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Abstract

A new integrated circuit architecture provides a basis for microcomputer systems capa-
ble of performing low-level image processing tasks in real time. Compact logic units are
pitch-matched to DRAM columns to form dense blocks of processing elements. The pro-
cessing elements are interconnected to form a rectangular array, with each processing
element assigned to a single pixel.

A prototype integrated circuit provides a 64 x 64 array. Efficient logic circuits mini-
mize power dissipation and area per processing element. Interface circuits extend the
processing element interconnection network across chip boundaries so that multiple
devices may be used together to form processing element arrays matching the size of
large images. Serial-access memories provide a fast and efficient means of transferring
image data to and from the device.

A demonstration system employs four prototype devices to form a 128 x 128 pro-
cessing element array. The system is managed by a desktop computer. The control
path provides high processing element array utilization without complex control hard-
ware. The data path reorders image data in real time so that the processing element
array may be used with standard imagers. A programming framework implemented
using the C++ programming language separates application development from device
and system details.

Operating in the demonstration system with a 60-ns clock cycle, fully functional
devices dissipate 300 mW. Several low-level image processing tasks have been imple-
mented including median filtering, smoothing and segmentation, and optical flow com-
putation. All have been successfully performed in real time at rates exceeding thirty
frames per second. Careful analyses show that the prototype devices require far less
power per pixel than microprocessor and digital signal processor devices.

Thesis Supervisor: Charles G. Sodini
Title: Professor of Electrical Engineering
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Transistor Notations

A notation of the form n(w/l) indicates a set of n transistors, each with drawn channel
width w and drawn channel length [, that have common drain, gate, source, and bulk
connections. A notation of the form n(w) indicates a set of transistors with drawn
channel iength 0.6 ym.

A notation of the form w /! indicates a single transistor with drawn channel width w
and drawn channel length l. A notation of the form w indicates single transistor with
drawn channel length 0.6 ym.
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Chapter 1

Introduction

Typical low-level image processing tasks require thousands of operations per pixel for
each input image. Traditional general-purpose computers are not capable of perform-
ing such tasks in real time. Yet important features of traditional computers are not
exploited by low-level image processing tasks. Since identical operations are performed
for each pixel, the flexibility of sequential processing is of little value. Since storage
requirements are limited to a small number of low-precision integer values per pixel,
large hierarchical memory systems are not necessary.

The mismatch between the demands of low-level image processing tasks and the
characteristics of conventional computers motivates investigation of alternative archi-
tectures. The structure of the tasks suggests employing an array of processing elements,
one per pixel, sharing instructions issued by a single controller.

Tc build pixel-parallel image processing hardware for microcomputer systems, large
processing element arrays must be produced at low cost. Integrated circuit designers
have had tremendous success creating dense and inexpensive semiconductor mernories.
They handcraft circuits to perform essential functions using very little silicon area, then
replicate the circuits to form large memory arrays. This thesis shows how the same
technique may be applied to create a dense integrated processing element array.

1.1 Image Processing System

The integrated processing element array provides the foundation for a desktop demon-
stration system. Figure 1.1 shows the structure of the system. Each processing element
(PE) includes the memory and logic necessary to perform operations for a single pixel.
A two-dimensional network connects the processing elements.

The host computer governs the processing element array through the control path.
The processing elemeats receive instructions issued by the controller. The instructions
are delivered through a high-bandwidth point-to-point channel. The controller is man-
aged by the host computer over the computer’s backplane bus.

Analog signals from an imager such as a video camera are converted to digital data

17
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Figure 1.1: Pixel-parallel image processing system.

by an analog-to-digital converter (ADC). A format converter reorders the image data for
efficient transfer to the processing element array. Another format converter may be
used to reorder output data for subsequent use.

The system is designed for a large class of low-ievel image processing tasks. Tasks
in this class share three characteristics: they require uniform processing of all pixels,
they can be performed by precessing elements sharing common instructions, and they
produce output values that directly correspond to individual pixels. Examples include
median filtering, image convolution, pixel-level optical flow computation, and template
matching.

1.2 Processing Element Implementation

Processing elements are implemented using logic pitch-matched to DRAM cells. As
shown in Figure 1.2, logic units are placed above and below 128-bit DRAM columns.
The layout pitch of the logic units is exactly double the memory column pitch. A pro-
cessing element comprises a logic unit and a DRAM column. There are no column
decoders—Ilogic circuits are connected directly to tbe bitlines. The pitch-matched pro-
cessing element implementation maximizes the bandwidth between memcry and logic
and minimizes processing element area [1].

Figure 1.3 is a functional representation of the processing element design. One-bit-
wide logic is combined with a 128-bit DRAM column. Three latches, A, B, and C, provide
inputs to a function generator. Eight control signals, f ;_,, select between the 256 three-
input Boolean functions. Latch D holds write data. Latch E provides a local write-enable
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Figure 1.2: Logic pitch-matched to dynamic memory.

signal.
Processing elements are interconnected to create a two-dimensional rectangular ar-

ray, matching the structure of image data. Latch A controls the output signal for nearest-
neighbor communication. Input signals from adjacent processing elements are com-
bined with the function generator result according to control signals fw, fe, fs, and fn.
Wwith the interconnection network extended across chip boundaries, multiple chips may
be used to form processing element arrays matching the size of large images.

1.3 Processing Element Operation

Figure 1.4 shows the instruction format for the processing element array. Five bits spec-
ify latch load signals, four bits specify the interconnect control signals, eight bits specify
a Boolean function and seven bits specify a memory address. The remaining three bits
specify an operation code which controls memory and interchip communication activity.

Execution of an instruction begins with application of the function generator and
processing element interconnection logic. The result may be loaded into latch B, C, D,
or E. Next, a memory operation may be performed. Finally, the result of a memory read
operation may be loaded into latch A. Specified interchip communication activity takes
place throughout an instruction.

Because processing element data paths are only one bit wide, arithmetic and data
movement operations generally require several instructions per bit. A bit-serial “neigh-
bor difference” procedure, D — M — M"'"h typifies primitive operations. This pro-
cedure computes the difference between a four-bit value in the DRAM column and the
corresponding value in the north neighbor’s DRAM column. The result is saved in the
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Table 1.1
Neighbor Difference Procedure, D — M — M"o7th
Interchip Logic Memory
Communication Activity Activity

1 —_ E~1 A —~ Mem[Mp]

2 north = south — -—

3 _ B~ Anorth _

4 — D—~A®B Mem([Dy] —~ D

5 — C—~AAB A — Mem[M;]

6 north = south — —

7 . B~ Anorth _

8 — D—~A®BeC Mem|[D;] - D

9 - C—(AAB)V(AAC)V (BAC) A — Mem([M;]
10 north = south — —
11 _ B — Anorth _
12 — D-AeBasC Mem|[D,] -~ D
13 — C—(AABY)V(AAC)V (BAC) A — Mem [M3]
14 north = south — —
15 _ B — Anon‘h -
16 — D—~AeBeC Mem([D3] ~ D

local DRAM column. Table 1.1 presents the procedure.l

Instruction 1 loads latch E, enabling the write buffer, and loads the least significant
bit of the operand, Mp, from memory into latch A. Instruction 2 transfers latch A val-
1es from processing elements on the south edges of the arrays in each chip to latches
in adjacent chips serving north edges of the arrays. Instruction 3 transfers the north
neighbor’s Mg value to latch B. If the north neighbor is on an adjacent chip, the value is
taken from one of the latches loaded by the previous instruction. If the north neighbor
is on the same chip, the value is taken directly from the neighbor’s latch A. Instruction 4
computes the least significant bit of the difference, Dy, and stores the result in memory.
Instruction 5 computes a borrow value, loads the result in latch C, and reads the second
bit of the operand, M;, from memory into latch A. Instructions 6 through 8 complete
processing for the second bit position. Instructions 9 through 12 and 13 through 16
handle the third and fourth bit positions, respectively. Note that instructions involv-
ing interchip communication take place after instructions loading latch A and before
instructions using the processing element interconnection logic. This insures the in-
tegrity of data transferred between chips.

1Appendix C, Table C.1 provides low-level specifications of all the array instructions used in the
neighbor difference procedure.
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Table 1.2
Processing Element Array Performance. 64 x 64 array. 60-ns clock cycle. Parallel objects
are represented by upper case letters. Scalar objects are represented by lower case
letters.

Instructions per 8-bit Operations

Operation Notation n-bit Operation per Second
write A~-x n+l 76 G
add A—A+b 2n 43 G
copy A~ B 2n 43 G
absolute value A —~ |A] 2n 43 G
sum S —-A+B 3n 28 G
signed product P - Dxr 2n? 05G
unsigned product P —~ DXR mn?-n-1 03G
move A — Bneighbor 3n 28G
neighbor difference D — M — Mneighbor 4an 21G

Because processing element data paths are only one bit wide, the number of instruc-
tions required to perform arithmetic operations increases with the size of the operands
and result. Processing elements execute one array instruction per clock cycle. Table 1.2
shows the number of array instructions required to perform several basic operations.
It also shows the number of eight-bit operations performed per second by a 64 x 64
processing element array operating with a 60 ns clock cycle. As shown in the table, with
many processing elements working in parallel, bit-serial processing may be used in a
high-performance system.

1.4 Previous Work

Several reported devices integrate both logic and memory to form arrays of processing
elements. In most of these devices, each processing element comprises a relatively
large hlock of memory and a large processing element. For example, the BLITZEN chip
[2] provides an 8 x 16 processing element array. Each processing eiement has a one-bit-
wide two-input function generator, a full adder, six 1-bit registers, a 32-bit shift register,
and a 32 x 32 SRAM array.

Two reported devices employ logic pitch-matched to memory columns. Both provide
arrays of 64 processing elements with simple linear processing element interconnection
networks. In one device, each processing element includes four 32-bit SRAM columns
[1]. In the other device, each processing element includes a 2k-bit SRAM column [3].
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1.5 Thesis Organization

This chapter introduced pixel-parallel image processing and the design and operation
of the integrated processing element array. The remaining chapters discuss the pri-
mary contributions of this work: 1) compact low-power logic circuits pitch-matched to
DRAM cells, 2) integration of a large two-dimensional processing element array with
an interconnection network that may be extended across chip boundaries, 3) efficient
control and data paths for pixel-parallel image processing, and 4) the implementation
and demonstration of a fully functional real-time system.

Chapter 2 thoroughly describes the design of the integrated processing element ar-
ray. Chapter 3 discusses system-level issues, including controller architecture and im-
age I/0. Chapter 4 reports experimental results and describes demonstration applica-
tions. Chapter 5 compares the circuit and system architecture with other architectures.
Chapter 6 summarizes major accomplishments and presents ideas for future research.

Appendix A provides detailed chip documentation for board-level designers. Ap-
pendix B details the rules used for layout design. Appendix C provides a detailed ex-
ample of code for the processing element array. Appendix D provides detailed timing
control diagrams.
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Chapter 2

Integrated Processing Element Array

This chapter describes the core of the pixel-paraliel image processing system: the inte-
grated processing element array. Sections 2.1 and 2.2 introduce the design and describe
the memory cell. Sections 2.3 and 2.4 describe circuits pitch-matched to memory rows
and columns. Section 2.5 describes internal timing strategy and implementation. Sec-
tions 2.6 and 2.7 deal with communication between processing elements. Section 2.8
discusses image I/0 and Section 2.9 presents line driver and pad circuits. Section 2.10
describes the design process used to develop the integrated processing element array.

2.1 Design Overview

At the time the integrated processing element array was designed, the most suitable
technology available for prototype fabrication was the Hewlett-Packard CMOS14TB tech-
nology. CMOS14TB, offered by the MOSIS Service [4], is a “standard” 3.3-V n-well CMOS
technology with three metal layers. It is most often used for ASIC projects. Following
design rules developed by MOSIS, the minimum drawn polysilicon width is 0.6 ym and
the minimum drawn polysilicon spacing is 0.9 ym.

As shown in Figure 2.1, the chip has eight blocks of 512 processing elements. At the
center of each block is a twin cell DRAM array with 128 rows and 512 columns. Sense
amplifiers are placed at the bottom of the DRAM array. Arrays of 256 logic units are
placed above and below the DRAM array.

The chip has five supplies. Interface circuits use a 3.3-V supply, Vuw, and a ground
supply, V;;. Input and output levels are compatible with standard 3.3-V parts. Wordline
drivers and platelines use a distinct 3.3-V supply, Vpe. Internal circuits use a 2.5-V
supply, Vpp, and a ground supply, Vss.

25
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256 Logic Units

DRAM Memory

512 Processing Elements 512 columns
128 rows

256 Logic Units

512 Processing Elements 512 Processing Elements
512 Processing Elements 512 Processing Elements
512 Processing Elements 512 Processing Elements

Figure 2.1: Chip organization.
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Figure 2.2: Twin cell dynamic memory.

2.2 Twin Cell Dynamic Memory

A dynamic twin cell structure is used to implement processing element memory. Twin
cell structures were used in 4Kb and 18Kb DRAM devices [5, 6, 7]. More recently, a twin
cell structure was used to implement a word redundancy array in a 16Mb DRAM device
[8].

In a twin cell dynamic memory, two identical cells are used to store each bit. As
shown in Figure 2.2, each cell consists of a transistor and a storage capacitor. A 0 is
stored by establishing a high potential at storage node S, and a low potential at storage
node S;. Conversely, a 1 is stored by establishing a high potential at S; and a low
potential at Sy. A read operation begins with the bitlines, BL and BL, precharged to a
common potential. Driving the wordline, w/, high causes charge sharing between the
bitlines and storage nodes. The initial potential difference between the two storage
nodes results in a differential signal on the bitlines.

The charge capacity of the cell is defined by

Qc = Cs(Vsy — Vsi)

where Cs is the capacitance of the storage node, Vsy is the stored high potential, and Vi
is the stored low potential. Assuming the wordline is driven sufficiently high to equalize
the bitline and storage node potentials, the nominal twin cell read signal magnitude is

Qc _ Vsu-Vsi
Cpr+Cs Cpr/Cs+1

where Cpr is the total capacitance of the bitline nodes.

A large charge capacity is desirable not only to provide a large read signal, but also 4
to obtain a low soft error rate. Soft errors occur when electron-hole pairs produced by
energetic particles upset stored data. A cell’s sensitivity to energetic particles depends
on the critical charge: the amount of charge needed to change the state of the cell. The
critical charge is equal to the difference between the cell charge capacity and the amount
of charge needed for proper read operation. Soft error rates increase exponentially with
decreasing critical charge [9].

Three primary objectives in the design of dynamic memory cells are small cell area,
large charge capacity, and small bitline capacitance. A smaller cell allows integration

AV =
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Figure 2.3: Twin cell schematic.

of more memory per unit area. Larger charge capacity and smaller bitline capacitance
increase the read signal magnitude, making faster read operations possible. Larger
charge capacity decreases the soft error rate.

To provide a large charge capacity in a small cell area, a structure with a large capac-
itance per unit area is required. 'n standard CMOS technologies, the largest capacitance
per unit area is the oxide capacitance between channels and gates.

Figure 2.3 shows the twin cell used to implement processing element memory. The
storage capacitors are formed using n-channel devices. The plateline, pl/, is tied to a
high-potential supply, so that there are inversion layers under the gates of the storage
devices, Msp and Ms;. The principal storage capacitance is the parallel combination
of the oxide capacitance between the channel and the plateline and the capacitance
between the channel and the p-channel silicon bulk.

Figure 2.4 shows the twin cell layout. Figure 2.5 shows a cross section extendmg
through the center of a bitline. A similar cell structure has been employed in mem-
ories with one cell per bit [10, 11, 12, 13]. The bitlines run vertically in first-level
metal (metall). The wordline runs horizontally in polysilicon (poly). Second-level metal
(metal?) is used to provide a low-resistance wordline shunt, mwl.

The bitlines are formed using metal to minimize bitline capacitance. First-level metal
area and perimeter capacitances are roughly an order of magnitude lower than diffu-
sion area and perimeter capacitances. With first-level metal claimed by the bitlines, the
wordline must be formed using polysilicon. The contacts used to connect the bitlines to
the sources of the transfer devices, Mrg and Mr;, are shared by adjacent cells, minimiz-
ing area per cell and bitline capacitance per cell. Table 2.1 presents calculated electrical
parameters for the cell.

To maximize density, most DRAM devices are implemented using only one cell to
store each bit. Each cell is connected to one bitline. For proper read operation, a ref-
erence potential must be established on the complementary bitline. This may be ac-
complished by setting the bitline precharge potential to an appropriate value or by
employing a dummy cell. Both approaches require very careful analysis of cell charac-
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Figure 2.5: Twin cell cross section.
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Table 2.1
Twin Cell Electrical Parameters
storage capacitance Cs 45 fF
bitline capacitance CBL/cell 3 fF
wordline capacitance Cwi/twincell 12 fF
bitline-wordline capacitance CBr-wi 1 fF
polysilicon wordline resistance Rwitwincell 100 Q
metal wordline resistance Rmwijtwincen 600 mQ

teristics to insure that the reference potential will provide roughly equal 0 and 1 read
signals. The detailed technology information needed to complete a precise analysis was
not available. Therefore, a design with cne cell per bit was not attempted.

2.3 Rows

In all memory cell schematics of the previous section, the wordlines are drawn horizon-
tally and the bitlines are drawn vertically. This convention corresponds to the physical
structure of the memory array. Each row of cells shares a wordline; each column of
cells shares a pair of bitlines. This section discusses row design: the structure cf the
wordlines, the wordline driver circuit, and the address decode circuits that control the
wordline drivers.

2.3.1 Wordlines

Polysilicon wordline resistance sets a practical limit on the number of columns between
connections of the polysilicon wordline to the metal wordline. If there are too many
columns between connections, the voltage near the center of polysilicon wordline spans
will not respond quickly to the wordline driver. Similarly, metal wordline resistance sets
a practical limit on the total number of columns per wordline. If there are too many
columns per wordline, the far end of the metal wordline will not respond quickly to the
wordline driver.

Wordline behavior may be evaluated analytically. The time required for the output
voltage of a circuit to go from ten percent of its full transition to ninety percent of its
full transition is called the rise time. In response to a step potential input, the rise time
of a distributed RC network is approximately 0.9 RC [14, pages 198-202], where R is
the total resistance and C is the total capacitance.

In response to a step potential input applied to connections between a polysilicon
wordline and a metal wordline, the rise time at the center of polysilicon wordline spans
is

2
m
twi10-90 = 09- (?) * Rwl/twincell . Cwl/twlncell
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Table 2.2 Table 2.3
Polysilicon Wordline Rise Time Metal Wordline Rise Time
columns per columns per
mwl-wl connection rise time (ns) metal wordline rise time (ns)
m twi,10-90 n tmwl,10-90
16 0.1 128 0.1
32 0.3 256 0.4
64 1.0 512 1.7
128 4.0 1024 6.8
256 16.1

where m is the number of columns between connections. The calculated rise times
for several values of m are presented in Table 2.2. The final design has 64 columns
between connections, corresponding to a 1.0 ns polysilicon wordline rise time. Fewer
connections would result in an unacceptably large rise time. More connections would
increase the size of the array but would not provide a significantly smaller rise time.

In response to a step potential input applied to one end of a metal wordline, the rise
time at the other end is

tmwl,10-90 = 0.9 n?. Rmwijtwincell * Cwijtwincell

where n is the number of columns per metal wordline. The calculated rise times for
several values of n are presented in Table 2.3. The final design has 512 columns per
metal wordline, corresponding to a 1.7 ns metal wordline rise time. Shorter metal word-
lines would require a considerable increase in chip area. A design with 256 columns per
metal wordline would be implemented as sixteen blocks of 128 processing elements.
The number of address decoders and logic timing circuits would be twice the number
in the eight-block design. Chip area would be roughly 4% larger.

Speed is one of two critical issues influenced by wordline structure. The other issue
is crosstalk. There are significant parasitic capacitances between bitlines and word-
lines. Therefore, bitline transitions may cause transient voltage changes on wordlines.
If crosstalk magnitude is too large, a bitline transition may produce a large positive
transient on an inactive wordline that partially turns on transfer devices, altering the
state of storage nodes.

Crosstalk magnitude at a transfer device depends on the resistance between the gate
of the transfer device and the wordline driver. If the resistance is very high, crosstaik
magnitude is limited only by the ratio of the capacitance between bitlines and word-
lines to the capacitance between wordlines and bulk silicon. If the resistance is lower,
crosstalk magnitude is limited by the product of the resistance, the capacitance between
bitlines and wordlines, and the speed of bitline transitions.

Maximum total crosstalk magnitude is the sum of the crosstalk-induced voltage from
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the ends of a polysilicon wordline span to the center of the span, vy and the crosstalk-
induced voltage at the far end of the metal wordline, vmwi. The wordline current per
cell produced by a bitline transition is Cpy-wi - dvpL/dt, where dvp/dt is the rate of
change of the bitline voltage. If all cells are subjected the same bitline transition, the
crosstalk component corresponding to the polysilicon wordline is

dvpt

m
Uyl = [1 +2+...+ 5—] * Rwijtwincell - CBL-wi * ar

and the crosstalk component corresponding to the metal wordline is

dv
Umwi = [1 +2 + ... + 1] - Rmwi/twincell * CBL-wi * jd'%

Fortunately, the wordline structure chosen according to speed concerns also keeps
crosstalk quite low. With m = 64 columns between polysilicon wordline connections
and n = 512 columns per metal wordline, a very rapid bitline transition, dvp;/dt =
1 V/ns, would produce crosstalk components vy, = 38 mV and vy = 67 mV. Fur-
thermore, as described in Section 2.4, bitline swings are generally balanced. The poten-
tials of the two bitlines in each column change in opposite directions and the crosstalk
effects cancel.

2.3.2 Wordline Driver

The wordline driver circuit, shown in Figure 2.6, has three primary components: a level
converter, large pull-up and pull-down devices, Mp; 7, and a pull-down device, Mys, that
is part of a wired-OR structure. The large pull-up and pull-down devices are separated
from the level converter by an inverter, Mp n2. Pull-un current is supplied by Vpp, a
3.3-V supply.

The wordline driver input, in, is driven by an address decoder. The address de-
coders use the 2.5-V supply, Vpp. The wordline driver must therefore include a level
converter. The level converter is formed using cross-coupled p-channel devices, Mp3 4,
two n-channel pull-down devices, My3 4, and an inverter Mpsns. The n-channel pull-
down devices are sized to quickly overpower the cross-coupled p-channel devices so
that short-circuit currents are low and transitions are fast. Devices Mp3 n3 are larger
than Mpg N4 because they must drive the gates of devices Mp; and Mp..

2.3.3 Address Decode Circuits

Address decode circuits use the binary addresses specified by array instructions to
produce 128 wordline driver inputs. A simple implementation would use a column
of 128 seven-input AND circuits. Lines carrying the address input signals and their
complements run through the column. Each AND input is connected to an input signal
or its complement. The connection pattern establishes the mapping between input
addresses and wordlines. Each of the fourteen address lines serves 64 AND inputs.
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Figure 2.7: Address predecoder.

The actual implementation uses a predecoding scheme to reduce the complexity
of the pitch-matched circuits and to reduce the loading on the address lines [15]. As
shown in Figure 2.7, binary address signals a¢-¢ are used to generate fourteen “prede-
coded” address signals. Twelve of the predecoded signals are produced by three 2-to-4
decoders. The remaining two signals represent a6 and its complement.

The address decoder, shown in Figure 2.8, is pitch-matched to memory rows. A
single decoder serves four wordlines; a column of 32 decoders serves a full memory
array. Lines carrying the predecoded address signals run through the column of address
decoders. The layout pitch of small two-input AND circuits matches the row pitch. The
layout of the four-input AND gate fits within four row pitches. Each of the twelve address
lines carrying signals from the 2-to-4 decoders serves only 32 AND inputs.

Each two-input AND circuit takes input from the four-input AND and from one of
the four address signals generated from a; and a,. Each four-input AND circuit takes
input from one of the four address signals generated from a3 and a2z, from one of the
four address signals generated from as and a4, from one of the two address signals
generated from as, and from a timing signal wl.
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Figure 2.8: Address decoder.

2.4 Columns

The logic unit, pitch-matched to DRAM columns, is perhaps the most distinct element
of the integrated processing element array. This section covers the sense amplifier and
all of the circuits comprising the logic unit. The circuits are physically arranged in
the following order: 1) sense amplifier, 2) write driver, 3) latch A, 4) interconnect logic,
5) function generator, 6) latches B, C, D, and E, and 7) write logic. The discu:- sion follows
the same order.

2.4.1 Sense Amplifier

Wordline activation produces a small read signal on the bitlines. The signal must be
amplified, and the original state of the storage capacitors must be restored. Before the
next memory operation, the bitlines must be precharged to a common potential. The
sense amplifier performs these functions.

Figure 2.9 shows the sense amplifier. At the beginning of a read operation, if a
wordline is high it is driven low. Then the source of the p-channel cross-coupled pair,
sap, is driven low and the source of the n-channel cross-coupled pair, san, is driven high,
turning off the cross-coupled devices. Signals eq and pc are driven high, equalizing and
precharging the bitlines through devices My3, Mys4, and Mys. After the bitline potentials
settle, signals eq and pc are driven low, isolating the bitlines from each other and from
node vpc. Next, the selected wordline is driven high, producing a signal on the bitlines.
Finally, sap is driven high and san is driven low, amplifying the signal through the two
cross-coupled pairs.

Devices Mp;, My1, Mp2, and My are each implemented using two transistors with
common drain, gate, source, and bulk connections. The two transistors comprising each
device share a common n-diffusion drain. The n-diffusion source of one transistor is to
the left of the drain. The source of the other transistor is to the right. This arrangement
suppresses mismatches due to processing variations and minimizes layout area [16].

A pair of bitlines is equalized through device My3. The purpose of devices Mys and
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Mys is to equalize the potentials of all bitlines, so that all sense amplifiers begin signal
amplification at the same time. If the precharged potentials varied from column to
column, amplification would start earlier in some columns than others. Crosstalk from
columns where amplification starts early, to columns where amplification starts late,
could cause read errors.

The sense amplifier controls bitline operating voltages. The maximum sap voltage
and the minimum san voltage are the maximum and minimum bitline voltages. The
bitline precharge voltage may be controlled by driving vpc to the desired level. The
choice of operating voltages affects the charge capacity of the memory cells, power
dissipation, speed, and layout area.

Charge capacity considerations are relatively simple. As explained in Section 2.2,
the charge capacity of the cell is proportional to the difference between the high and
low stored potentials. These potentials depend on maximum sap and minimum san
voltages.

As a bitline is pulled down through the sense amplifier, there is an increase in the
gate-source voltage of the transfer device connected to the bitline and the active word-
line. The corresponding storage node potential follows the bitline potential. Thus, with
san driven down to the Vgs supply, the stored low potential is O V.

When a bitline is pulled up through the sense amplifier, the transfer device turns
off as the difference between the wordline potential and the storage node potential
approaches the device’s threshold voltage. Body effect increases the threshold voltage.
Given the wordline high level, 3.3 V, driving bitlines higher than the Vpp supply, 2.5 V,
would not increase the stored high potential. So sap is driven up to the Vpp supply. The
stored high potential is 3.3 V — V1, where V7 is the threshold voltage of the transfer
device.

Power dissipation, speed, and layout considerations are more complex. They are all
relevant to the choice of the bitline precharge potential, Vpc.

A large component of memory power dissipation is the dissipation due to bitline
charging and discharging. Bitline power dissipation may be calculated by summing the
amount of charge taken from the Vpp supply. To precharge the bitlines, the bitline
potentials may be equalized, then charged or discharged to the precharge potential.
The charge taken from the supply is

Qe = 2 (Vpc — Vpp/2)Cp, if Vpc > Vpp/2
pe 0, if Vpc < Vpp/2.

where Cp is the bitline capacitance. During signal amplification the sense amplifier
pulls up one bitline to Vpp. The charge taken from the supply is

Qamp = (Vpp — Vpc)Cpr.
The total amount of charge used per cycle is given by

QBL = Qamp + Qpc = (Vpp/2 + |Vpc = Vpp/2|) CBr.
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Thus bitline power dissipation per column is given by

_ VYopQeL _ Voo (Vop/2 + |Vec — Vpp/2|) CaL

Pg
t cycle t cycle

where t e is the cycle time.

Precharging the bitlines to Vpp/2 clearly minimizes bitline power dissipation. But
this advantage had to be balanced against other considerations: signal development
speed, sense amplifier complexity, required support circuits, and other components of
memory power dissipation. A 16Mb DRAM design team found that these other consid-
erations outweighed the bitline power savings [8],

For DRAM cells implemented using n-channel devices, lower bitline precharge poten-
tials provide faster signal development. Transfer devices are turned on as soon as the
difference between the active wordline potential and the precharge potential exceeds
the transfer device threshold voltage. Once the active wordline is at its maximum volt-
age, the gate-source voltages of the transfer devices are greater when the bitline voltage
is lower.

With bitlines precharged to Vpp/2, both n-channel and p-channel cross-coupled pairs
are active during initial signal amplification and source nodes of both pairs must be
controlled. With bitlines precharged to ground, only the p-channel cross-coupled pair
is active during initial signal amplification. Thus, mismatches between the n-channel
cross-coupled devices do not produce significant amplifier offset. So the n-channel
devices may be relatively small devices with minimum gate length. The sources of the
n-channel cross-coupled devices may be connected directly to ground.

Lower bitline precharge potentials allow use of smaller precharge and equalization
devices. With bitlines precharged to Vpp/2, the gate-source voltage on the equalization
and precharge devices is only Vpp/2. With bitlines precharged to ground, the gate-
source voltage on the equalization and precharge devices is Vpp.

With smaller devices, sense amplifier designs using bitlines precharged to ground
require less area than Vpp/2 designs. In addition, with smaller devices and no need
to vary the source node voltage of the n-channel cross-coupled pair, the collection of
circuits that drive sense amplifier control signals dissipates less power.

In a conventional DRAM device with a short access time, precharging bitlines to
Vop/2 generally requires a precharge voltage generator. Bitlines are precharged at the
end of operation cycles. That way, precharge time does not contribute to access time.
The Vpp/2 bitline precharge voltage may be established by equalizing the bitline poten-
tials, but there is no guarantee that one operation cycle will be immediately followed by
another. So, unless bitlines are actively held at Vpp/2, bitline voltages may drift above
or below Vpp/2 before the beginning of an operation cycle. Such changes undermine
sense amplifier operation. The Vpp/2 voltage generators necessary to prevent bitline
voltage drift require power and layout area.

For the cell design, operation timing, and circuit structures employed in this work,
the bitline power savings of a Vpp/2 design outweighs all of the other considerations.
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If the DRAM cell array were formed using p-channel devices, signal development with
bitlines precharged to Vpp/2 may have been too slow. But, with the n-channel array,
signal development time is less than the latency of the corresponding timing circuits.
A voltage generator is not necessary since bitlines are equalized at the beginning of
instructions. The sense amplifier requires somewhat more area and somewhat more
complex driver circuits than would be necessary with bitlines precharged to ground. But
the area cost is very small relative to the area of the memory column, and the additional
power dissipated in the driver circuits is far less than the bitline power savings.

2.4.2 Write Driver and Latch A

As shown in Figure 2.9, the write driver comprises two devices, Mys and My7. The de-
vices are sized so that they will overpower devices Mp; and Mp,. During write operations,
WRO goes high to write a 0 and WR1 goes high to write a 1.

When control signal /a is high, latch A captures the result of read operations. As
shown in Figure 2.9, the latch is implemented using the same structure as a six-transistor
SRAM cell. This structure requires only one control signal, maintains its state during
periods of inactivity, and does not require much layout area.

Latch A drives the input of a series of two inverters, Mps n;2 and Mpg n;3. The output
of inverter Mps n12, A, goes to the function generator. The output of inverter Mpg ni 3, A,
goes to the function generator and to four neighboring processing elements.

2.4.3 Interconnect Logic and Function Generator

The function generator and processing element interconnect logic are combined in a
single dynamic gate, shown in Figure 2.10. At the beginning of instructions, control
signal fp is low, precharging node F/ through device Mp;. The twelve evaluate signals,
f7-0, and fusew are all low, so there is no static power dissipation. Later, fp goes low,
isolating FI. Then, the evaluate signals specified by the instruction go high. After an
interval long enough for a single NAND stack to pull down node I, the specified evaluate
signals return low.

Signals from four neighboring processing elements go to four two-transistor NAND
stacks. If a neighbor input signal is high and the corresponding evaluate signal goes
high, the evaluation node, Fl, is pulled down through a NAND stack.

The function generator evaluate signals, f7-o, correspond to output values of a truth
table. Signals from latches A, B, and C enable only one of the eight four-transistor
NAND stacks. The function generator result is determined by the corresponding eval-
uate signal. If the evaluate signal goes high, node F/ is pulled down through the stack.
Otherwise, FI stays high unless pulled down by the interconnect logic.

In general, large dynamic gates suffer from charge sharing between the evaluation
node and internal nodes. To avoid charge sharing problems, the data input signals from
neighboring processing elements and from latches A, B, and C must be stable before
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control signal fp goes low. That way, internal nodes in the NAND stacks are precharged
along with node FI. Transistors connected to evaiuate signals are placed at the bottom
of the NAND stacks so that they do not isolate any of the internal nodes from node FI.
To avoid logic errors, the data input signals must remain stable until all the evaluate
signals return low.

2.4.4 LlatchesB,C,D,and E

As shown in Figure 2.11, Latches B, C, D, and E are all implemented using the same
six-transistor SRAM structure as for latch A. Internal nodes of the latches, 8, B, C, C,
D, D, and E, are directly connected tc function generator and write logic devices, avoid-
ing the area rcguirements of buffers. Despite the small size of the p-channel devices,
simulations indicate that the rise and fall times of the internal nodes are under 2 ns.
The results also indicate that short-circuit currents in the latches are small relative to
total latch current. The function generator evaluate signals and the write logic control
signal, wr, are all low when the latches change state. Thus, latch transients do not cause
short-circuit current in the function generator or write iogic.

2.4.5 Write Logic

The write logic, shown in Figure 2.11, is quite simple. Two three input NAND gates
control the write signals WR1 and WRO. Both write signals are low whenever the control
signal wr is low and whenever the latch E holds value 0. Whea latch E holds value 1
and wr goes high, the write signals depend on the value held in latch D. If latch D holds
value 1, WR1 goes high and WRO stays low. If latch D holds value 0, WR0 goes high and
WR1 stays low.

2.5 Timing

The timing of the control signals for the wordline drivers, sense amplifiers, and logic
circuits must be coordinated to insure proper processing element operation. Several
general techniques are available to implement timing control: input clocks, custom tim-
ing logic, and dummy circuits. Control with input clocks allows timing to be optimized
for the characteristics of fabricated devices, but each additional input clock increases
the complexity of board-level circuits. Control with custom logic is often simple, but
logic delays cannot be reliably matched to processing element circuit speed. Dummy cir-
cuits provide excellent matching, but sometimes it is not possible to construct suitable
structures. The final design combines all three techniques.

Figure 2.12 shows the timing for the processing element circuits. Clock signals from
two chip input pads are used to generate four internal clock signals, p00, p01, p11, and
p10. Instructions begin on the rising edge of p00. Bitline potentials are equalized and
precharged at the beginning of read and write instructions. The dynamic logic gate and
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latches B, C, D, and E are active during the same interval. Signal p01 triggers the sensitive
portion of memory operations. Equalization is completed, the selected wordline, wi;, is
driven high, and the sense amplifier is activated. During write instructions, pi 7 activates
the write driver. During read instructions, p10 activates latch A.

The wired-OR circuit shown in Figure 2.13 is used to detect wordline transitions. The
circuit is active when signal wix is high. Each of the 128 wordline drivers includes an
n-channel pull-down device connected to node wli. Devices Mys_;2 are sized so that
the current through device Mps is less than one-sixteenth the saturation current of one
pull-down device. Devices Mps and Mpg are sized so that the maximum current through
Mps is less than one-fourth the saturation current of one pull-down device. When the
selected wordline goes high, the corresponding pull-down device turns on. Node wli
goes low. The output, wig, follows wii. When the selected wordline goes low the pull-
down device turns off, node wili is pulled up through Mps, and node wig goes high. When
signal wix is low, the current through devices Mps and Mys_ 12 stops and wii is held low
by device Mna4.
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A dummy dynamic gate corresponds to the interconnect logic and function gener-
ator. A dummy latch corresponds to latches B, C, D, and E. While p00 is high, these
dummy circuits are used to control the timing of signals f7_o, fn,s.ew, fp, b, Ic, Id, and
le. Detailed timing control diagrams are provided in Appendix D.

2.6 Processing Element Interconnection

With logic units placed above and below DRAM columns, a block of 512 processing
elements has two large rows of logic units. The complete chip, with four pairs of two
blocks, has only eight rows of logic units. Thus, the 4096 processing elements on the
chip are in a 512 x 8 arrangement.

The I/0 bandwidth required to extend the processing element interconnection net-
work across chip boundaries is proportional to the perimeter of the on-chip array. The
perimeter of a 512 x 8 array is over four times greater than the perimeter of a 64 x 64 ar-
ray. Even for a 64 x 64 array, interchip communication requires a large number of pads
and considerable power. Thus, the physical arrangement of the processing elements is
not a good logical organization.

Fortunately, the 512 x 8 arrangement can be “folded” to form a 64 x 64 array. Fig-
ure 2.14 illustrates the technique. Processing elements in an 8 x 2 physical arrangement
are interconnected to form a 4 x 4 array. In the physical structure, a horizontal con-
nection passes through each processing element. These connections correspond to the
horizontal connections in the 4 x 4 array. For example, the connection between pro-
cessing elements 0,0 and 0,1 passes through processing element 1,0.

The 512 x 8 arrangement of the 4096 processing elements on the chip is folded
to form a 64 x 64 array. Eight horizontal connections pass through each processing
element. These connections account for almost 15% of the total logic unit layout area,
so the implementation of the connections demanded careful consideration.

FastCap, a numerical capacitance extraction program, was used to evaluate the lay-
out of the lines forming the connections. Both first-level metal and polysilicon were
considered. Results are shown in Table 2.4. The distance between metal and bulk sili-
con is greater than the distance between polysilicon and bulk silicon. Sc the parasitic
capacitances between metal lines and ground are relatively small. But metal lines are
much thicker than polysilicon lines and thus parasitic capacitances between adjacent
metal lines are relatively large. Considering all parasitic capacitances, for the small line
pitch, metal lines exhibit larger worst-case effective capacitance. Therefore, horizontal
connections are implemented using polysilicon lines.

2.7 Interchip Communication

For the 64 x 64 array, simply extending the on-chip wiring to connect processing ele-
ments between chips would require 512 pads: one input pad and one output pad for
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Figure 2.14: An 8 x 2 block of processing elements, (a), interconnected to form a 4 x 4
array, (b).

Table 2.4
Properties of Horizontal Processing Element Interconnection Lines
Actual Alternative
Polysilicon Metal
Implementation Implementation
line width 0.76 ym 1.14 ym
line spacing 1.52 ym 1.14 ym
line-bulk capacitance CLs 20 fF 11 fF
line-line capacitance Crr 1fF 5 fF
nominal effective capacitance Cip +2C1L 22 fF 21 fF

worst-case effective capacitance Cip +4Cr1 24 fF 30 fF
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Figure 2.15: Interchip communication multiplexer.

each of the 256 perimeter processing elements. Bidirectional pad circuits and multi-
plexers are used to implement interchip communication with only 64 pads.

As shown in Figure 2.15, a single pad serves four perimeter processing elements.
Processing element signals are multiplexed using four non-overlapping internal clock
signals, n00, no1, n11, and n10. The four clock signals are generated using clock sig-
nals from two chip input pads. Each of the four internal clock signals is high during
one-quarter of the clock cycle. When control signal DRV is high, signals from the four
processing elements are driven to an adjacent chip through the pad. When control sig-
nal RCV is high, signals from processing elements on an adjacent chip are captured by
latches 00, 01, 11, and 10.

As shown in Figure 2.16, four signals, NORTH, SOUTH, EAST, and WEST, are used
as DRV and RCV signals in the multiplexer circuits. The four signals correspond to
communication direction. For example, when signal NORTH is high, circuits serving the
bottom edge of the array drive data to an adjacent chip and circuits serving the top
edge of the array receive data from an adjacent chip. To minimize power dissipation
the interchip communication circuits are only active when necessary.

2.8 Image Input/Output

Dedicated serial-access memories transfer image data to and from the processing ele-
ment array. As shown in Figure 2.17, the memories are incorporated into the processing
element interconnection network. The 64 x 64 processing element array is conceptually
divided into four 64 x 16 groups. Sixty-four serial-access memory cells are placed at
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the bottom of each group. Each serial-access memory cell is connected to a processing
element in the bottom row of the group. The serial-access memory cells are connected
together to form two serial access memories.

Figure 2.18 is a functional representation of the serial access memory cell. The cell
is comprised of two latches and a multiplexer. The cell sits between two connected pro-
cessing elements. Input signal Ny is from latch A of the processing element above the
cell. Input signal Sy is from latch A of the processing element below the cell. Output
signals Noyr and Soyr g0 to the processing elements above and below the cell, respec-
tively. During normal operation, control signal STR is low, so the multiplexer passes the
the Sy input to the Noyr output.

The signal from the preceding cell is captured by latch 1 when control signal SCK1
is high. The signal from latch 1 is captured by latch 2 when control signal SCK2 is high.
Alternate SCK7 and SCK2 pulses move data through the cell. The control signals for
the cell are independent of the control signals for the rest of the chip, thus image data
may be transferred through the serial-access memories using clock frequencies different
from the operating frequency of the processing element array. In addition, image data
may be transferred while the processing element array is active.

To transfer image data from the cell to the processing element array, control signal
STR goes high so the multiplexer passes the signal from latch 1 to the Noyr output. To
transfer data from the processing element array to the cell, control signal SLD goes high
and latch 2 captures the Ny input.

2.9 Perimeter Circuits

This section describes two of the more critical perimeter circuits, the line driver circuit
and the 1I/0 pad circuit.

2.9.1 Line Driver

Forty-one third-level metal lines carry address signals, control signals, and clock signals
from circuits near the perimeter of the chip to the address and control circuits located
between blocks of processing elements. These lines, running vertically through the
center of the chip, are over 7 mm long. With minimum width and spacing, the lines fit
over the address and control circuits. But the capacitive coupling between neighboring
lines causes crosstalk. As a line switches state, the drivers for neighboring lines must
sink or source current. Since driver output conductance is finite, the current produces
a transient voltage change.

The metal lines can be modeled by capacitors between each line and ground, and
capacitors between neighboring lines. Crosstalk magnitude depends on the size of the
capacitance between neighboring lines relative to the size of the capacitance between
each line and ground. The capacitance between neighboring lines is about 500 fF. The
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Figure 2.18: Serial-access memory cell. Solid lines represent data signals. Dashed lines
represent control signals. When SCK1 is high, latch 1 captures signal /IN. When SCK2 is
high, latch 2 captures the output of latch 1. When SLD is high, latch 2 captures signal
Nin.

capacitance between each line and ground is about 300 fF. Crosstalk is therefore a
significant concern.

Many of the metal lines carry internal clock signals. Glitches on these lines due
to crosstalk would result in logic faults. With a simple cascaded-inverter driver circuit,
crosstalk would be unacceptably large. Reducing the strength of the driver doesn’t help:
transitions are slowed, reducing currents, but driver output conductance is lower, so
currents produce larger voltage changes.

A more complex driver circuit, shown in Figure 2.19, lowers crosstalk using feedback.
The circuit has two pairs of driver devices, Mp; n; and Mp, n2. Devices Mp; 2 are three
times larger than devices Mp; n;. When the input, IN, changes state, Mp2 and My are
both turned off. The output, OUT, is pulled up by Mp; or pulled down by My;. After the
output transition is complete, Mp, or My is turned on to assist Mp; or My;. Thus, the
output conductance of the driver is much greater when the driver is holding its output
steady than when it is switching its output.

Simulations with the simple cascaded-inverter driver and the low-crosstalk driver
demonstrate the advantage of the latter design. Figure 2.20 shows results of simulating
a driver holding a line low while other drivers switch neighboring lines low to high.
Wwith cascaded-inverter drivers, capacitance between neighboring lines produces a 750-
mV glitch. With low-crosstalk drivers, crosstalk does not exceed 400 mV.

2.9.2 Pad Circuit

The chip has three types of signal pads: three-state pads, input-only pads, and output-
only pads. Input-only and output-only pad circuits are derived from a three-state circuit.
Two special supplies are used for the pad circuits: Vyy, a 3.3-V supply, and v,,, a ground
supply. These supplies carry pad input and output currents. They are distinct from Vpp
and Vss, the 2.5-V and ground supplies used for internal circuits.
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The three-state pad circuit, shown in Figure 2.21, is based on a pad circuit developed
for low-voltage chips [17). The pad is tied to a pull-up device, Mp;, and a pull-down
device, My;. The pad pull-up device is controlled by input signal ONE through a level
converter. The level converter comprises cross-coupled p-channel devices, Mpg g, tWo
n-channel pull-down devices, Mys g, and an inverter Mpjo,n10. The pad pull-down device
is controlled by input signal ZERO through an identical level converter. When ONE is low
and ZERO is high, the pad is pulled high. When ONE is high and ZERO is low, the pad
is pulled low. When both ONE and ZERO are high, both Mp; and My; are off and the
pad may be used to receive input signals. The fourth possible input condition, ONE and
ZERO both low, is not useful, and would result in large currents through the pad pull-up
and pull-down devices.

The relative strength of the cross-coupled p-channel devices and the n-channel level
converter pull-down devices is critical. The n-channel devices must overpower the p-
channel devices. The maximum gate-source voltage on the p-channel devices is 3.3 V.
The maximum gate-source voltage on the n-channel devices is 2.5 V. The n-channel
devices are sized so that they have over three times the saturation current of the p-
channel devices, taking into account the difference in gate-source voltage.

The devices that drive the gates of pad pull-up and pull-down devices are sized so
that the pull-up and pull-down devices are turned off more quickly than they are turned
on. The speed difference reduces the short-circuit current that results when ONE and
ZERO change simultaneously. The pull-up and pull-down devices are sized to insure that
pad rise and fall times are less than 5 ns when the total load is 30 pF.

Two inverters, Mp;3 513 and Mp; 2 N1 2, buffer input signals from the pad and perform
level conversion. The first inverter, Mp;3n;3, is protected from electrostatic discharge
by an n-well resistor, a thick oxide transistor with a second-level metal gate, and the
diodes formed by the drain-bulk junctions of the pad pull-up and pull-down devices.

The stacks of n-channel and p-channel devices, My14-2; and Mpj4-;7, were not
present in the first fabrication run. They have been added to the circuit for future
runs. The devices hold the pad potential low or high when all connected drivers are
off. In doing so, they prevent the large short-circuit currents that would flow through
inverters Mp;3n13 and Mp;, n;2 if the pad potential drifted midway between Vyy and
V... The sizes of the devices and the number of devices in each stack were chosen so
that the magnitude of the output current is about 100 mA when the pad voltage is 0.8 V
and when the pad voltage is 2.0 V. These voltages are common input-low and input-
high voltages for 3.3-V parts. Devices My;s-2; and Mp;s—;7 could be replaced with a
single long n-channel device and a single long p-channel device. Stacks of devices were
employed so that the circuit can be more accurately simulated with models optimized
for short channel lengths.
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2.10 Design Process

A large collection of software was employed to complete the integrated circuit design
work. As preliminary architecture plans were completed, Cadence Design Systems made
a large suite of tools available to students at the M.L.T. Microsystems Technology Labo-
ratories. The design flows used for the integrated circuit work were based on many of
the Cadence tools.

The pitch-matched circuits required full-custom design. It was seldom difficult to
conceive circuits that simply performed the required functions, but it was often difficult
to create circuits that also met the pitch constraints. The design of each circuit began
with schematic drawings on paper. Then time-consuming layout development was per-
formed using Magic, a layout editor developed at the University of California at Berkeley
[18]. Stable technology files provided by MOSIS were used with a few simple modifica-
tions. Magic provides a fine user interface and continuous design-rule checking. These
features make it an excellent tool for creative work. However, there are no convenient
facilities for verifying the consistency of Magic layout data and corresponding schematic
diagrams.

When each circuit layout was completed, a Magic format conversion facility was used
to produce a layout description in Stream format. Then a Cadence format conversion
facility was used to read the Stream data and incorporate the layout into a Cadence
Design Framework II library. The Cadence Virtuoso layout editor was used to clean up
the results of the translation process and to add connectivity information.

After finishing the work with Virtuoso for each circuit, a schematic diagram was
prepared using the Cadence Composer schematic editor. Then the Cadence Diva design
rule checker, layout parameter extraction, and layout versus schematic tools were used
to verify the circuit design. The Cadence Analog Artist environment was used to pro-
duce a netlist from the extracted layout for the Meta-Software HSPICE circuit simulator.
Simulation results were used to verify circuit functionality and adjust transistor sizes.

Arranging and verifying groups of processing elements required a different design
flow. Starting with a group of four processing elements, a block of 512 processing ele-
ments was implemented using six levels of hierarchy. Schematic diagrams for each level
were laboriously prepared using Composer. Groups of cells were physically arranged
and connectivity information was added using Virtuoso. Each level was verified using
Diva.

The Cadence SKILL programming language was used to physically arrange blocks of
512 processing elements and add connectivity information. SKILL was used in the same
manner for pad circuits. Lines connecting perimeter circuits to the blocks of processing
elements were routed by hand using Virtuoso.

Full-chip verification was performed using the Diva tools on a Sun Ultra 1 Model 140
workstation with 196MB RAM and 2.5GB disk space for virtual memory and temporary
files. A hierarchical design rule check took about seventeen hours. The consistency
of the layout and the schematic diagrams was verified, with memory cells removed, in
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Table 2.5
Layout Area per Processing Element

Processing Flement Memory 7794 um?

DRAM Column 6635 ym?

Vp. Bypass Capacitor 570

Sense Amplifier 589
Processing Element Logic 3437 ym?

Write Driver 220 pym?

Latch A 452

Interconnect Logic 810

Function Generator 890

Latches B, C,D, & E 672

Write Logic 393
Serial-Access Memory 224 pym?
Vop Bypass Capacitor 1247
Other (timing & driver circuits, pads, etc.) 6520

about six hours.

2.11 Summary

This chapter described the implementation of the processing element array. Compact
logic circuits are pitch-matched to DRAM cells to form dense processing elements. Ta-
ble 2.5 shows the the total layout area used by each component of the processing ele-
ments. Processing element logic accounts for less than 20% of the total area. Operation
of the logic and memory is coordinated with only twe clock inputs, no more than are
needed by DRAM chips.

To minimize power dissipation, bitlines are precharged to Vpp/2 and internal cir-
cuits operate with a 2.5-V supply. Actual power dissipation depends not only on the
instruction mix, but also on the input data. Table 2.6 provides power dissipation esti-
mates for typical operation.

The processing elements are interconnected to form a 64 < 64 array. The processing
element interconnection network extends across chip boundaries. A regular wiring pat-
tern maps the physical processing element arrangement to a square array, minimizing
the bandwidth required for interchip communication. To reduce the number of pads,
interchip communication signals are multiplexed. Serial-access memories, incorporated
into the interconnection network, provide an efficient means of transferring image data
to and from the array.

The final design was submitted to MOSIS in July 1996. Parts were received in October
1996. Figure 2.22 is a photomicrograph of the chip. Of the 144 pads, 40 are used for
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Table 2.6
Estimated Power Dissipation

Processing Element Memory 120 mW
Processing Element Logic 104

Latch A 34 mW

Interconnect Logic 13

Function Generator 33

Latch B 5

Latch C 6

Latch D 4

Latch E <1

Write Logic 9
Interchip Communication 44 mW

supply connections, 64 are used for interchip communication, and 8 are used for image
1/0. The remainder are used for clocks and array instructions. Chips are packaged in
ceramic pin grid arrays.
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Figure 2.22: Chip photomicrograph.
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Chapter 3

System Design

This chapter describes how the integrated processing element array is applied to form
the real-time image processing system. Section 3.1 discusses the data path, focusing
on the architecture of the format converters. Section 3.2 discusses the control path,
including the controller architecture. Section 3.3 discusses system software.

The work presented in this chapter is the product of partnerships with other grad-
uate students. The design of the integrated processing element array described in this
thesis overlapped the development of an integrated array employing associative mem-
ory cells {19, 20]. The control path and system software designs support both integrated
circuit architectures [21]. The first controller implementation [22] was used to test and
demonstrate the associative processor. The format converter implementation [23] and
an improved controller implementation [24] are part of the current system.

3.1 Data Path

The integrated processing element array presents two major data path design chal-
lenges. One is common to multiple-chip image processing arrays. The other is common
to bit-serial components. This section discusses the two challenges and the actual data
path design.

3.1.1 Image Organization

A digital image niay be viewed as a three dimensional array of bits, with one dimension
corresponding to image rows, one dimension corresponding to image columns, and the
third dimension corresponding to one-bit componernts of the pixel representation. To
build a large frame buffer, it is natural to use one chip per bit-plane. Pixel data may be
transferred to and from the memory one pixel at a time with the work equally distributed
among chips operating simultaneously. In contrast, to build a large image prec- 2ssing
array, it is natural to divide images into blocks of pixels and use one chip per block.

59
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Figure 3.1: Image organization. (a) A single four-bit pixel. (b) Planar partitioning: one
chip per bit-plane. (c) Spatial partitioning: one chip per block.

That way, processing tasks may be performed with the work equally distributed among
chips operating in parallel.

The two organizations are illustrated in Figure 3.1. Planar partitioning, typical of
frame buffers, divides a 4-bit 8 x 8 image into four bit-planes, each handled by a single
chip. Spatial partitioning, appropriate for parallel image processing, divides the image
into four blocks, each handled by a single chip.

Most imagers, designed for compatibility with television systems, provide data row-
by-row, starting with the top row and ending with the bottom row. Within a row, im-
agers provide pixel values sequentially from left to right. Planar partitioning works well
with this order. But with spatial partitioning, only one chip would be active at a time.
Thus, the I/0 bandwidth of each chip would need to match the output bandwidth of the
imager. To efficiently transfer image data to multiple-chip processing element arrays,
input data must be reordered and divided into multiple sequences, with each sequence
serving a single chip. In that way, the I/O bandwidth of each chip may be a fraction of
the I/0 bandwidth of the imager.

3.1.2 Corner-Turning

The integrated processing element array, like other bit-serial components, operates on
data one bit-plane at a time. Bit-paral'el componrents, including video digitizers, video
encoders, and microprocessors, operate on data one value at a time. In a practical sys-
tem, the processing element array must communicate with bit-parallel components. One
might argue that functions performed by bit-parallel components could be performed
by bit-serial components. But the argument is moot. Bit-serial components are simply
not available.

To efficiently transfer data to and from the processing element memory, “corner-
turning” hardware is required. Input image data provided one pixel at a time must be
presented to the processing element array in bit-plane order. Processed data from the
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Figure 3.2: Four-bit multidimensional access memory.

array in bit-plane order must be presented to subsequent system components one pixel
at a time. The STARAN bit-serial supercomputer system included a multidimensional
access (MDA) memory to perform corner-turning [25). The MDA memory architecture
provides a basis for data path design.

Figure 3.2 shows a small MDA memory that reorders 4-bit, 4-pixel image data. The
MDA memory comprises four 1-bit random-access memories and two “shufflers.” It
accepts data one pixel at a time and provides data one bit-plane at a time.

The MDA memory accepts sequences of four pixel values, a 3.9, b3-0, €3-0, and d3.o.
When a is presented, a shuffler steers bit 0 to RAM 0, bit 1 to RAM 1, bit 2 to RAM 2,
and bit 3 to RAM 3. RAM O stores pixel a data in location 0, RAM 1 stores pixel a data
in location 1, RAM 2 stores pixel a data in location 2, and RAM 3 stores pixel a data in
location 3. When b is presented, the shuffler steers bit 0 to RAM 1, bit 1 to RAM 0, bit 2
to RAM 3, and bit 3 to RAM 2. RAM 1 stores pixel b data in location 0, RAM O stores
pixel b data in location 1, RAM 3 stores pixel b data in location 2, and RAM 2 stores
pixel b data in location 3. Values ¢ and d are stored as indicated in the figure.

After four values are stored in the RAMs, the MDA memory provides a sequence of
four bit-plane data, (ao, bo, co,do), (a1, b1,c1,d1), {a2,b2,c2,d?), and (a3, b3,c3,d3).
The memories read bit 0 data from location 0, bit 1 data from location 1, bit 2 data
from location 2, and bit 3 data from location 3. A shuffler steers data to the appropriate
output lines.

As shown in, Figure 3.3, a 4-bit shuffler may be implemented using two levels of logic,
with four selectors in each level. An n-bit shuffler requires log, n levels of logic, with
n selectors in each level. The logic required to produce addresses for the four RAMs
is simpler. When storing data, the addresses for RAMs 1, 2, and 3 can be produced by
inverting appropriate bits of the RAM 0 address. For example, bit 0 of a RAM 2 address
is the same as bit 0 of the corresponding RAM 0 address. Bit 1 of a RAM 2 address is
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Figure 3.3: Four-bit shuffler. Four selectors are controlled by signal s, and four by
signal s;.

the inverse of bit 1 of the corresponding RAM 0 address.

3.1.3 Design

Two features guided data path design. First, the data path supports real-time image
processing using a standard CCD camera to provide input images, and using an NTSC
display to show processed images. Second, the data path supports complete functional
testing of the integrated processing element array using the host computer to provide
input images and to verify processed images. The data path is designed for 8-bit gray-
scale pixels. Aside from the processing element array, the two format converters are
the principal components of the data path. They handle four-chip 64 x 64 processing
element arrays and sixteen-chip 256 x 256 arrays.

As shown in Figure 3.4, the format converters are implemented using an MDA mem-
ory structure. The input format converter accepts image data from an NTSC video
digitizer or from the host computer through the VMEbus interface. The input format
converter provides raw images to the processing element array. The output format con-
verter accepts processed images from the array and provides image data to an NTSC
video encoder and to the host computer through the VMEbus interface. The digitizer is
connected to a camera. The encoder is connected to a display.

The format converters are more sophisticated than plain MDA memories. The input
format converter performs corner-turning and, at the same time, divides data into mul-
tiple sequences, with each sequence serving a single serial access memory. The output
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Figure 3.4: Format converters.

converter performs corner-turning and produces a standard row-by-row sequence of
pixel values.

Only one multidimensional memory structure is needed for each format converter.
The input format converter accepts data while the camera provides valid picture infor-
mation and provides data to the processing element array during the vertical blanking
interval. The output format converter accepts data from the array during the vertical
blanking interval and provides data to the encoder when valid picture information is
required. Because the vertical blanking interval is a small portion of the field interval, a
much higher data rate is required for transfers to and from the array than for transfers
from the digitizer or to the encoder. Therefore, while 8-bit paths are used for con-
nections from the digitizer and to the encoder, 32-bit paths are used for connections
between the array and the format converters.

3.2 Control Path

The RAM-based processing element array described in this thesis and the asshciative
processing element array are both single instruction stream, multiple data stream \SIMD)
designs. While the processing elements include both memory and logic, they do not
have control structures. Instead, the processing elements share instructions received
from a single controller. The two array designs each have only one, minimally encoded,
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instruction format. The associative processing element array is designed to execute an
83-bit instruction every 100 ns. The RAM-based processing element array executes a
27-bit instruction every 60 ns. Therefore, to support the two designs, the control path
must deliver nearly 1Gb per second to the array. Flaws in control strategy may result in
a system which does not efficiently utilize the processing element array. Whenever the
control path falls behind, the array sits idle.

3.2.1 Control Strategy

To minimize system cost, one might consider using software executed on a host com-
puter to directly generate low-level instructions executed by the processing element
array. In this approach, low-level instructions are transferred over the host’s backplane
bus. Unfortunately, there are two serious problems with direct sequential control. First,
the host computer may not be able to compute instructions rapidly enough to keep the
array busy. Second, the rate at which the host can deliver instructions to the array is
limited by bus transaction delays.

To reduce the bus bandwidth and host computation required to sustain array activ-
ity, SIMD supercomputers iypically employ a multi-level control hierarchy. In a conven-
tional two-level design, a microcontroller is placed between the host and the processing
element array. The microcontroller executes microcode, interpreting macroinstructions
issued by a host and transferred over the host’s backplane bus. The microcontroller pro-
duces the instructions executed by the array. Typical macroinstructions produce many
array instructions. Thus, the demands on the host computer and bus are reduced. The
Connection Machine [26] and the Massively Parallel Processor [27] employ two-level de-
signs. The associative string processor (ASP) testbed developed by Aspex Microsystems
[28] and the Vastor processor [29] employ three-level control hierarchies, adding an
additional level of interpretation between the host computer and the microcontroller.

The microcontroller must handle a variety of different macroinstruction formats.
Macroinstructions generally include both an operation code and one or more arguments.
Typical macroinstructions specify a basic arithmetic, comparison, or data movement
operation. Arguments identify fields of processing element memory or scalar values.
The number of arguments and the types of arguments included in a macroinstruction
depends on the operation. For example, the add immediate operation, A — A + b,
involves & field, A, and a scalar value, b, while the sum operation, S — A + B, involves
three fields, A, B, and S.

After decoding a macroinstruction, the microcontroller must produce a proper se-
ries of array instructions. Usually, bit-serial procedures may be generated using a fixed
pattern of array instructions for intermediate bit positions. But handling the lowest
and highest bit positions is often a more difficult task. Consider the sum operation.
Corresponding instructions for intermediate bit positions vary only in the effective lo-
cations of active memory cells. But the least significant bit position must be handled
differently since there is no carry data from a previous bit position. More importantly,
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accommodating field length differences requires some sophistication. If the length of
the sum field exceeds the lengths of the addend fields, sums must be sign-extended. If
the lengths of the operand fields differ, the array instructions produced for the highest
bit positions must provide the effect of sign-extending the shorter operands.

While the conventional hierarchical control strategy may be suitable for SIMD super-
computers, it is not appropriate for less expensive systems. One drawback is that to
generate array instructions at a rate commensurate with the speed of the processing
element array, a sophisticated, fast microcontroller is needed. The microcontroller de-
sign must include one or more functional units to perform the arithmetic and logical
operations involved in producing array instructions. Given the amount of computation
generally required to decode macroinstructions and produce array instructions, the fre-
quency of the controller clock must be several times that of the array clock.

A second drawback to conventional hierarchical control is the burden of providing
appropriate software support. With both a control path and one or more functional
units, the microcontroller amounts to a special-purpose computer. Separate programs
are required for the host and the controller. Getting these two programs to work to-
gether can be more than twice as hard as writing a single program. The microcontroller
also requires its own set of development tools, including a compiler and a debugger.

In both the direct control strategy and the conventional hierarchical control strategy,
sequences of array instructions are computed on-the-fly during program execution. In
the first strategy, the instructions are computed by a host computer, limiting array
utilization. In the second strategy, the instructions are computed by a microcontroller,
necessitating sophisticated hardware. In order to achieve high array utilization without
a complex microcontroller, run-time instruction computation must be avoided.

Fortunately, run-time instruction computation is not needed for real-time image pro-
cessing. The same low-level tasks are repeated for each image. An efficient control
strategy exploits this property. Sequences of array instructions are generated by the
host computer before processing begins and are stored in a controller. Macroinstruc-
tions are reduced to simple calls telling the controller which sequence to send to the
processing element array. The controller can be simplified because it does not have to
decode and interpret complex macroinstructions.

Figure 3.5 illustrates the controller architecture. Sequences of microinstructions,
generated by the host, are held in the control store. Each microinstruction includes two
array instructions, a sequencer instruction, and a branch address. To initiate a sequence
of microinstructions, the host computer writes the starting address of the sequence into
the opcode register. The sequencer steps through the control store, producing one array
instruction every clock cycle. The select register and the associated multiplexer are used
to support scalar variables.

Basic sequences, generated by library functions, perform simple arithmetic, compar-
ison, and data movement operations. These sequences are generally ten to sixty array
instructions long. Application implementations often concatenate basic sequences to
form larger sequences, reducing the amount of interaction between the host computer
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and the controller.

The array register and the output register provide feedback paths from the array
to the controller and to the host computer. Array status values are stored in the array
register. Within the controller, the status values may be used by conditional branch
instructions. In addition, using the array register, the host computer can directly ob-
tain array status information. Alternatively, status values may be accumulated in the
output register, a serial-in, parallel-out shift register. This feature is often employed to
assemble the results of bit-serial associative operations.

The control strategy has several important features:

e Simple controller hardware. Since array instructions are generated by the host
computer, the controller need not perform arithmetic and logical operations. Thus,
the controller does not include a data path. Instead, array instructions are merged
into the control path. Furthermore, the controller need not operate with a higher
clock frequency than the processing element array.

e High array utilization. During processing, the host computer need not issue indi-
vidual instructions to the processing element array. Thus, provided that sequences
are sufficiently long, array utilization is not unacceptably limited by host speed or
by bus transaction delays.

e Unified software development. All system software can be created and compiled
on the host computer with existing software development tools.

3.2.2 Instruction Selection

SIMD processing involves two kinds of data: scalar data stored in the host computer
or controller, and parallel data (fields) stored in the processing element array. A SIMD
system must provide a mechanism for incorporating scalar values into operations per-
formed by the processing element array. Examples of operations employing scalar val-
ues include addition of a scalar value to a field, identification of field elements with
values less than a scalar value, and assignment of a scalar value to a field.

The host computer may handle scalar constants as it produces sequences of array
instructions. But, by definition, values of scalar variables are not fixed before processing
begins. Consider the addition of an n-bit scalar variable, stored in the host computer,
to an n-bit field. In real time, the host computer must evaluate the scalar variable
and invoke an appropriate sequence of array instructions to perform the addition. A
different sequence is used for each of the 2" possible scalar values. But the amount of
controller memory necessary to store all 2" sequences is unacceptable (unless n is very
small).

Fortunately, the number of stored sequences may be reduced by dividing the add
immediate operation into n steps, with each step handling one bit position. For each
bit position, only two scalar values may be encountered, 0 and 1. Thus, instead of
storing 2" sequences, one can store 2n shorter instruction sequences, two for each
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bit position. Other arithmetic and comparison operations, performed using bit-serial
procedures, can be decomposed in a similar manner.

Typical arithmetic and comparison operations employing scalar values require se-
quences of one to three array instructions per bit position. Using the host computer to
call such short sequences of instructions individually would result in poor array utiliza-
tion due to bus transaction delays. A simple hardware mechanism called instruction
selection provides an alternative. Instead of calling sequences individually, the host
computer writes scalar values to the select register in the controller and the controller
picks the appropriate sequences.

Figure 3.6 shows how instruction selection is employed to add a 4-bit scalar variable,
b, to a parallel variable, A. Before processing begins, four pairs of instruction sequences
are stored in the controller. Each microinstruction contains a pair of array instructions.
During program execution, the value of b is loaded into the select register, a parallel-
in, serial-out shift register. As the sequencer steps through the control store, the shift
register output selects one array instruction from each microinstruction. After the last
microinstruction for each bit position, the select register value is shifted to the right.
Suppose the value of b is binary 1101. The first sequence executed is the one at the
top right, which adds 1 to the least significant bit. The second sequence (on the left)
propagates the carry to the second bit, and the final two sequences (on the right) add 1
to the third and fourth bit positions. A distinct multiplexer is not necessary. Instead,
the multiplexer function is implemented by using the select register output as one bit
of the array instruction control store address.

In practice, some fields of array instructions may not depend on scalar values. Thus,
it may not be necessary to include two complete array instructions in each microin-
struction. For example, each microinstruction may include two values for the array
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instruction field specifying function generator operations, but only one value for all
other instruction fields. Of course, such optimizations depend on details of the array
architecture, instruction format, and sequence implementation.

Array architectures may be based on processing elements with a 1-bit immediate
input, eliminating the need for instruction selection. Instead, the select shift register
output may be used as one bit of the array instruction. This approach was rejected
because it would degrade associative processor performance. For example, using an
immediate scalar input, the associative processor would require five instructions per
bit position to perform the add immediate operation. Using instruction selection, only
three instructions per bit position are necessary.

3.3 Programming Framework

Very fine-grained parallel processors with one-bit-wide processing element logic present
challenging software problems. Instruction sets are very primitive: simple parallel arith-
metic, comparison, and data movement operations require sequences of many array
instructions. In addition, different processing element array implementations employ
different memory structures, provide different instructions, and require different com-
putational algorithms. To facilitate application development and maintenance, a pro-
gramming framework was created. The framework hides details of array and controller
implementations, allowing programmers to focus on application issues.

The programming framework uses the C++ programming language [30]. C++ pro-
vides facilities for defining new types (classes) that act in the same way as built-in types.
In effect, these facilities allow the language to be augmented to support additional con-
cepts. The framework is implemented as a library of C++ classes. Figure 3.7 outlines
key components of framework.

Application code need not be tied to a particular array implementation, controller
implementation, or host computer. The current system software includes support for
the controller and the processing element array described in this thesis. The controller
architecture is labeled “MIT.” The array is labeled “HDPP” (high-density parallel proces-
sor). The software also includes support for the associative processor. The associative
processor architecture, employing content-addressable memory cells, is labeled “CAPP”
(content-addressable parallel processor). In the future, support may be added for other
array and controller architectures without altering existing system code. Array and con-
troller architectures are represented by abstract classes. No objects of the architecture
classes may exist, but the classes may be used as base classes for derived classes.

The programming framework supports use of three data types in processing element
arrays: signed integers, unsigned integers, and ternary values. In the future, sunport
may be added for rational numbers. Support for floating-point numbers is not antici-
pated. With a small amount of memory per processing element and no floating-point
hardware, the array architectures are not intended for applications employing floating-
point numbers.
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Parallel variables, stored in the processing element array, are represented by fieid
classes. Three field classes are derived from each array architecture class. One class
represents fields containing unsigned integers, a second class represents fields contain-
ing signed integers, and a third class represents fields containing ternary values. Field
class implementations include management of processing element memory.

A processing element array coupled with a controller is represented by a system class.
Systems classes are implemented using an interface to array and controller hardware or
using array and controller simulation code. The simulation option provides a valuable
tool for architecture development work. An object of class sequence represents a set
of controller and array instructions which may be loaded into a region of the control
store on the controller and invoked within an application. Application programs employ
processing element arrays by directing the execution of sequences by systems.

A code generator is a function used to produce sequences. In general, code gener-
ators have one or more field parameters. For example, inc has a single field param-
eter and returns a sequence that, when executed by a system, increments the values
contained in the field. Employing code generators, application code need not include
low-le el array and controller instructions.

An organized code generator library provides support for using the same application
code with different array architectures. Code generators that produce sequences which
perforr identical tasks are given the same name. For example, all code generators
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which produce increment sequences are given the name inc. This practice is called
overloading. When application code uses an overloaded name, the compiler selects the
appropriate function by comparing argument types with parameter types. Application
code can be adapted for use with different architectures by changing field types to reflect
the appropriate association between fields and array architectures. There is no need to
modify code generator calls or sequence execution patterns.

3.4 Summary

The pixel-parallel image processing system comprises four main components: the pro-
cessing element array, the format converters, the controller, and the programming
framework. This chapter described the latter three components. The format converters,
implemented using multidimensional access memory structures, provide an efficient
interface between the bit-serial processing element array and conventional bit-parallel
components. The controller design, using simple hardware, issues instructions to the
processing element array a. rates matching the speed of the array. The programming
framework hides low-level system details, allowing software developers to focus on im-
plementation issues.
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Chapter 4

Experimental Results

This chapter is devoted to practical matters: circuit and system testing, characteri-
zation, and performance. Section 4.1 discusses the construction of the system used to
test the integrated array and to demonstrate pixel-parallel image processing. Section 4.2
and Section 4.3 provide results of control path and array characterization. Section 4.4
presents measured performance of the complete system for three typical low-level im-
age processing operations.

4.1 System Construction

Figure 4.1 shows the principal components of a system used to test and demonstrate
the integrated circuit devices. A Sun SPARCstation IPX, a UNIX workstation, manages
the system. A Performance Technologies PT-SBS915 adapter links the workstation to
a VMEbus chassis. The adapter comprises an SBus board installed in the workstation,
a VMEbus board installed in the chassis, a cable that connects the boards, and device
driver software for the workstation.

Two format converters are integrated on a single VMEbus board along with a video
digitizer and a video encoder [23]. The digitizer accepts an NTSC video signal from
a CCD camera. The encoder provides an NTSC video signal to a display. Four chips
on a board fitting the VMEbus chassis provide a 128 x 128 processing element array.
The array board accepts raw images from one format converter and provides processed
images to the other format converter. A controller, implemented as a VMEbus board,
issues instructions for the processing element array [24]. The host computer commu-
nicates with the format converter board and the controller board through the VMEbus
adapter.

The controller board employs a 16-bit microprogram sequencer, three SRAM mod-
ules, two complex programmable logic devices, ten register chips, and some clock driver,
bus interface, line driver, and line receiver parts. Sequencer instructions and branch ad-
dresses are stored in one of the three 64Kb x 32 SRAM modules. Array instructions are
stored in the other two modules. The controller and the processing element array oper-
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Figure 4.1: Test and demonstration system.

ate synchronously. The controller is fully functional with clock cycles 50 ns or longer.
The format converter board employs two field-programmable gate arrays (one for
each format converter), sixteen 64Kb x4 SRAM chips (eight for each format converter), a
digitizer, an encoder, and some clock driver, bus interface, line driver, and line receiver
parts. The format converter board operates at about 25 MHz, using a clock signal pro-
duced by the digitizer. The serial-access memories used to transfer data to and from
the processing element array anc the format converter board operate synchronously.
The processing element array board is shown in Figure 4.2. The principle design
objective was to facilitate testing and characterization of processing element devices.
Physical size was not a primary concern. The board has four sockets for four chips, the
minimum number required to fully test interchip communication. The board is powered
by Hewlett-Packard 6628A and 6629A supplies. Four 50-Q BNC connectors are used for
clock inputs provided by Hewlett-Packard 8112A and 8161A pulse generators. The
board is connected to the format converter board through right-angle headers on the
left edge. The board is connected to the controller board through four straight headers.

4.2 Control Path Characterization

A simple test routine was developed to characterize the performance of the control
path. The routine creates a sequence of array instructions, loads the sequence into the
controller’s control store, then repeatedly calls the sequence. Since the routine does
not require use of status values or images from the processing element array, the con-
trol path may be characterized independent of processing element devices. Control



4.2. CONTROL PATH CHARACTERIZATION 75

Figure 4.2: Four-chip 128 x 128 processing element array board.
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path performance was measured with a 60-ns controller clock cycle, corresponding to
the maximum speed of the processing element devices. Results were collected for se-
quences with lengths ranging from 1 to 1024 instructions.

Figure 4.3(a) shows the experimental results. Note the knee in the curve. For short
sequences, about 2.2 us elapses each time the sequences are called by the host com-
puter. This reflects the amount of time required to transmit starting addresses from the
host computer to the controller. For longer sequences, the time required to issue each
sequence exceeds the time required to transmit starting addresses. Thus, execution
time increases with sequence length.

Figure 4.3(b) shows the relationship between sequence length and array utilization.
If sequences are short, the controller finishes delivering each sequence of instructions
to the array before receiving the next starting address. As a result, array utilization
is low. If sequences are longer, the controller receives the next starting address before
completing delivery of each sequence. Thus, array utilization is limited only by a few ex-
tra clock cycles which the controller needs to initiate each sequence. Typical sequences,
over thirty instructions long, are executed efficiently.

4.3 Integrated Circuit Testing and Characterization

Integrated processing element devices were tested in the system. Through the VMEbus,
the data path board provides test images from the host computer to the array and
provides processed images from the array to the host computer. Initial testing work was
devoted to identifying and correcting problems and to verifying chip functionality. The
processing element array was operated with a relatively long, 100-ns clock cycle. Four
basic test programs were employed. Later work focused on hold time and performance
characterization.

4.3.1 Preliminary Functional Verification

The first test program checks the serial-access memories. Data from the format con-
verter board are clocked though the memories and back to the format converter board.
The data are never transferred into processing element memory. The test program r2-
vealed several system software bugs, all of which were easily eliminated. The program
also identified one logic error on the format converter board, one on the controller
board, and one on the array board. Programmable logic device configurations were
revised to fix the errors.

The second test program exercises the processing elements. Complete images from
the host computer are transferred to and from the processing element array. The trans-
fers use not only the serial-access memories, but also some of the processing element
memory and socme of the processing element logic.

The image I/0 test program revealed a mistake in the instruction decode logic located
along the perimeter of the chip. The signal from la input pad goes to the input of a
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latch. The output of the latch goes to two small blocks of logic. One of the blocks
determines whether latch A should be loaded in each processing element. The other
block determines whether any memory activity is necessary. When la is high, latch A
should be loaded and a read should be performed. When la is low, latch A should not be
loaded and the memory should be active only if a refresh or write operation is specified.
The mistake inverted the result of the laich A logic block.

The software function that generates the bit patterns specifying array instructions
was modified, circumventing the logic mistake. The la value is inverted, so that the
latch A logic block produces desired results. The instruction code for a refresh operation
is used whenever a read is performed. Thus, the memory is active whenever necessary.
The only undesirable side effect of the software change is that the memory is active all
the time. This increases average power dissipation but does not affect functionality.

The mistake was present in both the schematic representation and the layout. The
chip design was easily fixed, and the software change will be reversed for devices pro-
duced in the future.

The third test program checks interchip communication. Complete images from the
host computer are transferred to the processing element array. Chip operations are
used to move image data north, south, east, or west. Resultant images are transferred
from the array to the host computer. The image movement test program revealed a
second logic error on the array board. A programmable logic device configuration was
revised to fix the error.

The fourth test program checks processing element memory. To exercise all 128 bits
of memory of every processing element, sets of sixteen eight-bit images are transferred
to and from the processing element array. No functional problems were found.

4.3.2 Hold Time Characterization

The fourth test program also supports characterization of hold time, the maximum
time that may elapse between refresh operations for each memory address without
compromising data integrity.

The size and structure of the cell used to implement processing element memory is
comparable to those of cells used in 1Mb DRAM chips. Most reported 1Mb DRAM chips
exhibited an 8-ms hold time [31, page 159]. For commercial products, specified hold
times must be sufficient for operation with an ambient temperature of 70°C.

Processing element memory was characterized at rcom temperature. As shown in
Table 4.1, with a 15.7-ms refresh interval, twelve of fifteen chips exhibited fewer than
seven failed cells. With a 7.86-ms refresh interval, none of the fifteen chips exhibited
more than six failed cells. With a 1.97-ms refresh interval, eleven of the fifteen chips
exhibited no failed cells.

While observed hold times for processing element memory are similar to the spec-
ified 1Mb DRAM hold times, the observed characteristics are worrisome. A study of
DRAM leakage mechanisms included data for a planar cell similar to the one used to im-
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Table 4.1
Hold Time Characterization Results
In each row, each figure indicates the number of chips exhibiting the indicated number
of failed DRAM cells. Fifteen chips were tested with a 60-ns clock cycle.

Refresh Failed Cells
Interval 0 1 2 3 4 5 6 >7
15.4 us 15 0 0 0 0 0 0 0
123 us 14 1 0 0 0 0 0 0
246 us 12 3 0 0 0 0 0 0
492 us 11 3 1 0 0 0 0 0
983 us 11 3 1 0 0 0 0 0
1.97 ms 11 3 0 0 1 0 0 0
3.93 ms 4 7 2 1 1 0 0 0
7.86 ms 2 2 6 2 1 0 2 0
15.7 ms 0 1 3 3 3 0 2 3
31.5 ms 0 0 0 0 3 3 2 8

plement processing element memory [32]. Measured leakage current at 70°C was about
two orders of magnitude greater than measured leakage current at room temperature.
Thus, at the elevated temperatures used to test commercial products, the processing
element memory may exhibit poor hold characteristics.

Leakage mechanisms may be classified using three categories: junction leakage, field
leakage, and device leakage. Process specifications provide some insight into the impor-
tance of each category. Junction leakage includes minority carrier diffusion current and
current produced by minority carrier generation associated with space-charge regions
and surface states. Field leakage includes the current produced by bulk and surface
generation in the transition region between gate oxide areas and field oxide areas. Field
leakage may be quite high, especially when the polysilicon overlapping the gate oxide
area and the transition region is held at a high potential [32]. Device leakage refers to
subthreshold current through the transfer device.

Table 4.2 shows calculated leakage data. Maximum leakage currents were calculated
directly from process specifications, cell layout dimensions, and the stored high poten-
tial. Maximum leakage rates were calculated by dividing the leakage currents by the
storage node capacitance. The data indicate that junction leakage is not responsible
for the observed cell failures. But both field leakage and device leakage may be signifi-
cant for some of the longer experimental refresh intervals. Furthermore, device leakage
alone may account for the observed room temperature hold time characteristics. If a
stored 2.5-V potential falls at a rate of 200 V/s, then in less than 8 ms the stored po-
tential will be below 1.25 V. Such a large drop in the stored potential, combined with
unfavorable local variations in circuit characteristics, may certainly cause a cell failure.
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Table 4.2
Calculated Cell Leakage Data

Maximum Maximum
Specification Leakage Leakage

Units Current Rate
Junction Leakage
area fA/pum? .V 21 fA 0.5V/s
perimeter fA/pym -V 64 fA 14V/s
Field Leakage fA/um 1.1 pA 25V/s
Device Leakage PA/um 9.0 pA 200V/s

Based on the hold time characterization results, the test and demonstration system
is configured to execute a refresh sequence every 1.97 ms. Execution of the refresh
sequence is triggered by a counter on the controller. The refresh sequence comprises
128 array instructions, one for each memory address. With a 60-ns clock cycle, the
refresh sequence is executed in less than 1 us. Thus, less than one-tenth of one percent
of all clock cycles must be dedicated to refresh overhead.

4.3.3 Performance Characterization

Once initial work with the four basic test programs was completed, test programs based
on typical image processing operations were developed. These programs transfer im-
ages from the host computer to the processing element array, perform an image pro-
cessing operation on the images using the array, perform the same operation using a
functional simulator on the host comy uter, transfer images from the array to the host
computer and compare the results from the array with results from the simulator.

Of twenty-four chips, fifteen proved fully functional (one of the fifteen requires a
15.4-us refresh interval). Nine are partially functional. As expected, the chips oper-
ate at speeds well over 10 MHz. A Tektronix HFS 9003 programmable stimulus system
was substituted for the Hewlett-Packard pulse generators to determine the minimum re-
quired cycle time. The HFS 9003 provided direct software control of input clock signals.
Automated test routines were employed to optimize clock timing. The minimum cycle
time is 60 ns.! At this speed, typical power dissipation is 300 mW. Chip characteristics
are summarized in Table 4.3.

1processing element memory and processing element logic cannot be independently tested. Therefore,
it is not possible to experimentally determine the critical path that limits chip speed using the test and
demonstration systerm.
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Table 4.3
Chip Characteristics

Channel length 0.6 um (drawn)
Polysilicon pitch 1.5 ym (without contacts)
First-level metal pitch 2.1 pym (contacted)
Second-level metal pitch 2.4 ym (contacted)
Third-level metal pitch 3.0 ym (contacted)

Processing elements 4096 (64 x 64)
Memory 512Kb (twin cell DRAM)
Devices 2.7M

Pads 144

Die size 9.7 x 8.1 mm?

Memory cell size 7.2 X 7.2 ym?

Power supplies Vpp = 2.5 V (internal)

Vuy = 3.3 V (interface)
Vpp = 3.3 V (wordline)

Minimum cycle time 60 ns
Typical power dissipation 300 mW

4.4 System Performance

Three image processing operations are presented to demonstrate the performance of
the system and to illustrate use of the programming framework. These operations
reflect the computational demands of typical low-level image processing tasks. They
are not presented as exemplary solutions to particular image processing problems. A
video production demonstrates the system performing the tasks in real time [33].

4.4.1 Median Filtering

Median filtering may be applied to reduce image noise. The value of each output pixel is
the median of all input values in a region centered at the output pixel. Median filtering
eliminates spikes while maintaining sharp edges and preserving monotonic variations
in pixel values.

Figures 4.4 (b) and (c) illustrate the effects of median filtering. For a 3 x 3 median
filter, each output value is the median of the nine input values in a 3 x 3 pixel region.
For a 5 x 5 median filter, each output value is the median of twenty-five input values.

Median filter operations are performed in a bit-serial manner starting with the most
significant bits of all the input values and proceeding to the least significant bits. For
a 5 x 5 median filtering operation, a twenty-five bit field, n, is used to hold, in each
processing element, one bit of each of the input values in the corresponding 5 x 5 pixei
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Figure 4.4: Median filtering, smoothing, and smoothing and segmentation. (a) Original
image. (b) 3 x 3 median filtered image. (c) 5 x 5 median filtered image. (d) Smoothed
image. (e) Smoothed and segmented image.
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Table 4.4
Application Performance

Execution Array Frames per
Time Utilization Second

5 X 5 Median Filtering

(8-bit image) 274 us 99 % 3653
Smoothing and Segmentation

(8-bit image, 200 convolutions 4.8 ms 97 % 207
with threshold 20/256)

Optical Flow

(8-bit image, 16 x 16 support region 30.1 ms 92 % 32

8-pixel maximum displacement)

region. A fifty-bit field, t, is used to maintain, in each processing element, twenty-five
two Lit records. One bit of each record indicates whether a particular input value is
known to be greater than the median value. The other bit indicates whether the input
value is known to be less than the median value.

For each one-bit component of an input image, data are moved in a fixed pattern.
For a 5 x 5 median filtering operation, twenty-four movement steps are performed.
The movement pattern is designed to present data to each processing element for the
corresponding 5 x 5 pixel region. Before the first step and after every step, image data
are used to initialize one bit of field n.

After field n is initialized, values are altered according to the field t records. In
each processing element, a 1 is stored in components of field n that correspond to
input values known to be greater than the median value. A 0 is stored in components
that correspond to input values know to be less than the median value. Once all the
field n alterations are complete, a tally procedure is performed. The tally procedure
computes, in each processing element, the sum of all twenty-five components of field
n. The tally procedure, performed using a series of full-additions, requires a 13-bit field
for temporary storage. If the tally result is greater than or equal to 13 the next output
bit is 1. If the result less than or equal to 12 the next output bit is 0. The output result
and field n values are used to update the field t records. If the output bit is 1, then all
components of field n holding value 0 correspond to pixel values that are less than the
median value. Conversely, if the output bit is 0, then all components of field n holding
value 1 correspond to pixel values that are greater than the median value.

As shown in Table 4.4, operating with a 60-ns clock cycle, the processing element
array performs a true 5 x 5 median filtering operation in less than 3C0 us. Near 100%
array utilization is achieved by implementing the entire operation as a single sequence
of array instructions.
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4.4.2 Smoeothing and Segmentation

Image acquisition noise may also be reduced by smoothing intensity variations. Repeat-
edly convolving an image with a 3 x 3 kernel,

010
RN
010

approximates a Gaussian smoothing operation. The number of convolutions applied
determines the variance of the Gaussian filter.

As shown in Figure 4.4, simple smoothing suppresses higher spatial frequencies,
reducing noise but also blurring edges. A smoothing and segmentation process reduces
noise while preserving sharp edges. Before each convolution, the value of each pixel
is compared with values of the pixel’'s four nearest neighbors. Where differences are
greater than a segmentation threshold, the 3 x 3 kernel is locally modified to preserve
the intensity variation. For <xample, if the value of a pixel differs from the value of
the pixel’s east neighbor 3y more than the threshold, but differs from the values of the
pixel’s other neighbors by less than the threshold, a modified 3 x 3 smoothing kernel,

010
%150,
010

will be applied. Since the process of modifying and applying the 3 x 3 kernel must be
performed for each pixel, the smoothing and segmentation task naturally maps onto
pixel-parallei hardware.

Figure 4.5 shows a simplified smoothing and segmentation implementation, illus-
trating the use of the programming framework. File hdpptype.h gathers definitions
and declarations for the processing element array architecture. The #include direc-
tive for hdpptype.h is the only architecture-dependent portion of the smoothing and
segmentation code. The definition

hwSystem sys;

introduces an object (sys) representing the system hardware. Field definitions allocate
processing element memory for pixel values (field M), north neighbor differences (field
ND), and west neighbor differences (field WD). Field definitions specify field sizes and
types. Field M holds 8-bit unsigned integers. Fields ND and WD hold 9-bit signed integers.
Sequences produced by code generators are successively appended to a sequence object
(seq) producing a composite sequence that performs one complete convolution step.
The segmentation threshold is set at 20, and 200 convolutions are performed for each
input image.

Table 4.4 presents performance data. Since each convolution step is performed
using a single fixed sequence of array instructions, array utilization is very high. The
processing element array performs 200 smoothing and segmentation convoluticns in
less than 5 ms.
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#include <xapp.h>
#include <hdpptype.h>

main()

{

}

// Initialize system
hwSystem sys;

// Initialize PE memory management
hfield hf(arch::array::FreefField);
allocContext aC(hf);

// Declare fields

ufield M(aC.statically(), 8);
sfield ND(aC.statically(), 9);
sfield wWD(aC.statically(), 9);

// Build sequence
sequence seq

="nbrDifference(aC, M, North, ND);
seq += nbrDifference(aC, M, West, WD);

seq += outside(aC, WD, -20, 20);
seq += writeC(aC, WD, 0);

seq += outside(aC, ND, -20, 20);
seq += writeC{(aC, ND, 0);

seq += subtract(aC, (sfield) M, ND.at(3));
seq += move(aC, ND, South);
seq += add(aC, (sfield) M, ND.at(3));

seq += subtract(aC, (sfield) M, WD.at(3));
seq += move(aC, WD, East);
seq += add(aC, {sfield) M, WD.at(3));

// Load sequence
sys.load(seq);

for (530 {
// Acquire raw image

// Process image, 200 iterations
for (int i = 0; 1 < 200; 1i++) sys « seq;

// Provide processed image

}

// pixel values
// north neighbor differences
// west neighbor differences

// ND — M - Merth
// WD — M - M¥est

// if WD ¢ {-20,-19,...,19,20}
// thenWD-0

// if ND & {-20,-19,...,19,20}
// thenND~0

// M —M~-ND/8
//ND-——NDm"th
// M — M + ND/8

// M~ M~ WD/8
// WD — wDeast
// M — M+ WD/8

Figure 4.5: Simplified smoothing and segmentation code.
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4.4.3 Optical Flow

Given a time sequence of images, optical flow represents the apparent motion of image
patterns. Optical flow may correspond to the motion of objects in front of a camera, or
to the motion of a camera through an environment [34].

Little et al. developed an algorithm which determines optical flow using a series of
image comparisons [35]. Given two successive images, It (x,y) and It at(x,y), the
algorithm produces a vector field (dx(x,y),dy(x,y)). At each pixel, the flow vector
(dx,dy) is found by minimizing

Z C[It(xsy),IHAt(x+dx:y+dy)]
(x,y)ER

where R is a local spatial region encompassing the pixel and C is a metric that indicates
the amount of dissimilarity between image values.

The algorithm iterates over possible flow vectors. For each flow vector, two steps
are performed. First, the dissimilarity metric C is evaluated at each pixel. Second, for
each pixel the dissimilarity values are summed over the corresponding region R. At the
end, at each pixel the flow vector which minimizes the sum of the dissimilarity values
is chosen.

Table 4.4 presents performance data. Flow vectors are determined with the absolute
value of the differences between pixel values serving as the dissimilarity metric. Each
flow vector is determined based on sums of the absolute values for a 16 x 16 pixel
region. Evaluating displacements as large as eight pixels in each direction (a total of
(8+1+8)2 = 289 flow vectors) the processing element array perforims optical flow
computation in about 30 ms.

4.5 Summary

A test and demonstration system employs four chips to form a 128 x 128 processing
element array. This chapter described the system and presented results of test and
characterization experiments performed with the system. Three items were investi-
gated: the control path, the integrated processing element array, and the performance
of the complete system. Control path characterization results show that the system
efficiently executes typical sequences of array instructions. Array characterization re-
sults show that integrated processing element devices are fully functional, operate with
a 60 ns cycle time, and typically dissipate only 300 mW. System performance results
show that the system performs typical low-level image processing operations in less
than 10 ms.



Chapter 5

Architectural Alternatives

This chapter compares the new integrated circuit architecture, described in the pre-
ceding chapters, with alternative architectures. The new architecture is identified as a
pixel-parallel image processor. The comparisons serve two purposes. First, they help
identify critical design features of the new architecture. Second, they highlight the ac-
complishments of this work.

Section 5.1 discusses a hypothetical processing element similar to the final design,
but with simpler logic. Section 5.2 describes the methodology used to gquantitatively
compare the pixel-parailel image processor with other devices. Section 5.3 compares
bit-serial and bit-parallel processing element designs. Sections 5.4, 5.5, and 5.6 compare
implementations of low-level image processing tasks using the pixel-parallel image pro-
cessor with implementations using a field programmable gate array, implementations
using microprocessors, and implementations using a digital signal processor.

5.1 Simplified Processing Element

The most complex processing element circuit is the three-input Boolean function gen-
erator. As described in Chapter 2, the function generator requires eight four-transistor
NAND stacks, a control signal for each stack, and a pair of complementary signals for
each of the three inputs. Replacing the function generator with a simpler circuit might
significantly reduce the total layout area per processing element.

A simplified processing element, shown in Figure 5.1, was originally considered.
The simplified processing element uses a two-input Boolean function generator and has
one less latch than the final design. Four control signals, f3;-o, select between the 16
two-input Boolean functions.

To evaluate the two processing element designs, several primitive arithmetic and
data movement operations were considered. Efficient procedures were developed for
each design. Then the characteristics of the two designs were compared. For arithmetic
operations, large performance differences were encountered. The difference found for
the sum operation is typical.
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Figure 5.1: Hypothetical simplified processing element. Solid lines represent data sig-
nals. Dashed lines represent control signals.
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Table 5.1 Table 5.2
Sum Procedure,S — A+ B Sum Procedure, € — A+ B
Logic Memory for Hypothetical Simplified
Activity Activity Processing Element

1 E~1 A — Mem[By] Logic Memory

2 B—A A — Mem[Ap] Activity Activity
3 D—~A®B Mem|[Sp] — D 1 E-1 A —~ Mem|[B]
4 C—~AAB A — Mem[B;] 2 B~ A A — Mem[Ap]
5 B—A A — Mem[A;] 3 D-Ae®B Mem([So] — D
6 D—-AeBeoC Mem([S1] -~ D 4 B—~AAB A — Mem|[B,]
- —~AVB MemiU] - D
7 AnON BAe) A MemiB) : ﬁ “ANB  Mem tv§ D
8 B-A A — Mem[Az] 7 B-A®B A-— Mem[A;]
9 D~AeBeC Mem([S2] ~ D 8 D-—AoB Mem[S;] — D
10 AC;CY‘VA({; ),\VC) A — Mem|[Bs] 9 B-A A ~ Mem[U]
11 B-A A — Mem[As] 10 B—~AAB A — Mem([V]
12 D-AeBeC Mem[S3]1 - D 11 B~AVBE A — Mem |[B:]
12 D—~AVB Mem[U] - D
13 D-AAB Mem[V] -~ D
14 B—AeB A — Mem[A;]
15 D—~AeB Mem|[S2] - D
16 B~ A A~ Mem|[U]
17 B~AAB A~ Mem|[V]
18 B—~AVB A — Mem (B3]
19 B—~Ae®B A —~ Mem[A3]
20 D-AeB Mem{S;] — D

Table 5.1 presents a sum procedure, S — A + B, for the final design. Table 5.2
presents a corresponding procedure for the simplified processing element. The proce-
dures read two four-bit values from memory and store a four-bit result in memory.

Having a three-input function generator, the final design requires only three logic
operations per bit position: one to compute the carry value using values from the pre-
vious bit position, one to copy an addend value from latch A to latch B, and one to
compute the sum value. The simplified design requires a much longer sum procedure.
Each three-input logic function must be reduced to a series of two-iriput logic functions.
Two one-bit fields, U and V, are needed to hold intermediate results.

To perform an n-bit sum, the simplified design requires 7n — 8 cycles and memory
operations. The final design requires only 3n cycles and memory operations. Because
of such large differences in arithmetic performance, the simplified design was rejected.
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5.2 Comparison Methodology

The performance of a system depends on the algorithms chosen to implement the de-
sired tasks. An algorithm that works well on one system may be inappropriate for
another system. Thus, when comparing systems, it is very important to choose the al-
gorithms for each system independently. Furthermore, a designer of one system might
not recognize efficient aigorithms for competing systems. Therefore, experimental per-
formance data for low-ievel image processing tasks executed on alternative systems
were gathered from published documents. The data are compared with measured per-
formance data for the same tasks executed on the pixel-parallel image processor.

Four figures of merit are used. Two of the four are silicon area per pixel and time
per frame. Area per pixel values were derived from chip dimensions, the number of
pixels handled per processor, and the number of processors per chip:

Chip Area
Pixels per Processor x Processors per Chip

Area per Pixel =

Area per pixel may also be understood as chip area divided by the number cf pixels
handled by a single chip. Time per frame values were taken directly from reported or
measured data or derived from reported cycle counts and clock frequencies.

The number of pixels per processor may often be adjusted to achieve a desired
area per pixel or a desired time per frame. Handling more pixels with each processor
decreases area per pixel, but increases time per frame. Handling fewer pixels with each
processor decreases time per frame, but increases area per pixel. A third figure of merit,
the product of area per pixel and time per frame, provides a performance measure that
is essentially independent of the number of pixels per processor. The inverse of the
area-time product may be interpreted as processing speed per unit silicon area.

The fourth figure of merit is energy per pixel. Values were derived from power
dissipation, time per frame, the number of pixels handled per processor, and the number
of processors per chip:

Power Dissipation x Time per Frame
Pixels per Processor x Processors per Chip

Energy per Pixel =

The product of power dissipation and time per frame is the energy used per chip. The
product of pixels per processor and processors per chip is the number of pixels handled
per chip. Thus, energy per pixel is simply energy per chip divided by the number of
pixels per chip.

5.3 Bit-Paraliel Processing Element

One of the most prominent features of the integrated processing element array is the
use of one-bit-wide data paths and functional units. For primitive arithmetic and data
movement operations, a processing element generally requires a few instructions for

-
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each bit position. In contrast, a processing element design employing wider data paths
might require only a few instructions to perform entire operations. Thus, the com-
pact size of a single bit-serial processing element must be weighed against the superior
processing power of a single bit-parallel processing element.

A simple analysis suggests that the performance of a comparable bit-parallel design
might be similar to the performance of the bit-serial design of the pixel-parallel image
processor. Consider forming an array of bit-parallel processing elements by substituting
a single eight-bit-wide logic unit for groups of eight adjacent one-bit-wide logic units.
A single eight-bit-wide arithmetic logic unit (ALU) would replace eight individual one-
bit-wide function generators. In the bit-serial design, each processing element serves
a single pixel. In the bit-parallel design, each processing element would serve a group
of eight pixels. Consider addition, a ypical primitive operation. To perform an eight-
bit sum, the bit-serial design requires twenty-four memory operations: two read and
one write operation per bit times eight bits. The bit-parallel design would also require
twenty-four memory operations: two read and one write operation per pixel times eight
pixels. If both designs have sufficiently powerful logic units, the performance of both
will be limited by their equivalent memory demands.

With respect to integrated circuit implementation, the most significant inherent dif-
ference between bit-serial and bit-parallel architectures is the difference between the
structures of one-bit-wide function generator circuits and bit-parallel ALU circuits. The
DRAM memory array used for the bit-serial processing elements may also be used for
bit-parallel processing elements. The one-bit-wide latches in the bit-serial processing
elements may be logically grouped to form bit-parallel latches.

A bit-parallel ALU circuit appropriate for a processing element array must perform
integer additiun, subtraction, and comparison functions. Such a circuit may be created
by connecting together one-bit ALUs, with each one-bit ALU circuit incorporating a full
adder [36, pages 182-198]. Thus, the size of a simple full adder provides a basis for
judging relative sizes of a bit-parallel ALU and the three-input Boolean function gener-
ator used in the bit-serial processing element.

A compact full adder circuit using pass transistors requires only twenty-eight tran-
sistors [37]. However, the connections between transistors in the full adder circuit are
more complex than the connections in the Boolean function generator circuit. In the
full adder, many connections must be formed using metal lines. In the Boolean function
generator, only one internal node, the evaluation node, requires metal lines. All other
internal nodes are n-diffusion regions shared by two adjacent transistors. Implemented
in a CMOS process with 0.5 yum drawn features, the full adder occupies over 4200 um?.
The three-input Boolean function generator, implemented with 0.6 um drawn features,
requires less than 900 ym?. The difference in area between these two circuits provides
a very strong indication that a bit-parallel ALU would require much more area than a
corresponding number of three-input Boolean function generators.

An Integrated Memory Array Processor (IMAP) developed at NEC integrates 64 eight-
bit processing elements [38]. The principle components of the IMAP processing element
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are a 4Kb x 8 SRAM, an eight-bit ALU, an eight-bit shifter, and eight-bit registers. The
15.1 x 15.6 mm? chip was fabricated in a 0.55-um BiCMOS process with 5.8 x 3.2 um?
SRAM cells.

The eight-bit IMAP ALU occupies almost 100000 ym?. In the pixel-parallel image
processor, eight three-input function generators occupy less than 7200 um?2. The chips
were designed with similar minimum feature sizes. Thus, the IMAP design provides
more evidence that the area required per bit to implement ALU circuits exceeds the area
required to implement a one-bit-wide function generator.

The bit-parallel IMAP architecture incorporates a local addressing facility. Thus,
IMAP processing elements can individually select memory locations. The local address-
ing capability makes the IMAP architecture suitable for a larger class of image processing
tasks than the pixel-parallel image processor.

While IMAP processing elements are connected using a linear network, image pro-
cessing operations may be performed efficiently by assigning a complete image column
to each processing element. An eight-chip IMAP system processes 512 x 512 images.
Table 5.3 presents performance data for a 3 x 3 median filtering operation. With each
processing element handling 512 pixels, the IMAP chip uses less than half as much area
per pixel as the pixel-parallel image processor. But the pixel-parallel image processor
performs the median filtering operation over twenty times faster.

The area-time product data show that for the median filtering operation, the pixel-
parallel image processor is almost ten times faster per unit silicon area than the IMAP
chip. The energy per pixel values show that the pixel-parallel image processor requires
less than one-tenth of the energy per pixel required by the IMAP chip. The difference
betwecn the area-time products reflect the size advantage of the one-bit-wide function
generators over the bit-parallel IMAP ALU circuits. Part of the difference in the energy
per pixel values may be attributed to a difference in internal operating voltages. The
pixel-parallel image processor chips use a 2.5-V supply. The IMAP chips use a 3.3-V
supply. An IMAP chip using a 2.5-V supply might require 43% = 1 — (2.52/3.32) less
energy per pixel than the reported IMAP chip.

5.4 Field-Programmable Gate Array

A field programmable gate array (FPGA) comprises a matrix of logic blocks with intercon-
nections controlled by programmable switches. Using an FPGA, complex application-
specific logic functions may be implemented on a single device. Unlike hardwired gate
arrays, FPGAs can be reprogrammed to fix design flaws, improve performance, or per-
form an entirely different function. FPGAs offer a very useful compromise between
the performance of application-specific custom integrated circuits and the flexibility of
microprocessors and microcontrol’ers.

The Xilinx XC4000 series devices use switches formed by pass transistors with gates
connected to SRAM cells [39]. Each logic block includes two four-input function gener-
ators and two flip-flops. A function generator may be configured as a 16 X 1 memory.
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Table 5.3
Comparison of Image Processing Devices, 3 X 3 Meaian Filtering
Area Time Energy
per pixel x per frame per pixel

Pixel-Parallel Image Processor 19222 ym?  x 105 ps 7 nj
4096 One-bit-wide PEs 2
One pixel per PE 2 yme - s
IMAP [38] 7189 um? x 2421 s 133 nJ
64 Eight-bit-wide PEs 2
One 512-pixel column per PE 17 pm< - s
Xilinx XC4000 Series FPGA [39]
85 logic blocks, 66 MHz — 62 us 9njJ
4096 pixels, 1 cycle per pixel
TI TMS320C 80 DSP [40, 41] 2
Four 32-bit integer processors, 50 MHz 1305 pm X 12 ms 211 nJ
512 x 512 image 16 ym? - s

IMAP power requirements depend on properties of executed tasks. The published IMAP description
[38] does not report power data for the median filter operation. The IMAP energy per pixel figure was
derived using reported power data for 3 x 3 convelution.

The Xilinx XC4000 Series figures are based on a pipelined median filter design using eight-bit com-
parators [42]. Each comparator takes two eight-bit inputs and produces two eight-bit outputs. One
output is the larger input, the other output is the smaller input. The figures are also based on crude
speed and power estimates derived from Xilinx product information [43].

The TMS320C80 time per frame figure is from a description of the MediaStation 5000 [44], a multi-
media system based on the TMS320C80.

The TMS320C80 energy per pixel figure is derived from typical power dissipation reported in Texas
Instruments product information [45].
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Table 5.4
Comparison of Image Processing Devices, Sobel filtering
Area Time Energy
per pixel per frame per pixel
Pixel-Paralle] Image Processor
4096 One-bit-wide PEs 19222 pym? 72 us 5n]l
One pixel per PE
Xilinx XC4000 Series FPGA [39]
36 logic blocks, 66 MHz — 559 us 32n]

4096 pixels, 9 cycles per pixel

The Xilinx XC4000 Series figures are based on a distributed arithmetic filter design [48]. The figures
are also based on crude speed and power estimates derived from Xilinx product information [43].

Currently, the largest available XC4000 FPGA provides just over two-thousand logic
blocks [43, page 4-6].

Table 5.3 provides performance data for a 3 X 3 median filtering operation. Dis-
tributed arithmetic structures [46] may be applied to efficiently implement signal pro-
cessing operations using FPGAs [47]. Tables 5.4 and 5.5 provide performance data for a
3 x 3 Sobel filtering operation and a 5 x 5 Laplacian convolution. Both tasks are imple-
mented using distributed arithmetic. Not surprisingly, the data show that XC4000 FPGA
circuits implemented using a modest number of logic blocks can perform the operations
quite rapidly. While the data is based on processing 4096 pixels per FPGA circuit, the
circuits may be replicated to accommodate images with more than 4096 pixels. (Chip
area data for Xilinx FPGAs was not available.)

The processing power of small XC4000 FPGA circuits is quite impressive, but the
circuits require more energy than the pixel-parallel image processor. For two of the
three operations, the FPGA circuits require over twice as much energy per pixel. The
high energy demands are a result of the large capacitances of internal FPGA nodes. To
provide necessary interconnect flexibility, each flip-flop output is connected to several
switches. The switches, open or closed, contribute to the capacitance of the output node.
For the XC4000 series, using a 5-V power supply, a flip-flop driving only a neighboring
flip-flip requires 0.1 nJ per transition [43, page 13-12]. This corresponds to an 8 pF
output load. With such high internal node capacitances, even the compact application-
specific FPGA circuits have high energy demands.

It is not clear whether FPGAs may be effectively applied to execute some of the
more complex image processing tasks that are performed by the pixel-parallel image
processor. All of the the filtering tasks for which FPGA circuits have been designed
are amenable to implementation using fairly small, pipelined, application-specific data
paths. Implementing optical flow computation and other more complex tasks would
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Table 5.5
Comparison of Image Processing Devices, Laplacian Convolution
Area Time Energy
per pixel per frame per pixel
Pixel-Parallel Image Processor
4096 One-bit-wide PEs 19222 ym? 197 us 16 nJ
One pixel per PE
Xilinx XC4000 Series FPGA [39]
36 logic blocks, 66 MHz — 683 us 42 nJ

4096 pixels, 9 cycles per pixel

The Xilinx XC4000 Series figures are based on a distributed arithmetic filter design [49]. The figures
are also based on crude speed and power estimates derived from Xilinx product information [43].

certainly require more complex FPGA circuits. With longer interconnections between
logic blocks, more complex FPGA circuits generally require more power per internal
node and operate at slower speeds than simpler circuits. Furthermore, the tools used to
create FPGA circuits and the number of available interconnections between logic blocks
may not be sufficient.

5.5 Microprocessor

Since modern pipelined microprocessor designs operate with very short cycle times, it
is reasonable to consider applying them to real-time image processing tasks. A recent
study measured the performance of a workstation using a 200 MHz DECchip 21064
microprocessor on low-level and high-level image processing tasks [50].

The DECchip 21064 microprocessor [51, 52] has 64-bit integer and floating point
execution units. The 16.8 x 13.9 mm? chip is fabricated in a 0.75 ym 3.3 V CMOS
process. The power dissipation of the chip is 30 W, one hundred times greater than the
typical power dissipation of the pixel-parallel image processor.

The study considered 5 x 5 convolution, a typical task for the pixel-parallel image
processor. The measured performance figure is included in Table 5.6, along with cal-
culated area per pixel, area-time product, and energy per pixel. While the speed of a
DECchip 21064 microprocessor is impressive, it is not sufficient to support real time
processing of large images with a conventional single-processor workstation. Further-
more, the area-time product data show that the pixel-parallel image processor is over
ten times faster per unit area than the DECchip 21064 microprocessor. The energy
per pixel data shows that the microprocessor requires almost five-hundred times more
energy per pixel than the pixel-parallel image processor.
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Table 5.6
Comparison of Image Processing Devices, 5 x 5 Convolution
Area Time Energy

per pixel X per frame per pixel
Pixel-Parallel Image Processor 19222 yum? x 730 us 55 nJ
4096 One-bit-wide PEs 2
One pixel per PE 14 ym* - s
DECchip 21064 pP [51, 52] 891 ym? x  220ms 25177 nJ
64-bit integer & floating-point units 2
512 x 512 image 196 pym* - s
TI TMS320C80 DSP [40, 41] 2
Four 32-bit integer processors, 50 MHz 1305 pm x 40 ms 705 1]
512 x 512 image 52 ym? - s

The TMS320C80 time per frame figure is from a description of the MediaStation 5000 [44], a multi-
media system based on the TMS320C80.

The TMS320C80 energy per pixel figure is derived from typical power dissipation reported in Texas
Instruments product information [45].

The DECchip 21064 time per frame figure is from a study of the performance of microprocessor-
based systems on image processing applications {50].
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The huge difference in energy requirements is not at all surprising. In the DEC-
chip 21064 design, like other modern microprocessor designs, deeply pipelined data
paths, high speed cache memories, and fast multiple-port register files are employed
to provide high performance while supporting the traditional single-sequence program-
ming model. These features increase the energy required per computation. Also, when
performing low-level image processing operations, microprocessors use energy decod-
ing the same sequence of instructions for each pixel. Furthermore, the 64-bit data
paths employed in the DECchip 21064 and other modern microprocessors are much
wider than necessary for processing low-precision pixel data. Finally, microprocessors
include support for a much more complex memory hierarchy than necessary for low-
level image processing.

Some recent microprocessors use special graphics units to provide better perfor-
mance on multimedia applications. One such microprocessor is the Sun UltraSPARC I
[53, 54]. The chip incorporates a graphics unit including four 16-bit integer adders and
four 8-bitx 16-bit integer multipliers. A special set of instructions, the Visual Instruction
Set (VIS) [55, 56], includes instructions that perform operations on four data streams
in parallel. The 17.7 x 17.8 mm chip is fabricated in a 0.5 ym CMOS process with four
metal layers. Operating with a 167 MHz clock, the chip dissipates 28 W.

Using the graphics unit, the UltraSPARC I can perform the low-precision integer
operations typical of low-level image processing tasks more efficiently than it can using
its general-purpose 64-bit integer units. Table 5.7 includes performance data for a
separable 3 x 3 convolution operation executed on the pixel-parailel image processor,
the UltraSPARC I 64-bit integer unit, and the UltraSPARC I graphics unit.

While the performance of the UltraSPARC I graphics unit is much better than the
performance of the integer unit, it is not close to the performance cf the pixel-parallel
image processor. The separable 3 x 3 convolution is a very simple operation. The
pixel-parallel image processor performs the operation in less than 200 us, yet the Ultra-
SPARC I requires over 3 ms. Based on this result, the UltraSPARC I may not be capable
of performing more complex image processing operations in real time. The area-time
product for the pixel-parallel image processor is less than cone-fifth of the UltraSPARC I
value, even when the graphics unit is employed. And the pixel-parallel image processor
requires less than one one-hundredth of the energy per pixel required by the Ultra-
SPARC 1.

5.6 Digital Signal Processor

The Texas Instruments TMS320C80 digital signal processor is a software-programmable
device optimized for three groups of multimedia applications: data compression, graph-
ics, and image processing [40, 41]. The TMS320C80 integrates a general-purpose master
processor with integer and floating point units and four parallel processors optimized
for integer operations. Each of the four parallel processors includes a 32-bit ALU and a
16-bit x 16-bit multiplier. The ALU may be used to perform one 32-bit operation, two
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16-bit operations, or four 8-bit operations. Thus, with the four parallel processors, the
TMS320C80 can perform sixteen 8-bit operations simultaneously. The 18.1 x 18.9 mm?
chip is fabricated ina 0.5 yum CMOS process with three metal layers. Operating at 50 MHz
with a 3.3 V supply, typical power dissipation is 4.6 W.

Tables 5.3, 5.8, and 5.6 provide performance data for three low-level image process-
ing tasks: 3 x 3 median filtering, 3 x 3 convolution, and 5 % 5 convolution, respectively.
The TMS320C80 completes the two simpler tasks in less than 30 ms, but 5 X 5 convo-
lution requires 40 ms. Adjusted to account for differences in area per pixel, the speed
of the TMS320C80 is comparable to the speed of the pixel-parallel image processor. In
addition, the TMS320C80, executing many operations in parallel, performs image pro-
cessing tasks much more efficiently than a microprocessor. However, it requires over
ten times more energy per pixel than the pixel-parallel image processor.

5.7 Summary

The architecture of the pixel-parallel image processor is much better suited to low-level
image processing tasks than alternative architectures. Neither a less complex processing
element, with a two-input function generator, nor a more complex processing element,
with multi-bit data paths, would provide higher speed with the same area per pixel
or the same speed with less area per pixel. Data for many low-level image processing
tasks show that the pixel-parallel image processor requires as little as a sixth of the
energy per pixel required by FPGA circuits, less than a tenth of the energy required
by a digital signal processor and less than a hundredth of the energy required by two
microprocessors. Furthermore, viewed together, area per pixel and time per frame data
show that only FPGA circuits derive as much processing power per area as the pixel-
parallel image processor.

Figure 5.2 qualitatively illustrates the operational characteristics and the relative
flexibility of several architectures considered in this chapter. The area-time and energy
characteristics of the pixel-parallel image processor are clearly superior to the those
of the other architectures. General microprocessors are used in a very wide variety of
applications, but for low-level image processing tasks they are very inefficient. Digital
signal processors are better suited to low-level image processing tasks than micropro-
cessors, but are not nearly as efficient as the pixel-parallel image processor. For very
simple image processing tasks, field programmable gate arrays require somewhat more
energy than the pixel-parallel image processor. Field programmable gate arrays are used
in variety of applications, but it is not clear whether they can be applied to perform more
complex image processing tasks.
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Table 5.7
Comparison of Image Processing Devices, 3 x 3 Separable Convolution
Area Time Energy

per pixel X per frame per pixel
Pixel-Parallel Image Processor 19222 ym?  x 158 us 12 nJ
4096 one-bit-wide PEs 2
One pixel per PE 3um® - s
UltraSPARC I uP [53, 54, 56] 4807 umZ x 17126 ps 7317 nJ
64-bit integer unit, 167 MHz 2
256 x 256 image 82 ym* - s
16-bit graphics unit, 167 MHz 2
256 x 256 image 16 ym® - s

The UltraSPARC I energy per pixel figures are derived from reported cycle counts [56] and clock
frequency [53].

Table 5.8
Comparison of Image Processing Devices, 3 X 3 Convolution
Area Time Energy
per pixel x per frame per pixel

Pixel-Parallel Image Processor 19222 yum? x 253 ps 19 nJ
4096 One-bit-wide PEs 2
One pixel per PE 5 ym*® - s
TI TMS320C80 DSP [40, 41] 2
Four 32-bit integer processors, 50 MHz 1305 ym X 19 ms 335 0]
512 x 512 image 25 um? - s

The TMS320C80 time per frame figure is from a description of the MediaStation 5000 [44], a multi-
media system based on the TMS320C80.

The TMS320C80 energy per pixel figure is derived from typical power dissipation reported in Texas
Instruments product information {45].
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Figure 5.2: Characteristics of architectures applied to low-level image processing tasks:
pixel-parallel image processor (PPIP), field-programmable gate array (FPGA), digital sig-
nal processor (DSP), microprocessor (¢P), and microprocessor with graphics unit (uPG).



Chapter 6

Conclusion

This thesis has described the architecture and implementation of an integrated pro-
cessing element array, and the application of the array to form a desktop pixel-parallel
image processing system. This chapter provides a summary of the thesis and presents
some ideas for future work.

6.1 Summery

Typical low-level image processing tasks are performed by applying a uniform set of
operations for each pixel in each input image. Thus, they may be efficiently handled
by an array of processing elements, one per pixel, sharing instructions issued by a
single controller. The new integrated circuit architecture, employing one-bit-wide logic
circuits pitch-matched to DRAM columns, provides the density necessary to produce
large processing element arrays at low cost.

A processing element combines a 128-bit DRAM column and logic circuits. A pro-
totype integrated circuit provides 4096 processing elements. With respect to both area
and power dissipation, the processing element logic circuits are very efficient. They
require less area and less power than the DRAM columns.

The processing elements are interconnected to create a 64 x 64 array. A multiplex
circuit allows the interconnection network to be extended across chip boundaries using
only one pad for every four perimeter processing elements. Thus, multiple chips may
be used to form processing element arrays matching the size of large images. The inter-
connection network incorporates serial-access memories. The serial-access memories
provide a means of transferring image data to and from the processing element array.

The area of the prototype device is less than 80 mm?. Operating with a 60 ns clock
cycle, the device typically dissipates only 300 mW. Full functionality was proven using
methodical test programs and test programs based on typical image processing opera-
tions.

A demonstration system employs four chips, forming a 128 x 128 array. Format
converters, implemented using multidimensional access memories, transfer data be-
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tween the pbrocessing element array and conventiona] bit-paralle] components in real
time. The control path, with simple hardware, Sustains near-constant array activity.
The complete System is fully functional and performs typical low leve] image process-

The current system Supports grayscale images. The System could be enhanceq to
Support color images. The enhancement would require a new format converter imple-
mentation and extension of the Programming framework. The programming framework
could also be extended to handle two or more pixels with each processing element, trad-
ing performance to reduce the required number of chips,
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The most significant remaining integrated circuit issue is high-volume production of
processing element arrays. This issue would be best addressed in an industrial setting,
where appropriate experimental work can be performed. Development of techniques
for incorporating redundant processing elements would likely be beneficial.

Now that the integrated circuit and system designs are proven, the most challenging
problem is the application of pixel-parallel image processing to real-world problems. It
is difficult to convince designers to consider using hardware that is not widely available.
It is also difficult te convince manufacturers to produce hardware for which there is no
established market.

Fortunately, the dramatic performance advantages of pixel-parallel image process-
ing and logic pitch-matched to dynamic memory are commanding attention. For exam-
ple, researchers at the M.L.T. Artificial Intelligence Laboratory are working to apply the
demonstration hardware to the design of vision systems. One project is a system for
searching and indexing image and video databases. The integrated processing element
array may be used to perform computationally intensive template matching operations.
Another project is an adaptive automobile cruise control system. Images from three
cameras mounted side-by-side are compared to determine the distance to nearby auto-
mobiles. The distance information is used to vary speed and avoid collision. The image
comparisons may be performed in real time using an integrated processing element
array.
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Appendix A

Chip Data

A.1 Supplies and Signals

This section documents the prototype chip’s external supplies and signals. The chip
was tested under the conditions specified in Table A.3.

Supplies

Board-level bypass capacitors should placed between vdd and vss, vpp and vss, and vhh
and vll. Both vss and vli should be tied to ground.

vSs Low-voltage supply for internal circuits and n-channel substrate.
Eight pads.
vdd High-voltage supply for internal circuits. Eight pads.
vpp High-voltage supply for wordline drivers and platelines. Four pads.
vil Low-voltage supply for interface circuits. Ten pads.
vhh High-voltage supply for interface circuits. Ten pads.
Clocks

clko0 clk1 Overlapping clock signals. The failing edges of clk0 and nckO should
be coincident. Instructions begin after the falling edge of clkl.
Edges must be arranged as shown in Figure A.1.
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Instruction

All instruction signals, except i3, are stored by latches. The latches are opened after the
rising edge of clk1 and closed after the falling edge of cikO.

i3 Chip enable input.

i0-i2 Operation code, as described in Table A.1.
a0-a6 Memory address.

fo-f7 Boolean function, as described in Table A.2.

fn fs fe fw Interconnection function.

lalblc Latch load inputs.
Id e

Interchip Communication

nck0 nck1 Overlapping clock signals. The falling edges of nck0 and cik0 should
be coincident. The edges of nck0 and nck1 should be spaced evenly.

n0-15 Bidirectional connections for the four edges of the processing ele-
s0-15 ment array. Each connection serves four processing elements on the
e0-15 perimeter of the array. Each connection should be tied to the corre-

wO0-15 sponding connection of an adjacent chip or should be left open.
4 perimeter processing elements per pad
X 16 pads per edge
X 4 edges
= 256 perimeter processing elements.

Serial Access Memory

sckl sck2 Shift control signals.
str sid Transfer and load control signals.
si0-1 Serial access memory inputs.

5s00-1 Serial access memory outputs.
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P P po1 = Ly
) cycle
nckl /- \ J \

Lt 107 Upoo 1 Lpoy > 1y

Figure A.1: Clock timing. The intervals tpjo tpoo, tpo1, and t,;; control four different
aspects of timing within the processing element array. They need not be equal. The
intervals t,;0 tno0, tho1, and t,;; control interchip communication timing. They should
all be one-fourth the cycle time, t.,ce.

Table A.1
Operation Codes

Interchip Memory Activity
Name i2 i1 i0 Communication la=0 la=1
Zero 0O 0 O none none read
Array 0 0 1 none none read
Write 0 1 O none write  undefined
Refresh 0 1 1 none refresh read
North 1 0 O north = south none read
South 1 0 1 south = north none read
East 1 1 0 east = west none read
West 1 1 1 west = east none read
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Table A.2
Function Generator Truth Table
LatchC LatchB Latch A Result
0 0 0 fo
0 0 1 f1
0 1 0 f2
0 1 1 f3
1 0 0 f4
1 0 1 fs
1 1 0 fe
1 1 1 f7
Table A.3
Operating Conditions
vss 00V thoo 2218 thoo 15 ns
vdd 25V t,or 18ns thor 15 ns
vpp 33V tp;1 14 ns ty1y 15ns
vil 0.0V tyro 6 ns thio 15ns

vhh 3.3V
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A.2 Pads

The prototype chip has 144 pads. Pad locations are shown in Figure A.2. Pad assign-
ments are listed in Table A.4.

TON-O D
SRR R e R I RN T oo o~

”
ik

J. C. Gealow
C. G. Sodini June 1996

N
(3,1
B ENSENENES NSNS SR EENNE RN EEESRASEANDEES
BRSNS EDEOEREERESEESEENNEENNEUERNEDESR
s e ek b ok s s e ek ek LESTATATATNTATATATS]

™~
~

CIrE N E AN E N S S EENEESES N O NSNS EEEENANE O ED e
PTNONDD O = N D D @ O N DD N DD N LD O N ©
N R R R R NR IS 83858 R388583853338858

e

Figure A.2: Pad locations. The chip has large metal features in three corners. The
upper right corner has an M.L.T. logo. The lower left corner has the names ‘J. C. Gealow’
and ‘C. G. Sodini’. The lower right corner has the date June 1996’. The orientation of
the marking “#1’ (which is not a physical feature) corresponds to the orientation of the
layout coordinate system.
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Table A.4
Pad Assignments

1 il 37 vhh 73 il 109 vhh

2 nl2 38 wi 74 s3 110 el4

3 ni13 39 wo 75 s2 111 el5

4 nl10 40 w3 76 s5 112 el2

5 vhh 41 il 77 vhh 113 vl

6 nll 42 w2 78 s4 114 el3

7 n8 43 w5 79 s7 115 el0

8 n9 44 w4 80 s6 116 ell

9 vhh 45 il 81 vhh 117 il
10 fs 46 w7 82 al 118 e8
11 fw 47 w6 83 a0 119 €9
12 f7 48 i0 84 a3 120 sckl
13 il 49 vss 85 il 121 vss
14 fe 50 so0 86 a2 122 sck2
15 fn 51 il 87 a4 123 il
16 f5 52 clkO0 88 a5 124 sid
17 f6 53 clkl 89 ab 125 str
18 wss 54 vpp 90 wvss 126 vpp
19 vdd 55 vpp 91 vdd 127 vpp
20 f4 56 i2 92 Ib 128 si0
21 f2 57 sol 93 Id 129 nckO
22 f3 58 la 94 i3 130 nckl
23 fi 59 w8 95 Ic 131 e7
24 vhh 60 vdd 96 vhh 132 vdd
25 f0 61 w9 97 le 133 e6
26 n7 62 wil0 98 s8 134 e5
27 nb 63 wll 99 s9 135 e4
28 n4 64 wl3 100 si11 136 e2
29 n5 65 wil2 101 s10 137 e3
30 i 66 vhh 102 il 138 vhh
31 n3 67 wil4 103 s12 139 el
32 n2 68 wil5 104 s13 140 €0
33 vss 69 wvss 105 wvss 141 wvss
34 vdd 70 vdd 106 vdd 142 vdd
35 nl 71 si 107 s14 143 nl4

36 nO 72 s0 108 s15 144 nl15
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A.3 Packaging

The prototype chip is packaged in a Kyocera SD-560-8532 pin grid array. Figure A.3
shows the orientation of the die within the package. Figure A.4 shows the bond wires
connecting the chip to the lead frame. Figure A.5 shows the pin assignments.

Figure A.3: Die orientation (top view). Kyocera SD-560-8532 package.
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Figure A.4: Bonding diagram (top view). Kyocera SD-560-8532 package.



119

A.3. PACKAGING
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Figure A.5: Pin assignments (top view). Kyocera SD-560-8532 package. Pin D4 is not

connected
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Appendix B
Layout Design Rules

The rules used for layout design are based on the SCMOS_SUBM rules developed by
MOSIS.

well (nwell, pwell)

1.1  well width 3.60 ym
1.2 well spacing, different potential 5.40 um
1.3 well spacing, same potential 1.80 ym
active
2.1 active width 0.90 ym
2.2 active spacing 0.90 ym
2.3 diffusion to bulk spacing 1.80 ym
2.3 bulk enclosure of diffusion 1.80 ym
2.4 ohmic to bulk spacing 0.90 ym
2.4 bulk enclosure of ohmic 0.90 ym
poly
3.1 poly width 0.60 um
3.2 poly spacing 0.90 yum
3.3 gate enclosure of active 0.60 ym
3.4 active enclosure of gate 0.90 ym
3.5 field poly to active spacing 0.30 um

121
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4.1
4.1
4.2
4.2
4.3
4.3
4.4
4.4

5B.1

5B.2
5B.3
5B.4
5B.5
5B.6

5B.7

5B.1

6B.2
6B.3
6B.4
6B.5
6B.6
6B.7

6B.8

6B.9

7.1
7.2
7.3
7.4

select (nselect, pselect)

APPENDIX B. LAYOUT DESIGN RULES

select to channel spacing 0.90 ym
select enclosure of channel 0.90 um
select to active spacing 0.60 yum
select enclosure of active 0.60 ym
select to active contact spacing 0.30 ym
select enclosure of active contact 0.30 um
select width 0.60 ym
select spacing 0.60 um
contact to poly
contact size 0.60 um
x 0.60 ym
poly enclosure of contact 0.30 ym
contact spacing on same poly 0.90 um
contact spacing on different poly 1.80 ym
poly contact to poly spacing 1.35 ym
poly contact to active spacing,
one contact 0.75 ym
poly contact to active spacing,
many contacts 0.90 um
contact to active
contact size 0.60 um
x 0.60 ym
active enclosure of contact 0.45 um
contact spacing on same active 0.90 um
contact spacing on different active 2.10 ym
active contact to active spacing 1.50 ym
active contact to gate spacing 0.60 um
active contact to field poly spacing,
one contact 0.60 uym
active contact to field poly spacing,
many contacts 0.90 um
active contact to poly contact spacing 1.20 ym
metall
metall width 0.90 um
metall spacing 0.90 um
metall enclosure of poly contact 0.30 ym

metall enclosure of active contact

0.30 ym



8.1

8.2
8.3
8.4
8.4
8.5

9.1
9.2
9.3

14.1

14.2
14.3
14.4

15.1
15.2
15.3

10.1
10.2
10.3
104
10.5
10.5
10.5

via
via size

via spacing

metall enclosure of via
via to poly edge spacing
via to active edge spacing
via to contact spacing

metal2

metal2 width

metal2 spacing

metal2 enclosure of via
via2

via2 size

via2 spacing
metal2 enclosure of via2
via2 to via spacing

metal3

metal3 width

metal3 spacing

metal3 enclosure of via2

overglass

bonding pad width

probe pad width

pad enclosure of glass

pad space to unrelated metal2
pad space to unrelated metall
pad space to unrelated poly
pad space to unrelated active

0.60 ym
% 0.60 um
0.90 ym
0.30 um
0.60 ym
0.60 um
0.60 ym

0.90 ym
1.20 ym
0.30 um

0.60 ym
X 0.60 ym
0.90 ym
0.30 ym
0.60 um

1.80 ym
1.20 ym
0.60 um

100 ym
75 um
6 ym
30 um
15 uym
15 pym
15 ym
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APPENDIX C. ARRAY CODE

a-[tqlwanwyp—-a 000 T 0 0000 Jegev tq AUM 91
yuouV =8 0T 000 1000 0 -~ oRZ ST
00000 ———— - — QION  ¥I1
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a-{‘qlwaw “yp-a 006010 0000 lDegey a AUM 8
yuouV =8 0T 000 T 00O 0 — oRZ [
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e A A 4
P00 | timing | W/ | address | W/, Jwordiine | iq
logic decoder detector
wix
-
wiq timipg timipg
logic logic
l e [ v
eq pc
v e g L
wia | «iomi - dummy i
= e 1 g [~ dynamic |- oche |
9 9 logic
g
fp
s 4 g -
f timing I | dummy | fq timing /
logic latch logic
L .
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v S g
I | timing | fp dummy | rg
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logic logic

Figure D.1: Processing element timing control, part 1.
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e e
pO! | timing timing | timing | W/ | address | W/, lwordline
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Figure D.2: Processing element timing control, part 2.
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logic latch logic
Figure D.3: Processing element timing control, part 3.
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p10| timing timing timing
logic logic logic
L 2 .
la wr la

Figure D.4: Processing element timing control, part 4.
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