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Abstract We call a periodic ball packing in d-dimensional Euclidean space periodi-
cally (resp. strictly) jammed with respect to a period latticeΛ if there are no nontrivial
motions of the balls that preserve Λ (resp. that maintain some period with smaller or
equal volume). In particular, we call a packing consistently periodically jammed (resp.
consistently strictly jammed) if it is periodically (resp. strictly) jammed on every one
of its periods. After extending a well-known bar framework and stress condition to
strict jamming, we prove that a packing with periodΛ is consistently strictly jammed
if and only if it is strictly jammed with respect to Λ and consistently periodically
jammed. We next extend a result about rigid unit mode spectra in crystallography
to characterize periodic jamming on sublattices. After that, we prove that there are
finitely many strictly jammed packings of m unit balls and other similar results. An
interesting example shows that the size of the first sublattice on which a packing is first
periodically unjammed is not bounded. Finally, we find an example of a consistently
periodically jammed packing of low density δ = 4π

6
√

3+11
+ ε ≈ 0.59, where ε is an

arbitrarily small positive number. Throughout the paper, the statements for the closely
related notions of periodic infinitesimal rigidity and affine infinitesimal rigidity for
tensegrity frameworks are also given.
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1 Introduction

This paper lies at the intersection of two areas of recent interest. Principally, it is about
jammed hard-ball packings, which can serve as a useful model for granular materials
[22]. To call a packing jammed is to say that the arrangement of balls admit no motion.
However, for infinite packings, this notion makes little sense without some sort of
boundary condition, as, for example, we can always move the balls linearly away from
some origin point. Thus, we focus on infinite packings that are periodic and define sev-
eral periodic boundary conditions that each make jammedness a meaningful concept.
In defining this, we run into the rigidity theory of periodic bar-and-joint frameworks,
objects that have been used in recent work to model zeolites and perskovites [3,15,18].

There is an important connection between the concepts of bar-and-joint frameworks
and sphere packings that comes naturally from the study of tensegrities. We call a
packing periodic with respect to a period latticeΛ periodically jammed with respect to
Λ if there is no nontrivial motion of the packing that maintains periodicity with respect
toΛ, i.e. the only such motions result in a congruent packing. In [22], this corresponds
to the term collectively jammed, which in this paper we use to denote the equivalent
notion of finite packings on a torus E

d/Λ. Periodic jamming is closely related to the
concept of periodic infinitesimal rigidity seen with bar-and-joint frameworks in [3,15,
20]. In addition, if there is no nontrivial motion of the packing that maintains periodicity
with respect to some continuously-changing lattice Λ(t) with nonincreasing volume,
the packing is called strictly jammed. This notion is closely related to the concept of
affine infinitesimal rigidity [4,18], and is by definition stronger than that of collective
jamming.

The connection between periodic jamming for packings and periodic infinitesimal
rigidity for bar-and-joint frameworks is commonly made by reducing the first condition
to a tensegrity framework with points at the centers of the balls and edges, called struts,
between tangent balls that are constrained to not decrease in length [5–7]. From a
classic result in [21], it can be shown that periodic infinitesimal rigidity on tensegrities
reduces to periodic infinitesimal rigidity of the corresponding bar framework and the
existence of a negative equilibrium stress on the tensgrity. In [6,9], strict jamming
again reduces to an infinitesimal condition on the tensegrity as well as the lattice. Our
first main theorem proves a variant of the bar and stress condition for strict jamming
and affine infinitesimal rigidity.

In this discussion, one should note that a packing or framework can be periodic
with respect to a number of lattices, not just some arbitrary lattice Λ. In fact, there
are a number of examples of periodic packings and frameworks that are jammed and
periodically infinitesimally rigid with respect to some lattices but not others [6]. Thus,
we also look at periodic boundary conditions that do not reference a specific lattice,
calling a packing consistently periodically or strictly jammed if it is periodically or
strictly jammed on all of its period lattices. We use similar terminology with regard to
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frameworks, although other terms have been given, such as periodically infinitesimally
ultrarigid for our term consistently periodically infinitesimally rigid [2]. We prove that
a periodic framework is consistently affinely infinitesimally rigid if and only if it is
affinely infinitesimally rigid and consistently periodically infinitesimally rigid. The bar
and stress condition for strict jamming gives the packing analogue: consistent strict
jamming is equivalent to an arbitrary strict jamming and consistent periodic jamming.

Thus, we now consider consistent periodic jamming and the closely related problem
of considering sublattices of a periodically jammed packing. The RUM spectrum used
to find “flexible modes” of crystals modeled as ball-and-joint frameworks [10,17,19,
23] gives a way to characterize periodic infinitesimal ridigity on certain sublattices. We
formalize this result and apply it to characterize all periodic jamming on all sublattices
of a packing.

We also give a number of finiteness results relating to periodic packings. Most
prominently, there are only finitely many strictly jammed packings with the number
and radii of the translationally distinct balls fixed. We also give an interesting twenty-
disk packing that can be made first unjammed on unboundedly large sublattices. Fur-
thermore, a realization of the packing’s bar framework is consistently infinitesimally
rigid, but not phase periodically infinitesimally rigid, a notion borrowed from [19].
The calculations require an idea borrowed from parallel drawing in [8]. We consider
infinitesimal movement of the tensegrity as motions of the edges instead of motions of
the points, and so we call it an infinitesimal edge flex. This notion is used to find consis-
tently periodically jammed packing with the low density δ = 4π

6
√

3+11
+ ε ≈ 0.58742,

where ε is an arbitrarily small positive number.
In Sects. 2 and 3, we develop formal definitions regarding packings, and give some

basic results from rigidity theory. In Sects. 4 and 5, we prove the bar and stress condi-
tion for strictly jammed packings, give a proof of the theorem concerning consistent
strict jamming is given, and add some relevant discussion. In Sect. 6, we give the finite-
ness results. In Sect. 7, we characterize periodic jamming on sublattice of a packing.
Section 8 defines edge flexes, and Sect. 9 gives the low-density and twenty-disk pack-
ing examples. Appendix in the online version of the paper gives the full calculation
for the twenty-disk packing.

2 Definitions and Notation

We consider packings of balls in the Euclidean space E
d with disjoint interiors. For

any basis B = {g1, . . . , gd} of E
d, let Λ(B) = {λ1 g1 + · · · + λd gd | λi ∈ Z} be the

lattice composed of all integral linear combinations of vectors in B. A packing P is
said to be periodic with respect to a lattice Λ if translations by elements in Λ lead to
an identical packing; Λ is then called a period. Λ acts as an automorphism group of
the packing, and we require that the packing has finitely many orbits of balls under
Λ. There can be infinitely many orbits if there are vanishingly small balls, but in this
paper we explicitly do not call such ill-behaved arrangements periodic packings. A
periodic packing is called periodically jammed with respect to Λ if every continuous
constraint-preserving motion of the balls that is periodic with respect to Λ results in
a congruent packing.
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We can consider packings periodic with respect to a lattice Λ as a finite packing
on the torus T

d(Λ) = E
d/Λ. A packing on the torus is called collectively jammed

if every continuous constraint-preserving motion of the balls results in a congruent
packing. Since the only continuous isometries of the torus T

d(Λ) are translations, a
packing on T

d(Λ) is collectively jammed if and only if the only continuous motions are
translations of the entire packing. Similarly, a periodic packing in E

d is periodically
jammed with respect to Λ if and only if the only continuous motions maintaining
the same period are translations of the entire packing. Note that a packing in E

d is
periodically jammed with respect to Λ if and only if the corresponding packing on
T

d(Λ) is collectively jammed.
Any packing in E

d that is periodic with respect to Λ will also be periodic with
respect to a sublattice Λ′ ⊆ Λ. Analogously, given a sublattice Λ′ ⊆ Λ, a packing in
T

d(Λ) lifts naturally to a packing in T
d(Λ′).

We say that a packing in E
d is consistently periodically jammed if it is periodically

jammed with respect to every period Λ that it has. Analogously, we can say that a
packing on the torus T

d(Λ) is consistently collectively jammed if, for every sublattice
Λ′ of Λ, the lift of the packing to T

d(Λ′) is collectively jammed. With the below
proposition, we see that consistent collective jamming and consistent periodic jamming
are compatible.

Proposition 2.1 A packing in E
d that is periodic with respect to Λ is consistently

periodically jammed if and only if it is periodically jammed with respect to every
sublattice of Λ.

If the lattice is generated by the basis B = {g1, . . . , gd}, then the fundamental
region of the period has volume

Vol
(
T

d(Λ(B))
) = det(g1, g2, . . . , gd). (1)

A periodic packing is called strictly jammed with respect to period Λ if the only
continuous motions of the balls, allowing the period to change continuously without
increasing its volume, result in packings congruent to the original. Similarly, define
a periodic packing to be consistently strictly jammed if it is strictly jammed with
respect to every period. We note that Proposition 2.1 can be generalized to this; a
packing periodic with respect to Λ′ is consistently strictly jammed if it is strictly
jammed with respect to every sublattice of Λ′.

The density of a periodic packing is the total volume of the balls in a period divided
by the volume of the period.

3 Results From Rigidity Theory

We define an abstract tensegrity to be a simple graph G = (V ; B,C, S)with countable
vertices V each of finite degree and edges E being the disjoint union of subsets B, C ,
and S, which are referred to as the set of bars, cables, and struts, respectively. As in
Definition 2.1 from [4], we may define an abstract tensegrity G to be d-periodic with
respect to Γ if Γ is a free abelian group of automorphisms of G with rank d having
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no fixed points and a finite number of vertex orbits. Note here that elements in Γ are
also required to preserve membership of edges in B, C , and S.

Then, let a tensegrity (G, p) be a realization of an abstract tensegrity G =
(V ; B,C, S) in E

d formed by assigning each vertex vi in V to the point pi in the count-
able sequence p = ( p1, p2, . . .). It is useful to consider the edges in E = B ∪ C ∪ S
as directed edges ek = p j − pi between i and j . We can then constrain each cable
to not increase in length, bar to stay the same in length, and strut to not decrease in
length. A tensegrity with finitely many vertices is denoted rigid if the only continuous
motions of the points obeying the constraints result in a congruent configuration.

Now, a tensegrity (G, p) in E
d is said to be periodic with respect to a lattice Λ

if G is d-periodic with respect to Γ and Λ is an automorphism group of the set of
members of p, acting on p as Γ does on V . A periodic tensegrity is periodically rigid
if the only continuous motions of the points that maintain the period Λ and obey the
constraints result in a congruent configuration, i.e. translations of the tensegrity.

We can consider tensegrities on T
d(Λ) as a finite sequence of points p =

( p1, . . . , pn) and edges between points represented by vectors ek in the sequence
e = (e1, . . . , e|E |). Since each ek is directed, we denote such a tensegrity as (G, p, e)
where G is a finite directed multigraph with sets of bars, cables, and struts that are
symmetric, i.e. containing (u, v) if and only if containing (v, u). A tensegrity (G, p, e)
on T

d(Λ) is rigid if and only if the only continuous motions of the points that obey
the constraints are continuous translations of the entire tensegrity.

Now let the graph of the packing denote the graph where vertices are placed at
disk centers and edges are placed between the centers of tangent disks. We next define
the corresponding strut tensegrity as in [5,7]; every edge in the graph of the packing
becomes a strut in the corresponding tensegrity, preventing the edges from decreasing
in length. Similarly, we define the corresponding bar tensegrity of a packing as the
tensegrity formed by replacing each edge in the graph of the packing with a bar.

Since there are only finitely many points and edges in a packing on a torus T
d(Λ),

the packing and the strut tensegrity are related in the following way.

Theorem 3.1 Given a packing P in E
d periodic with respect to the lattice Λ, the

following are equivalent:

(a) P is periodically jammed with respect to Λ.
(b) The corresponding packing on T

d(Λ) is collectively jammed.
(c) The corresponding strut tensegrity on E

d is periodically rigid with respect to Λ.
(d) The corresponding strut tensegrity on T

d(Λ) is rigid.

We omit the proof of this easy theorem.
Therefore, we consider a tensegrity (G, p, e) on a torus T

d(Λ). An infinitesimal
flex p′ of (G, p, e) is a sequence of vectors ( p′

1, . . . , p′
n) in E

d such that for every
edge ek connecting pi to p j in T

d(Λ),

ek · ( p′
j − p′

i )

⎧
⎨

⎩

= 0 if ek ∈ B,
≤ 0 if ek ∈ C,
≥ 0 if ek ∈ S.

(2)
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On a torus, an infinitesimal flex is called trivial if p′
1 = · · · = p′

n . A tensegrity is
infinitesimally rigid if the only flexes are trivial. We recall the following theorem,
whose proof is split between [21] and [6].

Theorem 3.2 A tensegrity (G, p, e) on T
d(Λ) is rigid if it is infinitesimally rigid. The

converse is true if (G, p, e) is a strut tensegrity.

A stress on a tensegrity is a sequence of scalar weights assigned to the edges ek

such that the weight is negative on struts and positive on cables and so that the stresses
on symmetric edges are the same. (By this last condition, we are recalling that the
edges of tensegrity are directed, and are saying that a stress should be the same for
( pi , p j ) and ( p j , pi ) if ( pi , p j ) is among the edges.) A stress (ω1, . . . , ω|E |) is called
an equilibrium stress if for every vertex p j ,

∑

ek∈E j

ωk ek = 0, (3)

where E j is the set of edges starting at p j . The notion of a stress gives an intuition
for a version of Farkas’ Lemma from [21].

Lemma 3.1 Suppose Y = { y1, . . . , yk} ⊂ R
d. Then the set

Y + = {μ ∈ E
d | μ · y ≥ 0, for all y ∈ Y } (4)

is the orthogonal complement Y ⊥ of Y if and only if there exist positive scalars
Λ1, . . . , λk such that

∑k
i=1 λi yi = 0. Otherwise, Y + strictly contains Y ⊥.

Lemma 3.1 can be directly applied in the same manner as Theorem 5.2 from [21] to
tensegrities on T

d(Λ) to obtain a bar and stress decomposition of infinitesimal rigidity
on the quotient torus.

Theorem 3.3 A tensegrity on T
d(Λ) is infinitesimally rigid if and only if the corre-

sponding bar tensegrity is infinitesimally rigid and there is an equilibrium stress.

Therefore, as a result of Theorems 3.1, 3.2, and 3.3, we have the following main
theorem from rigidity theory.

Theorem 3.4 A packing on T
d(Λ) is collectively jammed if and only if the corre-

sponding bar tensegrity is infinitesimally rigid and there is an equilibrium stress on
the corresponding strut tensegrity (G, p, e).

4 Strictly Jammed Packings

Let (G, p) be a tensegrity in E
d periodic with respect to the lattice Λ. In this section,

we develop a number of results about the strict infinitesimal rigidity of (G, p) with
respect to the lattice Λ. Now, it is convenient to denote such a periodic tensegrity as
(G, p,Λ), where p = ( p1, . . . , pn) andΛ generate all other points p(k,λ) = pk + λ,
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whereλ ∈ Λ. Thus, in this section, all notions and statements of infinitesimal flexibility
and rigidity are assumed to be made with respect to the givenΛ. However, one should
note that the results hold more generally for any period lattice of (G, p).

Consider a sequence of vectors p′ = ( p′
1, . . . , p′

n) and a linear transformation A
of E

d. In an equivalent definition to that from [18], and as seen under alternative name
“infinitesimal deformation” in [3], call ( p′, A) an affine infinitesimal flex of (G, p,Λ)
if for any edge ek connecting p(i,0) to p( j,λ),

ek · ( p′
j − p′

i + Aek)

⎧
⎨

⎩

= 0 if ek ∈ B,
≤ 0 if ek ∈ C,
≥ 0 if ek ∈ S,

(5)

where ek = p( j,λ) − p(i,0). Note here that it is convenient for us to consider the set
of edges E as a finite sequence of vectors ek starting from points p(i,0) = pi , since
periodicity forces all other edges to behave similarly.

This is a variant of the definition of an affine infinitesimal flex from [18], where
the condition was instead on ek · ( p′

j − p′
i + Aλ). We see affine infinitesimal flexes

of the two types correspond with each other. If ( p′, A) is an affine infinitesimal flex
under our definition, then the flex (q ′, A) defined by q ′

i = p′
i + A p(i,0) is an affine

infinitesimal flex by Power’s definition.
If Λ is generated by basis vectors g1, . . . , gd, then we can consider the change of

basis matrix T = (g1 . . . gd). T has an inverse T −1 with rows hT
i . We see gi · h j is

one if i = j and is zero otherwise. The infinitesimal flex of the lattice generators are
given by the matrix T ′ = (g′

1 . . . g′
d) = AT , where we have used g′

i to represent the
i th column of the matrix. Then we can alternatively call ( p′, g′) an affine infinitesimal
flex if it satisfies

ek · ( p′
j − p′

i + λk1 g′
1 + · · · + λkd g′

d)

⎧
⎨

⎩

= 0 if ek ∈ B,
≤ 0 if ek ∈ C,
≥ 0 if ek ∈ S,

(6)

for each ek , where we have taken ek = λk1 g1+· · ·+λkd gd. We see that hm ·ek = λkm .
The infinitesimal area condition of strict jamming is that

0 ≥ 1

det(T )

d

dt
det(T + t AT )

∣∣∣∣
t=0

. (7)

This reduces to

tr(A) = tr(T −1T′) = h1 · g′
1 + · · · + hd · g′

d ≤ 0. (8)

We call ( p′, A) a strict infinitesimal flex if it is an affine infinitesimal flex satisfying (8).
(We note that this flex is called ‘strict’ because of its relation to strict jamming and not
because (8) is strictly satisfied.) An affine or strict infinitesimal flex is called trivial if
it corresponds to a rigid motion of E

d. Then, (G, p,Λ) is called affinely infinitesimally
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rigid if the only affine infinitesimal flexes are trivial and strictly infinitesimally rigid
if the only strict infinitesimal flexes are trivial.

Proposition 4.1 A periodic bar tensegrity (G, p,Λ) has a nontrivial affine infinites-
imal flex if and only if it has a nontrivial strict infinitesimal flex.

Proof The “if” direction is clear. Suppose instead that (G, p,Λ) has a nontrivial affine
infinitesimal flex ( p′, A). Then, (− p′,−A) is also a nontrivial affine infinitesimal flex.
Since at least one of ( p′, A) and (− p′,−A) satisfies (8), there exists a nontrivial strict
infinitesimal flex. �

Corollary 4.1 A periodic bar tensegrity (G, p,Λ) is affinely infinitesimally rigid if
and only if it is strictly infinitesimally rigid.

We call a stress (ω1, . . . , ω|E |) on a periodic tensegrity (G, p,Λ) a strict equilib-
rium stress if it is an equilibrium stress, i.e. satisfying (3), which also satisfies for
j = 1, 2, . . . , d,

∑

ek∈E

ωkλk j ek + h j = 0, (9)

where ek, λk j are as defined in (5) and h j is as defined in (8).
Equivalently, using λk j = h j · ek , the condition on a strict equilibrium stress

becomes

∑

ek∈E

ωk ek eT
k = −Id, (10)

where Id is the d-dimensional identity matrix. In the exact same manner as the proof
of Theorem 5.2 from [21], we obtain the following bar and stress condition for strict
infinitesimal rigidity.

Theorem 4.1 A tensegrity (G, p,Λ) is strictly infinitesimally rigid if and only if the
corresponding bar framework has no nontrivial affine infinitesimal flexes satisfying
(8) with the inequality replaced by equality, and there exists a strict equilibrium stress
on (G, p,Λ).

Proof For an edge ek = p( j,λ) − p(i,0) going from p(i,0) to p( j,λ), consider

yk = (ak1, . . . , akn, bk1, . . . , bkd) (11)

as a d(n + d) dimensional vector such that aki = ek , ak j = −ek , bkm = λkm ek , and
akm = 0 otherwise. We also may consider the vector h = (0, . . . , 0,−h1, . . . ,−hd).
For a strict infinitesimal flex ( p′, g′), we also consider it as a d(n + d) dimen-
sional vector f ′ = ( p′

1, . . . , p′
n, g′

1, . . . , g′
d). Note that yk · f ′ ≥ 0 if ek is a strut,

(− yk) · f ′ ≥ 0 if ek is a cable, and both hold if ek is a bar. Furthermore, h · f ′ ≥ 0
from (8). Thus, we may choose

Y = {h} ∪ {− yk|ek ∈ B ∪ C} ∪ { yk |ek ∈ B ∪ S} (12)
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so as to apply Lemma 3.1. Note that Y ⊥ is the set of all affine infinitesimal motions
of the corresponding bar framework.

If (G, p,Λ) is strictly infinitesimally rigid, then Y + = Y ⊥ is the set representing all
trivial motions. In addition, by the lemma, we have a linear combination of elements
of Y summing to zero with positive scalars, and thus a strict equilibrium stress.

Likewise, by Lemma 3.1, if there is a strict equilibrium stress, we can find a pos-
itive linear dependency among elements in Y . Thus, since the bar framework allows
only trivial flexes, Y + = Y ⊥ only has trivial flexes, and thus (G, p,Λ) is strictly
infinitesimally rigid. �


The bar framework condition may be strengthened by applying Corollary 4.1 to
obtain the following corollary.

Corollary 4.2 A tensegrity (G, p,Λ) is strictly infinitesimally rigid if and only if the
corresponding bar framework is strictly infinitesimally rigid and there exists a strict
equilibrium stress on (G, p,Λ).

Proof Note that if the corresponding bar framework has a nontrivial strict infinitesimal
flex, then the flex is also a nontrivial strict infinitesimal flex of the strut tensegrity. If
there is no strict equilibrium stress, then by Theorem 4.1, (G, p,Λ) is not strictly
infinitesimally rigid.

If the tensegrity is not strictly infinitesimally rigid, then either there is a nontrivial
affine infinitesimal flex satisfying (8) with equality, or there is no strict equilibrium
stress. �


This theorem and its corollary are useful when studying strictly jammed packings
by a result from [6,9].

Theorem 4.2 A periodic packing is strictly jammed with respect to the lattice Λ if
and only if its corresponding strut tensegrity (G, p,Λ) is strictly infinitesimally rigid.

Thus, by Theorem 4.2, Corollary 4.2, and Proposition 4.1 we obtain the following
theorem.

Theorem 4.3 A periodic packing is strictly jammed with respect to the lattice Λ if
and only if the corresponding bar framework is strictly infinitesimally rigid (or affinely
infinitesimally rigid) and there exists a strict equilibrium stress on the corresponding
strut tensegrity.

5 Decomposing Consistent Strict Jamming

Throughout the last section and into this section, we have repeatedly switched between
viewing tensegrities as being on a torus T

d(Λ) and as being periodic structures on
E

d. This is fine, and we reiterate that a periodic tensegrity (G, p) is periodically
infinitesimally rigid with respect to periodΛ if the corresponding tensegrity on T

d(Λ)

is infinitesimally rigid. To save an adverb, we regularly skip the word ‘periodically’.
We call a periodic tensegrity (G, p) consistently infinitesimally rigid if it is infin-

itesimally rigid with respect to all period lattices. Similarly we call it consistently
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affinely infinitesimally rigid if it is affinely infinitesimally rigid with respect to all
period lattices Λ and consistently strictly infinitesimally rigid if it is strictly infinites-
imally rigid with respect to all period lattices Λ. We note that, as in Proposition 2.1,
a tensegrity with period Λ′ is consistently infinitesimally rigid if it is infinitesimally
rigid with respect to every sublattice ofΛ′; the same holds true for affine infinitesimal
rigidity and strict infinitesimal rigidity. For bar frameworks, the term ultrarigid has
been used by Borcea [2] and others to refer to the concept of consistent affine infin-
itesimal rigidity. We start with a basic result about ultrarigidity that has previously
been overlooked.

Proposition 5.1 A bar framework with periodΛ is consistently affinely infinitesimally
rigid if and only if it is affinely infinitesimally rigid with respect toΛ and is consistently
infinitesimally rigid.

Proof Consistent affine infinitesimal rigidity immediately implies affine infinitesimal
rigidity with respect to any period Λ and consistent infinitesimal rigidity, so the con-
dition is clearly necessary. Now, suppose a framework is not consistently affinely
infinitesimally rigid, having a nontrivial affine infinitesimal flex ( p′, A), p′ periodic
with respect toΛ′. We assumeΛ′ is a sublattice ofΛ. We take p′

(i,λ0)
, λ0 ∈ Λ, to refer

to the infinitesimal flex of the point at p(i,λ0)
, noting that p′

(i,0) = p′
(i,λ0)

if λ0 ∈ Λ′.
Assuming the framework is affinely infinitesimally rigid with respect to Λ, p′

cannot be periodic with respect to the lattice Λ. Choosing some λ ∈ Λ not in Λ′,
consider the flex q ′ defined by

q ′
(i,λ0)

= p′
(i,λ0)

− p′
(i,λ+λ0)

.

Since ( p′, A) cannot be affinely periodic with respect to Λ by the assumption, for
some choice of λ, q ′ is nonzero. We now prove that the q ′

(i,λ0)
cannot equal a constant

vector v different from zero. Supposing they could, and saying |Λ/Λ′| = N , we would
have

p′
(i,λ0)

= p′
(i,λ0+kλ) + kv = p′

(i,λ0)
+ Nv,

so Nv = 0, so v is zero, a contradiction.
But then (q ′, 0) is a nontrivial affine flex periodic with respect to Λ′. To see this,

suppose ek connects p(i,λ0)
to p( j,λ1)

. We find that

q ′
(i,λ0)

− q ′
( j,λ1)

= ( p′
(i,λ0)

− p′
(i,λ+λ0)

− p′
( j,λ1)

+ p′
( j,λ+λ1)

),

which equals

−( p′
( j,λ1)

− p′
(i,λ0)

+ Aek)+ ( p′
( j,λ+λ1)

− p′
(i,λ+λ0)

+ Aek)

so that ek · (q ′
( j,λ1)

− q ′
(i,λ0)

) = 0 since ( p′, A) is an affine flex of the bar framework.
Then q ′ is a nontrivial infinitesimal flex with period Λ′. Then, if a framework that
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is affinely infinitesimally rigid with respect to Λ has an affine infinitesimal flex peri-
odic with respect to Λ′, it is not infinitesimally rigid with respect to Λ′. This proves
sufficiency. �


With a little more work, this simple result can be extended to all tensegrities.

Theorem 5.1 A tensegrity with period Λ will be consistently strictly infinitesimally
rigid if and only if it is strictly infinitesimally rigid with respect toΛ and is consistently
infinitesimally rigid.

Proof Necessity is once again clear, so we only need to show these two properties
are sufficient. Suppose a tensegrity is both strictly infinitesimally rigid with respect to
Λ and is consistently infinitesimally rigid. By Proposition 5.1, we then know that the
corresponding bar framework is consistently affinely infinitesimally rigid. By Corol-
lary 4.2, we then only need to show that the tensegrity has a strict equilibrium stress
with respect to any sublattice Λ′ of Λ. Since the tensegrity is strictly infinitesimally
rigid with respect to Λ, we know that there is a strict equilibrium stress periodic with
respect to Λ that satisfies (10). This stress can also serve as a periodic equilibrium
stress with respect to Λ′, and if we write |Λ/Λ′| = N , we find that the stress on the
sublattice will satisfy

∑

ek∈E

ωk ek eT
k = −N Id.

By scaling this stress, we find an equilibrium stress periodic with respect to Λ′ that
satisfies (10) and hence is strict. Then any sublattice has a strict equilibrium stress, so
that the tensegrity is consistently strictly infinitesimally rigid. This proves the theorem.

This last theorem is the cumulation of a long draught of rigidity theory. With the
following corollary, which is a simple consequence of this last theorem and Theorem
4.2, we bring this theory back to an unexpected and fundamental statement about ball
packings.

Corollary 5.1 A periodic ball packing in E
d is consistently strictly jammed if and only

if it is both strictly jammed with respect to some periodΛ and consistently periodically
jammed.

We give two observations about this result. First, we note that this result is only
interesting if strict jamming and consistent periodic jamming are independent proper-
ties. It is easy to find examples of consistently periodically jammed packings that are
not strictly jammed; the packing in Fig. 6 in Sect. 9 is an example. Finding a strictly
jammed example that is not consistently periodically jammed is more difficult, and
the existence of such a packing actually contradicts a conjecture made by Connelly
in Ross’s thesis [20, p. 304]. It is still an open question if there is a strictly jammed
packing of equal radii disks that is not consistently periodically jammed. However,
allowing disks of unequal sizes, there is a simple strictly jammed packing that is not
consistently periodically jammed. It is depicted in Fig. 1. This packing has two larger
circles and one smaller circle in its unit cell. As depicted in Fig. 2, it is not consistently
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Fig. 1 A strictly jammed packing that is not consistently periodically jammed. The right diagram gives
the graph of the packing

Fig. 2 A flex proving the
example is not consistently
periodically jammed; this flex is
periodic with respect to a 2 × 2
sublattice of the finest period
lattice, Λ

periodically jammed. It is, however, strictly jammed. It is possible to assign each edge
of the contact graph the same positive stress and get a strict equilibrium stress; we leave
the demonstration of this as an exercise. To prove the corresponding bar framework
affinely infinitesimally rigid is also straightforward. Packings of different-radii disks
have been studied as a model of alloys, and this example in particular is a variant of the
S1 example studied by Henley and Likos [13] with half as many small disks. In three
dimensions, there are easy examples of equal radii strictly jammed packings that are
not uniformly jammed , including the octahedral network pictured in Fig. 3. This is a
similar example to the two-dimensional case, again having three balls per unit cell.

The second observation we make is that this result assumes spherical particles.
Since there is no obvious way to model non-spherical particles with tensegrities, the
introduction of non-spherical particles will make Theorem 5.1 less useful. However,
there is interest in other hard-particle systems, with Torquato surveying a large field
of papers that investigate other particles in [22]. We leave this as an open question.
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Fig. 3 A portion of the contact
graph for the three-dimension
three sphere counterexample

Open Question What conditions on particle shapes need to be assumed for consistent
strict jamming to be a consequence of strict jamming and consistent periodic jamming?

6 Finiteness Results

This section is the first of three independent sections in this paper. The next two
sections give methods to analyze the examples in Sect. 9, while this section gives a
few original results that motivate Sect. 9.2.

Theorem 6.1 For any number of unit-radii balls m and dimension d, there are finitely
many noncongruent periodic packings with m orbits of unit-radii balls in E

d that are
strictly jammed.

This theorem comes from a more general result on bar frameworks.

Theorem 6.2 Given an abstract bar framework G with positive edge weights dk that
is d-periodic with respect to Γ , there are finitely many noncongruent realizations of
G as an affinely infinitesimally rigid framework (G, p) in E

d so that p maintains the
periodicity of the abstract framework under Γ and so that the length of a bar in the
framework equals the weight of the corresponding edge in the abstract framework.

Proof We choose d generators from Γ . G has a finite number of orbits under Γ ; find a
maximal collection of vertices p1, p2, . . . , pn distinct under Γ . The generators of Γ
correspond to generators g1, g2, . . . , gd of a lattice with respect to which the packing
is jammed. The n vectors pi and d vectors gi fully determine a periodic realization.
An assignment of p and g gives a realization if and only if, for each edge ek with
weight dk connecting pi,0 and p j,λ, where λ = ∑

l al gl , we have
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∣∣
∣ pi − p j −

d∑

l=1

al gl

∣∣
∣ = dk .

These reduce to some finite set of quadratic equations in d2 + nd real variables, from
the d vectors gi and the n vectors pi . Then we can describe the set of realizations as
a real algebraic set X in R

d2+nd .
From [1], we know that a real algebraic set consists of finitely many path connected

components. Suppose that two noncongruent realizations were connected by a path
ρ : [0, 1] → X . The set of realizations congruent to ρ(0) is closed, and hence so is its
preimage. In particular, there exists some a so ρ(a) is congruent to ρ(0) while ρ(a′)
is not congruent for a < a′ < a + ε for some positive ε. At this point, we follow an
approach seen in [21]. We use Milnor’s curve selection lemma from [16] to say that
there is a real analytic path ψ so ψ(0) = ρ(a) and ψ(x) is a realization not congruent
to ρ(a) for 0 < x ≤ 1. Taking the derivative of this path, we find a nontrivial affine
infinitesimal flex. Then distinct affinely infinitesimally rigid realizations are on distinct
path components. Then there are finitely many realizations. �


We have proved that there are only finitely many noncongruent affinely infinitesi-
mally rigid realizations for each abstract framework. Now, to show Theorem 6.1 we
need to prove that there only finitely many abstract frameworks that can come from a
disk packing. We need a lemma first.

Lemma Given any latticeΛ in E
d, there is some basis g1, . . . , gd ofΛ, |g1| ≤ |g2| ≤

· · · ≤ |gd|, so

|a1 g1 + · · · + ad gd|2 ≥ Kd|g1|(a2
1 + a2

2 + · · · + a2
n),

where Kd is some positive constant that depends only on d.

Proof It is a result due to Hermite that, for any dimension d, there is some constant Cd
so that any latticeΛ in E

d has some basis g1, . . . , gd so that the volume spanned by the
vectors detΛ satisfies Cd · detΛ ≥ |g1|, . . . , |gd|; in other words, the orthogonality
constant detΛ

|g1|···|gd| is bounded (see [14]). From this, the projection of gi onto the
orthogonal complement to the subspace generated by {g1, . . . , gi−1, gi+1, . . . , gd}
has length at least |gi |/Cd. Taking Kd = 1

dC2
d

gives the lemma. �

Theorem 6.3 For any positive d and m, there are finitely many nonisomorphic peri-
odic d-dimensional abstract frameworks that correspond to a periodic packing of m
unit balls in E

d.

Proof Consider a packing periodic with respect toΛ. We choose the m disks to lie in
a fundamental parallelepiped of a basis v1, . . . , vd of Λ satisfying the conditions of
the lemma. Call the fundamental parallelepiped D. Since no unit balls can intersect,
we find that |v1| ≥ 2. If the m balls touch another ball, the touched ball must have
center lying within the region

{
v ∈ E

d|∃v′ ∈ D such that |v − v′| ≤ 2
}
.
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By the lemma, this region is a subset of

U = {
v ∈ E

d|v =
∑

aivi , ∀ i |ai | ≤ 1 + √
1/Kd

}
,

which contains at most Adm balls, where Ad is a constant dependent on d. Ad can
be anything more than the maximum number of cells U touches, which leaves the
possible choice

Ad = (
3 + 2

√
1/Kd

)d

Then, since the abstract framework is determined by the connections of the m balls
to these Adm balls through periodicity, we find that there can be no more than 2Adm2

abstract frameworks corresponding to ball packings, proving the theorem. �

Since the graph of a strictly jammed packing is affinely infinitesimally rigid as a bar

framework, we see that the previous two theorems together show that there can only
be finitely many strictly jammed packings of m unit d-dimensional balls, establishing
Theorem 6.1.

We can also find a corresponding result to Theorem 6.1 for collective jamming with
a fixed lattice.

Theorem 6.4 Given a torus T
d(Λ) and positive integer m, there are finitely many

noncongruent unit-radii packings of m balls in E
d that are collectively jammed.

Like Theorem 6.1, this comes from a more general theorem.

Theorem 6.5 Given some lattice Λ and an abstract bar framework G with positive
edge weights dk that is d-periodic with respect to Γ , there are finitely many noncon-
gruent realizations of G as an infinitesimally rigid framework (G, p) on E

d so that p
is periodic with respect to Λ and so that the length of a bar in the framework equals
the weight of the corresponding edge in the abstract framework.

We omit the proof, as it uses no new ideas from Theorem 6.1.
Finally, we note that, instead of assuming m unit-radii balls, we could have assumed

balls of fixed radii r1, . . . , rm ; we can generalize Theorem 6.3 to this case, and this
generalization carries to Theorems 6.1 and 6.4.

6.1 Motivation for Section 9.2

As immediate corollaries from Theorems 6.1 and 6.4, we have that, if a strictly jammed
packing is not consistently strictly jammed, the minimal index of a sublattice on which
the packing is unjammed is bounded. To make this exact, we associate with each
collectively jammed packing a number Nmin which equals the minimum value of
|Λ/Λ′| so that the packing is collectively unjammed with respect to Λ′, where Λ is
the finest period lattice. If the packing is consistently collectively jammed, we say
Nmin = ∞.
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Corollary 6.1 For any positive integer m and dimension d there is a positive integer
N so that any strictly jammed d-dimensional periodic packing with m orbits of unit
balls and Nmin > N is consistently strictly jammed.

We get an analogous result for collective jamming.

Corollary 6.2 Given a torus T
d(Λ) and positive integer m, there is some N so that

any collectively jammed packing of m balls on T
d(Λ) with Nmin > N is consistently

collectively jammed.

These particular results are interesting because we can push them no further. If we
don’t keep the extra Λ dependence in Corollary 6.2 and if we replace ‘strictly’ with
‘collectively’ in Corollary 6.1, we get a statement that is no longer true.

Theorem For any N, there is a packing of twenty disks on a torus T
2(Λ) that is not

consistently collectively jammed but which is collectively jammed with respect to Λ′
if |Λ/Λ′| < N. In other words, there is a packing that satisfies N < Nmin < ∞.

This theorem describes an example that we will see in 9.2 when we have developed
the tools to deal with it.

7 Simplifying Jammedness on Sublattices

Donev et al. developed an algorithm to determine if a packing was periodically jammed
in [9]. To do this, they collected the |E | constraints imposed by (2), where |E | is the
number of edges in the packing on the torus, into the single constraint M p′ ≥ 0,
where M is known as the rigidity matrix and has |E | columns. Determining collective
jammedness then reduces to a linear programming problem.

We now face the question of how we can extend this method to determine if a
packing is jammed with respect to a sublattice Λ′. The naïve approach is to treat
the packing as periodic with respect to Λ′ as opposed to Λ, but this is inefficient. If
|Λ/Λ′| = N , the rigidity matrix for the sublattice will have N times as many rows and
N times as many columns. The linear programming problem will be corresponding
more difficult.

One critical simplification comes from essentially using a discrete Fourier trans-
form. We assume that P is a periodically jammed packing that is periodic with respect
toΛ and thatΛ′ is a sublattice ofΛ. We identify n balls in this packing as translation-
ally distinct with respect to Λ, assigning them positions p(i,0). There are (N − 1)n
other balls that are translationally distinct with respect to the sublattice Λ′, and they
are at positions p(i,λ) = p(i,0) + λ, where λ is a member of the group Λ/Λ′.

With this proposition, we allow complex infinitesimal flexes, which assign each
vertex a infinitesimal flex in the complex vector space C

d. Complex infinitesimal
flexes are physically meaningless but simplify the theory. We note that, by taking the
real part or imaginary part of a complex infinitesimal flex, we get a real infinitesimal
flex.

Proposition 7.1 Let P be a packing that is periodically jammed with respect to period
Λ. Then P is periodically unjammed with respect to period Λ′ ⊂ Λ if and only if
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there is a nontrivial, possibly-complex infinitesimal flex q′ of the corresponding bar
framework (G, p,Λ′) and an irreducible representation ρ : Λ/Λ′ → C\{0} so that

q′
(i,λ0)

= ρ(λ0)q′
(i,0) (13)

for all λ0 ∈ Λ/Λ′.

Proof We have assumed that P is periodically jammed. By Theorem 3.4, this implies
that there is an equilibrium stress on the corresponding strut tensegrity (G, p,Λ). But
this stress will also clearly be a periodic equilibrium stress with respect toΛ′, so from
Theorem 3.4 we find that the packing will be unjammed with respect toΛ′ if and only
if the corresponding bar framework has an infinitesimal flex on Λ′.

If there is a flex satisfying (13), P is clearly unjammed with respect to Λ′, so one
direction of this proposition is trivial. Now suppose that the P is unjammed with respect
to Λ′, so that the bar framework has a nontrivial flex p′. We can translate this flex by
any element λ ∈ Λ to find another infinitesimal flex r ′: defining r ′

(i0,λ0)
= p′

(i0,λ0+λ),
and using p(i0,λ0)

= p(i0,0) + λ0, we find

( p(i0,λ0)
− p(i1,λ1)

) · (r ′
(i0,λ0)

− r ′
(i1,λ1)

)

= ( p(i0,λ0+λ) − p(i1,λ1+λ)) · ( p′
(i0,λ0+λ) − p′

(i1,λ1+λ))
= 0.

Then, if ψ is any function from Λ/Λ′ to C, the flex defined by

q ′
(i,λ0)

=
∑

λ∈Λ/Λ′
ψ(λ) p′

(i,λ0−λ) (14)

will be a valid infinitesimal flex of the bar framework. Note that by having ψ equal
one at zero and zero everywhere else, we can recover the original p′.

At this point, we can swiftly prove the proposition with representation theory. We
will subsequently revisit the argument less abstractly for the case d = 2.

First, we note thatΛ/Λ′ is abelian, and therefore all of its irreducible representations
will be one dimensional by Schur’s lemma (Proposition 1.7 in [11]). Since this group is
abelian, we also have that its conjugacy classes consist of individual group members.
Then any ψ will be a class function, and hence any ψ will be a linear combination
of characters of irreducible representations (Proposition 2.30 in [11]). But for a one
dimensional representation ρ, the character χ(ρ) is equivalent to ρ. By choosing
ψ equal to one at the identity and equal to zero everywhere else, and by writing
ψ = ∑

k akρk as a linear combination of irreducible representations, we find

p′
(i,λ0)

=
∑

k

ak

∑

λ∈Λ/Λ′
ρk(λ) p′

(i,λ0−λ).

Then, as p′ is nonzero, we can find some irreducible representation ρ that leads to a
nonzero infinitesimal flex
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q ′
(i,λ0)

=
∑

λ∈Λ/Λ′
ρ(λ) p′

(i,λ0−λ).

But ρ is a homomorphism, so for this q ′ we find

q ′
(i,λ0)

=
∑

λ∈Λ/Λ′
ρ(Λ0)ρ(λ− λ0) p′

(i,λ0−λ) = ρ(λ0)q ′
(i,0)

and we are done. �

We now interpret this proposition for the case that d = 2. If the two genera-

tors for Λ are written as g1 and g2, we can then write the two generators of Λ′ as
a g1 + bg2 and cg1 + d g2. Then, for ρ :Λ/Λ′ → C\{0} a homomorphism, we have
ρ(g1)

aρ(g2)
b = 1 and ρ(g1)

cρ(g2)
d = 1. Write μ = ρ(g1) and μ′ = ρ(g2). With

this notation, we get a more applicable version of the above proposition.

Proposition 7.2 A collectively jammed periodic disk packing will be unjammed with
respect to Λ′ if and only if there is some choice of μ and μ′ where

μaμ′b = μcμ′d = 1

so that there is a infinitesimal flex satisfying

p′
(i,λ+g1)

= μ p′
(i,λ), (15)

p′
(i,λ+g2)

= μ′ p′
(i,λ). (16)

This proposition is quite similar to a result of Power in [19]. Even before Power’s
work, though, crystallographers were interested in finding the μ and μ′ that would
lead to “floppy modes” in crystals, to use Power’s term. The subset of {(μ,μ′) :
|μ| = 1, |μ′| = 1} that lead to nontrivial infinitesimal flexes satisfying (15) and (16)
is known as the rigid-unit mode (RUM) spectrum of a two dimensional crystal [17,19].
The RUM spectrum is often used to understand zeolites, silica crystals characterized
by rigid tetrahedra [12,19,23]. We take Power’s term and call an infinitesimal flex
with such a μ and μ′ phase periodic.

We consider the collectively jammed packing of one disk in the square torus pictured
in Fig. 4. The lattice in this example has generators (1, 0) and (0, 1), and these are
associated with roots of unity μ and μ′. The generators of the sublattice in this figure
are (3, 2) and (3,−2), so

μ3μ′2 = μ3μ′−2 = 1. (17)

Let p′
0 be an infinitesimal flex on the disk marked 1. Then there are two conditions

for (μ,μ′) to be in the RUM spectrum, and they are

(μ p′
0 − p′

0) · (1, 0) = 0
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Fig. 4 A collectively jammed packing and a sublattice. If there is an infinitesimal flex with respect to the
sublattice, Proposition 7.2 shows there is a phase-periodic flex. The phase of each disk’s flex is given in
their label

and

(μ′ p′
0 − p′

0) · (0, 1) = 0.

This packing is collectively jammed, so the caseμ = μ′ = 1 is unimportant. Ifμ �= 1,
then the x-component of p′

0 is zero, and ifμ′ �= 1 the y-component is zero. Then, for a
nontrivial infinitesimal flex to exist, exactly one of μ, μ′ will equal one. In particular,
the packing is flexible on the sublattice in Fig. 4, as (17) has the three solutions (1,−1),
(e2π i/3, 1), and (e4π i/3, 1). We show one infinitesimal flex in Fig. 5.

In general, this packing will be flexible with respect to the sublattice Λ′ if one of
μ, μ′ can be set to one without forcing the other to be one. Algebraically, this means
gcd(a, c) · gcd(b, d) �= 1. Geometrically, it means that there is not both a vertical and
a horizontal tour, where a tour is a path that hits every disk in the torus defined by
the sublattice before returning to its starting location. The geometric condition for this
packing to be flexible was discovered by Connelly and Dickinson in [7], though they
used other methods to arrive at the result.

7.1 A Consequence of Proposition 7.1

In an application of the ideas of this section, we prove an original property of the RUM
spectrum.
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Fig. 5 The real part of a phase-periodic flex with phase (μ,μ′) = (e2π i/3, 1)

Theorem 7.1 If a collectively jammed disk packing is jammed on a 1 × k sublattice
for some k > 1, it will be jammed on a 1 × k′ lattice for any k′ with all prime factors
sufficiently large.

Proof A phase-periodic infinitesimal flex is a solution to (2) that obeys boundary
conditions given by (15) and (16). Then we can write the condition on infinitesimal
flexes p′ as

M(μ,μ′) p′ = 0,

where M(μ,μ′) is a matrix polynomial. Suppose M is n × m, n ≥ m. Fix μ and μ′
for the moment. If there are m rows of M that are linearly independent, the nullity
is zero and there is no infinitesimal flex. Conversely, if no set of m rows is linearly
independent, there is an infinitesimal flex. Then there is an infinitesimal flex if and only
if each of the

(n
m

)
submatrices of M constructed by choosing m rows has a determinant

of zero. Unfixing μ and μ′, we can write each of these determinants as a polynomial
pi (μ,μ

′), i = 1, 2, . . . ,
(n

m

)
.

Now, on a 1 × k sublattice, μ′ must be 1. Then either the polynomials pi (μ, 1) are
all zero for only finitely many μ, or they are all zero for all μ. If they have finitely
many zeroes, then there is a maximal order to the root μ, and if k′ has no prime factor
less than this order, Proposition 7.2 implies that the packing is jammed on the 1 × k′
sublattice. On the other hand, if the polynomials are all trivial and every μ is a root,
then the packing cannot be jammed on a 1 × k sublattice. This proves the theorem. �
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8 Edge Flexes

In this section, we present an alternative way of viewing infinitesimal flexes that
borrows from Whiteley’s notion of parallel drawing that can be found in [8]. Here,
instead of considering the infinitesimal motion of vertices, we consider the infinitesi-
mal motions of edges.

Definition 1 For a periodic tensegrity (G, p,Λ), let the sequence of vectors e′ =
(e′

1, e′
2, . . . , e′|E |) satisfy

ek · e′
k

⎧
⎨

⎩

= 0, if ek ∈ B,
≤ 0, if ek ∈ C,
≥ 0, if ek ∈ S,

(18)

Suppose further that there is some linear transformation A so that, for every path P
of edges from p(i,0) to p(i,λ), λ some vector in the period lattice Λ,

∑

ek∈P

e′
k = Aλ. (19)

Then e′ is called a affine infinitesimal edge flex. It is called a strict infinitesimal flex
if A also satisfies (8). Lastly, it is called a periodic infinitesimal edge flex if A = 0. In
all cases, we call the flex trivial if e′

k = 0 for all k.

Proposition 8.1 For a periodic tensegrity (G, p,Λ), all periodic infinitesimal edge
flexes are trivial if and only if all periodic infinitesimal flexes are trivial. That is, there
exists a nontrivial periodic infinitesimal edge flex if and only if there exists a nontrivial
periodic infinitesimal flex.

Proof Suppose first there is a nontrivial infinitesimal flex p′. Then taking e′
k = p′

j − p′
i

for any edge ek from pi to p j gives a nontrivial infinitesimal edge flex.
Suppose instead that there is a nontrivial infinitesimal edge flex e′. Let us fix p′

i to
be some vector in E

d. Then, for any vertex p j , the sum of e′
k along any directed path

from i to j is some constant c′
j . Letting p′

j = c′
j + p′

i gives a nontrivial infinitesimal
flex p′. �


The analogues for affine and strict infinitesimal edge flexes may be proved in the
same manner, so we omit their proofs.

Proposition 8.2 For a periodic tensegrity (G, p,Λ), all affine infinitesimal edge flexes
are trivial if and only if all affine infinitesimal flexes are trivial.

Proposition 8.3 For a periodic tensegrity (G, p,Λ), all strict infinitesimal edge flexes
are trivial if and only if all strict infinitesimal flexes are trivial.

The result may finally be shown for phase periodic flexes, as defined in Sect. 7.
Phase periodic infinitesimal edge flexes are defined in the natural way.
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Proposition 8.4 For a periodic tensegrity (G, p,Λ), all phase periodic infinitesi-
mal edge flexes with some phase (μ,μ′) are trivial if and only if all phase periodic
infinitesimal flexes with the phase (μ,μ′) are trivial.

For planar frameworks in E
2, we realize that every edge cycle can be decomposed

as a sum of cycles around faces. Denoting a pair of generators for Λ by g1 and g2,
we see that every path from p(i,0) to p(i,a1 g1+a2 g2)

can be decomposed as a1 arbitrary
paths from p(i,0) to p(i,g1)

, a2 arbitrary paths from p(i,0) to p(i,g2)
, and some set of

cycles. From this, we get the following proposition.

Proposition 8.5 A planar periodic sequence of vectors e′ is a periodic infinitesimal
flex of a periodic tensegrity if and only if it satisfies (18) and

(1) The sum of edge flexes around any face is zero.
(2) For some path from p(0,0) to p(0,g1)

, the sum of edge flexes is zero.
(3) For some path from p(0,0) to p(0,g2)

, the sum of edge flexes is zero.

There is another simplification in the case that the planar tensegrities are bar frame-
works. If every edge ek is a bar, we find that e′

k is normal to ek , so we may instead
consider scalars αk such that e′

k = αk R(π/2)ek , where R(θ) is the matrix for rotation
by θ . An edge flex e′ is then uniquely determined by the sequence of real numbers
α = (α1, . . . , α|E |). We call αk the infinitesimal rotation of the edge ek induced by
the flex α.

The infinitesimal rotation of the edges of triangles and rhombi are then clear.

Lemma 8.1 For any triangle determined by edges ei1 , ei2 , ei3 , the infinitesimal rota-
tions αi1 , αi2 , and αi3 are equal.

Lemma 8.2 For a rhombus, determined by edges ei1 , ei2 , ei3 , ei4 , the infinitesimal
rotations of parallel edges are the same, with αi1 = αi3 and αi2 = αi4 .

Both triangles and rhombi appear frequently in the bar frameworks correspond-
ing to equal-radii packings. Thus, these two lemmas aid greatly in simplifying the
calculations for jammedness of equal-radii packings, as can be seen in Sect. 9.

9 Examples of Packings

In this section, we give a few examples of disk packings with unusual jamming prop-
erties.

9.1 A Low-Density Consistently Collectively Jammed Example

Our first example of a disk packing has the contact graph seen in Fig. 6. There is a huge
dodecahedral hole in this packing, leading to the low density of δ ≈ 0.59. However,
it is still consistently collectively jammed.

Proposition 9.1 The packing represented by the packing graph in Fig. 6 has density
δ = 4π

6
√

3+11
≈ 0.59 and is consistently collectively jammed.
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Fig. 6 Shown on the left is a contact graph of a single period of the packing. On the right is the contact
graph of 2 by 2 tiling of the period of the packing. The bolded edges show equalities of infinitesimal edge
rotations; we see from this that α2 = α4 = α12

Proof It is simple to count 12 equilateral triangles, 5 squares, and 1 regular dodecagon
as the faces of the graph. There are thus 34 edges, and 16 vertices. If the packing radius
is 1

2 , then the total area of the disks is 4π , and the area of the torus is then 6
√

3 + 11.
Thus, the density is δ = 4π

6
√

3+11
.

By Theorems 3.1, 3.2, and 3.3, it suffices to show that there exists a negative
equilibrium stress and that the bar framework is infinitesimally rigid on all finite
covers. Consider the dual graph with vertices at the center of each face and edges
joining the centers of two adjacent faces. Assign each edge ek a stress ωk of the
negative magnitude of the corresponding edge on its dual. This gives an equilibrium
stress that works for any finite cover.

We now consider a single dodecagon in this framework. We label the rightmost
edge of the dodecagon e1, the edge adjacent counterclockwise to e1 e2, and so on
up to e12. We label the corresponding infinitesimal edge rotations α1, . . . , α12. By
considering the geometry seen in Fig. 6 and using Lemmas 8.1 and 8.2, we find that
α12 = α2 = α4, α3 = α5 = α7, α6 = α8 = α10, and α9 = α11 = α1. Verifying these
equalities is a simple and beautiful task.

Next, we know that edge flexes around the dodecagon are zero; we find that

0 = R(π/2)(α12(e12 + e2 + e4)+ α3(e3 + e5 + e7)

+α6(e6 + e8 + e10)+ α9(e9 + e11 + e1)).
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The rotation matrix is invertible, so we can ignore it in this equation. Remembering
that opposite sides of the dodecagon are parallel, this reduces to

0 = (α12 − α6)(e12 + e2 + e4)+ (α3 − α9)(e3 + e5 + e7).

But (e12 + e2 + e4) and (e3 + e5 + e7) are linearly independent, so we find that
α12 = α6 and α3 = α9. In other words, the infinitesimal rotations of the even edges
are all equal and the infinitesimal rotations of the odd edges are all equal. Again by
considering the geometry seen in Fig. 6 and using Lemmas 8.1 and 8.2, we find that the
even infinitesimal rotation for any dodecagon equals the even infinitesimal rotation for
any other dodecagon and that the odd infinitesimal rotation for any dodecagon equals
the odd infinitesimal rotation for every other dodecagon.

Next, no matter what period Λ we choose, Λ will contain some integer multiple k
of the vector (

√
3 + 1,−√

3 − 2), a basis vector for the finest period lattice. The sum
of the edge flexes along this path will be k R(π/2)(α12(1,−

√
3)+ α3(

√
3,−2)). For

this to equal zero, we find α12 = α3 = 0. Then the only periodic infinitesimal edge
flex of the bar framework is trivial, and we are done. �


This packing is clearly not strictly jammed, and by perturbing the lattice we find
slightly denser packings on a continuum of lattices. By a more general version of the
argument used in Proposition 9.1, we find that these packings will also be consistently
collectively jammed. Now, by scaling the packing and taking an appropriate sublat-
tice, we find a packing with density δ = 4π

6
√

3+11
on a lattice arbitrarily close to any

preselected lattice. By slightly perturbing this packing, we find that, on any lattice,
there is a consistently collectively jammed packing with density δ < 4π

6
√

3+11
+ ε for

any ε > 0. This is, in particular, an unexpectedly low density for the triangular lattice,
the lattice generated by (1, 0) and (−1/2,

√
3/2).

9.2 A Packing First Unjammed on an Arbitrarily Large Period Lattice

We now have the machinery to deal with the example mentioned in Sect. 6

Theorem 9.1 For any N, there is a packing of twenty disks on a torus T
d(Λ) that is

not consistently collectively jammed but which is collectively jammed with respect to
Λ′ if |Λ/�′| < N. In other words, there is a packing that satisfies N < Nmin < ∞.

Our example is seen in Fig. 7. This packing is not strictly jammed, and by adjusting
the lattice we can change the shape of the two pentagons in the lattice. The shape
of the pentagon determines a crucial shape constant x that describes the flexibility
properties of the packing, as we find that the packing will be flexible with respect to
the phase (μ,μ′) if and only if

Re(μ′)− 1

Re(μ)− 1
= x . (20)

Through some technical work that we leave for the online appendix, we find that
there is some interval I ⊂ R

≥0 so that for any x ∈ I there is a collectively jammed
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Fig. 7 Graph of the twenty-disk
example. Some edges are bolded
to emphasize the periodicity of
the example

packing with shape constant x . The values of x arising from (20) are dense in R
≥0,

and this clearly remains true if we ignore the finite number of cases where μ and μ′
both have order less than N . Choosing one of these x from the interval I , we find a
packing with twenty disks that satisfies N < Nmin < ∞.

Finally, this packing is also interesting because its corresponding bar framework
is never phase-periodically infinitesimally rigid, which means it always has a phase
periodic flex, but it can be consistently infinitesimally rigid by choosing an x that is
never a solution to (20) if μ and μ′ both have finite orders.
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