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Abstract

The classical estimation problem, that of estimating an unknown signal in additive
noise, has recently been revisited by researchers. Wavelets and wavelet packets can
be attributed to the resurgence of interest in this area. One of the most significant
properties of wavelets, which we exploit, is their ability to represent signals in a
given smoothness class with very few large magnitude coefficients. In this research,
we find an “optimal” representation of a given signal in a wavelet packet tree, such
that removing noisy coefficients at a given threshold improves the signal quality and
minimizes the error in reconstructing the signal.

To apply these denoising techniques, we seek a methodology that will extract
significant features from high-resolution radar (HRR) returns for the purpose of Au-
tomatic Target Recognition (ATR). HRR profiles are one-dimensional radar returns
that provide a “fingerprint” of a target. Using returns from a particular target, we
create a database that contains signals representative of the target at different aspect
angles, and the database is extended to include many possible targets. The ATR
problem then reduces to a database search procedure in order to determine a target’s
identity and spatial orientation.

Thesis Supervisor: Dr. Hamid Krim
Title: Research Scientist, Laboratory for Information and Decision Systems
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Chapter 1

Introduction

In recent years, wavelets have been the focus of intense research interest. Wavelets
have, in fact, permeated every application area and scientific discipline in one form
or another. On account of their unique properties, they almost challenge the Fourier
transform as the analysis tool of choice in many applications. The power of wavelets
lies in their ability to analyze transient signals, with inherently non-stationary statis-
tics. A wavelet basis is well-adapted to these types of signals, providing information
at different scales and translations. The analysis is simple since all of the wavelet

basis functions are obtained from scales and shifts of a single “mother” wavelet.

Wavelets, however, are really only the beginning, since they represent a few
of the many possible basis representations. Several different overcomplete represen-
tations of signals, that offer even more freedom, have been proposed. In this thesis,
we have chosen to focus on wavelet packets, which provide an overcomplete represen-
tation with the wavelet basis as a special case. Since wavelet packets provide many

choices of bases, a “best” basis must be selected, given a specific goal or application.

17



18 o A Chap_ter 1. Introduction

Compression is one popular goal, and will be the driving force in a significant portion

of subsequent analyses.

Wavelets have certalnly gained popularlty in a mult1tude of new application
-areas but they have also allowed 1nvest1gators to rev151t some of the classical en-
gineering problems. One classic problem that underlies all fields of study involves
estimating an unknown signal in noise. The traditional solution to this problem has
been to minimize the estimation error given a model or statistics for the underlying
signal and additive noise. These approaches lead to such techniques as- the least-
squares solution via the normal equations, the causal and non-causal Wiener filters,

and the Kalman filter.

Wavelet-based denoising, however, leads to somewhat different approaches.
One popular technique is to obtain the most compressed representation of a signal
and then discard coefficients with magnitude less than a predetermined threshold.
Compression is, in fact, one of the most important properties of wavelets. This
property is important in communications applications because it allows a significant
portion of a signal to be sent with only a few coeflicients.. These coeﬂiéients-can..then
be represented by longer codewords as a safeguard against errors. Since the smaller
coefficients only provide details, they are not as important and can be coded with a

fewer number of bits.

The goal of compression in communications systems is, however, very similar
to the godl of compression in the denoising problem. We place more confidence in
the larger wavelet coefficients of a noisy signal than the smaller coeficients, since the
large coefficients are more likely to contain some signal information. By removing
the smaller coefficients, we essentially remove noise and thereby improve the quality

of a signal. A more compressed representation.of.a signal therefore leads to less
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degradation in the underlying signal when thresholding is used, and as a result, an
appropriate choice for the thresholding strategy will be an important topic in the

wavelet denoising problem.

| While compression may be an important goal that leads to effective denoising, |
it does not lead to an optimal solution in any measurable sense. An alternative
solution is to find the “best” representation of a noisy signal which minimizes an
appropriate error criterion. The advantage of this method over compression is that it
accounts for the thresholding rule and the statistics of the additive noise. Formalizing

this approach will be a significant contribution provided in this thesis.

As a second topic, we consider the problem of Automatic Target Recognition
(ATR) using High-Resolution Radar (HRR) profiles. While ATR. and denoising may
seem somewhat disconnected, the two topics are actually not so distant. One specific
reason for the connection is that we propose an algorithm for ATR which uses tech-
niques very similar to those associated with denoising. Also, the HRR profiles chosen
here can be modeled as an underlying signal plus noise. These profiles are a reason-
able choice for the ATR problem because they capture important information about
an object. The algorithm that we propose will use this information to determine a

target’s identity along with its spatial orientation.
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1.1 Denoising Techniques

In this thesis, we treat the classical denoising problem of estimating an unknown

signal in additive noise. The noisy observations {z(m)} are given by,

z(m) = s(m)+v(m), 0<m<N-1, (1.1)

where {v(m)} is zero-mean white Gaussian noise with variance o®. Performing effec-

tive noise removal, in this case, consists of three important steps.

e Best Signal Representation — From a given class of possible representa-
tions, a “best” signal representation must be found based on some specified
goal. Wavelet packets are used here to provide this family of representations,
and a best basis search algorithm is used to efficiently identify the “best” rep-
resentation. For the goal of compression, the optimal representation is the one

that requires the fewest number of significant coeflicients to represent a signal.

e Cost Functions — Cost functions are necessary ingredients in the denoising
scheme because they are directly related to the meaning of “best”. The “best”
representations are the ones which minimize an appropriate cost function. For
compression, we search for cost functions that penalize representations with a
fairly uniform distribution of coefficients and that prefer the representations

with more skewed distributions.

. Thresholding - Thresholding is necéssary to 'rémov.e unv&)anted noise from
a sigﬁal. Since the statistics of white noise are invariant under orthogonal
transformations such as the wavelet packet decomposition, the noisy wavelet
coefficients will suffer the same degradation as the noisy signal. If the most

compressed representation of a signal is found, thresholding smaller coefficients
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will primarily remove noise without significantly reducing the quality of the

underlying signal.

The above points have been presented assuming that the primary goal is com-
pression. To illustrate these concepts, we present a simple example. A test signal
composed of sinusoids with two discontinuities is shown in Figure 1.1(a). The his-
togram in Figure 1.1(b) shows the magnitude of the signal coefficients which are
distributed somewhat uniformly between 0 and 5. To obtain a simpler representation
of this signal, only the most significant coefficients must be used, and this corresponds
to thresholding the coefficients at a given level T. Figures 1.1(c) and (d) show that
thresholding is disastrous since the smaller coefficients contain a significant amount

of information about the signal in this representation.

This problem is less troublesome if wavelet packets are used to find a better
representation for the signal, as shown in Figure 1.1(e). The histogram shows that a
significant portion of the coefficients are approximately zero, and consequently, most
of the signal information is contained in a very small number of larger coefficients.
Figure 1.1(f) shows an approximation to the original signal obtained by thresholding
the coefficients below T and applying the inverse transformation. Since most of
the signal information is contained in the larger coeflicients, removing the smaller
coefficients results in a good approximation to the original signal. This example
shows how wavelet packets and an appropriately chosen cost function are useful in

finding a compressed representation of a signal.

A more important issue concerns the utility of wavelet packets in the denoising
problem, and to address this issue, we return to the problem statement given in
Equation (1.1). The goal is to find the best estimate of an underlying signal {s(m)} in

the presence of additive noise {v(m)}, given N noisy observations {z(m)}. Knowing
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Figure 1.1: Illustration of the power of wavelet packets in finding a compressed repre-
sentation of a signal. (a) HeaviSine signal. (b) Histogram of the signal. (c) Shows the
thresholding region. (d) Shows the thresholded signal. (e) Histogram of the trans-
- formed signal obtained by a.wavelet  packet decomposition.: (f) Signal approximated
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the statistics of the underlying signal {s(m)} and the noise {v(m)}, we could use
the linear least-squares estimator to determine the best estimate of {s(m)}. We
do not, however, assume any particular distribution for the signal, and as a result,
estimating {s(m)} using Equation (1.1) is a very difficult problem. A partial solution
can be obtained by applying an orthogonal transformation to the noisy observations.
The denoising problem then becomes easier in this new representation. Applying a

transformation to the observed signal, we obtain a different denoising problem,

Wx = Ws+ Wv ' (1.2)

w, = w,+w,. | (1.3)

The coefficients in this new basis are therefore partitioned into coefficients belong-
ing to the underlying signal and coefficients belonging to the noise. Since we have
applied an orthogonal transformation (.e. WIW = WW7 =1), the noise statistics
remain invariant in the new basis. The denoising problem of Equation (1.3) is there-
fore identical to the denoising problem in Equation (1.1), but by choosing a “good”

transformation, the noise removal process is more effective.

Consider another example which shows the utility of this transformation. A
noisy version of the signal previously shown in Figure 1.1(a) is given in Figure 1.2(a).
The variance of the additive noise is appropriately chosen to provide a signal-to-noise
ratio (SNR) of 10 dB. Wavelet packets are then used to find the most compressed
representation of the noisy signal. The histogram of the coefficients, shown in Fig-
ure 1.2(b), resembles a Gaussian distribution as expected. If we remove the coefficients
below a predetermined threshold T', the noise is almost completely removed. At the
same time, we retain the most important coefficients needed to reconstruct the un-
derlying signal, as shown in Figure 1.2(c). This example focused on the specific goal

of compression, but there are other goals. In this thesis, we present an alternative,
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Figure 1.2: Tllustration of how signal compression can lead to effective denoising. (a)
Noisy HeaviSine signal with SNR level of 10 dB. (b) Histogram of the noisy signal
coefficients. (c) Signal reconstruction obtained by removing coefficients at a threshold

level T'.

namely to minimize the error in reconstructing the underlying signal.

1.2 Applications to High-Resolution Radar

Anyone who has received a speeding ticket before, is familiar with the power of radar

_technology. The problem. of automatic target recognition, however; requires more
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1.2 Applications to High-Resolution Radar

information about a target than its speed and range. In combat situations, ATR
systems must also be able to distinguish targets as either friend or foe, and be able
to determine the orientation of a target to know if it is in a position to attack. ATR
systems must, therefore, be able to identify targets and their spatial orientation in

addition to performing detection and tracking operations.

In this thesis, we present an algorithm for ATR. We specifically believe that
simultaneously robust and efficient ATR algorithms must involve pattern matching,k
in the form of a database search. We therefore propose an “overcomplete” database of
“patterns” or signals represéntative of the targets of interest. The difficult task is to
find the appropriate signals and discrimination statistics that allow targets and orien-
tations to be distinguished from one another. In addition, noise added to the received

radar returns introduces a factor of uncertainty and must be handled accordingly.

The overcomplete representation of HRR returns is obtained by successive av-
eraging over larger and larger angular sectors of the orientation space. This averaging
is an intuitively appealing method for combining the information in several signals
into one representative signal. By forming the database from overlapping sectors, the
representation of a given target is overcomplete and therefore more robust. Searching
the database involves optimizing the match between a received radar return and the
signals in the database. The cost function used for this optimization is therefore im-
portant for the purpose of discrimination. We present three such statistics that are

based on the Maximum Likelihood estimator.



26 o Chapter 1. Introduction

1.3 Contributions and Organization

This section provides a road map for the thesis, along with some of the 1mportant

results and contributions provided in each chapter:

Chapter 2: Wavelets and Wavelet Packets

This chapter provides an overview of wavelet theory from the point-of-view of
multiresolution analysis and filter banks. Orthogonal filter banks are of specific
interest because they are directly related to orthonormal wavelet bases. Two
methods of solving the dilation equation for the scaling function are presented,
along with several choices of filter coefficients which lead to “good” solutions.
In addition, a method for iteratively computing the wavelet coefficients is pre-
sented, which ties the wavelet theory back to filter banks. The final section
of Chapter 2 introduces the notion of wavelet packets and the overcomplete

representation that they provide.

Chapter 3: Majorization and Best Basis Search

This chapter provides a definition of compression, using the framework offered
by majorization theory. The first section introduces some of the main defi-
nitions and theorems of the general majorization theory. Several well-known
convex and concave functionals are then presented for the purpose of preserv-
ing an underlying majorization. The chapter concludes with the discussion of
an efficient algorithm to find a “best” signal representation. This algorithm,
termed the Best Basis Search, optimizes additive cost functions over all pos-
sible combinations of wavelet packet coefficients. The primary contrlbutlon of
this chapter is to introduce a new framework for understanding compression.

Using this, we can.interpret the»mformatrlon cost:functions as well as present
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new possibilities.

Chapter 4: Denoising Techniques Using Wavelet Packets

This chapter discusses the techniques involved in denoising with the specific
goals of compression and minimal reconstruction error. Two thresholding tech-
niques are introduced and interpreted in the context of the denoising problerm.
Compression-based denoising is then discussed, along with several results to
illustrate its performance. A second denoising strategy which involves minimiz-
ing the reconstruction error of the underlying signal is also introduced. Both
biased and unbiased estimators are derived, and their performancé is verified

through simulation.

Chapter 5: Applications to High-Resolution Radar

This chapter applies some of the denoising techniques to the problem of Auto-
matic Target Recognition. The viability of using High-Resolution Radar profiles
for the ATR problem is verified by presenting an efficient and robust algorithm.
We begin by describing both real and simulated HRR data. We then define the
ATR problem with specific emphasis on ground-based targets. The significant

- contribution of this chapter is the algorithm that we propose. We present the

me’bhodology for constructing as well as searching a database of HRR returns.

Several results are presented to verify the performance of the algorithm.

Chapter 6: Conclusions

This chapter summarizes the significant results of this thesis. In addition, it
discusses several possibilities for improving and extending some of the current
denoising techniques. The proposed ATR algorithm also has future possibilities,

and some suggestions are offered for extending its capabilities.
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Chapter 2

Wavelets and Wavelet Packets.

Wavelets and wavelet packets have become popular tools in many scientific disciplines
because of their nice properties. Wavelets, like the Fourier transform, represent a sig-
nal by weighted basis functions from an orthonormal set but allow more freedom
than the Fourier transform in choosing the basis functions (i.e. the functions are not
restricted to sinusoids). While sinusoids are useful for representing the frequency con-
tent of a signal, they are not particularly useful in analyzing transient signals, which
require basis functions that are well-localized in time. The wavelet basis functions,
though, are typically well-localized in both time and frequency. One of the most re-
deeming properties of wavelets, and the one that we most exploit here, is that through
their vanishing moment properties, wavelets are well-suited to represent signals using
only a few basis functions. The idea that a signal is more efficiently represented using

a wavelet basis leads, as we shall see, to effective denoising.

The wavelet basis functions are obtained from a single mother wavelet, ¥(t),

29
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by dilations and translations, or
Yi(t) = 27%(2t - k). (2.1)

This results in a doubly indexed basis for all j € Z and k& € Z. From this basis, all

functions f(t) in L?(IR) can be represented by a weighted sum of the basis functions,
F&) = D03 wi(t). (2.2)
ik

Since we only consider orthonormal basis functions here, the coefficients {w;,} can

be found by projecting f(t) onto the appropriate basis function to obtain

we = [ soun, 23)

y”

where “x” represents conjugation. The mother wavelet is obtained from the scaling

function ¢(t) by the wavelet equation,

W) = 23 ha(k)e(2t — k), e

k

while the scaling function is a solution to the dilation equation,
$(t) = 2> ho(k)p(2t — k). (2.5)
p A

In this chapter, we will show how the wavelet and dilation equations arise from
multiresolution . analysis and filter bank theory. We will see that designing good
wavelets is strongly dependent upon these two equations. In the last part of this
chapter, we will extend the wavelet decomposition to wavelet packets, which provide
additional freedom in representing a signal efficiently, freedom that will be useful in

the denoising problem.
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2.1 Multiresolution Analysis

The theory of wavelets is a tightly woven web of different ideas, dating back to the
early 1900’s. It combines results from mathematics, physics, and signal processing,
and it is therefore a challenging task to describe the development of the wavelet the-
ory in a succinct, yet intuitive format without inevitably overlooking some important
details. To this end, we search for a starting point in this web that will unravel all
of the useful results and simultaneously spare the reader from the long history of the
wavelet theory. The path that we take was pioneered by Mallat [1] and Meyer [2]
and is commonly termed multiresolution analysis. Multiresolution analysis is a math-
ematical framework, described by a set of axioms, from which wavelet and subband
decompositions of signals can be understood. In this section, we will describe these

axioms and show how they lead to important ideas in wavelet theory.

The essence of the multiresolution theory is that a signal can be represented
at different scales, where important features of a signal become more apparent. One
can imagine analyzing a signal under a microscope. By increasing the magnification
of the microscope, one can see more and more details of the signal.' In choosing a
wavelet basis, we are essentially looking for a good microscope to examine a particular
signal. In the past, the most popular analysis tool has been the Fourier transform,
which examines a signal based on its frequency components. The major drawback
to Fourier analysis is that a signal is synthesized from exponential functions which
are not compactly supported in time. In essence, the Fourier microscope can resolve
frequency components infinitely close together if the integration time is infinitely
large. In designing a good wavelet, we thus seek a time-frequency atom that is limited
by some measure in both time and frequency. The Heisenbefg Uncertainty Principle

provides a lower bound on the area of the time-frequency support, where the region
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of support in the time and frequency domain is characterized by a variance measure,

o = / O

o = % /_ )

For signals of unit energy, the area of a time-frequency atom is then given by o0y,
which has a lower bound 6f 1/2. Extending this idea, we can illustrate the re-’
gion of support in the time-frequency plane by a two-dimensional plot as shown in
Figure 2.1. Figure 2.1(a) shows a typical tiling for the short-time Fourier transform,
while Figure 2.1(b) shows a typical tiling for the wavelet transform. The difference
between the wavelet transform and the short-time Fourier transform is in the dyadic
tiling of the time-frequency plane. This type of tiling is useful because short windows
capture high-frequency transient effects, while longer windows capture low-frequency
trends in a signal. The time-frequency atoms resulting from thq dyadic tiling are
ideally suited for the problems of interest, and as shown below, are a direct result of

multiresolution analysis.

Multiresolution analysis can be axiomatically defined by the following four

conditions.

Definition 1 - Multiresolution Analysis /3, 4] The subspaces V; must satisfy the

following four conditions:

1) Nested spaces: V; C Vi
Upward Completeness: |JV; = L*(R)
Downward Completeness: (\V; = {0}

2) Scale Invariance: f(t) € V; <= f(2t) € V;51



2.1. Multiresolution Analysis : , 33

Frequency Frequency '

Time . Time

(a) (b)

Figure 2.1: Tiling of the time-frequency plane. (a) Atomic decomposition of the
short-time Fourier transform. (b) Atomic decomposition of the wavelet transform.

8) Shift Invariance: f(t) € Vo <= f(t —k) € V; for allk € Z

4) Egistence of a Basis: Vy has an orthonormal basis {$(t — k)|k € Z}

The first condition not only stipulates the increasing nature of the subspaces {v;}

but also their completeness in L?(R). This is tantamount to saying that

tim 500 = o (26)
lim 7)) - £i@l = o e

where f;(t) is the projection of f(t) onto V;. Note that the increasing nature of
the subspaces necessarily implies the nested structure of the subspaces. The second
condition introduces the notion of scale, leading to the dyadic tiling of the time-
frequency plane, while the third condition requires the subspaces to be closed under
functional translation. The final condition requires that a basis exist for the subspace

Vo, and using the second and third conditions, this is equivalent to the existence of
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an orthonormal basis {27/2¢(27t — k)} for V;.

The above multiresolution framework leads to a new set of subspaces W; which
represent the details obtained in moving from one scale to the next. We specifically
define W; to be the orthogonal complement of V; in the larger subspace Vj;;. As a

result, V41 is the direct subspace sum of V; and Wj, or

Vi =V, W; and V;(\W; ={0}. (2.8)

Letting Af;(t) equal the projection of f(t) onto W;, gives f;11(t) = f;(t) + Af;(t),
which indicates that Af;(¢) provides additional details to f;(t) in order to generate
the refined function f;41(¢). By iterating this procedure, two important facts about

the subspaces can be derived,

Vin = WPpwePpwiP---Pw; (2.9)
L’(R) = WP (éWJ) = é W;. _ (2.10)

j=—o0

“As a result, the subspaces W; are also complete in L%(R) , and by ndting that W, is

a subset of V}, for [ < j, and that Vj is orthogonal to W;, one concludes that W; is
orthogonal to W for [ # j. Given these facts and the conditions of Definition 1, one

can define an orthonormal basis for L2(RR),
Vi(t) = 29227t —k), j€Z and k€ Z, (2.11)

where {,,(t)|k € Z} is an orthonormal basis for W;. We refer the interested reader

to [4] for a more detailed discussion of this result.

Since the space V; is contained in V}, the function ¢(¢) is in Vi, and can be
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written as a linear combination of the basis functions for V5. This leads to the dilation

equation,
B(t) = V2 clk)p(2t—k) =2 ho(k)o(2t — k), (2.12)

k

where the coefficients {c(k)} follow the convention Y, c(k) = v/2 and {ho(k)} satisfy
> ho(k) = 1. To determine the coefficients {c(k)} in the dilation equation, one can

use the orthogonality property of translates to obtain,

NG /_ T oe2t—n) = 2 /_ " (Zc(k)qﬁ(%— k)> b(21 - m)dt

o0 k

= 2c(n) /_OO ¢*(2t — n)dt = c(n). (2.13)

Since Wy is contained in Vi, it may be written in terms of the basis functions for V4.

This leads to the wavelet equation,
V2 d(k)g(2t — k) =2 Z hy (k) (2t — (2.14)
k

In addition, the orthogonality of the basis {¢(t — k)} imposes constraints on the
coefficients {c(k)},

8

/_ T o6t — m)dt = 2 w( (k) b(2t — )) <Zc(l)¢(2t—2m—1)) at

_ 2 Z c(k)e(l)p(2t — k) (2t — 2m — )dt.

—o0 T p

8
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Due to orthogonality, the only non-zero terms occur when k& = 2m + [, which gives

/_00 d(t)p(t —m)dt = 6(m) =2 -/_00 Z c(k)c(k — 2m)¢* (2t — k)dt
= > c(k)e(k — 2m).

k

This shows that the coefficients {c¢(k)} have unit energy and double-shift orthogonal-

ity, or

S ch)etk—2m) = 6(m) and S |e(B)P=1.  (215)
k

k

The functions ¢(t) and (¢ — m) must also be orthogonal for any value of m, and
¥(t) must be orthogonal to ¥(t — m) for all m # 0. This leads to the following two

constraints on the coefficients,

> e(k)d(k —2m) = 0 (2.16)
d(k)d(k —2m) = 6(m). ) (2.17)
2

Similar conditions will appear again in the next section as requirements for orthogonal

filter banks.

2.2 Orthogonal Filter Banks

The popularity of the wavelet theory in applied fields is perhaps due, for the most part,
to its efficient implementation via filter banks. Filter banks have gained prominence in
. signal processing for their frequency discrimination, important for subband coding.

The typical structure of a two-channel ﬁ'ltér'b‘a'nk,’ introduced in the 1980’ [5], is
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shown in Figure 2.2. The filters Hy and Fy are typically lowpass filters, while H,
and F; are highpass filters. The downsampling operation (] 2) removes the odd

components of a signal,
vi(n) = wi(2n), (2.18)

and as a result, both signals {vg(n)} and {vi(n)} are half the length of the origi-
nal signal. Downsampling can equivalently be represented by the following matrix

operation,

vi = (I 2)y (2.19)

(12) = o0 1 0 0 - . (2.20)

For ease of analysis, it is often useful to carry out the operations in the z-domain. It
“is simple to show [3] that downsampling in time “expands” the z-transform and adds

an aliasing term, or

w(n) = p(2n) — Vi(z) = 3 [Yi(zY%) + Yi(—2"2)] (2.21)

|
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Analysis Bank Synthesis Bank

Figure 2.2: Simple two-channel filter bank.

The combined filtering and downsampling operations can also be represented in terms

of matrices. First writing the equations for convolution and downsampling gives

yi(n) = > hi(k)z(n —k) (2.22)
k
vi(n) = w(2n) =) hi(k)z(2n — k), (2.23)
k
which shows that {v;(n)} can be obtained from {z(n)} directly by the matrix opera-
tion,
vi = (l2)Hx (2.24)
where

hi(3) hi(2) hi(1) hi(0)
hi(3) hi(2) hi(1) hi(0)
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In the synthesis bank, the signals are upsampled and then filtered. The up-

sampling operation (T 2) adds zeros between successive signal samples,

vi(n/2) n even

ui(n) = (2.26)
0 n odd
and the equivalent matrix operation is given by
wu = (12)v; (2.27)
where
0 1 00 -
0 0 00 -
(12) = 0 10 0 (2.28)
0 00 O
01 0 O

The matrix (T 2) is the identity matrix with rows of zeros added in between. Com-
paring Equations (2.20) and (2.28) shows that upsampling and downsampling are
transpose operations, (i.e. (12)7 = (] 2)). In the z-domain, upsampling “shrinks”
the z-transform, or

v;(n/2) n even

ui(n) = — Ui(2) = Vi(2?). (2.29)
0 n odd

As a final observation, downsampling followed by upsampling replaces the odd com-
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ponents of a signal with zeros. The equivalent z-domain operation is given by,

wy={ P e =ty e v @)
0 n odd

To design a perfect reconstruction filter bank, the synthesis bank must perform
the inverse operation of the analysis bank. We will, however, require all the filters to
be causal, to make the recovered signal a delayed version of the input signal. Following
the signal path through the lowpass and highpass branches of the filter bank shown
in Figure 2.2 and using EquaLtion (2.30), yields the following,

Lowpass Branch : %Fo(z) [Ho(2)X (2) + Ho(—2) X (—2)] (2.31)

Highpass Branch : —;—Fl (2) [Hi(2) X (2) + Hi(—2)X(—2)] . (2.32)

Adding the two outputs and combining terms leads to an expression for the recon-

structed signal,

X(@) = IR HE + RERE]XE) +

—
Distortion term

S R(2) Ho(—2) + Fi(2)H (~2)] X (=), (2.33)

~

Aliasing term

In designing a perfect reconstruction filter bank, the aliasing term is ideally zero
and the distortion term is unity (or a delay to make the filters causal). The design

equations for perfect reconstruction filter banks are then given by,

Fo(2)Ho(2) + Fi(2)Hi(2) = 227 (2.34)
Fo(?)Ho(—z)"'ﬂ(Z)Hl(v—?) = 0 (2.35)
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To cancel the aliasing in Equation 2.33 the simple choice of Fy(2) = Hi(—z) and
Fi(2z) = —Hy(~z) is made, and substituting this choice into the distortion equation,

gives
Fo(z)Ho(z) — Fo(=2)Ho(—2) = 227, (2.36)
Letting P(z) = 2 Fy(2)Ho(2)!, provides the final design equation,
P(z)+ P(-z) = 2, | (2.37)

which requires P(z) to be a halfband filter. Filters of this type are only composed
of odd powers of z and a constant term equal to 1. A perfect reconstruction filter
bank thus requires a halfband P(z) which subsequently leads to the other filters via

spectral factorization of P(z).

The above discussion presents a general framework for designing perfect re-
construction filter banks. We now focus our discussion on designing orthogonal filter
banks. An orthogonal two-channel filter bank is shown in Figure 2.3, where the nor-
malized coefficients {c(n)} and {d(n)} have been used for the lowpass and highpass
FIR filters respectively. In addition, the synthesis branch has filters {c(—n)} and
{d(—=n)} represented by the matrices CT and D7 respectively. Non-causal filters are
used for the moment to make the analysis simpler. We will show that CT and DT
are the required matrix operations to construct an orthogonal filter bank, and we will

give the conditions on {c(n)} and {d(n)} that lead to perfect reconstruction.

If the entire filter bank operation is represented by a matrix M, then M must

equal the identity matrix for perfect reconstruction. For an orthogonal filter bank,

'] must be odd because the left side of Equation (2.36) is an odd function.
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Figure 2.3: Simple two-channel orthogonal filter bank.

M = HHT =1 is required, where H is the entire analysis bank and HT is the entire

synthesis bank. From the previous discussion about matrix operations, H can be

written as
c(3) ¢(2) c(1) ¢(0)
(L 2)C o e(3) e(2) (1) <(0)
H = | .. .. = o e e . (2.38)
(12)D e d(3) d(2) d(1) d(0) |
d(3) d(2) d(1) d(0)

HT = | ... ='[‘CT(T'2) : DT(p 2)], (2.39)

where we have used the fact that upsampling and downsampling are transpose opera-

tions. This shows that CT and DT are the filters that should be used in the synthesis -
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bank as shown in Figure 2.3.

We now determine the conditions on the filters {c(n)} and {d(n)}. Since
M = HHT =1, it must also be true that H'H = I because H is an orthogonal
matrix. Writing these matrix equations in terms of the filters, results in the following

three conditions which must be satisfied?,

> c(k)e(k —2m) = 6(m). (2.40)
S c(k)d(k —2m) = 0 C(2.41)
k
> d(k)d(k —2m) = §(m). (2.42)
k

The same equations were derived in the previous section while defining multiresolution
analysis, and as a result, designing an orthogonal filter bank is strongly connected
to finding an orthonormal basis {¢(t — k)}. There are many coefficients that satisfy
Equations (2.40)-(2.42), but the number of design possibilities can be limited by

making a simple causal choice for the filter {d(n)},
d(n) = (=1)"¢(N—n), 0<n<N, | (2.43)

where N+1 is the length of the filter. If the coefficients {c(n)} satisfy Equation (2.40),
then this choice of {d(n)} will automatically satisfy Equations (2.41) and (2.42). As
a consequence of this choice, selecting good values for {c(n)} is the primary: concern
in designing orthogonal filter banks. Once these coefficients have been selected, it is

then possible to solve the dilation equation, in order to determine the scaling function.

2See [3] for more details.
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2.3 The Scaling Function

Given a set of coefficients {ho(n)} (or equivalently {c(n)}) that correspond to an
orthogonal filter bank, the scaling function can be found by solving the dilation

equation,

() = 2 ho(k)g(2t — k). » (2.44)

ke
Out of the numerous methods available for solving Equation (2.44) we discuss two.
The first method, called the cascade algorithm, is an iterative approach to solving
the dilation equation. The algorithm is initialized using a simple function such as the
box function on the interval [0,1]. This initial estimate of ¢(¢) is then updated via

the dilation equation to find a new estimate. Specifically, let

6O = I 0stsd (2.45)
0 otherwise :
g = 2 ho(k)gD (2t — k), (2.46)
k

and if the cascade algorithm converges, the solution to the dilation equation is given
by ¢(t) = zh_}g ¢"(t). For an arbitrary set of coefficients {ho(n)}, however, the cascade
algorithm is not guaranteed to converge. The necessary and sufficient conditions for
existence and convergence are given in [3]. To illustrate the convergence of the cascade
algorithm, we consider an example from the family of splines, using the coefficients
{ho(0), - yho(4)} = {11—6(1, 4,6,4,1)}. The results for different iteration numbers are
shown in Figure 2.4, where the box function on [0, 1] is used as an initial guess for
¢ (t). For this example, the cascade algorithm rapidly converges to the true solution
of the dilation equation. It can be shown that the coefficients used in this example

generate a cubic spline scaling function. Examining: Figure 2.4, note that the cubic
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Figure 2.4: Different iterations of the cascade algorithm for the filter coefficients
16(1,4,6,4,1). (a) (1) (b) ¢P(t) (c) ¢P)(2) (d) 1O (2)

spline is supported on [0, 4] for the set of coefficients {ho(0), -, h¢(4)}. It can be
shown, in general, that if the cascade algorithm converges, the scaling function will

be supported on [0, N] for a set of coefficients {ho(0),- -, ho(N)}.

An alternative approach to solving the dilation equation is based in the Fourier
domain. Taking the Fourier transform of both sides of Equation (2.44) results in

dw) = H(3)a(%),

e (5 (2.47)

where ¢(w) is the Fourier transform of ¢(¢) and Ho(w) is the discrete-time Fourier

transform of {ho(n)}. We can iteratively determine qﬁ(zﬂ,) in terms of ¢ (5%7) and
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Hy (%) for all values of j, to obtain in the limit
A > w
dw) = HIHO (2—j) . (2.48)
]:

Note that Jllrxolo ¢ (;U—]) = ¢(0) = 1, since the normalization :¢(t) = 1 is used.
For Equation (2.48) to converge, the conditions Ho(w)lw=o = 1 and Ho(w)|pey = 0
are clearly required, and other conditions are discussed in [3] and [4]. As a simple
example, consider the coefficients {ho(n)} = {(3,3)}, with a corresponding Fourier
transform Ho(w) = £(1+e~™). Using the infinite product formula in Equation (2.48)

gives

w

. T w 1l 1= 1—ew
i=1
which corresponds to the box function on [0, 1}, or

1 0<t<1
¢Ha.a,r(t) = . (250)
0 otherwise
The box function is therefore the solution to the dilation equation with filter coeffi-

cients {ho(n)} = {(3,4)}, and we denote this solution by PHaar (t) because it is the

scaling function for the famous Haar wavelet.

The above results can, in fact, be extended to a more general class of scaling

functions, which result from a set of filter coefficients

()} = (gg) (33)

—_—
[ times

. (% %) , (2.51)
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obtained by ! convolutions of the coefficients {(3,3)}. For example, the first two sets
of coefficients are {A{"(n)} = {(3,3)} and {hgl)(n)} = {(.5,3)}. Using Equation
(2.48) and the results obtained in Equation (2.49), the frequency and time domain

solutions become respectively,

—iwn L
d(w) = (%) (2.52)
¢l(t> = @ar(t) * ¢Haa.r(t) IR ¢Haar(t)l- (2-53)

! times

These solutions correspond to the family of splines obtained from repeated convo-
lutions of box functions. For example, the coefficients {A(” (n)} lead to the box,
and {hc(,l)(n)} result in a linear spline, éometimes referred to as the hat function.
The example previously shown in Figure 2.4 is a cubic spline scaling function, ob-
tained from three convolutions of the box function, with corresponding coefficients
{1183)(0), f ,hf,a)(él)} = {15(1,4,6,4,1)} obtained from three convolutions of the co-
efficients {(3,3)}. While this section has focused on the family of splines and the
methodologies to construct them, the next section will present other choices of filter

coefficients and the corresponding wavelets.

2.4 Wavelets

Once the scaling function has been determined, the wavelet immediately follows from

the wavelet equation,

WO = 23 ke - b), s

k
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Figure 2.5: (a) Haar scaling function. (b) Haar wavelet. (c) Linear spline. (d)
Wavelet for the linear spline.

where the coefficients are chosen to be {hi(n)} = {(—=1)"ho(IN — n)} in order to
ensure the orthogonality constraint. Figures 2.5 and 2.6 show some of the scaling
functions and wavelets from the family of splinesidiscussed in the previous section.
From the multiresolution analysis, we know that ¢(t) and ¥(¢) must be orthogonal

for all integer shifts, and (t) must also be orthogonal to all dilations.

Anothér important family of wavelets was pioneered by Daubechies [6]. Her
design procedure began from the_ ﬁlter-coefﬁcientslwith the goal of placing as many
zeros at w - v as‘ posv,si‘ble,r >whi.le .étill satisfying the constraint that P(z) from
Equation (2.37) must be halfband. This design procedure leads to many possible
choices for filters and hence wavelets. One popular choice is the four-tap Daubechies’

filter, given by the coefficients {ho(n)} = {3(1 + v/3,3 + /3,3 — v/3,1 — v/3)}. This
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Figure 2.6: (a) Quadratic spline. (b) Wavelet for the quadratic spline. (c) Cubic
spline. (d) Wavelet for the cubic spline.
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Figure 2.7: Results for Daubechies’ four-tap filter. (a) Lowpass filter (b) Highpass
filter (c) Scaling function (d) Wavelet

choice of coefficients places two zeros at w = 7 and leads to a wavelet with two

vanishing moments, that is,

/_ww(t)dt - /_ootip(t)dtzo. (2.55)

o0

The Fourier transforms of the lowpass and highpass coefficients of the four-tap filter
are shown in Figures 2.7(a) and 2.7(b) respectively. Note that this filter is maximally
fat at the endpoints but fails to have the sharp transition region typically empha-
sized in filter design. The corresponding scaling function and wavelet are given in
Figures 2.7(c) and 2.7(d), which show that this choice of filter coefficients leads to

‘wavelets with a more complicated.structure than the spline family.
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Having constructed a wavelet basis, our goal is to use this new representation
to describe arbitrary functions. We are essentially looking for a basis that will allow us
to represent a function with a minimal number of significant coefficients. Prior to this,
though, we require an eﬂicienf: implementation of the transform. The solution to this
problem was given in 1989 by Mallat [1] who proposed an algorithm to iteratively
determine the wavelet coefficients, given the projection of a function f(t) onto an
initial subspace. For simplicity, assume that f(¢) € V; and that the projection of f(t)

onto the basis functions of V; yields the coefficients
fOm) = (f(t),V2¢(2t —n)), neZ (2.56)

The function f(¢) can therefore be synthesized from these coefficients,

F(2) \/_Zf(” )p(2t —1). (2.57)

l=—00

From the multiresolution analysis, we know that Vi can be separated into two or-
thogonal subspaces Vy and Wy. We now wish to determine the projection of f(t)
onto these subspaces, using the coefficients {f)(n)}. Projecting f(t) onto the basis
functions for V5 and using Equation (2.57) along with the dilation eqﬁation gives the

following,

fOm) = (f(t),¢(t —n)) = (f(2), ﬂZC(k)rb(Zt —2n —k))
= fzc(k (2t—2n—k))
= 2 ZZ (k) fOW(p(2t = 1), ¢(2t — 2n — k).

Since ¢(t) is orthogonal to its integer shifts, the inner products are non-zero only
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when [ = 2n + k, and the equation above simplifies to

Oy = > el —2n) D). (2.58)

l

Substituting {é(n)} = {c(—n)}, provides the final result

Oy = 3 a2n - DfO0. (2:59)

1
Comparing this result to Equation (2.23), we see that {f(©)(n)} can be obtained from
{fW(n)} by filtering with {&(n)} followed by downsampling. As a result, Mallat’s
algorithm essentially ties the wavelet theory back to filter banks. We can similarly

determine the coefficients {9 (n)} by projecting f(t) onto the subspace W,

0Om) = 3 d(en - 1)FO), (2.60)

l

which corresponds to filtering {f®)(n)} with the coefficients {d(n)} = {d(—n)} and

then downsampling.

More generally, assume that f(t) € V; with corresponding coefficients { f)(n)}.
The goal is to determine the coefficients in V;_; and W;_;. The above arguments sug-

gest the more general result

f90m) = Y aen—1)f90) (2.61)
L
g9 D(m)y = D den-0fD). (2.62)
1
This procedure can be iterated to obtain coarser and coarser approximations of f(¢).

This results in a filter bank that iterates the lowpass branches, as shown in Figure 2.8.

~The wavelet. coefficients are obtained from the output of the highpass filters, and the
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Figure 2.8: Analysis bank used to iteratively compute the wavelet coefficients.

output of the final lowpass filter contains the remaining information necessary to

perfectly represent f(¢) in this new basis.

In subsequent analyses, we are specifically interested in the discrete-time wavelet
transform, used to find the wavelet basis for a discrete-time signal {z(n)}. The
discrete-time decomposition lends itself directly to the preceding analysis. We simply
assume that there is some function f(¢) € Vj, such that when projected onto the
basis functions of V;, we obtain the discrete-time signal {z(n)}. A signal of léngth
N = 27 can therefore be decomposed into J sets of coefficients via the filter bank

operation.

From the wavelet decomposition of a signal, we would also like to iteratively
determine the projection coefficients onto the larger subspaces in order to synthesize a
signal. The projection of f(¢) onto V; can be obtained from the coefficients { f0=1(n)}
and {g¥="(n)}, corresponding to the subspaces V;_; and W;_; respectively, by the

following equation,

fOm) = Y c@—n)fO00) + 3 d(2l - n)gi (). (2.63)

{ l

This corresponds to upsampling the coefficients {01 (n)} and {g0=1(n)} followed
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_ .

i) —(12)

orthogonal subspaces Vi_1 and W;_1, and iterate this procedure by splitting Vi_1 into

two orthogonal subspaces. This, in a Sense, is restrictive since W; may be further
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Figure 2.10: (a) Binary tree of subspaces resulting from a wavelet packet decomposi-
tion. (b) Graphical illustration of five possible orthogonal bases for V.

lift this limitation, by further decomposing any subspace W; into two orthogonal
subspaces, which can, in turn, be further decomposed. This subspace splitting results
in a hierarchy of parent and children nodes structured in 5 binary tree of subspaces
as llustrated in Figure 2.10(a). To form a basis for the initial subspace V}, we must
choose a sufficient number of basis functions from the children subspaces to span V.
This procedure is illustrated graphically in Figure 2.10(b), where a basis is obtained

if the children subspaces “cover” V;.

The idea of splitting both sets of subspaces leads to an extension of the mul-
tiresolution framework discussed earlier, and at the same time, provides an adaptive
representation of a given signal. To show that this is in fact possible, we use the

splitting trick, given in Lemma 1 and proven in [7].
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Lemma 1 - The Splitting Trick /7]

Suppose that the functions {¢(t — k)|k € Z} form an orthonormal basis for a
subspace S. Let g, o1 be,

Pe(w) = H, (u—)) De (—) : e=0,1.
Then, {po(t) = 50 (£ —k) |k €Z} and {@14(t) = %tpl (£~ k) |k €Z} consti-

tute an orthonormal basis for S.

Starting from an initial subspace V}, we can recursively split subspaces at each
level. Carrying this procedure through L levels of resolution and using the notation

defined in [8], we obtain the basis functions,

wfl,---,e[,;j_,k(t) = Z(j_L)/ZweLl,---,eL (2j_Lt - k)7 (264)
where
‘ L w w |
AL _ “
el,---,e[,(w) - HHei (5) ¢ (-Z—L) . (265)
i=1

The scaling and wavelet, functions are directly related to this new set of basis functions
by ¢ =g . g and ¢ =9 . . From an initial subspace V;, we obtain 2L sets of basis
functions after L splittings, where the sequences {er,--- ,e;} represent the order of
filtering operations pe_rformed in the successive spli’ptings. These sequences represent
| a biﬁéry indexing scheme where (m); = eper_1---e; is the binary representation of
m. As a result, m indexes the set of basis functions obtained on the L* splitting and

takes values 0 < m < 2%, One possible basis for V; is therefore,

: {vwi;]‘)k(t) — 2(J'v—L)/2w1l;/Z(2j—-£'t"_" ]{;)I;k'e Z.;V'O-S m < 2L}. | (2.66)
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Figure 2.11: Illustration of the splitting process for L = 3 and j = 3.

Figure 2.11 illustrates the splitting process for L = 3 and j = 3.

The basis given in Equatibn (2.66) is obtained by subdividing each subspace
at every stage, and results in a basis for the bottom row of subspaces in the tree
shown in Figure 2.11. Splitting every subspace, however, is not necessary to find a
basis for V, since each subspace does not have to be divided in order to represent all
functions in V;. Figure 2.11 shows two other possible bases. The dashed rectangles
correspond to the wavelet decomposition, V3 = V, D Wo P W1 @ W,, and the bold

rectangles correspond to a different subspace splitting with basis functions,
{Wo(4t = k), w1, (2t — k), 401 (t — k), 93, (t — )|k € Z}.

From Figure 2.11, it is visually evident that a basis is formed if the proper “covering”
subspaces of the original space Vj are selected. We now formalize this idea by letting
the subspace V; be equivalent to the unit interval [0,1]. We then partition the unit
interval into subintervals I; . Let I, = [27'm, 27 (m + 1)) be a subinterval on [0,1]
corresponding to a set of basis functions {20-9/2¢¢ (291 — )|k € Z}. A basis is
then formed if we pick a set of subintervals that cover the entire interval [0,1]. Each
set of such intervals then forms one possible partition p € P, corresponding to the

basis B? = {20-0/2y! (2i~% — k)|k € Z, {({, m)|I;m € p}}.
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(F'tn)} ={x(n)}

@
5@ & —®

Figure 2.12: Analysis bank of one possible wavelet packet decomposition.

With the wavelet decomposition, a signal f(t) € V; can be represented by its
coefficients in the spaces Vo, W, -+, W,_;. With wavelet packets, there are many
more possible representations. To compute the coefficients in the different subspaces,
Mallat’s approach may again be used to develop an efficient algorithm. By using the
splitting trick, all subspaces are divided using the same set of coefficients {hq(n)}
and {hi(n)}, and consequently, Mallat’s algorithm applies to all of these subspaces.
It can be shown that the coefficients may be computed recursively by filtering and
then downsampling, where the highpass branches of the filter bank are also iterated.
Figure 2.12 shows one possible wavelet packet decomposition that splits the initial
subspace three times. As before, the coefficients are recursively computed by filtering
with {&(n)} = {c(—n)} and {d(n)} = {d(—n)} and then downsampling. The only
difference between the wavelet decomposition and the wavelet packet decomposition is
therefore in the structure of the filter bank. To reconstruct a signal from its wavelet
packet coefficients, we use a synthesis bank that is a mirror image of the analysis
bank, and we replace the filter coefficients {¢(r)} and {d(n)} with {c(n)} and {d(n)}

respectively.

In this section, we have introduced a method .to obtain many different signal




2.5. Wavelet Packets : | o 59

representations. All of these representations are equivalent in the sense that any func-
tion f(t) € V; can be perfectly represented by a set of coefficients. Some combinations
of coefficients, however, may result in representations that are more adapted to var-
ious signal features. In the denoising problem, one main goal is to find a basis that
allows a signal to be represented by the smallest number of significant coefficients.
With this éoal in mind, we seek an efficient algorithm to find such a representation.

This goal and the resulting solution are further discussed in the next chapter.
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Chapter 3

Majorization and Best Basis

Search

In this chapter, we present an approach to find the “best” representation of a signal.
Wavelet packets will be essential in this process because they provide many possi-
ble representations of a signal, and from these representations, we will choose the
“best”. The meaning of “best” is, however, an important point to address. We must
first define the goals to be fulfilled, and then, based on these goals, the meaning of
“best” will become more apparent. For example, the goal in communications is to
send large amounts of information over a noisy channel in a short amount of time
and with minimal degradation. To solve this problem, information theorists try to
find a minimal representation of the transmitted information. Compression, there-
fore, is one possible solution to the communications problem, and as discussed in the
introduction, compression is also one possible solution to the denoising problem. By
compression, we mean that a signal can be represented faithfully by a small num-

ber of large coeflicients. In this chapter, we will focus on finding such a minimal

61
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representation.

The theory of majorization is directly related to finding a compressed rep-
resentation of a signal, and we will introduce this theory in Sections 3.1 and 3.2
as a framework for obtaining and understanding further results. In Section 3.3, we
will discuss various cost functions that can be used to measure compression, and we
will show how these costs fall out of the majorization framework. We conclude this
chapter in Section 3.4 by discussing an efficient algorithm to find the “best” basis in
a dictionary of bases afforded by wavelet packets. This basis will be optiﬁal in the
sense that it minimizes one of the functionals discussed in Section 3.3 over all possible

combinations of coefficients in a wavelet packet tree.

3.1 Majorization Theory

Measuring inequality has been an important topic in the history of mathematics
and economics. Some of the earlier results date back to Lorenz (190'5) and Dalton
(1920) who tried to measure the distribution of wealth. Hardy, Littlewood, and Pélya
(1929) [9] and later Marshall and Olkin (1979) [10] established important results that
provide the framework for our discussion. To measure inequality, we search for a
“metric” that will distinguish vector x from vector y if the components of one of the
vectors are somewhat more equal than the components of the other. Majorization is
such a “metric” that measures-the-distribution ‘of the ‘components in a vector. If x
and y satisfy the conditions of Definition 2 beldw, we say that “x is majorized by y”

or equivalently “y majorizes x”, denoted by x < y.




3.1. Majorization Theory : ‘ : 63

Definition 2 - Majorization [10, 11]

Letx andy be two column vectors withx = [z1, -+, z,]” andy = [y1, -, ya]”

Let the components of the vectors be ordered according to the following convention:

Ty > T > 2 Ty, Yp 2 YR 2 2 Y

Ty ST S S Zeyy Yy S Y S < Y.
Then, y 1is said to majorize X or equivalently x <y if

m

(1) Za:[,-] < Zy[i] holds form =1,2,---,(n — 1), and
=1 =1

(it) Yz = > v
=1

=1

An equivalent definition of X <y 1s,
m m
(i’) Zx(i) > Zy(i) holds form =1,2,--- ,(n—1), and
i=1 i=1 ,

n n
(i) D zm =) e
=1 =1

The equivalent definition given by (i’) and (ii’) will be useful when discussing the

ideas proposed by Lorenz. This definition follows from (i), if (ii) is true,

Z T < Z yp and Z T; = Z ”
=1 i=1 =1 =1
n—k n

n n—k
Yoro =T = D = e

- =1 i=k-+1 i=k+1 =1
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which shows that (i’) is true.

Majorization as defined above, attempts to distinguish two vectors x and vy

by comparing partial sums of the ordered componenté. This essentially measures the
variability of the components, given that both vectors must have the same sum, and
as a result, x < y distinguishes y as a more diverse n-tuple than x. Also note that

the following two results always hold,

1 n
p \ h _=_---,_T dg=-~- 2 d
(a) ¥ <y, wherey =[7,---,7]" and § nE Y, an

i=1

n T
(b) ¥y < [Z Yi, 0, - - ,0} is true for all y with non-negative coefficients.
=1

Both (a) and (b) provide intuitively appealing results based on Definition 2. The
first result shows that a vector  with the most even distribution, is always majorized
by a vector whose average is . The second result shows that a vector with positive
" coefficients and a fixed sum s is always majorized by a vector with a single positive
coefficient equal to s. In addition, both of these examples show that majorization is
related in some way to the notion of compression, and consequently, this framework

will prove useful in the denoising problem.

Additional insight about Definition 2 may be gained by considering the ideas
proposed by Lorenz. He was interested in a measure that would indicate how evenly
wealth was distributed among a population.. He introduced a graph, now called the
Lorenz curve, that visually depicts the distribution of income in a population, as
shown in Figure 3.1. For simplicity, assume that a population is composed of n
individuals'Whose‘respective incomes x; are ranked in increasing order, z(y, - - - s T(n)-

The cumulative wealth of the poorest m people is.S* = Z Z(i), and the Lorenz curve

i=1
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m

S,
is formed by plotting the normalized points ( T—,'S—z) form =0, --,n. Figure 3.1
n ~ '

T
shows three possible wealth curves. Curve A corresponds to an even distribution of

wealth because each individual in the population contributes an equal amount to the
cumulative wealth S7*. Curve B corresponds to an unequal distribution of wealth
because the poorer individuals contribute a small amount of income, while the richer
~ individuals add a large amount of income, and consequently, curve C corresponds to
a population with an even greater income disparity than A or B. The Lorenz curve.
therefore depicts income disparity by its shape, with greater disparity corresponding
to curves that are further away from the equal distribution A. This idea exactly

corresponds to Definition 2. Using the terminology above, (') and (ii’) imply that

sm Sy

O _1,;_, m=1,---,(n—1) and
Sy Sy

qn S;’ .

~ = & = 1 ifandonlyif x <y.
Sn Sy

For the example given in Figure 3.1, if the vectors a, b, and c correspond to the
curves A, B, and C respectively, then a < b < c.

Both the definition of majorization and the ideas proposed by Lorenz are intu-
itively appealing as measures of disparity or equivalently as measures of compression.
These measures, however, are somewhat strict in the sense that they require both
vectors to have an equal sum. Removing this restriction leads to the weaker form of

majorization given in Definition 3 below.

Definition 3 -~ Weak Majorization [10, 11/

(a) y is said to weakly submajorize x, or X <, y, if Z:c[i] < Zy[i] holds for

=1 =1
m=12,--+,n.
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Figure 3.1: Plot of Lorenz curves showing different distributions of wealth.

(b) y is said to weakly supermajorize x, or x <¥ y, if zz(i) > Zy(i) holds for
i=1 i=1

m=1,2,---,n.

These weaker forms are useful when the constraint of equal sums cannot be enforced.

3.2 Convex Functionals and Majorization

To find the best representation of a signal, we will particularly be interested in func-
tions that provide a measuré of compression, rather than the conditions imposed by
the previous definitions. In general, however, the conditions for majorization are
closely related to convex functions, and the following theorem due to [9] relates the

two ideas.
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Theorem 1 - Convex Functionals and Majorization [11]

Let I be an interval in R, and let x and y be two n-dimensional vectors such

that z;,y; € I for alli=1,--- ,n. Then,
Y o A@) < v(w)
i=1 i=1

holds for every continuous conver function v : I — R iof and only if x <y holds.

As a result, convex functions as a whole provide a measure of compression. We also
include the following theorem! for completeness and to relate the ideas presented in

Definition 3 to convex functions.

Theorem 2 - Convex Functions and Weak Majorization [11]

Let I be an interval in R, and let x and y be two n-dimensional vectors such

that z;,y; € I for alli=1,--- n. Then,

(a) Z v(z;) < Z Y(y:) holds for every continuous increasing conver functiony : I — R

if and only if x <, y holds, and

(b) Z Y(z;) < Z v(y:) holds for every continuous decreasing conver functiony: I - R

1
of and only if x <* y holds.

In this analysis, we are particularly interested in the notion of Schur-convexity,

due to Schur (1923). Since x < y provides an ordering on two vectors x and y, we are

'Theorem 2 is due to Weyl (1949) and Tomié (1949).
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interested in functions Y that will always preserve this ordering (i.e. Y(x) £ Y(y)
or Y(x) > T(y)). The definition below links the ideas of majorization to the convex

and concave functions T.

Definition 4 - Schur-Convex Functions [10, 11]

(i) A real-valued function T defined on a set D C R™ is said to be Schur-conver on

D if
x<yonD = T(x) < Y(y)

If equality holds only when X is @ permutation of ¥, then Y is said to be strictly

Schur-conver on D.

(i) A real-valued function Y defined on a set D c R" is said to be Schur-concave

on D if
x<yonD = T(x)2 Y(y)-

If equality holds only when X 18 a permutation of ¥, then T is said to be strictly

Schur-concave on D.

Definition 4 also implies that Y is Schur-concave on D if and only if (=) is Schur-
convex on D. This definition therefore reveals that Schur-convex functions are order
preserving, and the identification of such functions will lead to appropriate ordering
when an underlying majorization is present. The power of this argument can be

illustrated by an example. Schur showed that the diagonal elements {h;;} for a positive
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semidefinite Hermitian matrix H are majorized by its eigenvalues,
(h117“' ’h'rm) = (AI)“' 1>‘n)'

Since there exists an underlying majorization of the form above, any Schur-concave
or Schur-convex functions on R% will satisfy the inequalities in Definition 4. One

famous inequality, called Hadamard’s determinant inequality, is given by

th‘i > H)‘i(H)':det(H)a

and is a direct result of Definition 4 because the product function is Schur-concave

n
on R7.

An additional property of majorization which will prove useful in the sequel
concerns compositions of Schur-concave and Schur-convex functions. We restrict our
discussion to a reéult that relates Schur-convex functions in IR™ to one-dimensional
convex functions, and we refer the interested reader to [10] for a more complete
treatment. The following theorem essentially restates Theorem 1, but is necessary
to concretely establish the relationship between majorization theory and the additive

cost functions discussed in the next section.

Theorem 3 - Additive Compositions [11]

Let I be an interval in R. Let X, y be two n-tuples such that z;,y; € I for

alli = 1,---,n and define T(x) : I" — R to be a real-valued function such that

n

T(x) = Z v(z;) for some continuous functiony: I — R. ThenT is a Schur-conver

i=1
function on I™ if and only if v is a convez function on I
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In the next section, we will discuss several additive convex (concave) functions that
will lead to Schur-convex (concave) functions. These functions will then provide an
ordering on two sets of coefficients when an underlying majorization is present, but
since Definition 4 is not an “if and only'if” statement, satisfying inequalities of thé
form Y(x) < Y(y) will not necessarily imply x < y. However, functions that provide

a “good” measure of compression will serve as an approximation to x <y.

3.3 Cost Functions

In this section, we will use the previous results concerning majorization to analyze
some of the cost functions commonly used to determine the best basis in a wavelet
packet tree. In addition, we will introduce some novel cost functions. In light of
the above majorization‘theory, these functions must either be Schur-convex or Schur-
concave to preserve the order of the majorization. The functions, however, must also
be good indicators of compression in a wavelet packet basis, and this determination is
generally made by running computer simulation to assess gthe,quality.-'of, compression.
on the average. Among the “good” functions, we will find that information cost
functions work well. We will also show that cost functions derived from the Lorenz
curve may be used. We will finally establish that additive cost functions will ensure

that the order of majorization is preserved.

3.3.1 Information Cost Functions

The following information cost functions have been proposed in [12].
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(D)

2)

Number of coefficients above a threshold T' .

This function provides an additive measure of information by giving the number
of coefficients with magnitude greater than an arbitrary threshold 7. This is a
measure of compression because it indicates the number of coefficients required

to represent a signal. This cost function is given by,

Tr(x) = iIT(a:;), where | (3.1)

1 |z >T
Ir(z:) = : . (3.2)

0 otherwise
The discontinuity of this function makes it neither Schur-convex nor Schur-
concave. This function, therefore, does not preserve the order of majorization,
and in general, will not provide an accurate measure of compression. As an ex-
ample, recall that x = § < y is always true. Choosing the threshold 7 such that
g<T< mzax{y,-}, necessarily implies Tr(x) < Yr(y), which should be true for
a Schur-convex function. By choosing miin{yz-} <T <7, Yr(x) > Tr(y) wil
always be true, indicating that Yr(-) is a Schur-concave function. The choice of
T is therefore critical , which shows that this information cost function does not

always preserve the order of the majorization. Figure 3.2(a) shows this function

for the case Yr: R? — R.

Concentration in the P norm

Another information measure is the classical # norm,

=1

n 1/p
To(x) = |xllp= (leil”) : (3.3)

Tt can be shown [10] that Y,(-) is strictly Schur-convex for p > 1 and strictly

Schur-concave for p < 1. From the majorization theory, x <y then implies
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T,(x) < Tp(y) for p > 1 and Yp(x) 2 Tp(y) for p < 1. As a result, for p > 1
the best signal representation in a wavelet packet basis will be found by max-
imizing the £ cost function, whereas p < 1 will require that 7 be minimized.
Figure 3.2(b) shows that the £ cost function in R? is concave for p = 0.2, while
Figure 3.2(c) shows that £ is convex for p=2.5. The ¢ norm for p = 1 shown
in Figure 3.2(d) exhibits both Schur-convexity and Schur-concavity. In practice,

this function should be minimized, as will be illustrated in Section 3.3.3.

Entropy cost function

The entropy cost function is an extremely important measure of information. In
information theory, it measures the amount of uncertainty in a random variable.
For a fixed alphabet size, the uniform distribution has the largest uncertainty
and hence the largest possible entropy when compared to all other distributions
with the same size alphabet. This idea is very reminiscent of the fact that ¥ <y
is satisfied for all y, as discussed in Section 3.1. The entropy measure therefore
assigns a compressed signal a lower cost than it would to a more uniformly

distributed signal. The entropy is defined for probability mass functions as

n
He(x) = - le log{z;} for 0<z; <1 and sz =1. (3.4)
i=1 B '
As a function in R™, Hg(x) : R® — R is strictly Schur-concave and is therefore
a good measure of spread. In terms of majorization, x <y will then imply
Hg(x) > He(y). The goal, therefore, in finding the best signal representation
will be to minimize this cost function over all possible wavelet packet bases. The
concavity of the entropy cost is depicted in Figure 3.2(e), where the magnitudes
of z; and z, are used to compute the entropy cost and a constant sum of 1is

not enforced.
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(4) Logarithm of energy

This final information cost function is defined to be,

n
Hi(x) = > log{|ail’}, (3.5)

i=1
with the convention log{0} = 0. According to [12], this is a measure of entropy
for a Gauss-Markov process with n uncorrelated Gaussian random variables,
each with a variance equal to the square of the components of x. This function
is strictly Schur-concave as shown in Figure 3.2(f), and therefore- should he

minimized over all possible wavelet packet coefficients.

3.3.2 Lorenz Cost Functions

The following cost functions are based on the Lorenz curve and its meaning in terms
of income inequality. The first two functions are given in [10], and the third is another

possible function that we propose.

(1) Gini Coefficient

This function was originally proposed by Gini (1912) and is based on the Lorenz
curve shown in Figure 3.3. The cost function of Gini is twice the shaded area
in Figure 3.3 which is twice the area between the Lorenz curve and the 45° line.

This area is given by,

1 2 .




74 o ~ Chapter 3. Majorization and Best Basis Search

L2 200
,é o
o
o &
_81 Q 100
g 2
H

wno
wno

10
7 4
O (=]
a2 =
3 -

0

5

. 10

- 3
(72}

@]

8 > 0
2 5

g & -10
8 &

=20

5

x2. -5 -5 x1

Figure 3.2: Information cost functions. (a) Number of coefficients above a threshold
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for p = 2.5. (d) Concentration in the [? norm for p = 1.0. (e) Entropy cost function.
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Figure 3.3: Illustrates different measures for the amount of bow in the Lorenz curve.

Proportion of Income

0 Proportion of Population 1

and is strictly Schur-convex on R?}. To achieve good compression, this cost func-
tion should therefore be maximized. This agrees with the notion of majorization
because it corresponds to maximizing the area in Figure 3.3. Figure 3.4(a) shows

the somewhat elaborate graph of the Gini function.

Schutz Coefficient

The Schutz coefficient is a measure proposed by Schutz (1951), again used to

measure income inequality, and is given by

T(x) = li(x,-—i)ﬂ where v = maz{u,0}. - (3.7)

z =1

This cost function is a normalized measure that indicates the total excess income
above the mean. It is Schur convex on R%} but not strictly Schur convex and
is shown in Figure 3.4(b). In terms of the Lorenz curve, this coefficient can be

related to the slopes of the line segments.
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(3) Lorenz Bow Distance

This measure, which we propose, is very similar to the Gini coefficient and is

a function of the distances {d;} shown in Figure 3.3. The lengths {d,} are the

" perpendicular distances from the points (%, Z;) to the 45° line, where

5. o= ZZ:I ‘T(")
J n :
D=1 ()
For simplicity, we assume that all of the coefficients are positive, but in comput-
ing this cost, the absolute value of the coefficients should be used. Th'ebdistances

are then determined to be,

L1y .
d; —= =% 3.8
;= Tl (33)
This measure can be manipulated slightly to provide more intuition,

oo Ll 1]i_Thag
’ V2in Tl V2in X

1 IYhire - Yise| ] ‘Efﬂ (2 —z@) (3.9)

V2 i TG) V2o Ylite '

This shows that d; is a normalized measure of the total distance that the sorted
coefficients {z¢;)} up to j deviate from the mean. From these distances, two

possible measures-can be computed,

Timee = max{d;} (3.10)
f ‘

Yrae = Y dj, (3.11)
Jj=1

and both of these measures should be maximized to preserve the underlying

majorization.. Figure 3.4(c)-shows the-cost function Ty gis:(-). Admittedly, all
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of the graphs in Figure 3.4 have the same shape for the proposed cost functions,

but in higher dimensions, they will not be equivalent.

3.3.3 Exponential Cost Function

In this section, we show that minimizing the ¢! norm is reasonable to achieve a

compressed representation of a signal among a set of representations afforded by

vt 2= n ——n S ————eeem oy 8 - 4 ey P it mE 'y ese——
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wavelet packets. We assume that the magnitudes of the wavelet packet coeflicients

have an exponential distribution of the form,

. |
pr(y;0) = 378, y>0. (3.12)

This is a good assumption in practice because the wavelet coefficients generally have
a large number of small coefficients and a small number of large coeflicients. It is
known that the Maximum-Likelihood estimator for this type of distribution is the

mean of the observations, or
0 = g==> u. (3.13)

If the coefficients truly come from an exponential distribution, then 6 should be
minimized over the wavelet packet coefficients so that the drop-off is as rapid as
possible. Since 1/n is simply a scale factor, the results will be the same if né is

minimized. The cost function for all z; € R is then given by,

. ,
Te(x) = Y ll, | (3.14)

i=1
which is exactly the ¢! norm. As a result, we see that this type of measure is very
useful for maximizing the decay in the exponential distribution and consequently, in
obtaining a minimal representation of a signal. Note that this function was previously

shown in Figure 3.2(d) and may be viewed as another £’ based search approach.
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3.3.4 Additive Cost Functions

In Section 3.4, we will describe an efficient method for finding the best representation
of a signal by minimizing or maximizing an appropriate cost function. This search

will involve comparisons of the form

T(p) < Y(c1)+T(cg) or (3.15)
T(p) > T(c1)+ T(cy) | (3.16)

' where p € R® and ¢, ¢, € R™?2. These comparisons are different from T(x) < Y(y)
or T(x) > Y(y) where x,y € R". The functions Y(-) must therefore be chosen so
that Y(c;) + Y(c,) is Schur-convex (concave) if T(-) is Schur-convex (concave). In
doing so, the comparisons in Equations (3.15) and (3.16) will preserve the order of
the underlying majorization. In general, however, it is not trivial to determine the
convexity or concavity of Y(c;) + YT(cz) based on knowledge of Y(-), but one valid
choice is available based on the results of Theorem 3. If Y(-) is composed of additive
functions (-) then Y(c;) + Y(cz) will also be composed of additive functions ~(-),

and the Schur-convexity (concavity) will be guaranteed in the additive composition.

The requirement can then be formally stated as
YT(ci®cy) = T(c;)+ T(cy), (3.17)

where ¢; B ¢y, € R™

From the list of valid functions given in the previous section, the entropy, log of
energy, and /! norm are additive cost functions of the form given in Equation (3.17).
These functions will therefore be useful in the best basis search because they will

allow exact comparisons of the costs in the wavelet packet tree. By slightly altering
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the form of the 7 norms, they can also be used as additive cost functions by letting
Yo(x) = (lIxllp)” Z |z 7. (3.18)

These functions then become information costs as described in [12] which must be

minimized for p < 2 and maximized for p > 2.

Another issue which must be addressed in order to-effectively use the functions
in Sections 3.3.1-3.3.3 is the normalization of the wavelet packet coefficients. For the
entropy cost, this corresponds to ensuring that the coefficients are positive, less than

1, and sum to 1. One possible normalization proposed in [12] is

st = =3 s {5 - (3.19)

but this does not lead to an additive cost function. Normalization issues for the
entropy cost function and other costs are addressed in [13, 14], and we refer the
reader to these sources for further information. In the next section, we will show how

these cost functions are useful in the best basis search. -

3.4 Best Basis Search

As discussed in Chapter 2, the wavelet packet tree provides an overcomplete repre-
sentation of a given signal, and for a discrete signal of size IV, it can be shown that
this tree consists of more than 2% possible bases. Our ultimate goal is to find an
efficient method to “prune” a wavelet packet tree in order to find the “best” basis

representation of a signal in some predetermined sense. This is essentially an opti-
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mization problem, requiring a cost function which is defined by a specific goal. For
example, to achieve good compression, the functions discussed in Section 3.3 will be

used, but other costs can (and will) be considered for other optimization criteria.

Wickerhauser and Coifman [12] propose a method for pruning the wavelet
packet tree in only O(Nlog N) operations, and their search method will be adopted
here for the best basis determination. The pruning algorithm recursively compares
the cost of a parent node in the tree with the total cost of its two children. In order
to minimize the overall cost function, the coefficients with the minimum cost replace
those of the parent node. This approach can be altered to maximize a cost function
by choosing the maximum cost of the parent and children nodes. The process is
repeated at all levels starting from the bottom of the tree and traversing upwards
until the top is reached. The coefficients at the top node then correspond to the
“hest” coefficients, and their associated cost minimizes (or maximizes) the given cost
function. Figure 3.5 illustrates the mechanics of this algorithm. At each node, the
numbers in top boxes represent the cost of the coefficients at that node, while the
numbers in the bottom boxes represent the optimal costs of all the nodes below the
parent. The nodes corresponding to the best basis are the ellipses with the brick

texture, and the arrows show which coefficients and costs are propagated up the tree.

Note that the comparisons between the parent and children nodes are of the
form previously shown in Equations (3.15) and (3.16). To ensure that the order of
the underlying majorization is preserved, we will primarily focus on additive cost
functions in conjunction with this pruning algorithm. In addition, we will see that
some of the non-additive cost functions in Section 3.3 also work fairly well. We test
the performance of the costs on a family of signals similar to the one shown in Fig-
ure 3.6(a). These signals were constructed by passing white noise through a filter to

generate different realizations of a signal with the same underlying power spectrum.
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Figure 3.5: Efficient method for finding the best basis given an additive cost function.
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Figure 3.6: (a) Average signal used to test the performance of the best basis algorithm
for different cost functions. (b) Average histogram of the magnitude of the coefficients
corresponding to the test signal.

The histogram in Figure 3.6(b) shows the magnitude of the signal coefficients aver-
aged over 50 different noise realizations. The performances for the information cost
functions are shown in Figure 3.7, while the other cost functions from Section 3.3 are

shown in Figure 3.8.

The results in Figure 3.7 correspond to additive cost functions, and the results
are all very similar. Note that the histograms in Figures 3.7(a) and (b) show surpris-
ingly good results, even though the associated cost function is neither Schur-convex
nor Schur-concave. The threshold T, however, was judiciously chosen to achieve the
rapid decay of the histogram, and the cost function was minimized for the small
threshold T = 0.05 and maximized for the large threshold 7" = 2.5. In practice,
though, there is no robust choice for the threshold, and hence, as predicted earlier,
this cost does not consistently preserve the order of majorization. The remaining
information cost functions generated very similar results. Figure 3.8(d) shows the ¢!
cost which is also additive and which in the previous section, was shown to maximize

the rate of decay in the exponential distribution.
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Figure 3.9: Comparison of the five best histograms shown in Figures 3.7 and 3.8.

In the previous section, we also discussed some cost functions based on the
Lorenz curve which were not additive. The histograms corresponding to these cost
functions are shown in Figures 3.8(a)—(c). Even though they are not additive, they
still give gvenerally good results. Their performance in the best basis algorithm seems
to imply that T(c1) + Y(cz) is a Schur-convex function in R", even though we could
not guarantee this fact. If this is true, then the comparisons Y(p) < Y(c1) + Y(cy)
will preserve the order of an ﬁhdeﬂying majorization. To“c'o'iﬁpare all of the results,
we show the histograms with the fastest decay in Figure 3.9, plotted as a continuous
line graph for visual clarity. This shows that each of the proposed cost functions yield

similar performances with respect to compression. -

In the next chapter, we will show why finding a compressed representation
of a signal is useful in the denoising problem, and we will introduce two more cost
functions which find the “best” representation among the wavelet packet coefficients

with the goal of minimizing the reconstruction error.




Chapter 4

Denoising Techniques Using

Wavelet Packets

In the previous two chapters, we presented the tools necessary to first obtain an
overcomplete representation of a signal and then to choose the “best” representation
that satisfies the goal of compression. In this chapter, we use these tools to reconstruct
a signal from its noisy observations. One of the most studied denoising problems,
and the one we consider here, is that of an unknown discrete-time signal corrupted

by additive noise,
z(m) = s(m)+v(m), m=0,1,---,N—1. (4.1)

The goal is to remove the unwanted noise using a single realization of the noisy
signal, consisting of N coefficients. For simplicity, the noise is assumed to be white
and Gaussian, with known variance o?. For notational convenience, the observed

samples, {z(m)} for m =0,1,---,N — 1, are represented by the column vector x,

87
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Figure 4.1: General denoising strategy using wavelet packets and a thresholding pro- -~
cedure. :

and the underlying signal {s(m)} and the set of noise samples {v(m)} are represented.
by corresponding vectors s and v, respectively. Equation (4.1) can then be rewritten

as the following vector equation,
X = s+v, - (4.2)
where the covariance matrix of the noise is
K, = E{w'}=7L (4.3)

This is a classical estimation problem, and given the statistics for s and v, an optimal
minimum mean-squared error solution can be found. In this analysis of the préblem,
however, no statistics or model for the uhderly'mg signal are assumed. The solution,
instead, lies in the overcomplete representation of signals provided by wavelet packets.
The topic of this chapter will be to find the best signal representation to effectively

remove the noise.

Figure 4.1 shows the general denoising strategy that will be followed. The
observed signal {z(m)} is first decomposed into a set of wavelet packet coefficients,
via a linear transformation. The matrix W2 is such a transformation and corresponds
to the wavelet packet basis BP = {2070/2¢¢ (291t — k)|k € Z,{(I,m)|],m € P}}, as
discussed in Chapter 2. By applying the transformation to the observed signal and
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using linearity, the following decomposition is obtained,

Wix = Wois+Woiv (4.4)

wh = w4+ w?, (4.5)

where w? is the vector of wavelet packet coefficients. The coefficients resulting from
the transformation are thus partitioned into signal and noise components. Since we
have limited the wavelet packet decompositions to orthogonal transformations (i.e.

WPTW? = WPW?PT = 1), the noise statistics will remain invariant in the new basis,

wh = Wiy
K, = E{wlw’} = E{Wivww Wi}
= WPK W = o ?WeweT = 52 (4.6)

By applying a transformation to the observed signal, as shown in Equation

(4.5), the problem is identical to the original denoising problem. In this chapter, we

- will show that the properties of wavelet packets can be exploited to obtain sign'iﬁcant

reductions in the level of noise, while at the same time preserving the quality of the
underlying signal. A fundamental step in the denoising process is to remove noisy
coefficients, accomplished by discarding coefficients below a given threshold. Two
common thresholding strategies will be discussed in Section 4.1. Another important
step in the denoising process is to find a “best” representation of a signal. We will
address two different goals that define the meaning of “best”. One goal is to find the
most compressed representation and is discussed in Section 4.2, and the other goal is
to minimize the reconstruction error and is discussed in Section 4.3. In Section 4.4,

we provide some results and compare the two methods proposed in this chapter.
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Figure 4.2: Two prominent thresholding strategies. (a) Hard thresholding. (b) Soft
thresholding.

4.1 Thresholding Techniques

Choosing a “good” thresholding strategy is an important factor in the denoising
process. There are many possible strategies for thresholding “undesired” small coeffi-
cients, but two of the simplest and most prominent methods are shown in Figure 4.2.
- Hard thresholding shown in Figure 4.2(a) removes coefficients with magnitude less
than or equal to T and retainé coefficients with magnitude greater than 7. Soft
thresholding shown in Figure 4.2(b) not only removes the small coefficients, but also

shrinks the magnitude of the large coeflicients by T.

To see how soft thresholding works, recall that the wavelet packet coefficients
of the observed signal are partitioned into signal plus noise coefficients,
wh = wl+wh.

T

The underlying signal can be perfectly reconstructed if the noise is subtracted exactly,

ey 8 ———— v geeme e vwmRE R e P ————————
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or
8 = s= (W)™ (wh—wh). | (47)

This method, however, is unreasonable since w? is unknown. A reasonable alternative
is to estimate the value of each of the coefficients {w? } by some value 7. The sign
of this estimate is assumed to be the same as the noisy coefficients {w?®, }, resulting

in the following estimation strategy for each signal coefficient,

Wk = wh —Tsgn(wh) where | (4.8)
1wk >0

sgn(wh.) = : . - (4.9)
~1 w?, <0

This process, therefore, shrinks the magnitude of the noisy coefficients {w? } by an
amount 7. We assume, however, that the amount of shrinkage is never sufficient to
change the sign of the noisy coefficient, and as a result, we set all coefficients with
magnitude less than T to zero. The estimation process described above is exactly the

soft thresholding procedure shown in Figure 4.2(b) and expressed as,

wh —T wk >T
Wy, = As(wi) = 0 |uwr|<T . (4.10)

wh +T wl <-T

An alternative approach is to assume that large coefficients (i.e. above the threshold T')
are not affected by the noise. This is not an unreasonable assumption since the larger
coefficients are percentage-wise less-affected by the noise than the smaller coefficients.

This type of estimation is the hard thresholding strategy given in Figure 4.2(a) and
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expressed as,

we, wp, > T

W7, = Ag?)={ 0 |uwr|<T (4.11)

PP < —
wh wh < -T

This technique is sometimes more advantageous than soft thresholding (especially

with small signal-to-noise ratios) because it does not remove as much energy from the

~ signal (z.e. reconstructions using soft thresholding tend to have amplitudes smaller

than the original signal). For the analyses considered here, we use the hard thresh-
olding strategy for simplicity, realizing that the results can be extended to other

thresholding methods.

Both thresholding methods shown in Figure 4.2 discard coefficients at a level
T, and therefore, choosing a “good” value for the threshold is an important issue
to address. The goal in thresholding is to exclude coeflicients which are potentially
purely noise. This equivalently ensures that coefficients above the thresl}old will con-
tain at least some signal information. In the denoising problem conside-red hefe, the
noise coefficients, {w? }, are IV independent Gaussian random variables with variance
o2. Tt can be shown that the supremum of {|w |*}1<icn is given by 202 log N [15].

As a result, we choose the threshold
T~ I, (e

so that
sup | <v, W2 >|<T almost surely (a.s.),

(4.13)

and. this asymptotically guarantees that all coefficients which are purely noise will
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be removed. To ensure that no coefficients below T contain important signal infor-
mation, we again have to find a signal repfesentation with very few large magnitude
coefficients. This implies that finding the best compressed representation of a signal
is a valid approach to denoising, and the search for this type of representation is the

topic of the next section.

4.2 Compression-Based Denoising

The main goal of Chapter 3 was to determine appropriate cost functions to find par-
simonious signal representations. These functions will prove to be extremely useful
here. The wavelet packet transformation W% yields an equivalent denoising problem
in form (i.e. w? = wk + w?) as the original problem, but now, the properties of
wavelet packets can be exploited. An important property of wavelet packets is that
they can be designed to efficiently represent signals in a given class of functions. The
set of coefficients {w? } for all p € P will typically consist of a few large ma,gnitude
coefficients and many small magnitude coefficients, depending on the type of wavelet
chosen. Wavelet packets, therefore, provide some compression properties at the on-
set, and then, the cost functions from Chapter 3 can be used to find an even more

compressed representation via the best basis search algorithm discussed in Section 3.4.

The resulting best basis will then place most of the signal information in the
largest coefficients, and since the smaller coefficients contribute less information, they
can be discarded with little change to the original signal. At the same time, discarding
small noisy coefficients tends to improve the signal quality, and this is the essence
of the thresholding idea presented in the previous section. Equation (4.6) shows

that the noise statistics are invariant under an orthogonal transformation such as
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the wavelet packet decomposition. This means that the noise coefficients are spread
according to the normal distribution, and thus, their effect on the underlying signal
coefficients is statistically identical. Since the underlying signal coefficients tend to be
more concentrated, thresholding the smaller coefficients, improves the signal quality
by primarily removing noise. This reasoning shoWs fhat compression and denoising

are complementary goals.

Thé p'roéedure for denoising was previously shown in Figure 4.1.. For the goal
of compression, the box labeled best basis search will use the best basis algoﬁthm with
the cost functions given in Section 3.3. To see the effectiveness of this procedure, we
consider an example. The original signal, shown in Figure 4.3(a), consists of siﬁusoids
with two discontinuities. The noisy versions of the underlying signal are shown in
Figures 4.3(b) and (c) with signal-to-noise ratios of 5 dB and —5 dB respectively,

where SNR is a measure based on the energy of the signal and the noise variance, or

SNR = 10logy, (M) (4.14)

o2

Reconstructions of the noisy signals from Figures 4.3(b). and (c) are shown in Fig-
ures 4.4 and 4.5 respectively for four different cost functions. All of the reconstructions
are fairly similar for a given SNR. In Figure 4.4, the “log of energy” cost function
gives the poorest reconstruction By smoothing-out the discontinuity on the right. The
results in Figure 4.5 are consistently worse but not unreasonable given the level of
noise. M01e 1econstruct10ns are prov1ded in Section 4.4 along with some performance
measures. Whlle compresswn is a reasonable- goal and provides good results in the
denoising problem, it is not an optimal strategy with respect to the thresholding rule.
In the next section, we look for a cost function that will yield reconstructions that

are optimal in terms of minimizing the mean-squared error.
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Figure 4.3: (a) Underlying signal {s(m)} called HeaviSine. (b) Noisy observations
{z(m)} with SNR = 5 dB. (c) Noisy observations {z(m)} with SNR = —5 dB.
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Figure 4.4: Reconstructions of the noisy signal shown in Figure 4.3(b) for four different

cost functions. (a) Entropy. (b) Log of energy. (c) £* norm. (d) Number of coefficients
above T' = 0.55.
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4.3 Minimal Reconstruction. Error-Based Denois-

ing

In this section, we propose a denoising scheme that minimizes the reconstruction error

of the underlying signal, following the methodology of [16]. Specifically, we seek an

appropriate additive functional C(-) that can be used to minimize the mean-squared

~error E{|le||?} of the noise removal algorithm, where the error e is defined to be.

s — 8. To do this effectively, the total additive cost, ), C(wE ), must approximate
the mean-squared érror. In Section 4.3.1, we follow a simple-minded approach to
determine the risk incurred by the thresholding procedure. For expediency, we restrict
the thresholding rule to hard thresholding, previously shown in Figure 4.2(a), and
defined in Equation (4.11). This approach, however, leads to a biased estimator of
the risk. In Section 4.3.2, we show that an unbiased estimator exists by calling upon
the Stein unbiased risk estimator, and in Section 4.3.3, we compare the two risks by

evaluating the bias term.

4.3.1 Biased Risk Estimator

In this section, we follow a simple-minded approach to determine the risk incurred
by the hard thresholding rule defined in Equation (4.11), and we uitimately seek an
additive functional that will estimate the reconstruction error. We restrict our study
to Wllife Gaussian noise in this case, since the threshold 7' was chosen using this
assumption. To determine the risk, we compute the expected loss due to thresholding

at a level T. Hard thresholding has an associated quadratic loss which depends on T
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and the underlying signal coefficient w,_, or
L{Au(w, ), w,, T} = (w,, — Au(w,,))’. (4.15)

When applied to the wavelet coefficients in a basis B = {W?_}, the mean value of

the loss is the estimation error or risk in ||s — §]|, or

E{L{An(w?),s,T}} = R(s,T) |
= B{lls-WiAa(w)I’}.  (416)

Let {s(m)} be decomposed into the same wavelet packet basis as the noisy
signal {z(m)} with coefficients {w?, =< s, W% >}. The 'corresponding vector of
signal coefficients is represented by w? and ordered in a manner equivalent to w?.
By decomposing {s(m)} into the same basis as {z(m)}, we have partitioned each of
the coefficients {w? } into signal and noise components (i.e. w?, = w? 4+ w? ). Since
we only consider orthogonal bases here, the risk can then be expressed in terms of

the basis coefficients, or

R(s,T) = E{[[Wiw} - WiAz(w))|*}

= ﬁ:E{lwi — An(wf)) 2}- (4.17)

In order to define an estimator, we must analyze two specific cases:

Case 1: If |w? |* < T? with the hard thresholding strategy, the coefficient w?, is set to

zero. This contributes the value of [w? |? to the total risk. Since

B{lur "} = [ut|" +o% (4.18)
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. 2 2
we estimate |w? | by |w? | — o?.

Case 2: If Jw? |* > T?, the coefficient w?, is left unchanged, yielding a mean-square error

that is on average equal to the noise variance o

The total approximation error can thus be estimated by

N

RB(s,Tj. = ZC(W& 2), | (19

=1

where

uw—o0? ifu<T? ‘ .
o2 fu>T?
Examining Equations (4.19) and (4.20), we see that Rp(s,T) is an additive cost
function, and as a result, we can use this estimator to search for the basis which
minimizes Rp(s,T’) among a collection {BP},cp of orthonormal bases. We use the

symbol Rp(s,T) to denote that this estimator is biased, a fact which will be shown

in the following section.

4.3.2 TUnbiased Risk Estimator

In the following theorem, we show that the estimator Rg(s,T’) is suboptimal in the
sense that it is biased. We proceed to compute the true risk R(s,T) = E{||s — §]|*}
and derive the bias using the Stein unbiased risk estimator [17]. Section 4.3.3 will
show that this bias term has a minimal effect on the optimality of the search, if a

threshold T is judiciously chosen.



4.3. Minimal Reconstruction Error-Based Denoising : 101

Theorem 4 Let {W? }1<icn be an orthonormal basis of the observation space. If
the coefficients {v(m)} are zero mean, uncorrelated Gaussian random variables with

variance o2, the bias of the estimator Rg(s, T) with respect to R(s,T) is

K= R(SaT)—E{RB(SaT)}

N
= 2T0*Y  [$(T— <5, W2, >)+¢(-T— <s, W5 >)] (4.21)
=1
with
Bu) = —e i

Proof: We drop the superscript p for clarity. Define

An(wg,) = 0, T, >1)

gr(we) = ~wWs i, <1}

where Z;.y is an indicator function constrained by its argumeﬂf and where the noisy

coefficient w,, has a normal distribution, w,, ~ N (w,,,0%). We can then write
AH (wdt,) = w:ri + gT(wa:{)’

to obtain the following,

N
B {Z[AH(%J - wsilz}

= S E{[(w,, — w,,) + gr(w,)}

=1

N
= Z(E{(wvi)z} + 2B{w,, gr(w,,)} + E{gr(w)})- (4.22)
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Using the property described in [17],

E{wv;gT(wmi)} = /wu;gT(wvi +wsi)¢(wvi)dw'vi
= ——az/gT(wvi +w3i,)¢’(wvi)dwm
= @ [ Grlw, +w,)é(w,)du,

where “” denotes appropriate differentiation. Calling upon derivatives in the gener-

alized sense, one can write,

d
T Liwajsry = 0(wy, +T) = 6wy, = T),

Zi

with 6(-) denoting the Dirac impulse. We can then use it to derive

[ gr(w,, +w,)¢(w,)dw,, =
— [ T, 1<ry$(w,)dw,, + T (6T — w,,) + $(-T = w,,)) .

Substituting the above expressions back into Equation (4.22), we obfain,

N N
E {Z[Ay(wmi) - wSi]2} = E{Rp(s,T)}+2T0* Z [#(T —w,,) + ¢(-T —w,,)] .
i=1 i=1

[ |
This theorem proves that the expected value of the suboptimal estimator Rg(s, T) is
a lower bound on the mean-squared error. The estimator is biased because we have
assumed that the magnitude of the signal components are always above T in Equa-
tions (4.19) and (4.20). Since we did not account for the errors due to an erroneous
decision, we see that a coefficient composed of both signal and noise components may

be present below the threshold T
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4.3.3 Risk Comparison

The risk associated with the simple thresholding rule .Ag(+) is clearly different from
the optimal or unbiased risk, and the significance of this difference will be dependent
upon T and {s(m)}. Heuristically, this difference is due to the naive and perhaps
optimistic rule which attributes any coefficient below T" to noise and any coefficient
above T to the underlying signal. In short, a noisy signal coefficient can be less than
or equal to 7" depending on its local energy and how it is modified by the noise.
Therefore, the nature of the underlying ‘signal in the presence of noise at a level
around the threshold T is very relevant. Recall that T is solely determined by the
noise variance and the observation interval N. A Bayesian-like approach would lead
us to assume some prior knowledge about {s(m)}, in order to evaluate the significance

of the bias in the “suboptimal” decision rule.

A To obtain a more quantitative characterization of the bias term, we assign a
prior probability density f(w?,) to the signal coefficients. Using this information, we
can show that the bias term is strongly dependent on the statistical nature of the
signal. This analysis will also shed some light on the search for the optimal threshold

T as the signal statistics vary.

Proposition 1 Assume a probability density f(w?.) of the form

fwy) = efi(wf) + (1 —e)fa(w?),

where fi(w?.) is absolutely continuous and fy(wh,) has a finite or countably infinite

number of singularities (i.e. fo(w?) = 7—oprb(wh, —vy)). The expected value of the
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bias term p 18 given by,

E,{u} = 2To’N |e

2 = 1) [#(T) + £P7(-1)]

3=0

+(1 —€) Zpk — )+ ¢( —.Vk)]} : (4-23)

Proof: We assume that the wavelet coefficients-of the underlying signal are identically

distributed. The expected value of the bias term is then given by,

N
B} = 200 [ [6T —ul)+ o(-T - ul)] fuf)dus,  (424)

We only consider densities of the following form, where f(z) is the distribution for

any wf,

fl@) = efi(z) + (1 = e)fa(a).

In particular, fi(z) is absolutely continuous, and f2(z) has a finite or countably
infinite number of singularities. Since fi(z) is analytic, it can be represented by a

Taylor Series expansion, and fa(z) can be represented by

> bl — wi)
k=0
where Z = 1.

As a result, E;{u} can be separated into two expressions, one that is dependent on
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A (z) and the other dependent on f5(z), or

N
B} = 270? Y [e [ (90 = u2) + 9(-T — ul)] fiwt)au?,
+(1—¢) / (¢(T - w';;) + ¢(=T — w?)] fo(w?)duw? | . (4.25)

Given the similarity of the two terms ¢(-) in the first integral of Equation (4.25),

we only evaluate the first term. Letting 7, = T — w?

§;?

we obtain the Taylor series:

expansion of f1(T — 7;) around T,

/gb (1) (T — 7)dm; Z/ TZ J)(T ¢(7;)dT;. (4.26)

This last expression is the sum of scaled moments of the Gaussian function, which

are known to be [18]

1-3---(j —1)d? 7 even,
m; = (=1 (4.27)
0 7 odd.

The other term in the first integral of Equation (4.25) leads to a Simﬂar expression.

Evaluating the second integral for an arbitrary z = w?,, gives

/ BT — 2) + (=T — 2)] fol)da
- / 6T - 2) + $(~T — ) [Zmau - w] dz

/Zpk [o(T — v) (:v—uk)+¢( T —v)b(x — )| dz

= Zpk [6(T — vi) + (=T — )] (4.28)

k=0

-Combining the results of Equations (4.25)—(4.28), we obtain an expression which

b et e mimr pr [ — SEDIUR - — S —E——
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proves the proposition. [ ]

Consequently, Equation (4.23) shows that the bias term of the suboptimal risk
is strongly dependent on 7. This implies that the overall minimum of the true risk
will be dependent on the a pm’oﬁ probability density f(-). The mode bf the Eg (1)
will indeed determine the extremum point, and when combined with Rpg(s,T) will
result a posteriorily in a minimum at a corresponding “optimal” threshold 7'. Note
also that the bias term in Equation (4.21) assumes prior knowledge of the signal
coefficients, and as a result, no true unbiased estimator can be achieved i'n practice.
This difficulty, however, can be partially lifted by picking the Maximum Likelihood

Estimate (in this case, the noisy coefficient) to obtain an upper bound on the bias.

4.4 Results

4.4.1 A One-dimensional Exz;rnple

In this example, we analyze the two risks Rp(s,7) and R(s,T), which we subse-
quently refer to as the biased and unbiased costs, respectively. The entropy cost
function first introduced in Section 3.3 and described in [19] will be used for com-
parison. In this analysis, white Gaussian noise with variance ¢? is added to a known
signal at a specified SNR level, using the definition of SNR defined earlier in Equatidn
(4.14). Us'mg'one of the three costs under consideration, a best basis is obtained for
the noisy signal by minimizing the associated cost in a dictionary of possible bases,
and the thresholding rule defined in Equation (4.11) is applied to the coefficients be-

fore reconstruction. We focus on the performance of three synthetic signals: Ramp,

e — P — — BN - P EeE LS B R - DS EEEn W ewewwe  ESETTENET C NNS TN rweyewwe
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Figure 4.6: Synthetic signals used to illustrate the performances of the proposed cost
functions. (a) Ramp Signal. (b) HeaviSine Signal. (c¢) Doppler Signal.

HeaviSine, and Doppler, shown in Figure 4.6.

To illustrate the performance quality of the prescribed denoising scheme, a

sample reconstruction of the Ramp signal for each cost is shown in Figure 4.7 with an

SNR level of 5 dB. While the noise is not completely removed and ringing is exhibited,

the basic shape of the original signal is retained, and the discontinuity is preserved.

While Figure 4.7 is adequate to give the “flavor” of a typical reconstruction, it does

not provide a quantitative measure of performance. To compare the performances of

the estimators, an average risk was computed for 500 different noise realizations at
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Figure 4.7: (a) Noisy Ramp signal at an SNR level of 5 dB. (b) Sample reconstruc-
tion with the entropy cost function. (c) Sample reconstruction with the biased cost
function. (d) Sample reconstruction with the unbiased cost function.

100 SNR levels. We specifically computed

i=L

R(sT) = %Z[”_Sl_l‘s_l%“_] (4.29)

where j is the index of the realization number and M is the total number of real-
izations. Note that the risk is normalized by ||s||*> to allow comparisons between the
risks corresponding to signals with different energies. Figure 4.8 shows the results for

the three signals considered: here:-

ez m e b
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Figure 4.8: Performance curves for the Ramp, HeaviSine, and Doppler signals as
a function of SNR. Each plot shows results for the three cost functions considered

in this example. (a) Average risks for the Ramp signal. (b) Average risks for the
HeaviSine signal. (c) Average risks for the Doppler signal.
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The risk curves shown in Figure 4.8 are all fairly similar. As expected, the risks
associated with the biased and unbiased costs are smaller than the risk associated
with the entropy cost. This shows why one might prefer to use the biased and
unbiased costs over a compression-based cost, like entropy. Both the biased and
unbiased costs have a “built-in” measure of performance, namely. thé mean-squared
error. By minimizing this cost, we know that we will obtain the “best” signal estimate
associated with our performance measure. Compression-based costs, however, do not
possess an inherent indicator of performance, and therefore, minimizing these costs.

do not directly imply any degree of quality.

Figure 4.8 also shows that the biased and unbiased risk results are 'almost
indistinguishable, which indicates that the biased risk is a good approximation to the
unbiased risk, in this case. In general, we prefer to use the biased risk, since it is much
simpler to compute. Also, the true unbiased risk is not achievable in practice, since
the bias term in Equation (4.21) directly assumes a priori knowledge of the signal
coefficients. An upper bound on the bias term can, however, be obtained by picking
the Maximum Likelihood Estimate (MLE). In this case, the MLE of the bias term is

achieved by replacing the signal coefficient w? by the noisy signal coefficient w?..

4.4.2 A Quasi-two-dimensional Example

To provide more results using the proposed denoising algorithms, we consider a quasi-
two-dimensional example. For this example, an object is centered at a point (z,, y,)
with a radius that varies with the angular value #. For N equally spaced values of 8, we
measure the distance from the origin to a point on the object contour corresponding
to the value of 4, as shown in Figure 4.9. In this case, we assume that the discrete

set of angles {#(m)} are measured perfectly for all values of m, while the radial
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X

Figure 4.9: Method for obtaining the radial measurements r(m).

measurements {r(m)} cannot be determined precisely, or

z(m) = r(m)-+v(m)

2
Bm) = = m=0,1,---,N—1

and v(m) ~ N(0,0%). As a result, we obtain the same denoising problem as before,
where {z(m)} is the noisy signal of interest, with now, the complete signal being

viewed as a two-dimensional image with additive radial noise.

The same reconstruction scheme may be applied to this problem by processing
the radial measurement. As an example, consider an object similar to the one shown
in Figure 4.9 centered at (z,,y,) = (0,0) with an inner radius of 1 and an outer radius
of 1.5. Figure 4.10 shows the noisy signal along with the three sample reconstructions
for an SNR level of 5 dB. Note that the results using the biased and unbiased costs
exhibit less smoothing around the sharp discontinuities in the radial measurement

than the entropy cost function.

This concept can be extended to more complex scenarios, such as the recon-
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Figure 4.10: (a) Noisy radial measurement at an SNR level of 5 dB. (b) Sample
reconstruction with the entropy cost function. (c) Sample reconstruction with the
biased cost function. (d) Sample reconstruction with the unbiased cost function.
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Figure 4.11: (a) Noisy radial measurement at an SNR level of 10 dB. (b) Sample
reconstruction with the entropy cost function. (c) Sample reconstruction with the
biased cost function. (d) Sample reconstruction with the unbiased cost function.

structions shown in Figure 4.11. In this example, there are five circles with different
centers, and by concatenating the one-dimensional radial measurements from each
circle, we obtain a signal that can be processed in the same way as before. While this
example is contrived, there are variations on this theme that have real applications.
For example, object profiles used for image recognition are often noisy. This inherent
noise may be removed if an appropriate radial measure can be obtained for these

objects.




114 - Chapter 4. Denoising Techniques Using Wavelet Packets




Chapter 5

Applications to High-Resolution
Radar

In this chapter, we show that some of the previously discussed denoising techniques
may be applied to high-resolution radar (HRR) signals. In particular, we propose
an algorithm that identifies the spatial orientation of targets, using one-dimensional
radar returns. These returns essentially provide a “fingerprint” of a target by convey-
ing important information about its overall dimension along with the configuration
and shape of significant scatterers. Since HRR returns contain important informa-
tion about a target, researchers have believed for many years that HRR daﬁa could
be successfully used for automatic target recognition (ATR). No significant advances,

however, have been made in this area due to the difficult nature of the problem.
The ATR problem is plagued by many factors which make it difficult to develop

both efficient and robust algorithms. The noisy environment is one of the most

significant problems which affects this detection and estimation problem. The radar

115
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returns not only contain the target of interest, but also noise added from background
clutter such as the ground, trees, buildings, and other objects. Another factor that
threatens the performance of ATR systems is the variability in the position and
shape of the targets of interest. From scene to scene, targets are oriented in different
~ spatial configurations that can significantly alter the radar returns. Even dents and
other abrasions on a target’s body can alter the surface reflectivity enough to affect
the radar returns. All of these factors are essentially noise sources that introduce a

- .variable of uncertainty in HRR signals.

An ATR system must therefore account for all of these factors. These systems,
however, are typically so complex that they cannot operate in real time. In some of
the earliest approaches to ATR, the authors in {20, 21] and later [22] attempt to
implement simpler systems using correlation and nearest neighbor methods. These
approaches are fast and efficient but often lead to large misclassification errors in
noisy environments. Recent work by [23] has focused on Bayesian approaches to the
ATR problem. These methods are certainly more robust than the simpler correlation
algorithms, but they require impractical com;)ﬁtation times. In designing an ATR
system, we therefore search for a middle ground that will suggest an aigorithm: which
1b bbth robust and computationally efficient. Our approach is to develop a database of
signals that represent N known targets. Thesé signals are ideally picked to be highly
correlated with the returns for a matching target and uncorrelated with returns from

all other targets. In order to develop a robust ATR system, this database is designed

to provide an overcomplete representation of a given set of returns.

In Section 5.1, we describe the high-resolution radar data that will be used
to evaluate the performance of our algorithm. In Section 5.2, we present the general
ATR problem and then specialize our study to the grbund targets, which we consider

in our experiments. In Se'(:tion= 5.3, we propose an algorithm that can be used for
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automatic target recognition. We first describe the methodology for building the
database, and then, present an efficient search algorithm to identify the most likely
candidate target based on a given radar return. In Section 5.4, we conclude with

some results to show the performance of the proposed algorithm.

5.1 Description of High-Resolution Radar Data

We previously mentioned that background clutter is a significant problem associated
with HRR data. Another serious problem, however, is the lack of consistent real data
for evaluation purposes, and this scarcity of data makes it difficult to test algorithms in
order to assess real world performance. To address this problem, Wright Laboratories
and DEMACO, Inc. have collaborated to produce a modeling tool called Xpatch,
used to simulate radar returns for a target model. We exclusively use synthetic
data obtained from Xpatch in order to test the algorithm that we propose. Before
introducing this tool, we discuss real HRR data and two models that have been

proposed in [23].

51.1 Two Models

Radar systems have been used for many years as a method of remote surveillance.
Traditional systems transmit a modulated waveform typically composed of a sequence
of puises, and an antenna is then used to “listen” for a return signal. “Significant” re-
turns indicate that an object is present, and these returns are modified versions of the
transmitted signal, varying according to the range and velocity of a target. For many

years, researchers believed that shorter pulses were the only method for achieving
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improved range resolution of targets, but they later discovered that range resolution
was also related to the frequency bandwidth. This led to “chirp” signals and other
waveforms in which the carrier frequency of the transmitted signal was varied over a
range of frequencies. These ideas and new technologies such as wide-bandwidth mi-
crowave components, high—speed digital processing, and digitally controlled frequenéy

sources have made high-resolution radar possible [24].

High-resolution radar returns are useful for recognition purposes because they
provide “fingerprints” of a target. The electromagnetic waves reflected from an object
of interest are altered according to the reflectivity density of the object’s surface.
Important features of the target, therefore, manifest themselves as large peaks in
the returned signal. The locations of these significant scatterers vary, however, as
a target is illuminated from different angles. In addition, various surfaces of the
target have different reflectivity densities, and reflections from these surfaces may
add destructively at one location and constructively at other locations. The returns
therefore tend to vary dramatically with the aspect angle, which makes the ATR

problem extremely challenging.

Two models of HRR returns have been proposed by Jacobs, et.al., [23]. Using

their notation, the radar return can be represented by the sum of an unknown signal

and noise, or

r(t) = s(t0,a) +w(t). (5.1)

This problem is the same type considered in Chapter 4, but in this case, the signal
s(t;0,a) is dependent on the angle § at which the target is illuminated and the
target type a. The deterministic model which they propose assumes that s(t; 6, a) is

deterministic for a fixed target and angle, while the stochastic model assumes that
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S(t; 6, a) is a random process. For the deterministic model, a sequence of HRR returns

is then given by the following system of equations,
re(t) = s(t; 0k a) + wi(t), (5.2)

where k is the waveform index. The sequence of profiles {r(¢)} is therefore ran-
dom because of the additive noise, but the underlying signal is known exactly once

complete information about the aspect angle and target type is provided.

The stochastic model for HRR data represents the reflectivity density of a
target by a glint plus diffusion component. At a given location p, the reflectivity

density is given by,

c(p) = c4lp)e P +cy(p). (5.3)

The glint component cy(p) is a deterministic function of position and represents the
reflective amplitude of the object’s surface. The phase term (p) has a distribution
that dépends on the incident angle of the radar wave. The diffusion component c,(p)

is modeled as a complex Gaussian random process that is spatially white, or

E{cs(p)cs ()} = S(p)é(p—p')- (5.4)

This model and other similar stochastic models, however, result in more complicated
algorithms. In this treatment of the problem, we use the deterministic model exclu-

sively since it closely resembles the denoising problem previously studied.
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5.1.2 The Xpatch Simulator

One problem with using HRR data for ATR is that real data is not widely available.

We are therefore led to use synthetic data obtained through simulation.. The modeling - ‘

tool Xpatch has received recent attention as a valid alternative to real data. This
computer package simulates the radar return by a Shooting and Bouncing Ray (SBR)
‘technlque The user first creates a CAD model of a target composed entirely of flat |
" H'tnangular facets These facets prov1de an approx1mat10n to the continuous surface of
a real object and designate how radar waves will bounce off the surface. Once a model

is created, Xpatch simulates the radar return at different specified aspect angles.

Using the SBR technique, a grid of rays are focused on the target in a given
direction, and the rays are traced as they strike various surfaces of the target. The
user can specify different reflectivities for the target’s surfaces, which affect the am-
plitude of the reflected rays. This tool can also be used to simulate both horizontal
and vertical polarizations at the transmitter and the receiver. Figure 5.1 shows an
example of an electromagnetic wave with vertical polarization. By convention, the
' polarization is determined by the direction’ of the electric field [25]. By choosing
different polarizations, various features of the target may become accentuated. The
user can also specify thé .number of bounces to count in each simulation, as well as
many other options: To calculate the estimated radar return, Xpatch then performs a
physical optics integration at the point where a ray exits the target. In the algorithm
proposed here, we strictly use range profiles obtained from the Xpatch simulations

through the inverse Fourier transform.

The data considered throughout was produced by Xpatch for a set of CAD
models designed to provide realistic data to universities. These models are part

of the University Research Initiative Synthetic Dataset (URISD) and are shown in
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Electric Field

Magnetic Field

Figure 5.1: Representation of an electromagnetic wave.

- Figure 5.2. The dataset includes HRR returns for three frequency bands: UHF,
L, and X, but we only focus on the UHF data in the testing process. The dataset
includes simulated returns at three different depression (or elevation) angles, 10°, 25°,
and 40°, and at 1201 different azimuthal angles spaced 0.3° apart. Figure 5.3 showsb
the magnitude of four HRR returns obtained at different azimuthal angles for the
model of the fire truck. The variation in both amplitude and‘! shape is dra.ma;cic for
large angular separation, as expected. These variations contribute significantly to the

difficulty of the ATR problem, which we address in the next section.

5.2 Problem Statement

Using a sequence of HRR profiles, we wish to identify a target and estimate its position
in real time. The position of a target is generally known, however, and modern radar

systems are designed to track multiple targets effectively. If these assumptions are
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Figure 5.2: Models of the targets used in the dataset. (a) Fire truck (b) School bus
(c) Tank 1 (d) Tank 2
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Figure 5.3: Magnitude of HRR returns at different azimuthal angles for the fire truck
at a depression angle of 10°. (a) 0° azimuth. (b) 15° azimuth. (c) 30° azimuth. (d)
45° azimuth.
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Figure 5.4: Detection and estimation procedure involved in the ATR problem.

satisfied, then we are assured that the HRR returns represent the target of interest
and not some other object. The main goal in the ATR problem is then to determine
the identity of a target and its orientation in space. Figure 5.4 shows the entire
detection and estimation system, with the last two blocks being the object of our
study herein. To estimate a target’s orientation, both the-azimuthal angle ¢ and
depression angle # must be determined as shown in Figure 5.5. The figure assumes a
body-centered frame of reference for the target. Of the class of possible targets, we
only consider ground targets here, which thus restricts the value of § to the range
0° < 6 < 90°. We also assume that the depression angle can be estimated fairly
accurately based on the radar line of sight and the altitude measurements of the
aircraft. We are therefore primarily interested in estimating the azimuthal angle ¢ at

which the target is illuminated.

Recent research concerning the use of HRR profiles for ATR has been per-

formed in [23]. They approach the problem from a Bayesian point-of-view, where the




5.2. Problem Statement ' 4 125

90°

Depression Angle

\

00
Azimuthal Angle

Figure 5.5: Shows how a target’s orientation is measured in terms of the depression
angle 6 and the azimuthal angle ¢.
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dynamics of the target are estimated to induce a prior on a sequence of orientations.
They also introduce the possibility of more than one target in a particular scene,
and use the jump-diffusion algorithm described in [26] to continually estimate the
number of targets to track. All of these estimation procedures combined, however,
are computationally intensive, and consequently, decisions cannot be performed in
real time. A simpler approach to the problem was originally proposed by [20, 21],
where discrimination of different orientation angles or tafget types is performed using:
a correlation procedure or a nearest neighbor technique: Iniorder to separate two
classes {a}} and {a?} using a correlation procedure, one must find an n-dimensional

weighting vector w and threshold T which satisfy

wa; +T >0 foral i=1,2,---, NV, (5.5)

*a?4+T <0 forall i=1,2,---,N,, (5.6)

(using the notation of [21]). If w and T can be found to satisfy the equations above,
then the two classes {al} and {a?} are linearly separable, and the decision rule that
separates the classes is a hyperplané in n-dimensional space. The nearest neighbor
decision rule, on the other ham_i, bases its classification on the closest Fuclidean

distance, or
xeC, if |x-aj|l= m%cn Ix — ak||. (5.7)

Equation (5.7) above indicates that x is a member of a class C., if and only if x is
“closest” to one of the elements of C’ Both of these methods suggest that ATR can be
performed by companng an HRR return to a set of 51gnals in a database using either
a correlation procedure or a nearest neighbor technique. These procedures, however,
lead to large misclassification errors in noisy environments, and some improvements

must therefore be made.
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In the next section, we propose an algorithm that provides some improve-
ments over the previous work in [20, 21]. We are primarily concerned with developing
a database of HRR profiles because we believe that this is a valid and efficient solu-
tion to thé ATR problem. This database is constructed from a sequence of profiles
which represent a particular target. Our goal is to find a representation that elicits
the most information possible from the profiles. Once the database is in place, the
ATR problem reduces to a table lookup, which can be rapidly performed. This elimi-
nates the numerical computations involved in extrapolating the target trajectories as‘
proposed in [23]. In the next section, we discuss the issues involved in establishing

and searching the database.

5.3 Algorithm for Automatic Target Recognition

In this section, we propose an algorithm that can be used to identify targets and
their spatial orientations. Figure 5.6(a) and (b) shows the two main parts of this
algorithm. In the first part, we discuss the construction of the database containing
signals representative of various targets at different aspect -angles. We will show
that an overcomplete representation of a set of HRR profiles leads to a more robust
algorithm. The second part of the algorithm shown in Figure 5.6(b) and discussed
in Section 5.3.2 is the database search procedure. Preprocessing is first performed
on a received HRR profile in order to remove noise induced ‘on the transmitted and
received signals. One of the denoising procedures discussed in Chapter 4 may be used
in this phase of the search algorithm. The next step in the algorithm is to search the
~database using the denoised signal. We show in Section 5.3.2 that the search for the
most likely target and orientation may be efficiently performed in the overcomplete

representation that we propose.
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Figure 5.6: Shows the two parts of the proposed algorithm. (a) Creating the database.
(b) Searching the database.
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5.3.1 Hierarchical Structure of Database

In creating the database shown in Figure 5.6(a), our goal is to incorporate maximal
information about a target into a series of representative signals, where each signal
corresponds to a particular sector of radar returns in the azimuthal direction. Since
the HRR profiles are highly variable as a function of the aspect angle, we would like

to include only the essential features in the representative signal. For a given sector,
we search for an underlying signal that is highly'correlated with all HRR returns
In the sector. We cast this search into a denoising problem, where the underlying
signal contains the important information about a sector, and the fluctuations among

signals in the sector are modeled as noise.

For a sector of (N — 1)A¢ degrees, there are N HRR returns from a given
target,

X; = s+v;
Xog = S+V,
XN = S5+ VN,

where each x; is the sum of an underlying signal s and noise v;. We assume that
vi is white and Gaussian with v; ~ A/(0,02I). In order to merge the information

contained in all of these signals, we average x1, Xz, - , XN, to yield

X1 +Xg2+ -+ XN
Xavg = N =85+ Vayg.

We also assume that v; is uncorrelated with v; for all ¢ # 5, and consequently,

Vavg 18 white Gaussian noise with vayg ~ N (0, 75 Zfll 021). We let the aggregate
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- signal X,y be the representative signal for the sector because it contains the essential

features in the sector.

Given the method described above, we can use the representative signals in
“each ;séct'd'r‘ to create a databéée; It is in genéra,l difficult to partition the Sectofs,
since some partitions may mask the prominent features of the target. To remedy
this problem, we propose an overcomplete representation of the HRR returns that
is not as dependent on the selected partition. Figure 5.7 shows such a hierarchical
representation of sectors, where a large sector is split into successively smailer sectors.
With this representation, if an important feature is split among sectors in a lower
level of the tree, then the entire feature will be represented in a sector located at a
higher level on the tree. The signal at the top of the tree, Sy, is an average over all
azimuthal angles from 0° to 360°. The signal S is an average of only the profiles
between 0° and 180°, while S3 is an average between 180° and 360°. This division
process continues down the tree until the desired azimuthal resolution is obtained
at the lowest level. This hierarchical approach to the aggregate signals provides an
overéomplete representation of the HRR returns for a single target and helps create a
robust ATR algorithm. The method for searching this overcomplete database is.the

topic of the next section.

- 5.3.2 Searching the Database

To search the dafabase, we ﬁfst perform a corfelation procedure with each signal in
the sector tree, where the tree is constructed by the method shown in Figure 5.7.
This generates a tree of “costs” similar to the costs associated with the best basis
search discussed in Section 3.4. Three such “cost” functions are considered below.

Once a statistics tree has been constructed, it must be pruned to find the most likely
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Figure 5.7: Hierarchical representation of sectors in the azimuthal direction.

orientation angle and target type. An efficient algorithm for pruning the tree is also

discussed.

Cost Functions

Once a target is detected, we obtain an HRR return y, and we correlate y with all
of the signals S; in the sector tree. For the correlation operation, we choose the

maximum likelihood statistic,

. .
bi = Siy-3SiS; (5.8)
for H;, : y=8;+v, (5.9)

where v ~ N(0,02I). This statistic arises from the log-likelihood function. Under

hypothesis H;, the mean of y is S;, and the variance is 2. The log-likelihood function
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for hypothesis H; is then given by,

’I’L 2 1 * * * ‘
L, = —Ehgpm%}—§%Wy—2&y+&&y (5.10)

1

" Since the constant term —2log {2702} and the scale factor 55z are the same for all

H;, they do not provide any additional information in the discrimination process. In
addition, the observed return y is the same for all hypotheses and may be removed.
This results in the statistic given in Equation (5.8), which must be maximized to find

‘the most likely hypothesis.

We also note that the term in brackets in Equation (5.10) is precisely the
Euclidean distance between y and S;. The nearest neighbor method, therefore, is

equivalent to the maximum likelihood statistic. This statistic is given by
by = (y—8)"(y - S, (5.11)
and must be minimized to find the most likely hypothesis.
We consider a final statistic that allows a gain factor-in“each hypothesis, or
H, : y=aS;+v. (5.12)

“This gain may be estimated as 4 = §S-:Sl, resulting in the statistic

1
gg,i = dS’[y—-z-&ZS:‘S, (513)
1(Sty)? |
- & (5.14)

whiclh must be maximized.
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Figure 5.8: Shows that the statistics {£1;}, {£2;}, and {¢s;} discriminate the true
HRR return. (a) True Return is R(85). (b) True Return is R(90). (c) True Return

is R(95). (d) True Return is R(100).

In order to see how well these statistics discriminate different radar returns,

we chose four different radar returns and correlated them with all other returns for

a particular target. Figure 5.8 shows the results of this procedure for the fire truck

at depression angle of 10°. In each case, the maximum correlation for the statistics

{,,} and {43;} and the minimum correlation for {£;;} are achieved at the true radar

return. We therefore see that these statistics can be effectively used for discrimination

purposes.




134 o Chapter 5. Applications to Hig_h-Resoluﬁon Radar

Optimal Search Algorithm

Given a tree of correlations, we now propose a method to determine the most likely
- azimuthal angle. One possible solution is to traverse- the. tree: from -top to bottom, - .
making binary choices at each node of the tree. This method, however, can lead
to large errors in estimating the azimuthal angle if an incorrect decision is made at
the top of the tree. We, therefore, propose to find the path in the tree with the
- largest additive correlation, using an iterative search reminiscent of the best basis
search discussed in Section 3.4. Figure 5.9 shows how this search can be performed
in O(Nlog N) operations. In this example, the numbers in black correspond to the
actual correlations at each node of the tree. At a given level, the maximum correlation
of the two children nodes is added to the correlation of the parent node. This operation
is performed until the top of the tree is reached. The correlation obtained at the top
is the total correlation of the best path, and the Best path is found by tracing the
arrows back down the tree. This procedure may be used for the statistics {€1;} and
{€5.:} to maximize the correlation. To minimize the {/,,} statistic, we choose the

minimum correlation of the two children nodes at each level.

Using the above method, we can search a sector tree and find the best az-
imuthal angle for a given target, but now, we would like to extend the algorithm to
i;nvclude) target identification. To address this issue, a sector tree is comstructed for
each target in a class of p.ossible targets, and each tree is searched to determine the
path with the maximum (or minimum, depending upon the statistic used) additive
correlation. After an exhaustive search over all pbssible targets, we choose the target
whose sector tree yields the largest (or smallest) correlation. This simple method,
however, sometimes leads to errors in target identification because it does not account
for the energy differences in the returned signals of different targets. Norma,lizing.the

radar returns to have unit energy is therefore necessary before any comparisons can
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Figure 5.9: Efficient search algorithm for the path of largest correlation.

be performed. The additive cost structure which we propose also allows different

polarizations to be used in making decisions about orientation and target type. Sep-

arate databases can-be created for different polarizations, and returns obtained with

these polarizations can then be used to search the appropriate database. The statis-

tics trees for the polarizations are then added together, and the search algorithm is

performed on this aggregate tree. We demonstrate some of these ideas in the next

section via several experiments.
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5.4 Results

To test the proposed algorithm, a sector tree was created for each of the four targets in
the dataset at the depression-angles: 10°, 25°, and 40°. In this analysis, we incorporate
256 azimuthal angles between 0° and 307.2° spaced 1.2° apart. The representative
signal at the top of the tree contains an average of all 256 angles, while successive
levels average 256(2‘j) signals for j € {0,--+,J}. In this example, we choose J = 8
so that the lowest level of the tree has a resolution of 1.2°. In general, the depth of
the tree is dependent upon the required accuracy in the angular estimation and upon

niemory constraints.

Our database consists of 12 different sector trees corresponding to the 4 targets
and the 3 depression angles. In this analysis, we limit the database search to the most
likely azimuthal orientation, assuming that both the target and depression angle are
known!. To test the algorithm, we use the full set of HRR. returns spaced 0.3° apart.
Since our HRR data is limited, this allows us to test the algorithm with HRR returns
that are not in the database, as well as some that are. When testing returns not in
the database, the maximum acceptdble error is 0.9°, and for returns in the database,

the only acceptable angular error is 0°.

Figure 5.10 gives the results for Tank 2 (shown previously in Figure 5.2(d))
at all three depression angles. The x-axis shows the angle of the HRR return that
was used to search the database, while the y-axis shqws the magnitude of the angular
error as a resuif of }the search. All of the plots pfovide results for HRR returns

- in the region 45° to 135°. The errors which resulted are shown in Figures 5.10(a),

!The depression angle is, in general, known fairly accurately from airplane measurements and
the radar line of sight.
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Depression Angle
Object 10° 25° 40°
Fire Truck || 7.52% | 4.69% | 1.86%
School Bus | 8.50% | 7.13% | 2.64%
Tank 1 3.03% | 3.61% | 0.78%
Tank 2 2.05% | 1.37% | 1.07%

Table 5.1: Provides the percentage misclassification error in the azimuthal direction
for all targets and depression angles.

(c), and (e), with the largest errors occurring in Figures 5.10(a) and (c). These two
errors occur, howeveru, because the algorithm picked returns that corresponded to
another axis of symmetry. By accounting for this symmetry, we obtain the graphs in
Figures 5.10(b), (d), and (f). These figures show that the majority of errors lie at or

below 0.9°, which is an acceptable error, given the resolution of the database.

Figure 5.11 shows similar results for Tank 1, shown previously in Figure 5.2(c).
Even after removing the symmetry, Figures 5.11(b), (d), and (f) still show large
errors that are not accounted for, but in general, the results are fairly accurate. To
quantify the errors made by the algorithm, we compute the percentage of angular
misclassifications made for each of the targets and depression angles. An error is
considered to be anything above 0.9°. The results are shown in Table 5.1, and tend
to indicate that the algorithm generally performs better for larger depression angles.

Note that for these results, no axis of symmetry was taken into account.

We now consider the effect of noise on the performance of the algorithm. Noise
was added to the HRR returns for SNR levels ranging from 0 dB to 15 dB. The HRR
returns between 0° and 48° were used for the fire truck at a depression angle of 25°.

Only returns included in the database were chosen, which means that the returns
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Figure 5.10: Plots of the errors that occur in searching the database using the HRR
returns of Tank 2 at three different depression angles. (a) Tank 2 at a 10° depression
angle. (b) Accounts for the axis of symmetry (10° depression). (c) Tank 2 at a 25°
depression angle. (d) Accounts for the axis of symmetry (25° depression). (e) Tank
2 at a 40° depression angle. (f) Accounts for the axis of symmetry (40° depression).
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Figure 5.11: Plots of the errors that occur in searching the database using the HRR,

returns of Tank 1 at three different depression angles. (a)

Tank 1 at a 10° depression

angle. (b) Accounts for the axis of symmetry (10° depression). (c) Tank 1 at a 25°
depression angle. (d) Accounts for the axis of symmetry (25° depression). (e) Tank

1 at a 40° depression angle. (f) Accounts for the axis of symmetry (40° depression)
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Figure 5.12: Plot of angular error for the fire truck at a depression angle of 25° as a,
function of SNR and the angle of the HRR profile used to search the database.

which we used were spaced 1.2° apart. The noisy returns were first denoised by using
~ the entropy cost function to obtain the most compressed signal representation followed
by thresholding at a level T' = \/W . The denoised signal was then used to
search the database in order to determine the most likely azimuthal angle for the fire
truck at a depression angle of 25°. The results are shown in Figure 5.12. In general,
the errors are small for SNR levels above 5 dB. The HRR profile at approximately 32°
is, however, consistently incorrect. This error is most likely due to an axis of symmetry
that we have not accounted for in this analysis. These results are, however, promising
because they indicate that for higher levels of SNR, the angular error remains within

reason.




Chapter 6

Conclusions

In this chapter, we provide a summary of the results discussed in this thesis, along
with some issues that suggest future research. Our primary approach has focused
on wavelet packets as a tool for finding a signal representation that satisfies a spe-
cific goal. For the goal of compression, we- introduced the theory of majorization.
Majorization provides a framework for discriminating two vectors based on the dis-
tribution of their components. In this framework, we searched for cost functionals that
could be used to preserve the ordering of an underlying majorization. These functions

were then optimized using the Best Basis Search algorithm proposed in [19].

The search for the best compressed representation was then applied to the
denoising problem. Noisy coefficients below a specified threshold 7' were discarded,
in order to remove a significant portion of the noise while preserving the quality of the
underlying signal. Compression-based denoising, however, did not lead to a measure
of the reconstruction quality. To address this problem, we proposed the minimal

reconstruction error criterion, which simultaneously accounted for the thresholding

141
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rule and the noise statistics with the goal of minimizing the error in reconstructing

the underlying signal.

In the final topic of this thesis, we presented an algorithm for performing
automatic target recognition using high-resolution radar data. This algorithm was
presented in the framework of a database search. The methodology for both con-
structing and searching the database was presented, and the algorithm was shown to-

be both robust and computationally efficient. |

We list below some natural extensions to the results previously presented. We
suggest specific improvements that could enhance both the denoising techniques and

the algorithm for ATR.
Denoising Techniques

e Any enhancement to the denoising problem should certainly begin by improving
the tools used in the process. Designing better wavelets and proposing new

overcomplete dictionaries of bases are therefore important topics to address.

e The purpose of Chapter 3 was to introduce a framework for viewing the func-
tionals which measure compression. - By finding an appropriate measure for

majorization, we will, in essence, find a good measure of compression.

. Thresholding is also another important issue which must be addressed. The
thresholding strategy discussed here assumes white Gaussian noise, but what if
other types of noise are present? The thresholding strategy must be changed
accordingly. Some work has been doné in [27] concerning this, by treating the

case of long-tailed noise.. This-leads to a robust wavelet thresholding technique.
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e When different thresholding strategies are used, we must also determine the
corresponding minimal reconstruction error cost function. In fact, a more gen-

eral cost function which is parameterized by the thresholding strategy would

prove extremely useful.

Algorithm for ATR

e As discussed previously, one primary problem with the analysis of ATR systems
is the lack of data. Generating synthetic data via Xpatch and obtaining real

data are therefore two important goals for the purposes of evaluation.

e Finding a better model as well as further understanding the current models of
HRR signals may in fact lead to a better method for obtaining the representative

signals in the database.

e Some alternative methods to the averaging technique may also improve the
performance of the algorithm. Averaging is an intuitive scheme for combining
information, but in some cases, it may, in fact, mask important features of
a target. Some improvements may also be found by slightly overlapping the

averaged sectors in order to incorporate even more redundancy in the database.

e An appropriate sampling of the azimuthal space must be determined for the
correlation procedure to effectively discriminate returns at different orientation

angles.

e The performance of the system is significantly affected by the chosen correla-
tion statistics. Finding better statistics is an important step in improving its

performance.
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e We would also like to investigate the estimations of target type and azimuthal
angle via multiple returns. Since the target will not change and the azimuthal
angle will only vary slightly from one return to the next, the number of errors

will be reduced by using several returns in the estimation procedure.
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