physicians per 100000 peop~le (from the ARF data)- There seets to be a lag m
the growth of physician supply in response to die expansion of medical schools. The number of
medical schools increased drastically from 1960 to 1980 and stabilized after, while the nuxuber of
physicians increased slightly 1960-1970, more abruptly after 1970 and stabilized by 12000-
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Figure 3-7: Event Study: States with First V.S. No Medical School Entry

Event Study: Number of Physicians
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Figure 3-8: Event Study: States with First V.S. No Medical School Entry

Event Study: Number of Physicians per 100000 people
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Figure 3-9: Evcnt Study: Counties Near V.S. Far From Medical School Entry

Event Study: Average # Physicians per County
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Figure 3-10: Event Study: Counties Near V.S. Far From Medical School Entry

Event Study: # Physicians per 100000 people
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Figure 3-11: Time Trend of Coefficients on Medical School within the County and on Medical

School within the State

Time Trend of Coefficients on I Medical School within the County and on # Medical School within the State

#Physicians on #Medical Schools in the county, with Population controls
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Note: This figure plots P, the coefficients of county-level # of physicians in year t regressed on

both # of medical schools within the county in year (t-) and #t of medical schools within the state

in year (t-r). where r takes values from --20 to 20. The grey areas indicate the 95 percent confidence

interval for each coefficient, where the standard errors are clustered at the county level- For r' 0,
we are checking the regional effects of a future medical school on current physician supply, which

serves as a falsification test. For T < 0, we are tracking the effect of a new medical school over time.
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Figure 3-12: Time Trend of Coefficients on Medical School within 50 miles

Time Trend of Coefficients on # Medical School within 50 miles

#Physicians on #Medical Schools in 50mi, with Population controls
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Note: This figure plots 0, the coefficients of county-level #t of physicians in year t regressed on

# of medical schools within 50 miles m year (t-r). where T takes values from -20 to 20- The grey
areas indicate the 95 percent confidence miterval for each coefficient, where the standard errors are
clustered at the county level- For r 0, we are checking the regional effects of a fixture medical
school on current physician supply, which serves as a falsification test- For r < 0, we are tracking
the effect of a new medical school over time.
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Table 3.1: Number of physicians on number of medical schools by state

(1) (2) (3) (4)
1940-2000 1940-2000 1960-1990 1960-1990

VARIABLES State&Year +population State&Year +population
FE FE

# Medical Schools 7 years ago 5,176 3,832 3,147 3,037
within the state . (1,366) (1,041) (833.6) (789.1)

F 14.35 13.55 14.25 14.81
N 3966 3966 1702 1702

Mean: # physicians within the state 13590 13590 11949 11949

Notes: Standard Errors clustering at the state-level are reported in the parentheses. F-statistics
for the test of the reported coefficient = 0 is reported in the third last row. Number of

observations used in each regression is reported in the second last row. Sample average

of the dependent variable is reported in the last row.

Column (1) uses 1940-2000 ARF data and includes state and year FE in the regression.
Column (2) uses 1940-2000 ARF data and controls for time-varying population in
addition to state and year FE in the regression. Columns (3) and (4) replicate Columns (1)
and (2) using 1960-1990 data to focus on the expansion period.

Notes: Standard Errors clustering at the state-level are reported in the parentheses. F-statistics

for the test of the reported coefficient = 0 is reported in the third last row. Number of observations

used in each regression is reported in the second last row. Sample average of the dependent variable

is reported in the last row. Column (1) uses 1940-2000 ARF data and includes state and year FE

in the regression. Column (2) uses 1940-2000 ARF data and controls for time-varying population

in addition to state and year FE in the regression. Columns (3) and (4) replicate Columns (1) and

(2) using 1960-1990 data to focus on the expansion period.
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Table 3.2: Number of physicians per 105 people on number of medical schools by state

(1)
1940-2000

(2)
1960-1990

VARIABLES State&Year FE State&Year FE
#Medical Schools 7 years ago 0.271 0.711

within the state (3.190) (2.114)

F 0.00721 0.113
N 3527 1265

Mean: # physicians per 100, 000
individuals within the state 200.8 173.8

Notes: Standard Errors clustering at the state-level are reported in the parentheses. F-statistics
for the test of the reported coefficient = 0 is reported in the third last row. Number of
observations used in each regression is reported in the second last row. Sample average
of the dependent variable is reported in the last row.

Column (1) uses 1940-2000 ARF data and includes state and year FE in the regression.
Column (2) replicates Column (1) using 1960-1990 ARF data to focus on the expansion
period.

Notes: Standard Errors clustering at the state-level are reported in the parentheses. F-statistics

for the test of the reported coefficient = 0 is reported in the third last row. Number of observations

used in each regression is reported in the second last row. Sample average of the dependent variable

is reported in the last row. Column (1) uses 1940-2000 ARF data and includes state and year FE

in the regression. Column (2) replicates Column (1) using 1960-1990 ARF data to focus on the

expansion period.
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Table 3.3: Number of physicians on number of medical schools by state and county

(1) (2) (3) (4)
1940-2000 1940-2000 1960-1990 1960-1990

VARIABLES county&year +population county&year +population
FE FE

# Medical Schools 7 years ago 21.97 -0.964 14.46 2.316
within the state (5.464) (3.374) (4.133) (3.112)

# Medical Schools 7 years ago 1,208 541.8 676.1 444.1
within the county (362.0) (119.7) (185.1) (96.98)

F 11.64 10.77 10.19 10.49
N 72243 62820 37692 28269

Mean: # physicians within the county 154.3 154.3 134.9 134.9

Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics
for the joint test of the two reported coefficients = 0 is reported in the third last row.
Number of observations used in each regression is reported in the second last row.

Sample average of the dependent variable is reported in the last row.

Column (1) uses 1940-2000 ARF data and includes county and year FE in the regression.
Column (2) uses 1940-2000 ARF data and controls for time-varying population in

addition to county and year FE in the regression. Columns (3) and (4) replicate Columns
(1) and (2) using 1960-1990 data to focus on the expansion period.

Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics

for the joint test of the two reported coefficients = 0 is reported in the third last row. Number

of observations used in each regression is reported in the second last row. Sample average of the

dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes

county and year FE in the regression. Column (2) uses 1940-2000 ARF data and controls for

time-varying population in addition to county and year FE in the regression. Columns (3) and (4)

replicate Columns (1) and (2) using 1960-1990 data to focus on the expansion period.
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Table 3.4: Number of physicians per 105 people on number of medical schools by state and county

(1) (2)
1940-2000 1960-1990

VARIABLES county and year FE county and year FE
# Medical Schools 7 years ago -0.610 -0.376

within the state (0.668) (0.599)
# Medical Schools 7 years ago 134.7 93.92

within the county (17.62) (13.21)

F 29.32 25.70
N 62094 27699

Mean: # physicians per 100, 000
individuals within the county 95.63 84.96

Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics
for the joint test of the two reported coefficients = 0 is reported in the third last row.
Number of observations used in each regression is reported in the second last row.
Sample average of the dependent variable is reported in the last row.

Column (1) uses 1940-2000 ARF data and includes state and year FE in the regression.
Column (2) replicates Column (1) using 1960-1990 ARF data to focus on the expansion
period.

Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics

for the joint test of the two reported coefficients = 0 is reported in the third last row. Number

of observations used in each regression is reported in the second last row. Sample average of the

dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes

state and year FE in the regression. Column (2) replicates Column (1) using 1960-1990 ARF data

to focus on the expansion period.
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Table 3.5: Number of physicians on number of nearby medical schools

(1) (2) (3) (4)
1940-2000 1940-2000 1960-1990 1960-1990

VARIABLES county&year +population county&year +population
FE FE

# Medical Schools 7 years ago 191.3 109.9 109.4 81.48
within 50 miles (41.66) (33.93) (22.45) (22.97)

# Medical Schools 7 years ago 43.73 18.20 23.19 11.24
within 100 miles (12.48) (12.74) (8.107) (9.838)

# Medical Schools 7 years ago -3.291 5.125 -0.160 5.517
within 200 miles (4.365) (3.346) (2.795) (2.720)

F 20.43 9.692 19,27 10.72
N 72243 62820 37692 28269

Mean: # physicians within the county 154.3 154.3 134.9 134.9

Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics
for the joint test of the three reported coefficients = 0 is reported in the third last row. Number of
observations used in each regression is reported in the second last row. Sample average of the
dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes
county and year FE in the regression. Column (2) uses 1940-2000 ARF data and controls for
time-varying population in addition to county and year FE in the regression. Columns (3) and (4)

replicate Columns (1) and (2) using 1960-1990 data to focus on the expansion period.

Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics

for the joint test of the three reported coefficients = 0 is reported in the third last row. Number

of observations used in each regression is reported in the second last row. Sample average of the

dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes

county and year FE in the regression. Column (2) uses 1940-2000 ARF data and controls for

time-varying population in addition to county and year FE in the regression. Columns (3) and (4)

replicate Columns (1) and (2) using 1960-1990 data to focus on the expansion period.

127



Table 3.6: Number of physicians per 105 people on number of

(1) (2)
1940-2000 1960-1990

VARIABLES county and year FE county and year FE
# Medical Schools 7 years ago 22.49 21.01

within 50 miles (4.438) (7.346)
# Medical Schools 7 years ago -2.255 -8.053

within 100 miles (3.832) (7.606)
# Medical Schools 7 years ago 4.573 5.384

within 200 miles (1.568) (2.681)

F 32.45 24.12
N 62094 27699

Mean: # physicians per 100,000
individuals within the county 95.63 84.96

Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics
for the joint test of the three reported coefficients = 0 is reported in the third last row. Number of
observations used in each regression is reported in the second last row. Sample average of the
dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes
state and year FE in the regression. Column (2) replicates Column (1) using 1960-1990 ARF data.

Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics

for the joint test of the three reported coefficients = 0 is reported in the third last row. Number

of observations used in each regression is reported in the second last row. Sample average of the

dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes

state and year FE in the regression. Column (2) replicates Column (1) using 1960-1990 ARF data.
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Table 3.7: Number of physicians on number of nearby medical
with a medical school in 1940

schools, excluding counties already

()(2) (3) (4)
1940-2000 1940-2000 1960-1990 1960-1990

VARIABLES county&year FE +population county&year FE +population
# Medical Schools 7 years ago 150.8 83.54 88.04 64.92

within 50 miles (30.27) (26.77) (17.93) (20.88)
# Medical Schools 7 years ago 40.57 16.30 22.09 11.26

within 100 miles (10.18) (8.094) (6.232) (5.853)
# Medical Schools 7 years ago -4.117 0.715 -1.295 1.667

within 200 miles (2.931) (2.298) (1.796) (1.616)

F 16.30 6.567 14.65 6.969
N 70748 61520 36912 27684

Mean: # physicians within the county 104.4 104.4 89.83 89.83
Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics
for the joint test of the three reported coefficients = 0 is reported in the third last row. Number of

observations used in each regression is reported in the second last row. Sample average of the
dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes
county and year FE in the regression. Column (2) uses 1940-2000 ARF data and controls for
time-varying population in addition to county and year FE in the regression. Columns (3) and (4)
replicate Columns (1) and (2) using 1960-1990 data to focus on the expansion period.
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Table 3.8: Number of physicians per 105 people on number of nearby medical schools, excluding
counties already with a medical school in 1940

(1) (2)
1940-2000 1960-1990

VARIABLES county and year FE county and year FE
# Medical Schools 7 years ago 21.12 19.99

within 50 miles (4.387) (7.513)
# Medical Schools 7 years ago -1.064 -7.389

within 100 miles (3.802) (7.844)
# Medical Schools 7 years ago 3.457 4.738

within 200 miles (1.523) (2.730)

F 29.01 21.43
N 60805 27123

Mean: # physicians per 105 people within the county 89.69 79.90
Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics
for the joint test of the three reported coefficients = 0 is reported in the third last row. Number of
observations used in each regression is reported in the second last row. Sample average of the
dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes
state and year FE in the regression. Column (2) replicates Column (1) using 1960-1990 ARF data.

Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics

for the joint test of the three reported coefficients = 0 is reported in the third last row. Number

of observations used in each regression is reported in the second last row. Sample average of the

dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes

state and year FE in the regression. Column (2) replicates Column (1) using 1960-1990 ARF data.
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on number of nearby medical schools in rural

VARIABLES
# Medical Schools 7 years ago

within 50 miles
Rural * # Medical Schools 7 years

ago within 50 miles
# Medical Schools 7 years ago

within 100 miles
Rural * # Medical Schools 7 years

ago within 100 miles
# Medical Schools 7 years ago

within 200 miles
Rural * # Medical Schools 7 years

ago within 200 miles
F
N

Mean: #physicians within the county

(1) 1940-2000
county&year FE

159.5
(33.79)
-163.2
(33.89)
49.04
(12.54)
-47.50
(12.64)
-2.666
(3.392)
-7.902
(3.256)
30.33
70748
104.4

(2) 1940-2000
+population

90.84
(29.83)
-90.31
(29.87)
19.79

(9.961)
-21.19
(10.11)
0.483

(2.756)
1.044

(2.920)
4.576
61520
104.4

(3) 1960-1990
county&year FE

92.99
(20.11)
-93.87
(20.18)
27.40
(7.790)
-26.27
(7.850)
0.233
(2.087)
-8.083
(1.960)
26.69
36912
89.83

Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics
for the joint test of the six reported coefficients = 0 is reported in the third last row. Numnber of
observations used in each regression is reported in the second last row. Sample average of the
dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes
county and year FE in the regression. Column (2) uses 1940-2000 ARF data and controls for
time-varying population in addition to county and year FE in the regression. Columns (3) and (4)

replicate Columns (1) and (2) using 1960-1990 data to focus on the expansion period.

Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics

for the joint test of the six reported coefficients = 0 is reported in the third last row. Number

of observations used in each regression is reported in the second last row. Sample average of the

dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes

county and year FE in the regression. Column (2) uses 1940-2000 ARF data and controls for

time-varying population in addition to county and year FE in the regression. Columns (3) and (4)

replicate Columns (1) and (2) using 1960-1990 data to focus on the expansion period.
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(4) 1960-1990
+population

70.22
(23.26)
-69.19
(23.30)
.14.09
(7.290)
-15.25
(7.352)
1.918

(1.952)
-1.851
(1.977)
5.694
27684
89.83

vs. urban areasTable 3.9: Number of physicians



Table 3.10: Number of physicians per 105 people on number of nearby medical schools in rural vs.
urban areas

(1) 1940-2000 (2) 1960-1990
VARIABLES county and year FE county and year FE

# Medical Schools 7 years ago 21.47 21.58
within 50 miles (5.195) (9.515)

Rural * # Medical Schools 7 years ago -21.84 -20.69
within 50 miles (6.276) (9.504)

# Medical Schools 7 years ago -1.328 -9.051
within 100 miles (4.691) (9.873)

Rural * # Medical Schools 7 years ago 0.710 7.691
within 100 miles (4.910) (9.792)

# Medical Schools 7 years ago 4.819 6.093
within 200 miles (1.717) (3.039)

Rural * # Medical Schools 7 years ago -7.476 -7.045
within 200 miles (1.392) (1.673)

F 25.21 18.97
N 60805 27123

Mean: # physicians per 105 people within the county 89.69 79.90
Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics
for the joint test of the six reported coefficients = 0 is reported in the third last row. Number of
observations used in each regression is reported in the second last row. Sample average of the
dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes
state and year FE in the regression. Column (2) replicates Column (1) using 1960-1990 ARF data.

Notes: Standard Errors clustering at the county level are reported in the parentheses. F-statistics

for the joint test of the six reported coefficients = 0 is reported in the third last row. Number

of observations used in each regression is reported in the second last row. Sample average of the

dependent variable is reported in the last row. Column (1) uses 1940-2000 ARF data and includes

state and year FE in the regression. Column (2) replicates Column (1) using 1960-1990 ARF data.
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Table 3.11: Robustness check: number of physicians on number of medical schools by state

(1) (2) (3) (4) (5) (6)
1940-2000 1940-2000 1940-2000 1960-1990 1960-1990 1960-1990

VARIABLES State&year +populatio +sex & age State&year +populatio +sex & age
FE n distribution FE n distribution

# Medical Schools 7 years ago 6,359 2,110 371.5 4,452 1,856 -213.9
within the state (1,604) (1,040) (390.4) (1,466) (1,178) (353.8)

F 15.71 4.111 0.905 9.225 2.483 0.366
N 317 317 317 181 181 181

Mean: # physicians within the state 8499 8499 8499 8563 8563 8563

Notes: Standard Errors clustering at the state-level are reported in the parentheses. F-statistics

for the test of the reported coefficient = 0 is reported in the third last row. Number of

observations used in each regression is reported in the second last row. Sample average

of the dependent variable is reported in the last row.

Column (1) uses 1940-2000 IPUMS data and includes state and year FE in the regression.
Column (2) uses 1940-2000 IPUMS data and controls for time-varying population in
addition to state and year FE in the regression. Column (3) uses 1940-2000 IPUMS data
and controls for time-varying population, sex composition and age distribution in
addition to state and year FE in the regression. Columns (4)(5)(6) replicate Columns (1)
(2X3) using 1960-1990 IUMS data to focus on the expansion period.

Notes: Standard Errors clustering at the state-level are reported in the parentheses. F-statistics

for the test of the reported coefficient = 0 is reported in the third last row. Number of observations

used in each regression is reported in the second last row. Sample average of the dependent variable

is reported in the last row. Column (1) uses 1940-2000 IPUMS data and includes state and year FE

in the regression. Column (2) uses 1940-2000 IPUMS data and controls for time-varying population

in addition to state and year FE in the regression. Column (3) uses 1940-2000 IPUMS data and

controls for time-varying population, sex composition and age distribution in addition to state and

year FE in the regression. Columns (4)(5)(6) replicate Columns (1) (2)(3) using 1960-1990 IUMS

data to focus on the expansion period.
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Table 3.12: Robustness check: number of physicians per 105 people on number of medical schools
by state

(1) (2) (3) (4)
1940-2000 1940-2000 1960-1990 1960-1990

VARIABLES State&year FE +sex & age State&year FE +sex & age
distribution distribution

# Medical Schools 7 years ago 7.129 8.734 4.387 4.732
within the state (4.180) (4.805) (5.600) (5.940)

F 2.909 3.304 0.614 0.635
N 317 317 181 181

Mean: # physicians per 100, 000 172.0 172.0 173.5 173.5
individuals within the state

Notes: Standard Errors clustering at the state-level are reported in the parentheses. F-statistics
for the test of the reported coefficient = 0 is reported in the third last row. Number of
observations used in each regression is reported in the second last row. Sample average
of the dependent variable is reported in the last row.

Column (1) uses 1940-2000 IPUMS data and includes state and year FE in the regression.
Column (2) uses 1940-2000 IPUMS data and controls for time-varying sex composition
and age distribution in addition to state and year FE in the regression. Columns (3) and (4)
replicate Columns (1) and (2) using 1960-1990 IUMS data to focus on the expansion
period.

Notes: Standard Errors clustering at the state-level are reported in the parentheses. F-statistics

for the test of the reported coefficient = 0 is reported in the third last row. Number of observations

used in each regression is reported in the second last row. Sample average of the dependent variable

is reported in the last row. Column (1) uses 1940-2000 IPUMS data and includes state and year

FE in the regression. Column (2) uses 1940-2000 IPUMS data and controls for time-varying sex

composition and age distribution in addition to state and year FE in the regression. Columns (3)

and (4) replicate Columns (1) and (2) using 1960-1990 IUMS data to focus on the expansion period.
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