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ABSTRACT

For many types of mechanical systems flexibility presents the biggest challenge to the control
system. If the mechanical components undergo deflection during the course of operation, it may
prove difficult to track a desired trajectory or avoid obstacles. Furthermore, once the system has
reached a setpoint, the residual vibration will degrade positioning accuracy and may cause a delay
in task completion. Even if the mechanical components are very stiff, a closed-loop controller may
introduce flexibility of its own that is detrimental to system performance.

The desired motion of a system is fed into a command generator that transforms the desired
motion into a reference command. The reference command is then used to either drive an open-
loop system, or form an error signal for a closed-loop system. Not every control system has a
closed-loop controller; however, every control system does have some form of command
generator. In many systems the command generator may not be immediately obvious and it may
not be programmed into a computer. For example, the command generator for a construction crane
is the human operator who attempts to produce an appropriate reference command in real time.

This thesis presents methods for designing command generators for flexible systems.
Specifically, it is concerned with what shape the reference commands should have. If the
commands have an appropriate shape, then they will produce the desired motion, while reducing
the detrimental effects of flexibility. In this thesis, the reference command is treated as a design
variable (within some bounds) rather than a given parameter.
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1.1 Introduction to Command Generation

1 INTRODUCTION TO COMMAND GENERATION

1.1 Introduction

The performance of mechanical systems depends on numerous variables such as the
mechanical design, the operating environment, and the control system. The most important
influence on performance varies from system to system and may change over time, or with the task
being performed. However, the control system is almost always an important factor in system
performance. Given the increasing use of computers to control mechanical systems and the trend
toward faster, lighter, and more flexible structures, control system design and implementation will
continue to gain in importance.

The control system must perform functions such as positioning, trajectory tracking,
suppression of residual vibration, obstacle avoidance, and disturbance rejection. Figure 1.1 shows
a block diagram of a generic control system. The desired motion, D(t), is fed into a command
generator. The command generator transforms the desired motion into a reference command, r(t),
which is compared to the measured state of the system, y(t). This comparison yields an error
signal, e(t), that the closed-loop controller uses to generate the control signal, u(t). The control
signal is then used to drive the actuators of the physical plant.

The reference command, r(t), is a representation of the desired motion in the “ianguage” of the
system being controlled. For example, suppose an XY stage must perform an “L” shaped motion.
The system components only understand voltages, encoder counts, and the like. The command
generator must translate the desired motion into a signal that can be used by the system. One such
command that could represent an “L” shaped motion is shown in Figure 1.2. The solid and dashed
lines describe the desired X and Y locations as a function of time. Initially, the Y command
decreases at a constant rate in the negative direction. This represents travel down the vertical leg of
the “L”. Once the knee of the “L” is reached, the Y command stops changing. The X command
then increases at a constant rate to achieve motion along the foot of the “L”. Figure 1.2 shows that
the commands form an “L” when plotted in the XY space.

The commands shown in Figure 1.2 are only one possible way to perform the desired motion.

Figure 1.3 shows an alternate set of commands that also produce an “L” shaped motion. In this
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Figure 1.1: Block Diagram of a Generic Control System.

case, the system travels half way down the vertical leg and then stops for a small length of time
before continuing. Similarly, the travel along the foot is temporarily delayed at the midpoint. The
important point to note is that the commands used to perform a desired motion can have a variety of
shapes. As we will see, the shape of the commands can greatly affect system performance.

Not every control system has a closed-loop controller; however, every control system does
have some form of command generator. In many systems the command generator may not be
immediately obvious and it may not be programmed into a computer. In the above example, the
command generator is the programmer who specifies the reference commands given that the
desired motion is an “L"”. With other types of systems, such as construction cranes, a human
operator acts as the command generator to produce a reference command in real-time that attempts
to produce a desired motion. The success of the control system depends largely on the experience
and skill of the operator. That is, the performance is highly dependent on the command generator.

For many types of systems, flexibility presents the biggest challenge to the control system. If
the mechanical components undergo deflection during the course of operaiton, it may prove
difficult to track a desired trajectory or to avoid obstacies. Furthermore, once the system has
reached a setpoint, the residual vibration will degrade positioning accuracy and may cause a delay
in task completion. Even if the mechanical components are very stiff, a closed-loop controller may
introduce flexibility of its own that is detrimental to system performance.

Given the importance of system flexibility, it is not surprising that an enormous amount of
research and development has gone into dealing with this problem. Solutions to the problem of
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Figure 1.2: Reference Commands to Perform an “L” Shaped Motion.
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Figure 1.3: Alternate Reference Commands to Perform an “L” Shaped Motion.

flexibility include stiffening the mechanical structure, adding damping to the system, using
additional sensors or actuators, designing a sophisticated closed-loop controller, and using
specially shaped reference commands.

This thesis presents methods for designing command generators for fiexible systems.
Specifically, it is concerned with what shape the reference commands should have. If the
commands have an appropriate shape, then they will produce the desired motion, while reducing
the detrimental effects of flexibility. In this thesis, the reference command is treated as a design
variable (within some bounds) rather than a given parameter.

This first chapter illustrates the impact that the reference command can have on system
performance. It also gives some background on previously proposed command shaping schemes
and presents the design philosophy that will be used throughout the thesis. At the end of this
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chapter, the principle contributions of this thesis will be outlined. Chapter 2 describes analysis
tools that can be used to generate and evaluate shaped commands. Chapter 3 presents methods for
generating shaped reference commands in real-time.

Chapter 4 describes commands that are multi-switch bang-bang functions. That is, the
actuators are always producing full positive or full negative effort. These types of commands
produce very rapid motion. Chapter 5 addresses ihe issue of command generation for a somewhat
larger class of commands called on-off control. In this case, the generated commands are either a
constant positive value, zero, or a constant negative value. The need for such control arises when
the system has on-off actuators such as reaction jets, or the control system is attempting to achieve
some type of optimal trajectory. Chapter 6 proposes methods for facilitating the implementation of
on-off control schemes. Chapter 7 compares various command generation schemes, while Chapter
8 discusses their effects on high-level performance specifications. Finally, Chapter 9 summarizes

the results and suggests areas for further work.
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1.2 Significance of the Reference Command
Recently, interest in the command generator component of the control system has increased
substantially. This interest has be motivated by recent success in command generator design and
the realization that the reference command can have a significant impact on system performance.

This section attempts to demonstrate the importance of the reference command.

1.2.1 Undamped Second-Order Systems

The importance of the reference command can be illustrated by investigating the dynamic
response of an undamped second-order harmonic oscillator. Let us assume that the desired motion
is a rapid change in position from O to 1. Given this desired motion, the most obvious command
generator produces a step function. Figure 1.4 shows the siep response of an undamped oscillator
with a frequency of | Hz.

In an attempt to reduce vibration, a command generator that produces a ramp function in
response to the desired motion could be used. Figure 1.5 shows the response to 4 ramp command
that lasts for 0.5 sec. The vibration is reduced to 63% of the step-induced vibration. The cost of
this reduced vibration is an increase in rise time. With a step input the system first reaches 99% of
the desired distance at 0.25 sec., while the ramp input produces a rise time of 0.5 sec.

If the frequency of vibration is taken into account, a command generator can be implemented
that produces a special staircase command. Figure 1.6 shows that this staircase command causes
the system to make the desired motion without any residual vibration. The price for this improved
performance is increased rise time as compared to the step input. The rise time is 0.5 sec., the
same as with the ramp input. All three reference commands produce the desired motion, a rapid
change in position, but the commands produce vastly different amounts of residual vibration.

Details on how to create a command generator like the one used to produce the staircase
command will be given in Section 1.3. The output of these command generators is not always a
staircase, rather the shape of the command depends on the desired motion fed into the command
generator. The distinguishing characteristic of the shaped reference commands is that they move

the system without residual vibration.

1.2.2 Damped Second-Order Systems

The results of the previous section may be considered somewhat exaggerated because systems
equipped with “good” closed-loop controllers do not respond like undamped oscillators. If the
system is equipped with sensors that can measure the vibration, or a model can be constructed to

predict the vibration, then a closed-loop controller can often produce a well-damped response.
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To investigate the case when the system has a good closed-loop controller, we can examine the
response of a well-damped harmonic oscillator. Figure 1.7 shows step, ramp, and staircase
responses of a system with a damping ratio of 0.707. For this case, the effect of the reference
command is less pronounced, but it is still quite significant. The ramp command reduces the
overshoot slightly, while increasing the rise time substantially. The step command settles the
system to within 1% at 1.05 sec. On the other hand, the staircase command yields a settling time
of only 0.62 sec. and, as can be seen from the figure, the price of this improved settling time is

only a slightly longer rise time.
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1.2.3 Multi-Mode Systems

The importance of the reference command shape is not limited to second-order systems. The
performance of multi-mode and nonlinear systems can also strongly depend on the reference
command. Figure 1.8 shows the response of a two-mode system to both step and staircase
commands. The system has a | Hz mode with a damping ratio of 0.2 and a 2.5 Hz mode with a
damping ratio of 0.05. In this case, the staircase command has more steps than for a single-mode
system, but the result is still zero residual vibration at the cost of a small increase in rise time.

----- Step Command
-=-Staircase Command
——Step Response

—6—Staircase Response

Amplitude

1.5
Time (sec)

Figure 1.8: Fourth-Order System Response to Step and Staircase Commands.
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1.3 Classes of Shaped Commands
The preceding section demonstrated the important role of the reference command. The
commands that were specially shaped for the system under consideration yielded substantial
performance improvements (residual vibration reduction) with very little cost (increase in rise
time). This section describes two broad classes of reference commands, those that are pre-
computed and those that are generated in real-time. Within each class, there are many subclasses

of commands that will be described throughout the remainder of this thesis.

1.3.1 Pre-Computed Command Profiles

The shaped command profiles shown in Section 1.2 could have been pre-computed at the start
of the motion. That is, the command generator could simply output a properly scaled staircase
command when it receives a desired motion that is a rapid change in position. The shape of the
entire command would be set at the instant that the desired motion was received by the command
generator. It would not depend on events that occur between the beginning of the motion and the
end of the motion.

Pre-computed commands come in a variety of forms including those with sharp transitions
such as staircase commands and those with smoothly changing values. Some types of pre-
computed commands have smooth shapes so as not to excite high frequencies, while other types of
commands are generated by superimposing smooth functions and their harmonics so as to decrease
vibration at a specific frequency [3, 29, 47, 63-65, 142, 147, 167-169]. Meckl and Seering
constructed input functions from ramped sinusoids and versine functions [63, 65, 66]. By using
higher order harmonics, the command profile was made to approach the shape of a bang-bang
function. A similar approach developed by Aspinwall used harmonics of a sine series [3].
Swigert used damped trigonometric series to construct command profiles [142]. A similar concept
was used by Wiederrich and Roth to synthesize cam profiles [168, 169].

Commands producing time-optimal motion are another category of pre-computed command
profiles. The time-optimal command for flexible linear systems with only pole dynamics and
subject to actuator limits is a multi-switch bang-bang function such as that shown in Figure 1.9 [4,
11,21, 52, 78, 80, 85, 93, 111, 117, 149, 165]. The times at which the bang-bang command
switches between positive and negative values depend on the system parameters and the desired
move distance. A time-optimal command generator receives the desired motion command and then
generates the command profile that switches at the appropriate times.
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One potential problem with pre-computed command profiles is their inherent open-loop nature.
If a new motion is desired before a motion in progress is completed, then either the new motion
must be delayed until after completion of the current motion, or the current motion must be
interrupted. If a pre-computed command is interrupted there is no guarantee that its vibration
reducing properties will be preserved.

1.3.2 Real-Time Command Shaping

Rather than pre-computing complete command profiles, a shaped command can be generated in
real-time by filtering the reference command. In this case, the command generator can be thought
of as having two distinct components as shown in Figure 1.10. The first compbnent transforms
the desired motion into a reference command, c(t), using a standard approach and disregarding the
system flexibility. For example, a desired motion that is a rapid change in position is converted
into a step change in the reference command. The second component of the command generator
takes into account the system flexibility and filters the reference command to produce a shaped
reference command, r(t). If the filtering process does not require an excessive amount of
computation, then this process can be implemented in real time.

For linear systems, the filters can be described as having a finite impulse response (FIR) or an
infinite impulse response (IIR). A substantial amount of research has been devoted to the design
of both FIR and IIR filters [74, 83, 145, 173]. Recently, a new variation of FIR filtering, called
input shaping, has been proposed to specifically target vibration of mechanical systems [101, 102].
Input shaping is implemented by convolving the reference command with a sequence of impulses
(filter coefficients), also known as the input shaper. This process is illustrated in Figure 1.11
using a step command and an input shaper containing two impulses. The result is a staircase
command like those discussed in the previous section. The design objective is to choose the
impulse amplitudes and time locations so that the shaped (filtered) command reduces the
detrimental effects of system flexibility.
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Figure 1.10: Command Generator for Real-Time Command Shaping.
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Figure 1.11: Input Shaping a Step to Produce a Staircase Command.

The design procedure with input shaping differs from traditional digital FIR filtering in at least
one significant way; no pass-band is specified. Traditional FIR filters can be considered as one of
five basic types:!

1) Lowpass filter: Pass low frequency vibrations, attenuate high frequencies.

2) Highpass filter: Pass high frequency vibrations, attenuate low frequencies.

3) Bandpass filter: Pass a range of frequencies, attenuate frequencies above and below this range.
4) Bandstop filter: Attenuate a range of frequencies, pass frequencies above and below this range.
5) All-pass filter: Pass all frequencies, introduce predictable phase shifts at certain frequencies.

The frequency domain performance specifications for the five types of FIR filters are compared
to the performance specifications for an input shaper in Figure 1.12. The gray areas are desired
regions for the filter transfer function. Each type of filter has some desired passband, but the input
shaper does not. Although the all-pass filter does not have a stop band it has specifications for
introducing predictable phase shifts for different frequency ranges.

The type of traditional FIR filter most closely related to input shaping is the bandstop filter,
where a range of frequencies are suppressed. However, these filters are designed so that

I Handbook of Filter Synthesis, pg. 1 [173].
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Figure 1.12: Frequency Domgzin Performance Specifications.

frequencies outside of the stop band are passed with only minor attenuation. Input shaping has no
such performance requirement. In mechanical systems, the primary objective is to suppress the
vibration modes of the structure. Therefore, only stop bands are specified in the design of input
shapers.

Without the requirement of a pass band, the set of performance specifications for input shaping
is less extensive than for stopband filtering. In fact, many input shapers do not have a range of
stop frequencies, ®Ws] - ®s2, as shown in Figure 1.12f. Instead, limits on the transfer function
amplitude are applied at only a single frequency, or a set of individual frequencies. As a result of
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1.3 Classes of Shaped Cominands

the simplicity of the perforinance specifications, many types of input shapers have been determined
in closed-form.

Tn addition to the fundamental difference of pass band specifications, input shaping has certain
characteristics that differ from the general characteristics of traditioral FIR filtering. Tlie
frequencies being suppressed by input shaping are assumed to have damping, while traditional
filtering methods are often based on frequency domain techniques that assume undamped
dynamics. The number of filter coefficients is generally chosen with filtering, but not with input
shaping. Finally, the length of an input shaper is almost always minimized, on the other hand,
filters are usually designed by minimizing the stop-band amplitude or the pass-band ripple.

Input shaping is advantageous when compared to traditional FIR filtering because it has a low
number of impulses (filter coefficients), chort duration (filter length), and large robustness to
modeling errors (width of stop band) [99, 126]. Several tools for designing input shapers will be
discussed in Chapter 2. These methods are then used in Chapter 3 to design shapers that meet a

variety of performance specifications.
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1.4 Design Philosophy
The design of command generators in this thesis is based on the following principles:
1) The generator should have robustness to modeling errors.
2) The performance specifications should be achievable in an actual implementation.
3) The neighborhood around “optimal” solutions should be examined for “near-optimal” solutions
that provide significant performance improvements in auxiliary performance measures.
4) The performance specifications should be considered somewhat flexible.

1.4.1 Robustness to Modeling Uncertainty

If a command generator is to produce a command with an appropriate shape, it must have some
information about the system for which it is generating commands. For example, if a crane
operator is to move a payload forward 1 meter by pressing a button and then releasing it after some
amount of time, the operator needs to have some idea of how far the crane will move for every
second the button is pressed. If a command generator is to produce a command that results in zero
residual vibration, then the generator must know the frequencies and damping ratios of the system.
Stated succinctly, a command generator must have a model of the system being controlled.

Given that no model is perfectly accurate, the shaped command will cause a motion that is
different than the intended response. If the shaped command is attempting to move the system
with zero residual vibration, then the actual response will have some finite amount of vibration. If
a command generator is to work successfully on a real system, then it must have robustness to
errors in the system model.

Most of the command generators developed in this thesis will be made robust to modeling
errors. Without robustness, command generators have limited utility for most real systems. Early
forms of command generators such as posicast control [24, 25, 140, 141, 144], suffered from
poor robustness properties. The recently proposed robust command generators have proven very
beneficial for real systems [28, 34, 58, 87, 97, 129, 134, 152]. One of the central ideas that
permeates this work is that command generators can and should be made robust to all types of
applicable modeling errors.

1.4.2 Use of Achievable Performance Specifications

Command generators are designed based on a set of desired performance specifications. These
specifications include constraints on quantities such as residual vibration amplitude, rise time,
settling time, etc. Another concept that appears frequently in this thesis is the idea that the

performance specifications should be achievable in practice. For example, real systems always
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exhibit some level of residual vibration. Therefore, when a constraint is placed on the residual
vibration amplitude, it is better to limit the vibration to some low level rather than require the
vibration to be identically zero. To achieve the theoretical possibility of zero residual vibration,
some other performance criteria must be sacrificed.

To demonstrate this concept we analyze the performance of three types of input shapers. A
zero vibration (ZV) shaper is designed by requiring that it produce commands that cause zero
residual vibration when the model is perfect [24, 25, 101, 140, 141, 144]. For a single-mode
system, this constraint leads to a shaper containing two impulses, like the one shown previously in
Figure 1.11. A ZV shaper is very sensitive to modeling errors. To illustrate this, we can generate
a sensitivity curve, which is a plot of the percentage residual vibration (vibration with shaping
divided by vibration without shaping) versus the normalized frequency (the actual frequency, ®,,
divided by the modeling frequency, ). To compare robustness quantitatively, the insensitivity
is defined as the width of the curve that lies below a specified level, norrnalized by the modeling
frequency. If the width is measured at the 5% level, then the ZV shaper ha: a 5% insensitivity of
0.06 as shown in Figure 1.13

For the shaping process to be effective on real systems, the shaper must have robustness to
modeling errors. One type of robust shaper can be obtained by requiring the derivative with
respect to the frequency of the residual vibration be equal to zero. That is, the sensitivity curve
must have zero slope at the modeling frequency. The sensitivity curve for a zero vibration and
derivative (ZVD) shaper is also shown in Figure 1.13. If we measure the width of the ZVD curve
at 5% we find that it is 0.286, nearly 5 times more robust than the ZV shaper.

The price of the increased robustness is an increase in rise time. A ZV shaper has a duration
equal to one half period of the vibration being targeted for elimination. This means that the shaped
reference command will take one half period longer to reach a desired setpoint than the
corresponding unshaped command. (This is the value of A shown in Figure 1.11.) On the other
hand, a ZVD shaper has a duration of one vibration period.

Another type of input shaper is the extra-insensitive (EI) shaper. Unlike the ZV and ZVD
shapers, the EI shaper does not attempt to force the vibration to zero at the modeling frequency.
Rather, the vibration is limited to some low, but acceptable level of residual vibration. The
sensitivity curve for an EI shaper designed to limit vibration below 5% is also shown in Figure
1.13. The EI shaper provides a substantial increase in robustness over the ZVD shaper, while
having the same duration. The increased robustness was obtained by simply replacing the
unrealistic criterion of exactly zero residual vibration with an achievable performance specification.
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Figure 1.13: Sensitivity Curves for ZV, ZVD, and EI Shapers.

1.4.3 Exploitation of Flatness Near Optimal Solutions

In the engineering pursuit we are continually faced with tradeoffs. One such tradeoff in the
design of command generators that should be obvious from this first chapter is the relationship
between rise time and residual vibration amplitude. In most cases low levels of residual vibration
cannot be obtained with a command that produces the fastest rise time. To achieve low levels of
residual vibration, the rise time must be increased. Another example is the increase in rise time that
is required to improve robustness. In general, improving one performance measure requires
sacrificing some other performance measure. That is, we cannot get something for nothing.

Throughout this thesis, we attempt to get something for nothing, or at least for very little. An
example of this is the EI input shaper. The EI shaper gives up the theoretical possibility of exactly
zero residual vibration in exchange for a substantial increase in robustness. Given that zero
residual vibration cannot be obtained on real systems, the EI shaper has given up essentially
nothing to obtain its improved robustness. Wherever possible, we attempt to give up unimportant
quantities tc improve important performance measures.

Justification for this course of action can be made if we consider command generation as an
optimization problem where the goal is to minimize an objective function such as rise time. In
addition to the parameter being minimized, there are other important measures that we try to control
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such as residual vibration amplitude and robustness to modeling errors. The solution to many
types of optimization problems must be at a “stationary” point [21]. That is, the partial derivative
of the cost function with respect to the minimized parameter must be zero at the minimum point.
Stated differently, the cost function is flat at the global minimum.

Figure 1.14 shows an objective surface that has its global minimum when the parameter values
are (1, 0.1). The derivative with respect to both parameters of the objective function, J, is zero at
the global minimum. Because the function is flat, there is a possibility that we can move away
from the minirnum point a substantial amount without significantly increasing the cost. If we move
away in the right direction, then we might be able tc improve the performance in one of the
auxiliary parameters (vibration, robustness, etc.) with little increase in cost. For example, if
objective values of up to 0.05 are acceptable, then the parameters may be chosen anywhere in the
blue or green areas of Figure 1.14. Many of the proposed command generation schemes in this
thesis take advantage of this effect when it exists.

1.4.4 Modification of Performance Specifications

To exploit the possible flatness of the solution space, we often need to modify the performance
specifications. The ZVD problem statement requires the residual vibration to be exactly zero when
the model is perfect. The EI problem statement allows there to be some small level of residual
vibration when the model is perfect. The EI performance specifications are only a slight variation
of the ZVD performance specifications. This can be seen by reducing the acceptable vibration in
the EI formulation to zero. The EI performance specifications then converge to the ZVD
specifications and the solutions are the same. This concept is demonstrated in Figure 1.15. As the
acceptable limit on residual vibration is lowered, the sensitivity curve for the EI shaper approaches
the sensitivity curve for the ZVD shaper.

The idea that the performance specifications should have some flexibility is used throughout
this thesis. As we will see, problem statements that are slight deviations from well established
problem statements frequently lead to much better overall solutions by some expanded performance

criteria.
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1.5 Problem Statement and Primary Thesis Contributions

In most cases, the reference command to a flexible system is not uniquely determined by the
desired motion. This nonuniqueness arises because desired motions are often specified in very
general terms such as, “‘a rapid motion from point A to point B.” Converting the specification of
“rapid motion” into a reference command is an underdetermined problem. Therefore, there are
numerous (and possibly infinite) reference commands that can produce a given desired motion.

Even when the desired motion is known fairly explicitly, such as, “a constant velocity circular
trajectory”, the system flexibility makes it impossible to produce the desired motion exactly. The
problem then becomes that of performing the *“best” or, in most cases, a “satisfactory”
approximation to the desired motion. The criteria for judging performance then becomes a variable
and again the mapping from desired motion tv reference command becomes nonunique.

This thesis makes several contributions to the field of command generation for flexible
systems. That is, it provides methods for sorting through the range of possible reference
commands to select one that meets some desired set of performance specifications. In addition to
providing design methods, certain types of performance specifications will be presented and
shown to be advantageous. The primary contributions are briefly described here.

Because shaped commands are based on a system model that will be imperfect, there is a need
to generate commands that are robust to modeling errors. Chapter 3 presents methods that produce
input shapers that have better robustness properties than previously reported input shapers.
Furthermore, algorithms are presented that allow an input shaper to have any desired level of
robustness to both frequency and damping errors. These same concepts are used in Chapter 4,
where multi-switch bang-bpang commands are explored. New forms of multi-switch bang-bang
commands are developed and shown to have a higher robustness-to-move-duration ratio than
previously reported robust time-optimal commands.

In certain types of systems, such as spacecraft, there is a need to limit the use of actuator fuel.
This thesis proposes an alternative to time-optimal commands that uses considerably less fuel,
while being very nearly time-optimal. The method is then expanded to allow the use of any desired
amount of actuator fuel. An analysis of the fuel usage and move duration tradeoff reveals the
existence of very favorable operating points.

The significant amount of literature on command generation for flexible systems has
concentrated on eliminating residual vibration. In many types of systems, the transient deflection
is also of vital importance. This thesis presents a systematic method for generating commands that
limit transient deflection to a desired level, while still satisfying constraints on residual vibration,

robustness to modeling errors, actuator limits, and fuel usage.
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2 TOOLS FOR GENERATING AND ANALYZING
SHAPED COMMANDS

2.1 Introduction to Generation and Analysis of Shaped Commands

In order to design a command generator, such as the input shaping process described in
Chapter 1, the specific mathematical operations of the command generator must be determined.
These values are determined by solving a set of constraint equations that attempt to represent a set
of performance specifications. When command generators are designed for flexible systems, they
are usually required to meet constraints on one or more of the following performance measures: 1)
Residual vibration amplitude, 2) Rise time, 3) Settling time, 4) Robustness to modeling errors, 5)
Excitation of unmodeled modes, 6) Peak actuator effort ,7) Transient deflection amplitude (internal
forces), 8) Fuel usage, 9) Ease of implementation, and 10) Compatibility with a human operator.
The above list is incomplete and can be expanded to include any number of additional performance
requirements such as actuator cycling, required expertise of designer, etc. Note that disturbance
rejection is not an appropriate performance measure for shaped command signals. Disturbance
rejection is a function of the closed-loop controller.

After a designer has chosen performance specifications, shaped command signals satisfying
those specifications must be generated. Furthermore, it is often desirable to evaluate the command
performance relative to perfo.mance measures not used in the design process. For example,
commands generated to suppress residual vibration might be evaluated for their robustness even
though robustness was not a design specification. Several tools have been developed to
accomplish command generation and evaluation. This chapter discusses such tools and gives

examples of their use.
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2.2 Impulse Response

If the impulse response, or the step response, of a linear system is known, then the response to
a shaped command signal can be obtained by treating the command as a superposition of these
elementary inputs. For example, a pulse input can be treated as a superposition of two step inputs,
one of which is negatively valued and delayed in time. This is demonstrated in Figure 2.1. The
response to the pulse is the superposition of the responses to the two individual step inputs.

A pulse input can also be considered a step input convolved with a positive and a negative
impulse delayed in time. This case is shown in Figure 2.2. For example, assume that an input

command is a 2 second pulse function. The corresponding impulse sequence is then given by:

Al 1 -1 -
z,-]'[o 2] (2.1)

The decomposition demonstrated in Figure 2.2 is not restricted to step functions convolved
with impulse sequences. For example, a trapezoidal velocity profile can be considered to be a
ramp input convolved with a sequence of impulses as shown in Figure 2.3. Note that if a finite-
length command is to be decomposed into a semi-infinite length function (step, ramp, etc.)
convolved with a sequence of impulses, then the impulse amplitudes must sum tc zero. If, on the
other hand, a command is formed by convolving a sequence of impulses with a finite length
command, then the impulse amplitudes should sum to one so that the shaped command reaches the
same final setpoint as the unshaped command.

Decomposing a command into some function convolved with an impulse sequence is of
particular value when the residual vibration is of interest. A nondimensional measure of the
residual vibration can be obtained by forming an expression for the amplitude of residual vibration
caused by the impulse sequence and then dividing by the amplitude of residual vibration from a
single unity-magnitude impulse. If the system is a second-order harmonic oscillator with natural

frequency w and damping ratio {, then this percentage residual vibration is [98]:
V= e'c"”"\/[am)]z + [se]? (2.2)

n — n _
where, C(w)= _Zl A€t cos(m\ﬁ—czt,-) , S(w) = 'Zl A5 sin(wq1 -2 1;) (2.2a, 2.2b)
i= i=

A; and t; are the amplitudes and time locations of the impulses and n is the number of impulses.

If we consider the function used in the convolution as an unshaped command and the result of
the convolution as a shaped command, then (2.2) provides a measure of how well the input
shaping process will work, regardless of the unshaped command. That is, the value given by
(2.2) is the amplitude of residual vibration caused by the shaped command divided by the

amplitude of residual caused by the unshaped command. The increase in rise time associated with
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Figure 2.3: Forming a Trapezoid by Convolving a Ramp with Impulses.

the shaping process is simply the time duration of the input shaper. Furthermore, the settling time
is also equal to the duraiion of the shaper, assuming that the shaping performs as expected.

2.2.1 Input Shaper Design Using the Impulse Kesponse

Equation (2.2) provides an easy method for evaluating the residual vibration from a command
profile. It also provides a means for designing input shapers. To demonstrate ihis, an example
from the literature is repeated here [98, 140]. The goal of this exercise is to generate an input
shaper that yields zero residual vibration. This requires that (2.2) be set equal to zero at the
frequency and damping of the system under consideration. In this case, both the cosine
summation (2.2a) and the sine summation (2.2b) must be zero independently:

0= 'il A5t cos(w+/1-¢2¢;) (2.3)
0= ;1 A% sin(a/1 - C2r,) (2.4)

To minimize the time delay, the first impulse must be placed at time zero:
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n=0 (2.5)
Furthermore, the impulse amplitudes must sum to one:
n
.Zl A =1 (2.6)
=

The solution to (2.3)-(2.6) that minimizes the shaper duration is undefined because the impulse
amplitudes go to positive and negative infinity as the shaper duration decreases. To avoid this
difficulty, the impulse amplitudes can be restricted to positive values. The ramifications of this
restriction will be addressed in Chapter 3.

Given that there are four equations to be satisfied, an input shaper that contains two impulses is
sought because two impulses give four unknowns (two amplitudes and two time locations). In
this case i = 2 and substituting (2.5) into (2.3), (2.4), and (2.6) yields:

0= A + Ape59"2 cos(mn/1 - {21;) (2.7)
0 = Aye"®2 sin(wy/1 - {21p) (2.8)
1=A +A4Ay (2.9)

To satisfy (2.8) and keep the impulse sequence as short as possible, the argument of the sine term
must equal t. From this realization, we gst:

n

ty = —— (2.10)
m\/l—§2

That is, the second impulse must occur at one half period of the damped natural frequency.

Substituting (2.10) into (2.7) and utilizing (2.9), we get:

w
0=A;+(1- A )exp § (2.11)
J1-¢2
Solving for A we get:
1

A= (2.12)
1- exp( me0 ]
1-¢2
A is then obtained from (2.12) and (2.9) as:
1 (2.13)

A2 =]-
1- ;EL
exp[ I_CZ}

The two-impulse sequence given by (2.5), (2.10), (2.12), and (2.13) is called a zero vibration
(ZV) shaper because it satisfies the constraint that the residual vibration must be zero when the
model is perfect. The above derivation is the simplest example of how the impulse response can be
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used to design an irput shaper. Other types of shapers are derived by combining (2.2) with
additional constraint equations, such as robustness constraints. In many cases, these input shapers
cannot be obtained in closed form, rather a numerical optimization is performed to obtain the

impulse amplitudes and time locations. Several types of input shapers are described in Chapter 3.

2.2.2 Robustness Using the Impulse Response

The robustness of certain types of input shapers can be illustrated using the impulse response.
To demonstrate this point, we use an example similar to one appearing in Singer’s thesis [98].
Figure 2.4 shows the response of a harmonic oscillator to a ZV shaper when the there is a 5% error
in model of the frequency. The vibration is canceled to a first order, but there is a considerable
arnount of residual vibration because the second impulse is not at the correct time location.

Figure 2.5 shows a similar analysis for a ZVD shaper. If we consider the ZVD shaper to be
composed of two ZV shapers, one shifted in time by one half cycle of the vibration, then we sce
that the shaper will be robust because the vibration resulting from the second ZV shaper tends to
cancel the vibration from the first ZV shaper. That is, each ZV shaper cancels the vibration to a
first order and then the two ZV shapers work together to cancel the vibration to a second order
level. Although, the robustness of the ZVD shaper can be demonstrated in this manner, the
robustness of other types of shapers is not as easily seen using the impulse response.
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2.3 Sensitivity Curves

The information shown in Figures 2.4 and 2.5 tells us what the residual vibration will be when
there is a 5% error in the estimation of the frequency. It also indicates that the ZVD shaper can
tolerate modeling errors better than the ZV shaper; however, the robustness of a shaped command
is best demonstrated with sensitivity curves. These curves display the amount of residual vibration
as a function of the modeling parameters. The modeling parameters are usually the modal
frequencies and/or damping ratios. If the information is shown as just a function of the system
frequency, then the sensitivity curve is equivalent to the frequency Bode plot. If the sensitivity to
two parameters is shown simultaneously, the resulting figure is a sensitivity surface. Sensitivity
surfaces will be used in Chapter 3.

Sensitivity curves allow for quantitative measures of robustness. For example, we can
measure the width of a sensitivity curve as some acceptable level of residual vibration, thereby
obtaining a numerical measure of the robustness. Recall that sensitivity curves were used to
describe the robustness properties of the three types of shapers discussed in Chapter 1. The shape
of a sensitivity curve depends on the constraints used to design its corresponding input shaper.
For example, Figure 2.6 shows the sensitivity curve for a shaper designed to suppress vibration
over the frequency range of 0.6 Hz < f < 1.4 Hz.

Sensitivity curves can also be used to predict the effect of unmodeled modes. If the sensitivity
curve is plotted over a wide range of frequencies, then the curve will reveal the level of vibration to
be expected if an unmodeled mode exists. For example, Figure 2.7 shows the sensitivity curves
for two different input shapers. In both cases, the residual vibration is zero at the modeling
frequency and there is some robustness to errors in the estimation of this frequency. However, at
high frequencies, the two shapers have vastly different properties. Shaper 1 never yields more
than 100% residua!l vibration. That is, any unmodeled modes will not be excited more than
without shaping. Shaper 2, on the other hand, can cause vibration in unmodeled high modes that
exceeds the level when input shaping is not used. For example, if an unmodeled mode exists at 7
times the modeling frequency (w,/wm=7), then it will be excited to five times the level of excitation
that occurs without input shaping. In practice, unmodeled high modes are excited less than that
predicted by the sensitivity curve [86].

While being an excellent tool for displaying robustness and excitation of unmodeled modes,
sensitivity curves reveal little about the other performance criteria. For example, the shaper
corresponding to Figure 2.6 is 1.7 periods in duration. This may be unacceptably long, but the
sensitivity curve does not reveal this penalty. Furthermore, Shaper 1 in Figure 2.7 was shown to
have benefits in terms of high mode excitation, but it is approximately 30% longer than Shaper 2.
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2.4 Pole-Zero Analysis

Another useful method for generating and explaining the effeciiveness of shaped cominand
signals is to use s-plane or z-plane analysis to determine the location of the zeros and/or poles of
the command shaping process. If a shaped command contains zeros near the poles of the system
being controlled, then the vibration from those poles is attenuated by the zeros of the command.
Furthermore, poles introduced by the command can be used to cancel the unwanted dynamics of
zeros.2 The extreme of this idea is to generate a command which is the inverse of the plant
dynamics. The combined system would then, in theory, have a unity transfer function. That is,
the system would respond perfectly to a commanded trajectory. Several well known problems
exist with plant inversion techniques. Examples of such problems include poor robustness and the
generation of unrealizable commands.

The process of input shaping does not attempt to cancel all system dynamics, just the flexible
poles. Figure 2.8 shows the zero locations for some typical input shapers designed for undamped
systems. Figure 2.8a shows that a ZV shaper places a single zero over each of the flexible poles.
If the poles deviate from their modeled locations, the attenuating effect of the zeros decreases.
ZVD shapers places two zeros over each pole (Figure 2.8b). When a pole deviates from its
modeled location, the two zeros have a greater attenuating effect than the single zero provided by a
ZV shaper. EI shapers do not place zeros directly at the pole locations, rather at nearby locations
(Figure 2.8c). The plots shown in Figure 2.8 are only for regions of the s-plane near the plant
poles. Each of the shapers have an infinite number of zeros. These additional zeros lie near odd
multiples of the modeling frequency along the jo axis.

Command shaping methods which introduce poles as well as zeros can be evaluated in this
manner. For example, the IIR filtering method proposed in [34] can interpreted as placing zeros at
the flexible poles of the physical system, while placing poles at locations which are far away from
the jo axis. The poles are introduced to control the level of actuator effort.

2.4.1 Investigating Robustness Using Pole-Zero Analysis

Qualitative information concerning the robustness of a shaping scheme is immediately available
from the pole-zero plot. The pole and zero locations from the shaping process are fixed, but
modeling errors make the locations of the plant poles and zeros uncertain. The pole-zero plot gives
some indication of the area in the s-plane in which the plant dynamics can exist and still be

attenuated by the shaping scheme.

2 Canceling non minimum phase zeros with poles is a practical impossibility because any finite modeling error will
cause instability.
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jo jo jo

a) ZV b) ZVD ¢) EI
Figure 2.8: Zero Locations of Typical Input Shapers.

By reexamining Figure 2.8 we can see why the EI shaper gives greater robustness than the
ZVD shaper. The two zeros from the EI shaper are at distinct locations; therefore, the flexible plant
poles can be exactly canceled at two distinct values, rather than just the single value provided by
the ZVD shaper. Additionally, the zero separation extends the attenuating effect of the zeros to a
larger area than that provided by the two repeated zeros of the ZVD shaper.

One can imagine a robust shaping scheme that clusters several zeros in some region of the s-
plane where the flexible plant poles are expected to exist. The drawback with additional zeros is
that the rise time is increased. This effect is not directly evident from the pole-zero representation.

2.4.2 Shaper Design Using Pole-Zero Analysis

Pole-zero representation can be used to design input shapers [13, 46, 59, 94, 111, 153]. The
z-plane version of this approach is especially useful when there is a course digital time step that
must be taken into account. These methods formulate the problem by expressing the shaper
transfer function as an algebraic expression involving the desired zero locations. The shaper
transfer function can be expressed as:

H(z)=-z—%,-(z—p1 Jz=pt) - (2= Po)(z—p}) (2.14)
where p; and p;j* represent a pair of complex poles and n is the number of flexible modes being
targeted for elimination. The transfer function must have as many poles at z = 0 as zeros in the
numerator so that the shaped command will be causal. After the pole locations are entered into
(2.14), the transfer function is manipulated so that is takes the form of:

2 2n-14 ...

A transfer function described by (2.15) can easily be converted back into the time domain using the
inverse Laplace transform. The result of the transformation is the desired impulse sequence.
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One drawback of this approach is that there is no guarantee that the resulting impulse sequence
will be physically realizable. That is, it can contain large positive and negative valued impulses
that, when used to shape the command, produce a command signal that saturates the actuators.
This difficulty can be avoided by using an artificially coarse sampling rate. This approach can be
thought of as inserting zero-amplitude impulses at the true digital time step between finite-
amplitude impulses at some multiple of the sampling period. Methods for selecting this surrogate
sampling period are usually based on the constraint that all the impulses must have positive values.
To demonstrate such a method, an example using the six-step procedure proposed by Tuttle [153]
is reproduced here.

Consider a system with modes at 1 Hz and 4 Hz and damping ratios at each mode of 0.1.

Step 1: Identify the unwanted system poles and cover them with zeros in the z-
plane. The location of the two pairs of compiex poles in the s-plane can be written as:

518" =G jory1- 42 (2.16)

52,5 == t jop\1- 5
Using the relationship:

z=eT (2.17)
and the given values for the natural frequencies and damping ratios, the z-plane poles can be
calculated as:

p.p" =exp(—0.2nT + j1.997T)

p2,p2 =exp(-0.8aT  j7.96T)
To eliminate residual vibration, a shaper zero must be placed at the location of each of these poles.

Step 2: Add additional zeros for robustmess. For systems with uncertain modes,

(2.18)

additional zeros can be placed at or near the nominal pole locations to improve the shaper
robustness. For simplicity, it will be assumed that a single zero at each pole is adequate for this
example.

Step 3: Construct the shaper transfer function. As shown by (2.15), the shaper
transfer function contains ine zeros from steps 1 and 2 as well as four poles at the z-plane origin:

H(@)=G(e=p (e~ Pz po)(e=p3) (2.19)
where C is a constant.

Step 4: Calculate the resulting impulse sequence. By substituting the expressions
from (2.18) into (2.19) and multiplying the numerator terms together, the shaper transfer function

takes the form:
H(Z)=Cz4+alz3+a2:2+aqz+a4 (2.20)
Z

where, with help from the trigonometric identity:
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2.4 Pole-Zero Analysis

2c0s0=ef0+e~J0 (2.21)

a; through a4 can be found readily to be:
a)=—2(RycosG+ Rycos6y),

a= R12 +4RRycosBjcosB + R22,

2.22
a= —2(R1R22 cosé + R12R2 cos 92), ( )
ay = RP*Ry?

where,
Rj=e027T, Ry=¢=087T, 2.23)

6,=1.99zT, 6,=7.96aT
The transfer function in (2.20) can be transformed from the z-plane to the s-plane by mapping the
poles and zeros according to (2.17). Performing this mapping and taking the inverse Laplace
transform yields:

h(t)=C[8(t)+a6(t—T)+ay5(t—2T)+a38(t—3T)+agd(t—-4T)] (2.24)
Equation 2.24 describes the input shaper as a function of the sampling period, T. If T is small
compared to the vibration periods being targeted for elimination, then the impulse amplitudes can
take on large positive and negative values. As a result, the shaped command can take on
unrealistically large values. This can lead to actuator saturation and degradation of the shaping
process. This necessitates the use of an additional constraint that limits the impulse amplitudes.
The next step is one possible method for implementing such a constraint.

Step 5: Plot the impulse amplitudes as a function of T and select a sequence
that meets actuator constraints. In Figure 2.9, each of the impulse amplitudes, as calculated
from (2.22) is plotted as a function of T. Assuming that the unshaped command utilizes the
complete dynamic range of the actuator, a shaper with all positive impulses will ensure that the
shaped command does not saturate the actuator. From the plot in Figure 2.9, it can be seen that
smallest value of T at which all impulse amplitudes are non-negative occurs at T=0.147 seconds.
Note that the sampling period of the system does not have to be set equal to 0.147 sec. Rather, the
impulses that compose the shaper will lie at multiples of 0.147 sec.

Step 6: Normalize amplitudes and implement. From the value of T found in step 5,
the impulse amplitudes can be fully determined. Typically, in order that the shaper has unity gain,
the constant, C, is used to scale the amplitudes to sum to unity. Completing this final task yields
the desired input shaper:

h(t)=0.5168(£)+0.0426(¢-0.147)+0.2375(r —0.441)+0.2055(¢ - 0.588) (2.25)
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Figure 2.9: Impulse Amplitudes vs. Sampling Period (Impulse Spacing).
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2.5 Optimal Control

An enormous amount of work has been performed in the area of optimal control. The
techniques in this field can be used to generate both open and closed-loop control systems. Here
we are concerned with the subset of techniques which generate command profiles rather than
feedback control systems. Due to its complexity for flexible systems, only a general overview of
this approach will be given here. Specific details can be found in a number of general purpose
references [4, 21, 85] and papers devoted to optimal control of flexible systems [23, 52, 76, 80,
104, 111, 117, 132, 146, 165, 166]

The optimal control approach involves minimizing or maximizing a cost function subject to a
set of constraints. The procedure outlines conditions, such as zero partial derivatives of the cost
function, which lead to “stationary” values of the cost function. These necessary conditions can
ensure that a candidate solution is a local minimum. Additional “sufficient” conditions can then be
utilized to verify that a perspective solution is the global optimal.

Although the optimal control approach is systematic and produces necessary and sufficient
conditions for optimal commands, the method does not contain a method for actually generating the
commands. A number of methods have been proposed for generating commands based on this
approach, but only recently have practical methods been developed for generating commands for
flexible systems. These methods can be cumbersome to work with and are unproven for some
types of optimal command profiles for flexible systems. More detail on this approach will be given
in Chapter 4.

The optimal control formulation does not provide a means for evaluating the finished product.
That is, once a command profile is obtained and verified, there is no direct procedure for assessing
its overall usefulness. The other tools discussed in this chapter must be used to analyze the
effectiveness of the resulting command profile.

Note that optimal open-loop command generation is compatible with closed loop cortrol. The
command profile can be used as a reference signal for the closed-loop controller to track. Or, if the
command profile is known for every point in the state space, then the closed-loop control action is
based on the known command. For this approach to be feasible, the command must be known as
an analytic function of the state space, or must be easily calculated from the state variables. In the
vast majority of cases, the command cannot be obtained in an analytic form. As mentioned above,
numerically calculating the command based on the state is difficult and cannot be done in real time.
In these cases, the commands could be pre-generated for a wide array of possibie states and then
stored for retrieval on demand. Obviously, this becomes intractable for a large number of possible
states or commands that are complex functions of the state.
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2.6 Vector Diagrams
A vector diagram is a graphical representation of an impulse sequence in polar coordinates (r-0
space). A vector diagram is created by setting r equal to the amplitude of an impulse and by setting
0 = wt, where ® (rad/sec) is a chosen frequency and t is the time location of the impulse. Figure
2.10 shows a typical impulse sequence and its corresponding vector diagram. The angle of the
first vector is zero because the first impulse occurs at time zero. The angle of the second vector is
072 = T, because the second impulse time location is Ty.

Vector diagrams become useful tools for representing input shapers when ( is set equal to the
modeling frequency and the first impulse is placed at time zero. When a vector diagram is created
in this manner, the amplitude of the vector resultant, AR, is proportional to the amplitude of
residual vibration of a system driven by the shaped command [6]. The angle of the resultant is the
phase of the vibration relative to the system response to an impulse at time zero. This result
enables us to determine residual vibration by summing the vectors on the vector diagram. Figure
2.11 compares a vector diagram representation of vibration with a time domain representation of
vibration for a second-order undamped system given the impulse sequence of Figure 2.10. On a
vector diagram, vibration appears as a vector, whereas, in the time domain, vibration appears as a
sinusoid. Note that the vector resultant has a larger magnitude than either of the individual vectors.
Correspondingly, the residual vibration from the sequence of impulses is larger than the vibration

from either of the two impulses.

2.6.1 Effects of Damping on the Vector Diagram

When the system has viscous damping, the vector diagram representation of vibration must be
modified in two ways. First, we must use the damped natural frequency for plotting the vector
diagram. This corresponds to using:

8=+1-C%wt (2.14)
where t is the time location of the impulse. Second, the amplitudes of the vectors must be scaled to

~60r  Therefore,

~Lor

account for damping. As time progresses the amplitude of response decays as e
when the resultant is calculated the amplitude of each vector must be scaled by a factor of e
before the vector sum is computed. When these two steps are performed, the resultant is again

proportional to the residual vibration.

2.6.2 Designing Input Shapers Using the Vector Diagram
We can use the vector diagram in a straightforward manner to generate input shapers that yield
zero residual vibration. To do this, we place n arbitrary vectors on a vector diagram and then
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Figure 2.10: An Impulse Sequence and its Corresponding Vector Diagram.
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Figure 2.11: Vector Diagram and Time Domain Representations of Vibration.

cancel the resultant of the first n vectors with a single vector. When the n+1 vectors are converted
into an input shaper, and the sequence is convolved with a desired system input, the resulting
shaped input will cause no residual vibration. Additionally, if the sum of impulse amplitudes is

normalized to one, the system will stop at the commanded setpoint.
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The magnitude ard angle of the canceling vector, Ay, are given by [122]:3

[Anr| = R +[Rf (2.15)

R}'
R_) (2.16)

G,H_] =T + tan—l(
X

where Ry and Ry are the horizontal and vertical components of the resultant. These components

are given by:
n
R, =Y A;cosb; (2.17)
i=1
n
Ry = . lAi sin 9,- (218)
=

When an input shaper is designed in this way, the resulting impulse amplitudes must be scaled so
that they sum to one. This ensures that the shaper transfer function will have a unity gain. Stated
differently, this ensures that the shaped command will have the same final setpoint as the unshaped
command.

Note that this procedure does not guarantee the shortest shaper that will yield zero residual
vibration. However, with some additional constraints, the vector diagram can be very useful in
designing robust input shapers [113, 120-122, 134, 138]. This will be demonstrated in Chapter 3.

2.6.3 Effects of Modeling Errors on the Vector Diagram

Sensitivity curves can be obtained directly from a vector diagram if we analyze how a modeling
error changes the diagram. When the natural frequency of a system differs from the assumed
natural frequency, the error can be represented on a vector diagram by shifting each vector through
an angle ¢ [6]. If m, is the actual natural frequency of the system and ®y, is the modeling
frequency, then the error in frequency is @y, - w,. The angle through which a vector is shifted, ¢,
is related to the frequency error by the equation:

O=(0, -0, (2.19)

The error in modeling usually leads to a non-zero resultant. The resultant that is formed
represents the vibration that is induced by the error in frequency. Therefore, a sensitivity curve can
be generated by plotting the residual amplitude vs. frequency error.

2.6.3 Investigating Robustness Using the Vector Diagram
Although sensitivity curves can be obtained directly frcm a vector diagram and they reveal
quantitative measures of robustness, they do not indicate why a shaper is robust. The mechanism

3 The tan"! function used in the expression for Op4] must retain the quadrant value of Ry and Ry. In other words,
On+1 is just T plus the angle of the resultant from the first n vectors.
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Figure 2.12: Vector Diagram Representation of a ZV Shaper.

A R
(AR A3
2 03 Az R;+Ry =0 Ry
Perfect Model 10% Frequency Error

Figure 2.13: Vector Diagram Representation of a ZVD Shaper.

which produces robustness can be seen with the use of a vector diagram. To demonstrate this
mechanism we follow an example from Singer’s thesis [98].

Figure 2.12 shows the vector diagram representation of a ZV shaper when the model is perfect
and when the frequency is 10% longer than expected. Using 2.19, we find that the second vector
is rotated 18° off the negative horizontal axis. When a modeling error exists, the second vector
doe not cancel the first vector. The vector sum, AR, represents the residual vibration.

Figure 2.13 shows the ZVD shaper under identical circumstances. The modeling error causes
both the second and third vectors to be in the wrong locations. The second vector is rotated ¢
(189) off the negative horizontal axis and the third vector is rotated 2¢ (36°) off the positive
horizontal axis. The error in the second impulse causes a resultant, R, which is approximately
®A; directed in the positive vertical direction. The error in the third vector causes a resultant, R,
which is approximately 2¢A3 directed in the negative vertical direction. Because Ap = 2A3, the
resultants R; and R, approximately cancel out giving a near-zero total resultant due to the modeling
error.
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2.7 Phase Plane Analysis

The phase plane (velocity vs. position) can be used to both design and analyze input shapers.
The effect of an impulse is an instantaneous change in velocity. If we consider an undamped
second-order system and use the input shaper shown in Figures 2.10 and 2.11, then the phase
plane description is shown in Figure 2.14. The first impulse gives the system an initial velocity.
The system vibrates through less than one quarter of a cycle4 and then the second impulse adds
additional velocity. The distance, AR, from the origin to the circle which describes the velocity vs.
position after the second impulse is applied represents the amplitude of residual vibration. This

radius is equal to the amplitude of the resultant vector shown on the vector diagram in Figure 2.11.

2.7.1 Designing Input Shapers Using the Phase Plane

From the above example, it should be clear that an impulse sequence that drives the phase plane
plot to the origin after the final impulse will resuit in zero residual vibration. The simplest such
impulse sequence is the ZV shaper. The tirst impulse of the ZV shaper gives the system an initial
velccity. The phase plane plot then travels on a circular arc to the negative velocity axis. At this
point the second impulse occurs and drives the phase plane plot to the origin.

Knowing that any impulse sequence that drives the system to the origin will result in zero
residual vibration, allows us to design input shapers directly on the phase plane. For example, if
we start with the shaper shown in Figure 2.14, we must add an impulse that drives the plot to the
origin. This can be accomplished with an impulse of amplitude AR, located on the negative
velocity axis, as shown in Figure 2.15. After a shaper is constructed in this manner, the impulse
amplitudes must be scaled so that they sum to one.

When the impulses are converted back into the time domain, the third impulse (with amplitude
AR) does not lie one half cycle (n rad) after the first impulse. The time duration between the
impulses is obtained by dividing the value of the angular arc between each impulse by . Note
that the phase plane plot travels farther than 1t rad by the time the third impulse is applied. This
means that the third impulse occurs later in time than one half period of the vibration.

2.7.2 Investigating Robustness Using the Phase Plane

The quality of robustness can be demonstrated on the phase plane by constructing the plot
assuming a modeling error [98]. Figure 2.16 shows the plot corresponding to a ZV shaper when
the frequency is 10% higher than the modeling freauency. The first impulse drives the system to

point 1. If the frequency was correct, the system ‘would travel on a circular arc for 180° until the

4 One circular revolution (360°) on the phase plane is equivalent to one cycle of vibration.
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Figure 2.15: Phase Plane Representation of a Zero Vibration Impulse Sequence.

negative velocity axis was encountered and the second impulse would be applied. The modeling
error causes the system to travel past the negative velocity axis by 18° to point 2 before the second
impulse is applied. The second impulse then drives the system to point 3, rather than to the origin.

Figure 2.17 shows the phase plane plot for a ZVD shaper when there is a 10% modeling error.
The first impulse drives the system to point 1. The system travels on a circular arc past the

negative velocity axis (where the second impulse should be applied) to point 2. The second
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Figure 2.17: Phase Plane for ZVD Shaper with a 10% Frequency Error.

impulse drives the system to point 3. The system then travels again on a circular arc for 198°
(110% of the distance it is designed to travel). This brings the system near the negative velocity
axis (point 4) at which point the final impulse drives the system back close to the origin at point 5.
Figures 2.16 and 2.17 are drawn on the same scale so that it is evident that the ZVD shaper yields
much lower residual vibration than the ZV shaper. The ZVD shaper has robustness because the
error in travel angle between the first and second impulses is counteracted by the angle error
between the second and third impulses.

The robustness of the ZVD and EI shapers can be compared by constructing phase plane plots
using a range of modeling errors. Figure 2.18 shows the phase plane plots when the frequency
error is varied from 5% to 20% of the modeling frequency in steps of 2.5%. The yeilow line
corresponds to a frequency error of 5% and the color darkens as the frequency error increases to
20% which is shown in red. Note that the plots for all cases lie on the same initial circular arc
(shown in red). that results from the application of the first impulse. The residual vibration using
the ZVD shaper increases steadily with modeling error. On the other hand, the residual using the

EI shaper actually decreases over a certain range of increasing modeling error.
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2.8 Deflection Plots

Certain types of command profiles are generated to limit the transient deflection in the elastic
modes, as well as, eliminate the residual vibration. By limiting the deflection, the endpoint can be
made to closely follow a desired trajectory. Furthermore, the internal loading is proportional to the
elastic deflection, so limiting deflection can reduce the possibility of damage to the system or to a
sensitive payload it may be manipulating.

The most obvious method for analyzing the effectiveness of these types of commands is to
perform a numerical simulation of the system under consideration and examine the resulting
transient deflection. If the system has a small number of modes, then this process can be done
quickly and easily. However, if the system has many uncertain modes. then the deflection of the
real system may be vastly different than the value predicted by the simulation. The difference
arises because the deflection depends on the amplitude and phasing «f the vibration in each mode.
If the modeling frequencies differ from the actual frequencies, then the relative phase will be
incorrect and the deflection can exceed the predicted level.

Figure 2.19 shows the deflection for a two-mass and spring system when subjected to two
different command profiles. Both commands move the system the same distance and yield zero
residual vibration; however, Command 2 causes 20% less deflection. The price for this reduced
deflection is a slightly increased move duration as can be noted by the time that the two deflection

curves go to zero. Jeneration of deflection-limiting commands will be discussed in Chapter 4.
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Figure 2.19: Deflection Caused by Two Different Commands.

56



2.9 Fuel Usage Plots

2.9 Fuel Usage Plots

Command profiles designed for spacecraft should take into account fuel usage due to the
expense of space-based fuel and the limited quantity that can be carried up with the spacecraft. The
amount of fuel used during a given command sequence is a function of the system parameters, the
desired move distance, and the type of command used. Commands that produce the same
maneuver in roughly the same time can use vastly different amounts of fuel.

To compare different types of command profiles, the fuel usage can be plotted as a function of
some variable of interest. For example, Figure 2.20 shows the fuel usage (defined as the duration
of time that the actuators are turned on) for the time-optimal control of a two-mass and spring
system as a function of the move distance. Also shown in Figure 2.20 is the fuel usage of an
alternative type of command which uses considerably less fuel yet moves the system nearly as
quickly as the time-optimal command. Commands designed to satisfy fuel usage constraints are

discussed in Chapter 5.
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Figure 2.20: Fuel Usage of Time-Optimal and Fuel-Efficient Commands.
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2.10 Computational Count

The difficulty of using a command shapiag method should always be considered. Of course,
the difficulty of use depends on the expertise of the engineer implementing the scheme and the
available hardware. Putting those issues aside, the relative difficulty of two possible methods can
be examined by determining the number of computations required to implement the method.

There are two distinct types of computations that should be examined: off-line computation and
real-time computation. Off-line computation consists of any calculations which must, or can be,
performed before the system goes into operation. An expanded definition of off-line computation
could include the time needed for the engineer to master the proposed method. Real-time
computation can be very important, as it may limit the servo rate of the closed-loop controller. An
effective measure of this burden is simply the number of multiplies and adds that must be
performed at each time step of the controller. An expanded definition of real-time computation
could include that amount of memory space that a shaping method needs. This memory space is
unavailable for other possible uses and could limit the sophistication of the closed-loop controller.

2.11 Hardware Experiments and Numerical Simulation

By far the most accurate means of assessing many of the performance criteria is to conduct
experiments on real hardware. Throughout the remainder of this thesis, measurements taken from
real machines will be used to verify and evaluate many of the proposed command shaping
schemes. The experimental results include data from coordinate measuring machines, gantry
cranes, XY stages, and hard disk drive test stands.

Carefully constructed numerical simulations can also provide excellent information without the
expense of hardware experiments. Results from computer simulations will be used where
hardware experiments would have proved too expensive or difficult to perform. These instances
occur when a large number of experiments are needed to demonstrate a result, or the technology is
intended for expensive hardware such as spacecraft. The simulations used here range from simple
linear models of harmonic oscillators to nonlinear models of gantry cranes to a very sophisticated

simulations of the space shuttle with payloads attached to its robotic manipulator arm.
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2.12 Summary of Analysis Tools

The discussion in this chapter has been condensed in Table 1. Each of the tools is tabulated
and their usefulness for evaluating the performance measures and designing commands is listea.
The evaluation of each tool has been broken down very coarsely into “Useful” represented by the
solid circles and “Somewhat Useful”, represented by the half-filled circles. When neither symbol
is present, the category does not apply or the tool is of little use.

An important point to note is that no single tool (with the possible exception of hardware
experiments) provides good information about all of the possible performance criteria. A full
evaluation of any command shaping scheme requires the use of several different tools. As a
corollary, any shaping scheme desigred and evaluated with a single tool is possibly deficient in

some performance criteria.

Table 2.1: Summary of Tool Usage.
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3 DESIGN OF ROBUST INPUT SHAPERS

3.1 Introduction to Robust Input Shapers

In Chapter 1, command generators were classified into two categories. One type of generator
pre-computes the entire command profile for a given desired motion. The second type generates
commands in real-time so that the control system can respond, in real-time, to any variation of the
desired motion. This chapter addresses the design of real-time command generators. The topic is
further narrowed by considering only those real-time command generators that can be treated as
finite impulse response (FIR) filters. FIR filters that are designed to generate commands for
mechanical systems are usually called input shapers, so that nomenclature will be used here.

Three types of input shapers were introduced in Chapter 1: zero vibration (ZV), zero vibration
and derivative (ZVD), and extra-insensitive (EI). Chapter 2 then introduced tools that can be used
to design and analyze the performance of input shapers (as well as pre-computed commands). In
this chapter several new types of input shapers are developed and compared to those previously
proposed. The next section of this chapter extends the EI shaping concept to obtain input shapers
that are even more robust to modeling errors, but have longer durations.> Section 3.3 generalizes
the EI concept to produce input shapers that can have any desired level of robustness. The trade-
off between robustness and shaper length is examined. Section 3.4 utilizes the results from the
earlier sections to design and analyze robust shapers for suppressing multi-mode vibration.
Section 3.5 introduces input shapers that contain negative impulses. The tradeoffs associated with
using negative impulses are discussed and methods for dealing with some of the undesirable side
effects are presented. Finally, Section 3.6 presents a method for designing input shapers using a
fixed time duration. Each of the following sections include simulation and/or experimental results
to demonstrate the key ideas.

The amplitudes and time locations of the impulses in an input shaper are determined by solving a
set of constraint eqnations. The constraint equations can be formulated to meet a variety of

5 Recall that system rise time increases with the duration of the input shaper.
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3.1 Introduction to Robust Input Shapers

performance specifications. The constraint equati~ns considered in the next several sections can be
categorized as follows:

1) Residual vibration constraints.

2) Robustness constraints.

3) Requirement of time optimality.

4) Constraints on the impulse amplitudes.

The constraint on residual vibration amplitude can be expressed as the ratio, V, of the residual
vibration amplitude with shaping to that without shaping [101]:

V(©,0)=e %N (Cw.0)) +(S(@.) (3.1)
where,
C(w,0)= En:AieC‘mi cos((o l—Czti) (3.1a)
i=1
S@,0) =3 Al sin(m\/.lr—?ti) (3.1b)
i=1

Aj and tj are the amplitudes and time locations of the impulses, ® is the vibration frequency, { is
the damping ratio, and n is the number of impulses in the input shaper. The zero vibration (ZV)
shaper is obtained by setting (3.1) equal to zero and solving for the impulse amplitudes and time
locations. Note that when V is set equal to zero, (3.1) produces two equations because both the
cosine summation, (3.1a), and the sine summation, (3.1b), are squared, so they must be zero
independently if the entire expression is to equal zero.

The earliest appearance of the ZV shaper was in work done by O.J.M. Smith in the late 1950’s
(140, 141]. Smith called his approach posicast (positive-cast) control because [141]:

The final value is reached just when the velocity goes to zero. This is what
happens when a fisherman drops his fly in the water at the maximum-position
and zero-velocity instant.

When implementing posicast control using analog equipment and transmission delay lines,
Tallman and Smith [144] noted that the performance was very sensitive to parameter variations.
Tallman and Smith also proposed that systems with multiple modes could be treated by assembling
a compensator (input shaper) for each mode and then cascading them together. Cook demonstrated
this idea using a multi-mode simulation [25].

Sensitivity to parameter variations was not the only difficulty with posicast control when it was
first introduced. The convolution required to implement the method in real time was difficult to
perform without digital computers. Although Smith’s theoretical framework allowed for shaping
any reference command, posicast control was usually presented as a method for modifying only
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3.1 Introduction to Robust Input Shapers

step functions. This reduced the implementation problem to one of introducing time delayed
versions of the original step input and is described in the work by Tallman and Smith using
transmission delay lines [144]. Because the transmission delay lines used by Tallman and Smith
could not create long enough delays for systems with low frequency dynamics, other researchers
proposed alternate methods for producing the necessary time delays . Shields and Cook [95] used
the truncated Fourier series method developed by Wierwille [170] to produce approximate time
delays. They specifically noted that the procedure could be applied to any continuous signal, not
just step functions. The Wierwille method produces somewhat distorted delays, so the overall
process was very sensitive to parameter variations. Mee proposed another approach to
implementing posicast control that used sampling circuits to produce the required delays [67].
Several other researchers made additional contributions by implementing and expanding Smith’s
idea for using posicast control on higher-order systems [24, 25, 61, 143].

Successful implementation of ZV shaping requires stationary plant dynamics and an accurate
system model such as that used recently by Bederson et. al., for a spherical pointing motor [10].
Because ZV shaping is sensitive to modeling errors, it has limited utility for real systems and
consequently it did not come into widespread use. However, interest in input shaping was
increased by Singer and Seering’s development of a robust input shaper [96, 98, 101]. Their form
of robust input shaping was achieved by requiring that the derivative with respect to the frequency

of the residual vibration be equal to zero at the modeling frequency. That is:
d| - 2 2
0= a[e o, \/(C(m,t_,)) + (S(a),C)) ] (3.2)

The price that is paid for the improved robustness of the ZVD shaper is an increase in the shaper

duration and, therefore, 2 decrease in the system rise time.

Due to the transcendental nature of the constraint equations used to design input shapers, there
are multiple possible solutions. To make the rise time as fast as possible, the shaper must be made
as short as possible. Therefore, the time optimality requirement is:

min(tn) (3.3)
where tp, is the time of the final impulse.

If the shaping process is to have unity gain, then the impulse amplitudes must sum to one:

n

_ZlAi =1 (3.4)
1=

If the amplitudes sum to a value other than one, then the shaped command will not reach the same
final setpoint as the unshaped command.
If the amplitudes of each individual impulse are not constrained, then their values are driven to

positive and negative infinity by the time optimality constraint [98]. There are two possible
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3.1 Introduction to Robust Input Shapers

solutions to this problem: limit the magnitude of the impulses to a specific value or require all the
impulse amplitudes to have positive values. Requiring positive impulse amplitudes and enforcing
the summation constraint of (3.4) leads to ail impulse amplitudes being in the range 0 < A; < I.
The requirement of positive amplitudes will be used in this section, as well as in Sections 3.3 and
3.4. In Section 3.5 the impulses are allowed to take on negative values, but constraints on the
impulse amplitudes are introduced to keep the amplitudes from approaching infinity.

As will be demonstrated in the remainder of this introduction, Singer’s work prompted
considerable research activity. Hyde utilized Singer’s optimization code to produce optimized
input shapers for multi-mode systems [40, 42, 43]. He showed that satisfying the constraint
equations for all modes simultaneously led to shorter input shapers than convolving shapers
designed separately for each mode. Furthermore, the “simultaneous’ shapers tended to have fewer
impulses. These effects will be explored in some detail in Section 3.4. Hyde later used input
shaping to improve contact transition control [39, 41].

In his thesis, Singer explained the effectiveness of his input shaping scheme using several
analysis tools such as vector diagrams, phase planes, and transfer functions. Singhose used the
vector diagram representation to create the EI shaper (121, 122, 138], while Singh and Heppler
used the vector diagram to generate multi-mode shapers with very few impulses [106, 107]. Other
researchers concentrated on the transfer function analysis. Bhat and Miu used Laplace transform
analysis to show that ZV shaping places one zero on top of each of the flexible pole and that ZVD
shaping places two zeros over each flexible pole [12-17]. Many authors have taken this result a
step further and used the idea to design input shapers in the s-plane and z-plane [45, 46, 51, 58,
59, 71, 88, 94, 109, 112, 153]. Recall that Tuttle’s procedure for designing input shapers in the
z-plane was demonstrated in Chapter 2 [153].

Input shaping has been implemented on a great variety of systems ranging from high-precision
machinery to industrial gantry cranes. Rappole and Singer used an input shaper targeted at the two
lowest modes to greatly reduce the vibrations of a silicon handling robot [87]. It was shown by
several authors that the performance of coordinate measuring machines can be improved with
shaped commands [45, 46, 94, 128, 139]. The throughput of a hard disk drive head testing
machine was improved using input shaping [129]. Input shaping was a major component of an
experiment in flexible satellite control that flew on the Space Shuttle in March, 1995 [134, 151,
152].

In addition to high-precision machinery, input shaping has proven valuable for systems with
long periods of vibration. Banerjee used input shaping to reduce deflections and residual vibration
during the simulation of a large space-based antenna [6, 9]. Vibrations of long reach manipulators
were decreased with input shaping [44, 50, 58, 59]. Input shaping has also proven effective for
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3.1 Introduction to Robust Input Shapers

controlling oscillations of systems, such as gantry cranes, that have suspended payloads [49, 72,
73, 97, 133, 157].

Another command shaping scheme, that has also shown benefit for suspended payloads, is a
variation of input shaping developed at Sandia National Laboratories. This method adds well-
damped poles to the shaping filter [34]. The result is an Infinite Impulse Response (IIR) filter that
places zeros near the system flexible poles and poles somewhere else in the z-plane so that the
transfer function of the filter does not greatly exceed unity. This process has also been applied to
the control of open liquid containers to obtain slosh-free motion [30-33] and to the slewing of a
flexible beam with a hydraulic robot [82]. A survey paper on the work done by Sandia in this area
is listed in the references [89]. Lin used a simulation of a welding robot to demonstrate the utility
of this approach [S1]. Furthermore, Bodson has implemented an adaptive version of this method
on a flexible-beam testbed [18].

In addition to eliminating residual vibration, input shaping has shown benefits for reducing the
detrimental effects of transient deflection [75, 79, 118]. More specifically, input shaping was
shown to be beneficial for trajectory following with a five-bar-linkage manipulator [27, 28, 171]
and with an xy positioning system [116, 124, 125]. Reduction of transient deflection with input
shaping also aids in obstacle avoidance [35], as will be demonstrated in Chapter 8.

Input shaping has been combined with a variety of adaptive and closed-loop control schemes.
Magee and Book developed a shaping scheme that continuously changes the input shaper in
response to changes in the physical plant [19, 55-60]. Tzes and Yurkovich proposed an alternate
form of adaptive input shaping [154, 156]. Zou and Wang placed the input shaper inside the
closed-loop control path and also utilized a rigid-body inverse dynamics term [172]. Tzes, et. al.
used an acceleration feedback loop to compliment the effects of input shaping [155]. Hillsley and
Yurkovich combined input shaping with a post-maneuver damping controller to improve large
angle slewing [37, 38]. Khorrami, et. al. combined input shaping with an adaptive nonlinear
controller [48]. Singh and Vadali proposed using input shaping with a Lyapunov controller to
perform three-dimensional maneuvers of flexible spacecraft [108]. Pao proposed a shaping
method that exploits the use of multiple actuators [77].

Input shaping has been the subject of several studies that compare various techniques for
controlling flexible structures. Love, et. al. compared input shaping to other techniques for pick
and place tasks [54]. Watkins and Yurkovich investigated large angle slewing of a flexible planar
truss [161, 162]. Other studies have compared input shaping to traditional notch and pass-band
filters [99, 126], and to time-optimal control [75, 79, 118, 160, 164].

Although Singer’s work can be regarded as the catalyst for most of the above research, his
main contribution of robustness to modeling errors was not modified or improved upon by most
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follow-on research. The adaptive input shaping schemes represent one approach for attempting to
improve robustness. These require a somewhat more complicated implementation and the use of
sensor measurements to continually redesign the input shapers proposed by Singer. A more direct
approach for increasing the robustness is simply to design an input shaper with better robustness
constraints. This concept is represented by the work of Singhose [113, 121, 122, 138], who
demonstrated that additional robustness could be obtained by relaxing the requirement of zero
residual vibration when the model is exact. A significant portion of this chapter will be devoted to

further improving the robustness of the input shaping process.
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3.2 Multi-Hump Extra-Insensitive Input Shapers

As we have seen, an EI shaper has more robustness than a ZVD shaper and both have the same
duration. Singer showed that his process could be used to generate a more robust shaper by
forming the second derivative of (3.1) with respect to @ and setting it equal to zero. The shaper
that results from satisfying this additional constraint is called a ZVDD shaper. This additional
constraint increases the robustness, but also increases the shaper duration by one half period of the
vibration. Singer showed that the algorithm can be extended indefinitely with repeated
differentiation of (3.1) [98]. For each differentiation, an additional impulse is added to the shaper
and the shaper is lengthened by one-half period of the frequency. Closed-form solutions of the
ZVDD shapers for damped systems exist [101]. This section describes methods for extending the
EI design algorithm to produce more robust shapers. These new shapers have more than one
hump in their sensitivity curves, so they are called multi-hump extra-insensitive shapers. They
have significantly more robustness, for the same duration, than the shapers obtained with Singer’s

extended algorithm.

3.2.1 Undamped Multi-Hump Extra-Insensitive Input Shapers

The EI shaper first presented in Chapter 1 consists of three-impulses, has a length equal to one
period of vibration, and has a corresponding sensitivity curve that contains one hump. A natural
extension would be to design a shaper with two humps in its sensitivity curve, like the one shown
in Figure 3.1. We hypothesize that there exists a shaper containing four evenly spaced impulses
with a duration of one and a half periods that will form the sensitivity curve of Figure 3.1.
Justification for this hypothesis comes from the ZVDD shaper which consists of four evenly
spaced impulses lasting 1.5 periods of vibration.

To simplify the equations in the following derivation, the problem of determining the time and
amplitude parameters for the two-hump El input shaper will be formulated using a vector diagram.
Recalling the information from Chapter 2, we know a modeling error appears on the vector
diagram as a rotation of each vector through an angle ¢,=Aay;, where Aw is the frequency error.
Once the vectors have been rotated away from their starting positions, their resultant sum
represents the residual vibration that will occur in the presence of the modeling error represented by
Aw. A vector diagram of the proposed two-hump EI shaper is shown in Figure 3.12. To clarify
the distinction between impulses and the vectors used to represent them, vectors will be denoted
as, Ai, while impulses and vectors lengths will be denoted as A;, For more details on the vector
diagram representation of input shapcrs refer again to Chapter 2 or see one of the references [98,
121, 122, 138].
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Figure 3.1: Sensitivity Curves of the ZVDD and Two-Hump EI Shapers.
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Figure 3.2: Vector Diagram Representation of the Two-Hump EI Input Shaper.

By examining Figure 3.1, we can construct the set of constraint equations that must be satisfied
by the shaper in Figure 3.2. The first requirement suggested by Figure 3.1 is that the vibration
must be zero when the actual frequency is exactly equal to the modeling frequency. This requires
that the resultant of the vectors shown in Figure 3.2 must sum to zero when Aw=0¢;=0:

Al-Ay+A3-A4=0 (3.5)
A, and A4 have negative values associated with them because they point in the opposite direction
of A; and Aj3. Given that the desired sensitivity curve is symmetrical and the impulse time
spacings are uniform, then the shaper impulse amplitudes must be symmetrical. This yields:

Al=A4 and (3.6)

A2=A3 3.7
Equations (3.5)-(3.7) are not independent; (3.5) and (3.6) yield (3.7). Therefore, (3.7) is not used
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in the following derivation.
Figure 3.1 also indicates that at ®y;, a frequency lower than the modeling frequency, the
vibration must equal V and the derivative must equal zero. Using the vector diagram notation these

constraints are:

4 L 2
V= [_):l(-l)"'AiCOS((i-l)¢)] +(,Zl(—l)"'Aisin((i—l)¢)) (3.8)
= =
and:
2 2
d 4 i1 ] 4 i1 .
0=d_¢ \/(.}:l(-l)‘ A,'cos((l—l)(p)] +(_):l(—1)' A,'sm((t—l)q))) 3.9
i= =

where, §=Awt,, and Aw is the difference between ® and wy;. Note that ¢ represents the
frequency shift from the modeling frequency to the frequency which corresponds to the peek of the
left hump in the sensitivity curve. The variable ¢ is a function of V and wiil not appear in the final
formulas that describe the shaper. Equations 3.8 and 3.9 contain trigonometric terms with
arguments of (i-1)¢. This occurs because the first vector, A1, does not rotate in response to a
modeling error; it still occurs at time zero (6; = 0). However, A, rotates 0, Aj rotates 2¢, and A4
rotates 3¢; each vector Aj rotates (i-1)¢.
Finally, the impulse amplitudes must sum to one:

4
T4;=1 (3.10)
=

The five equations for the two-hump EI shaper (Egs. 3.5, 3.6, 3.8-3.10) contain five unknowns

(A}, Ay, A3, A4, §) and one design parameter, V. We can solve for the input shaper amplitudes as
a function of V. Combining (3.5), (3.6), and (3.10) yields:

Ap=(1-2A2)/2 (3.11)
By expanding (3.8) and (3.9), combining terms, and using (3.10), we obtain:6

[3sin(3¢) + 4sin(26) - sin(9)]A? - 2sin(20)4; + %@’) =0 (3.12)

[4+2cos(9) - 4cos(20) - 2cos(30)]AZ +2[cos(26) - 1]A; +(1-cos(0))/2- V2 =0 (3.13)
Equation 3.12 can be solved for cos(¢):

LY O

cos(¢) = 3(l+4Al) (3.14)

Plugging this into (3.13) yields:
_ _3x%24+2x+3v?2
Ar=App(V)=—"1——— (3.15)

where, x = 3‘}V2(\/l-7+ l) (3.16)

6 The following algebraic solution was obtained by Dr. Lisa J. Porter [120, 134].
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Figure 3.3: The Undamped Two-Hump EI Shaper.

Therefore, the two-hump EI shaper for undamped systems shown in Figure 3.3 is given by:

A;\= A (V) A2=%—A| A3=Ag Ag=A (3.17)

n=0 17 =0.5T t3=T t4=1.5T
where T is the period of vibration being targeted for elimination.

Figure 3.1 compares the two-hump EI shaper to a traditionally designed shaper (a ZVDD
shaper) that also has a length of one and one-half periods of vibration. When V = 5%, the
insensitivity to modeling errors (the width of the sensitivity curve) is increased 51% without
increasing the shaper length.

If even more robustness is required, a three-hump EI shaper can be designed. The desired
sensitivity curve is shown in Figure 3.4. The equations describing the three-hump EI shaper will
only be briefly presented because they are very similar to those for the two-hump EI shaper. The
amplitude sum constraint is:

élAi:l (3.18)
Like the one-hump EI shaper, the vibration must equal V when the model is exact, therefore:

Al-A2+A3-Ag+As=V (3.19)
By symmetry of the sensitivity curve, we get:

Al=As and (3.20)

A2=A4 (3.21)

At the left hump of the sensitivity curve, the vibration must be V and the derivative of the
vibration expression with respect to ¢ must equal zero. These two constraints are:
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5 . 2 5 2
v =\/( ,):1(—1)"‘ Aicos((i - 1)¢)] +[-21('”'_1 Aisin((i - 1)¢)] (3.22)
= i=
2 2
d 5 i-1 ) 5 -1 )
0=d—¢ .Zl(—l)' Aijcos((i—-1)0) | + _El(—l)‘ Aisin((i — 1)) (3.23)
1= 1=

where, once again, ¢ is used to represent the frequency shift (angular rotation on a vector diagram)

from the modeling frequency to the frequency corresponding to the left hump in the sensitivity

curve.
Combining (3.18)-(3.21) we find:
Az =(1-V)/4 (3.24)
A3=1-2A1-(1-V)/2 (3.25)

Plugging (3.24) and (3.25) into (3.22) and (3.23) reduces the problem to two equations with two
unknowns (A; and ¢).7 The use of several trigonometric identities and algebraic manipulaticns
reduces the equations to functions of A and cos¢ only. These equations are:

16[1 - cos(9)] cos(9)A? + [(3 cos?()~1)(1~ V)~ 2cos(@)(1 + v)]Al

_v2 _ 2 3.26
+ 1-V _ (l V) cos(q)):I =0 ( )
8 8
2040)> 42 2 1-v
4(1 —cos (¢)) A +2(COS (9)- 1)[1 -T(l +°°5(¢))]Al (3.27)

l—V[l—V
4

T(cosz(tb) +2cos(0) - 3) +(1- cos(¢))] -0

7 Again, the solution from this point on was developed by Dr. Lisa J. Porter [120, 134].
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Figure 3.5: The Undamped Three-Hump EI Shaper.

Equation 3.26 is a cubic in cos$ and the only real solution is:
cosd =(1-V)/(164;) (3.28)
Substituting (3.28) into (3.27) yields a quartic equation in A;. Mathematica was used to obtain the
four roots. The solution we are seeking is the one that maximizes ¢ (this maximizes the A®, and
therefore, the insensitivity). From (3.28) we know that we should pick the root that gives the

largest value for A;. This root is:
1+3V+2,/2(v2 + V)

A1=ApgV)= 8 (3.29)
Therefore, the undamped three-hump EI shaper shown in Figure 3.5 is given by:
AIEABH(V) A2 =(1—V)/4 A3 =1—2(A1+A2) A4=A2 A5=A| (3 30)

t;=0 t, =0.5T t3=T tg =L5T t5=2T

Figure 3.4 compares the robustness of the three-hump EI shaper to the robustness of a
traditionally designed shaper (a ZVDDD shaper) that also has a length of two cycles of vibration.
When V = 5%, the three-hump EI shaper increases the insensitivity 54% without increasing the
shaper length. Figures 3.1 and 3.4 demonstrate that the extended EI design algorithin produces
input shapers that have more insensitivity for a given shaper length than traditionally designed
shapers.

The multi-hump EI design procedure can easily be used for damped systems. Three
modifications to the above analysis must be performed. First, the damped vibration equation (3.1)
and the derivative of the damped vibration equation (3.2) must be used in the set of constraints. In
the above derivations the undamped versions (Egs. 3.8, 3.9, 3.22, and 3.23) were used. Second,
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Table 3.1: Damped Muiti-Hump EI Shapers.
4 = (Mo+ Mi§+ M2{2 + MCP)T, T = 2n/w
Shaper | Ai=Mo+M+ M2+ My

Mo M My M3
Two- 1] 0.49890] 0.16270]-0.54262] 6.16180
Hump 1] 0.99748] 0.18382]-1.58270] 8.17120
El 14] 1.49920]-0.09297]-0.28338] 1.85710

A 0.16054] 0.76699] 2.26560]-1.22750
A2] 0.33911] 0.45081]-2.58080] 1.73650
Ay} 0.34089)-0.61533]-0.68765] 0.42261
As} 0.15997}-0.60246] 1.00280]-0.93145
Three- ] 0.499741 0.23834] 0.44559] 12.4720
Hump 1] 0.99849] 0.29808]-2.36460] 23.3990
El 13} 1.49870] 0.10306]-2.01390] 17.0320
5] 1.99960]-0.28231] 0.61536] 5.40450
Al 0.11275] 0.76632} 3.29160]-1.44380
Ay| 0.23698] 0.61164]-2.57850] 4.85220
Ay] 0.30008]-0.19062]-2.14560] 0.13744
Ay 0.23775(-0.73297] 0.46885]-2.08650
A<] 0.112441-0.45439] 0.96382}-1.46000

the assumption of a symmetrical input shaper must be discarded. The discarded symmeltry
equations (Egs. 3.6, 3.7, 3.20, and 3.21) are replaced by constraints describing the sensitivity
curve on the right side of the modeling frequency. The above undamped procedure only
constrained the left side of the sensitivity curve, because the symmetry of the input shaper ensured
symmetry of the sensitivity curve. Third, the set of constraint equations must be solved
numerically.

The damped equations for the two- and three-hump EI shapers were solved numerically for a
range of damping ratios. To capture the resulting data in usable form, curves were fit to the
impulse ampiitudes and time locations using the damping ratio as an independent variable. The
amplitudes and time locations of the two-hump EI' V = 5% shaper and the three-hump EI' V = 5%
shaper are given in Table 3.1. The curve fits for the two-hump EI shaper have maximum errors in
the impulse times and amplitudes of less than 0.5% over the range 0 < { <0.3. The curve fits for
the three-hump EI shaper are accurate to within 0.4% over the range 0 < { < 0.2.

3.2.2 EI Shapers in the S-Plane

The time domain and the vector diagram were used throughout the development of the multi-
hump EI shapers. However, a better understanding of the multi-hump EI shapers can be obtained
if we examine them in the s-plane. The zero locations for the multi-hump EI shapers in the s-plane
are shown in Figure 3.6. The two-hump shaper places three zeros near the flexible system pole.
Note that the shaper does not contribute any poles to the system dynamics. One of the shaper
zeros lies directly on top of the pole and the others are on either side of the pole along a line of
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Figure 3.6: Zero Locations of the Two- and Three-Hump EI Input
Shapers in the S-Plane.

constant damping. The shaper zeros lie on a line of constant damping because the constraints force
the vibration to zero at different frequencies, but the same damping ratio. Although not shown in
the figure, for each of these three zeros, an additional infinite series of zeros exists spaced
periodically along a line parallel to the imaginary axis.

If the system model is exact, the center zero completely cancels the pole dynamics, leading to
zero residual vibration. If the pole moves away from its modeled location due to a modeling error
or configuration change, the residual vibration will increase in value until the pole is about half way
between the two zeros. As the pole continues to move away from the modeled location,
attenuation of the vibration is dominated by the zero the pole is approaching. If the pole proceeds
all the way to one of the outer zeros, then the vibration will again go to zero. This corresponds to
the frequencies where the vibration goes to zero on the sensitivity curve shown in Figure 3.1 If the
pole travels beyond the outer zeros, the vibration will increase steadily.

The three-hump EI shaper places four zeros near the modeling frequency, two on either side
along a line of constant damping. This configuration leads to a small amount of residual vibration
when the system model is exact. However, it allows the vibration to go to zero at four frequencies
near the modeling frequency.

Examining the EI shapers in the s-plane suggests other possible design strategies. Instead of
placing the zeros aiong a line of constant damping, the zeros could be placed at nearby damping
values to achieve added insensitivity to errors in the damping ratio. Alternatively, more zeros
could be placed on one side of the pole than on the other, or the zeros could be unevenly spaced.

These techniques would result in shapers with skewed insensitivity [122].

3.2.3 Simulation and Experimental Results with EI Shapers
Computer simulations using the multi-hump EI shapers were performed using a two-mass and
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spring system. The system parameters, m;, my, and k, were all set equal to one. Two-hump and
three-hump EI input shapers, with V = 5%, were designed for the resulting frequency of 1/(2m)
Hz. The ZVDD and ZVDDD shapers were also designed for the nominal frequency. The system
was given step inputs shaped with one of the four input shapers and the position of the second
mass as a function of time was recorded.

To test the performance of the input shapers in the presence of modeling errors, k was varied
from its nominal value of one. Figure 3.7a shows the response of the system with the ZVDD
shaped input as k is varied from 1 to 1.8 in steps of 0.1. The envelope containing the residual
vibration over this parameter variation has a width of 0.267. Figure 3.7b shows that the envelope
with the two-hump EI shaper (V = 0.05) over the same parameter variation is approximately 2.7
times smaller (envelope of 0.10). Even though the two-hump EI and the ZVDD shaper have the
same time duration, the two-hump EI bounds the residual vibration to a much lower level. Note
that the envelope on residual vibration is predicted exactly by the sensitivity curve of Figure 3.1.

Figure 3.8a shows the response of the system with the ZVDDD shaped input as k is varied
from 1 to 2.1 in steps of 0.1. A larger parameter variation is shown because the ZVDDD shaper is
designed tc be more insensitive to modeling errors than the ZVDD shaper. Figure 3.8b shows that
the envelope of the residual vibration is 3.5 times smaller for the same parameter variation when
the three-hump EI shaper is used. When k = 1, the system model is perfect and the residual
vibration equals 5% (the envelope is 0.10).

The performance of the multi-hump EI shapers was tested on real hardware using the Middeck
Active Control Experiment (MACE), which flew on board the Space Shuttle Endeavor in March
1995 [152]. As shown in Figure 3.9, the MACE hardware is designed to represent a typical
satellite with multiple pointing mechanisms. A goal of the experimental program is to develop
control algorithms that allow both gimbals to operate accurately in the presence of disturbances.

In one set of experiments, a white noise disturbance was fed into the actuator of one of the
gimbals and the response of the other gimbal was recorded. Figure 3.10 shows the frequency
response of the MACE structure without shaping and when a two-hump EI shaper is used to shape
the disturbance signal. The two-hump notch in the frequency response is readily apparent at the
system frequency near 2 Hz. Other experiments recorded the step response of the structure.
Figure 3.11 shows the shaped and unshaped response of one gimbal when it is stepped
approximately 3 degrees. The shaper eliminated virtually all of the residual vibration. The very
low frequency drift in the position was caused by the umbilical which connected the free-floating

hardware to the electronics box.
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Figure 3.9: Experimental Hardware Used in the MACE Experiment.8

8 Figure is courtesy of Dr. Timothy Tuttle [151, 152].
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3.2.4 Discussion of Multi-Hump EI Shapers

A design method has been developed that generates input shapers that are significantly more
insensitive to modeling errors than traditionally designed shapers of comparable duration.
Computer simulations of a single-mode system demonstrated the advantages of the new shapers.
Results from the MACE experiment performed aboard the Space Shuttle Endeavor demonstrated
the vibration-reducing ability of the new shapers.
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3.3 Specified-Insensitivity Input Shapers

The previous section extended the EI shaper design method so that shapers with additional
robustness could be obtained. The increases in robustness came in discrete steps with each added
hump in the sensitivity curve. This section presents methods for designing shapers to have any
desired level of robustness.

If we consider both the derivative (Singer) method and the EI method for obtaining robustness,
we realize that both methods formulate “reasonable” robustness constraints and then solve for the
shaper that satisfies the constraints. Given the great variety of systems that can benefit from input
shaping, it seems desirable to develop a shaping method that allows the robustness to be tailored to
a given system. Some systems may require robustness which is significantly different than that
available with the standard input shapers. For Specified Insensitivity (SI) shapers, the constraint
equations that must be satisfied do not remain fixed; rather, they vary with the desired level of
robustness. Two procedures for obtaining SI shapers will be presented. The first procedure is a
brute force method that yields approximate solutions. The degree of approximation can be easily
controlled and the solutions obtained are usually very close to the exact solutions. The second
procedure is more sophisticated and difficult to formulate, but it yields exact solutions.

3.3.1 Using Parameter Sampling to Obiain Approximate SI Shapers

The most straightforward method for generating a shaper with specified robustness is to use
the technique of frequency sampling [100]. This method requires repeated use of the expression
for residual vibration, (3.1). In each case, the residual vibration is set less than or equal to a

tolerable level of vibration, V:
- 2 2
Vi 2e 5% \/(c(m,g)) +(S(w,)) (3.31)

where the C and S functions are given in (3.1a) and (3.1b).
For example, if a 5% insensitivity? of I = 0.4 is desired (+20% frequency errors), then the

constraint equations limit the vibration to below Vq at specific frequencies between 0.8w,, and
1.2m,,. In effect, the amplitude of residual vibration is constrained at a regular sampling period
over the frequency interval of interest. The set of equations that must be satisfied consists of (3.3),
(3.4), and M versions of (3.31), where M is the number of frequency sampling points. Each of
the M equations is enforced at a different value of . This procedure is illustrated in Figure 3.12
for Vigj= 5% and I = 0.4.

In most cases, the shapers designed with this procedure will have sensitivity curves that

9 Remember from Chapter 1 that the 5% insensitivity is the width of the sensitivity curve that lies below 0.05.
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Figure 3.12: Frequency Sampling Leads to Approximate Solutions.

slightly exceed Vi, during some portion of the frequency range being suppressed. For a given
frequency range, the number of constraint equations increases with M, but the result approaches
the exact solution. That is, the maximum value of the sensitivity curve within the frequency range
of interest approaches V.

As I increases, the shape of the sensitivity curve evolves in a predictable way. For =0, Vil
= 5%, and I < 0.22 the curve touches zero at one point within the frequency range and is
increasing on either side. For 0.22 <1 <0.59, the sensitivity curve contains one hump within the
range. For 0.59 < I < 0.87, the sensitivity curve contains two humps. This process of adding
humps to increase insensitivity continues as I increases. The evolution of the sensitivity curve is
shown in Figure 3.13 for the undamped, single-mode SI shaper. Figure 3.13a shows I increasing
from 0.06 to 0.2, while Figure 3.13b continues the progression by displaying I = 0.3 to 0.9.
Throughout this section we will be concerned with symmetrical SI shapers. That is, the required
insensitivity is centered about the modeling frequency. For example, I = 0.6 means that the
frequency range being limited is 0.7®p, to 1.30y,. Even though the required insensitivity range is
symmetrical, the resulting sensitivity curve may not be symmetrical. See again Figure 3.13.

The technique of frequency sampling can be used to design asymmetrical SI shapers. In this
case, asymmetrical refers to the constrained frequency range, not the sensitivity curve. If the
designer thinks that it is more likely that the system frequency will decrease over time, then the
frequency range being suppressed could be specified as 0.70, to 1.20y. The asymmetrical I =
0.5 SI shaper would result in a faster rise time than the symmetrical I = 0.6 SI shaper, but would
be less effective at limiting residual vibration if the frequency increased.
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Figure 3.13: Evolution of the Sensitivity Curve (Vi = 5% and { = 0).

A process similar to frequency sampling can be used to specify robustness to errors in the
estimated damping ratio. This process, damping sampling, proceeds in the same fashion as
frequency sampling, except the vibration constraints are enforced at N distinct damping ratios over
a specified range. Frequency and damping sampling can be combined to suppress vibration over
any frequency and damping range. This combined parameter sampling process is as
straightforward to implement as frequency sampling; the residual vibration constraints are simply
enforced over a two-dimensional parameter space consisting of MxN points.

Figure 3.14 shows a three-dimensional sensitivity curve for an SI shaper designed with
parameter sampling. The shaper was required to suppress vibration over the range 0 < { <0.2 and
have a frequency insensitivity of 0.6. Note that the damping axis on the curve is not normalized.
Using a normalized damping ratio ({/C,,) complicates the issue because small changes in damping
appear as large changes in normalized damping when {, is near zero, as it often is. In the limiting
case, when {, equals zero, the normalized damping ratio is undefined.

3.3.2 Exact SI Shapers

Parameter sampling is a useful technique for generating SI shapers that limit vibration
amplitude to Vo] over most of the parameter spacc of interest. However, limiting vibration to less
than Vo] over the entire range would, in theory, require satisfying an infinite number of equations.
In this section we will present a method for obtaining exact solutions with very few constraint
equations. Instead of enforcing only limitations on the amplitude of residual vibration, the method
places constraints on the slope of the sensitivity curve by incorporating (3.2). The process will be
demonstrated for obtaining frequency robustness only. The method consists of five steps:

1) Determine the minimum required number of sensitivity curve humps, H.

2) Limit the residual vibration amplitude to below Vg at the edges of the frequency range to be
suppressed [(1-1/2)wy and (1+1/2)wm).
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Figure 3.14: Three-Dimensional Sensitivity Curve of SI Shaper Designed with
Vit = 5%, 1=0.6, and Suppressed Damping Range of 0 < { < 0.2.

3) Set the residual vibration to Vo and the slope of the sensitivity curve to zero at the H
unknown hump frequencies where the sensitivity curve reaches a local maximum.

4) Limit the residual vibration to zero at H+1 unknown frequencies. These frequencies must
alternate between the edge and hump frequencies where the vibration is set to Vyg].

5) Solve the constraint equations generated by steps 1-4 combined with (3.3) and (3.4).
Steps 2-4 for generating constraint equations for the exact SI shaper with H = 2 and Vo] = 5% are
shown graphically in Figure 3.15.

The first step in formulating the set of constraint equations is to determine the number of
humps in the sensitivity curve. For a specific set of parameter values, Vio}, I and €, the number of

humps can be determined by employing the following algorithm. Assume that H = 0 and solve the
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Figure 3.15: Constraint Generation for Exact SI Shaper When H=2 and V,=5%.

Table 3.2: H as a Function of I and { for V = 5%.
Value of Insensitivity, | I<a a<I<b | b<l<c c<I
Number of Humps, H 0 i 2 3

a=0.2218+0.3143L+0.1819¢2+0.4534(3

where,  b=0.5916+0.7647(+0.6000(2+0.3708(3
c=0.8737+1.0616£-0.2847¢2+3.2416(3

equations generated by steps 2-4. If the sensitivity curve remains below Vo throughout the range
specified by I, then H = 0. If the sensitivity curve exceeds Vo], then resolve the equations using
H = 1. The process is repeated until the minimum value of H that effectively limits the residual is
obtained.

The value of H has been determined for a large set of Vo], I, and {. The results can be
condensed into a decision tree as shown in Table 3.2 for Vo] = 5%. To use Table 3.2, calculate a,
b, and c using the system damping ratio. Then, select H from the column in which I satisfies the
inequality relations. Table 3.2 can be used for insensitivities well into the three-hump region;
however, the extremely large insensitivity of three-hump SI shapers is rarely needed on real
mechanical systems.

Once the number of sensitivity curve humps has been determined, the constraint equations can
be stated explicitly. For the second step, the two equations which limit the vibration at the edges of
the sensitivity range are:

Vi 2 e 5etn \/(c(ma,g))2 +(S(0e8)) @ =(1+1/2)0p, (3.32)
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where the C and S functions are given in (3.1a) and (3.1b).
The vibration is now set equal to Vo] and the slope of the sensitivity curve is set equal to zero

at the peeks of each of the H humps of the sensitivity curve. These 2H equations are:

Vi = Ohitn \/(C(mhj,g))z +(S(mhj,§))2 i=1,...H (3.33)
- ﬁ;[e‘cmhj‘n \j(C(coh j,t;))2 + (s(mh j.C))2 ] j=1,..H (3.34)

where whj are the unknown frequencies at which the peeks of the sensitivity curve humps occur.
Fourth, the sensitivity curve must be forced to zero between each hump of the sensitivity
curve. This gives rise to H+1 equations given by:

0= ¢ 50! \ﬁ(mzk,ﬁ))z #(S(0zi,0))  k=l..H+l (3.35)

where wzy are unknown frequencies that interlace the edge and hump frequencies. That is, (1-
112)ow<wz1<®h]<mz7< .

Finally, the above constraints, (3.32)-(3.35), are numerically solved along with (3.3) and
(3.4). When the optimization is performed, the unknown frequencies, as well as the impulse
amplitudes and time locations are obtained.

The above procedure will generate an exact solution over a large range of damping ratios and
insensitivities. However, a problem arises when both I and { have large values. Generating a
shaper with a large I requires forcing the sensitivity curve to alternate several times between 0 and
Viol. See again Figure 3.13. While this is not a problem for low values of , it is impossible for
large values of {. The function describing the , I space which permits a solution is complicated
and is not given here. If the problem is posed with an untenable set of parameters, then the
optimization simply fails to find a solution. In these cases, the technique of parameter sampling
can still be used to generate an approximate solution. This is done by generating MxN constraint
equations from (3.31). Each equation is applied at a different set of parameter values (®m, Cn)-
As a general rule, if { < 0.2, then a solution is possible with the exact procedure for almost any

realistic value of I.

3.3.3 Characteristics of the SI Shaper

There are several interesting properties of the SI shaper. Figure 3.16 shows the duration of the
undamped SI shaper as a function of the frequency insensitivity, I. The length of the shaper and,
therefore, the rise time increase with I. The length does not steadily increase, rather there are
locations where the slope changes rapidly. It turns out that these points correspond to shapers
previously presented in the literature and in this thesis. The first node, at approximately I = 0.06,
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Figure 3.16: Length of Undamped SI Shaper as a Function of Insensitivity.

corresponds to the ZV shaper; the second nodc at approximately I = 0.4 corresponds to the EI
shaper, and the third node at approximately I = 0.72 corresponds to the two-hump EI shaper
developed in the previous section. The ZVD shaper does not correspond to any SI shaper; it does
not maximize insensitivity for its length.

Figure 3.17 shows the amplitude of the first shaper impulse as a function of I and { for Vo] =
5%. Solutions are shown for 0 < { < 0.3. Each dot represents a solution obtained with the above
procedure. The figure is divided into 0, 1, and 2-hump regions by thick lines. Thin lines further
divide the data into regions where A| remains constant or changes as I varies. If I is held constant
and { is increased, then A] increases. On the other hand, if  is held constant and 1 is varied, A|
changes in a complicated manner. For low values of I, Aj is equal to the first impulse of a ZV
shaper. As «1sincreased, A decreases in amplitude until it reaches the value of the first impulse
of a single-hump EI shaper. A remains constant at this value over a large range of I. With further
increases, A| transforms into the value corresponding to a two-hump EI shaper. Similar trends
occur in the values of the other SI shaper impulses.

When given the task of designing an input shaper, a controls engineer will be faced with the
trade-off of robustness versus rise time (shaper length). Figure 3.16 provides important
information because the time cost of obtaining a desired level of robustness is immediately
available. However, it is unlikely that an extremely specific value of robustness will be required,
rather an acceptable range, say 0.4 <1< 0.5, would be under consideration. The gquestion then
arises as to which value of I should be chosen for the design of the shaper. If I = 0.4 is chosen,
the shaper will have a iength of T, where T is the period of vibration being targeted. If I = 0.5 is
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chosen, the insensitivity increases 25%, but the length of the shaper increases to about 1.25T.

The optimal value of T will depend on several factors including the relative importance of rise
time and robustness. To aid in this decision, we can calculate the ratio of insensitivity to shaper
length. Figure 3.18 shows the ratio of (5% insensitivity)/(shaper length) as a function of I. The
points at which the SI shaper equal the ZV, EI, and two-hump EI shapers are local maximum
points. This result indicates that if the desired insensitivity range includes one of these points, then

those shapers are good choices.

3.3.5 Application to a Linear System with Uncertain Parameters

To demonstrate the utility of the SI shapers, simulations of the benchmark two-mass, spring
system were performed. When the system parameters are ail equal to one (m;=my=k = 1), the
system has a natural frequency of 0.2251 Hz (+2 rad). A bang-bang command will move the
mass center in a time-optimal manner, but large residual oscillations will usually occur. By
shaping the bang-bang command, rapid motion can be attained without residual vibration.
Suppose that there is a large uncertainty in the spring constant, say k is between 0.5 and 1.7. This
range of k corresponds to a frequency range of approximately £30% from the nominal value. To
accommodate this range of possible spring constants, the insensitivity of the input shaper must be
0.6. The SI shaper with I = 0.6 and V. = 5% centered about 0.2251 Hz is:

[Ai]=[0.1598 0.3402 0.3402 0.1598] (3.36)

i 0 2.0238 4.0476 6.0715

Figure 3.19 shows the response of the system to a unity-magnitude bang-bang input when k
varies from 0.5 to 1. These responses are labeled with the prefix BB and marked with open
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circles. Significant residual vibration exists foi all cases. Also shown in Figure 3.19 are the
responses when the bang-bang input is shaped with the SI shaper. Note that over this large range
of parameter values, the shaped residual vibration always remains small. If the shaped vibration
amplitude is divided by the unshaped vibration, then the resulting percentage vibration is less than
5% for each of the cases shown. The responses for values of k from 1 to 1.7 show similar results.

3.3.6 Application to a Nonlinear System

Certain types of nonlinear systems change dynamic characteristics when they change
configuration. An example of such a system is a two-link flexible robotic arm like the one
sketched in Figure 3.20. A spring and damper at both the shoulder and elbow model PD
controllers at those joints. By varying the system parameters, the range of frequencies that the
system exhibits can be set. Note that this system is nonlinear and the input shaping procedure
described above does not strictly apply. That is, an SI shaper designed to limit vibration over the
frequency range of the system may not keep the vibration to below Vo for every type of motion.
However, given the robustness of the shaping algorithm to modeling errors, it seems reasonable to
implement shaping on this system in much the same manner that it is implemented on a linecar
system with uncertain parameters.

Here a case is considered when the system has a first natural frequency of 3 Hz with the arm
fully extended (6, = 0°), and a first natural frequency of 4.5 Hz with the arm fully bent back on
itself (B = 180°). The system varies £20% from the average frequency of 3.75 Hz. To simplify
the example, the contribution of the second mode is severely limited by setting the spring and
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Figure 3.19: Response to Unshaped and SI Shaped Bang-Bang Inputs.

Shoulder

Figure 3.20: Nonlinear Two-Link Arm.

damper at the elbow to high values so that the shoulder dynamics dominate the response. The

shaper used for this system is an SI shaper with I = 0.4 and Vo) = 5% designed for 3.75 Hz:
[A,-] ~ [0.2625 0.475 0.2625]

4 0 0.1333 0.2667

(3.37)

There are a great variety of possible motions that the system can perform. A representative set
of results will be presented here. Figure 3.21 shows the shaped and unshaped responses of the
shoulder joint (0,) when the arm is moved from an initial state of 6, = 90° to a final state of 6, =
180°. Even though the system rapidly changes frequeacy by 20% during the motion, the input
shaping reduces the vibration to only 7.8% of the unshaped vibration amplitude for the same
motion. Although this exceeds the 5% level for which the shaper was designed, the shaping is still
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very effective. Figure 3.22 shows the percentage vibration for motions starting at €, = 90° and
ending at a range of final angles. The residual vibration is lowest for motions which terminate near
90° because the system does not change frequency significantly during the motion. However, the
vibration is very low even for motions which terminate at the edges of the workspace.

3.3.7 Discussion of SI Shapers
In this section procedures were presented that produce input shapers with a specified level of
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robustness to modeling errors. One procedure is easy to formulate, but can lead to a large number
of constraint equations which must be satisfied numerically. Furthermore, only approximate
solutions can be obtained. The other procedure yields exact solutions with very few constraint
equations, but it is somewhat more difficult to formulate and does not yield a solution for all
parameter values. Characteristics of the shaping method demonstrate a nonlinear relation between
robustness and rise time. For certain degrees of robustness, the procedure produces previously
reported input shapers. Simulations of a linear system with uncertain parameters and a nonlinear

two-link arm demonstrated the effectiveness of the proposed shaping algorithm.
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3.4 Multi-Mode Input Shapers

The methods described in the previous sections can be applied to multi-mode systems. The
design of input shapers for multi-mode systems can proceed in two ways. Shapers for each mode
can be calculated separately and then convolved together,!0 or the constraint equations for each
mode can be solved simultaneously [42, 87, 110]. The next subsection of this thesis will briefly
review the technique of convolving single-mode input shapers together to obtain two-mode
shapers. Then, two-mode shapers will be designed by solving the constraint equations
simultaneously for both modes. New techniques are presented that allow the calculation of
simultaneous, or direct, input shapers over a large range of frequency ratios. The propertics of the
convolved and direct shapers are compared and simulation results are used to illusirate the trade-

offs between convolved and direct shapers.

3.4.1 Convolved Two-Mode Shapers

The simplest way to obtain a two-mode shaper is to convolve two single-mode shapers together.
The single-mode shapers are obtained using the methods of the previous sections, or the formulas
available in the references. For example, suppose a system has undamped modes at 1 Hz and 2.5
Hz, then ZVD shapers for each mode can be obtained as [101]:

[;:,-]{8.25 03 ?67'5] (I Hz Sharer) (3.38)
[::.-]=[8.25 03 8135] (2.5 Hz Shaper) (3.39)

When describing a two-mode shaper, the constra'ats used to eliminate each mode will be stated
explicitly. For example, if ZVD constraints ar: "1sed for the first mode and ZV constraints are used
for the second mode, then the result is called a ZVD-ZV shaper.

Convolving the shapers given in (3.38) and (3.39), generates a ZVD-ZVD shaper described by:
A7 [0.0625 0.125 0.0625 0.125 0.25 0.125 0.0625 0.125 0.0625

[t- = (3.40)
!

0 0.2 0.4 05 67 09 1.0 1.2 1.4
The sensitivity curves for the single-mode shapers and the convolved two-mode shaper are shown
in Figure 3.23. The convolved shaper is very robust to modeling errors of the 2.5 Hz mode. The
second mode can range between 2.0 Hz and 3.5 Hz and the residual vibration will remain small.
Note that the vibration suppression of the convolved two-mode shaper near 3 Hz is due to the
contribution from the 1 Hz shaper. Single-mode shapers suppress vibration at odd multiples of
their design frequency. When an input shaper is convolved with a second shaper, the vibration

suppression properties at these highcr frequencies is passed on to the resulting two-mode shaper.

10 This procedure dates back to the work of O.J.M. Smith [141].
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Figure 3.23: Convolved and Direct Two-Mode ZVD-ZVD Shapers for
1 Hz and 2.5 Hz.

3.4.2 Simultaneous Two-Mode Shapers

Unlike the convolved shapers, where constraints on each mode are solved separately, the direct
solution is obtained by simultaneously solving the constraint equations for both modes. The
vibration and robustness constraints that must be solved for a direct ZVD-ZVD shaper are [42]:

?=1Aie—§jwj’i Sin([,'(l)j l_c3)=0 j:l_2 (3 41)
Z{Ll A,-e—c'fmf'i cos(t,-a)j,,l -Lf )=0 j=1,2 )
P A-;.e—gi(‘)j'i sin(f;® ; [_€2_)=0 i=1,2

. = (3.42)

S Atie” O costo; 1-02)=0 =12

In this section, the impulses will again be required to have positive amplitudes.

Rappole obtained a closed-form description of the ZV-ZV and ZVD-ZVD direct shapers for
undamped modes by assuming the shapers contain three and five impulses, respectively [87].
Unfortunately, these assumptions on the number of impulses only yield time-optimal shapers for
mode ratios, R=(w,/w,), up to three. For larger mode ratios the time-optimal direct solution
contains more than the assumed number of impulses.

An obvious drawback to the direct approach of solving the constraint equations simultaneously
is that it is not as easy as convolving two single-mode shapers. In general, the shapers must be
obtained using an optimization program. The shapers presented here were obtained using the
General Algebraic Modeling System (GAMS), a comprehensive optimization program [20]. In
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Figure 3.24: Direct ZVD-ZVD Shaper Impulse Times.

spite of this drawback, there are several advantages to the direct solution that will be demonstrated
in the next section.
Returning to the example system with two undamped modes at 1 Hz and 2.5 Hz, the direct

ZVD-ZVD shaper is:
[Ai]_ 0.1673 0.1489 03677 0.1489 0.1673
171 0 0.2857 0.5714 0.8571 1.1429

(3.43)
A comparison of the sensitivity curve for the direct solution of (3.43) with the sensitivity curve for
the convolved solution of (3.40) is shown in Figure 3.23. Although the robustness to errors in the
low mode (1 Hz) are approximately the same, the convolved shaper is much more robust to
modeling errors in the second mode (2.5 Hz). A comparison of the impulse times shows that the
direct solution has four fewer impulses and is 18.4% shorter in duration.

To fully appreciate the direct shapers, they must be examined as a function of the mode ratio.
Figure 3.24 shows the times for each of the impulses in the direct two-mode ZVD-ZVD shaper as a
function of the mode ratio. For mode ratios from 1 to 3, the results match the closed-form two-
mode shapers presented previously [87]. But, for mode ratios above 3, the curves become more
complex. The direct shaper contains 5 impulses for mode ratios up to 3, but then it alternates
between 6 and 7 impulses in a fairly regular pattern.

The solution for the two-mode EI-EI shaper presents a challenge because of conflicting
constraint equations. To illustrate the problem, consider a shaper designed for modes at 1 Hz and
2.9 Hz. The EI constraints for the low mode require a value of V and a slope of zero at 1 Hz.

Furthermore, the sensitivity curve is forced to zero at frequencies on either side of 1 Hz. This
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pattern repeats at all odd multiples of the low mode. That is, the vibration is equal to V at 3 Hz, 5
Hz, etc. and the curve goes to zero on either side of 3 Hz, 5 Hz, etc. Now assume that the zero
vibration frequencies near the 3 Hz mode that arise from the constraints on the 1 Hz mode occur at
2.9 Hz and 3.1 Hz. The EI constraints associated with the second mode at 2.9 Hz require that the
residual vibration be equal to V at 2.9 Hz. The optimization is now posed with two conflicting
constraints, set the value of the residual vibration equal to both zero and V at 2.9 Hz.

In order to derive a consistent ar d well defined solution for a direct two-mode shaper that is
analogous to the single-mode EI shaper, the process must be modified to eliminate conflicting
constraints. A solution that produces consistently good results is a shaper with EI constraints for
the low mode and specified insensitivity (SI) constraints for the high mode [26, 137]. The shaper
designed by using EI constraints for the low mode and SI constraints for the high mode is referred
to as an EI-SI shaper.

Unlike either the direct ZV-ZV or ZVD-ZVD shapers, the EI-S! shaper has a specified
robustness at the high mode which can be set arbitrarily wide. The trade-off is that increased
robustness at the second mode increases the shaper duration. So, in contrast to the other
simultaneous shapers whose robustness at the second mode and duration are a function of the
mode ratio, the robustness at the high mode of the EI-SI shaper is always greater than or equal to
the desired amount and the shaper duration is dependent on both the mode ratio and the specified

insensitivity.

3.4.3 Comparison of Two-Mode Input Shaper Properties
3.4.3a Shaper Lergth

The shaper duration is important because it limits the system rise-time; an increase in shaper
length degrades rise-time. For the single-mode case, the ZVD and EI shapers have equal length
and are twice as long as the ZV shaper. For the two-mode convolved case the total time delay is
equal to the sum of the two shaper lengths. A convolved two-mode ZVD or EI shaper wili have a
length of:

Ty =To, + T, (3.44)
where T, is the period of the ith mode. A convolved shaper is a poor choice for low mode ratio
systems because T, = 2T, . Direct shapers do not follow the relation in (3.44); tp is always less
than Ty + Ty, -

Figure 3.25 compares the time duration of the convolved and direct two-mode ZVD-ZVD
shapers as a function of mode ratio. Also shown is the duration of the V = 5% direct EI-SI shaper
with vibration suppression enforced £10% about the second mode. The direct ZVD-ZVD has a
maxinmum time savings of 25% over the convolved ZVD-ZVD shaper, and the average savings is
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Figure 3.25: Duration of Convolved and Direct Shapers.

10% for the range shown in the figure. The maximum time savings with the EI-SI shaper is about
20% and average is about 10%. As the mode ratio increases, the major gain of implementing the
direct shapers, the shorter time duration, becomes less significant and the convolved shapers

become a more attractive alternative.

3.4.3b Robustness to Modeling Errors

The sensitivity curves of the two-mode shapers near the low mode are nearly identical for all
values of R. That is, the robustness to low mode errors is not greatly effected by the mode ratio.
On the other hand, Figure 3.26 shows that the second-mode insensitivity of the convolved ZV-ZV,
ZVD-ZVD, and EI-EI shapers vary considerably with R. The convolved EI-EI shaper is more
robust than the ZVD-ZVD shaper for all mode ratios. Furthermore, the EI-EI shaper averages 4.4
times the insensitivity of the ZV-ZV shaper.

Figure 3.27 shows the second-mode insensitivity of the direct shapers. The EI-SI shaper was
designed using a suppressed frequency range of £10% of the high mode (specified insensitivity =
0.2). Note that although the constraints require the second-mode insensitivity to be at least 0.2, it
can be much larger. The reason for this is that the constraints which suppress the low mode also
cause vibration to be suppressed at odd multiples of the low frequency, regardless of additional
constraints placed on higher modes.

To demonstrate this effect, the sensitivity curve for the EI-SI shaper designed for 1Hz and 10
Hz is shown in Figure 3.28. The constraints suppressing 1 Hz lead to suppression of 9 Hz and 11
Hz. The 9 and 11 Hz suppression merges with the SI constraints which limit 10 Hz. This

combination leads to an insensitivity about 10 Hz that exceeds the minimum required value of 0.2.
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The second-mode robustness obtained with the direct EI-SI shaper greatly exceeds the robustness
of the ZVD-ZVD shaper which, in turn, is far superior to the performance of the ZV-ZV shaper.
Comparing Figures 3.26 and 3.27 we see that the convolved shapers are more robust than the
direct shapers for almost all mode ratios.

Traditionally, insensitivity has been defined as the total width of the sensitivity curve that lies
below a specified vibration level. However, this description fails to capture important information
in the two-mode case because the sensitivity curves can be highly skewed. (See again Figure
3.23.) To more accurately describe the robustness of the shapers, the total insensitivity can be
redefined as the sum of its high and low components, which are the insensitivity to modeling
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Figure 3.29: Two-Mode Convolved ZVD-ZVD Second-Mode Insensitivity.

errors above and below the modeling frequency [26]. The individual components and total
insensitivity of the convolved ZVD-ZVD shaper are shown in Figure 3.29. Although the total
insensitivity is large at all mode ratios, the insensitivity is skewed (the high and low insensitivities
are vastly different). On the contrary, the high and low insensitivities of the direct shapers are
nearly symmetric about the modeling frequency. (See Figures 3.23 and 3.28.)

3.4.3¢c Computational Intensity During Implementation

The convolution method yields shapers that contain more impulses than those derived using the
direct method. Convolved ZVD-ZVD and EI-EI shapers have 9 impulses, while the corresponding
direct shapers have between 5 and 7 impulses. This result makes the direct method somewhat
more attractive in terms of computational burden during the implementation of the shaping process.
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3.4.4 Simulation Results

To demonstrate the key trade-off between convolved and direct shapers, simulations of an
undamped two-mode mass-spring system were performed. The system frequencies where set to 1
Hz and 2.5 Hz, giving a mode ratio of 2.5. The system was driven by a step input shaped by
either a convolved or a direct ZVD-ZVD shaper. Both shapers completely eliminate the vibration
when the system model is exact, but the direct shaper has a faster rise time as shown in Figure
3.30. Figure 3.31 shows the responses with a 10% error in the second mode frequency. The
convolved shaper eliminates more of the vibration when there is a modeling error. This is a
demonstration of the difference in robustness that was displayed in Figures 3.26 and 3.27.
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3.4.5 Summary of Multi-Mode Shapers

This comparison of two-mode input shapers reveals that convolved shapers have greater
robustness to second-mode modeling errors, while the direct shapers have a shorter time duration
and fewer impulses. To fully measure the robustness of two-mode shapers, high and low side
insensitivities should be calculated. Direct shapers have insensitivity that is nearly symmetrical
about the modeling frequency. The time advantage obtained with the direct shapers decreases as
the mode ratio increases. Finally, second-mode robustness of the direct ZV-ZV and ZVD-ZVD
shapers varies greatly with the mode ratio and can be very poor. This problem can be elimuiated
by using an EI-SI shaper which specifies a minimum level of seccend-mode robustness.
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3.5 Negative Input Shapers

In the previous sections the constraint equations used to determine the input shapers required
positive values for the impulse amplitudes. However, move time can be significantly reduced by
allowing the shaper to contain negative impulses. This idea first appears in the work by O.J.M.
Smith [140, 141, 144]. He suggestcd a method that broke a step input into three separate steps.,
the second of which was negative. He then increased the magnitude of the first two steps until the
actuator limit was reached. (The amplitude of the final step was determined by the desired setpoint
location.) Certain types of negative shapers have been shown to yield the time-optimal commands
for linear flexible systems [80]. However, these types of negative shapers cannot be used with
arbitrary commands; they must be used with step inputs. Furthermore, the shaper’s impulse
amplitudes and time locations depend on the desired motion. These types of shapers will be
addressed in Chapter 4.

Unlike shapers containing only positive impulses, negative shapers can lead to shaped command
profiles whose magnitude exceeds that of the unshaped command for small periods of time. These
periods of overcurrenting are not a problem for most applications because amplifiers and motors
have peak current capabilities much larger than allowable steady state levels. Another potential
drawback with negative input shapers is that they can excite unmodeled high modes [75, 86, 129].

Several researchers have formulated input shaping as a zero-placement algorithm that can give
rise to negative shapers (46, 58, 94, 153]. Because negative shapers pose the two difficulties
mentioned above, the papers describing zero-placement algorithms have usually included a
procedure for eliminating the nzgative impulses. Recall that the method proposed by Tuttle [153]
for eliminating negative impulses was demonstrated in Chapter 2. The negative shapers obtained
with zero-placement are not usually time-optimal. That is, there exists negative input shapers with
shorter durations that satisfy the same performance specifications. The first paper dedicated to the
subject of time-optimal negative input shapers required the numerical solution of a set of
simultaneous transcendental equations [86].

This section presents a look-up method that generates time-optimal negative input shapers
without solving a set of complicated equations. Additionally, solutions are presented that deal with
the problems of actuator overcurrenting and high-mode excitation that can occur with negative

shapers. Experimental results demonstrate both the versatility and utility of negative shapers.

3.5.1 Unity-Magnitude (UM) Constraint
If the requirement of positive impulse amplitudes is eliminated, then an alternate constraint must

be used to keep the impulse amplitudes from going to positive and negative infinity. Two such
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Figure 3.32: Shaping a Bang-Bang Input with a Negative UM-ZV Shaper.

types of constraints will be discussed in this section. The first constraint which limits the impulse
magnitudes requires that the impulses have unity magnitude, that is, the amplitudes must switch
between 1 and -1:

A = (-1 i=1,..,n (3.45)
This constraint yields useful shapers because they can be used with a wide variety of inputs
without leading to overcurrenting. For example, if a unity magnitude (UM) negative shaper is
used to shape a bang-bang input, then the magnitude of the shaped command will not exceed the
magnitude of the unshaped command provided the length of the bang-bang signal is longer than
two shaper lengths.!! Almost all command profiles will meet this requirement. We shall see that
the most useful UM negative shapers have lengths of approximately 75% of the system’s period of
vibration. Figure 3.32 shows a bang-bang input shaped with a negative UM shaper.

3.5.2 Partial-Sum (PS) Constraint

The second magnitude constraint, which leads to faster rise times than the UM constraints, is one
which limits the partial sum of the impulse sequence to a magnitude of P. That is, as the impulse
amplitudes are summed sequentially, the magnitude of the running sum equals P:

k
2A;
j=1

=F  k=1l,..,n-1 (3.46)

I'" Also assuming that the bang-bang function switches values at its center.
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This constraint is similar to the constraint proposed by O.J.M. Smith [140, 141] and identical to
the constraint proposed by Singer and Rappole [86, 98]. For a three-impulse shaper, the partial-
sum ccnstraint leads to:

A =P, A2==-2P, A3=P+l1 (3.47)

When a partial sum (PS) negative shaper is used, almost the entire shaped command will be
within ¥P*Max, where Max is the maximum unshaped command level. There will, however, be
brief periods when the shaped input exceeds P*Max. Figure 3.33 shows a PS negative shaper
convolved with an acceleration signal associated with a trapezoidal velocity profile. A PS negative
shaper will always cause overcurrenting with any unshaped command that contains a pulse, for
example, a bang-bang profile. Periods of overcurrenting appear in Figure 3.33 as the times when
the shaped input exceeds unity magnitude.

The amount of time the shaped command requires overcurrenting is a function of the acceleration
limit, velocity limit, move distance, system frequency, and input shaper. To investigate this effect,
numerous shaped commands were generated while varying the parameters for a trapezoidal
velocity profile. For all reasonable moves with P = 1, only 1-3% of the shaped input required

overcurrenting. For larger values of P, both the level and duration of the overcurrenting increases.

3.5.3 Types of Robustness Constraints

This section describes negative input shapers which satisfy the following three types of
robustness constraints:

* Zero Vibration (ZV) [101, 140, 144].

e Zero Vibration and Derivative (ZVD) [101].

» Extra-Insensitive (EI) [122].

For most of the shapers presented in this section, a closed-form solution cannot be derived.
However, numerical solutions can be obtained with optimization programs such as the MATLAB
Optimization Toolbox [1] and GAMS [20]. We will present a table that allows the reader to design
time-optimal negative input shapers without resorting to an optimization package.

3.5.4 Negative Zero Vibration (ZV) Shapers

Although ZV shapers do not work well on most real systems, we present them here because
they are the shortest and, therefore, the highest performance shapers when the system frequencies
are known very accurately. If the ZV constraints [(3.1), (3.3), (3.4)] are combined with the unity
magnitude amplitude constraint, (3.45), then the impulse time locations of the resulting shaper are
rather complex functions of the damping ratio, L.

When £ = 0, the problem simplifies, and we can derive an analytic solution for the UM-ZV
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shaper. The minimum number of impulses required to satisfy the UM amplitude and ZV vibration
constraints is three, so the impulse amplitudes are:

Al =1 Ay =-1 A3 =1 (3.48)
By setting Eq. (3.1) equal to zero, we get two constraint equations because both the sine and
cosine terms are squared and must, therefore, be zero independently. The two equations can be
obtained by setting (3.1a) and (3.1b) equal to zero:

—sin(ax2) +sin(wrz) =0 (3.49)

1 —cos(w) + cos(wt3) =0 (3.50)
Rearranging (3.49) and squaring both sides yields:

sin?(ar2) = sin?(ar3) (3.51)
Using sina=1-cos?, (3.51) can be written as:

cosz(a)tz) = cosz(wm) (3.52)

Because tp # t3, we know from (3.52) that:
cos(wrs ) = —cos(wr2) (3.53)
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Using (3.53) and (3.50) eliminates t3:

1-2cos(ax2)=0 (3.54)
Solving for t3 yields:

t2 =cos~(0.5)/w (3.55)
Similarly, using (3.53) and (3.50) to eliminate t; gives:

13 = cos™'(-0.5)/w (3.56)

When the partial-sum amplitude constraints are used, a closed-form solution can also be found
for the undamped case. The amplitudes of the impulses in the PS-ZV shaper are:

Al =P Ay =-2P A3=P+1 (3.57)
The PS-ZV residual vibration equations are:

—-2Psin(ax2) + (P +1)sin(wr3) =0 (3.58)
P-2Pcos(wr2) +(P+1)cos(wrz) =0 (3.59)

Equations 3.58 and 3.59 can be solved for both t3 and t3 in a manner similar to that used for the
UM shaper. The solutions are:

2 _ —
,2i{___} (3.60)
W 4p2
2 _ _
,__{_} (3.61)
(0] 2P(P +1)

When P = 1, the length of the PS-ZV shaper is 0.29T, where T is the period of vibration. The
UM-ZV shaper has a length of 0.333T, while the positive ZV shaper has a length of 0.5T. Egq.
(3.61) reveals that there is a decreasing return in time savings as P increases.

A negative shaper will have slightly poorer performance than a positive shaper in the presence
of modeling errors, even though they satisfy the same robustness constraints. For example, the
sensitivity curves for the positive ZV shaper and the PS-ZV (P = 1) shaper are shown in Figure
3.34. The positive ZV shaper has a 5% insensitivity of 0.065; that is, the percentage vibration is
less than 5% from 0.9675® to 1.0325®, (1.0325 - 0.9675 = 0.065). The PS-ZV shaper has a 5%
insensitivity of 0.054.

The time savings gained by using negative shapers comes with the risk of high-mode
excitation. To assess this risk, we plot the shaper's sensitivity curve over a range of high
frequencies. At frequencies where the sensitivity curve is above :00%, high-mode excitation can
occur if the system has a second resonance. Figure 3.35 compares the high-mode sensitivity
curves for the positive ZV shaper and the PS-ZV shapers for P =1 and P = 3. Residual vibration
for the positive shaper never exceeds 100%, but the negative shapers exceed this value over a large
range of high frequencies.

For damped systems an analytic solution of the impulse times for negative ZV shapers has not
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been found. However, curve fits to solutions obtained with GAMS were generated. The curve
fits to t7 and 13 are shown in Table 3.3. Also included in Table 3.3 arc solutions for the other

types of shapers which will be described in the following subsections. The curve fits provided

give time locations within 0.5% of their actual values over the range 0 < £<0.3.

3.5.5 Negative Zero Vibration and Derivative (ZVD) Shapers
To satisfy the ZVD constraints, a negative shaper must contain five impulses. For the UM-

ZVD shaper the amplitudes are:
Al =1 A2 = -1 Az =1 Ag =1 As =1 (3.62)
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Table 3.3: Numerically Determined Negative Input Shapers.
l,'=(M0+M|C-I-M2(2+M3C3)T. T=2rw

I Mo M, M M3

1) 0 0 0 0
I | 0.16658] 0.29277] 0.07544] 0.21335
x| 0.33323] 0.00533] 0.17914{ 0.20125
I 0 0 0 0
15 ]10.2097G] 0.22441] 0.08028] 0.23124
] 0.29013] 0.09557] 0.10346] 0.24624
U} 0 0 0 0
- | 0.08945] 0.28411] 0.23013] 0.16401
1| 0.36613] -0.08833] 0.24048] 0.17001
131 0.64277] 0.29103] 0.23262] 0.43784
tsf 0.73228] 0.00992] 0.49385] 0.38633
I 0 0 0 0
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The time location of each impulse is a complex function of {. Solutions where obtained over a
wide range of { for both the UM and PS amplitude constraints. Curve fits to t2, t3, t4, and t5 for

the UM and PS-ZVD shapers are shown in Table 3.3. The length of the UM-ZVD shaper is 73%
of the positive ZVD, while the length of the PS-ZVD shaper is only 68% of the positive ZVD input
shaper when P = 1.

105



3.5 Negative Input Shapers
Drive Head Holder

/ Piezo Actuator

Capacitance Gage

\

RS D A Bt T

X stage

L L

Figure 3.36: Sketch of Drive Head Tester.

3.5.6 Negative Extra-Insensitive (EI) Shapers

Using GAMS, the UM-EI and PS-EI shapers were obtained over a suitable range of V, {, and
P. Table 3.3 includes curve fits to the time locations of the negative EI shapers when V = 5%. By
examining Table 3.3, we find that the EI shapers are essentially the same length as the ZVD
shapers regardless of the values for .

The increase in robustness comes only from relaxing the zero vibration constraint at the
modeling frequency. There are no additional costs associated with the EI shapers; high-mode
sensitivity curves reveal that there is little difference between the two shapers at high frequencies.

Solutions to the two-hump EI formulation are also included in Table 3.3.

3.5.7 Negative Input Shaper Experimental Results

Hardware experiments were conducted to accomplish the following goals:

1) Demonstrate the vibration reduction of input shaping.

2) Investigate the time savings of negative shapers.

3) Demonstrate that negative shapers are compatible with many types of actuators.

4) Verify the robustness to modeling errors.

To accomplish the first two tasks, experiments were performed on a machine that tests the
reading heads of hard disk drives. A schematic of the machine is shown in Figure 3.36. Reading
heads are placed in the machine and the xy stage component of the machine performs a gross
motion to position the head near a calibrated hard disk. The xv stages are mounted on air bearings
to minimize friction. Once the head has been positioned near the calibration disk, the head is tested
by reading the informat.on on the disk. The small moves from track-to-track are accomplished by
a spring-loaded piezo actuator. When the piezo moves the reading head to a new track, the force
backdrives the air bearing stages and oscillations occur. The machine must wait for the oscillations
to dissipate before information can be read from the disk. A capacitance gage measures the

position cf the head holder.
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Figure 3.37: Comparison of Shaped and Unshaped Experimental Responses.

Using the standard controller, lightly damped oscillations at 75 and 1700 Hz result from typical
moves. Because the low mode dominates the dynamic response, a single-mode shaper was used
to shape the command signal. Figure 3.37 compares the shaped and unshaped responses for a 190
pin move. The vertical scale for the shaped response has been shifted upwards so that the residual
vibration in each case is clearly visible. The shaper used to generate Figure 3.37 is a positive ZVD
shaper. It is quite effective at reducing the level of residual vibration. Even though the shaped
response has a longer rise time, the operational speed of the machine is increased because much
less time is spent waiting for vibration to dissipate.

The throughput can be increased even further by using negative shapers. Figure 3.38
compares the response for a 110 pin move when positive ZVD and negative UM-EI shapers are
used. The level of residual vibration is approximately the same, however, the negative shaper
reaches the desired location approximately 15% faster.

The piezo actuator is well suited to negative shapers because it has a negligible time constant.
It can respond to the demanding commands that result with a negative shaper. Negative shapers
work well on other types of systems as well. To demonstrate their effectiveness on systems with
DC motors and to test the robustness to modeling errors, tests were conducted on a rotary table.
The Inland Torque Motor used to rotate the table was equipped with an HP HEDS-6110 encoder
with 44,000 counts per revolution. The motor was powered by an Aerotech DS16020 amplifier
and the control signal was generated by a Macintosh Quadra 700 running a PD controller at 500
Hz. The controller generated trapezoidal velocity profiles based on maximum velocity and
acceleration limits. To ensure a vibratory response, a steel beam was mounted to the table surface,
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Figure 3.38: Positive and Negative Shaped Experimental Responses.

with 19 inches of the beam free to bend when the table was rotated. A 2 Ib. mass was attached to
the end of the beam to simulate a payload.

A one radian move was commanded and an FFT on the residual vibration revealed a mode near
2 Hz with a damping ratio of about 0.08. Negative ZV, ZVD, and EI shapers were then calculated
from Table 3.3. The table response with each of the shapers was recorded. Additionally, the table
response with a positive ZVD shaper was measured, so that the time savings from the negative
shapers could be evaluated.

Figure 3.39 compares the unshaped response of the table to the responses with the negative
partial sum-ZV, ZVD, and EI shapers. The PS-ZV and PS-EI shapers reduced the vibration to
approximately 5% of the unshaped level, while the PS-ZVD reduced the vibration to 0.8%. The
Z\V shaper left 5% of the vibration because it is very sensitive to modeling errors and the frequency
identification had limited accuracy. The EI shaper left 5% of the vibration because it is designed to
leave 5% vibration near the modeling frequency.

If we examine the 2% settling time, we find the response with the negative ZV shaper settled in
0.69 sec. and both the negative ZVD and EI responses settled in approximately 0.85 sec. The
response with the positive ZVD shaper settled in 0.93 sec., while the unshaped response took 2.78
sec. to settle within 2% of the desired position.

If an evaluation was based only on the above results, we might choose the negative ZV shaper
because it gives the fastest settling time. Or, we might choose the negative ZVD shaper because it
gives the least amount of residual vibration. However, in most real systems, the actual frequency
will deviate from the modeling frequency when the system geometry changes or a payload is
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Figure 3.40: Table Vibration When Frequency is 25% Lower than Modeled.

picked up. To evaluate the shapers in the presence of modeling errors, additional mass was added
to the steel beam and the experiments were repeated. The extra mass lowered the frequency
approximately 25%.

Figure 3.40 compares the responses of the extra-mass system with the negative ZV, ZVD, and
EI shapers designed for the original system. Also shown is the response to the positive ZVD
shaper. In this case, the negative EI shaper is superior in both vibration suppression and settling
time. Note that Figure 3.40 is a close up of the residual vibration. The unshaped vibration would
be way off the scale if it were also plotted on Figure 3.40. The experimental results are

summarized in Table 3.4.
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Table 3.4: Summary of Rotary Table Experimental Data.

Original System Extra-Mass System
Shaper | (25% Lower Frequency)
Vibration | 2% Settling Vibration 2% Settling]
(% of Unshaped) Time (% of Unshaped) Time
None 100 2.78 sec. 122 >4sec.
Positive ZVD 0.6 0.93 sec. 21 1.18 sec.
PS-ZV 5.8 0.69 sec. 57 3.27 sec.
PS-ZVD 0.8 0.84sec. | 24 | l44sec.
PS-EI (V=5%) 55 0.85 sec. | 17 | 081 sec.

3.5.8 Controlling High-Mode Excitation

Although excitation of unmodeled high modes was not a problem in our experimental results,
for certain systems it can limit performance. Figure 3.35 showed that negative shapers can
increase vibration at unmodeled modes higher than the frequency for which they were designed.
For high-mode excitation to occur, there must be a resonance at a frequency where the sensitivity
curve exceeds 100%. Even if high-mode excitation occurs, input shaping will probably decrease
the total amount of system vibration. This decrease results from the elimination of the low mode,
which usually contributes the majority of vibration amplitude.

In cases where high-mode excitation is performance-limiting, we have several options to
choose from:

1) Give up the time savings gained by using a negative shaper and use a positive shaper.

2) Add restiictions on high-mode vibration and solve the augmented set of constraints.

3) Add a digital low-pass filter.

4) Use an input with no high-frequency content.

The first option is the easiest and most appropriate when increasing the speed of the system is
not the highest priority. Option 2 is the highest performance solution because we can customize an
input shaper to a specific system with a minimal time penalty. Unfortunately, the look-up method
provided by Table 3.3 must be abandoned. Options 3 and 4 can still utilize Table 3.3, however,
there can be large increases in the computational requirements during run-time.

Option 2, the process of restricting only a few problematic high frequencies is best
demonstra.ed with an example. Suppose we select a PS-EI shaper to eliminate a 1 Hz mode from
our system. However, when we use the shaper, we discover that a previously unimportant mode
at 7 Hz is excited more than in the unshaped case. We can eliminate this vibration by adding an

equation to our set of constraints that limits the vibration at 7 Hz.
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A five-impulse shaper eliminating the 1 Hz mode and limiting the 7 Hz mode to 50% was
calculated with GAMS. The shaper is only 6% longer than a PS-EI shaper designed only for the 1
Hz mode. Sensitivity curves for the EI shaper and the EI shaper with the 7 Hz vibration limitation
are shown in Figure 3.41.

If more than one high mode is problematic, we simply add a constraint equation for each mode
of vibration and solve the augmented set of constraints. For each mode that is constrained, a small
amount of time will be added to the shaper length. However, a negative shaper with high-mode
constraints will continue to be shorter than a positive shaper for the low mode until constraints
have been placed on a large number of high modes.

The technique of restricting the vibration at a few high modes is advantageous because:

+ The shaper is customized to a specific system and, therefore, it does not over-constrain the
system.

e The computational requirements during run-time are only slightly increased. (In our
example, the run-time computation was « mpletely unaffected because the number of impulses did
not increase.)

The drawback of this approach is that it requires the one-time solution of a set of simultaneous,
transcerdental constraint equations; Table 3.3 cannot be used.

Instead of restricting a few high modes, we can eliminate all high frequencies by adding a low-
pass filter. The low-pass filter is used in conjunction with a negative shaper of the designer’s
choice from Table 3.3 to give a modified input shaper that will not excite modes in the filter's stop
band. A time delay is added when we use a low-pass filter because the length of the modified
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shaper is equal to the length of the original shaper plus the length of the low-pass filter. The
computational requirements can increase significantly because implementation of the modified
shaper requires N more multiplies and adds than the original shaper, where N is the low-pass filter
length number. To implement the modified shaper, place the low-pass filter in series with the input
shaper instead of convolving the shaper and filter together. This procedure reduces the
computational load during run-time.

The main benefits of augmenting a negative input shaper with a low-pass filter are:

« It requires no specific information about the high frequencies, just a pass band and a stop
band.

* It eliminates a large range of high frequencies.

* It uses well established filter design tools in combination with the solutions from Table 3.3.
This approach has two major drawbacks:

* There is a longer time delay associated with this input shaping process than when we restrict
just a few high modes.

* The run-time computation can be prohibitive.

We will not give an example of the fourth option for dealing with high-mode excitation, using
an input function that does not contain energy at high frequencies. It often requires more

computation than a low-pass filter and performance will vary with the move distance.

3.5.9 Negative Input Shaper Discussion

A simple look-up procedure was developed that allows a controls engineer to design time-
optimal negative input shapers without the usual requirement of numerically solving a set of
simultaneous transcendental equations. This simple method has been provided for several different
types of shapers. If high-mode excitation occurs, several methods can be used to eliminate this
problem, while still maintaining much of the time savings gained by using a negative input shaper.
Experiments showed the negative shapers give faster rise times than positive input shapers.
Additionally, the negative shapers were shown to be compatible with both DC motors and piezo

actuators.
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3.6 Specified-Duration Input Shapers

Section 3.3 discussed input shapers that had a specified robustness to modeling errors. For
some applications, it is desirable to generate shapers that have a specified duration. By specifying
the duration, we specify the rise time (and deceleration time) of the system. If input shaping is
used to filter commands being generated in real time by a human operator, then it may be desirable
to set the lag time to a length with which the operator is comfortable. An example of this situation
is the control of gantry cranes like the one sketched in Figure 3.42. These systems often have built
in “soft starts” that ramp up and down the motor torque and have the effect of adding a time lag.
When these “soft starts” are replaced with an input shaper, it may prove beneficial to set the
duration of the shaper equal to the duration of the ramp up. When this is done, the lag that the
operator experiences is unchanged.

For this type of problem, the input shaping design process must be modified. For the previous
input shapers the length of the shaper was minimized subject to a set of constraint equations that
limited residual vibration, established robustness to modeling errors, etc. In this case, the shaper
duration is specified, so some other quantity must be optimized. In this section we chose to
maximize the robustness for a given shaper length.

As was shown in Section 3.3, M versions of (3.31) can be used to suppress residual vibration
over a range of frequencies using frequency sampling. Each version of (3.31) was applied at a
unique (and known) frequency within the frequency range being suppressed. Rather than the
specify the range of frequencies to be suppressed, here we fix the shaper duration and treat the
suppressed frequencies, (®1, ..., ®m), as equally spaced variables. To give the frequencies equal
spacing requires:

;= oy +(i - 1)-——(“23_‘1’;‘)

The constraint equations that must be satisfied include the M vibration constraint equations, an

i=1,..,m - (3.63)

impulse amplitude constraint, and a constraint that sets the shaper duration:

t, = A, (3.64)
where A, is the desired duration of the input shaper. A numerical optimization is performed to
satisfy the constraint equations while maximizing the range of the unknown frequencies. That is,
(®m - ©)) is maximized. The result of the optimization is a Specified-Duration (SD) shaper whose
insensitivity has been maximized.

To demonstrate the SD shaper design process, suppose that we are designing input shapers for
a gantry crane that varies its cable length from 20 ft. down to 4 ft. To maximize actuator effort the
unity-magnitude (UM) amplitude constraints of (3.45) are used. The additional constraint
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Figure 3.42: Model of a Planar Gantry Crane.

equations consist of (3.63), (3.64) and M versions of (3.31). One version of (3.31) is applied at
the frequency, ®j, that corresponds to 20 ft. (This is 0.2 Hz assuming o = Jg/_L .) An additional
version of (3.31) is applied at an unknown frequency, @p, that is higher in value than ®;. The
frequencies between ®p, and w) are then suppressed by the M-2 additional versions of (3.31) and
the frequencies used in these equations are ottained from (3.63). An optimization is then
performed to obtain the UM SD shaper that maximizes oy,

Suppose that for the desired shaper duration wy, corresponds to a cable length of 8 ft. That s,
a single shaper cannot suppress vibration over the entire range of cable lengths. In this case, the
optimization is performed again, but this time wp, plays the role of ;. If the new maximized
frequency value, w2, resulting from the second optimization is above the frequency
corresponding to 4 ft., then the shaper design process is complete. The shaper resulting from the
first optimization is used to move the crane when the cable is between 20 ft. and 8 ft., while the
second shaper is used when the cable is less than 8 ft. in length.

3.6.1 Specified-Duration Shaper Design Algorithm
The specified-duration shaper design algorithm can be summarized as follows:
1) Select a shaper duration (deceleration period), A;.
2) Select a desired limit on the percentage residual vibration amplitude, Vo).
3) Require the vibration to be below V) at the lowest possible frequency of the system, w), (For
cranes this corresponds to the longest cable length).
4) Perform an optimization that maximizes the frequency range over which the residual amplitude
can be kept below V). The outputs of the optimization and the impulse amplitudes and time
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locations, and the maximum suppressed frequency, ®m.

5) If the suppressed frequency range covers the entire desired range, then terminate the algorithm.
Otherwise, start at step 3 and replace wj with ®m,

The product of the algorithm is one or more SD shapers which can be used to suppress vibration

throughout the desired range.

3.6.2 Experimental Results with Specified-Duration Shapers

The specified-duration input shapers developed in this section were implemented and tested on a
15 ton gantry crane at the Savannah River Technology Center (SRTC). The crane bridge travel is
85 ft., the trolley travel is 43 ft., and the hook travel is 29 ft. Input shaping was implemented with
a Convolve, Inc. Input Shaping Crane Controller. This controller is a hardware module that is
based on an Allen-Bradley SLC-500 modular PLC Rack. The SLC-500 modular system allows
selection of input and output modules so that the controls can be easily customized to any crane
configuration without hardware redesign. The controller uses these industrially-hardened PLC and
/O modules for handling all of the crane input and output signals. A proprietary Convolve module
was added to the rack to enable the input shaping process. The shaped commands are processed
internally and output as analog velocity commands by the SLC-500 analog output module.

The operator presses six on-off buttons on a pendant, sketched in Figure 3.43, to move the
crane throughout its workspace (Up/Down, North/South, and East/West). Two additional, four-
position switches were added to the crane pendant. The {irst switch selects the input shaper to be
used and the second switch selects a feature called Step Mode (described in [97]) that allows very
small motions to be accomplished. The shaping control knob allows the operator to select one of
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Figure 3.44: Peak-to-Peak Oscillation of Crane with a Cable Length of 28 ft.

four possible states: no shaping, shaper #1, shaper #2, or shaper #3. Using the approach described
in the previous subsection, three SD input shapers were designed to eliminate vibration throughout
the entire workspace of the crane.

To measure the residual oscillation of the crane, a yard stick was attached to the crane hook and
the response was recorded on videotape. By placing a straightedge on the surface of the video
monitor, the peak-to-peak residual oscillation was measured. For long cable lengths (endpoint
near ground), the setup gave a resolution of 1/8 in. As the cable was shortened and the endpoint
moved away from the camera, the resolution deteriorated. At short cable lengths (<15 ft), the
resolution was approximately 1/4 - 3/8 in.

The damping ratio of the SRTC crane was determined by moving the crane and recording the
peak-to-peak oscillation amplitude over 40 cycles of vibration. Figure 3.44 shows the values of
the experimental measurements with a cable length of 28 ft. Even after 40 cycles (nearly 4
minutes), the peak-to-peak oscillation is still 9 in. An exponential curve fit to the data revealed that
the damping ratio was approximately 0.004. If the cable length is very short (5 ft. or less), then
the damping ratio goes up considerably, to approximately 0.1. Because the damping was so small
throughout almost the entire workspace, the damping ratio was modeled as exactly zero.

Using the approximate deceleration period under the standard control system, A; was set equal
to 3.0 seconds and the above procedure was used to design three UM SD shapers to span the range
of cable lengths from 29 ft. to 9 ft. (The crane rarely operates with cable lengths less than 9 ft. and
cannot operate at less than 5 ft.) Figure 3.45 shows the measured percentage residual vibration for
each of the UM SD shapers. The percentage residual is obtained by dividing the shaped residual
vibration amplitude by the unshaped residual amplitude for the same motion. If the operator
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switches between the three shapers at 24 ft. and 19 ft., then the residual vibration can be kept to
below 5% of the unshaped level (for cable lengths down to 9 ft.).

Figure 3.46 compares the measured residual vibration with the UM SD shapers to the
theoretical residual amplitudes. Given the uncertainty in the measurement system, there is very
good agreement between theoretical and measured values. Notice that the largest deviation
between theory and measured values occurs at short cable lengths. This makes sense, as the
measurement system has progressively worse resolution as cable length is decreased and the actual
damping ratio deviates more from the modeling value of zero.

To compare the new shaping process with previously proposed methods, three UM ZV
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Figure 3.45: Measured Residual Amplitude Using UM SD Shapers.
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Figure 3.46: Theoretical and Measured UM SD Residual Amplitude.
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Figure 3.47: Measured Residual Amplitude Using UM ZV Shapers.

shapers were designed to cover the workspace. The shapers were designed to have zero residual
vibration at cable lengths of approximately 24 ft, 16 ft, and 11 ft. Figure 3.47 shows the measured
percentage residual vibration as a function of cable length. If the operator switches between the
three shapers at 20 ft and 13 ft, then the residual vibration can be kept to below 20% of the
unshaped level (for cable lengths down to 9 ft.).

Comparing Figures 3.45 and 3.47, we see that the UM SD shapers provide better sway
reduction than the UM ZV shapers throughout the workspace. Unlike the UM SD shapers, the
deceleration lag is different with each UM ZV shaper. The operator must become accustomed to
the different deceleration periods. An advantage of the UM ZV shapers is that the deceleration
period is shorter; the maximum shaper length is 1.8 seconds.

3.6.3 Summary of Specified-Duration Shapers

A procedure for designing input shapers that have a specified-duration has been described.
Given the fixed shaper duration, the robustness of the shapers is maximized. The new shaping
method was implemented on a gantry crane at the Savannah River Technology Center.
Experimental results show that the method greatly reduces residual oscillations and closely matches
the theoretically predicted performance.
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4 ROBUST MULTI-SWITCH BANG-BANG
COMMANDS FOR LINEAR FLEXIBLE SYSTEMS

4.1 Introduction to Multi-Switch Bang-Bang Commands

The previous chapter discussed methods for real-time shaping of command signals. The
resulting command profiles were not, in general, the minimum-time commands. Command
profiles may exist that will move a system faster, subject to the same performance criteria, than
those generated by the methods of the previous chapter. This should not be surprising as we have
already seen that the negative input shapers described in Section 3.5 move systems faster than
shapers containing only positive impulses. The minimum-time commands will, in general, move
systems even faster than those formed by using negative input shapers. Recall from Chapter 1 that
command generators were classified as either real-time command shapers or generators of pre-
computed command profiles. Implementation of minimum-time commands requires a type of
command generator that produces pre-computed command profiles.

In order to achieve the fastest possible motion, the actuator limit of the system must be
known.!2 Furthermore, the minimum-time command can only be calculated if the initial state and
the desired terminal state are known in advance. As a consequence of these requirements, the
minimum-time command must, in all but the simplest cases, be pre-computed using a nonlinear
optimization.

The time-optimali control of linear flexible systems has been well studied. The intensive work
on optimal control during the 1960's resulted in necessary conditions that the time-optimal
command must satisfy [21, 85]. Furthermore, sufficient conditions can be generated that verify
whether or not a candidate solutinn is truly the time-optimal command (81, 85, 148, 150].

The chief difficulty with the optimal control methods is that they did not provide a reasonable
method for finding the time-optimal commands for flexible systems. One prominent optimal
control text states of these problems, "...this boundary value problem is, in general, not very easy

12 Strictly speaking, the maximum acceleration must be known.
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to solve."!3  Several methods have recently been proposed for solving problems of this type.
These methods include the Switching Time Optimization algorithm [53, 68] and formulating the
state boundary conditions as explicit functions of a parameterized command profile [52, 111, 148,
150]. Tuttle has produced a set of MATLAB functions that reliably generate the time-optimal
commands for a wide variety of flexible systems [150].

For many types of linear systems the time-optimal command is a multi-switch bang-bang
function [11, 52, 78, 80, 85, 111, 148, 150]. Knowledge of this result simplifies the search for
the time-optimal command because only the switch times in the command profile must be
determined. This chapter is concerned with the generation of multi-switch bang-bang (MSBB)
commands. In some cases, the MSBB commands will be the time-optimal commands and in other
cases they may not be. However, in all cases discussed in this chapter, the MSBB commands will
be the minimum-time commands that satisfy the requirement of being a MSBB function. We
investigate MSBB commands because they provide very fast state transitions, regardless of
whether or not they are can be proven to be the time-optimal commands.

In the next section, the MSBB command generation problem is formulated as an input shaping
problem similar to that of Chapter 3. In Section 4.3, the extra-insensitive robustness constraints
discussed previously are used to generate a new form of robust MSBB commands. Section 4.4
examines in detail both the robustness of time-optimal commands for linear multi-mode systems
with pole dynamics and the complexity of the command profiles.!4 Section 4.5 describes a
numerical method for checking the validity of numerically obtained time-optimal command
profiles. The numerical checking procedure aids in the generation of the command profiles
because it provides a means for eliminating candidate solutions that are not truly time-optimal.

13 Applied Optimal Control, Bryson and Ho, pp. 89.
14 The time-optimal commands for these types of systems are MSBB functions.
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4.2 Input Shaping Generation of Multi-Switch Bang-Bang Commands
As mentioned in the introduction to this chapter, recent work has produced reasonable methods

for obtaining the time-optimal commands for linear flexible systems. In addition to obtaining the
command profiles, characteristics of the profiles have been studied [76, 78, 131, 132]. In an
attempt to overcome the sensitivity to modeling errors, Liu and Wie combined Singer’s zero
derivative robustness constraint with the traditional constraints used for time-optimal flexible-body
control [52]. Singh and Vadali achieved the same result by posing the problem as one of pole-zero
cancellation [111]. As it turns out, the resulting command profiles are not very robust in many
cases. As we will see in Section 4.3, the robustness of time-optimal commands based on the
derivative robustness condition is highly dependent on the desired motion. Furthermore, Section
4.4 will demonstrate that, in multi-mode systems, the robustness of time-optimal commands based
on the zero derivative constraint is highly dependent on the mode ratios.

Consider a class of systems that can be represented by:

x(t) = Fx(t) + gu(t) (4.1)

y(t) = hx(t) (4.2)
where, F is a block diagonal of [Fg, Fi,..., Fn], g=[g0 0 g1 ... gm]T, and h=[hg h; 0 ... hy, O].
Fo, g0, and hg represent the rigid-body dynamics and are given by:

[0 1
Fp = o 0]. g,=[0 1} ho=[1 0] (4.3)
Fi,..., Fn, represent the m flexible modes and are given by:
[ 0 1
Fj= _—m? ‘2Cj‘-°j] j=12,., m 4.4)

The control signal, u(t), is assumed to be bounded within the range -upax < u(t) < umax.

The goal of this section is to develop an input shaping formulation that produces the time-
optimal commands for systems that can be represented by (4.1) - (4.4). Furthermore, the input
shaping process developed here can be used to generate multi-switch bang-bang commands (that
may not be time-optimal) for a larger class of problems than those represented by (4.1) - (4.4). To
illustrate the proposed process, we consider one specific case of the systems described by (4.1) -
(4.4). The model shown in Figure 4.1 represents a system with a single flexible mode and a rigid-
body mode. A force input acts on mass my, and is restricted to the range -1 < u(t) < 1. The
benchmark model will have parameter values of m;=mp=k =1 and b =0. These parameters
give an undamped frequency of 0.2251 Hz. This simple model is used because:

1) It effectively represents a large class of physical systems.
2) The methods used on this system apply to more complex systerns, as we will see in Section 4.4.
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Figure 4.1: Benchmark System Model.

3) Robust commands generated with this model have proven effective when used on more
complicated systems [8, 9, 90, 114, 117, 136].

4) This model has been used as a benchmark system for numerous control techniques [8, 11, 52,
76, 78, 79, 90, 103-105, 111, 114, 115, 123, 135, 136, 159, 163, 165, 166].

Several methods have been proposed for determining time-optimal and robust time-optimal
commands for this benchmark system. In this section we pose the problem in the form of an input
shaping problem similar to those of the previous chapter. Additional constraint equations are
utilized to ensure that the resulting command will be the time-optimal command.

Given the previous results in time-optimal control of systems described by (4.1) - (4.4), we
know that the time-optimal command is a multi-switch bang-bang function [11, 52, 78, 111, 149].
That is, the command switches between a constant positive value and a constant negative value.
Two types of commands will be considered in this section, those that perform rest-to-rest motion
and those that accelerate the system up to a constant velocity (spin-up maneuvers). Commands that
perform rest-to-rest motion have equal numbers of positive and negative pulses. Commands that
accelerate the system up to a constant velocity have more positive pulses than negative pulses
[111]. A multi-switch bang-bang function for rest-to-rest motions can be generated by convolving
a step function with an input shaper of the form:

[/t\il]= [(l) t22 t23 t42 tnfl t:] (4.3)
where Aj is the amplitude of the ith impulse, t; is the time location of the ith impulse, and n is odd.
The amplitude of the step function must cause the maximum acceleration of the system. Figure 4.2
demonstrates that a step function convolved with this type of input shaper results in a MSBB

function. Equation 4.5 determines the impulse amplitudes for rest-to-rest input shapers:
A;=1 i=1 and n

Aj=2(-Di-l  i=2..n-1 (4.6)

Note that the amplitudes sum to zero, not to one. This is an important difference between time-
optimal input shapers and the real-time input shapers of Chapter 3. In Chapter 3, the command
signal being shaped was unknown, and consequently we wanted the shaped command to reach the
same final setpoint. Therefore, the shaper was required to have unity gain. In this chapter we
require the unshaped command to cause a step function in acceleration. If the shaper amplitudes
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Figure 4.2: Input Shaping to Generate a Multi-Switch Bang-Bang Function.

Step Function

sum to one, then the final setpoint will cause full acceleration. Under these conditions, the system
cannot be brought to rest or to a constant velocity. When the amplitudes sum to zero, the final
command state is zero, and consequently the system can be brought to rest.

The time-optimal commands for spin-up maneuvers require one more positive pulse than
negative pulses; therefore, the input shaper must take the form:

Ajl J1-22-=2.. 2 -1
[ti]_[o t t3 tg ...ty tn] 4.7)

where n is even. This means the impulse amplitudes can be written as:

A; =1 i=1
Ai=2(-D)"! i=2,..,n-1 (4.8)
Al =-1 i=n

Equations 4.6 and 4.8 ensure that the shaped command will be a multi-switch bang-bang
function. The following constraint equations ensure that the system's mass center will move the
desired amount. The rigid-body motion of the system shown in Figure 4.1 can be described as:

u(t)
= — 49
i (4.9)

where x is the displacement of the mass center. By integrating (4.9) with respect to time we get an

expression for mass center velocity:
b= [0 (4.10)

I (my+my)
where vy is the desired velocity. Integrating once more gives an expression for move distance:

_ff__um
xd—I T 4.11)

where x4 is the desired move distance. In a flexible rotary system, the transient deflection may
cause a time-varying moment of inertia. These cases may require a more general form of rigid-
body constraints. However, we use the conditions given in (4.10) and (4.11) because we are
considering the benchmark system of Figure 4.1.

The rigid-body motion can be specified by (4.10) and (4.11), however, the main difficuity with
generating time-optimal commands for flexible systems is the need to eliminate the residual
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vibration. Given that we are solving for an input shaper, we know from Chapter 3 that the
equation describing the amplitude of residual vibration is given by (3.1). This expression is
restated here for convenience:

V(©,8) = (c(0.0) + (S(@.) (4.12)
where,
C(w,f) = iAiec‘mi cos(m 1- C2 ti) (4.12a)
i=1
S(0,0) = E:Aiecmti sin(m 1- §2ti). (4.12b)

i=1
To produce a command that yields zero residual vibration, we require that (4.2) equal zerc at the
system frequency and damping ratio. The final constraint for this problem formulation ensures that
the solution is time-optimal; that is, it is the shortest command that satisfies the other constraints.
The constraint is simply:

minimize(tp) 4.13)
where tp, is the time of the last shaper impulse.

The constraint equations for determining the time-optimal commands for the system under
consideration can now be stated explicitly. For rest-to-rest motions, the commands satisfy (4.6),
(4.10) with vq = 0, (4.11) with a nonzero x4, (4.12) with V =0, and (4.13). For spin-up motions,
the commands satisfy (4.8), (4.10) with a nonzero vq, (4.12) with V =0, and (4.13). Note that
the spin-up motions do not satisfy (4.11). This reduction in constraint equations leads to the
command having fewer negative pulses. A numerical optimization is used to determine the impulse
time locations that satisfy the constraint equations.

At this point it is useful to note the difference in constraint equations used for real-tim: shaping
(Chapter 3) and time-cptimal shaping. The time-optimal shapers are subject to three additional
types of constraints. First, the amplitudes are constrained to specific values by (4.6) or (4.8).15
Second, the rigid-body constraints must be satisfied using (4.10) and (4.11). Finally, the resulting
shaper must be convolved with a step function that produces the maximum acceleration.

As mentioned previously, Singer’s zero derivative constraint has been utilized to produce time-
optimal commands with some robustness to modeling errors. To accomplished this, the above set
of constraint equations is augmented with:

0= %[e_c‘mn e +(s@g) J (4.14)

15 The negative shapers described in Section 3.5 were subject to impulse amplitude constraints, but they are different
than those given in (4.6) and (4.8). The difference arises because the real-time shaper impulse amplitudes mest sum
to one, while the time-optimal shaper impulse amplitudes must sum to zero.
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4.3 Muiti-Switch Bang-Bang Extra-Insensitive Commands

In this section, a new type of icbust MSBB command will be designed using the extra-
insensitive robustness constraints described fully in Chapter 3. The performance of the new
commands are compared to the time-optimal commands obtained using the zero derivative
robustness constraints.

The previously proposed time-optimal commands for the benchmark system of Figure 4.1 are
referred to by several different names in the literature. To avoid confusion with different types of
robust commands, we describe the commands by the constraints they satisfy. The command
obtained by setting the residual vibration to zero is labeled the time-optimal zero vibration (TO ZV)
command. The robust command derived by setting the residual vibration to zero and by setting the
derivative of the vibration to zero is called the time-optimal zero vibration and zero derivative (TO
ZVD) command.

The new commands described in this section are generated by first requiring the command to be
a multi-switch bang-bang (MSBB) function. The residual vibration is then limited to a small value,
V, at the modeling frequency. Additional constraints are obtained by setting (4.12) equal to zero at
two frequencies, one higher than the modeling frequency, ®p;, and the other lower, ®|,. The
values of the frequencies wh; and @y, are variables that depend on the value of V. We also require
the derivative constraint, (4.14), to be enforced at the modeling frequency. When the set of
constraint equations is solved with an optimization program, the values of the impulse time
locations, as well as ®y; and ©,, are determined and the resulting command profile is the multi-
switch bang-bang extra-insensitive (MSBB EI) command.

4.3.1 MSBB Extra-Insensitive Rest-to-Rest Commands
The MSBB EI command for the benchmark model with design parameters of V = 0.05 and x4 =
1, is described by the input shaper:

Al]_ I =2 2 -2 2 -2 1 .15)
t; __ 0 0.7286 1.6921 2.951 4.2098 5.1733 5.9019 [ '
When this shaper is convolved with a step function that produces the maximum actuator effort, the

resulting function is the MSBB EI command we are seeking.
The TO ZVD command for the same move distance is described by the input shaper [52]:

Al -2 2 -2 2 -2 1 @16
t; | |0 0.7124 1.6563 2.933 4.2097 5.1536 5.866 | '

Note that the MSBB EI command is only slightly longer than the TO ZVD command.
Figure 4.3 compares the sensitivity curve for the MSBB EI command given in (4.15) to the
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Figure 4.3: Sensitivity Curves for MSBB Commands.

sensitivity curves for the TO ZV command and the TO ZVD command given in (4.16). The 5%
insensitivity for the ZV command is 0.0533, the 5% insensitivity for the ZVD command is 0.2523,
and the EI command has a 5% insensitivity of 0.3511.16 The EI insensitivity is 40% mecre than
the ZVD and 660% more than with the ZV. Note that these values are not the same as those of
Chapter 3. The commands of this chapter are subject to the additional amplitude constraints of
(4.6) and the rigid-body constraints of (4.10) and (4.11). Therefore, it should not be surprising
that the insensitivity values are different. Recall that the negative shapers of Section 3.5 had
different robustness properties than their all-positive counterparts. As we will see, the robustness
of minimum-time commands is highly dependent on the rigid-body constraints.

In general, increasing robustness requires increasing command length. The above ZV command
has a duration of 4.218 sec., while the ZVD command has a duration of 5.866 sec. However, the
increase in insensitivity obtained by switching from a TO ZVD command to a MSBB EI command
comes with a minor time penalty (the EI command is 0.6% longer).

We can obtain an even more robust command by using the multi-hump EI robustness
constraints. The two-hump EI command for V = 0.05 and x4 = 1 is described by:

Al -2 2 -2 2 -2 2 -2 1 @17
T; | 7|0 0.592 1.51 2.726 3.886 5.045 6.261 7.179 7.771 '

The two-hump EI command has a 5% insensitivity of 0.6496. This is 260% more insensitive
than the ZVD command. The significant increase in insensitivity is obtained with a 32% increase
in command duraticn (7.771 sec. as compared to 5.866 sec.). Note that these insensitivities only
apply when x4 = 1. If the move distance is varied, then the robustness will also vary. However,
the EI commands will aiways be more robust than the ZVD commands. The insensitivity measures

16 Recall that the insensitivity is obtained by measuring the width of the curve to get a frequency range and then
dividing by the modeling frequency to get a nondimensional value.
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Table 4.1: Rest-to-Rest Command Insensitivity.

Command Length (sec) 5% Insensitivity
TOZV 4.2179 0.0533
TOZVD 5.8660 0.2523
MT MSBB EI 5.9019 6.3511
MT MSBB Two-Hump EI 7.7709 0.6496

for the above commands are summarized in Table 4.1. The specified insensitivity (SI) constraints
of Section 3.3 can be used in a MSBB formulation to produce commands that have a known lower
bound on their robustness. This straightforward extension will be used in Section 4.3.5 to
counteract the dependence of command robustness on slew distance.

4.3.2 Evaluation of Rest-to-Rest Commands

A computer simulation of the system shown in Figure 4.1 was performed using the TO ZVD
command, the MSBB EI command, and the MSBB two-hump EI command. Figure 4.4 compares
the system response to the command signals when k, the spring constant, is varied from 0.6 to the
nominal value of 1.0. The frequency changes from 0.174 Hz to 0.225 Hz during this parameter
variation. The envelope on the residual vibration resulting from the one-hump EI command is only
69% of the value obtained with the ZVD command. The envelope resulting from the two-hump EI
command is only 36% of the ZVD vibration envelope.

As a further test of the MSBB EI commands, we conducted hardware tests on a rotary table. A
24 in. steel beam was mounted to the table surface and a 2 Ib. mass was attached to the end of the
beam. The Inland torque motor used to rotate the table was equipped with an HP HEDS-6110
encoder that produced 44,000 counts per table revolution. The motor was powered by an Aerotech
DS 16020 amplifier and the control signals were generated by a Motion Engineering PC/DSP
Motion Controller.

The table was moved with a bang-bang command and an FFT was performed on the residual
vibration. The frequency spectrum showed a dominant low mode at approximately 2 Hz, and a
second mode close to 8 Hz. Both modes had near zero damping. For the first test, the 8 Hz mode
was neglected. A MSBB EI command was designed for 2 Hz, zero damping, V = 5%, and a 1
radian move. The input shaper for this command is:

A; 1 -2 2 -2 2 -2 | (4.18)
t ~10 0.1795 0.2388 0.4428 0.6467 0.706 0.8855 '
Figure 4.5 compares the response to the EI command and the response to a bang-bang command.

The EI command reduced the vibration to about 16% of the unshaped level. This is certainly better
than not using shaping, however, it is about three times the theoretical level of 5%. The deviation
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Figure 4.4: Responses to TO ZVD, MSBB EI,
and MSBB Two-Hump EI Commands.

from theory can be largely explained by the presence of the unmodeled 8 Hz vibration, which is
clearly visible in Figure 4.5. Section 4.4 will discuss MSBB commands for multi-mode systems.
Experimental results showing the elimination of the 8 Hz mode will be presented there.

4.3.3 Multi-Switch Bang-Bang Extra-Insensitive Spin-Up Commands

As we know from earlier in this section, the constraint equations used to design spin-up
commands are only slight variations on the constraints used for rest-to-rest motion. The impulse
amplitude constraint of (4.6) is replaced with (4.8), a nonzero terminal velocity is used in (4.10),
and (4.11) is not used.
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Figure 4.6: Oscillations of the Space Shuttle/Space Station System.
4.3.4 Evaluation of MSBB Spin-Up Commands

To test the minimum-time spin-up commands, tests were performed using Draper Laboratory's
simulation (the DRS) of the Space Shuttle and its telerobotic manipulator. The DRS was
developed over a period of ten years, and has been verified numerous times with actual shuttle
flight data. The two simulations performed for this section included a section of a late 1992 model
of the space station attached to the end of the Shuttle's remote manipulator.

The goal of the tests was to accelerate the shuttle/space station system up to a constant velocity.
Because the jets used to move the space shuttle are on-off reaction jets, the MSBB commands
generated with the above process can be used to accomplish the desired motion. The first
simulation used a single jet firing of 38.4 seconds in duration. The second simulation used a TO
ZVD command that produced the same terminal velocity as the single pulse. Figure 4.6 compares
the responses to the unshaped and shaped commands. The vibration plotted in Figure 4.6 is the
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POR (Point of Resolution) X coordinate. The POR is a position vector from the tip of the
manipulator te a point fixed in the rigid-body reference frame of the shuttle. The oscillations in the
POR are reduced by an order of magnitude with the shaped command. Much of the remaining
residual vibration is from modes that were not modeled in the command design process.

4.3.5 Variation in Robustness of Minimum-Time Commands

As mentioned previously, the robustness of minimum-time commands is highly dependent on
the desired motion. Figure 4.7 shows two different sensitivity curves of rest-to-rest TO ZVD
commands for the benchmark system. One command was designed for a move distance of 6 units
and the other for a move distance of 12 units. Although both commands meet the constraint of
zero derivative at the modeling frequency, the command designed for a move distance of 12 units
provides much better robustness to modeling errors. It keeps the vibration to below 5% over the
frequency range from 0.187 Hz to 0.237 Hz. On the other hand, the command designed for a
move distance of 6 units keeps the vibration to below 5% only over the range from 0.216 Hz to
0.233 Hz. To explore this effect further, Figure 4.8 shows the 5% insensitivity of the TO ZVD
command over a range of move distances. Not only does the insensitivity vary considerably, but it
is very small over a wide range of move distances.

The EI robustness constraints will produce a more robust command that is roughly the same
length as the TO ZVD command. However, the lower bound on the robustness is unknown. To
generate a MSBB command with a known lower bound on insensitivity, the SI robustness
constraints can be used. Figure 4.9 shows the 5% insensitivity of the MSBB SI command when
the insensitivity is specified to be at least 0.12. Figure 4.10 shows that the duration of this
command 1s roughly the same as the duration of the TO ZVD command. Notice that for some
move distances the SI command is slightly shorter than the TO ZVD command. By lowering the
minimum level of insensitivity, the duration of the MSBB SI command can be lowered further. On

the other hand, increasing the minimum insensitivity causes the command duration to increase.

4.3.6 Summary of Multi-Switch Bang-Bang Commands

The input shaping method can be modified to produce multi-switch bang-bang commands. The
modified technique can produce commands for rest-to-rest slews or spin-up motions. The
robustness of MSBB commands can vary considerably with the desired motion. However, the
MSBB EI commands are significantly more robust to modeling errors than time-optimal commands
based on the zero derivative robustness constraints. The specified-insensitivity robustness
constraints can be used to produce a MSBB command with a known lower bound on insensitivity.
Simulations and experiments have demonstrated the effectiveness of the robust MSBB commands.
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4.4 Robust MSBB Commands for Multi-Mode Systems

The previous sec.ion demonstrated the use of input shaping to generate several types of MSBB

commands for a system with a single flexible mode. This section investigates MSBB commands
for multi-mode flexible systems. Characteristics of the solution space for two-mode systems will
be discussed and then the robustness of TO ZVD commands will be investigated. It will be shown
that the robustness to errors in the second mode is highly dependent on the mode ratio. This
result, once again, suggests that EI and SI robustness constraints are more useful than zero

derivative robustness constraints.

4.4.1 Formulation of Multi-Mode MSBB Input Shaping
For the kM mode of natural frequency, Wk, and damping ratio, {k, the percentage vibration
relative to a step function is given by:

V(wg.g) = ook WkIr J[C(mk,gk )]2 +[ S5y )]2 (4.19)
where,
n
C(wy,ly) = ‘Z,I A,-ec"m""' cos((n))”’l —C%t,-) (4.19a)
n
S(og. L) = iél A,-ec"m""' sin(wyg Jl - g%t,-). (4.19b)

The zero vibration constraints for j modes are then j versions of (4.19) with V set equal to zero.
In addition to limiting residual vibration amplitude, ZVD commands require the derivative with
respect to the frequency cf the residual vibration be equal to zero. For the multiple-mode case:
d .
=Z,7(V<mk-ck)). k=1,....j. (4.20)

Constraints on the rigid-body motion are also needed. For a system modeled as a series of
masses, springs, and dampers, the rigid-body constraints are those given in (4.10) and (4.11).

4.4.2 Experimental Verification of Multi-Mode MSBB Commands

Recall that the experiments with the rotary table discussed in Section 4.3 revealed the need to
cancel two-modes of vibration. The problem of the 8 Hz vibration is not surprising if we examine
the command's sensitivity curve over a region that includes 8 Hz. Figure 4.11 shows that the
command will cause an amplification of the 8 Hz mode; the theoretical vibration level at 8 Hz is ten
times more than for a step input.

We can eliminate the second mode at 8 Hz by adding a constraint equation limiting the amplitude

of its residual vibration. An appropriate constraint is a ZV constraint at the second mode:

0=e 502t \/(c(mz,g))z + (s(mz.c))2 (4.21)

where w; = 2n*(8 Hz). The solution to this augmented set of constraints is:
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Comparing (4.22) and (4.18) we find that the command length has increased less than 1% to
satisfy this multiple-mode formulation. The sensitivity curve for this command is compared to the
original EI command in Figure 4.11.

Figure 4.12 demonstrates that the EI command with the 8 Hz limitation virtually eliminates the
high-mode vibration from the response of the rotary table. The residual vibration amplitude is now
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Figure 4.13: Simple Model of a System with Two Flexible Modes.

approximately 5.6% of the unshaped level, very close to the theoretical level of 5%. If it had been
necessary, robustness constraints could have been applied to the 8 Hz mode.

4.4.3 Characteristics of Multi-Mode TO ZVD Shaping

The time-optimal multi-mode ZVD shaper for rest-to-rest motion is obtained by satisfying the
constraints described above. The amplitudes of the shaper impulses are given by (4.6). The time
locations of the impulses are obtained by satisfying (4.19) for each mode with V = 0, (4.20) for
each mode, and the rigid-body constraints, while using a numerical optimization to minimize tp.
The solution is a funciion of the frequencies (@), the damping ratios (Ck), the move distance (xg),
and the maximumn acceleration (a,). Characteristics of the solution space will be investigated by
varying the move distance and the mode ratio.

Basing the problem formulation on the model shown in Figure 4.13, the force-to-mass ratio is
fixed by setting the total mass equal to one and then setting upax equal to the desired value of
maximum acceleration, ap,. The values of the masses and spring constants are chosen such that the
low mode equals 1 Hz and the second mode equals r Hz. The damping constants are set equal to
zero to give undamped behavior.

Figure 4.14 shows the impulse time locations (switch times) of the TO ZVD commard as a
function of r when xq = 0.5 and ap, = 1. As r increases, the slew duration tends to decrease (the
time location of the final impulse, t11, is decreasing). The maneuver time decreases rapidly as r
increases from 1 to 2, but then levels off.

When the solutions are plotted as a function of move distance, the solution can have various
degrees of complexity depending on the mode ratio. To illustrate the most general features, r will
be set equal to 4.4. Figure 4.15 shows the impulse time locations when x4 is varied. For certain
ranges, both the number of impulses and their time locations change rapidly.

In the regions where the solution changes rapidly, finding the time-optimal solution can be
difficult because there are many alternate solutions that are very nearly time-optimal. Fortunately, a
procedure for verifying the time-optimality of numerically obtained solutions has been developed
and will be discussed in Section 4.5. This procedure was used to verify the solutions shown in
Figures 4.14 and 4.15.
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4.4.4 Robustness of Multi-Mode MSBB Commands

Although the zero derivative constraint attempts to produce robustness to modeling errors, the
degree of robustness is not specified and it can vary considerably. Figure 4.16 shows two
normalized sensitivity curves for the system of Figure 4.13; one curve is normalized by the 1 Hz
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mode and the other by the 4.4 Hz mode. These curves show the residual vibration over a range
that is £10% of each mode. If we assume that 5% residual vibration is acceptable, then the 1 Hz
mode can deviate +4.0% and -4.2%. This frequency range is called the 5% insensitivity for the
low mode, I;. In this case, I; = 0.082. The second mode can vary only +0.89% and -0.93%.
That is, I = 0.0182. Although ZVD constraints are enforced at both modes, the robustness to
modeling errors is over four times better for the low mode.

Figure 4.17 shows both I} and I as a function of the mode ratio when x4= 0.5 and aj, = 1.
This data corresponds to the commands shown in Figure 4.14. While the insensitivity for the low
mode is well behaved and remains at a nearly constant level for most mode ratios, the second mode
insensitivity varies greatly and is very low for the majority of mode ratios. This problem can be
avoided by using the specified-insensitivity robustness constraints.

4.4.5 Discussion of Multi-Mode TO ZVD Commands

The complicated nature of the solution space for time-optimal ZVD commands has been
illustrated and the robustness of the commands to modeling errors has been investigated. The
robustness to errors in the second mode varies greatly and is poor for large ranges of the system
parameters. These results indicate that robustness techniques for multi-mode systems that are
based on the zero derivative constraint may not be etfective for all parameter values. The methods
of Chapter 3 for specifying the robustness should be employ=d for these types of problems.
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4.5 Numerical Verification of Robust Time-Optimal Commands
Consider again the system shown in Figure 4.13 with the parameter values used in the previous
section. Figure 4.18 shows the switch times of the time-optimal ZVD command over the small
range of 1.96 < x4 < 2.06. (This is a close-up of the information shown in Figure 4.15.) The
number of switches and their time locations change in a complicated manner.
The optimal switch times (including the switches at the start and end of the command) for the

case of x4 = 2.02 are:
_[0 0.042332 0.048551 1.09422 1.27463 1.42838 1.44837 1.51773

g 1.58709 1.60709 1.76083 1.94125 2.98692 2.99314 3.03547]

These switch times were obtained by performing a numerical optimization to minimize the

(4.23)

command duration while satisfying the constraint equations described in the previous section. If
the initial guesses used for the nonlinear optimization are changed slightly, then the optimization

finds a local minimum and returns switch times of:
_[O 0.05339 0.06250 1.04164 1.04313 1.10669 1.29053 1.5209

h= 1.75127 193512 1.99867 2.000162 2.97931 2.98841 3.0418]
Note that the command duration (the final t;) is slightly longer than for the true time-optimal

(4.24)

command of (4.23). In general, local minima can yield profiles that are considerably longer and
have more or fewer switches than the true time-optimal command.

4.5.1 Algorithm for Verification of Numerical Solutions

We know that the solution space for time-optimal ZVD commands for multi-mode systems is
very complicated. Here we present a method for verifying the time-optimality of a prospective
solution.!” Using this method we can discard local minimum solutions such as that of (4.24) and
continue searching for the global optimum.

Pontryagin’s maximum principle [85] gives the following sufficient and necessary conditions
for the time-optimal control, u*(t):

P 0=-Fp'(n) refo] (4.25)

u" (6) = ~ugmax sen(g7p" ) te [0. z,‘,] (4.26)

H(t;) =0 (4.27)
where H is the Hamiltonian, p(t) is the costate vector, tp is the maneuver time, and the * denotes
the optimal solution.

To verify the time optimality of ZV commands, we would consider the system represented by
(4.1) - (4.4). However, it has been showr that the time-optimal ZVD command is equivalent to

17 The procedure in this subsection was first suggested by, and largely developed by Professor Lucy Y. Pao [81].
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the time-optimal ZV command of a related flexible system that has double poles at each of the
flexible poles of the original system [13, 80, 111]. Thus, to verify the optimality of the TO ZVD
command, we consider an augmented system where:

0 1 0 1
2
-4 _2§ ) ; 0 0
Fj= 0" 6’ J 0 | ji=1 2., m (4.28)
0 0 -t -2jw;
T
g=[20 0 £1a 0 g1 - O Ema O &mo] (4.29)
h=[hy hy, 0 hy, 0 ... hp, 0 hyy 0] (4.30)

The sufficient and necessary conditions for the time-optimal ZV command of this augmented
system are still those given in (4.25)-(4.27). After the optimization routine obtains a candidate
solution, (4.25)-(4.27) can be used to test whether the solution is indeed the time-optimal solution.

The optimality check provided by the necessary and sufficient conditions can be implemented
numerically using the following procedure. First, using (4.25) and (4.26), calculate a matrix P,
where each row is given by:

P() = gTexp(~F ;) i=l..,n-1 (4.31)
The quantity Pp(0) represents a vector of the switching function (gTp(t)) values at the control
switch times. Hence, Pp(0) must be the zero vector and p(0), the initial costate, must lie in the
nullspace of P. If the nullspace is empty, then the solution is not optimal. If the nullspace has
more than one column and the transversality condition (4.27) does not reduce the subspace to one
column, then the solution is again not optimal.

If the nullspace has one column, proceed by calculating the switching function from 0 to tp:
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swfn(t) = gTp(r) = gTexp(-FTt)q (4.32)
where q is the nullspace of P. Finally, determine the time locations at which the switching
function changes sign. If these switches correspond to the switch times of the command, then the
solution is the unique time-optimal solution. The resolution of the time spacing used to calculate
the switching function must be small enough so that every switch is detected. In practice it is
useful to use a variable time step that decreases in value as the switching function approaches zero.

Figure 4.19 shows the command profile described by (4.23) and the corresponding switching
function. Each time the switching function crosses zero, the sign of the command changes value.
The changes of sign in the switching function near the middle of the command are difficult to see,
but zooming in on the data reveals a match between zero crossings of the switching function and
command switches. In this example, the system matrix is F = [Fo, Fy, F2] where Fo is given by
(4.3) and F| and F, are given by (4.28) with @) = 27, 02 = 44w, and €1 =82 =0. The input
vector (4.29) is chosen as:

T
g=[0101010101]. (4.33)
3 3 3 3 3

The P matrix, computed according to (4.31) with the switch times in (4.23), is then:
[_0.0141 0.3333 -0.0277 0.3100 -0.0139 0.3216 -0.0194 -0.0497 -0.0111 0.1300}
—0.0162 0.3333 -0.0316 0.3027 -0.0159 0.3179 -0.0194 -0.1424 -0.0117 0.0755
—0.3647 0.3333 —0.1957 —0.3628 —0.0296 0.2766 -0.0554 4.7641 0.0111 0.1316
—0.4249 0.3333 —-0.0459 -1.3702 -0.0524 -0.0514 0.1764 3.4382 0.0076 -0.2590
—0.4761 0.3333 0.1797 -0.9508 —-0.0231 -0.3001 0.0341 -6.4966 -0.0118 -0.0725
—0.4828 0.3333 0.2034 -0.7994 -0.0169 -0.315% 0.1554 -5.0154 -0.0086 -0.2325
P =] -0.5059 0.3333 0.2602 -0.1546 0.0059 -0.3313 0.1268 6.1443 0.0108 -0.1457
-0.5290 0.3333 0.2673 0.5801 0.0276 -0.2847 -0.2611 1.1021 0.0013 0.3315
—0.5357 0.3333 0.2591 0.7882 0.0331 -0.2607 -0.2493 -2.9026 -0.0052 0.3005 (4.34)
-0.5869 0.3333 0.0594 1.8623 0.0529 0.0227 0.0224 8.1075 0.0121 -0.0049
—0.6471 0.3333 —0.2730 1.0444 0.0191 0.3109 0.3173 1.9839 0.0031 -0.322]
-0.9956 0.3333 -0.4896 0.5890 0.0044 0.3322 -0.3255 -10.5295 -0.0094 0.2085
| -0.9977 0.3333 -0.4950 0.4681 0.0023 0.3330 -0.2567 -11.9169 -0.0106 0.1609 |

and, q =[-0.1402 -0.2128 0.2467 0.0044 ~C.7380 0.1786 0.0118 0.0009 —0.5454 0.0069]T (4.35)
lies in the nullspace of P. The switching function is then computed according to (4.32) and the
result is that shown in Figure 4.19.

If the switching function has more zero crossings than the command has switches, then the time
locations of the crossings can be used as the initial guesses for a subsequent optimization. For the
false solution of (4.24), the switching function has extra zero crossings. This discrepancy is
shown in Figure 4.20. Using these extra zero crossings and the switch times of the false solution
as initial guesses, the true time-optimal solution given by (4.23) was obtained.
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4.5.2 Discussion of Numerical Verification Method

A procedure for verifying numerically-obtained, time-optimal command profiles for linear multi-
mode flexible systems has been presented. The need for such a procedure arises because the
nonlinear optimization generally required to obtain time-optimal commands is susceptible to being
caught in local minima. Examples have been presented that show the multiplicity of possible
solutions and the effectiveness of the proposed method for eliminating sub-optimal solutions.
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5 ON-OFF CONTROL OF FLEXIBLE SYSTEMS

5.1 Introduction to On-Off Control

The time-optimal and minimum-time multi-switch bang-bang commands presented in Chapter 4
are a subset of a larger class of commands referred to as on-off control. On-off commands are
either a constant positive value, zero, or a constant negative value. The minimum-time commands
are a subset that do not contain periods when the actuator effort is zero.

The need for on-off command generators arises in three distinct cases. In some systems, the
actuators cannot produce a variable amplitude force (or torque). An example of such actuators are
the reaction jets used to move spacecraft. Other types of actuators such as pneumatic and hydraulic
cylinders may be treated as on-off actuators in some cases. Another need for on-off control arises
when the controller is attempting to perform some type of minimum-time control, as we saw in the
previous chapter. Furthermore, optimal commands that weight both fuel usage and move time are
on-off functions for many types of linear systems [69, 104, 105, 166]. The final need for on-off
control occurs when the transient deflection of the system is being limited to a specific value. By
requiring the command to be on-off in nature, the deflection of the system can be limited to a
desired value much casier than if the command is allowed to have a variable amplitude.

In certain applications, such as those involving spacecraft, we are concerned not only with
accomplishing motion free of residual vibration, but we also care about the amount of fuel used to
perform the motion. The minimum-time commands developed in the previous chapter are not
acceptable in such applications because they use fuel throughout the motion (the command is
always nonzero). Methods for designing shaped commands that limit the fuel usage are discussed
in Sections 5.2 and 5.3. In other types of applications the amplitude of transient deflection that the
system experiences is of vital importance. All of the command generating methods discussed so
far have only controlled the residual vibration. It may happen that the residual vibration is
eliminated, but the transient deflection is large enocugh to damage the system or to cause the
endpoint of the system to deviate substantially from a desired path. Techniques for limiting the
amplitude of transient deflection are described in Section 5.4.
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5.2 Fuel-Efficient On-Off Commands

This section presents a new procedure for designing command profiles that are considerably
more fuel efficient than the minimum-time commands previously reported in the literature and in
Chapter 4. The command profiles that are generated by the new technique are nearly the same
duration as the purely minimum-time commands. If the large fuel savings are considered, the new
cornmand profiles are very attractive alternatives to the minimum-time solutions. The simple model
representing a flexible system that has been used previously in Chapter 4 and in the references will
be used again to evaluate the new profiles and to compare their performance with the techniques
previously reported.

5.2.1 Fuel-Efficient Spin-Up Commands

The constraint equations used to develop the commands in this section can be categorized as
follows: (1) Constraints on rigid-body motion (2) Residual vibration constraints (3) Robustness
constraints (4) Time-optimality constraint and (5) Fuel-efficiency constraints. Note that there is not
a separate category for impulse amplitude constraints. As it turns out, the fuel-efficiency
constraints act as amplitude constraints. The rigid-body constraints are those given by (4.10) and
(4.11). The residual vibration constraints are those given by (4.12) with V = 0. The zero
derivative constraint of (4.14) will be used to obtain robustness. The extra-insensitive and
specified insensitivity constraints will not be used in this section so that we may concentrate on fuel
usage issues.

We know that to generate the minimum-time command for motions that accelerate to a constant
velocity (spin-up maneuvers), an input shaper must have the form given by (4.7). Furthermore,
the shaper must be convolved with a step input of magnitude umax. The number of impulses, n,
in the shaper depends on the type of robustness constraints that are used in the shaper design and
the desired terminal velocity, vq.

The commands developed in this section are motivated by the fact that the minimum-time
command profiles use fuel throughout their duration. We postulate that command profiles that
contain only positive pulses and allow periods of coasting can accelerate the system to a constant
velocity and robustly reduce residual vibration, while being only slightly longer than the minimum-
time commands. Therefore, the proposed fuel-efficient shaper for spin-up motions is given as:

)=l b o w) o
where n is even.

The constraints for the new command profiles are the same as for the minimum-time commands
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Figure 5.1: On-Off Spin-Up Command Profiles.

except that the amplitude constraints of (4.8) are replaced with the fuel-efficiency (amplitude)
constraints of (5.1). The command profiles generated by (5.1) are compared to the minimum-time
commands in Figure 5.1. Unlike the fuel-efficient profiles, the minimum-time profiles generate
forces in the direction opposite to the desired velocity. While negative pulses are required to slow
down a system in rest-to-rest slews, they are not required for spin-up maneuvers. The presence of
the negative pulses in spin-up commands leads to large fuel expenditures.

Note that a command profile that contains only positive pulses is not only more fuel-efficient
than the minimum-time command, it is the fuel-optimal solution. The final velocity is simply the
time integral of the command profile divided by the system mass, see (4.10). Therefore, for a
given terminal velocity, fuel usage is minimized when the command contains only positive pulses.

Using the fuel-efficiency constraint of (5.1), spin-up commands were designed for the system
of Figure 4.1 with parameter values mj = mp =k = umax = 1. Figure 5.2 compares the command
durations for the time-optimal and fuel-efficient ZV and ZVD commands for the range of 0.1 S vy
< 6. Figure 5.2a reveals that the fuel-efficient ZV profiles are essentially time optimal for all spin-
up velocities greater than about 1.2 units/sec. For velocities greater than 1.2, the length of the fuel-
efficient profile is at most 1.2% longer than the time-optimal profile. Furthermore, the average
duration is only 0.24% longer than the time-optimal over the range 1.2<vg < 6.

Figure 5.2b shows that the fuel-efficient ZVD profiles are nearly time optimal for all spin-up
velocities greater than about 1.7 units/sec. Above vg = 1.7, the length of the fuel-efficient profile
is at most 1.8% longer than the time-optimal profile, while the average duration is only 1.0%
longer than the time-optimal over the range 1.7 < vq4 <6. Whenever possible, dashed lines will be
used to represent ZV profiles and soiid lines will be used for ZVD profiles. Additionally, open
circles will be added to curves representing fuel-efficient profiles.

The fuel usage of the time-optimal and the fuel-efficient commands is compared in Figure 5.3.

145



5.2 Fuel-Efficient On-Off Commands

15 -
> | |- Time-Optimal ZV
ﬁ --o--Fuel-Efficient ZV 3,_-0-"0_
Sof 2
E o'&--e-.-e-
(=] g"e.
5
> S| d
AN
ol I 1 1 I | |
0 1 2 3 4 5 6
Spin-Up Velocity, v, (units/sec)
s (a) ZV Commands
15 —
'&,7 ——Time-Optimal ZVD
< —e—Fuel-Efficient ZVD
=
L 10 +
g
3
(=]
[
g 5k
3
Q
=
]
=
0 ] I ] | l I
0 1 2 3 4 5 6

Spin-Up Velocity, v, (units/sec)

(b) ZVD Commands
Figure 5.2: Duration of Time-Optimal and Fuel-Efficient Spin-Up Commands.

Fuel usage is measured as the cumulative time that the actuators are turned on. The proposed fuel-
efficient profiles use less fuel than their time-optimal counterparts for all terminal velocities. At
low spin-up velocities, the fuel usage is reduced by an order of magnitude. At higher velocities the
percentage savings decreases, but it is still substantial. Because the fuel-efficient profiles are very
nearly time-optimal for most velocities, the difference in fuel usage can be regarded as wasted fuel.

Given the significant fuel savings associated with the fuel-efficient profiles, it is surprising that
they are so close in duration to the time-optimal commands. By examining the structure of the
commands we can develop a better understanding of this unexpected result. Figure 5.4 shows the
impulse times for the fuel-efficient ZV shaper as a function of spin-up velocity. As the velocity is
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Figure 5.3: Fuel Usage of Time-Optimal and Fuel-Efficient Spin-Up Commands.

increased, the number of pulses in the profile increases. This transition is shown along the top of

the figure. The shaded areas indicated periods of coasting.

Figure 5.5 shows the impulse times of both the fuel-efficient and the time-optimal ZV shapers.
The impulses of both shapers evolve in a similar fashion. After the first region, the fuel-efficient
profiles are very nearly the time-optimal profiles with the negative pulses removed. Put simply,
the fuel-efficient profiles tend to coast while the time-optimal profiles decelerate. The same final
velocity is obtained because the deceleration pulses are offset by longer acceleration periods in the

time-optimal profiles.
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5.2.2 Fuel-Efficient Rest-to-Rest Commands
If the desired motion is a rest-to-rest slew rather than a velocity spin-up, the input shapers used
to construct the command must have a different form than those used for the spin-up motions. The
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Figure 5.6: On-Off Rest-to-Rest Command Profiles.

command profiles must contain negative pulses. The difference arises out of the constraint
equations that govern the two problems. In addition to the constraints used for the velocity, the
rigid-body displacement at the end of the command must also be controlled. The time-optimal rest-
to-rest command is a multi-switch bang-bang function; therefore, the time-optimal ZV and ZVD
shapers for rest-to-rest slews must have the form given by (4.5).

Once again, we postulate that command profiles which allow periods of coasting can robustly
reduce residual vibration, while being only slightly longer than the time-optimal commands. The
fuel-efficient shapers we propose for rest-to-rest maneuvers have the form:

A; 1 -1 1 .. -1 -1 1 e =11

[ t ]= [0 t2 t3 ..ty t2+) tw2+2) o tael ln] ©-2)
Figure 5.6 compares the proposed fuel-efficient rest-to-rest commands to their time-optimal
counterparts. The inherent fuel efficiency of the new commands is readily apparent. The pulscs
that cause acceleration in the desired direction all occur before the deceleration pulses begin.

Note that, unlike the fuel-efficient spin-up profiles, the fuel-efficient rest-to-rest profiles are not
the fuel-optimal solution. In fact, the fuel-optimal solution for rest-to-rest motion is undefined. As
the fuel usage is decreased, the pulses get narrower and the coast periods get longer. In the limit,
the pulse widths go to zero and the coast periods go to infinity.

The time-optimal and fuei-efficient rest-to-rest commands were determined for the benchmark
system of Figure 4.1. Figure 5.7 compares the maneuver durations for the time-optimal and fuel-
efficient ZV and ZVD rest-to-rest commands for the range of 0.1 < x4 <40. The time penalties
associated with the fuel-efficient rest-to-rest shapers are almost negligible. For xg 2 3.0, the fuel-
efficient ZV profile is at most 2.3% longer than time -optimal, and the fuel-efficient ZVD is at most
4.2% longer. Over the range 3 < x4 < 40, the fuel-efficient ZV profile averages 0.5% longer than
the time-optimal, while the fuel-efficient ZVD profile averages 0.6% longer.
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Figure 5.7: Duration of Time-Optimal and Fuel-Efficient Rest-to-Rest Commands.

The fuel saved by the new rest-to-rest commands depends on the desired slew distance just as
the fue! savings of the spin-up commands depended on terminal velocity. The fuel usage of the
time-optimal and the fuel-efficient ZV and ZVD rest-to-rest commands are compared in Figure 5.8.
For all values of slew distance the fuel-efficient profiles use less fuel than their time-optimal
counterparts. At small distances, the fuel usage is reduced by an order of magnitude. Over the
range of move distances shown, the fuel savings averages about 3 seconds.

To gain a better appreciation for the fuel-efficient commands, we can plot the time locations of
the shaper impulses as a function of slew distance. Figure 5.9 shows these times for the fuel-
efficient ZVD profiles. The structure of the command profile has been plotted along the top of the
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Figure 5.8: Fuel Usage of Rest-to-Rest Commands.

figure. For small slew distances, the command profile is composed of two positive pulses
followed immediately by two negative pulses. For the intermediate slew distances, there is a
period of coasting between positive and negative pulses. Finally, for long slews the profile is three
positive pulses followed immediately by three negative pulses. The curves representing the
impulse times in Figure 5.9 evolve in a repetitive fashion. As slew distance is increased, impulse
times converge and then give rise to additional impulses that translate into additional coast periods
or additional pulses. The shaded regions of the figure indicate periods of coasting between pulses.
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5.2.3 Variation of Insensitivity

In most previous work generating on-off command profiles it was assumed that using ZVD
constraints would guarantee good robustness to modeling errors. This is not the case, as was
demonstrated in Section 4.3 and 4.4. For certain move distances, the ZVD shaper will have
relatively poor robustness to modeling errors. In this section we will explore the variation of
robustness with the fuel-efficient commands. Two important comparisons will be made, the
comparison between the insensitivity of ZV and ZVD commands and the comparison between fuel-
efficient and time-optimal commands.

Figure 5.10 shows the 5% insensitivity of the fuel-efficient and time-optimal spin-up
commands. The figure demonstrates that insensitivity varies considerably with spin-up velocity.
For example, the ZVD commands are three times more robust for velocities near 3 units/sec than
for velocities close to 4 units/sec. Even though the insensitivity of the ZVD command varies with
spin-up velocity, it is almost always significantly larger than that of the ZV command. Figure 5.10
also demonstrates that the fuel-efficient commands have essentially the same robustness as the
time-optimal commands.

Figure 5.11 shows the 5% insensitivity of the fuel-efficient and time-optimal rest-to-rest
profiles. As expected, the ZVD commands are significantly more robust than the ZV commands.
And, once again, the fuel-efficient commands have essentially the same robustness as the time-

optimal commands.
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5.2.4 Simulation Evaluations

Experiments using Draper Laboratory's simulation of the space shuttle’s remote manipulator and
a flexible hardware testbed have verified the benefits of using input shaping to generate on-off
commands. See Section 4.3 or the references |117]. Therefore, the simulations used to test the
theoretical results of this section will be restricted to simulations of the system shown in Figure
4.1. If the trends in fue) savings and insensitivity are supported by these simulations, then given
the previously reported experimental results, there is good reason to believe that the trends will also
occur in more complicated hardware.
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Figure 5.12: Fuel-Efficient and Time-Optimal ZVD Responses.

Two important results of the above theoretical development will be tested. First, we will verify
that the fuel-efficient commands yield essentially the same rise time and robustness as the time-
optimal commands, even though it uses considerably less fuel. Second, the variation of
insensitivity with maneuver distance will be investigated.

Simulations of the system shown in Figure 4.1 were performed using the command profiles
generated with the spin-up fuel-efficient and time-optimal ZVD shapers. Figure 5.12 compares the
system response to the command profiles when the spin-up velocity is 3 units/sec and the spring
constant, k, is set equal to the values of 1.0 and 0.6. The responses with k = 1.0 represent the
case when the system model is exact. The data for k = 0.6 represent the responses to a modeling
error of 30%; the frequency shifts from 0.225 Hz to 0.174 Hz. Figure 5.12 shows that the fuel-
efficient command yields essentially the same response as the time-optimal command (the
responses are indistinguishable on the graphs). These results illustrate the similarity of time-
optimal and fuel-efficient commands in terms of move duration, as shown in Figures 5.2, and in
terms of robustness properties, as shown in Figure 5.10. However, the fuel-efficient command
requires 24% less fuel.

Figure 5.13 shows the responses to fuel-efficient ZVD rest-to-rest commands for slew distances
ranging from 2 to 20 units in steps of 2. The solid curves represent responses when the model is
exact (k = 1.0). The responses achieve the desired setpoint with zero residual vibration. The
dashed lines correspond to responses when a modeling error is introduced by changing the spring
constant to 0.6. Notice that for the same modeling error, the residual vibration varies significantly
with slew distance, reaching a minimum at about 12 units. This result demonstrates tha*
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Figure 5.13: Residual Vibration as a Function of Slew Distance.
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robustness to modeling errors is strongly dependent on slew distance, as was predicted by Figure
5.11. The low level of vibration near 12 units was predicted by the large value of insensitivity
shown at that value.

5.2.5 Discussion of Fuel-Efficient On-Off Commands

A new technique for designing on-off command profiles for flexible systems has been
presented. The technique can design command profiles for rest-to-rest slews or accelerations to
constant velocity. The new profiles are significantly more fuel efficient than time-optimal profiles,
even though the commands are effectively the same duration as the time-optimal commands.
Additionally, the new profiles have essentially the same robustness to modeling errors as the time-
optimal profiles. Other results demonstrate that insensitivity to modeling errors is highly
dependent on slew distance and spin-up velocity. Computer simulations demonstrated the
effectiveness of the proposed command profiles.
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5.3 Specified-Fuel On-Off Commands

Given the significant advantages of the fuel-efficient commands of the previous section, it is
reasonable to pursue the topic of fuel-usage in more detail. This section presents a method which
generates command profiles that use a specified amount of actuator fuel. Properties of the
command profiles, such as, duration, robustness to modeling errors, and profile complexity are
examined. Techniques are presented that facilitate implementation and indicate prudent choices for
the amount of fuel to be used when no fixed limit exists. The relationship tetween specified-fuel
methods and other techriques that balance fuel usage and slew time is examined.

5.3.1 Statement of Problem

The design of a shaped command profile with specified fuel usage for a flexible linear system
can proceed in two ways. The problem can be stated as an optimal control problem in which a cost
function is minimized, or it can be formulated as an input shaping problem. The optimal control
formulation is useful because it provides a means of checking the validity of numerical solutions,
as was shown in Section 4.5. The input shaping formulation provides two advantages. First, it
provides a straightforward method for satisfying the state boundary conditions and actuator limits.
The command profiles resulting from this straightforward process can then be verified by the check
provided by optimal control theory. Second, input shaping can be used to generate command
profiles subject to auxiliary constraints such as a fixed number of pulses. These profiles are
generated easily with input shaping, but would be more difficult to obtain through an optimal
control formulation.

For certain ranges of the parameter values, the command profile for the fuel/time optimal
control problem consists of a series of positive pulses followed by a series of negative pulses. In
other ranges, the solution is more complicated; it contains intertwined positive and negative pulses.
These two types of profiles are illustrated in Figure 5.14. Type 2 profiles arise when the fuel
usage is very near the amount of fuel used by a time-optimal command generated without regard to
fuel usage. When the fuel usage is not constrained at all, the coast periods between the intertwined
pulses go to zero and the profile is a multi-switch bang-bang without coast periods. The profiles
that occur when the command transitions from type 2 to type | profiles are the fuel-efficient
profiles described in the previous section.

The variation in the shape of the optimal profile can make implementation difficult.
Furthermore, actuator wear can be reduced by keeping the number of command pulses to a
minimum. It is in these situations when the input shaping formulation has its advantage because

the shape of the command profile can be forced into a simple form with a constant number of
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pulses. As we will see in a subsequent section, forcing the command profile away from the
optimal shape incurs only a minor time penalty.

5.3.1a Time-Optimal Control Formulation!8
The time-optimal control problem can be stated as a minimization of the cost function:
!
J= fdt=tf (5.3)
0
where tf represents the maneuver time. For rest-to-rest slewing of a linear, single-input, time-
invariant system described by the equations:
Xo =AgXo +Bou Vie [0. tf] (5.4)

the boundary conditions are:

xo(0)=[-x4 0 O .. O]T and xo(lf) =0 (5.5)
where x4 is the desired slew distance. Actuator constraints can be represented as:
~Umax Su S Umay - (5.6)

The limit on fuel usage can be expressed as:
Iy
[turarsu (5.7
0
where U represents the fuel available for the slew. When U is less than or equal to the fuel used
for the time-optimal command designed without fuel limitations, then the commund will use all the
available fuel. In this case, the inequality in (5.7) is replaced with an equality constraint and (5.7)
can be rewritten by defining a new variable:

q', =lul (5 8)
where ¢ satisfies the boundary conditions:
#(0) =0, ofts)=v. (5.9

18This formulation was suggested by Professor Tarun Singh [123).
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Augmenting the state equations given in (5.4) with the fuel usage variable given in (5.8), and using
the combined boundary conditions given in (5.5) and (5.9), yields a complete description of the
problem under consideration.

A time-optimal solution to the above problem can be obtained by performing a nonlinear
numerical optimization. Several methods have been proposed for performing optimizations of this
type. These methods include performing an integration of the state equations at each step of the
optimization [8], using the Switching Time Optimization algorithm [53, 68], and formulating the
state boundary conditions as explicit functions of a parameterized command profile [52, 111, 117,
165]. Because the systems considered here are time-invariant linear systems, the necessary
optimizations use parameterized boundary conditions. Relying on Pontryagin’s Minimum
Principle (PMP)[85], the time-optimal command profile can be parameterized by its switch times as
shown in Figure 5.14. Stating the boundary conditions in terms of the switch times leads to a set
of equations that can be satisfied while minimizing the final switch time (the maneuver duration).

A numerical solution of the above problem may not yield the time-optimal solution because
there are multiple solutions and nonlinear optimization is susceptible to selection of local minima.
Fortunately, the necessary conditions provided by PMP can be used to verify a candidate solution
to this problem, just as was done in Section 4.5 for the purely time-optimal problem. The
necessary conditions of PMP utilize the Hamiltonian which in this case is given by:19

H=1+yT (Ax+Bu)=1+1T(Agxo +Boug )+ lul (5.10)
where v is the vector of costates. The symbols A and [ represent subsets of the costates which
correspond to the costates of the original system and the fuel usage state, respectively. It can be
seen from (5.10) that the Hamiltonian for the augmented system is identical to the one defined for a
fuel/time optimal controller where | represents the relative weight of the fuel consumed in the cost
function [104, 166]. The necessary conditions for optimality require the following equations to be
satisfied [85, 104]:

A=-ATA Vre[O,tf] (5.11)
. OH
L= —a—¢- =0 -- u(z) = constant (5.12)
u=_dez("r’“) vieo, /] (5.13)
n
dez, the deadzone function is defined as:
v=_0 if lalcl
V= a if loi>1
v = dez(o) = { ¥ < S80(C) ;; ot (5.14)
-I<v<0 if o=-1

19 The state space matrices A and B represent the system augmented with the fuel usage variable; Ag and B,
represent the dynamics of the original system.
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Using (5.11) and (5.12), the costates can be represented as:

A(r) = exp(-AT1)M(0) (5.15)
and,

u(¢) = constant (5.16)
For optimality, the switching function must satisfy the constraint:

B exp(-AT :s)x(o) =4p (5.17)
where tg represents a switch time. We can soive for A(0) and p from the null space of the matrix P
where:

BT exp(-ATtl) tl 0

Z.(O)} _ BT exp —Ath 11 {l(O)} _ 0
P{u ( ) +1 {1 (5.18)

o | 0

If the control profile determined from the equation

u(t) = —dez(BTl(t)/u) (5.19)
matches the profile resulting from the parameter optimization, then the control is optimal. Note that
this process for verifying specified-fuel command profiles is analogous to the method for verifying
purely time-optimal commands described in Section 4.5.

5.3.1b Input Shaping Formulation

The process of input shaping can be used to generate a command that satisfies the state
boundary conditions and actuator limits for the specified fuel problem. The impulse amplitude
constraints must be set so that type 1 or type 2 command profiles are obtained. Type 1 profiles are
obtained when the input shaper has the form:

Ai-___[(l) -‘21 | R -1 =1 ‘l] (5.20)

I I3 - - tn12 Kni2+1) - - -1 In

and type 2 profiles are obtained with a shaper of the form:

'.'=[1 -1 =111 . -l l] (5.21)

4

(51 L0 n B3 15 oty Hy

Note that the number of pulses in the command profile can be set by choosing the value of n.
Limitations on the number of pulses is an example of a constraint which is straightforward to

implement with input shaping, but is much harder to pose in the optimal control formulation.
Because an input shaper described by (5.20) yields only type 1 command profiles regardless of
the parameter values, its use facilitates implementation because the command profile will always
consist of n/4 positive pulses followed by n/4 negative pulses. For a small range of parameter
values, the shaper described by (5.20) will result in command profiles that are slightly longer than
the commands designed by the optimal control formulation. Note, however, that the input shaping
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profiles are still time-optimal. They are simply subjected to an additional constraint that is not
enforced in the optimal control formulation; they are required to produce a type 1 profile with n/2
pulses.

In order to determine the impulse time locations (switch times), the state boundary conditions
must be satisfied. These boundary conditions are satisfied in a straightforward manner given the
input shaping formulation. If we consider the simple model shown in Figure 4.1, then the rigid-
body boundary conditions are given by (4.10) and (4.11). With an input shaper of the form given
in (5.20) these boundary conditions can be stated algebraically as:

0=(12—t3 g =ty F g4l —th1242 +...—!,,)/M (5.22)
2.,2 2 2 2
(-—tz +2t3 —...—13/2 =1 941 +...2—t,, + 219t —213r,,J
+...+ 2 I, + 241 In—..—= 2y _otp +1,_11
xg= ni/2'n n/2+] nM n=2'n v fn-1'n (5.23)

To specify the amount of fuel used (in units of time) the summation of the pulse widths is set
less than or equal to the available fuel. For profiles described by (5.20), this constraint is:
U> 'il(—l)iti (5.24)
is
Enforcement of the state boundary conditions for rest-to-rest slewing and actuator limits is
accomplished by satisfying (4.12) with V =0, (5.20) or (5.21) and (5.22)-(5.24). To obtain ZVD
commands, (4.14) is added to the problem formulation. A numerical optimization can be

performed to satisfy the above constraints while minimizing the slew duration.

5.3.2 Evaluation of Specified-Fuel Commands

Command profiles which use a specified amount of fuel can be generated using a variety of
systemn models. If the system has little flexibility, then it can be modeled as a rigid body.
Flexibility requires the inclusion of elastic modes in the state equations. Uncertainty in the values
of the elastic modes require a robust formulation. The following three types of specified fuel (SF)
commands are discussed here:

1) Rigid body (RB)

2) Zero residual Vibration (ZV)

3) Zero Vibration and Derivative (ZVD)
The RB SF profile is obtained by specifying the desired fuel usage anc satisfying the rigid-body
constraints, such as (4.10) and (4.11). For the system shown in Figure 4.1 this profile is simply a
positive pulse, followed by a region of coasting, followed by a negative pulse which is equal in
duration to the positive pulse. The coasting period may be absent in some special cases. The ZV
SF profile is obtained by adding the zero residual vibration constraint (4.12) with V = 0 to the
equations used to generate the RB SF. Finally, the ZVD SF profile is obtained by adding the zero
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Figure 5.15: Slew Duration as a Function of Fuel Usage (5 Unit Slew).

derivative constraint (4.14) to the equations used to generate the ZV SF command. There are
several important qualities of the command profiles which will be investigated: a) slew duration, b)
robustness to modeling errors, and c) profile complexity.

To demonstrate the procedure for constructing specified-fuel commands and investigate their
properties, profiles will be designed for the single-mode flexible system represenied by the
benchmark system of Figure 4.1. The force acting on mass mj is restricted to -Umax < u(t) <
Umax. If all system parameters (mj, my, k, umax) are set equal to 1, then the system has a natural
frequency of 2 radians/sec (0.2251 Hz).

5.3.2a Slew Duration

Figure 5.15 shows the move duration as a function of the amount of fuel used when the slew
distance is 5 units. The amount of fuel used is measured by the duration of time during which the
actuators are turned on. When the fuel usage is high, the fuel consumption can be reduced
considerably with very little time penalty. However, attempting to save fuel when the fuel usage is
low results in a large time penalty. Considering all three types of commands, the average slew
duration increases 1.53 sec. when the fuel is reduced from 4 sec. to 3 sec. On the other hand, the
average slew duration is increased 9.55 sec. when the fuel is reduced from 2 sec. to 1 sec.

The RB SF is, of course, the shortest command profile, while the ZVD SF is the longest. The
duration of the ZV SF ranges between the other two, equaling one or the other at certain levels of
fuel usage. Note that only a small increase in slew duration accompanies the ZVD constraints.
The ZVD profile is, at most, 27% longer than the RB profile, while typical increases are on the
order of 15-20%. The benefits obtained by sacrificing this time are documented in the following

sections.
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Figure 5.16: Sensitivity Curves for Two ZV SF Profiles.

5.3.2b Robustness to Modeling Errors

Figure 5.16 shows the sensitivity curves for the ZV SF command profile when the fuel usage
1s 3.5 sec. and 4.0 sec. The data shown in the remainder of this section will be based on a five
unit slew. When the system model is exact (0.2251 Hz), both commands yield exactly zero
residual vibration. Note that the residual vibration increases rapidly with modeling errors when the
command uses 3.5 sec. of fuel. When 4 sec. of fuel is used, the vibration stays at a low level over
a much wider frequency range. That is, the ZV SF command that uses 4 sec. of fuel is more
robust to modeling errors than the command that uses 3.5 sec. of fuel. The 5% insensitivity, I, for
the profile using 3.5 sec. of fuel is only 0.012, while the 5% I for the 4.0 sec. profile is 0.107.

To understand how the robustness (or lack there of) changes, the 5% I can be plotted as a
function of the fuel usage. Figure 5.17 shows these curves for both the ZV SF and the ZVD SF
commands; the RB SF is not shown because it does not attempt to eliminate vibratior and, hence,
robustness is poorly defined. The robustness of the ZV profile can vary by an order of magnitude,
but it is usually very small. The robustness of the ZVD profile varies by a factor of 3 and it is
almost always much greater than for the ZV profile. The advantage of the derivative robustness
constraint is clearly visible from Figure 5.17. Furthermore, Figure 5.17 suggests a novel idea: the
fuel usage can be used to effect the robustness of the profile. For example, when designing a ZV
profile, there is a huge benefit from using 4 sec. of fuel instead of 3.5 sec. as was demonstrated in
Figure 5.16. The exact opposite is true for the ZVD profile. Figure 5.17 shows that a 3.5 sec.
ZVD command is much more robust than a 4 sec. ZVD command. For either type of profile, small

changes in fuel usage can cause large changes in the robustness.
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Figure 5.17: Insensitivity as a Function of Fuel Usage.

5.3.2¢ Profile Complexity

The ease of implementation is not a straightforward quantity to measure. However, the
number of pulses in a profile and the ease of which they can be described will certainly effect
implementation. Figure 5.18 shows the impulse times for the ZV SF profile as a function of the
fuel usage. Two main regions of the solution space are evident. For high levels of fuel usage, the
profile consists of alternating positive and negative pulses (a type 2 profile). This region has been
labeled Non Fuel-Efficieit because increasing the fuel usage in this region yields no meaningful
decrease in move duration. (The time of the final impulse is nearly constant.) For example, when
the fuel usage is increased from 4.5 sec. to 6.7 sec., the move time is decreased only 0.03 sec. At
lower levels of fuel usage the profile consists of positive pulses followed by negative pulses;
positive and negative pulses are not intertwined (a type 1 profile). This region is labeled Fuel-
Efficient because increases in fuel usage result in noticeable decreases in slew duration.

Note that there are points where small changes in the fuel usage cause large changes in move
duration (4.5 sec., 2.2 sec., etc.). These points occur when the profile collapses from 4 pulses
down to just 2 pulses, one positive and one negative. The first of these points marks the boundary
between the Fuel-Efficient and Non Fuel-Efficient regions. When considering the trade-off
between fuel and time, these points represent prudent choices.

Control profiles based on the transition point between type 1 and type 2 profiles are the fuel-
efficient commands described in the previous section. Recall that these command profiles are
generated by first requiring that the commands be of type 1 and then minimizing the move
duration. No explicit limit is placed on the fuel usage. The resulting command corresponds to the
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Figure 5.18: Impulse Times (Switch Times) for the ZV SF Profile.

profile at the first node of the fuel/duration curve (the curve formed by the final impulse in Figure
5.18).

Figure 5.19 shows the impulse times for the ZVD SF profile. In this case, the optimal control
formulation switches from type 1 to type 2 at a fuel usage of just less than 5 sec. Increasing fuel
consumption above 5.0 sec. yields no noticeable decrease in move time. Although the ZVD SF
profile does not have distinct points where decreasing fuel leads to rapid increases in slew
duration, there are still regions where this effect occurs (at approximately 4 sec. and 2 sec. of fuel).
These regions are prudent choices when considering both fuel and time.

By using the input shaping formulation, the profile can be held in the type 1 configuration until
a fue] usage of approximately 5.4 sec. The system cannot be made to slew faster by increasing the
fuel usage above this amount. Both the optimal control and input shaping solutions are shown in
the region between 5.0 and 5.4 sec. of fuel. Differences in the intermediate switch times are
evident, but there is no discernible difference in slew time. This indicates that there is essentially
no time penalty for using the input shaping formulation to hold the profile in the type 1
configuration. Outside the 5.0 to 5.4 sec. interval the input shaping and time-optimal solutions are
identical.

5.3.3 Determination of ZV Command Transitions

It can be seen from Figure 5.18 that the second and third and the sixth and seventh impulse
times of the ZV SF profile tend to approach each other as fuel usage increases. To see this, start at
the left hand side and move to the right. The impulse time locations approach each other and
eventually equal the same value. After this point the impulses separate in a discontinuous jump and
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Figure 5.19: Impulse Times (Switch Times) for the ZVD SF Profile.

again start to approach each other with increasing fuel usage. When the impulses come together,
the result is a two-pulse profile as shown in Figure 5.20. (Following the discontinuity there is the
appearance of two new pulses.) It was noted earlier that these points of discontinuity are prudent
choices when there is no specific limit on fuel usage. Furthermore, the first of these points
correspond to the fuel-efficient ZV control proposed in the previous section. To fully demonstrate
the intersection of fuel-efficient and specified fuel control, we solve for the fuel usage levels that
correspond to the iransitions in the ZV SF profile.20

In order for the profile shown in Figure 5.20 to yield zero residual vibration, the second
(negative) pulse must start at an integral multiple of the vibration period. That s,

—n2t
== (5.25)
The constraint on fuel usage is:
U
=" (5.26)
From the rigid-body boundary conditions we obtain:
xg = =T 115 (5.27)
Substituting (5.25) and (5.26) into (5.27) yields:
_ Untupax 78
xg =n—p (5.28)
We can now solve for the fuel usage points that correspond to the transitions in the ZV SF profile:
U= ﬂ'fmxd (5.29)
nUTumax

20 The following solution was developed by Professor Tarun Singh [123].
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Figure 5.20: Structure of the Two-Pulse ZV SF Profile.

The fuel-efficient ZV commands of the previous section correspond to n = 1. If it is desired to use
even less fuel, then n = 2 represents a prudent choice of fuel usage. Higher values of n place
greater importance on fuel usage.

The command profiles corresponding to the nodes of the fuel/duration curve can also be

obtained using a fuel/time optimal problem formulation, where the cost function is:
'
1= [+ atunyar (5.30)
0
The cost function is minimized subject to the boundary conditions and the state equations. The

solutions at the nodes are obtained by first ca'culating an appropriate weight, O, and then using
Ocrit in (5.30) [104]). Figure 5.21 shows that in order to obtain fuel-efficient control (commands at
the first node of the fuel/duration curve), o..rjy must be a function of the desired move distance.
That is, the fuel-efficient control cannot be obtained using a constant weighting value in the
fuel/time optimal control formulation.

If it is desired to use command profiles corresponding to the nodes of the fuel/duration curves,
then the easiest procedure is to use the fuel-efficient method proposed in the previous section, as it
is valid for any robustness criteria including both ZV and ZVD constraints. Use of (5.29) with the
specified-fuel formulation described above is also straightforward when ZV commands are used.
The calculation of orj and then using a fuel/time optimization is a slightly more difficult process.

5.3.4 Discussion of Specified-Fuel Commands

A method was presented for designing on-off command profiles for flexible systems that use a
specified amount of actuator fuel. The problem was formulated as both a time-optimal control
problem and an input shaping problem. Three types of specified-fuel commands were discussed,
those based on rigid-body dynamics, flexible-body dynamics, and robust flexible-body dynamics.
Properties of the command profiles were compared as a function of the fuel usage. Plots of the
slew duration vs. fuel usage show that the fuel consumption can be significantly reduced (as
compared to a purely time-optimal command), with very little increase in slew time. However,
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very low levels of fuel usage require very long slew durations. The robust formulation of the
problem accommodates large modeling uncertainty at the cost of small increases in slew duration.
Locations where the command profile based on flexible dynamics transitions from 4 palses to 2
pulses are prudent choices and the corresponding fuel usage was determiried in closed form.
Finally, the input shaping formulation was shown to be advantageous because it can be used to

force the command profile into a consistent form.
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5.4 Deflection-Limiting Commands

Applications such as reorienting the space shuttle with a payload attached to the remote
manipulator require large angle slewing with suppression of elastic modes. When the maneuver
time is minimized without regard to system flexibility, large amplitude transient and steady state
oscillations may occur, especially when the system is equipped with on-off reaction jets. The
objective in such applications is often a rest-to-rest slew with limited vibration both during and at
the end of the maneuver. For example, it may be necessary to generate a torque profile such that a
system like the one shown in Figure 5.22 is rotated through a desired angle, 8, while the
deflection (62) remains small throughout the slew and goes to zero at the end of the slew. A
similar problem would be to move the system shown in Figure 4.1 a finite distance, while limiting
the maximum spring compression and eliminating the residual vibration.

Considerable work has been done on the topic of slewing with vibration control, in addition to
the work on time-optirnal flexible-body control previously cited. Closed loop, near-minimum time
control based on Liapunov and sliding mode techniques has been presented [23, 47). Calculus of
variations was used to generate command profiiles designed to minimize vibration in a simple
flexible spacecraft model [29]. Shaped torque commands constructed from finite trigonometric
series were proposed for minimizing modal vibration in a flexible satellite system [142]. Profiles
designed using optimal control techniques were applied to a model of a spacecraft with flexible
appendages [147]. |

The previous work with minimum-time commands and the on-off commands of the previous
sections has concentrated on eliminating residual vibration. No constraints were placed on the
amplitude of deflection during the slew. Input shaping is very successful at eliminating residual
vibration and has the benefit of decreasing transient deflection when compared to bang-bang
control {79]. However, the amplitude of the transient deflection is not limited and can still be very
large. It is well known that large structural deflections induce large internal loads, and hence,
deflection limiting can be very important.

This section presents a robust input shaping method for limiting deflection during the slew.
This problem is significantly different than the earlier input shaping problem formulations. The
difference arises from the nature of the constraint equations used to design the on-off control
profiles. Previously, constraints were placed on the residual vibration amplitude, slew distance,
fuel usage, etc. at a specific instant in time — the end of the command profile. However, limiting
deflection during the slew requires constraints over the entire period of the slew.

Three procedures for obtaining deflection-limiting input shapers will be presented. The first
method places constraints on the extrema points of the system’s deflection. This method yields
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Figure 5.22: Simple Model of Flexible Rotary System.

responses which precisely meet the desired deflection amplitude, but the solutions are difficult to
obtain when the deflection is severely limited. The second method yields approximate solutions by
limiting the deflection amplitude at specific time intervals, rather than at the extrema points. The
final method constrains the global maximum deflection by placing a simulation of the system being
controlled inside of an optimization loop. This method is more difficult to use, but has the ability
to deal directly with multi-mode and nonlinear systems. Results from computer simulations will be
used throughout this section to illustrate key results.

5.4.1 Constraints Used for Deflection-Limiting Input Shaping

As we know, the constraints used thus far for generating on-off commands can be categorized as
(1) Residual vibration constraints (2) Robustness constraints (3) Requirement of time optimality
(4) Rigid-body constraints (5) Constraints on the impulse amplitudes and (6) Fuel-efficiency

constraints. In this section an additional type of constraint is used: (7) Deflection constraints.

5.4.2 Deflection Constraints

In order to control the level of deflectior during a motion, an expression for the deflection as a
function of the input shaper must be obtained. The desired function can be generated using
superposition of deflections from individual step inputs. An expression for the deflection of the
system shown in Figure 4.1 is easily derived. The result is applicable to other systems with one
flexible mode and a rigid-body mode, such as the system in Figure 5.22. The Laplace transforms
of the equations of motion for the system shown in Figure 4.1 are:

F(s)=(mls2 +k)x1(s)—kx2(s) (5.31)
0 = (mys2 + k)X, (s) — kx,(s). (5.32)
Equation (5.32) can be solved for x2(s):
k
XZ(S) = mx](&‘). (533)
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Combining (5.31) and (5.33) and assuming F(s) = up,,, /s (assuming F(t) is a step input of
magnitude unpayx) gives:
mys? +k
x((s)=u . 5.34
The deflection for this system is the change in the natural length of the spring, which is defined as

D(t)=x2(t)-x1(t). Compression is a negative value; extension is positive. Therefore, from (5.33)

we have:
k
D(s)=| ————-1 5.35
(s) [(m2s7' ey ]x,(s) (5.35)
substituting (5.34) into (5.35) yields:
—U, . M 1
D(s) = —max—2 5.36
() mym, {s(s2+a)2)} ( )
where,
w2 =(M1k. (5.37)
mm, )

Taking the inverse Laplace transform of (5.36) assuming zero initial conditions gives the deflection

from a step input as a function of time:

D(t)= DT’““[cos(ax) -1] (5.38)
where o is the natural frequency of oscillation and the maximum deflection magnitude, Dpax, is
given by:

2u,.m

Dy =——max—2_ 5.39

max k(m +m,) ( )

The coefficient in (5.38) is written as Dp,ax/2 because the quantity enclosed in the brackets has a
maximum magnitude of two. A deflection equation with a structure identical to (5.38) can be
similarly derived for the system shown in Figure 5.22.

Multiple versions of (5.38) can be used to generate a function that describes the deflection
throughout a slew containing many step inputs (a pulse in force is composed of two step inputs —
one positive and one negative delayed in time). Assuming that the command profile is a fuel-
efficient profile obtained by using (5.2), then the deflection throughout the slew is given by:

D(t) = Dy (m+1y (1) tn St<tper, m=1, .., n. (5.40)
where,
m
Dimy-(man®) = . 4 D“z“”‘ [cos(@(r-1;))-1] (5.41)

It is important to note the restriction presented by the qualifier ¢,, <t <1,,,,. The deflection which
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Figure 5.23: Formation of the Deflection Function from
Piecewise-Continuous Segments.

occurs between the first and second impulses of the input, Dj_2(t), (the period during the first
pulse) is given by (5.40) when m = 1. The defiection, D2.3(t), between the second and third
impulses is given by (5.40) when m = 2. This is the coasting period between the first and second
positive pulses (see Figure 3). The deflection, D3.4(t), that occurs during the second pulse is
given by (5.40) with m = 3, etc. This process of generating the deflection function is illustrated in
Figure 5.23. Equation 5.40 amounts to a piecewise-continuous function composed of n finite
length segments; each of the segments has a limited range of applicability.

Note that the magnitude of deflection caused by a series of pulses can exceed Dpax if the
deflection components from individual pulses interfere constructively. The actual value of the
parameter Dpay is not needed if we generate the constraint equations in terms of a percentage
deflection limit. We can form a nondimensional deflection limit, Dy, which is equal to the
amplitude of the desired deflection, divided by Dmax. When the constraints are formed in this
manner, the parameter Dpyax does not appear.

5.4.3 Limiting Local Extrema Points

One method to limit the maximum transient deflection is to locate all of the local extrema of the
deflection function and place limits on the deflection amplitude at these instances. To obtain the
extrema points of the deflection, (5.40) is differentiated with respect to time and the result is set
equal to zero. The time values satisfying the resulting equation correspond to the extrema points.
To obtain the general expression for the location of the extrema points, we first start with the
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extremna point that occurs between the first and second impulses. The deflection between impulses
1 and 2, Dj.5(t), is obtained from (5.40) with m = 1:

D,_,(1) = A DT'“"‘[cos(ax) -1]. (5.42)
Differentiating (22) and setting the result to zero, we obtain

dD,._ D, .

Tltz = A T[—a)sm(ax)] =0. (5.43)

Equation 5.43 is satisfied by ot =in, i =0, 1, 2,... The even values of i correspond to times
when the deflection is at a minimum (zero), while the odd values of i correspond to times when
the magnitude of the deflection, Ixa(t)-x(t)l, is at a maximum — these are the times we are seeking.
If we require that Dj_»(t) given by (5.42) be less than a desired value at t = T/, then we have
obtained a deflection constraint equation which is a function of a specified time. The constraint
can be written as:

Di_o(n/ ) = A b “2‘“ [cos(r) —1]|= A{Djpax < Df. (5.44)

where Dy, is the desired nondimensional deflection limit. Note that (5.44) is only an appropriate
constraint if t = T/@ lies between the first and second impulses. If the second impulse occurs
before t = /@ , then there will not be an extrema point of the deflection between the first and
second impulse and, therefore, (5.44) is not a valid constraint.

The above process for obtaining deflection constraints can be repeated for all n segments of
(5.40). The steps required for m = 2 will be shown and then a general purpose formula will be
given. When m = 2, the deflection between t; and tj is:

D,_,(t) = A DT"“""[cos(wt) - 1]+ A, %[cos(w(t —-4))- 1]. (5.45)
Differentiating (5.45), we obtain:

dD,_, D : D, .

o= A T"““[—a)sm(ax)] +4, —;‘L[—a)sm(a)(t —1))]=0. (5.46)

Assuming that the impulse amplitudes are given by (5.2), then (5.46) is satisfied when:

sin(wt) =sin(w(t-1)). (5.47)
Expanding the term on the right hand side yields:

sin(wt)=sin(wt)cos(wty)—cos(wt)sin(wr). (5.48)
Dividing by cos(wt) and rearranging terms gives:

- —sin(we) 5.49

tan(wt) —z_l—cos(a)tz)' (5.49)

Finally, taking the inverse tangent gives the extrema point between the second and third impulses:
_ L ,o1f _—sin(wn) ]
ty_3=—t . 5.50
2370 an [l—cos(wtg) ( )
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Figure 5.24: Comparison of Unrestricted and Deflection-Limited Responses.

If t2_3 lies between the second and third impulses, then substituting t2_3 as given by (5.50) into
(5.45) and limiting the resultant equation to below Dy, is an appropriate constraint. Assuming that
the impulse amplitudes are either 1, the location of the extrema point between the impulses i and

(i+1) is:

ity = ] tan_l[sgn(A2)sin(a)t2)+sgn(A3)sin(a)t3)+...+sgn(A,-)sin(a)t,-)] (5.51)

P sgn(Ay)+sgn(Ay)cos(rp)+...+sgn(A;)cos(wr;)

where, the sgn function gives the sign of the impulse amplitude. The extrema points given by
(5.51) are substituted back into the appropriate segment of (5.40) and the resulting equations are
constrained to be below the desired deflection limit. If the deflection constraint equations are
solved simultaneously with the previous on-off input shaping constraint equations, then the
resulting switch times will generate the deflection-limiting on-off command profile we are seeking.
To assess the above process, command profiles were designed for the system shown in Figure
4.1. A natural frequency of 0.2251 Hz was obtained by setting mj=my=k =umax =1. A
desired move distance of 5 units was selected as a baseline case. The fuel-efficient command

without deflection limiting consists of two positive and two negative pulses and is described by:

Al I -1 1 -1 -1 1 -1 1 -

= ) (5.52)
f 0 1.1998 23854 3.8605 3.8605 5.3356 6.5212 7.7210]

The deflection resulting from this fuel-efficient command is shown in Figure 5.24. The maximum

deflection is 0.75 units.
Deflection-limiting constraints were then added to the problem formulation and a rew
optimization was performed with the deflection limited to 0.6, so that the deflection would be 80%
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Figure 5.25: WISP System.

of the level with the unconstrained fuel-efficient profile. The 80% limited command profile
consists of three positive and three negative pulses given by:

A 1 -1 1 -1 1 -1 -1 1 -1 | 1 1 (5.53)
f |0 09062 1.5359 2.0527 27770 39612 39612 5.1454 58698 6.3865 7.0162 7.9224 | ‘7

The response to the deflection-limiting profile is also shown in Figure 5.24. Although the
deflection is reduced 20%, the slew duration is increased only 2.6%. Note that the residual
vibration is completely eliminated by both comimands.

For a more rigorous test, deflection-limiting command profiles were designed for the nonlinear
Waves In Space Plasma (WISP) system [6]. The WISP system consists of two 150 m long
antenna booms attached to the Space Shuttle. A sketch of the system is shown in Figure 5.25.
When the system is moved using the thrusters, tens of meters of endpoint deflection can occur.

In order to apply the above method, which is based on the simple models of Figure 4.1, to the
nonlinear WISP system, a simulation of the WISP system was performed using the nonlinear
model previously described in the literature [6]. An approximate value for the fundamental period
of 535 sec. was obtained from time response data and the damping was approximately zero.
Using these two parameteis and the actuator force-to-mass ratio, the WISP system was modeled as
the system shown in Figure 5.22. A deflection-limiting input shaper was designed by limiting the
extrema points as described above. The deflection limit was set so that the tip deflection would be
15 m. The resulting command was then used as the input to the nonlinear WISP simulation.?!

21 The simulations of the WISP system were performed by Dr. Arun Banerjee.
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Figure 5.26: Deflection Responses of the WISP System.

Figure 5.26 shows deflection responses to a bang-bang input, a fuel-efficient input, and the
deflection-limited input. Not only is the residual oscillation virtually eliminated by the shaped
profiles, but the deflection during the slew is very close to the design value. The profile designed
for 15 m maximum deflection yields a tip deflection of 15.4 m. Although the profiles were
designed using a simple, one-mode linear model, the method provides excellent performance for
the nonlinear system. The small level of residual vibration results from system nonlinearities and a
second mode whose period is approximately 90 sec.

Using the extrema points to limit the deflection becomes difficult when the deflection is severely
limited. A problem arises because severe restrictions on the deflection amplitude require the use of
numerous, short duration pulses. Each additional pulse leads to two additional extrema points and
consequently two additional versions of (5.51). Because the inverse tangent function is used in
(5.51), a time value which falls within one period of the oscillation is returned. The time value
must be shifted by an appropriate multiple of the half period to get the true time location of the
extrema point. This time shifting becomes difficult to implement with large numbers of pulses and
slews that take several periods to complete.

5.4.4 Deflection Sampling

In this section a procedure is presented that does not use (5.51), consequently it can be used
when large decreases in the deflection are desired. The method is an approximate method,;
however, it yields very good solutions. Rather than locate and limit the extrema points, the
deflection given by (20) is constrained to be less than some tolerable percentage deflection, Dy at
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Figure 5.27: Illustration of Deflection Sampling.

periodic instances throughout the slew. That is, the deflection constraints are:
m
Dy 2 _zl Aj[cos(a(ts - 1;))—1] tp St<tpyl, m=1, ., n (5.54)
I=

where tg are specific instances in time at which the deilection function is sampled and required to be
bounded by D1.. The process of deflection sampling is illustrated in Figure 5.27. Note that this
procedure does not guarantee that the deflection will be bounded by Dy at all times, only at the
sampled times. However, by making the sampling points close together, the deflection can be
effectively limited. The trade-off is that as the accuracy of the solution is increased, the number of
equations which must be satisfied increases.

Rather than using the fixed time interval sampling shown in Figure 5.27, a fixed number of
samples per force pulse and coast period is used. The primary reason for this choice is ease of
implementation. During each pulse or coast period the deflection constraint is given by one of the
n equations listed in (5.54). By using R samples during each pulse or coast period, the constraints
can pe written easily as R versions of the n equations given in (5.54). That is, the deflection
constraints consist of R versions of (5.54) with m = 1, R versions of (5.54) with m = 2, etc. For
a given value of m, the R equations differ in that the time location at which they are enforced is
different. Within each pulse or coast period, the deflection is sampled at (tm4j-tm)/R.

If a fixed time periocd sampling is used instead, the deflection constraint that must be used at
each sampling point is then a function of the impulse times. Because the impulse times are being
changed during the optimization and the change in impulse times triggers a change in the equations
being optimized, the optimization becomes very difficult to perform.
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Figure 5.28: Deflection Curves of Linear System for Several
Values of the Deflection Limit.

To demonstrate the effectiveness of deflection sampling, new profiles where designed for the
system of Figure 4.1 using a sampling resoiution of R = 20. The new profiles where designed to
meet more severe deflection-limiting constraints. Figure 5.28 shows the responses of Figure 5.24
along with responses when the deflection is limited to 60% and 20% of the baseline level. Note
that in all cases the residual vibration is zero. Limiting the deflection causes the slew time to
increase. The increase in slew time is small for the 80% and 60% limited profiles. The time
penalty increases substantially as the deflection limit approaches zero. Even though deflection
sampling is an approximate method, the deflection curves shown in Figure 5.28 are all well within
1% of the desired deflection limit.

The effectiveness of deflection sampling depends on the sampling resolution. The appropriate
choice of resolution depends on system parameters such as natural frequency and maneuver
duration; however, the most important issue is the acceptable overshoot in maximum deflection
amplitude. If the actual deflection is permitted to exceed Dy, by a few percent, then the sampling
resolution can be very coarse. Two or three samples per command pulse may be all that is needed.
If, on the other hand, the deflection limit is a very strict design parameter, then the sampling
resolution must be increased or the deflection limit must be decreased slightly to account for the

overshoot between sampling points.
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5.4.5 Using a Simuiation Inside the Optimization Loop

The final method presented here for obtaining deflection-limiting shapers uses a numerical
simulation within an optimization loop.22 To implement this scheme, the nonlinear constraint
optimization software, ADS[158] was used, choosing the option of modified method of feasible
directions. The deflection amplitude constraint is handled by numerically integrating the equ~tions
of motion up to the final time and noting the maximum tip deflection. This global maximum
deflection is returned to the optimization and used to drive the search algorithm. All gradients
needed in the optimization method are calculated by finite difference. It is found that scaling of the
robustness constraint, helps significantly in the convergence of the optimization process.

To proceed, one chooses a particular pulse profile (choose a specific value for n in (5.2)). A
solution is sought first neglecting the deflection amplitude information provided by the simulation;
this paves the way for “creeping up” on the solution. When the solution without deflection
limiting is obtained, it is used as the initial guess for the optimization which includes the
simulation feedback. When the deflection limiting is first included in the constraints, Dy, is
initially set to a value very close to the deflection that occurs without any deflection constraints.
When a solution is obtained, it is used as the initial guess for a more restrictive value of Dp.. The
process is repeated until the desired value of Dr is reached. The above process is not a
requirement; however, it facilitates the optimization.

Although this method usually requires the use of several optimizations, it can directly handle
system nonlinearities if a nonlinear simulation is used for feedback to the optimization.
Furthermore, it can easily accommodate multi-mode systems. To do this, one integrates the multi-
mode system equations and constrains the global maximum deflection below the specified limit.
To use the first two deflection-limiting methods on multi-mode systems requires the generation of
a multi-mode deflection expression. That is, an expression analogous to (5.40) must be derived

which accounts for the multiple modes.

5.4.6 Comparison of Deflection-Limiting Methods

Although the three methods described above are significantly different in their approaches to the
problem, they produce very similar command profiles. Limiting local extrema and using a
simulation in the loop will produce exactly the same results if the system is perfectly linear.
Deflection sampling will not produce exactly the same result due to its approximate nature.

When the system is nonlinear, each technique will produce a slightly different profile. When
applied to the WISP system with a 15 m deflection limit, the techniques yield the following

profiles:

22 This procedure was suggested by Dr. Arun Banerjee [8, 114].
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Limiting Local Extrema:
',ﬂ_’l -1 1 -1 1 -2 1 -1 1 -1 1 (5.55)
% | T|0 976 1801 2842 3721 4952 6183 706.1 8103 8927 9903 )

Deflection Sampling:

'A,-‘_'l -1 1 -1 1 -2 1 -1 1 -1 l] (5.56)

Ui [0 97.8 1804 2847 3724 4952 6179 705.6 8099 892.6 9903

Simulation in the Loop:

A1 1 - ] -1 1 -1 -l 1 -1 1 -1 1 (5.57)
5 ]7[o 1009 1785 2763 3638 479.1 507.6 623.5 7089 8049 8857 989.2 )

The response to each of these profiles is shown in Figure 5.29. All three methods limit the

deflection to near the 15 m limit and produce very small levels of residual vibration.

5.4.7 Deflection-Limiting of Multi-Mode Systems

As mentioned previously, the small level of residual oscillation of the WISP system is
composed partly of a secondary mode with a 90 sec. period. A command profile was generated
using deflection sampling to eliminate this secondary mode by simply enforcing a second set of
ZVD constraints at this higher mode. Figure 5.30 compares the response of this two-mode profile
to the three responses shown in Figure 5.29. The secondary mode has been completely
eliminated. The downward trend in the response from 1000 to 1200 sec. is caused by the small
amplitude residual vibration of the low mode.

Note that the deflection of the second mode was not limited, only its residual amplitude. That
is, the deflection constraints where based on the single-mode deflection expression given in (5.54).
Multi-mode deflection constraints were not needed in this case because the first mode dominates
the transient deflection amplitude. If a secondary mode contributes significantly to the deflection
amplitude, then a two-mode deflection expression must be used with deflection sampling. The
process of limiting the local extrema gets prohibitively complicated for multi-mode systems. Muiti-
mode system deflections are handled well by the simulation-in-the-loop method.

5.4.8 Characteristics of Deflection-Limiting Input Shapers

The number of impulses and their time locations in a deflection-limiting input shaper depend on
the system frequency, damping, slew distance, force-to-mass ratio, and transient deflection limit.
In this section, the characteristics of deflection-limiting shapers will be presented as a function of
the deflection limit.

The results shown here are for the benchmark system of Figure 4.1. Figure 5.31 shows the
impulse time locations (command switch times) as a function of the percentage deflection. Only
the impulse locations for the first half of the profile are shown; the profile is antisymmetrical about

the midpoint.
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For small reductions in the deflection (large values of the percentage deflection), the command
consists of three positive pulses followed immediately by three negative pulses. As the deflection
is decreased, additional pulses appear in the profile. This effect makes intuitive sense because the
command must accelerate the system for shorter periods of time if the deflection is to be reduced.
Mathematically, this means that the optimization problem described above admits a solution only in
a manifold of expanding dimension. In seeking a numerical solution, one learns this whenever the
constrained optimization fails for an assumed number of pulses (shaper impulses). A solution is
then facilitated by increasing the number of pulses. The information shown in Figure 5.31 was
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obtained by cycling through the deflection limit and performing an optimization to obtain the
impulse :imes at each value.

We can now make important observations about deflection-limiting command profiles. The first
pulse in the command accelerates the system as long as possible without exceeding the maximuin
allowable deflection. The subsequent positive pulses keep forcing the deflection to the maximum
value. Furthermore, the additional pulses that appear when the deflection limit is lowered tend to
clusier niear the center of the positive pulse train. The width of the middle positive pulses (or, the
coast periods between the pulses) is set by 2 minimum pulse width requirement. If a minimum
pulse width requirement is not used, the pulses, or coast periods become very small and would not
be realizable because physical systems always take a finite period of time to change the actuator
state. If the minimum width is reduced, the number of pulses increases. The negative pulses
decelerate the system in a similar manner; they keep the deflection near the maximum allowable.

Implementation of this method would be facilitated if the number of command pulses was
independent of the system parameters and deflection limit. The method can be modified slightly to
achieve such a result. The number of pulses can be specified by simply fixing the number of
impulses, n, in the shaper, see (5.2). However, if the profile is limited to fewer pulses than
contained in the optimal solution, then the slew duration will obviously be lengthened.

Figure 5.32 shows the maneuver duration for a 5 unit slew when the command profile is limited
to a specified number of pulses. Limiting the command profile to 6 pulses has essentially no effect
on the maneuver duration until the deflection is lowered to approximately 50% of the baseline
level. Allowing 8 pulses yields essentially time-optimal slews down to a deflection limit of
approximately 30%. Only at very low levels of allowable deflection is a significant time penalty
incurred by restricting the command profile to a small number of pulses. That is, fixing the
number of pulses for ease of implementation is advantageous except in very restricted cases.

5.4.9 Discussion of Deflection-Limiting Commands

Methods for limiting both transient and residual oscillations during the rest-to-rest slewing of
flexible systems has been presented. The technique uses a specialized form of input shaping to
create appropriate on-off command profiles. Three procedures were presented for designing the
necessary input shaper 1) the extrema points of the deflection were located and limited, 2) the
deflection was limited at discrete time locations, and 3) a simulation of the system was placed
inside an optimization loop. Procedure 1 yields exact solutions, but is difficult to implement when
severe limitations are placed on the deflection or when the system has multiple modes. Procedure
2 is the most straightforward and can be used effectively for cases of severe deflection limiting.
Procedure 3 is both exact and direct, but requires several optimizations.

181



5.4 Deflection-Limiting Commands

6 —

12 Pulses Q a Q
l 10 Pulses

+ 8 .3 Positive and Negative
|+ :Pulses = 6 Total Pulses / l

Impulse Time Locations (sec)

o

: 1 !
50 60 70 80 90 100

Deflection (% of Baseline)

Figure 5.31: Command Structure as a Function of Deflection Limit.

Impulse Times are Shown for Positive Pulses Only.

25

—_ B —---6 Pulses

g - — -8 Pulses

L 20 v\ e 10 Pulses

R . X N R 12 Pulses

=R S e N R 14 Pulses

= ——16 Pulses

5 10|

Q

3 S5+

2

2 0 | | | ! |
0 20 40 60 80 100

Deflection (% of Baseline)

Figure 5.32: Command Duration with Fixed Number of Pulses.

The procedures were combined with previous input shaping techniques to obtain near time-
optimal commands that robustly eliminate residual vibration and are fuel-efficient. The deflection

and residual oscillat

ion reduction was demonstrated with computer simulations. Furthermore, the

robustness of the technique was demonstrated with the use of nonlinear simulations.

It was shown that the deflection can be significantly reduced without a substaniial time penalty.
As deflection is reduced the complexity of the command profile is increased. However, the
command profile can be forced into a simple form for all values of the deflection with only a small

penalty in move time.
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6 METHODS FOR FACILITATING
IMPLEMENTATION OF ON-OFF COMMANDS

6.1 Introduction to Methods for Facilitating Implementation

Generation of the on-off command profiles as presented in the previous two chapters requires
the use of a nonlinear optimization to determine the profile for each desired motion (slew distance
or spin-up velocity). While optimization imnethods are very powerful and can produce robust
command profiles, they present some difficulties for real-time implementation.

There are two approaches to using the optimized command profiles. First, an optimization
could be performed at the start of every slew. This introduces a time delay into the dynamics.
Furthermore, nonlinear optimizations are subject to local minima, so for consistent performance
some verification or checking algorithm musi be performed on the output of the numerical
optimization. This introduces an additional delay.

A second approach would be to compute the command profiles off-line and then store them for
retrieval on demand. Possible techniques for accomplishing this include storing switch times in a
table, generating curve fits to the data, or training a neural network to generate the command
profile. For systems that perform a wide range of maneuvers or have limited computer memory,
storing tabulated solutions is impractical. As we have seen, the switch times can be very
complicated functions of the slew distance. This makes curve fitting a difficult proposition in
many cases.

The methods presented in this chapter address the implementation difficulty presented by on-
off commands. In Sections 6.2 - 6.4 on-off command profiles will be developed that can be
described by simple functions of the system parameters. The necessary parameters are the system
frequencies, damping ratios, the desired slew motion, and the maximum acceleration. Because the
commands are described by closed-form equations, they can be generated in real-time without
performing a numerical optimization. Section 6.2 deals with undamped single-mode systems,
while Section 6.3 discusses modifications of the proposed method that allows it to work on
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damped systems. Section 6.4 demonstrates the method on multi-mode systems.

Many of the profiles described in the Sections 6.2 - 6.4 are near time optimal. Other important
qualities of the proposed command profiles, such as duration, fuel usage, maximum transient
deflection, and robustness to modeling errors will be compared to both the time-optimal control of
chapter 4, as well as input shaping with the negative input shapers of Section 3.5.

Section 6.5 explores the use of neural networks for implementing on-off control schemes. On-
off commands for the benchmark system of Figure 4.1 are generated for a finite number of slew
distances. Several types of neural networks are then trained using the data set. The performance
of the various networks are compared.
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6.2 Transition Shaping for On-Off Control of
Undamped Single-Mode Systems

The goal of this section is to develop on-off commands that can be described by closed-form
expressions involving the system parameters. A bang-bang function is an example of an on-off
command that can be simply described by the system parameters. To demonstrate, a bang-bang
command profile will be designed to move the system of Figure 4.1 a desired distance, x4. If we
assume that the bang-bang profile begins at time zero, then the only unknown is the switch time,
t, because the duration of the negative pulse must equal the duration of the positive pulse to bring
the system to rest. The value of tz can be obtained from the rigid-body dynamics. If the position
of the mass center is given by x, then:

(1) = Fi (6.1)
m +my
The position of the mass center at t must equal one half the desired slew distance, xd:
X _q_FO 2 _o02
2 f my +my ! 2 2 (6.2)

where o = Upax/(m+my) is the maximum acceleration (force-to-mass ratio). Therefore,

by = \% (6.3)

Figure 6.1 shows the position of mass my when the benchmark system is given a bang-bang
input designed for xg = 5. Although the mass center moves to the desired position, significant
residual oscillations exist. As we have seen in the previous two chapters, time-optimal and robust
time-optimal flexible-body command profiles can be generated by taking into account the system
flexibility . Using a numerical optimization, the time-optimal ZV command for the above example
was determined. It has switch times of 2.59 s., 3.33 s., and 4.07 s. and a total slew duration of
6.66 s. The response of the benchmark system to the time-optimal ZV command is also shown in
Figure 6.1. The rise time is slightly slower than with the bang-bang command, but the residual
oscillation has been eliminated.

To avoid the use of numerical optimization, the input shaping schemes of Chapter 3 could be
used to modify the bang-bang function, which is known in closed-form. However, the resulting
shaped command will not, in general, be an on-off function. The negative unity-magnitude input
shapers of Section 3.5 can lead to acceptable on-off command profiles in some cases. The method
describad here will be compared to input shaping with these negative shapers.

6.2.1 Analytic Profile Generation
The method proposed here for deriving closed-form command profiles is based on two ideas.
First, a bang-bang profile is a desirable template function because it produces fast rise times.
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Figure 6.1: Response of the Benchmark System Shown in Figure 4.1.

Second, the three transitions which compose a bang-bang profile (zero to full positive, full positive
to full negative, and full negative to zero) can be shaped so that they do not cause residual
vibration. If each change in actuator state is performed without residual vibration, then the entire
profile will not cause residual vibration. The proposed process is sketched in Figure 6.2.
Although the command within the transition regions could have a variable amplitude, here it is
restricted to be an on-off function. Once the actuator state transitions are shaped appropriately, the
rigid-body motion is determined by the time duration between the transitions. This two-step

process will be referred to as transition shaping.

6.2.1a One-Unit Transitions

There are several methods for transitioning the actuator from zero to full positive without
causing residual vibration. These methods require turning the actuator on and off at specified
times. If the switches are timed correctly, then the vibration caused by each of the switches will
cancel out. Perhaps the simplest way to accomplish such a transition for an undamped system is to
turn the actuator on for T/6 seconds, where T is the period of system vibration; turn the actuator off
for T/6 seconds; and then turn the actuator back on. The vibration caused by the three switches in
this process add up to zero. This can be better understood by interpreting the transition as a step

input convoived with an input shaper of the form:

a1 [t =1
[ri]=!° % g] (6.4)

where A;j and t; are the impulse amplitudes and time locations. This interpretation is shown in
Figure 6.3. If the input shaper yields zero residual vibration, then the command transition formed
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by convolving the shaper with a step input will also lead to no residual vibration. Note that the
input shaper of (6.4) is the negative unity magnitude (UM) ZV shaper described in Section 3.5 and
given by (3.48), (3.55), and (3.56). Therefore, we know it will lead to zero residual vibration.

Although the shaper given by (6.4) transitions the command from zero to full positive without
residual vibration, it is not the fastest possible transition. It is of interest because it transitions
withont using negative pulses (the command does not go negative). This leads to a fuel-efficient
transition. The time-optimal transition requires a negative pulse and can be obtained by using an
input shaper described by [127]:

a7 ! 2 2 1 2 2

[x,-,] - [0 °°S-2l:t”4) T °°S_l2(;”4) T] ) [0 0.20978T 0.29022T] (6.5)

Note that the input shaper of (6.5) is the negative partial sum (PS) ZV shaper when P = 1.

Four different transitions from zero actuator effort to full positive are shown in Figure 6.4.
The transitions are labeled ZV and ZVD because of the vibration and robustness constraints they
satisfy. The transitions are further labeled time-optimal (TO) or fuel-efficient (FE). When the
switch times givea in the figure are combined with the corresponding amplitudes of the transitions,
an input shaper is formed. For example, the switches for the ZV TO transition are combined with
impulse amplitudes of [1, -2, 2] to form the required input shaper. On the other hand, the ZV FE
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Figure 6.3: Using Input Shaping to Generate a Zero to Full Positive Transition.

switches are used with amplitudes of [1, -1, 1]. Note that the amplitudes always sum to one. The
values shown in Figure 6.4 apply only to undamped systems. These transitions can also be used
to go from full negative actuator effort to zero by simply reversing the order of the impulse
sequence. These input shapers will be referred to as one-unit transitions.

6.2.1b Two-Unit Transitions

The first and third transitions of a bang-bang profile can be generated with the transitions
shown in Figure 6.4. However, the second transition of the bang-bang command (full positive to
full negative) is shaped differently because a change in the command value of minus two units (-
2umay) is desired. This requires that the impulse amplitudes sum to -2. The simplest ZV transition
from full positive to full negative can be accomplished with only two impulses. That is, the
actuator is turned off, the system coasts for a specified time and then the actuator is turned full
negative. If the coast period is equal to T/2, then the transition will be accomplished without
residual vibration. This transition is the zero-vibration fuel-efficient (ZV FE) transition because
command pulses opposite to the desired transition direction are not used. The ZV TG transition
uses pulses opposite in direction to the desired transition. Four different two-unit transitions are

shown in Figure 6.5.

6.2.1c Complete Profiles

The above transitions (input shapers) can be used in a simple two-step process to generate
command profiles that perform rest-to-rest slewing without residual vibration. First, select a
desired shaper for each of the three bang-bang transitions. Each of the three transitions will satisfy
the requirement of zero residual vibration of the flexible dynamics. Second, determine the
necessary time between transitions to satisfy the rigid-body requirements.

To demonstrate this process, a command profile for fuel-efficient zero vibration slewing will be
designed. The first and third transitions will use the one-unit ZV FE shaper from Figure 6.4. The
center transition will be performed with the two-unit ZV FE shaper from Figure 6.5. To succinctly
describe a command profile, it will be labeled with its three types of transitions. The profile under
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consideration is then a ZV FE-FE-FE profile. Because the first and third transitions are made with
the same shaper, the resulting profile is symmetric as shown in Figure 6.6.
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Once the shape of the profile is chosen, the problem reduces to determining the switch times.
For symmetric profiles, only the switch times up through mid maneuver, t, need to be
determined. For the ZV FE-FE-FE profile, ty, t3, t4, and t, must be determined (t; = 0).
However, from Figure 6.4, t; and t3 are known to be T/6 and T/3, respectively. Furthermore,
from Figure 6.5, the spacing between t4 and ts is known to be T/2. Therefore:

T
Im =14+ (6.6)

The value of t4 is the only remaining unknown and it can be determined from rigid-body
mechanics. At mid maneuver the position of the mass center, x;y, must be at one half of the
desired slew distance. By simply integrating (6.1) twice, an expression for the mass ceater

positior as a function of the switch times is obtained:

Xm =T=%[—I%+I§—t§]+wm[12—t3 +14]. (6.7)

Using (6.6) and substituting the known values of t; and t3 into (6.7), t4 can be obtained as a

function of the vibration period, the desired slew distance, and the acceleration:

2
r4=i+ (%) +%. (6.8)

By symmetry, the entire ZV FE-FE-FE profile is now known. To summarize, the ZV FE-FE-FE
profile for an undamped, single-mode system is given by:
A=l =11 -1 -1 1 -11]

2
T T -T [TV x4
I =—, t =—, 4 =—+ —_— + — 6_9
27gr B3T3 4T (12) o (6.9)

T
ts =14 +E' tg = tg: By Symmetry

A ZV FE-FE-FE profile was designed for the benchmark system by simply plugging the
system parameters into (6.9). The response of the system to this analytic profile is shown in
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Figure 6.1. The most obvious difference between the time-optimal and analytic shaped profiles is
the rise time. As expected, the analytic fuel-efficient profile is slower than the time-optimal
flexible-body profile. This drawback is obviously countered somewhat by the ease of designing
the analytic profile. What is not obvious thus far are the advantages provided by the analytic
profile in terms of fuel savings, robustness to modeling errors, and decreased maximum transient
deflection. These advantages will be presented in section 6.2.2.

Before proceeding with the design of profiles with other combinations of transitions, one
limitation of the analytic profiles should be pointed out. The analytic profiles cannot be used for
very small slew distances. A problem occurs because the time spacings of the three transitions are
fixed by the flexible-body dynamics. The minimum slew distance occurs when the three
transitions occur sequentially without delay. For the ZV FE-FE-FE profile the minimum slew
distance occurs when t4 = t3. Using this condition, the minimum slew distance for the ZV FE-FE-
FE profile can be calculated as:

o
[xmin]ZV FE—FE-FE =ET2 (6.10)

For the example system, the minimum slew distance using the ZV FE-FE-FE profile is 1.645
units. As an alternate method for expressing this constraint, the minimum slew time can be
calculated. In this case, the minimum slew time is 7T/6. That is, slews lasting less than 7/6 of the
vibration period cannot be performed using this method.

To improve the rise time, time-optinial transitions can be used. The design of the ZV TO-TO-
TO profile proceeds in exactly the same manner as for the ZV FE-FE-FE profile, except that the
time-optimal transitions from Figures 6.4 and 6.5 are used. As it turns out, the time-optimal
transitions produce only a very small improvement in rise time, while causing a significant increase
in fuel usage (the time the actuator effort is nonzero). A similar effect has been noted previously
for numerically obtained profiles [115). The main advantage of time-optimal transitions is that they

allow for smaller slew distances. The ZV TO-TO-TO profile shown in Figure 6.7 is described by:
A=l 22 22 22 -2 2]
15 =0.20978T, 3 =0.29022T,

14 = —0.0058054T + [(0.031643T)? + 24, (6.11)
o

Is =14 +%. 1 > t9: By Symmetry

Xmin = 0.0866270.T2
Note that the minimum move distance with time-optimal transitions is nearly half as far as with
fucl-efficient transitions.

To incorporate robustness to modeling errors, the ZVD transitions shown in Figures 6.4 and
6.5 can be used. The ZVD FE-FE-FE profile is given by:
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Aj=[l -1 1 .1 =21 -1 .. 1]
t2 =0.089513T, t3=0.366234T, tg=2t3-ty,

ts=2t3, tg =—0.042591T+\/(0.04051T)2 +%d, (6.12)

t7 =tg+0.099161T, tg=tg+0.323643T,

tg = t15: By Symmetry

X min = 0.5990750.T2
There are a great variety of profiles that can be designed with the above process. For example, an
unsymmetrical profile such as a ZV TO-FE-FE profile can be designed. Or even a profile with
both ZV and ZVD constraints could be constructed.

As it turns out, two analytic on-off profiles can be obtained using standard input shaping,
rather than the transition shaping described above. To create these profiles, a bang-bang command
is convolved with a unity-magnitude (UM) input shaper of the form:

7 -1 1 . -1 1

[2l]= [O ty 13 .. Ip_y r,,] (6.13)
To use these shapers, a bang-bang (BB) command is generated from rigid-body requirements and
then convolved with a UM shaper. The resulting ZV UM BB profile is shown in Figure 6.8 and it

is given by:
A=[1 -1 1 -2 2 =21 -1 1]
t —Z t —Z 1 = x_d
2 6’ 3 3" 4 o
T (6.14)
t5=t4+—6-, le > 19: By Symmetry
2
Xmin = =T
min 9

Although the profile has the same shape as a ZV FE-TO-FE profile, the center transition does not
have time-optimal switches. The profile also has a minimum slew distance which occurs when the
UM shaper length equals one half of the bang-bang profile duration. Although standard input
shaping with UM shapers can produce certain types of analytic profiles, it cannot generate the great

variety of profiles that can be constructed by transition shaping.
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Figure 6.8: ZV UM BB Profile.

6.2.2 Comparison of Profiles

This section will evaluate move duration, fuel usage, maximum transient deflection, and
robustness to modeling errors for the analytic profiles as a function of the slew distance.
Comparisons will be made to time-optimal and UM BB commands. As mentioned previously,
profiles containing three time-optimal transitions are poor alternatives (except for short move
distances) to profiles containing fuel-efficient transitions,23 so they will be excluded from the

following evaluation.

6.2.2a Move Duration

Figure 6.9 compares the move duration (the command length) for six types of command
profiles as a function of the desired move distance. The profiles are the ZV and ZVD versions of
the time-optimal flexible-body command, the UM BB profiles, and the analytic FE-FE-FE profiles
given by (6.11) and (6.12). The UM BB profiles are distinguished by circles and the FE-FE-FE
profiles are labeled with squares. ZV profiles are shown as dashed lines, while ZVD profiles are
represented by solid curves.

Although they have slightly different durations, botn the ZV UM BB and the ZV FE-FE-FE
profiles average approximately 9.4% longer than the time-optimal ZV profile over the range 10 <
xd £40. The ZVD UM BB and the ZVD FE-FE-FE profiles average 15% longer than the time-
optimal ZVD profile. The percentage increase in move time with the analytic profiles decreases
with move distance.

6.2.2b Fuel Usage

Figure 6.10 compares the fuel usage (defined as the time the actuators are turned on) for the six
types of command profiles. The fuel usage of the time-optimal profiles is equal to the move
duration because the actuators are turned on throughout the slew. (The curves for these two
commands are identical to those in Figure 6.9.) The analytic profiles with fuel-efficient transitions
use less fuel than the other profiles. (The curves labeled with squares are always lower than the

23 The advantages of the fuel-efficient shaping process was firmly established in Chapter 5.
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Figure 6.10: Fuel Usage as a Function of Move Distance.

others.) This fuel savings is fairly substantial. The ZV FE-FE-FE profile uses on average 16.8%
less fuel than the time-optimal ZV profile, while the ZVD FE-FE-FE uses on average 17.7% less
than the time-optimal ZVD profile over the range 10 < x4 < 40. The ZV UM BB profile offers
essentially no fuel savings when compared to the TO ZV profile. However, the ZVD UM BB
profile saves approximately 7% in fuel when compared to the TO ZVD. Note that the ZV and ZVD
UM BB profiles overlay each other.

6.2.2c Maximum Transient Deflection
Recall that techniques for limiting maximum transient deflection were presented in Chapter 5.
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Employing those methods to develop an analytic profile that limits deflection to a desired amount is
difficult. Here we simply evaluate the maximum transient deflection produced by each type of
command. Figure 6.11 compares the maximum transient deflection (Ix2-x;1) for the six profiles
under consideration. The analytic profiles cause a maximum deflection of 0.5 units, while the
time-optimal ZV profiles cause twice as much deflection for most move distances. The time-
optimal ZVD profiles cause maximum deflections in the 0.5 to 1.0 range. The analytic and UM
BB commands cause the same amount of transient deflection.

6.2.2d Robustness to Modeling Errors

All of the profiles under consideration produce slews with zero residual vibration provided that
the system model is exact. The level of robustness to modeling errors is, however, dependent on
the move distance and the type of profile. For example, the robustness of the time-optimal ZVD
profile differs from both the robustness of the ZVD UM BB and the ZVD FE-FE-FE profiles.

Figure 6.12 compares the 10% insensitivities (widths of the sensitivity curves at the 10% level)
of the six profiles. The ZVD profiles are significantly more robust than the ZV profiles as
expected. Furthermore, the analytic profiles are considerably more robust than the time-optimal
profiles over almost the entire range of slew distances. (The time-optimal ZV profile is more
robust than the analytic ZV profiles for move distances in the range of 18-21.) The UM BB and
FE-FE-FE profiles have approximately the same robustness. The ZV FE-FE-FE profile averages
800% more insensitivity than the time-optimal ZV profile, while the ZVD FE-FE-FE profile
averages 330% more insensitivity than the time-optimal ZVD profile.

The huge increases in robustness provided by the analytic profiles warrant some explanation.
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Figure 6.12: Robustness to Modeling Errors as a Function of Move Distance.

Shaped profiles accomplish residual vibration reduction by summing to zero the vibration caused
by each switch in the command profile. The time-optimal profiles cancel the vibration only at the
end of the maneuver. Viewed another way, the final impulse in the time-optimal profiles cancel the
vibration caused by all the previous impulses. The analytic profiles do not wait until the end of the
maneuver to cancel vibration; each transition is accomplished without residual vibration.

Now assume the modeling frequency is 10% higher than the actual frequency. The time
locations of the impulses in the ZV FE-FE-FE profile will be incorrect by 10%. Consider the
impulses in the middle transition (full positive to full negative). The period between t4 and ts is
one half of the period of tiie modeling frequency. That is, t5 should occur after the vibration from
t4 has completed 180° of its cycle. Given that the actual period is 10% longer than the modeling
period, ts occurs after the vibration from t4 has completed 1640 of its cycle; ts is incorrect by 16°.
This type of analysis is applicable to the first and third transitions; each of the impulses in the entire
profile is, at most, 160 away from the intended location.

Under the same examination, a very different result is obtained for the time-optimal profiles.
Consider the time-optimal ZV command mentioned previously. The final impulse, ts, is located at
1.5 periods of the modeling frequency; it should occur 540° after the first impulse. Given the
same 10% modeling error, t5 occurs 4919 after the first impulse; it is incorrect relative to the first
impulse by 49°. It is closer to the correct location relative to the other impulses in the command;
however, the errors are still substantially larger portions of a vibration period than the errors with
the analytic profiles. Because the time-optimal profiles do not cancel vibration until the final
impulse, any modeling error that exists will be multiplied by the number of vibration cycles that
occur during the slew. Given that the analytic profiles attempt to cancel the vibration well within
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one cycle of vibration, modeling errors do not multiply and the robustness is greatly irproved.
Given the results shown in Figures 6.9 through 6.12, we know that the analytic profiles offer

considerable advantages over the time-optimal commands. Furthermore, the analytic profiles

obtained with transition shaping are more fuel efficient than those obtained with standard input

shaping using UM shapers.

6.2.3 Discussion of Closed-Form Methods for Generating On-Off Contrel

Analytic expressions were presented that describe command profiles for rest-to-rest slewing of
undamped single-mode flexible systems. Profiles were designed to achieve vibrationless
transitions between actuator states. Although the analytic profiles are not the time-optimal profiles
subject to constraints of zero residual vibration and/or robustness to modeling errors, they are close
to time-optimal in many cases. The analytic profiles are significantly more robust to modeling
errors and they cause less deflection during the slew than the time-optimal profiles. The fuel-
efficient versions of the analytic profiles use considerably less fuel with only minor increases in
move time. However, the main advantage of the analytic commands is their ease of design. They
can be generated using simple formulas rather than a nonlinear optimization, as required with time-

optimal profiles.
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6.3 Transition Shaping for Damped Systems

Most of the methods described in this thesis have straightforward extensions to damped
systems. This is why the undamped version of the benchmark system of Figure 4.1 has been used
repeatedly. However, the transition shaping of the previous section assumed a symmetrical
command profile. For systems with damping a symmeirical command cannot be used. The
modifications necessary to use transition shaping on damped systems will be addressed here.

To utilize transition shaping on damped systems, expressions which describe the transition
switches as a function of both the vibration period and the damping ratio must be used.
Furthermore, the third transition cannot be obtained by reversing the first transition. Finally, the
rigid-body constraints must be enforced at the end of the command rather than at the middle.

The damped first transitions meeting the ZV constraints are:

Aj=[1 -1 1]

ZVFE: tp =(0.16658+0.29277( +0.075438L% +0.21 335C3)T (6.15)
ty = (0.33323 +0.0053322L +0.179 l4§2 +0.201 25§3)T
A=l =2 2]

ZVTO: t =(0.2097+0.224413 +0.08028(> +0.231248°)T (6.16)

t3 = (0.29013+0.09557¢ + 01034652 + 0.2462443 )T

Note that (6.15) in the UM ZV shaper given in Table 3.3 and (6.16) is the PS ZV shaper of Figure
3.3 when P=1. Robust first transitions can be obtained from the ZVD or EI versions of the above
shapers which are available in Table 3.3.

The damped two-unit transitions meeting the ZV constraints are:
Aj=[-2 1 -]

\/0.041645((;+ 1.1096)?

(1.1096)? (6.17)

= - 2
ZVFE 27 0.041645 +0.101034 +0.26327¢, JT

( 2 |
t3 =| 0.50033 - \/6'0478(518(53:3;'20843) —0.047858 +0.14012¢ + 0. 35734§2 JT

Aj=[-2 2 -2
ZVTO: t, = (o. 16658 +0.29277¢ + 0.075438(2 + o.21335§3)T (6.18)

t3 = (0.33323+0.0053322¢ +0.17914¢2 +0. 20125¢*)T
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Note that the description of the switch times given in (6.17) is of a different form (it is not a
polynomial in ) than for most other shapers. Also note that the transition of (6.18) is the same as
that of (6.15) except that the amplitudes are multiplied by -2.
The damped third transitions meeting the ZV constraints are:
A=l -1 1]
ZVFE: ty= (0. 16658 +0.29277C + 0.075438C2 + 0.21335§3 )T (6.19)

ty = (0.33323 +0.0053322¢ +0.17914¢2 +0.20125¢> )T

Ai=[2 -2 1]
ZVTO: t, =(0.080429 +0.12919 +0.024804¢? T (6.20)

t3 = (0.2902 - 0.0902254 +0.1369464 - 0.043337¢3)T

The transition given by (6.19) is the same as that given by (6.15).

6.3.1 Additional Types of Constraints

Given the results shown in Figures 6.9 through 6.12, we know that the analytic profiles offer
several advantages over the time-optimal commands and some advantages over standard input
shaping using UM shapers. Yet another advantage of transition shaping is its ability to generate a
great variety of profiles which can accommodate additional types of constraints or take advantage
of a system’s distinguishing features.

For example, consider rapid slewing of a system that has damping. If the system is driven by
a bang-bang command, then the vibration induced by the first and second transitions wil! decay
somewhat by the end of the command. If the damping is high or the move duration long, then the
residual vibration from the first and second transitions may be negligible. In this case, shaping the
first and second transitions is unnecessary. A useful command profile might consist of a switch to
full positive, followed by a switch to full negative, then a shaped transition to off. Figure 6.13
shows such a profile with a final TO ZV transition. Because the first two transitions are not
shaped, the command profile is called 0-0-TOZV. The profile is given by:

A=[1 -2 2 =2 1]

1 = ,/3a2 —2ab+%. ty =2t +2a~b,

t4=t13+a, t5=13+b, (6.21)
a = (0.080429 +0.12919¢ + 0.024804(2)T;,
b =(0.2902 — 0.090225¢ + 0.136946%2 — 0.043337L3)T;

where Ty is the damped period of vibration.
To demonstrate the advantage of this profile, a viscous damper with a value of 0.5 is used with
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Figure 6.14: Deflection Response of Damped System.

the benchmark system of Figure 4.1. The resulting system has a damping ratio of 0.355. Figure
6.14 shows the deflection of the system when it is slewed 30 units by a bang-bang command, a
ZV UM BB command, and a 0-0-TOZV profile. The bang-bang and the 0-0-TOZV responses
overlay until the very end of the move. At the end of the move, the 0-0-TOZV profile decelerates
the system with essentially zero residual vibration. The bang-bang command causes significant
residual oscillation. The ZV UM BB profile also moves the system without residual vibration, but
it lags the 0-0-TOZV response by approximately 0.5 seconds. In addition to saving time, the 0-0-
TOZV profile also offers the advantage of less actuator wear because it requires fewer switches in
the command profile. It uscs only 4 pulses, while the ZV UM BB profile consists of 6 pulses.
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6.4 Transition Shaping for Multi-Mode Systems
This sections extends the method of the previous two sections to the design of on-off command
profiles for multi-mode flexible systems. Because multi-mode transitions are a function of the
mode ratios, they cannot be described by simple equations For this reason, the method requires
the one-time use of a numerical optimization to obtain the three transitions. Using the optimization
results, command profiles are generated that are described by closed-form functions of the move

distance.

6.4.1 Multi-Mode Profile Generation

Only fuel-efficient transitions will be considered during this section; however, the proposed
method applies to time-optimal transitions. To illustrate the procedure, command profiles will be
designed for the benchmark multi-mode system shown in Figure 4.11. The system parameters
were selected such that the low mode is at 1 Hz, the second mode is at 4.4 Hz, and the damping is
zero, just as was done previously. To obtair the transitions, the standard input shaping vibration
and robustness constraints (for example, (3.1) and (3.2)) are combined with an amplitude

constraint that produces the desired shape.

0.4.1a One-Unit Transitions
For the benchmark system, the one-unit fuel-efficient ZVD transition is given by:

Al v = 1 -1 1 -1 1 -1 ! (6.22)
t T10 .03491 .10027 .15797 .40351 .64905 .70675 .77212 .80703 )
-

6.4.1b Two-Unit Transitions
For the benchmark system, the two-unit fuel-efficient ZVD transition is:

Al -1 1 -1 1 -1 -1 ] -1 1 -1 (6.23)
t | 0 .02083 .06786 .22523 .44018 .44018 .65513 .81290 .85193 .88176 ’

6.4.1c Complete Profiles

The above transitions can now be used to generate closed-form command profiles which
perform rest-to-rest slewing without residual vibration. What remains is to determine the
necessary time between transitions to satisfy the rigid-body requirements. A general equation for
this unknown time for symmetric profiles about the midpoint is given by:24

24 This equation was derived by Bart Mills [130].
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Figure 6.15: Move Duration of ZVD Commands.

p=(~tp +13 -t 1—0-5(’ v+

2(3 +t§+t6+t8+ 1) [—t +if =12 +025(e] +1 )]

+ 20 (~t3 + 14 =1y g )+ 205(~tg + 5o H )= 2 oty
Xd

+—
o

(6.24)

=.5tyt, +ty(ta -1 +tc...ty_l)+t (t —ty+io.dy l)
where ty and t; are the two middle times of the second transition.

6.4.2 Evaluation of Closed-Form Profiles
This section will evaluate the move duration, fuel usage, maximum transient deflection, and
robustness to modeling errors of the multi-mode closed-form ZVD commands as a function of the

slew distance. Comparisons will be made to time-optimal ZVD commands.

6.4.2a Move Duration

Figure 6.15 compares the move duration for the time-optimal and the closed-form ZVD
commands. The time-optimal command is, of course, faster than the closed-forn1 command. The
time-optimal commands range from 1.4 to 1.7 seconds faster than the closed-form commands,
however, the increase in move duration follows a repeating cycle, it does not continuaily increase.
Therefore, the percentage increase in move duration with closed-form commands decreases as the
move distance is increased. As we will see, this time difference is the only drawback of the
closed-form command when compared to the time-optimal command. Note that the data for the
closed-form profile is shown only down to the minimum slew distance of approximately 0.8 units.
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Figure 6.16: Fuel Usage of ZVD Commands.

6.4.2b Fuel Usage

Figure 6.16 compares the fuel usage for the time-optimal and closed-form commands. The
closed-form commands always consume less fuel. The fuel savings varies between 1.4 and 1.7
seconds. Again, as with the command duration, the fuel savings follows a repeating cycle.

Therefore, the percentage fuel savings decreases as move distance increases.

6.4.2c Maximum Transient Deflection

Figure 6.17a and 6.17b compare the maximum transient deflections for the profiles under
consideration. Figure 6.17a compares the maximum deflection, d| = x2-X1, between m; and m,
while Figure 6.17b compares the maximum deflection, d2 = x3-x2 between my and mj3 for time-
optimal and closed-form command profiles. The closed-form profiles cause a maximum deflection
of .0077 units for di and .0375 for dp, while the time-optimal profile causes maximum deflections
of .0163 and .078 respectively. So, the time-optimal commands can produce more than twice the
maximum deflection than the closed-form profile. Another advantage of the closed-form
command, as seen in the figures, is that it has a constant amount of deflection, while the time-
optimal command is very erratic. This can facilitate the calculation of the internal loads.

6.4.2d Robustness to Modeling Uncertainty

For multi-mode systems there is an insensitivity associated with each mode. That is, the
robustness to modeling errors is different for each mode. Figures 6.18a and 6.18b show the 5%
insensitivities for the first and second modes. The closed-form commands are considerably more
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robust than the time-optimal commands. For certain move distances the closed-form commands

are over 6 times as robust and for all but a few move distances they are always greater. This result

is very useful because the time-optimal commands are very sensitive to modeling errors, as was

thoroughly demonstrated in Chapter 4. Note that the insensitivity for mode 2 is much less than for

mode 1.

6.4.3 Simulations of Space Shuttle/Hubble Space Telescope

To test the proposed method for generating command profiles on a complex flexible spacecraft,

tests were performed using Draper Laboratory's simulation (the DRS) of the Space Shuttle and its

telerobotic manipulator. The simulations performed for this section model the Hubble Space

Telescope deployed on the RMS in the extended park position. The simulations reorient the

system by firing the shuttle’s reaction jets.
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Figure 6.19: Endpoint Response to Jet-Coast-Jet and Shapéd Command Profiles.

The first simulation fired a jet for approximately 15 sec, let the system coast for 8 sec., and then
fired a roughly opposing jet for 15 sec. to decelerate the system. The second simulation used a
closed-form ZVD shaped command profile designed to perform the same rigid-body motion. The
shaped transitions were generated for the two most important modes of the system, 0.065 Hz and
0.134 Hz. Figure 6.19 compares the system response to both the jet-coast-jet and shaped
command profiles. The data plotted in Figure 6.19 is the POR (Point of Resolution) X coordinate.
Using the jet-coast-jet command, the endpoint oscillation is over 20 in. The shaped command
produces less than 1.5 in. of residual oscillation; an order of magnitude reduction.

6.4.4 Discussion of Closed-Form Commands for Multi-mode Systems

A process for generating closed-form on-off commands for multi-mode systems has been
described. The method requires the one time use of a numerical optimization to generate the
transitions in the actuator state. Once these transitions are obtained they can be used to form
closed-form expressions that describe the command profile for all desired move distances. The
proposed command profiles were compared to time-optimal profiles in terms of maneuver
duration, fuel usage, transient deflection, and robustness to modeling errors. The closed-form
commands are somewhat slower than time-optimal commands, but they offer large advantages in
terms of the other performance measures. Furthermore, they are much easier to derive and
implementi because only one optimization is required, rather than the repeated optimizations
required for time-optimal control. Simulations of the space shuttle/Hubble Space Telescope system
verified the vibration reducing abilities of the proposed command profiles.
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6.5 Use of Neural Networks for Generating On-Off Commands

This section investigates the use of neural networks for generating on-off command profiles.
If a neural network can be used to accurately generate the command switch times for all possible
desired motions, then the need for performing a numerical op:imization in real time, or storing the
results of a vast array of numerical optimizations can be eliminated.

Three types of neural networks will be designed to generate time-optimal and fuel-efficient
commands for the benchmark system of Figure 4.1. The first netwoik is a two layer network with
nonlinear transfer functions in the hidden layer and linear functions in the output layer. This
network is shown in Figure 6.20. The second network is a three layer structure with two hidden
layers with nonlinear transfer functions and a linear output layer. The final network to be

examined is a radial basis function network. The performance of the three networks is compared.

6.5.1 Two-Layer Networks

Given the two-layer network architecture shown in Figure 6.20, there are a number of choices
to be made regarding the hidden layer transfer function, the number of neurons in the hidden layer,
and the training procedure. The training procedures used for this section are back propagation with
momentum and the Levenberg-Marquardt optimization available in the MATLAB Neural Network
Toolbox. The nonlinear transfer functions used here are log-sigmoids. The performance of the

network will be examined as a function of the number of neurons in the hidden layer.

6.5.1a Time-Optimal ZV Commands

The training sets for the networks were obtained by performing numerical optimizations to
generate the commands for a finite number of possible motions. Figure 6.21 shows the data for
the time-optimal ZV commands. These data were then down-sampled by a factor of 2 to obtain the
training set. That is, every other data point was used to train the networks. Once a network was
trained, its performance was evaluated by comparing its predicted output for every point in the
complete data set to the actual values.

Figure 6.22 compares the output of the network with 8 neurons in the hidden layer to the actual
switch times for the time-optimal ZV command. The network is able to predict the command
switch times (t2-ts) very accurately. The summation of the squared error (SSE) was formed by
calculating the square of the error in each switch time and then summing these values over the
range of move distances from O to 40 units. Basically, the SSE for t; gives us an average error in
the value of tp over the range of move distances shown. Figure 6.23 shows the SSE for each
switch time as a function of the number of neurons. The SSE for both the training set (Figure
6.23a) and the complete data set (Figure 6.23b) are shown. Note that the scale for the entire data
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Figure 6.21: Switch Times for the Time-Optimal ZV Command.

set is 20 times larger than for the training set. The data indicates that this network is able to
represent the time-optimal ZV commands very well as long as there are 8 or more neurons in the
hidden layer. Note that results of this type depend on the training procedure used and the
initialization of the network. However, the data shown are representative results.

The SSE for the entire data set is always greater than for the training set because there are more
points in the entire set and every point in the training set is contained in the complete set. The SSE
for the entire set gives us valuable information if it shows a large disparity from the SSE for the
training set. If the network has overfit the training set, that is, the network predicts the training
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data very well, but it deviates considerably between the training points, then the SSE for the entire

set will reflect this problem.

If we want to find out what move distances are the most challenging for the network, we can
plot the errors in the switch times as a function of the move distance. In this case the SSE is
formed by summing the errors in each of the four switch times, for a given move distance. Recall,
the SSE shown in Figure 6.23 was formed by summing the errors in a single switch time over the
range of move distances. Figure 6.24 shows the SSE as a function of move distance. The
network has the most difficulty predicting the switch times that produce move distances near 10
units. This is not surprising as the switch times converge to a point at a move distance of 9.8 units
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Figure 6.27: Switch Time Error as a Function of the Number of Hidden Neurons
When Altered Data Representation is Used.

the switch time curves near 10 units. By referring to Figure 6.22, we see that this can be
accomplished by switching t2 and t4 after the discontinuity. That is, after the discontinuity the
switch times for ty become those for t4 and vice versa. Figure 6.27 shows the SSE as a funciion
of the number of neurons when this altered representation is used. The network now gives good
performance with only 6 neurons, rather than the 8 required with the original data representation.

6.5.1b Time-Optimal ZVD Commands
Given the above results we know that time-optimal ZV commands can be effectively

represented by a simple two-layer network. However, many real systems will require the robust
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Figure 6.29: Two-Layer Network Representing Time-Optimal ZVD Commands.

ZVD commands for effective vibration reduction. Figure 6.28 shows the switch time data for the
time-optimal ZVD commands. Comparing the ZV and ZVD commands shown in Figures 6.21 and
6.28, we can assume that more neurons will be required to represent the more complicated nature
of the ZVD commands.

Figure 6.29 shows the SSE for each ZVD switch time as a function of the number of neurons
in the log-sigmoid network. Note that the SSE is much larger than for the ZV commands and it
takes 20 neurons before the improvement in SSE starts to level off. Figure 6.30 shows the output
of a log-sigmoid network with 40 neurons. The network has difficulty predicting the
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Figure 6.31: Two-Layer Network Representing the Fuel-Efficient ZV Commands.

discontinuous jumps in the switch times. Comparing Figure 6.30 to the actual curves in Figure
6.28, we see that the network has achieved the general pattern of the switch times, but overall it
has done a poor job of predicting the switch times.

6.5.1c Fuel-Efficient ZV Commands

If the on-off command signals are being generated for rezction jets, then the fuel-efficient
commands should be used. Figure 6.31 shows the SSE for each FE ZV switch time as a function
of the number of neurons in the network. Given the large values for the SSE, we can see that this
network does a poor job in predicting the FE ZV command switches. It does even worse for the
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Figure 6.32: SSE of Radial Basis Network for the Time-Optimal ZVD Commands.

FE ZVD commands; even with 40 Neurons the network does a poor job predicting switch times.

6.5.2 Three-Layer Networks

The two-layer architecture had difficulty predicting the time-optimal ZVD, FE ZV, and FE ZVD
profiles. The three-layer network performance was found to be marginally better than the
performance of the two-layer network with a comparable number of neurons. From these results it
appears that three-layer networks offer little advantage over two-layer networks for this particular
application.

6.5.3 Radial Basis Networks

The discontinuous jumps in the switch times made it difficult for the above networks to
accurately generate the command profiles. In this section results are presented which show that
radial basis networks perform better when there are discontinuous jumps. When using a radial
basis network one of the important parameters is the spread constant. Figure 6.32 shows the SSE
of the time-optimal ZVD switch times as a function of the spread. Low values of the SSE for the
training set are obtained up to a spread value of 0.8, while the lowest values of the SSE for the
entire data set are obtained over the range from 0.3 to0 0.5.

Figure 6.33 shows the predicted switch times of the time-optimal ZVD command when a
spread of 0.3 is used. This performance is considerably better than that obtained with the two-
layer or the three layer networks. Figure 6.34 shows the predicted switch times of the fuel-
efficient ZVD command when a spread of 0.4 is used. If we compare these curves to the ones
shown in Figure 5.9, we find a very good match.

6.5.4 Discussion of Neural Network Usage to Generate On-Off Commands
Optimization methods are used to obtain on-off command profiles for a limited number of
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possible slew distances. Using this data, neural networks are then trained to generate the
command profiles for any desired slew distance. Simple two-layer neural networks can predict
time-optimal zero-vibration commands; however, a minimum number of neurons in the hidden
layer are required. The minimum number of neurons can be decreased by representing the switch
times with smoothly varying curves. It was found that radial basis networks should be used when

robust or fuel-efficient commands are being implemented.

214



7.1 Introduction to Comparisons

7 COMPARISON OF COMMAND GENERATION
METHODS

7.1 Introduction to Comparisons

Given the wide variety of command generation techniques presented in Chapters 3 - 6, it is
useful to perform comparisons of these various methods to previously proposed methods. To do a
thorough comparison, many types of performance criteria need to be examined. The criteria
examined in this chapter include: rise time, residual vibration amplitude, robustness to modeling
errors, transient deflection, fuel usage, ease of implementation, and excitation of unmodeled high
modes. The following section compares input shaping to traditional FIR and IIR filtering for the
purpose of generating commands for flexible mechanical systems. Section 7.3 compares input
shaping to time-optimal flexible-body control for single-mode systems. Section 7.4 extends this
comparison to multi-mode systems. Fuel-efficient commands were already compared to time-
optimal commands in Chapter 5, so that comparison will not be repeated here. Also, the closed-
form commands developed in Chapter 6 were compared to their time-optimal counterparts, so they
will not be reevaluated here.
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7.2 Input Shapers Compared to Traditional FIR and IIR Filters

As we know, input shapers can be thought of as finite impulse response (FIR) filters. Input
shapers, however, are unlike filters produced by conventional design methods because they do not
use a pass band specification and they are not usually designed in the frequency domain. They can
be considered notch filters in the decaying sinusoid domain. Traditional notch filters remove a
range of frequencies, while input shapers remove a range of decaying sinusoids.

Three criteria will be used to compare input shapers to conventional filters. First, the filter
duration is compared because the time required for the system to move depends on the duration of
the filter. The time duration of the filter will be reported as the number of system periods required
for the output of the filter (which is the input to the system) to settle to within 2% of its steady state
value. Second, the residual vibration amplitude will be compared. Finally, the robustness of the
shaping techniques to uncertainties in the system model will be examined.

Each of the input shapers and filters described will be used to shape the input to a simple
harmonic oscillator with cne natural frequency. In order to evaluate the second and third
performance criteria, two step responses will be simulated with each filter. One is the response of
the system when it has the exact natural frequency that was assumed during the filter design
process. The second is the step response when the natural frequency is set 15% lower than
expected. Both systems will have no damping so that two quantities can clearly be observed — the
time at which the filter finishes, and the residual vibration amplitude.

7.2.1 Zero Derivative Shapers

Figure 7.1 shows the two step responses when the ZVD shaper is used to modify the step input.
The solid curve shows the response when the natural frequency is exact and the dashed curve
shows the response when the system frequency is lowered by 15%. The envelope of the peak-to-
peak vibration amplitude as a percentage of move distance is labeled on the left vertical axis for the
exact case and on the right vertical axis for the case with a 15% modeling error. With the 15%
error the envelope on residual vibration is approximately 11% of the move distance. This is 5.5%
of the unshaped residual vibration level; the unshaped vibration has an amplitude equal to twice the
move distance. The rise time is approximately | second (1 vibration period) for both responses.

Figure 7.2 shows the responses when the ZVDD shaper is used. Note that the ZVDD shaper
yields less vibration for the 15% error than the ZVD shaper; however, the rise time is longer with

the ZVDD shaper. It is approximately 1.5 vibration periods for both responses.

7.2.2 Extra-Insensitive Shapers
Figure 7.3 shows the two step responses when the one-hump EI shaper (V = 5%) is used to

216



7.2 Input Shapers Compared to Traditional Filters

Exact 15_% Low
0% |—g—a— '-_,':_,"‘_,"\,"‘,"‘W': 11%
B e e s
S |l T}
= Exact Model
(7] .
nO.‘ ................................. 15% Error ln Model ............

i B ey e B
“ Time (sec)
Figure 7.1: ZVD Input Shaper Responses.

BBl e eeseengesesseseseseseseg e 15% Low
0% —— Q 3%
I e 4. ......................... j ........................

LI Y A A B — Y

:«g Exact Model

K I A B R 15% Error in Model [
( 2 6 8 10

4
Time (sec)

Figure 7.2: ZVDD Input Shaper Responses.

Exact et 15% Low
10% [ e NGNS NS NANAT NS DY |4
: .......................... - é ..............
S |l T}
= Exact Model
ng-‘ .................................... 15% Error in Model [
0 —— 4'1 ) 6' é 10
Time (sec)
Figure 7.3: One-Hump (V=5%) Input Shaper Responses.

modify the step input.

course, 5% of the unshaped vibration level. When the system frequency is lowered by 15%, the
amplitude of residual vibration actually decreases to 1.4%. This effect was predicted by the

When the system model is exact, the residual vibration amplitude is, of

sensitivity curve of Figure 1.13. The rise time is approximately 1 vibration period.

Figure 7.4 shows the responses when the two-hump EI shaper (V = 5%) is used to modify the
step input. The test using a 15% modeling error does not do the two-hump EI shaper justice. The
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shaper would yield less than 5% of the unshaped vibration even if the system frequency was

lowered by 36%. The rise time is approximately 1.5 vibration periods.

7.2.3 Negative Input Shapers

Figure 7.5 shows the responses with a partial sum (P = 1) one-hump EI shaper. The
amplitudes of the impulses in the shaper are: [1, -2, 2, -2, 2, -2, 2]. The vibration levels at
frequencies near the modeling frequency are similar to those for the all-positive EI shaper,
however, the rise time is 30% faster. When there is a modeling error, the negative shapers tend to
yield more residual vibration than there all-positive counterparts. Similar results were obtained

with the unity-magnitude shapers.

7.2.4 FIR Lowpass Filters

Ideal low pass filters have a rectangular magnitude of response. (See Figure 1.12.) The ideal
filter is unrealizable because the impulse response continues indefinitely. In order to shorten the
time response of the ideal lowpass, some form of truncation is used. This truncation process is the
basis for many FIR filter design techniques. The truncation process (windowing) cannot be made

abrupt because the frequency response will be corrupted by the Gibbs Phenomenon.
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A common Hamming window with a time duration of three system periods was used to truncate
the ideal low pass filter [74]. The response to the step command shaped by the filter exhibited
considerable residual vibration. The response using a longer (five period) Hamming window was
then determined. The responses indicate that the filter length must be long compared to the period
of oscillation in order to achieve a reasonable reduction in residual vibration. These responses are
not shown, but their performance is summarized in Table 7.1.

7.2.5 Parks-McClellan Lowpass Filter

FIR lowpass filters were designed using the Parks-McClellan-Rabiner technique [84]. The
computation was performed with the original Remez exchange design program written by Parks
and McClellan. A 256 point FIR filter was designed using double precision arithmetic. The filter
was constrained to have a duration equal to one vibration period — the same time duration as the
ZVD and one-hump EI shapers. This filter was designed with a pass band at 80% of the
anticipated natural frequency, and a stop band at 95% of the anticipated natural frequency. While
the time duration of this filter is comparable to the input shapers, the vibration reduction and ease
of implementation is not (due to the larger number of filter coefficients . The performance with
this filter is summarized in Table 7.1.

7.2.6 Infinite Impulse Response Lowpass Filters

Oppenheim and Schafer [74] note that FIR filters are different from IIR filters in that they
provide greater "flexibility in the attainable filter response”. However, infinite impulse response
filters are extremely common, so they will be considered. IIR filters are limited because they must
have poles and, therefore, contain integration dynamics. Three common IIR Filters were designed
— Butterworth, Chebyshev, and elliptic. The Butterworth and Chebyshev filters were designed
with a pass band at 70% of the anticipated natural frequency, and a stop band at 95% of the
anticipated natural frequency. The Chebyshev filter had a 2 dB ripple and a 50 dB attenuation in
the stop band. The elliptic filter was designed with a stop band at the anticipated natural frequency
with 10 dB ripple and 30 dB attenuation. Although the vibration reduction associated with these
filters is relatively good, the time delays incurred with their use are prohibitive. To demonstrate the
sluggish response, Figure 7.6 shows the response when the Chebyshev lowpass is used to filter

the step command.

7.2.7 Hamming Window Notch Filter

Ideal notch filters, like ideal lowpass filters are not realizable. Because the magnitude of the
response suddenly drops to zero in the notch and becomes unity again in the next pass band, the
filter has an infinite duration. However, a Hamming window can be applied to an ideal notch filter
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Figure 7.6: Chebyshev Lowpass Filter Responses.

in the same manner as it was applied to the ideal lowpass filter. The windowing process produces
realizable filters with frequency responses close to that of the ideal filter. A five period Hamming
window was applied to the ideal notch filter frequency response. The center of the notch is at the
natural frequency of the system. The notch extends £30% about the center frequency. The
response using this notch filter contains significant residual vibration. See Table 7.1.

7.2.8 Parks-McClellan Notch Filters

A 256 point FIR notch filter was designed using the Parks-McClellan-Rabiner algorithm. The
filter was constrained to have the same time duration as the ZVD and one-hump EI shapers. This
filter was designed with a pass band of + 20% about the anticipated natural frequency, and a stop
band of 5% about the anticipated frequency.

The Parks-McClellan notch fiiter performed the best of any of the tested filters (excluding input
shapers). The drawback of this filter is that 256 impulses were required to achieve the high
performance. This filter is more difficult to implement in real time than an input shaper because it
requires significantly more computation at each time step. The Parks-McClellan filter requires 256
multiplies and accumulates at each time step, whereas, the input shapers typically require only 3 to

10 multiplies and accumulates.

7.2.9 Infinite Impulse Response Notch Filters

The system responses with Butterworth, Chebyshev, and elliptic IIR notch filters were
determined. The filters were designed with a pass band of £30% about the anticipated natural
frequency, and a stop band of £20% about the anticipated frequency. Large time and vibration
penalties are incurred by using these filters. See summary in Table 7.1.

7.2.10 Summary of Shaper/Filter Comparison
Table 7.1 lists the duration, exact model vibration, and 15% modeling error vibration for each of
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Table 1: Summary of Performance Data,2>

Duration Vibration

Shaper (cycles) Exact 15% Low
VD 1.00 0.0% 11.0%
ZVDD 1.50 0.0% 3.0%
ZVvDDD 2.00 0.0% 0.5%
One-Hump EI (V=5%) 1.00 10.0% 1.4%
Two-Hump EI (V=5%) 1.50 0.0% 9.7%
Three-Hump EI (V=5%) 2.00 10.0% 1.8%
Negative ZVD 0.67 0.0% 13.0%
Neg. 1-Hump EI (V=5%) 0.68 10.0% 3.4%
Neg. 2-Hump EI (V=5%) 1.12 0.0% 9.6%
Neg. 3-Hump EI (V=5%) 1.58 10.0% 1.0%
Filter

Hamming Lowpass (short) 2.46 20.0% 54.0%
Hamming Lowpass (long) 3.54 2.0% 30.0%
Parks-McClellan Lowpass 1.00 28.0% 57.0%
Butterworth Lowpass 5.61 6.0% 22.0%
Chebyshev Lowpass 8.90 7.2% 13.0%
Elliptical Lowpass 8.50 6.9% 10.8%
Hamming Notch 3.93 32.0% 73.0%
Parks-McClellan Notch 1.00 7.8% 18.0%
Butterworth Notch >10.0 16.0% 18.0%
Chebyshev Notch >10.0 36.0% 44.0%
Elliptical Notch >10.0 17.0% 23.0%

the shapers and filters discussed, as well as, several shapers not discussed in detail. There are two
important trends that can be observed in the results. First, the input shapers are significantly
shorter than the filters. The shapers have durations that range from 0.68 to 2.0 times the period of
the vibration to be suppressed. The filters have effective durations that range in length from 1.0 to
over 10.0 times the vibration period, with most of the filter iengths being over 3.5 times the
vibration period. This trend indicates that input shapers would degrace a system's rise timz much
less than a traditional digital filter.

The input shapers also yield considerably less vibration than the filters. When the system model
is exact, the shapers yield either zero vibration, or the small amount of vibration that is specified
during the EI design process. When the digital filters are applied to a system with a known
frequency, there is often a considerable amount of vibration. When there is a modeling error, the
advantage of input shapers is even more pronounced.

In an attempt to evaluate the overall performance of the shapers and filters, we can combine the
duration and vibration measures. One possible way of doing this is to multiply the duration (in

25 Duration is the effective length of the filter as measured in vibration cycles. Exact vibration is the residual
vibration divided by the move distance when the system model is exact. 15% Low vibration is the residual vibration
when the system frequency is 15% lower than expected.
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Figure 7.7: Vibration Amplitude (13% Low) Multiplied by the Filter Duration.

cycles) by the 15% modeling error vibration amplitude (in % of move distance). Figure 7.7 shows
this measure for each of the shapers and filters. The superiority of shapers over filters given this
particular performance measure is readily apparent.

222



7.3 Single-Mode Input Shaping and Time-Optimal Control

7.3 Single-Mode Input Shaping and Time-Optimal Control

Inpui shaping is a more general-purpose technique than the time-optimal flexible-body control
because once a shaper has been designed, it can be used to shape the reference command for any
desired motion. However, the switch times in the time-optimal flexible-body command must be
computed for every unique desired motion. Furthermcre, the time-optimal commands, unlike
commands produced with input shaping, have an inherent open-loop nature that makes them
challenging to implement with a closed-ioop controller. For example, a neural network might need
to be trained to generate closed-loop, near time optimal commands in real-time based on the nature
of the time-optimal solutions [62].

To compare input shaping and time-optimal control in terms of their dynamic performance
characteristics (ignoring implementation issues), applications of rest-to-rest slewing will be
examined [79, 118]. To perform rest-to-rest motion with input shaping, the unshaped command
must accomplish rest-to-rest motion of the rigid body. The time-optimal control for rest-to-rest
motion of a rigid body is bang-bang, with the switch occurring at mid-maneuver. Therefore, the
performance obtained using a shaped bang-bang command will be compared to the response using
the time-optimal flexible-body commands. The commands generated by shaping the bang-bang
command will be labeled as “Shaper Name” BB. For example, using a UM ZV shaper (a negative
shaper subject to the unity magnitude amplitude constraints) on a bang-bang command yields a UM
ZV BB command. The five shaped commands that will be examined are the ZV BB, ZVD BB,
UM ZV BB, UM ZVD BB, and UM EI BB. The two time-optimal flexible-body commands that
will be examined are the TO ZV and the TO ZVD. The two methods are compared in terms of
maneuver speed, robustness to modeling errors, transient deflection, high-mode excitation, and
ease of implementation.

7.3.1 Maneuver Speed

Figure 7.8 shows the move duration for the seven types of commands as a function of damping
ratio, {, and move distance, L. Cominands satisfying the ZV constraints are shown with a solid
line. ZVD commands are shown with a dotted curve and the EI command is represented by a
dzsh-dotted line. Furthermore, positive shapers are distinguished by open circles, and negative
shapers are represented by open squares, except for the negative EI shaper which is shown using
open triangles.

Although the time: optimal flexible-body commands (TO ZV) always provide the fastest moves,
the robust time-optimal (TO ZVD) averages only 8.1% slower, for the range shown in the two
figures. The UM ZV BB also provides fast maneuvers; it is approximately 13.5% longer than the
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TO ZV command. For a given robustness constraint (ZV or ZVD), the negative shapers lead to
faster maneuvers than their corresponding positive shapers. The UM ZVD and UM EI commands
yield approximately the same maneuver times. For very short move distances the negative shapers
will cause overcurrenting [75, 127]. The results shown for the negative shapers are for move

distances with no overcurrenting.

7.3.2 Robustness to Modeling Errors

Figure 7.9 shows the 5% insensitivities of the various commands. The UM ZVD BB and UM
EI BB commands offer a significant increase in robustness over the time-optimal commands.
Compared with the TO ZV command, the UM ZVD BB and UM EI BB shapers exhibit increases
of 300 to 4500 percent in 5% insensitivity for most damping ratios and move distances. Thus,
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while the TO ZV command leads to the fastest maneuvers, the UM EI BB and UM ZVD BB lead to
moderately longer maneuvers that are significantly more robust to modeling errors. The ZVD BB
commands offer the most robustness, but incur a larger time penalty than the UM commands.

7.3.3 Transient Deflection

Another important quality to compare is the amount of vibration that is caused during the
motion. Decreasing vibration during the move can increase the lifetime of many systems and
improve the trajectory following of the endpoint. Figure 7.10 shows the maximum transient
deflection (Ix,-x,l) for the various commands. The negative shapers yield approximately the same
deflection as their positive counterparts over most of the parameter range. However, the time-
optimal commands cause approximately twice the deflection as the input shapers.
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7.3.4 High-Mode Excitation

Both the input shapers and the time-optimal commands are designed to eliminate or reduce
vibration at a specific frequency or set of frequencies. Often, only the dominant low-frequency
modes are taken into account in the input-shaper design. If the system has modes higher than the
frequencies used to generate the shaped or time-optimal commands, then ilic high modes may be
excited. To appreciate this effect, the sensitivity curves can be plotted over a range of high
frequencies. Figure 7.11 compares the high-mode sensitivity curves for the ZVD BB and the TO
ZVD commands when L = 10 and { = 0.04. For frequencies near the modeling frequency, ®, the
two curves are similar; however, for frequencies in the range 1.5 to 10w, the time-optimal
command usually has much higher levels of vibration. Therefore, if the system has unmodeled
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high modes, the time-optimal command will lead to more vibration in those modes than the
commands generated with shaping.

To compare the high-mode excitation over a range of system parameters, the mean value of the
sensitivity curve over the range 1 to 10w was computed. Figure 7.12 compares the mean value
of the high-mode sensitivity curve for the seven command profiles over a wide range of damping
ratios and move distances. The positive shapers lead to the smallest high-mode excitation levels,

but at the greatest cost in move speed (see Figure 7.8).

7.3.5 Ease of Implementation

It is difficult to generate a quantitative measure to compare the ease of implementation of the two
control methods. However, based on experience, input shaping is significantly easier to
irplement than time-optimal control. Analytical or curve fit formulas exist for all the positive input
shapers discussed, and hence they can be implemented in real time, with any unshaped command
signal. Curve fit formulas exist for the negative shapers used in these comparisons, and they can
be used with most unshaped command signals.

In contrast, the time-optimal control must be computed using an optimization for every move
distance. While tables of optimal switch times can be stored and interpolated for desired move
distances, this process is more cumbersome and interpolation will generally lead to some error in
the actual switch times used (i.e., the interpolated switch times will not satisfy the optimal
constraint equations exactly). These errors may lead to even lower insensitivities and greater high-
mode excitation levels than those displayed in Figures 7.9 and 7.12

7.3.6 Summary of Single-Mode Shaping and Time-Optimal Control
Several types of input shapers have been compared with robust and non-robust time -optimal
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Figure 7.12: Comparison of High-mode excitation.

flexible-body control. The methods were compared in terms of speed, robustness to modeling
errors, transient deflection, high-mode excitation, and ease of implementation. While time-optimal
commands yield the fastest responses, the negative input shapers provide an attractive alternative
for achieving rapid responses. One of the main advantage of input shaping is the robustness to
modeling errors. For a given robustness constraint (ZV or ZVD) the input shapers have 2-10 times
more insensitivity than the time-optimal commands. The EI shaper provides an additional 5-10%
increase in insensitivity cver the ZVD shaper. The shapers reduce transient deflections by about a
factor of two, although this advantage decreases as the damping increases. Furthermore, the input
shapers have less tendency to excite unmodeled high modes and are easier to implement. Given
the numerous advantages provided by input shaping, it provides an attractive alternative to time-
optimal flexible-body control.
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7.4 Comparisons with Multi-Mode Systems

The previous section revealed several key differences between input shaping and time-optimal
control for single-mode systems. This section performs the same type of investigation for multi-
mode systems {119]. In order to compare the performance of multi-mode input shaping and time-
optimal control, rest-to-rest slewing of the benchmark system shown in Figure 4.11 will be
examined. As in the previous section, the input shapers will be used in conjurction with a bang-
bang command and the commands generated by shaping the bang-bang command wili be labeled
as “Shaper Name” BB.

Recall from Chapter 3 that multi-mode shapers can be designed in two ways. They can be
generated by convolving single-mode shapers together, or they can be obtained by directly solving
the constraint equations simultaneously. The three shaped command profiles that will be compared
are the convolved ZVD BB, the direct ZVD BB, and the TO ZVD. The non-robust ZV shaping
methods are not considered here. The three types of commands are compared in terms of
maneuver speed, robustness to modeling errors, transient deflection, and ease of implementation.
The system of Figure 4.11 with r = 4.4 will be used.

7.4.1 Maneuver Speed

Figure 7.13 shows the move duration for the three command profiles as a function of move
distance. The time-optimal ZVD command is shown with a solid line, the direct ZVD BB is shown
with a dotted line and convelved ZVD BB command is shown with a dash-dot line. The TO ZVD
command is, of course, the fastest command. The TO ZVD ranges from 0.6 to 1.0 seconds faster
than the direct ZVD BB. Note that the increase in move duration follows a repeating cycle; it does
not continually increase. Therefore, the percentage increase in move duration decreases as the
move distance is increased. The direct ZVD BB is faster than the convolved ZVD BB command by
approximately 0.13 sec.

7.4.2 Robustness to Modeling Errors

To quantitatively compare the robustness to modeling errors, the 5% insensitivity for each of the
commands was calculated as a function of move distance. (Please see again Figure 3 for the
meaning of 5% insensitivity.) Recall from Chapter 3 that for multi-mode systems there is a
sensitivity associated with each mode. Figure 7.14 show the 5% insensitivities for the first and
second modes. The input shaped commands are considerably more robust than the time-optimal
commands. Input shaping (convolved or direct) gives an average of nearly 4 times more
robustness than the time-optimal commands to errors in the first mode (Figure 7.14a). The direct
shapers give an average of 3.7 times the robustness to second-mode errors, while the convolved
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Figure 7.13: Duration of Command Profiles as a Function of Move Distance.

shapers offer more than an order of magnitude improvement in second-mode robustness as
compared to the TO ZVD commands (Figure 7.14b). Note that the direct and convolved shapers
give approximately the same robustness to errors in the first mode, but differ largely in second-
mode robustness, with the convolved shapers being much more robust. This effect has been
previously noted [26, 43]. By comparing Figures 7.14a and 7.14b it can be seen that the first
mode robustness is usually better than second mode robustness, except for the convolved shapers.

7.4.3 Transient Deflection

Although the shaping methods under consiceration yield zero residual vibration when the model
is perfect, there is deflection during the motion. Decreasing vibration during the move can increase
life span and improve trajectory following. Figure 7.15 shows the deflection of the benchmark
system when a time-optimal ZVD command is used to slew the center of mass 3.0 units. The
deflection between m) and mjy, D, is defined as x3-x1; the deflection D is x3- x».

Figure 7.16 shows the maximum transient deflection as a function of the move distance. The
time-optimal commands result in significantly more deflection than the si:aped bang-bang
commands. The direct and convolved shapers yield approximately the same transient deflection.
Note that maximum deflection results are highly dependent on the system parameters. A system
with a low mode of 1 Hz and a second mode of r Hz can be obtained using a variety of values for
the masses and springs constants. In each case, the deflection would differ. However, the same
general trends shown in Figure 7.16 would occur. Namely, the convolved ZVD shaper tends to
cause the least transient deflection, while the TO ZVD command causes the most deflection.
Furthermore, the maximum deflection with shaping reaches a constant value after some minimum
move distance, while the deflection with time-optimal control varies in a complicated manner.
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7.4.4 Ease of Implementation

As mentioned in the previous section, input shaping is much easier to implement than time-
optimal commands. For multi-mode systems, ease of implementation is even more pronounced.
From Chapter 4 we know that multi-mode time-optimal command switch times are complicated
functicns of the desired motion and mode ratios. Although the input shapers are functions of the
mode ratio, they are relatively easy to obtain and are useful for every desired motion.

7.4.5 Summary of Multi-Mode Shaping and Time-Optimal Control

Multi-mode input shaping has been compared with robust time-optimal flexible-body control.
The methods were compared in terms of speed, robustness to modeling errors, transient deflection,
and ease of implementation. While time-optimal commands yield the fastest responses, the
percentage increase in move duration with input shaping decreases as move distance increases.
Input shaping provides vastly increased robustness to modeling errors, while being much easier to
implement. Furthermore, input shaping generates significantly less transient deflection than does

time-optimal control.
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8 EFFECTS OF INPUT SHAPING ON COMPLEX
PERFORMANCE SPECIFICATIONS

8.1 Introduction

Although command generators can be designed to meet a wide variety of performance
specifications, certain specifications cannot be formulated (or would be extremely difficult to
formulate) as constraint equations and used in the design of a command generator. These complex
specifications are usually functions of several low-level performance specifications such as rise
time and settling time. For example, the throughput of a manufacturing machine may depend on
the settling time for each phase of its motion, the number of motions, the quality of the stock given
to the system, the skill of the operator (if any), the quality of the closed-loop controller, and the
environment noise. Designing a command generator that gives a throughput of X units per hour is
a poorly defined problem because the command generator does not have control over many of the
factors influencing throughput.

This chapter does not propose a method for getting around this problem; rather, it simply
investigates the effect of command generation on complex performance specifications. Section 8.2
investigates the effect of input shaping on the repeatability of coordinate measuring machines.
Measurement repeatability is a function of many variables including structural deflection, sensor
probe accuracy, operating speed, and temperature. Input shaping only seeks to limit residual
vibration, so its impact on measurement repeatability is not immediately obvious. Section 8.3
investigates the effect of input shaping on trajectory following. When a flexible system attempts to
follow a specified trajectory, the deviation from the intended path depends on many parameters
including the path itself, the speed of travel, and the mode shapes, just to name a few. Section 8.4
investigates a related problem of obstacle avoidance with flexible systems. The flexibility of a
system makes obstacle avoidance more difficult because the system will deviate from the intended
path. Therefore, obstacle avoidance depends on many of the same variables as trajectory
following, but it also depends on the number, size, and locations of the obstacles.
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8.2 Coordinate Measuring Machine Repeatability

Coordinate Measuring Machines (CMMSs) measure manufactured parts to determine if tolerance
specifications have been achieved. A CMM consists of a workspace in which parts are fixtured, a
sensor for detecting the part surfaces, a mechanical assembly for moving the part sensor around the
workspace, and a computer for caiculating the part dimensions based on the sensor measurements.
CMMs are available in numerous sizes and styles. Some are "desktop" mechanisms moved
manually, while others are computer driven and are large enough to measure car bodies. This
section concentrates on the behavior of a moving bridge CMM like the one sketched in Figure 8.1.

The CMM of Figure 8.1 is shown with a touch-trigger probe part sensor. This sensor uses a
ruby-tipped stylus to sense the part. When the stylus is brought into contact with a part surface,
the deflection of the stylus triggers the computer to record the position indicated by the x, y, and z
encoders. By probing the part on appropriate surfaces and recording their locations, the
dimensions of the part can be calculated.

For the CMM under consideration, the measurement cycle consists of four phases. First, the
CMM performs a gross motion to move the part sensor to the vicinity of the part feature that is to
be measured. Second, the probe is allowed to come to rest. Third, the probe is reaccelerated to a
small constant velocity in the direction of the part. This portion of the measurement is called the
probe approach. Finally, the stylus contacts the part and the computer records the location of the
contact. The position of a touch-trigger probe during a measurement with a 2 mm probe approach
distance is shown in Figure 8.2. This four phase measurement cycle is not used on all CMMs;
some do not come to a complete stop before the probe approach begins.

If a CMM is to provide valuable quality control, then its accuracy and repeatability must be
greater than the tolerance specifications for the part. Repeatability is "a measure of the ability of the
instrument to produce the same indication when sequentially sensing the same quantity under
similar measurement conditions” [2]. Many CMM designs strive for accuracies of 8-12 pwm and
repeatabilities of 3-5 um. The measurement quality of a CMM is limited by background vibration
levels, environmental conditions (temperature changes, cleanliness of the environment, etc.),
accuracy in the measurement equipment (encoders and part sensor), and structural deflections
between the encoders and the part sensor.

The most important limitation on CMM performance depends on the design of the CMM and the
operating conditions; however, structural deflection between the encoders and touch-trigger probe
is almost always an important limitation. As we know from the previous chapters, input shaping
tends to reduce structural deflections; therefore, input shaping should have sone effect on

measurement repeatability.
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Figure 8.3 graphically demonstrates how deflection in a CMM structure can adversely effect
measurement quality. In Figure 8.3a the part width is determined from two measurements. First,
the probe is moved into contact with the left side of the part. At the moment the contact is made,
the position indicated by the encoders is recorded. Next, the probe is moved to the opposite side
of the part and brought into contact with the right face. The two encoder positions are then
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subtracted to obtain the part dimension. In Figure 8.3a the part is measured accurately because the
encoders indicate the true position of the probe. In Figure 8.3b the measurement is inaccurate
because the structural deflections make the encoder readings differ from the true location of the
contact points. If the structure is vibrating with an amplitude of A during the probe approach
region, then the calculated dimension can have an error as large as +2A.

Several methods exist for limiting the structural deflection of a CMM. First, the maximum
acceleration and velocity can be limited. This solution is effective at reducing deflections, but it has
the drawback of decreasing the throughput. Second, the mechanical structure can be modified with
additional stiffening members, damping materials, or configuration changes. This solution
involves many of the classic design tradeoffs such as cost versus performance and solutions may
not apply across a product line containing CMMs of many sizes and accuracy levels. Alternatively,
the hardware can be left unaltered and the command signals sent to the motors can be shaped so
that deflections during the measurement phase are decreased.
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This section will investigate the effect of input shaping on the repeatability of CMM
measurements. The operation of a CMM is not the typical point-to-point application for which
input shaping was designed. Rather, the important phase (the part detection) occurs while the
machine is in motion and its timing occurs with some uncertainty because there is no way to know
a priori where the part is located or how much the structure will be deflected at the time of contact.

The remainder of this section is organized as follows. First, important parameters of the
moving bridge CMM measurement cycle are discussed. These parameters are used throughout the
remainder of the section to describe experimental conditions. Experimental results showing the
effect of input shaping on the structural deflections during the measurement will then be presented.
The effect of input shaping on the measurement quality will be demonstrated with the use of
repeatability studies. Finally, conclusions will be drawn from the experimental results.

8.2.1 Important Parameters of the Measurement Cycle

There are several important parameters that determine structural deflection. During the gross
motion which precedes the probe approach, the acceleration and distance traveled are significant
parameters. As the maximum machine acceleration is increased, the vibrations during the gross
motion increase and lead to larger deflections during the probe approach.

The period of time that is spent waiting between the gross motion and the probe approach phase
is also an important parameter because it allows the vibrations induced by the gross motion to settle
out. As the waiting period increases, the residual structural vibration decreases, however, the
throughput also decreases.

The two important parameters characterizing the probe approach phase are the probe approach
velocity and probe approach distance. The probe approach velocity is usually a small percentage of
the maximum velocity used during the gross motion phase. (The probe approach velocities used in
our experiments were 1% of the maximum velocity.) Increasing the probe approach velocity
would be desirable for throughput, but would lead to larger deflections because the acceleration to
probe approach velocity would last longer. On the other hand, a longer probe approach yields
better repeatability because vibrations from both the gross motion phase and the acceleration to
probe approach velocity have a longer period of time to damp out before contact is made with the
part. While increasing probe approach distance improves repeatability, it also degrades throughput
considerably because the CMM is moving at a very low velocity during the probe approach.

8.2.2 Reducing Structural Deflections
In order to detect the micron level probe vibration that is important in CMM measurements, a

laser interferometer with a resolution of three nanometers was used to measure x-direction motions
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Figure 8.4: Comparison of Deflections During Shaped and
Unshaped Measurement Cycles.

of the probe. The interferometer retro-reflector was mounted on the z-axis structural member in
close proximity with the probe, while the laser itself was positioned on the CMM's granite base.
The position measured by the encoders was subtracted from the laser measurements to obtain the
deflection between the encoders and the touch-trigger probe.

Figure 8.4 compares the structural deflection using the standard CMM controller to the
deflection when input shaping is added to the controller. The two curves are both from a
measurement cycle with a 25 mm gross motion. Note that input shaping significantly reduces the
deflections after the gross motion has been performed. However, the decrease in deflection is not
without a cost; the CMM takes longer to perform the measurement. This can be seen as the
increased time required to reach the probe approach region. If the CMM has available overhead in
its controller, then the controller gains or maximum acceleration can be increased to offset this
effect.

The large deflections during the first part of the move are caused by the accelerations during the
gross motion. The amplitudes of these deflections during the gross motion are relatively
unimportant, however, the amplitudes becocme important during the probe approach phase, when
the probe contacts the part. If the deflection is not zero when the part is encountered, then the
deflection leads to an inaccuracy in the measurement, as was demonstrated in Figure 8.3. The
deflection amplitude during the probe approach is decreased by a factor of about three when input

shaping is used.
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8.2.3 Repeatability Tests

The performance of a CMM is generally measured with an array of tests described in an
ANSI/ASME standard [2). The standard includes tests for repeatability, linear displacement
accuracy, streamlined artifact testing with a ball bar, rotary axis testing, and bi-directional length

measurements. The data presented here will consist of several types of repeatability tests. The
tests used are not exactly the same as described in the standard, however, they are representative
tests that exemplify the effect of input shaping on structural deflections.

8.2.3a Constant-Parameter Repeatability Tests

For the purposes of this section, a repeatability test is the repeated measurement of a fixtured
part a large number of times. After each measurement, the probe returns to its starting position.
The minimum measured value is subtracted from the maximum measurement to obtain the
repeatability of the CMM. Most CMMs have a repeatability of just a few microns. In addition to
the repeatability, the mean value and the standard deviation of the measurements will be reported.

Figure 8.5 shows 50 individual measurements of a repeatability test using a 1 mm probe
approach distance and a 20 mm gross motion. The repeatability range for the unshaped
measurements is: 625.2735 mm - 625.2687 mm, which equals 4.8 pm. The mean value and
standard deviation of the unshaped measurements are 625.2711 mm and 1.23x10-3, respectively.
Figure 8.5 also shows 50 measurements obtained with input shaping enabled. For the shaped
measurements the repeatability is only 3.3 pm, the mean is 625.2670 mm, and the standard
deviation is 6.7x10-4. For this set of measurement parameters input shaping improves the
repeatability by 1.5 pm and the standard deviation by 45%.

The improved repeatability with input shaping is a straightforward result given the deflection
curves of Figure 8.4. The curves show the unshaped measurements have considerably more
variation in the deflection during the probe approach region. During the course of the repeatability
test, the part is contacted at slightly different locations on the deflection curve. The decrease in
deflection variability with input shaping translates directly into a decrease in measurement
variability (an improvement in repeatability).

The difference in mean value between the unshaped and shaped measurements warrants some
additional explanation. Figure 8.4 shows that the mean value of the shaped and unshaped
deflection curves are different over any small segment. For example, the mean value of the
unshaped deflection shown in Figure 8.4 between 1.00 and 1.05 seconds is -9.00 pm, while the
mean value of the shaped deflection is 4.47 pm during the same time period. Therefore, we can
reason that the difference in the mean values of the measurements results from the difference in the
mean values of the structural deflection.
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To ensure that the benefit of input shaping is not limited to this particular set of parameters,
repeatability tests were conducted with several probe approach and gross motion distances. Figure
8.6 shows the repeatability as a function of probe approach distance for measurements with a 20
mm gross motion. Each data point in Figure 8.6 represents the range of measurements obtained
from a 50 point repeatability test with the given probe approach distance and a 20 mm gross
motion. In general, repeatability improves with increasing probe approach distance. Figure 8.6
also demonstrates that input shaping improves repeatability over a wide range of probe approach
distances. Figure 8.7 shows that input shaping also improves repeatability when a 10 or 15 mm
gross motion is used. Note that as the probe approach distance increases, the benefit of input
shaping over the standard controller decreases.
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8.2.3b Variable-Probe-Approach-Distance Repeatability Tests

For the repeatability tests summarized in Figure 8.7, the probe approach distance and gross
motion were held constant throughout the 50 measurements. These types of repeatability tests are
very valuable for evaluating CMM performance when parts are fixtured in the workspace
consistently and when part geometries do not very greatly. However, if consistent part fixturing is
not used, then probe approach distances could vary from part to part. Also, "Many
machines/probe systems exhibit vastly different characteristics depending on the probe approach
distance and the probe approach rate” [2].

241



8.2 Coordinate Measuring Machine Repeatability

95 ~—&— Shaped (1-1.5 mm Probe Approach)
F - -®- - Unshaped (1-1.5 mm Probe Approach)

A
£ 20 .0,
Zosp et
s ¢
S 10 Data from O-enlll..
2 Figure 88 < = """ee.. o
o S5k —— —®
g e
0 | ] |
5 10 15 20

Gross Motion Distance (mm)
Figure 8.9: Variable Probe Approach Distance Repeatability.

To evaluate the CMM performance under conditions of varying probe approach distances, tests
were performed with a probe approach distance that changed for each measurement in the
repeatability test. For the first measurement of the repeatability test the probe approach distance
was set at I mm. During each subsequent measure, the probe approach distance was increased by
0.01 mm until the probe approach distance reached 1.5 mm. Each of the measurements composing
this 51 point repeatability test are shown in Figure 8.8 for a gross motion of 15 mm. The variable-
probe-approach-distance repeatability is 10.4 pum without shaping and 4.2 pm with shaping.
Furthermore, the standard deviation of the measurements is decreased from 2.13x10-3 to 1.1x10-3
when input shaping is used. This improvement with input shaping is much larger than the
improvement revealed by the fixed probe approach repeatability tests shown in Figure 8.7.

The large improvement with shaping is not restricted to a gross motion of 15 mm; Figure 8.9
shows significant improvement for gross motions ranging from 5 to 20 mm. Furthermore, Figure
8.10 shows that shaping improves repeatability when the test covers the range of probe approach
distances of 1.5-2.0 mm and 2.0-2.5 mm. Figure 8.10 also shows a clear trend in repeatability
with input shaping; as gross motion increases, repeatability slowly degrades. The repeatability
without shaping is not only larger, it is more widely varying.

8.2.3c Variable-Gross-Motion Repeatability Tests

In another variaticn on the repeatability test, the gross motion distance can be varied instead of
the probe approach distance. Figure 8.11 shows the 51 measurements of a repeatability test when
the gross motion was varied from 10-12 mm at a step of 0.04 mm and the probe approach distance
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was held constant at 2 mm. For this variable-gross-motion repeatability test the input shaping
improved the repeatability from 7.2 um to 3.5 pm and the standard deviation from 0.00197 to

0.00082.

Figure 8.12 shows that shaping improves the 10-12 mm variable gross motion repeatability over
a range of probe approach distances. Figure 8.13 demonstrates that improvement in repeatability

also occurs for gross motions varying from 5-7 mm and from 15-17 mm. Once again, the
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Figure 8.13: Variable Gross Motion Repeatability for Several Ranges of
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repeatability with input shaping is consistent over a wide range of parameters, whiie the unshaped
measurement repeatability is considerably larger and more unpredictable.

The statisticai data for the three tests discussed in detail (Figures 8.5, 8.8, and 8.11) are
summarized in Table 8.1.
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8.2 Coordinate Measuring Machine Repeatability

Table 8.1: Summary of Repeatability Tests.

Unshaped Shaped
Repeatability Test Repeat Std Repeat Std
Fixed Probe Approach (1mm)
and Gross Motion (20 mm) 4.8] 0.00123 3.3] 0.00067
Variable Probe Approach (1-1.5mm)
and Fixed Gross Motion (15 mm) 10.4 0.00313 4.2 0.00110
Variable Gross Motion (10-12 mm)
and Fixed Probe Approach (2 mm) 7.2 0.00197 3.5 0.0082

8.2.4 Summary of CMM Measurement Repeatability

Deflections in the structural components of a coordinate measuring machine introduce error into
the measurements because the CMM encoders do not indicate the true position of the part sensor.
Experiments on a moving bridge CMM revealed that input shaping decreases the structural
deflections during the critical phase when the sensor is brought into contact with the part. The
decrease in deflection translates directly into improved measurement repeatability.
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8.3 Trajectory Following

The effectiveness of input shaping for reducing residual vibration in point-to-point motions has
been well established. However, very little work has been done to determine how input shaping
affects trajectory following. Experiments have shown a five-bar-linkage manipulator follows a
clover pattern better with shaping than without shaping [99]. Shaping has also shown promise for
tracking control of flexible two-link manipulators [7]. The shaping process alters the desired
trajectory, so it seems possible that input shaping could degrade trajectory following. While this
may be true for temporal trajectories, trajectories where the location as a function of time is
important, this section will show that it is untrue for spatial trajectories, where only the shape of
the trajectory is important.

For this investigation we studied a linear two-mode system and gave it simple, yet representative
trajectories to follow. The model, shown in Figure 8.14, represents a system with two orthogonal
flexible modes. The flexibility and damping of the controller and structure have been lumped
together into a single spring and damper for each mode. The inputs to the system are x and y
position commands. This model is representative of gantry robots, coordinate measuring
machines, and XY stages. Experiments with an XY stage are used to verify the simulation results.

The next two subsections describe how input shaping affects the response to circular and square
trajectory commands. Sections 8.3.3 and 8.3.4 then present two simple methods for altering the
n-shaped command to better utilize input shaping. In Section 8.3.5, experimental results are

presented and compared to simulation results.

8.3.1 Circular Trajectories

The response of the model to unshaped and shaped constant-velocity unit-circle inputs was
simulated for a large range of modeling parameters. The response without input shaping is a
function of the commanded speed around the circle, the ratio of the two vibration modes, the
damping, and the initial denarture angle relative to the lower mode {for this section the low mode
will always be in the - direction). The response to shaped circular inputs depends on the above
variables and on the "ype of input shaper selected.

Figure 8.15 compares the unshaped and ZVD shaped responses for the case where the
frequencies are fx = fy = | Hz, the damping ratios are {x = Ly = 0.05, and the unit-circle trajectory
command has a duration of 10 seconds. The circle is initiated in the negative x direction at location
(0, 0). By examining Figure 8.15 we can say, qualitatively, that the shaped response is closer to
the desired trajectory than the unshaped response. Note, however, that the shaped response is not
a perfect circle.
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Figure 8.15: Comparison of ZVD Shaped and Unshaped
Responses to a Unit-Circle Input.

We can compare the responses quantitatively by examining the maximum and minimum values
of the response radius, the envelope enclosing the radius, and the mean and standard deviation of
the error. This comparison is shown in Table 8.2 along with the performance measures for the
desired unit-circle response. The shaped response is substantially closer to the desired
performance measures in every category except mean value. The mean value results are
understandable because the unshaped response oscillates about the desired radius, while the shaped
response tracks almost the entire circle with a nearly constant, but slightly smaller than desired
radius. Input shaping leads to a smaller than commanded radius because the shaped inputs lag the
unshaped inputs. We will address this issue in a subsequent section.

Input shaping improves circular trajectory following over a large range of , r (frequency ratio),
and command speeds. To display this Jata, we combine fx and the command speed into one unit
called vibration cycles/circle. This measure tells us how fast the system is commanded relative to
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8.3 Trajectory Following

Table 8.2: Performance Measures for an Unshaped, ZVD Shaped, and

Desired Unit Circle Response.

Radius of ZVD
Response | Unshaped | Shaped | Desired |.
Maximum| 0.5313 | 0.5000 { 0.5000
Minimum| 0.4804 0,4927 | 0.5000
Envelope | 0.0509 0.0073 0

| Mean 0.5052 0.4935 | 0.5000

Sid 0.0091 0.0020 0

0.2 [ \\ Unshaped, (=0
: — -Unshaped, {=0.05
' —----Unshaped, {=0.1
015 - \\ —a— Shaped, (=0
\ \ —eo— Shaped, £=0.05
g —&— Shaped, {=0.1

0.05 —

Radius Envelope
o
I

10 15 20 25 30

Vibration Cycles/Circle

Figure 8.16: Unshaped and ZVD Shaped Radius Envelopes (r = 1).
Note: Values with Shaping are Nearly Independent of (.

its lowest natural frequency. For the responses shown in Figure 8.15, the command speed was 10
cycles/circle because the frequency was 1 Hz and the desired input lasted for 10 seconds. As this
measure is decreased, the system is required to move more rapidly, so trajectory following
worsens as the value of cycles/circle is lowered. By displaying results as a function of
cycles/circle, the dependence on the actual numerical values of the system frequencies is
eliminated.

Figure 8.16 compares the ZVD shaped and unshaped radius envelope as a function of
cycles/circle and { for the case of r = 1. For every command speed and damping ratio, the
envelope on the shaped response is smaller than that for the unshaped response. Furthermore, the
performance is no longer a function of { when input shaping is used. Although Figure 8.16 only
displays data for r = 1, the benefit from shaping is greatest in cases with low damping for all
values of the frequency ratio.

For all of the results presented so far, the unit circle command has been initiated in the negative
x direction, which is parallel to the low mode of our model. If the angle of departure is varied
relative to the x direction, the trajectory following performance will also vary. Figure 8.17 shows
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Figure 8.18: Response Radius Envelope as System Frequency Varies.

the radius envelope for the cases of r = 1.5 and 1.3 when cycles/circle = 10, and {x = §y = 0. For
every value of the departure angle, the envelope with shaping is at least four times smaller than
without shaping. Figure 8.17 also reveals that it is a poor idea to start the circle in the direction of
the low mode when shaping is not used. This makes sense, as the start-up transient excites the
low mode instead of the high mode which has a smaller vibration amplitude. With input shaping it
makes little difference what departure angle is used to commence the circular trajectery.

To evaluate shaping circular trajectories in the presence of modeling errors, we plot the
trajectory performance measures over a range of possible system frequencies that differ from the
modeling frequency. Unshaped and shaped inputs were designed for the case of fx = 1 Hz, r=1,
Cx = Cy = 0, and cycles/circle = 10. Figure 8.18 shows the response radius envelope for these
inputs when the simulation frequency is varied over the range of 0.6 < fx < 1.4 Hz. Figure 8.18
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Figure 8.19: Comparison of ZVD Shaped and Unshaped
Responses to a Unit-Square Inpet.

shows that even when the actual frequency deviates significantly from the modeling frequency, the
performance with shaping is still much better than without shaping. When the frequency is 40%
less than expected, the performance measure is 3.2 times better with input shaping than without.
With a frequenc, 40% higher than expected, the performance improves by a factor of 2.9. (When
the model is exact, shaping gives nearly a 10 fold improvement.) If we compare the circular
trajectory sensitivity curve of Figure 8.18 with the sensitivity curves of Figure 1.13, we see a
similarity; the ZVD shaper performs better than the EI shaper at frequencies very close to the
modeling frequency, but the EI shaper is better at all other frequencies.

8.3.2 Square Trajectories

The results from our simulations with circular trajectories indicate input shaping is often
beneficial for following smooth spatial trajectories. The question of how shaping works with
trajectories containing rapid directional changes remains unanswered. For this reason, we
simulated the response of the model to constant-velocity square trajectory commands.

Figure 8.19 coinpares the unshaped and ZVD shaped responses for the case of r = 1.5, {x = Cy
= 0.05, and cycles/square = 15. The square is initiated in the +x direction at location (0,0). Figure
8.19 reveals that the response with shaping is much closer to a square than the unshaped response.
To compare the results quantitatively, we calculated the distance from the position to the desired
square at each time step of the simulation. Table 8.3 compares the maximum, mean, and standard
deviation of the square tracking error for the shaped and unshaped cases. The shaped response
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Table 8.3: Performance Measures for an Unshaped, ZVD Shaped,

and Desired Unit-Square Response.

Tracking VD

Error Unshaped | Shaped Desired
[ Maximum| 0.0461 | 0.0413 0

Mean 00106 | 0.0034 0

Std 00113 | 0.0083 0
. 0.04 ——Unshaped, (=0
€ 0.035 —e—Unshaped, C=0.3
- = —=—Shaped, (=
= 0.03 —eo—Shaped, {=0.
Qi
)
%]
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2 o
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Cycles/Square

Figure 8.20: ZVD Shaped and Unshaped Mean Error as a Function of
Cycles/Square and (.

error has a much lower mean and standard deviation; however, the maximum deviation is 90% of
the unshaped deviation. The maximum shaped tracking errors occur at the corners of the square,
which are rounded by the input shaping process.

Figure 8.20 compares the ZVD shaped and unshaped mean tracking error as a function of
cycles/square and { for the case of r = 1.5. The performance increase from input shaping is most
significant at low damping values. If the system has a high damping ratio, the unshaped tracking
error can be smaller than the shaped tracking error; note the curves for { = 0.3.

The square trajectory following performance will vary with modeling errors just as the circular
tracking performance varied. Unshaped and shaped inputs were designed for the case of fx = 1
Hz,r=1,(x = Cy =0, and cycles/square = 15. Figure 8.21 shows the mean value of the square
tracking error with these inputs over the range of 0.6 < fx < 1.4 Hz. The square tracking

performance with shaping is very insensitive to modeling errors.

8.3.3 Improving Shaped Circular Responses
Our simulation results indicate that input shaping improves trajectory following in many cases;

however, the shaped responses are never exactly the desired trajectories. The primary problem
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Figure 8.21: Mean of Square Tracking Error as System Frequency Varies.

with shaped circular trajectories is the smaller-than-desired radius around most of the circle. We
can reduce this problem by using an unshaped circle command that has a radius larger than desired.

If the radius is chosen correctly, the shaped response will track very closely the correct radius at
all times except the initial and final L seconds, where L is the length of the shaper. If the
application for trajectory following contains a process that can be turned on and off, such as
painting or cutting, then the transient deviation from the desired radius can also be eliminated by
using an unshaped circular command that has a duration of:

CC*T +L, (8.1)
where CC is the desired cycles/circle for the low mode (CC has units of cycles), T = 1/fy is the
period of the low mode (sec/cycle), and L is the shaper length (sec). The shaped command is
initiated, and then after L seconds the process is started. At L seconds from the end of the shaped
command, the process is stopped. For r = 1, this procedure yields a circular response during the
process. For r# 1 there will exist a small oscillation in the radius during the process-on portion of
the trajectory. Even with this small oscillation, the shaped trajectory following performance is far
better than the unshaped performance.

8.3.4 Improving Shaped Square Responses

The primary problem with the shaped response to square inputs is the rounding of the corners.
The rounding occurs because there are periods near the corners when the shaped x and y
commands are changing at the same time. To eliminate the rounding, we can use a system
command signal that has no overlap in its shaped x and y componenis. The requisite unshaped
command signal has a delay equal to one shaper length at each of the three corners during the
trajectory (the fourth comer of the square does not have to be navigated to complete the square).
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Figure 8.22: ZVD Corner-Delayed Shaped and Unshaped Mean Error as a
Function of Cycles/Square and { (r = 1.5, Square Initiated in the +x Direction).

For a departure angle of 0°, this procedure results in an exact square response. When the
departure angle is not zero and r # 1, a small amount of deviation from a square will result. The
deviation does not occur at the corners; rather, it occurs during the transient acceleration and
deceleration portions of each side of the square. The response deviates from a square because the
flexibility of the system that is excited during the transients is not parallel to the side of the square
being traversed when the departure angle is non-zero.

The above procedure for improving square trajectories results in a command signal that is four
shaper lengths longer than the original command (three shaper lengths at the corners + one shaper
length from the convolution). While we are not concerned here with temporal trajectories, we want
to make a fair comparison between unshaped trajectories and the modified trajectories described
above. Obviously, when a flexible system is given a much longer period of time to traverse a
trajectory, it can follow the trajectory better. The improvement in trajectory following comes with
the cost of decreased throughput.

To make a fair comparison in this study (at the same level of throughput), the command is
shortened by four shaper lengths before the delays are inserted at the corners and the shaping is
performed. When this is done, the unshaped and shaped commands will have the same time
duration. Figure 8.22 compares the square tracking errors of the unshaped and corner-delayed
shaped commands. The total command length is still measured in terms of cycles/square. Figure
8.22 confirms that corner-delayed shaped commands perform better than unshaped commands for
all parameter values. Note that the curves indicating the deviation with shaping are zero for all

cases.
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Figure 8.23: Experimental Setup.

8.3.5 Experimental Results

To test our simulation results, a flexible structure with orthogonal decoupled modes was
constructed by mounting a two-stage beam vertically to an Aerotech XY stage moving in a
horizontal plane. (See Figure 8.23). The first section of the beam consisted of a 9x1x1/8in. steel
beam mounted with its flexibility paralle! to the x direction. The second section was a
12x3/4x1/16in. steel beam attached to the end of the first section, but mounted with its flexibility in
the y direction. The XY stage was driven by Aerotech DS16020 amplifiers. The command signal
was sent to the amplifiers by a Macintosh Quadra 700 running a PD controller at 500 Hz.

To record endpoint position, a Paasche compressed-air paint brush was mounted vertically to
the end of the flexible structure. A flat plane with recording paper attached was suspended above
the airbrush. The air flow valve on the paint brush was fixed open so that the flow of paint could
be controlled by a remote valve. The resulting system had uncoupled modes at 4.5 Hz and €.2 Hz,
for a frequency ratio of approximately 1.4.

Experiments were conducted by manually turning on the flow of air to the paint brush,
commencing the desired trajectory, and then shutting off the flow of air at the end of the move.
Figure 8.24 shows the trajectory when a 1.5 inch radius circular trajectory was commanded. (The
circle may not may appear exactly 3 inches in diameter due to scaling of the figure afier digitization
of the painting.) The trajectory was initiated to the left, starting at the top of the circle. The inexact
nature of the air flow control is revealed as excess paint at the start of the trajectory (top center).

A plot of the response predicted by our simulation is shown inside the experimental data. The
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Figure 8.25: EI Shaped Response to Circular Trajectory.

simulation results have been scaled down only for the purposes of comparison; plotting the
simulation results directly on top of the experimental results and desired trajectory makes the figure

Figure 8.25 shows the painted circle when an EI shaper is used to modify the command signal.
The shaping process greatly improves the trajectory following. Once again the simulated response
is plotted inside the experimental response for comparison. Comparing Figures 8.24 and 8.25, we
see that input shaping performs as well on real hardware as predicted by our model. Even though
our simple simulation does not predict the exact amplitude values of our hardware data, the relative

improvement with input shaping is verified by the experimental results.

To test the effect of modeling errors, additional mass was added to the endpoint of the flexible
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Figure 8.26: Unshaped Circular Response with Additional Endpoint Mass.

— Desired Response

Figure 8.27: EI Shaped Circular Response with Additional Endpoint Mass.
(Modeling Errors of 30% for the Low Mode and 16% for the High Mode.)

beam. The frequencies were lowered to 3.1 Hz and 5.2 Hz, changes of 30% and 16%,
respectively. The unshaped response is shown in Figure 8.26. The vibration amplitude is
noticeably larger with the additional mass. The response with the EI shaper designed for the
original system is shown in Figure 8.27. Even with very large modeling errors, the shaped
response is much closer to a circle than the original unshaped response of Figure 8.24.

Tests similar to those described above were conducted with 3in x 3in square trajectories. Figure
8.28 shows the recorded trajectory when an unshaped square with delays at each corner is
commanded. Delays were added at each corner so that the total move length would be equal to the
corresponding shaped move. Figure 8.29 shows the response for a 3in x 3in EI shaped square.
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Figure 8.28: Unshaped Response to Square Trajectory.

=== Desired Response

Figure 8.29: EI Shaped Response to Square Trajectory.

8.3.6 Effects of Shaping on Complicated Trajectories

The previous subsections have demonstrated the usefulness of using input shaping on square
and circular trajectories. Most applications will involve a trajectory that is more complicated than a
square or a circle. It is difficult to predict exactly how input shaping will affect the following of a
complicated trajectory. However, the qualitative effects produced by input shaping do apply to
complicated trajectories. As an example, Figure 8.30 shows the response of a lightly damped
system when it attempts to track a trajectory in the shape of an “M”.26 Figure 8.31 shows the

26 The MATLAB code used to perform these simulations was provided by Thomas Chuang [116].
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response of the same system when the commands are shaped with a ZV shaper. The shaping
allows for better trajectory tracking, but once again the sharp corners in the trajectory have been
rounded. Delays could be introduced at the corners to further improve trajectory following.

8.3.7 Summary of Trajectory Following Investigation

Input shaping was shown to improve the tracking of two-dimensional circular and square
trajectories for nearly all values of command speed, trajectory departure angle, damping, and
frequency ratio. By making simple adjustments to the unshaped command signal, the performance
with shaping is superior to that without shaping for all parameter values. Experiments with an XY
positioning stage demonstrated that input shaping improves the tracking of circular and square
trajectories, even in the present of large modeling errors.

258



8.4 Obstacle Avoidance

The robotic manipulation of suspended payloads can be a very challenging task, especially in a
cluttered work environment. The flexibility of the suspended payload introduces two main
problems for the control system, the residual oscillations and the transient sway. Suspended
payloads make the task of obstacle avoidance more difficult because the payload sway may cause
considerable deviation from the intended path.

Gantry cranes, like the one sketched in Figure 8.32, are an illustrative case for such problems.
Experienced crane operators attempt to eliminate the residual sway by causing a deceleration
oscillation that cancels the oscillaticn induced during acceleration. In hardened industrial settings,
such as shipping docks, the operator may even brush the payload against obstacles to damp out
oscillations.

Transient sway is a more challenging problem for a human operator. The difficulty of this
problem is not surprising because a crane cannot be moved at all without causing some amount of
transient sway. As an example, Figure 8.33 shows the path of an xy gantry crane trolley and
payload through a cluttered environment. When no attempt is made to control the payload sway,
the payload may collide with obstacles even when the xy position of the overhead trolley is far
from the obstacles.

The majority of work done on controlling suspended payloads has concentrated on eliminating
residual oscillations. If a computer controller is utilized and cable swing is considered in the
control design, the time-optimal commands which results in zero residual vibration can be
generated (5, 36]. Load hoisting during the slew increases the difficulty of generating the optimal
commands because the system frequency is time-varying. Optimal controls based on nonlinear
models are considerably more difficult to generate [70]. One method for developing optimal
controls divides the motion into five fundamental sections. The optimal control for each section is
then derived and pieced together by satisfying boundary conditions [91]. Even when optimal
commands can be generated, implementation is often impractical because the boundary conditions
(the move length) must be known at the beginning of the move. When feedback is available,
adaptive controllers and combinations of open and closed-loop controllers are possible [22, 92].

Recently, the process of input shaping [101] has proven effective at eliminating the residual
oscillations of suspended payloads [49, 73, 97, 133]. Input shaping is easier to derive and
implement than time-optimal control schemes and does not require the feedback mechanisms of
closed-loop and adaptive controllers.

In this section we examine the problem of collision avoidance with suspended payloads. Rather
than propose a completely computer controlled scheme, we assume that a human operator
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Figure 8.33: Motion of a Gantry Crane Through a Cluttered Environment.

generates the desired path through the obstacle field. We then augment the efforts of the humun
operator by shaping the command signals generated by the operator. If the transient sway can be
decreased, then the human operator should be more successful at avoiding obstacles and could
potentially plan higher performance paths. That is, they can generate paths that come closer to the
obstacles so that the desired goal can be reached in less time.

Systems that manipulate suspended payloads can have a variety of dynamic properties.
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However, most are characterized by a dominating low frequency mode that is lightly damped. In
this paper, we restrict our attention to large gantry cranes. During operation of a typical gantry
crane (cable lengths between 20 and 100 ft.), the payload position can deviate a foot or more from
the planar position of the overhead trolley. The deviation is not caused by a large angle deflection;
rather, it is due to the long cable length. For example, the payload of a crane with a 30 ft. cable
sways | ft. with an angular deflection of less than 2 degrees.

Sections 8.4.1 through 8.4.3 describe the model of a gantry crane on which we base our work
and also describe a simple model of the human operator behavior. A brief review of input shaping
is then given at the end of the section. Sections 8.4.4 through 8.4.6 present theoretical results that
predict the transient sway and residual oscillation of the system when the operator commands are
subject to input shaping. The ramifications for collision avoidance are then discussed in Section

8.4.7.

8.4.1 Gantry Crane Model
Assuming relatively small angle deflection of the suspended payload, an xy gantry crane can be
modeled as a simple linear pendulum.27 The equation of motion along one direction is given by:

é(r)+-f—0(r)=a—("—)-. (8.2)

Here 6(t) is the time varying angle deflection from the vertical down position of the payload, g is
the acceleration due to gravity, [ is the length of the suspension, and a(t) is the acceleration input to
the system. (See Figure 8.32). A model of an xy gantry crane is obtained by using two versions
of (8.2), one for the x direction and one for the y direction. The oscillations in the two directions
are assumed to be uncoupled.

Here we have assumed that the length of the cable is constant. This restricts our investigation
to cases where the operator is generating two-dimensional commands. When the payload is
hoisted during operation, the linearized frequency changes and the dynamics become more
complicated. However, our main concern here is with path following, so the two-dimensional
case will be illustrative. Furthermore, input shaping has been shown to be effective at reducing
residual oscillations when hoisting occurs [133]. Therefore, the results we obtain here have some
direct relevance to the more general case of three dimensional path following.

8.4.2 Model of Operator Behavior
Human operators usually generate commands for gantry cranes by moving levers or pressing
buttons. Figure 8.34 shows a typical operator pendant when on-off buttons are used. Pressing

27 For an angular deflection of £10° (well above the normal deflection of a gantry crane), the error in using the
linearized model is about £0.5%.
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Figure 8.34: Typical Operator Pendant.

the buttons causes the trolley of the crane to move in the North, South, East, or West directions.
(Recall that we are assuming that the Up and Down buttons are not used.)

In order to limit the set of possible commands, we make the following assumptions about the
behavior of the human operator:
1) The operator presses only one button at a time. Holding the pendant and pressing
more than one button at a time is awkward for the casual operator. Although experienced operators
routinely press multiple buttons, they are less likely to do so in the cluttered environments we are
considering.
2) Directional changes occur instantly. That is, an operator releases the button for one
direction and immediately presses the button for a new direction. We could insert an arbitrary time
delay to model the operator reflexes, but it makes little difference in the results, so we assume a
time delay of zero.
3) The operator makes no attempt to eliminate residual vibration. For example, if the
operator wants to perform an “L” shaped motion, then he presses the South button for some
amount of time. When the crane arrives at the knee of the “L”, the South button is released and the
East button is pressed, which produces perpendicular motion. That is, there is no multiple button
pressing along the vertical portion of the “L” that attempts to eliminate residual vibration at the knee
of the desired motion. This is a poor assumption for a skilled operator, but a realistic model of a
casual operator. Our main intention here is to investigate the effect of input shaping operators’
commands, not to develop a very accurate model of operator behavior.

8.4.3 Meodel of Actuator Dynamics

In order to simulate the dynamic response of the crane using (8.2), we must know a(t), which
is a function of the human operator actions and the motor dynamics. If input shaping is not used,
we assume that when an operator presses a button, the system experiences a constant acceleration
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until a velocity limit is reached, at which point the acceleration goes to zero and the trolley moves at
the constant velocity. When the operator releases the button, the trolley undergoes a constant
deceleration until the velocity reaches zero. Simply put, the system is subjected to trapezoidal
velocity profiles. If the button is released before maximum velocity is achieved, then the command
is a triangular velocity (bang-bang acceleration). When input shaping is used, we assume that
pressing a button produces the same desired command as without shaping; however, this
command is intercepted and convolved with the input shaper. The result of the convolution is then
the acceleration function, a(t), that is used to drive the system.

8.4.4 Theoretical Results

Given the crane dynamics described by (8.2) and our model of human behavior, we can solve
for the endpoint position analytically. Our assumption that the input signals are on/off implies that
a(t) will consist only of positive and negative steps. Solving (8.2) for a step input ag(t) at time t =
0 yields the angular deflection:

Bs(t)=a§(cosmt—l), (5.3)

where @ is the angular frequency of the system and is given by w=+/g//. Due to the linearity of
(8.3), any motion of the crane can be described by a superposition of (8.3).

Given the actuator limits (accelerations), the maximum velocity of the trolley, and the desired
trajectory of the payload, the starting times and magnitudes of the step inputs that compose the
command can be found analytically. These times and magnitudes can be found for a crane
operating with or without input shaping.

Starting the operation at t = 0, the sway caused by a step input of magnitude a; starting at t] is
given by equation (8.3) with a time delay of ty, that is:

0,(t) = 2L (cos@(t—1;)—1). (8.4)
g

For consistency, define 1,, =+, and ¢, =4q, / g. Equation (8.4) can be rewritten using a single cosine

with amplitude A, = a—‘cosm(to| -1;) and offset cy, that is:
g

0,()=Acoso(t—t,)+c, >1. (8.5)
Using this notation, the angular deflection after the kth (positive or negative) step input is given by
the generalization of equation (8.5). That is:28

0,()=A,cosw(t—1,)+c,, >0, (8.6)

where the time delay tpk is given by:

28 This solution and notation was provided by Hans Jacob Feder. Note that this expression is entirely analogous to
the expression developed in Chapter 5 for the deflection of the benchmark mass-spring system.
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. ag .
Ay sin@tgy | + K sin oty
tok =—tan™"! EgT . (8.7)
o Ag_jCOS@gy_| +—costy
g

and the offset cx = ck-j-ax/g. The amplitude Ay is defined by:
Ag =Ag_jcosm(tor —tok—] )+a?"cosm(t0k = tok—1)- (8.8)

Thus, using equation (8.6), the angular deflection of the endpoint can be computed analytically for
all times given any combination of step inputs to the system.

8.4.5 Residual Vibrations

It is desirable to find the residual vibration of the payload after a rest-to-rest motion. In the
context of industrial cranes, the trolley has a maximum velocity given by vihax. The time to reach
this velocity is tp = ag/Vmax. Thus, the acceleration as is only applied in this time period, and can
be approximated by a square pulse of duration tp and magnitude as. This is valid because the time
constant of acceleration is usually much faster than the duration of the acceleration tp for industrial
cranes.

The resulting angular deflection 8(r) for an on-off signal by the crane operator is given by first
applying a positive step of amplitude as at t} = 0 and then a negative step at t = t, of the same
magnitude. The angular deflection for this pulse for t > tp is:2

Op(t)=&(cos(ut—cosa)(t—tp)), t>1,. - (8.9)
4
This can be rewritten in the form of a single cosine with delay top given by:
_ _1_ | sin ,
oo =" [cos(mp —l]' (8.10)

and amplitude
(8.11)

» =(9,,(:=r,,,,)=%(cosan‘,,‘,,—cosa)(r,,p -1,)), 1>1,.
That is, the angular deflection resulting from a pulse input of duration tp is given by:

6,(1)=A,cosa(t—1,), 1>t, (8.12)
Note that there is no offset, since the acceleration after tp is zero.

To bring the trolley to a complete stop at tp + t2 seconds, an equal but negative acceleration pulse
is initiated at time t2 with duration tp. The resulting endpoint oscillation of this rest-to-rest motion
of the trolley is given by the superposition of a positive pulse at t = 0, (8.12), and a negative pulse
at tp:

6, (1)=Ay(cos@(t—1,,)—cos@(t—1,—1,,)),  1>1,+8, (8.13)

29 The analytic results of this subsection were provided by Hans Jacob Feder.
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The residual vibration can be expressed using a single cosine function with a time shift given by:
=_1_m_||:sinaxop—sina)(tz +1,) ] (8.14)

r

w cos ax,, —cos (1, +1,,)
and amplitude A, =6, (¢t =t¢,). Thatis:
6,(0)=A, cosw(t—1,), t>t,+8. (8.15)

Equation (8.15) gives the residual vibration due to a rest-to-rest movement. Figure 8.35 shows
a plot of the normalized rest-to-rest amplitude, <Ar>, versus to/T both with input shaping (line at
zero) and without input shaping (the sine-like sk.upe). The period of the system, T=2n/w, is
assumed to be exactly known. Notice that t; is directly related to the distance moved. Through
some trigonometry and algebraic manipulation, it can be shown that the normalized rest-to-rest
amplitude <A > is given by:

(4,)= sin(‘-zrﬁ) . (8.16)

As can be seen from Figure 8.35, the only thing that matters for the residual vibrations of the

endpoint when no input shaper is used is the relative magnitude of t; to the system period T.
Using the input shaper, the residual vibrations are independent of t and are always zero as long as
t7 is greater than the shaper length. For times shorter than the shaper length, actuator saturation

may occur, thus changing the dynamics of the system.

8.4.6 Worst Case Residual Amplitude

So far we have only discussed oscillations given that the exact times of the on and off signals
are known, or equivalently, we have assumed pcrfect knowledge of the distances the crane
operator moves. However, when the crane operator plans how to move in a cluttered
environment, he will not be able to predict exactly the distances the crane will move and the
oscillations that will result from the movement. Thus, it is important to find a worst case scenario
that can occur after n moves.

According to (8.16) the largest oscillations occurs when the negative pulse starts at tp = nT +
T/2 where n is an integer and T =27+/l/g is the period of the system. In this case, the positive
and the negative pulse are phase shifted by exactly 180°, making them reinforce each other
completely. Again, assuming that the time to reach maximum velocity is tp, the maximum
amplitude of oscillation (for t > t2 +tp ) is:

A=2A,. (8.17)
Thus, given k rest-to-rest motions in one direction, the maximum possible endpoint sway
amplitude is:

A, =2kA,, t > end of last pulse. (8.18)

Using this result, the maximum residual amplitudes can be found given any planned movement of
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Figure 8.35: Rest-to-Rest Residual Amplitude vs. Move Distance.

the payload. For instance, if the operator wishes to perform three moves in the x-direction of the
plane, and two in the y-direction of the plane, the maximum residual sway oscillations of the
payload after the completion of the moves would be 6A; in the x-direction and 4Ap in the y-
direction.

8.4.7 Effect of Input Shaping on Path Following

Recall the example of crane behavior shown in Figure 8.33. When the commands used to
generate the response are shaped with a UM ZV shaper, the response to these new commands are
shown in Figure 8.36. The input shaping eliminates sway perpendicular to the desired path.
(There is still sway along the path direction.) This greatly reduces the possibility of collision. If
the operator generates a collision-free path for the trolley (projected down to the plane of the
obstacles), then the payload will also follow a collision-free path.

When input shaping is used, the only deflection of the payload from the trolley path occurs at
the corners of the path. This is due to our assumption that directional changes occurs instantly.
This deflection depends on the shaper length. The payload will deviate from the trolley path one
shaper length before the corner. One shaper length after the corner, the payload will again coincide
with the path of the trolley. (See Figure 8.36).

We also point out the possibility that, given input shaping, the operator can generate higher
performance paths. That is, paths that achieve the final position in less time. For the same
cluttered environment as shown in Figures 8.33 and 8.36, several alternate paths can be safely
navigated when the perpendicular sway is eliminated with input shaping. One such path is shown
in Figure 8.37. Furthermore, if no input shaping is applied, the maximum deviation from the path
can be considerable, as shown in Figure 8.37.
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8.4.8 Summary of Obstacle Avoidance

This section has shown the effectiveness of input shaping on the practical problem of moving
suspended payloads in a cluttered environment. Input shaping of gantry cranes is most beneficial
for inexperienced operators, as skilled operators perform some manual forms of command
shaping. However, input shaping reduces the stress on experienced operators, while improving
the performance in terms of transient sway. Input shaping can greatly improve the performance of
less-skilled operators because the residual oscillation is always eliminated. Finally, input shaping
can allow any operator to plan higher performance paths through cluttered environments because
there is the assurance that sway perpendicular to the desired path will be eliminated.

Simple analytical models have been developed and used to predict the transient and residual
oscillation of the payload, with or without input shaping. Further, a simple rule has been given to
find the maximum oscillation that can occur without input shaping. This maximum value is a
function of the natural period of the suspended payload and the number of straight line movements
that compose a desired path. Given the analytic expressions for transient and residual oscillations
derived in this paper, one could develop path-planning algorithms that take into account the

beneficial nature of input shaping.
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9 Summary

9 SUMMARY

This thesis has examined the issue of command generation for flexible systems. The
importance of the command signal has been demonstrated for a variety of systems and
applications. Numerous tools for designing and evaluating command signals have been developed
and demonstrated throughout the text.

Robust methods of filtering command signals in real time were developed. These filtering
methods allow specification of the robustness to modeling errors. Techniques for applying these
methods to multi-mode systems were developed. Furthermore, time lag introduced by the filtering
process was reduced by using negative filter coefficients. Many of the proposed filtering schemes
were implemented on industrial machines and shown to work very effectively.

Techniques for generating multi-switch bang-bang commands were developed. These
commands provide very rapid motion. Because these commands tend to be very sensitive to
modeling errors, methods for specifying the robustness were developed. This work was extended
by examining the problem of generating on-off commands. Commands of this type can have
periods of coasting as well as periods of full positive and full negative actuator effort. Fuel-
efficient on-off commands were developed and shown to be nearly time-optimal. Methods for
precisely specifying the fuel usage were also presented. On-off commands that limit the transient
deflection to a desired level were developed and shown to be effective with nonlinear simulations
of flexible spacecraft.

Because multi-switch bang-bang commands and on-off commands can be difficult to
implement, methods for facilitating their use were examined. One method attempted to describe the
command profiles by simply closed-form equations. Another method used neural networks to
generate the command in real time.

Given the great variety of command generation techniques described in this thesis and in the
literature, the need for head-to-head comparisons arises. Several comparisons were presented.
Real-time filtering methods were compared to time-optimal commands for single and multi-mode
systems. The new filtering methods developed in this thesis were also compared to more
traditional FIR and IIR filtering methods.
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9 Summary

Although commands were generated to meet a large variety uf performance specifications, there
are some specifications that proved too difficult to incorporate into the design process. The effect
of command generation schemes on these complex performance specifications was examined. In
particuiar, it was shown that the real-time filtering methods presented in this thesis improve the
repeatability of coordinate measuring machines. Furthermore, they improve trajectory tracking and

aid in obstacle avoidance.
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