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ABSTRACT

A modified actuator disc analysis is made which, through an im-

proved prediction of the blade forces, attempts to give closer correspond-

ence with experiment than the previous theory. The fluid is assumed in-

viscid and incompressib2le. Perturbations to the two-dimensional flow

through an isolated blade row are considered. The steady flow equations

of motion and continuity are linearized.

According to experiments conducted on an isolated compressor

rotor, the present theory offers an improvement, compared to previous

theory, in the prediction of distortion attenuation, effects of flow

rate, and effects of varying chord/spacing ratio.



ASYNNETRIC INLET FLOW IN AXIAL TURBOMACHINES

1. INTRODUCTION

The problem of gsymmetric inlet flow, or circumferential distor-

tion, in axial turbomachines is quite simply stated. The velocity of the

flow far upstream of any blade row may in general vary with the radius r,

the angle Q, and even with time t. Because in the 'normal' (classical po-

tential flow through cascades) situation the velocity far upstream is r-@-t

independent, the flow in problems in which one of these variables assumes

a non-trivial role is spoken of as 'distorted'. In the asymmetric inlet

flow problem here considered, 9-dependency alone is studied. The problem

is thus: given the properties of the inlet flow (as a function of 9) and

the characteristics of the blade row (s), to determine the properties of

the fluid everywhere in space.

In the actual turbomachine these distortions may occur when the

engine is operated at an off-design condition, when the aircraft is flown

at high angles of attack, or when the flow is turned, or diffused too rapidly

within the intake duct.

In the solution to the problem one would also like to know the

perturbations in blade force from their mean value (and how to minimize

them), the attenuation of the distortion through the blade row (and how

to maximize this quantity) and the overall effects on compressor perfor-

mance.

Linearized actuator disc solutions to this problem have been pre-

sented by Ehrich (1) and by Rannie and Marble (6). Ehrich has assumed that
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the relative angle of the flow leaving thp rotor is constant and that there

are no losses in the flow relative to the rotor. Rannie and Marble have gen-

eralized to allow both of these quantities to be functions of the relative

inlet angle to the blade row. Ehrich's theory is for an isolated cascade;

Rannie and Marble also treat finitely spaced:>blade rows. Although these

tm: theories utilize completely different mathematical techniquep they do

give the same result for the conditions of isolated cascade, no losses, con-

stant relative leaving angle. Indeed they must give the same result, by the

uniqueness principle. Since the conditions mentioned are used throughout

this report in computing the predictions of the previous theory, in this

sense we have only to acknowledge the existence of a single previous theory.

The mathematical technique of Rannie-Marble has been used throughout and

hence the previous theory is labelled "Rannie-Marble". It is understood

that Ehrich gives the same prediction.
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2. ANALYSIS

2.1 Description of the Flow Field and Governing Equations

Let x, y be -rectangular coordinates with the axis of y parallel

to the plane of the cascade, Figure 1. The average velocity components and

pressure of the undisturbed uniform flow are U, V and P, constant upstream

and downstream respectively. The circumnferentially distorted flow is repre-

sented by superposing a disturbance flow on the uniform flow. The distur-

bace velocity compozints and the dist,4rbance pressure are u, v, p, all

with space average values zero. The disturbance is assumed to be periodic

in y direction. The disturbance flow treated here is due to non-uniform

upstream flow and its interaction with the cascade as a whole; local dis-

turbances due to individual blades are not considered. Thus, as will sub-

sequently be seen, one may consider this to be a "modified" actuator disc

analysis. The fluid is assumed inviscid and incompressible; the flow

field is considered two-dimensional.

Under thepe circumstances, the equations of motion and continuity

in linearized form are

U- -v- =--

U VM -Zr 2

ax C)

x _ y
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In the place of these famil4ar equations we choose to use the

following three, completely equivalent equations:

U -t V { Y e p, +- V ?'r 0 =4

S (U-VMw) = ~ ( ) 5

Equation 4 is simply the condition that the perturbation in total

pressure is constant along the mean streamlines. Equations (5) and (6)

show that the combination Uv - Vu (proportional to flow angle perturbation)

and the static pressure divided by density satisfy the Cauchy-Riemann con-

ditions. It is convenient to introduce the definitions/

H= lf / t U tf Vz- 7

U = - Vit 8

U 9

the following relations then hol4

00, V x) 10

)6 ~2
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The establishment of equations (11) and (12) constitute a major

step toward the solution, for now, all of the power of potential theory

can be brought to bear, at least on G and 6 . We are able to use po-

tential theory, not on u and v (since the flow is not irrotational), but

on two other functions ( , 9 ) of the p1arsicaL v.riables, u, v, p.

A particularly useful example of the functional relationship be-

tween z and (9 is developed in Appendix I . Consistent with our as-

sumption of an isolated blade row lying along the y axis, it is there shown

that for ((o, y) given, 6? (0, y) can then be found from

6 0 t ( t( / ?)cY74- s(0 .) _13

similarly

e o-, y)=6 N-7oy4)

The borrespondence 'between this appendix and the main body of the text
is as follows:

Text Appendix
u

x' v

x x

y y
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Since 9 and P satisfy the Cauchy-Riemann conditions, they may

be found for all values of x and y if the boundary values 9 (o, y) or

(o, y) along the blade row are given. Finally, in order to relate 0

or 69 to u and v, H(x, y) = H(o, y - Y x) must be known.
U

2.2 Boundary Conditions at the Blade Row
(a) Axial Velocity Match Condition

Since we are neglecting any change in density through the blade

row, and the annul14s area is constant, the axial velocity entering the blade

row must equal the axial velocity leaving the blade row. Letting station

1 represent the line x = O-(just upstream of the cascade) and station 2

the line x = O+(just downstream of the cascade) we have then that

Obviously, the average axial velocities are the same upstream and down-

stream and so we have simply that

JL (0-) (0 y)

or
jL, 4L 15

(b) Quasi-Steady Bernoulli Equation; Relative to the Rotor

We define a loss coefficient CD(0l) such $hat the Bernoulli equa-

tion for the mean flow may be written

L U sf u' (v -n r) -7 = /0, Z s ub v.-a r '_7 + zf 'o'

Then the condition for the perturbed flow, obtained by taking the differential

of the previous equation,

Co. Z o 16



Also, since

47d /4

Alternatively.
a r- U -u

Now we may rewrite (16),

(c) Prescription of the Blade Force

COGS1CD S/3

157
)- r-it

C;

The force parallel to the blade row corresponding to the mean

flow is

- =f Su (V- V2) 17

when the inlet flow has a distortion, this force is composed of a mean

value - 4" plus a variable component, - A The variable component,

obtained by taking the differential of the previous equation is

-l
4~I>

(c~S
J

-7-

7 -.12 r&

U2

Cos ,yl

16a

U hr - Y' ) t'u , v- v )
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2.3 Translation of Boundary Condition to Relations in

We -now require these matching conditions in terms of the func-

tions 6

Equation (15) becomes (Appendix II)

~ 19

The 5 are known constants.

Equation (16a) becomes

gz -e (//z -6 0'2 - e 20

Again, the S are known constants.

Equation (18) becomes

~ 0~ 2 @ 7( 2 ,-7S?16 Ma)(/ -0- cq 7L6,1 2) 21

or letting

z- C2S (7 6Qg -lg Z)

<0 2 cs"9,ba:15le~)e6,

(21) becomes

F / ~ 22

We now choose to eliminate the H2 in equation (20). From (19)

YL 23
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letting

S

S=p/d

el3 p

(23) becomes

23a

Substituting this value of H2 into (20), we obtain

= 6f 4/1V(l)-s9 74L (Z

letting

(24) becomes

el4s. F1 )t s4- 5 ,2 1si 7M6- e2- Ozs ,

25

letting

217eZ7e

24

N,= (461|-s7 ,*&

t (9-6(!5 ). z6|*& ta6|)* IL4

?/, Y = 5 ' ell

6 /-sPA&) -622 ,(P. tfl - (45 7sF1 )62

,(P 7s ) - el5- P ) e t6|(-* -S =e

=5 01V -e2

; 5 ple - / = 51pzl -SP2 (,. = &17



(25) becomes

(22 7 r to give

(22) may be rearranged to give 6

e- ) - 5169

letting

(27) becomes

szo (F2 ~ = - __

For reference we recall (26)

5'- -9S e - =

operate on equations (28) and (26), using thej

of complementary functions to obtain

-O612 -g e ;' - /// )63 10 ( 7"

26

previously developed

29

30

The four linear equations (28), (26), (29), (30) are sufficient to de-

termine 9, OZ in terms of the fuxxtions Hl, H*42

H2 may now be determined from equation (23a), completing the solution.

In this entire section the blade force has been treated as a

known quantity. The manner in which blade force is actually obtained is

discussed in the subsequent section.

-10-

26

27

28

We now

notion

5 fo = /-?/0



2.4 Determination of the Blade Forces

As we have seen, as the blade passes through the distortion, it

incurs a perturbation in force directly related to the mean flow and to

the perturbations in the mean flow. At any instant (or y location) a given

airfoil is subdect to a perturbation in velocity. The velocity perturba-

tions which affect the airfoil lift are up, uo_, vo and vo_. Specifically

as has been discussed in Reference 18, the lift is affected by . = (uo + uO_)/2

and by v = (vo. + vo_)/2. Thus the total velocity perturbation is given by

u +. v, as shown by the dashed line in Figure 2. The li"'t in uniform flow,

as is well known, is determined by the mean relative velocity vector w0 .

It is both natural and fruitful to resolve the total velocity

perturbation along and normal to wo. As is shown in Figure 2, we have

called ur, the component along w0 and vr, the component normal to wo. In

the Figure as drawn, vr is inducing a negative perturbation in force on

the blade, hence the minus sign.

As is obvious by inspection, by simple resolution of vectors,

LL= CO5(''4 - ? 3/i

Conversely

5 ~-/r /f m- TrCO r
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Here u and v may be found, as a first approximation, from the previous

theory (Rannie-Marble).

Thus a given airfoil in cascade is subject to both a time vary-

ing yr and a time varying ur, both of course periodic of period equal to

the period of the distortion. The determination of the time varying lift

of an airfoil in cascade under the influence of either of these velocity
*

perturbations has not been solved.- Therefore, the author suggests the

somewhat simpler model of a single uncambered flat plate airfoil subject

to time varying ur and vr; the influence of other airfoils would then be

treated by the lattice coefficient (Ref. 28) notion or its equivalent.

Each velocity component would be treated separately and the resultant

blade forces added algebraically.

A solution to tbe fluctuating ur problem has been obtained by

Isaacs, Ref. 17. A solution to the fluctuating vr problem has been ob-

tained by Sears, Ref. 10. Both solutions are subsequently described.

2.4.1 Blade Force Caused by Velocity Perturbations Normal to

the Mean Relative Velocity Vector (Sears Force)

The calculation of the nonsteady aerodynamic lift induced at a

thin airfoil by a relative upwash, sucfr as is shown in Figure 3, can be

obtained from the results of a paper by Sears, Ref. 10. In this theory,

both the impulsive pressure (virtual mass) and the influence of the shed

vorticity are accounted for in computing the lift. Sears has shown that

if a thin airfoil experienceg a nonsteady upwash of the form

A solu~ion to the closely related problem of an oscillating cascade is
given in Ref. 20.
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the time dependent lift is given by

where is the reduced frequency and S is the Sears function

shown in Figure 4. In this figure note that the magnitude of lift is repre-

sented by the modulus of the vector from the origin to the frequency in

question. The phase, with respect to the zero frequency lift, is given by

the angle between this vector and the positive real axis. Note that

lim L = 0.
k-> 00

For a distortion of period 21, the appropriate trigonometric form

for the primary wave is clearly (Z . More generally, for a periodic

distortion of primary wave length A (radians) the appropriate form is
0 2-7r
I A-a2.t

Thus, in general, the fundamental circular frequency is

Since the lift is determined by the- relative velocity, we may

find the lift whether the airfoil is sationary and the wave is moving, or

vice versa. In our case, the distortion is, of course, fixed -in space

(stationary) and the airfoil is moving. There is, therefore, a simple re-

lation between the variables of time t and distance A ry, specifically

The time reqiired for a blade to pass through a complete cycle

is

CC



since, according to our definition of y, y cycle 1.

Now we can represent a periodic gust of arbitrary shape as

-7r A
n~ &Ck L

and expect to find the lift as

The tangential blade force deviation may now be found from

A =.. C05 car?

Pmean is defined by the relation

= . 2 Vz

Therefore

Now
.r~

that we have as a function of time, it is clear that we

may find from the relation or t f

The relation between y, t and can best be demonstrated by referring
to Figure 5.

The wave phenomenon under discussion occurs along the r axis
as showno r is in the /Erection of wo . The time required for the
blade to travel from peak to peak along the y axis is

tc = A r C /-a -~', XCC
If the, observer now moves from r = 0 to the point r i with the wave
velocity wo, anoadditional time of r , /wO will be required before the ex-
pected peak reaches the observer. Thus in general

and since this is true for arbitrary t, y, we have

rl ~ _(2. / t

Ur 11n
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2.4.2 Blade Force Caused by Velocity Perturbation in the Direction

of the Mean Relative Velocity Vector (Isaacs Force)

As previously discussed, the blade is subject to time varying ur.

The time varying lift for such a blade has been given in a paper "Air-

foil Theory for Flows of Variable Velocity", by Rufus Isaacs, Ref. 17.

This problem and the Sears problem previously discussed are not trivial

problems to solve ch1;Lefly for one reason: in each solution, the Kutta

condition is maintained, airfoil circulation is continuously changing

(circulation is continuously shed) and the effects of the shed circulation

must be taken into account in determining the lift.

The problem is easily represented with the aid of the diagram in

Fig. 6-1. As previously, wo is the mean relative velocity vector; a si-

nusoidal perturbo.tion 6:Tof S/u)t occurs. k is again the non-dimensional

freuency, defined exactly as in the Sears force discussion. LO is the

lift corresponding to wo; the expression for LO is as shown in this dia-

gram.

Thus the ratio of the instantaneous lift L to the lift L0 is

a function of k and t. Graphs of L/LQ versus time t with 6 and k

as independent variables are given in figure 6. These graphs have been

computed using the formulae given by Isaacs. These formulae are next

described.

For the case in which

~k51n 6J



the lift is found to be

Z ~ ro e 7

where

f 3{ zcosu) &t t(,I ~ Slr +

e-(4,1cos1W t7'W sin 4;t t )]02

o,( ,,

F~~

(ne)+g'2,n)

F6J( )

+/ n/tSt~z-i Tn

/i7,

F and G are the real and imaginary parts respectively of the Theodorsen

function shown in Figure 7.

What we want to have is

AY/ = ( ' C9 - /) ,0 5 ( 11

or

~ 7f /M n f&L~(zbc S i

.5- 4C0, Int -+

7'

)7
Fourier generalizing in the usual manner, we find that if the

disturbance can be represented as

-=i, 4t=-Z,427r7Yt23 Ss,4 Z7r7 /
1.=/ /M =/ J?= / i

VTV,-,

4 t=-in1-kf 5 [ TL,,,M(n 0)-,, , (4 0+

G -(>/)

zo (

S/() $ sWet
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then the perturbation in force is given by

7/ 74 4-L427960 j Z r / ( t7cosn? d

Zmr2c5M?,ff

And again, ~ .

Fortunately, the series for 1. converges very

rapidly (because of the rapid convergence of the Bessel functions) both

in n and in m. For example taking m = 2 and n = 5 seems to insure that

L/Lo calculated on this basis will not differ from the value implied by

the infinite series by more than 2%. ,

As has been discussed, the Sears force and the Isaacs force

are finally added algebraically, giving a continuous function of y:

-bu rzbu -S

A is the lattice coefficient, the determina~ion of which is

discussed in Appendix V. Also discussed in this appendix is the de-

termination of the mean incidence im, required in the Isaacs force com-

putation.

Thus we have found the blade force required in the Analysis, 2.1.



3. EXPERIMENTAL INVESTIGATION

Fig. 8 is

the rotor

equipment

The experiments were conducted on an isolated compressor rotor.

a schematic diagram of the machine; Fig. 9 is a photograph of

with 2b/s = .525. Also shown here is the pressure measuring

to be described subsequently.

The essential dimensioni of the compressior are:

Hub-tip ratio 0.75

Tip radius 11.63 inches

Blade chord 1.51 inches (no taper)

Linear twist, root
to tip 9.7*

No. of blades 44, at 2b/s = 1.05

Blade section

Mean radius stagger,
measured from the
axial direction

Tip clearance

22, at 2b/s = 0.525

NACA 65-(12)10

52.7*

approx. .035 inches

The constant area annulus extended 29.8 inches upstream and

36.5 inches downstream of the rotor. Radial air flow entrance was

through screens. In all tests, the rotor was operated at 1000 rpm.

U was of,the order of 50 ft/sec; wo was of the order of 100 ft/sec.

A tabulation of Rernolds numbers based on blade chord together with

other significant parameters is given in Table I.
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TABLE I

2b/s = 1.05 2b/s = .525

U/11r im Re2b U/rt r im Re2b

.562 9.30' 40,500 .514 8.800 36,500

.46o 15 .3 O0 32,100 .391 16.100 27,400

Two flow rates were studied at each of two solidities. The lower

flow rate was, in each case, just above the point of inception of propagat-

ing stall. Before any distortion -producing screens were inserted, it was

determined that the flow in this case, to the accuracy of the measuring in-

struments, was axisymmetric. Relative position of screen and measuring in-

struments was obtained by rotating the screen, in stepwise faghion, using

the reel and cord arrangement 'shown in Fig. 10. The fact that three screens

are shown in this figure is discussed subsequently. The relative location

of screen, probes, and rotor is shown in Fig. 11.

As has been mentioned, the distortions were produced by screens,

the choice of which is to be described. A photograph of these screens and

their frame holder is shown in Fig. 12. Early in the investigation it was

found that one had to make a rather careful choice in the screen or screens

to be used. Screens of too high solidity diverted the flow around them so

that the requirements of the theory (flow uniform in direction at upstream

infinity) could not be met. Any screen, of course, does this to a certain

extent. However, the screens ultimately chogen produced uniformly axial

flow generally to within 50*. The second problem concerned the generation

of vortices at the edges of the screen. This problem, discussed more
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completely in References 21 and 24 was solved, at least to a large extent,

by reducing the effective solidity toward the edge of the screen. Finally,

the screen had to produce a measurable perturbation that could be considered

within the bounds of a linearized analysis. A trial and error process re-

sulted in the following description, applicable to each of the three seg-

ments shown in Fig. 12.

a) 45* (circumferential extent) screen or mesh 4 x 4, wire

size 23

b) symmetrically place 36* screen of mesh 6 x 6, wire

size 25.

The choice of the 3 blockage segments shown in Fig. 12 is now

discussed.. The problem is essentially that of choosing a screen-to-rotor

distance that can be considered 'infinite'. As is shown in Ref. 1, and

in the present theory, disturbances occuring at the rotor die away as

-2x We recall that (physical distance in x direction) Tus of
rX,

course, larger values of x correspond to closer approximations to infin-

ity. Once can increase the physical distance from the screen to the rotor

and/or one can reduce the fundamental wave length of the distortion. The

latter alternative, of course, corresponds to the use of 3 screens. Thus,

the wave length chosen for the experiments was = 1200 = it. For the
3

final arrangement then, e was equal to 0.001.

The type of probe used in all the measuremefits is shown in Fig.

13. The probe is first yawed, using the two extreme holes, in the normal

fashion. The stagnation pressure may then be read from the center tap.

At the same time one may read1 the pressure indicated by either of the ex-

treme holes. This measurement, pi, when the probe has been properly cal-

ibrated, can be easily related to the stream static pressure. In fact
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P - Pi an experimentally determined constant. This type of probe is
pO - p
described in Ref. 25. The effects of turbulence on the readings were in

all cases neglected.

These pressures were measured on null reading type transducer

equipment manufactured by the Dynamic Instrument Co. of Cambridge, Massa-

chusetts.

RPM was measured with an electrical strobotac.

All measurqments were taken at the mean geometric radius of the

flow annulus.

The size of the perturbations may be represented by the ratio

(U T )max. This value was of the order of .35 for the present series

of tests. The theory essentially neglects the third term in the expan-

sion of

2 ~ 2

(+ !!) 2= 1 + 2 Mu + (u)2
U U U

The first term represents the mean condition; the theory treats the second

term. The ratio of the term neglected to the term retained is thus at
2

most = .175.
2(.35)
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4. CONPARISON OF THEORY AND EXPERIMENT

As explained previously, a knowledge of the upstream flow

(H/U2 ), the mean flow, and the rotor characteristics enables one to

solve for the perturbations everywhere. As the theory indicates, the im,

portant perturbations are 6?/ot 1 ) $ 2- // and

All of these quantities were determined experimentally and the

comparison with the present theory and that of Rannie-Marble are presented

in Section 4.2.

Another means of comparing the theory of Rannie-Mgrble with the

present theory is through their respective predictions of tpe perturba-

tions in force on the blades. The present theory 4ttompts to correct the

previous work by means of a more adequate prediction of the blade load-

ing. As has been noted one may compute the Rann e-parble prediction of

blade force, using equation 22.

As has been daiscussed, in the present theory one first finds

ur an(% v, using the Rannie-Marble solution as a first approximation.

The respective Isaacs and pears forces are calculated for this distur-

bance flow. Then, applying these forces ia the present theory the zec-

ond approximation of the flow is obtained.

The above mentioned, forces were computed for each of the ex-

periments conducted and the results are shown in Fig. 14-1 through 14-4.

It is also interesting to investigate by experiment the !valid-

ity of the assumption tank 2 = constant. This was done for a singie case

(2b/s = 1.05, U/fL r = .460) and the result is shown in Fig. 17.
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4.1 Comparison of Blade Force Predictions

The perturbation in y-component force on the blade, as discussed

in Section 4, is shown in Fig. 14-1 through 14-4. The conditions of the

experiment are indicated in the cpgption. No experimental data concerning

blade forces were taken. The non-dimensional values of the Sears and

Isaacs "forces per chord length" per unit span are shown as the two bot-

tom curves. The next higher curve is simply an algebraic addition of the

two aforementioned curves, hence it is also a non-dimensional graph of

"force per chord length" per unit span. All of these three previously

mentioned curves apply to a single airfoil passing through the distor-

tion. If we multiply the middle curve by the chord pitch ratio, 2b/s,

we find the non-dimensional "force per pitch" per unit span and if we

then multiply by A, the lattice coefficient (Appendix V), we finally

find the non-dimensional "force per pitch" per unit span of an airfoil

in cascade. Thus we achieve the solid curve at the top of the figure,

which is compared with the Rannie-Marble prediction (2b/s = o )

dashed curve, for this quantity. Note that the relative size of the

Sears and Isaacs forces is related to the mean incidence, im. From

the theory, the Isaacs force = 0 if i is zero. This is of course not

true for the Sears force.

In general, the present theory predicts lower maxima and

higher minima than the previous theory.

4.2 Comparison of 9.1 6 A'

The perturbations upstream and downstream of the rotor as ob-

tained from the experiments and as predicted from the previpus theory
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and the present theory are presented in Fig. 15-1 through 15-4. The

H /U2 curve presented is of course part of the input information for

both theories. The 51 points enclosed by triangles on this curve are

either data points or points interpolated from the data, as explained in

Appendix IV.

The present theory corresponds more closely to the experimental

data for all of the dowhEltream perturbations ( /- / LI and

H 2/U 2 ) in each of the four experiments. The theory of Rannie-Marble ap-

parently offers a closer correspondence for the upstream quantities,

and . One should bear in mind several pbints, however, when

comparing theory and experiment.

One factor is the ease with which 00 are "located" on the

compressor, compared with the difficulty of establishing the points 0.
-27TX

This stems, of course, from the manner ( (Z ) in which the funda-

mental harmonic of 0 and /'Pdecay with distance from the rotor. Thus

x-mislocation of a given amount has a larger effect on this factor for

small x than for large x. Actually, if one places the actdator disc at

the half chord position this exponential factor for either the +0 probe
2n 1.5

or the -O probe becomes e - 1 2 = .645. That is, on this basis,
10.27 ( a

the theoretical curves for 6/ Oz/U 6 /U~and 6

are to be multiplied by .645 for a somewhat fairer comparison with ex-

periment. As may be seen, this tends to improve the correspondence be-

tween experiment and both theories.

One would thus perhaps look to H2 A? as the most genuine com-

parison quantity for theory and experiment. It may well be, but again

one point must be considered. In either theory, it is 'shown that, since
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the fluid is assumed inviscid, the perturbation in stagnation pressure is

carried undiminished by the main flow. The experiments are, of course,

conducted with a fluid of finite viscosity and the gradients are all di-

minished by viscous decay. This is perhaps the reason for the "under-

estimation" of the attenuation of H by both theories. As is noted in the

theory then, H_, /U = HQO/U2 . Also H+/U2 = H+, /U2. A comparison of

these quantities is made in Fig. 16. The downstream data tend to verify

the above discussion, though the upstream measurements do not allow one

to make this conclusion.

Another point is that in the computation of both theories rela-

tive stagnation pressure loss through the blade row was taken to be zero.

Both theories do allow for finite losses and, as shown in Ref. 26, the in-

clusion of this factor does in fact bring theory and experiment into closer

correspondence.

4.3 Effects of Flow Rate and Solidity

The effect of flow rate on the attenuation is shown in Fig. 18.

The experiment strongly indicates, for this case, larger attenuation at

the lower flow rate. The theory of Rannie-Marble clearly indicates the

opposite trend. The present theory -agrees with experiment at least in

several y intervals and clearly must be considered as predicting the ex-

perimental results more adequately. Perhaps the agreement would have been

further improved if an appropriate non-zero loss coefficient had been as-

sumed for each flow rate. The lower flow rate curve could be associated

with a higher 0D, perhaps giving more attenuation (Ref. 26) than that re-

sulting from the application of the smaller CD to the high flow rate
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curve.

The effect of varying solidity on the attenuation is shown in

Fig. 19. Experiment indicates increasing attenuation with increasing

chord/pitch. This trend is also predicted by the present theory, though

the effect is underestimated. In this respect note that, since the blades

are unstalled, increasing solidity implies a higher loss coefficient CD

for the higher solidity case. Referring again to Ref. 26, we infer then

that if an appropriate C is used in each case, the higher solidity curveD
will receive more attenuation than the lower solidity curve, improving

the prediction of the effect of solidity. The Rannie-Marble theory of

course can offer no information on this effectA since their theory treats

only the single solidity 2b/s = o . Note that, because in the experiment,

the attempt to keep flow rate constant at eaqh solidity was not successful

(there being no convenient means to control this parameter for the dis-

torted flow except by measuring a representative velocity) one had to in-

terpolate between flow rates, as indicated on this Figure.

,It should be noted that, as is to be expected, the curves of H1/32
are very nearly the same in each case.
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5. CONCLUSION

A theory for asymnetric inlet flow in an isolated blade row has

been developed. This theory gives a prediction for distortion attenuation,

effect of flow rate, and effect of solidity variation which agrees more

closely with the present experiments than does the previous theory. For

the cases tested, attenuation was increased by reducing the flow rate

and by increasing the chord-pitch ratio,

The attempt to improve the prediction of blade forces

thus appears to have been a fruitful approach to the problem of asymmetric

inlet flow. In particular, the effect of velocity perturbations in the

direction of the mean relative velocity vector, often ignored, is seen to

be the dominating influence at the larger values of mean incidence.
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APPENDIX I

A Boundary Relationship Between Two Cauchy-Riemann Variables

Since the two velocity components (u, v) in plane potential flow

c.44 .W r t 4satisfy the Cauchy-Riemann conditions ( + .O --- =0 )
ax~~~ ay > T C

it will be convenient to derive the. following in terms of these variables.

It is understood, however, that the following is true for _an pair of

Cauchy-Riemann variables.

Let u be periodic along the y axis of period 1, and let this ve-

locity distribution be the result of a source distribution along the y axis,

also of period 1, Figure A - ... That the introduction of the sources does

not make the following less general follows from the second fundamental

theorem of potential theory: if continuous boundary values are assigned,

on the surface of a regular region, to the normal derivatives, not more

than one function, apart from an additive constant, harmonic in the region,

can have normal derivatives with these values. For infinite regions, we

require that our harmonic function (in this case the velocity potential q1 )

be regular at infinity. That is, 14 / shall be bounded in

absolute value for all sufficiently large r, where / is the distance from

any fixed point. That is, thus far all we have assumed is that u is peri-

odic along x = 0, period = 1, and that the velocity potential 9 is

regular at infinity. Our results will hold whether this periodic distribu-

tion of u is caused by a periodic distribution of sources or not.
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2

/ cit

~'z4

Ii

o0 (XJ '*/)

x
FIGURE A - 1

Tkhe source strength 0V of an element is clearly 2,ad7 .

In the following, /7 X / are all real. Consider the element

shown in Figwre A - 1 and the elements at 1/2)) , ., t ?) -2 -'7)

4 -/.~/ ,,[ 7-I/-f)-lthat is, corresponding elements in the wave length.

Let be the complex potential at z due to the sources at these loca-

tions.

2rl t." -]]

L 71 f,

In (:E- )+/-n 7n') )J

f-(Z- /7f -71- _/_ 7,

Qe)
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The last term, 14 77' is a constant and will disappear in the sub-

sequent differentiation; it is hendeforth ignored.

alq- , 0 - / 0,1W)/ ,

The infinite product has a special form :

/ 

-- (Z

Log -s- disappears in ,subsequent different.gtion.

Nw, to find the influence of all the sources, we mast integrate

from 0 to 1.

-~ ca Z7T/J/k/} 7/ -i ?)/t

And finally we find

- f / t 0(' - V ) = -f Zr

Specializing to z on the y axis

r (o =-- 1 77 (Y ) -Q 7 /7 -(

Suppose that x = 0 is a line of discontinuity (as, for example,

in actuator disc theory). Now we consider properties at x = 0+ and at

x = 0-. For the region x > 0, since we have assuued that dQ is a source,

and hence > p 0, &Q 2 = al ) ZT(01, ) r-fand since

u \ 0 for x =0-, Figure A.,L, for the region x ( 0 we 'have dQ = -2AAd.

Note that, frm symetry, VT (~ * y)o= ZT(X ?)

?rIo-, y) = -(0 cct 9'-7)J (0 -,

*Whittedker and Watson, Modern Analysis, Cambridge University Press, Page 33.



A similar derivation yields
/

~ 0 C6

mainple

Given u(O+, y) = C, a, constant

Then ?y(0't/= C

Then)

74~

IC~fif-f = ~- 1IS1'? S- /HSy
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APPENDIX II

u, v, p 3 - I /1) 9 Equivalence; Translation of the Boundary Con-

ditions to RIlations in /qj

The defining equations for (JP (9 are

/f, +IL +Vr = A/

VAx +zr = 0

Regarding this as a set of three linear algebraic equatigns,

may solve for u, v, and p successively. One then finds that

A2-1

A2-2

A2-3

Then, whenever u, v or p/p appears in a boundary condition we

substitute the expressions given above. This operation and the result-

ing simplifications are set forth as is shown.

The matching condition u2 = u1 beccmes

O / -L)-6 , _ 17-6/)- ,V A2..
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letting

v
U

/

A2-4 becomes

A2-5

For the Bernoulli equation with losses, we have

-f/p V(-a r)-zf / 4z (Vz-ar )+, , C
Cos 7j A 2-

(0,-1ard,)

Translating into A' notation

6~7 ~(~-6'- * ,

6,+1 2-1Cos'
;2, Gt,Q

V, "
J, P C-p

2C0,5 9m

{{#2- - L, Y20-

(V -. 12 ) =Y 2! ) i U~-;+ 9-t (tz --n r)--

o+V,Z.



~~r)

U(Vz izr)IL+ V ("V,

_ (Vz -(2 r)

~ '7L+VI

U2~ (p

W,~
L2 P1

V2 t'U7-+,L v&:>
6os5 >

C

zc10/

zcek 6

(pO

We then have

6 2I 7L4- Lg) f7L|@=

6%4 ~ ~35~5>~ =

letting

S 7

V/,4 UV

/

2-

7Y//

62 P7(Q - 6P2) IL 5p 7 P
Z / /// /) e2 2 0/

el 7L (5 ?S. -,5p2 /

62_ 70Le // -2) ,
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letting

4 7 2 Z 3

we finally obtain

6> - 5C -J I) fp7 9 =6e e * (//-6) 6z )

For the tangential momentum boundary equation, we have

= (v-- v);(z- ) t2(VI-Vz)

= L(&5;,-r)ta (V.-V)-z

= U h,- ) (v.-V)+z

= U(Z;- r ) -Vj)2

7C)

+V;-; V tu

)itt

euy

( VI

- (UU -V/
A~

e, /-97- z ces, ) A2-7

A2-6

ez.=5, -2 sz

Z v -

UNve -2)
V (V /

UN v )
U , vj Z

U -7

= U ZT - v1'-

xe-? e92) 111 - e - 0/ an 0/
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Tabulation of tie

U
U. Y22

S V

vz
Uzv

U

Ut 2

U v-~ -i r)
~ U V,-

v, ( -2. r)
S,

u(v --ar)

el = z coSe.0 00 -2n- ) /In

2. (v - n r

LrevLK
z CosL(Vn .,r

u"V,

Su(v,-ar)

~/7 UV/

V 11/ t l z y V I-
''~ U/ v Z 

V sA V-.,r
~. U 7 ,'v

V' U
7 4 ' + , " cos( 7

/
SC5 /I/ C70~k

v,2 avnW

_2

V7,- v.-ar
5t= U '+.v,-

c'cos V V -- an

2 U u#'+

v, (v,-Ar )
U~ / .'v 2

7' U
cos Ln L/27t42~ 2/ .

I'
v.(v-Y2r)

(u)tv,

?ZC = /- zces 69l (7'e6 ) - z t9,

e;%.

f,= ei ~/
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2 2-

____ (

5 ?Z73

LI

27

C.-

C 0 ri-
()-(Zre

V)7

U-- r)_ vU C
+ s

Co S (Ir24

Ccs *t

/
CD/cZS?/;rn

Z s,
T7co s pm

= W(V2-.2 r)
U4 U;- V 2. 2pZ, L7Qr

-! /t
=2 Z. ' . 1V

9J2 V/ 2-

V VY2 e

S u2 -V L
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APPENDIX IV

Description of the Computation (Programming)

The present theory was programmed, not as a unit, but rather as

a main program and two auxiliary programs. The divipion exactly follows

the development in the text. That is, the main body of the theory, con-

sisting f tbe operations indicated in Section 2.3 exists as the main pro-

gram. Both the Sears force and the Isaacs force occur as separate pro-

grams whose output, when operated on in the manner described in the test,

serves as partial input for the main program. A description of these pro-

grams, together with sample or 'test' solutions appears as subsections of

this appendix.

The computer was the M.I.T. Computation Center IBM 704 Electronic

Data-Processing Machine.

A4.1 Main Body of the Present Theory

The block diagram for the computation is shown in Fig. 20.

Each instruction is of course not listed but rather the 'general manner in

which the computation proceeds is indicated.

The input information for this program is:

a) 51 y-equispaced values of H1

b) 51 y-equispaced values of

c) 9 constants z . 7' ? y S

The output information is 51 y equispaced values of each of Os,

6 and H2 . Since the theory involves 'essentially only the find-02.) 62 a p t s,

ing of the complementary functions (integration) and the solving of linear
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algebraic equations, it is easy to see that an alternate set of input in-

formation is

a) 51 y-equispaced values of H/

b) 51 y-equispaced values of A - -
f SU 2 7

c) 9 constants A <. 07> 8 i ?'7> zc

With this input, the output information is 51 y-equispaced values

of 0 -) 62 Zand %2. The latter method

was actually used. As indicated, the program stops after the last (y = 1.0)

set of output is printed.

As is customary in machine camputation, one checks to see that

the programming is correct by using the program on a non-trivial problem

whose answer is known, from hand computation or elsewhere. For this pro-

gram the test solution was exactly the case illustrated in Fig. 26. The

required blade force information, labelled (b) above was artificialy sup-

plied from a previous Rannie-Marble solution:

DSz z ~$ Z. +- ;92

Therefore the test solution should be exactly that given in Fig. 26. This

was the solution achieved.
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A4.2 Sears Force

vr(y) is first detemined from Rannie-Maxble solution as follows:

~ 10/(-- 0 Vi2 C24 ) S2fv T- 4 o ( 1t)]

=f za~s'4 ~~1 7L +C- C O S

U. 2-C)+Uz2

*L V Cosni

The mathematical statement of the problem may then be written

CvS2 7Pmf) A4.2-1

.4/0

b ifCSrM &l S(nl,
00

Let us let

Recalling that 6.4,,= 2 7T C2.

n0

00

-Z2 Zn11

we then have, from A4.2-2,

277 i-S,.-r)

(Z X4,/ -/-3n

Then
061L

A4.2-2

U-6 2- VZ,2
= 2
~~z

Sb 7rjuc



-= 44 k 4 0 CO S (2?7 7-,37n)

However, it is not possible to represent by a cosine series such

as A4.2-1 which has common period 1, a general function whose period is 1.

Rather, to represent a function of period 1, we need cosines of common

wave length 2.

Therefore, if we represent vr(y) as

Ur y )= 2 C6on 7/
t=0

the force expression will be given b

A4.2-3

0 z X7

Again, letting s

zl b7rWr COs j1

> ~z ' A4.2-4 becomes

C6s (701

2 T
Wr is in general -.. XL The fundamental non-dimensional fre-

quency is

In the present experiments, the physical fundamental wave length

was yR. However as previously discussed, the computation is carried out

with twice this fundaniental period. therefore, for computation purposes,

__ /_ 3 _ /- -

A4.2-4
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The input for this program was thus

a) 51 y-equispaced values of vr(y)(vr(o) ... vr(l))

b) 27rJ2.

c) AVOcosM

The output information was 51 y-equiipaced values of -

The test solution for this progam is shown in Fig. 22. Twenty harmonics

are used in the ccmputation. As indicated in the block diagram, the values

of An and Bn, indicated in A4.2-5, and characterizing the Sears function,

were stored in memory and located, according to the frequency of the parti-

cular harmonic; by a table interpolation subroutine.

A4.5 Isaacs Force

ur(y) is first determined from the Rannie-Marble solution as

follows:

2&T a cos ,? -O/(/$5)#( - - ?SLos ji)

.#U_6 _ _ j t -v (i-6)+U 7L

2. C05 ~

_ -_.___ V 1]
V&7-



We have seen that for

~ /Z, A

q,/ t$I

k4~ I
4=1

COS O

Sn=1fi

J2n 6/1 Z 7/X

~V~t~rl7L

If, on the other ha4,, ur is represented as

00

then --h En cs 9 b, wt
then the force could be written

7.4

En (4;

0 0=

r1f 54 1 M V-7C IO -

6 5w~, U'

For present purposes, /,
27rt2 (b/A)

JLttr

27rT2 ( 2Ar)

A0

2- + 00

V~b -?m~c731)nz
14 (L/'I Y)L Cvsz5rnXM1

-L
z

L2 47

(-P 4 / 9-

I+ CoS4-T4X

-43-.

zxb)Z~rn
2.

51n 7F~X2/ I1

CO52.nie t I
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, O

z

0 ci STn C65 rl

n! Si)fid. |
2.

fn 60.5 6Jr-

udr b
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n=/
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Then if the ur representation is

/2=1

F
L

( 511/ 2M71/ -Ei co,527rny

= 2 2 
144

E, - 2 e ,s dr

the force perturbation will be

=0 s

IT-51tIM~a (
7 2/12

2- .r, O Cs z7T/Y )sii T f

QP4) Z) )Z)Cosz Iy*s'rZ77My

En l ' fl-VIO5n Til ,5 r_r i ivr>y+~ z ii 9/1/ tr z ovn

with

)

40

I Z /kpi )

-.P

,/7 4
'lur 242 C054IT4y

0

7-1? }If Z,

- z. "r O

.ar (L'i/+



Thus the input information for this program is

a) 51 y-equispaced values of ur (ur(o).--ur(l))

b) 2/wO

Z 7rZL(b/)

d) i sin imwo2coson

The output information is 51 y-equispaced values of

Thd block diagram of the computation is shown in Fig. 23.

As the reader may suspect, this presented a formidable programming ef-

fort, even compared to the other three programs in this report. Part

of the complication, as may be seen from the g;verning equations is that

the size of the perturbation ur here enters in a much more complicated

fashion than does the corresponding quantity vr in the Sears force com-

putation. In the latter computation we could characterize both size

of lift and phase by kr (with vr entering as a simple multiplicative fac-

tor); in the Isaacs force computation, kr and ur together determine size

of lift and phase. Therefore, whereas in the Sears force computation we

needed only a single interpolation at a time, now we need a double inter-

polatio. for each lmn. The use of the double interpolation subroutine

is indicated in the bJpck diagram. Since this subroutine takes about 1

second for the order of interpolation used (first order) in each of the

primary and secondary variables , it was decided to economize on com-

puter time by taking only 10 harmonics, _.compared with 20 in the Sears

force computation. This is apparent in the test solution, Fig. 24.

,.The lm's and l'm's indicated in equation 33 were all computed

by hand, stored in memory and extracted, as discussed, by the double

*
Compare with the time required to find a sin or cos, using sin, cos sub-

routine UAS+Cl: 3 milliseconds.



interpolation subroutine according to the ur and kr in question.

A4.4 Rannie-Marble Theory

The complete theory of Rannie and Marble is given in Ref. 6.

In that theory, as mentioned elsewhere, the boundary condition PP

constant or a variation thereof is used. Therefore the theory is much

like that presented in Section 2.1. The programming therefore is also

quite similar. The block diagram is shown in Fig. 25; the test solution

appears in Fig. 26.

The input information for this program is

a) 51 y-equispaced values of H 1

b) 5 constants:

(-2V2 2-V/ /

U-2 /' U -12

U

P is here a known function of tan, which describes the total

pressure loss as defined by

A (U /0
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In both the Rannie-Marble theory and the present theory, losses

were always taken to be zero. Some idea of the effect of assuming finite

losses may be implied from Ref. 26.

The output information is 51 y-equispaced values of

and H2

For the same reasond set forth in A4.1 it is permissible to use

H,/- instead of H, in the input. Then the output will be 6/A) 6Z /0 V

A)/u Z2/A)



APPENDIX V

Determination of i. and A

The theory has been written for an uncambered, flat plate air-

foil; the experiments were conducted using airfoils of considerable cam-

ber: NACA 65-(,2)qairfoils.

In accounting for this effect, the effect of airfoil thick-

ness, and. also the effect of neighboring blades, the lift of the cascade

has been represented by

(L -/=

Le

The value of ( may be found frcm linearly interpolating the

results of tests of the present airfoils, described in Ref. 29, at the

appropriate solidity and stagger.

For the case 2b/s = 1.05, X = 52.7, # was found to be -8*.

For the case 2b/s = 0.525, \ = 52.70 ,5 was found to be -5.5*.

-1LA-



The value of A may be determined from the mean flow as follows;

61U2z-V -~ V _ C05 W

~

Then

/ U V,

7'-/1n ke k

The value of A in each experiment conducted is shown in Fig. 14.

CL =-2I 17 (WM? -e ~)
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LIST OF SYMBOLS

x (distance normal to the plane of the cascade)/rk

y (distance measured in the direction of the wheel speed vector)/rA

r radial coordinate

U x direction component of mean velocity

V y direction component of mean velocity

P mean pressure

u x direction velocity perturbation

v y direction velocity perturbation

p perturbation in pressure

p density

9 direction of flow, absolute coordinate system

13 direction of flow, relative coordinate system

_(L ' rotor speed

A primary wave length (radians) of the distortion

s blade spacing

2b length of the blade chord

t time

a constant

H p/p + Uu + Vv

p/p

SUv - Vu

i incidence

Vo mean relative flow velocity
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- 1
U2 (u+ + u 0 )

v (v+o + v-0 )

ur perturbation in velocity in the direction of the mean relative
velocity vector

Vr perturbation in velocity normal to the mean relative velocity

vector

circular frequency, radians/sec

fundamental circular frequency

k non-dimensional frequency =

kr fundamental non-dimensional frequency

C drag coefficient =

mean value of the force acting on the blade in the y direction

A perturbation to

L lift

LO lift corresponding to w0

LE 'elementary' lift (virtual mass and wake effects are neglected)

6 ur/wo 
K~kKl(ik)

C(k) Theodorsen function; C(k) = F(k) + iG(k) K0(ik+ K1(ik)

F(k) C(k)

G(k) C(k)

real part

imaginary part

K0, K 1  modified Bessel functions of the second kind

S(k) Seazt function 1

ik [K(ik) + K,(ik)]

n index



An modulus of S(nkr), An = I S(nkr)|

Bn angular coordinate of S(nkr), S(nkr) = AneiBn

1m, 1. copfficients in the Isaacs force, associated with sin Fourier
terms

l, l' coefficients in the Isaacs force, associated with cos Fourier
terms

m indexc

velocity, potential, also angle defined in Appendix V

complex potential

z ccmplex coordinate, z = x + iy

7 infinite product

auxiliary variable

Re2b Reynolds number based on blade chord

A lattice coefficient

Subscripts

1 just upstream of the cascade, (b-, y)

2 just downstream of the cascade, (o+, y)

-e (- Oo , y)

+ 00 (+ 00 ,y

( ) complementary function

c cycle

m mean
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