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ABSTRACT

A modified actuator disc anélysis is made which, through an im-
proved prediction of the blade forces, attempts to give closer correspond-
ence with experiment than the previous theory. The fluld is assumed in-
viscid and incompressible. Perturbations to the two-dimensional flow
through an isolated blade row are considered. The steady flow equations
of motion and continulty are linearized.

According to experiments conducted on an isolated compressor
rotor, the present theory offers an improvement, compared to pievious
theory, in the prediction of distortion attenuation, effects of flow

rate, and effects of varying chord/spacing ratio.



ASYMMETRIC INLET FLOW IN AXTAL TURBOMACHINES

1. INTRODUCTION

The problem of asymmetric inlet flow, or circumferential distor-
tion, in axial turbomachines is quite simply stated. The velocity of the
flow far upstream of any blade row may in general vary with the radius r,
the angle 0, and even with time t. Because in the 'normsl’' (classical po-
tential flow through cascades) situation the velocity far upstream is r-0-t
independent, the flow in problems in which one of these variables assumes
a non-trivial role is spoken of as 'distorted'. In the asymmetric inlet
flow problem here considered, ©-dependency slone is studied. The problem
is thus: given the properties of the inltet flow (as a function of ©) and
the characteristics of the blade row (s), to determine tl;e properties of
the fluid everywhere in space.

In the actual turbcmachine these distortions may occur when the
engine is operated at an off-design condition, when the aircraft is flown
at high angles of attack, or when the flow is turned or difi‘used too rapidly
within the intake duct.

| In the solution to the problem one would also like to know the
perturbations in blade force from their mean value (and how to minimize
them), the attenuation of the distortion through the blade row (and how
to mé.ximize this quantity) and the overall effects on compressor perfor-
mance.

Linearized actuator disc solutions to this problem have been pre-

sented by Ehrich (1) and by Rannie and Marble (6). Ehrich has assumed that
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the relative angle of the flow leaving the rotor is constant and that there
are no losses in the flow relative to the rotor. Rannie and Marble have gen-
eralized to allow both of these quantities to be functions of the relative
inlet angle to the blade row. Ehrich's theory is for an isolated cascade;
Rannie and Marble also treat finltely spaced-blade rows. Although these

two theories utilize completely different mathematical ’cechniq_ueg they do
give the same result for the conditions of isolated cascade, no losses, con-
stant relative leaving angle. Indeed they must give the same result, by the
unigueness priflciple. Since the conditions mentioned are used throughout
this report in computing the predictions of the previous theory, in this
sense we have only to acknowledge the existence of a single previous theory.
- The mathematical technique of Rannie-Marble has been used throughout and
hence the previous theory is labelled "Rannie-Marble". It is understood

that Ehrich gives the same prediction.



2. ANALYSIS

2.1 Description of the Flow Field and Governing Equations

Let x, y berectangular coordinates with the axis of y parallel
to the plane of the cascade,Figure 1. The average velocity components and
pressure of the undisturbed uniform flow are U, V and P, constant upstreem
and downstream respectively. The circumferentially distorted flow is repre-
sented by superposing a disturbance flow on the uniform flow. The distur-
bapce velocity components and the distyrbance pressure are u, v, p, all
with space average values zero. The disturbance is assumed to be periodic
in y direction. The disturbance flow treated here is due to non-uniform
upstream flow a.nd.‘ its interaction with the cascade as a whole; local dis-
turbances due to individual blades are not considered. Thus, as will sub-
sequently be seen, one may consider this to be a "modified" actuator disc
analysis. The fluid is assumed inviscid and incompressible; the flow
field is considered two-dimensional.

| Under thege circumstances, the equations of motion and continuity

in linearized form are
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In the place of these familiar equations we choose to use the

following three, completely equivalent equations:

(Ua%fVa%)(fé'f‘U,w'/—VU) =0 b
a%/UZ)’-V,u/) =a%(55§-> 5
a‘b;(uv-\/,w) =_a%7(€') 6

Equation 4 is simply the condition that the perturbation in total
pressure is constant along the mean strea'm‘lines.l Equations (5) and (6)
show that the combination Uv - Vu (proportionsl to flow angle perturbation)
and the static pressﬁre divided by density satisfy the .Cauchy-Riemann con- |

ditions. It is convenient to introduce the definitions’
H=plo FlUutVy 7
®=Uv-Vu ~ I
P = 1/ © | 9

the following relations then hold

Hixy)s 1oy =5 X) 10
00 _
a/ ox 11

0@ _ 6
ox = oy
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The establishment of equations (11) and (12) constitute a major
step toward the solution, for now, all of the power of potential theory
can be br\ought to bear, at least on @ ana 63 .« We are able to use po-
tential theory, not on u and v (since the flow is not irrotational), but
on two other functions ( ® , (° ) of the physical variables, u, v, b

A particularly useful example of the functional relationship be-
tween &) and @ is developed in Appendix I?('. Consistent with our as-
sumption of an isolated bla.dg row lying a.loné the y axis, it is there shown

that for (P(o, y) given, Cx (0, y) can then be found from

Plony)= [ @np)eornly-p)dp =@ lor,y) 13

Flo-,y) -4 @ lo-,p)cot T ly-n)dy= - @"fo-J y)

similarly

@(or y)= -3 o+, y)
@/o-dy)=§#/03 y)

* ' .
‘The toyrespondence ‘between this appendix and the main body of the text
is as follows:

Text Ap_p_endix
& u

&

X

Yy

v
X
y
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Since @ and @ satisfy the Cauchy-Riemann conditions, they may
be found for all values of x and y if the boundary values @ (o, y) or
6) (0, y) along the blade row are given. Finally, in order to relate (&
or & to u and v, H(x, y) = H(o, ¥y - % x) must be known.

2.2 Boundary Conditions at the Blade Row
(a) Axial Velocity Match Condition

Since we are neglecting any change in d.ensit;y through the blade
row, and the ‘annulys area is constant, the axial velocity entering the blade
row must equal the axial velocity leaving the blade row. Letting station
1 represent the line X = 0-(Jjust upstream of the cascade) and station 2
the line x = O+(just downstream of the cascade) we have then that

(/, AL ; =t A2
Obviously, the average axial velocities are the same upstream and down-
stream and so we have simply that

wlo-y)=ulor,y)

or

A, = Uy 15

{b) Quasi-Steady Bernoulli Eguation; Relative to the Rotor

We define a loss coefficient Cp(By) such that the Bernoulli equa-

tion for the mean flow may be written
-
Y, 2 _ z9 - » Y 2 _ z W U C_D
Frielu +-ar)] =2 zf[u tlo-ar) szfoc——zj—os g
Then the condition for the perturbed flow, obtained by taking the differential
of the previous equation,

£ TU/L,TD(V‘.Q!‘)U Farplistol-ar)ter PY2 M + oy scc/é?cﬁ 4/9/

cos (g,,,



Also, since 7‘4/7/4" 7‘4}% 8= S (14“ B)
cosAcosS R

4 fm/ :Cﬁé/}

Alternatively,

4 mﬂ
/ ‘ﬁ (@*arw)
Now we may rewrite (16),

)+ (V=20 =fz + -2 r)Ua+Un,Co _ <o /@ ¢ oru,) 4
{° wsz/a’” z cos ﬁ
(¢) Prescription of the Blade Force (

1’

The force parallel to the blade row corresponding to the mean
flow is

"Jf)l? =fDSU/‘//‘ Vz)

when the inlet flow has a distortion, this force is composed of & mean
value - Jsl plus a variable component, -4 9?' The variable component,
obtained by taking the differential of the previous eguation is

Al
_Ady _

X UV~ 2 )t (V= V)

(_Qf-l/) Ut 2/') (m-V)u _ ®raru

16a

17

18



2.3 Translation of Boundary Condition to Relations in /{/, f, @

Wenow require these matching conditions in terms of the func-
tions @) 6 V4

Equation (15) becomes (Appendix II)
S H-G )@, = (H-G )&, @, 19

/
The f S are known constants.

Equation (16a) becomes

57‘;54, H-G)r 27 @ = 6f+s’;/#z—6’z)*5% ®, 20

Again, the f 3 are known constants.

y ;2 Equation (18) becomes
—j;;sz = @- @2,7“2605‘6’,»//%”65-7"4/76’;;)//6— 6-@® fcin@,) 21

or letting

g’; = 208 B, (w8~ Ton b )
Jfo = 2¢05 8, (Y6, - kmB2 ) o 8,

(21) becomes

f‘%?-@ @, 15 (H- 6’)/@ @//—fo) @+f///, G) =

We now choose to eliminete the Hp in equation (20). From (19)

o=l Lm-P)-LEord @zjg‘ & 23



letting

Sy =55/

5?z=§f;/§f/g

53=§§/Sj;
v(25) becomes

o=V (h-6 )2 @+ @, +63 23a
Substituting this value of Ha into (20), we obtain

Gr & -G e, 6= B rG)L 01,0 G- 56,

letting
Sﬁ/ =5; 5/
§75 =§¢; &2
S;/pe =£ ;3
(24) becomes

Grrh-6)rs, @ =6, +& -G )-{2 8, "52 @, "L, &
& 0’£c 7‘5?4)‘ @ 7"@/ /_577‘5'/05)'(4?87‘55)@2 =/, /;Z‘g?e)
@, (5 fgfg)‘/sfafg?e)@z G (Lt )6 =/‘4/;qu;’§<,) 25

letting 407 = £7 # gfg
&8 =/ sactdy 5/08‘/:9&4/'354 =§€7
57 =§€y '§§c
shs =58 7l
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(25) becomes
&7 B -L£s@, +S,6-62 =55/, 26

(22) may be rearranged to give

@ (-&,)-@,-£5 = -;;S -& 4 -

letting

(27) bveccmes
_ o3

ggo @/-@—ggf/:—jos

For reference we recall (26)

Sg@/—za@z’?isf_@:g%/% 26

We now operate on equations (28) and (26), using the prev;dusly developed

—ggﬁf 28

notion of complementary functiomns to obté.in .

£G4, - [ -34) -
_f7f -L, 02 7"/8@1‘-@ §@7 30

The four linear equations (28), (26), (29), (30) are sufficient to de—*

termine @,) @z) 4 Uz in terms of the functions Hl, Hl 3 SDS )SF‘S—: .

Hy may now be determined from equation (23a), completing the solution.
In this entire section the blade force has been treated as a

known quantity. The manner in which blade force is actually obtained is

discussed in the subsequent section.
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2.4 Determination of the Blade Forces

As we have seen, &s the blade passes through the distortion, it
incurs & perturbation in force directly related to the mean flow and to
the perturbations in the mean flow. At any instant (or y location) a given
airfoil is subject to a perturbation in velocity. The velocity pei‘tur'ba—

tions which affect the airfoil 1ift are YUoys v

o+ 80d v, _. OSpecifically

O ?

as has been discussed in Reference 18, the lift is affected by u'= (uy + u,_)/2
and by v = (vop + \ )/2. Thus the total velocity perturbation is given by
u +- ;}, as shown by the dashed line in Figure 2. The li?t in uniform flow,
as is well known, is determined by the mean relative velocity vector Woe
It is both natural and fruitful to resolve the total velocity
perturba;tion elong and normal to w,. As is shown in Figure 2, we have
called u, the component a.‘l.ong LA and V., the component normal to wo. In
the Figure as drawn, v, is inducing a negative perturbation in force on
the blade, hence the minus sign.

As is obvious by inspection, by simple resclution of vectors,

= 42 COS5 By~ 2 Sin1 /7
Y7 5‘/;7%,,4 + cosf,ﬂ

UL =Ly COS B = O 5177 /B

L,
-

Conversely

T =y S//?ﬁm ~rcos/Fnm
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Here u and v may be found, as a first approximation, from the previous
theory (Rannie-Marble).

Thus a givezi airfoil in cascade is subject to both a time vary-
ing vr and a time varying up, both of course periodic of period equal to
the pe.fiod. of the distortion. The determination of the time varying lift
of an airfoil in cascade under the influence of either of these velocity
perturbations has not been soll.ved..'ie Therefore, the author suggests the
somevhat simpler model of & single uncambered flat plate airfoil subject
to time varying u,. and Vp; the influence of other airfoils would then be
treated by the lattice coefficient (Ref. 28) notion or its equivalent. ’
Each velocity componeﬁt would be treated separately and the resultant
blade forces added algebraically.

A solution to the fluctuating wu,. problem has been obtained by
Isaacs, Ref. 17. A solution to f;hé fluctuating v, problem has been ob-

tained by Sears, Ref. 10. Both sélutions are subsequently described.

2.4,1 Blade Force Caused by Velocity Perturbations Normal to

the Mean Relative Velocity Vector (Sears Force)

The calculation of the nonsteady aérdd&nanlic 1ift induced at a
thin airfoil by a zielative uPWash, suchr as is shown in Figure 3, can be
obtained from the results of a peper by Sears, Ref. 10. In this theory,
both the impulsive pressure (virtual mass) and the influence of the shed
vorticity are accounted for in comp‘uting‘ iche 1lift. Sears has shown that

if a thin airfoil experiences a nonsteady upwash of the form

=2 O )
4 (o]

*
A solution to the closely related problem of an oscillating cascade is
"given in Ref. 20.
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the time depehdent lift is given by

VA
[ ()= ZWJDAM % Sit)e”
Wb
7

(4]
shown in Figure 4. In this figure note that the magnitude of lift is repre~

where /4 is the reduced frequency and 5 is the Sears function

sented by the modulus of the vector from the origin to the frequency in
question. The phase, with respect to the zero frequency 1ift, is given by
the angle between this vector and the positive real axis. Note that

lim L = O.
ko
For a distortion of period 2x, the appropriate trigonometric form
o
(Rl
for the primary wave is clearly <& . More generally, for a periodic

distortion of primary wave length A (radians) the appropriate form is

FEL nl
A

Thus, in general, the fundamental circular frequency is

27
“>fz _)\__Q

Since the lift is determined by the relative velocity, we may
find the 1lift whether the airfoil is sationary and the wave is moving, or
vice versa. In our case, the distortion is, of course, fixed in space
(stationary) and the airfoil is moving. There is, therefore, a simple re-

lation between the variables of time t and distance )\ry, specifically
Ary=_arl )

The time req'uired. for a blade to pass through a complete cycle

is

FooAlk A
C

o4 {2
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since, according to our definition of y, ¥y cycle = 1.

Now we can represent a periodic gust of arbitrary shape as
0 r e
Sndn (1= ) _* Famn
2)/1()/)_—-24/7@ //05)— Edﬂ@ /

and expect to find the 1lift as

L(1)= z//?éw; > an S’/n%,)@

The tangential blade force deviation may now be found from

7L
4 J)’Uﬂ = [ c0S Emear
Bpean 18 defined by the relation

~ ”/gm = 3((arv)tlarv,)]

(e

U

Therefore

7L _ P T
Af/@; = Zifé,w;cas > An 5//7/,)@/
s

Now that we have AJ Uy as a function'o:f' time, it is clear that ;ze
may f£ind A%}; //) from the relation )\/’/—‘ art o =)

* .
_The relation between y, t and f can best be demonstrated by referring
to Figure 5. ‘

- The wave phenomenon under discussion occurs along the rgf axis
as shown: 1 Sé is in the direction of wo . The time required for the
blade to travel from peak to pesk along the y axis is

Z'C =\ /”)/c Lar=Mec/a

If the observer now moves from r f = 0 to the point r § 1 Wwith the wave
velocity wo, anj additional time of r 5" /o will be required before the ex-
pected peak reaches the observer. Thus in general
2= MNe L6
. c < A,
and since this is true for arbitrary t, y, f we have

_Q/t_/_”i)
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2.4.2 Blade Force Caused by Velocity Perturbation in the Direction

of the Mean Relative Velocity Vector (Isaacs Force)

As previously discussed, the blade is subject to time va.r&ing u,.
The time varying 1lift for such a bléd.e has been given in a paper "Air- '
foil Theory for Flows of Va.ri-a.bie Velocity", by Rufus Isaacs, Ref. 17.
This problem and the Sears problem previously discussed are not trivial
problems to solve clﬁ.efly for one réason: in each solution, the Kutta
condition is maintained, elrfoil circulation is continuously changing
(circulation is continuously shed) and the effects of the shed circulatign.
must be taken into account in determining the 1lift.

The problem is easily represented with the aid of the diagram in
Fig. 6-1. As previously, w, is the mean relative velocity vector; a si-
nusoidal perturbation 6% S/”“) U occurs. k is again the non-dimensional
frequency, defined exactly as in the Sears force discussion. L, is the
1ift corresponding to wgy; the expression for L, is as shown in this dia~
gram.

Thus the ratio of the instantaneous lift L to the 1lift Lo is
a function of O, k and t. Graphs of I/L, versus time t with © andk
as independent variables are .given in Figure 6. These graphs have been
computed using the formulae given by Isaacs. These formulae are next
described.

For the case in which

AT = //+5S/ﬂa)lL)

My
= w51+ o smdt)
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the 1lift is found to be

Z =Zoﬂ+g—17‘ 5(‘& *ié)coSu)tf'g/{,;/f g)Siﬂu)Z 7+
G 3___ (Y cosmw t+2), 5,,7,%(,)1‘2]

where

Lo +fxﬂ,,/,=-m(—f)mg ;57 [ Foumy (10T, (ﬁé‘)]+ %,,/Z,‘m //75)7‘%:”//76'))}

£y = Tor 00)-Tpi 1) £ipf)
”L

G = Furo)-Jp 06) & (n k)
K72L

F and G are the real and imaginary parts respectively of the Theadorsen
function shown in Figure 7.

What we want to have is

L L
AJZ{L/ = (Z‘lo)COS ) " Zo /2__0_/) COS /Iy

o 571'
A%é/= zZ 2T smi,, f?%z'(zé)@?@m 5 = *6(¢ *é)cgsujl"v"

6'/‘/,/7‘/*;)5//76() Lr6 f/{mwsﬁm}f*%ﬂ@/ smmd[)?

Fourier generalizing in the usual manner, we find that if the

disturbance can be represented as

0 @ e ot
NTLp =ty = 2 Ty smnd, T = Z Dysmetn 3L =Z Pﬂsmvm/
=/

n=/ h=/ ”
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then the perturbation in force is given by

7 o & oy L Py ke
4 ’24/=/7‘5/mmj0/,457'(zb)c05 mZ § Zz};) /2 ? @z cosnyl +
n=/

Y ‘ YA\ =
;J'i M,n f/fz/,w,,) }s/mm),,ff/gg Z //m,acosmﬁu;ff
m=2z

“Lﬁm/,g Smiml ), Z) }

And again, sz[)/ .
qfo/

Fortunstely, the series for Ten FLlm converges very .
rapidly (because of the rapid convergence of the Bessel functions) both
in n and in m. For example teking m = 2 and n = 5 seems to insure that
L/Lo calculated on this basis will not differ from the value implied by
the infinite series by more than 2%.,

As has been discussed, the Sears force and the Isaacs force

are finally added algebraically, giving a continuous function of y:

b, ) 2h %
/fazbu’ffaszL -

s~ f;_suz

A is the lattice coefficient, the determination of which is
discussed in Appendix V. Also discussed in this appendix is the de-
termination of the mean incidence i, required in the Isaacs force com-
putation.

Thus we have found the blade force required in the Analysis, 2.1.



5. EXPERIMENTAL INVESTIGATION

~18-

The experiments were conducted on an isolated compressor rotor.

Fig. 8 is a schematic diagram of the machine; Fig. 9 is a photograph of

the rotor with 2b/s = ,525. Also shown here is the pressure,measﬁring

equipment to be described subsequently.

The essential dimensionp of the compressor are:

Hub-tip ratio
Tip radius
Blade chord

Linear twist, root
to tip

No. of blades

Blade section

Mean radius stagger,
megsured from the
axial direction

Tip clearance

0.75
11.63 inches

1.51 inches (no taper)

9.7°

Ly, at 2b/s = 1.05
22, at 2b/s = 0.525

NACA 65-(12)10

52.7°

approx. .035 inches

The constant area annulus extended 29.8 inches upstream and

36.5 inches downstream of the rotor. Radial air flow entrance was

through screens. In all tests, the rotor was operated at 1000 rpm.

U was of ,the order of 50 ft/sec; wp was of the order of 100 ft/sec.

A tabulation of Reynolds numbers based on blade chord together with

other significant parameters is given in Table I.
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TABLE I
2b/s = 1.05 2b/s = .525
Ular i Repyp, | U/nr iy Regy

562 9.30° k40,500 | .51%  8.80° 36,500

460 15.30° 32,100 | .391  16.10° 27,400

Two flow rates were studied at each of two solidities. The lower
flow rate was, in each case, just above the point of inception of propsgat-
ing stall. Before any distortion ‘_prbdnci.ﬁg screens were inserted, it was
determined that the flow in this case\ ,» to the accuracy of the measuring in-
struments, was axisymmetric. Relative position of ;screen and measuwring in-
struments was obtained by rotating the screen, in stepwise faéhion, using
the reei and cord arrangement shown in Fig. 10. The fa.ct’ that three screens
are shown in this figure is discussed subsequently. The relative location
of screen, probes, and rotor is shown in Fig. 11.

As has been mentioned, the distortions were produced by screens,
the choice of which is to be d;escribed. A photograph of these screens and
their frame holder is shown in Fig. l2. Early in the lnvestigation it was
found that one had to make a rather careful choice in the screen or screens
to be used. Sc:eens of too high solidity diverted the flow a.fc'c;und them so
that the requirements of the theory (flow uﬁifom in direction at upstream
infinity) could not be met. Any screen, of course, does this to a certain
extent. 'However, the screens ultimately chogen produced uniformly axial
flow'genera.lly to within 5°. The second problem c:r'ancerned. the generation

of vortices at the edges of the screen. This problem, discussed more
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campletely in References 21 and 2h was solved, at least to a large extent,
by reducing the effective solidity toward the edge of the screen. Finally,
the screen had to produce a measursble perturbation thet could be considered
within the bounds of a linearized analysis. A trial and error process re-
sulted in the following description, applicable to each of the three seg-
ments shown in Fig. LE.
a) h5°l(circumferential extent) screen or mesh 4 x 4, wire
size 23
b) symmetrically place 36° screen of mesh 6 x 6, wire
size 25.
The choice of thé 3 bldckage segments shown in Fig. 12 is now
discussed. The problem is essentially that of choosing a screen-to-rotor
distance that can be considered 'infinite'. As is shown in Ref. 1, and

in the present theory, disturbances occuring at the rotor die awsy as

(physical distance in x direction)
r A , ’

course, larger values of x correspond to closer approximations to infin-

e ™ We recall that x = Thus, of
ity. Once can increase the physical distance from the screen to the rotor
and/or one can reduce the fundamental wave length of the distortion. The
latter alternative, of course, corresponds to the use of 3 screens. Thus,
the wave length chosen for the experiments was ).: 120° = % n. For the

final arrangement then, RS

was egual to 0.001.

The type of probe used in all the measuremehts is shown in Fig.
13. The probe is first yawed, using the two extreme holes, in the normal
fashion. The stagnation pressure mey then be read from the center tap.
At the same time one may read the pressure indicated by either of the ex-

treme holes. This measurement, p;, when the probe has been properly cal-

ibrated, can be easily related to the stream static pressure. In fact
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P " Pi - an experimentally determined constant. This type of probe is
ﬁgscrfbed in Ref. 25. The effects of turbulence on the readings were in
all cases neglected.

These pressures were measured off null reading type transducer
equipment manufactured by the Dynamic Instrument Co. of Cambridge, Massa~
chusetts.,

RPM was measured with an electrical strobotac.

All measurqinen‘cs were taken at the mean geometric radius of the

flow annulus.

The size of the perturbations msy be represented by the ratio

U =00
(U

of tests. The theory essentially neglects the third term in the expan-

Jmax- This value was of the order of .35 for the present series

sion of

2 2
1+3) =1+22+ (B
( U) U (U)_

The first term represents the mean condition; the theory treats the second

term. The ratib of the term neglected to the term retained is thus at

2
most —23%) = .175.
2(.35) :



L. COMPARISON OF THEORY AND EXPERIMENT

As explained pregriously, a knowledge of the upstream flow
(H)/ U2) s the mean flow, and the rotor characteristics enables one to
solve for the rerturbations everywhere. As the theory indicates, the im-
portant perturba.tiong are 6/()1, 6)7_ /UL) @//UL) &, /U* and
/‘/2, / Ujf All of these quantities were determined experMenfally and the
comparison with the present theory and that of Rannie-Marble are presented
in Section 4.2.

Another means of camparing the theory of Rannie-Marble with the
present theory is through their respective predictions of the perturba-
tions in force on the blades. The present theory %ttf/ampts to correct the
previous work by means of a more adequate prediction of the blq.de load-
ing. As has been noted one may compute the Ra.nn’gi.e—Marble prediction of
blade force, using eq_uation‘ 2240

As has been discussed, in the present theory one first find.s
u, ang v 7 using the Rannie-Marble solut:l.on as a first a.pproxlmation.

The respective Isaacs and Sears forces are ca.lcula.ted. for this distur-
bance flow. Then, applying these forces in the present theory the sec-
ond spproximation of the flow is obtained.

The above mentioned.ﬁ f“orces were computed for each of the ex-
reriments conducted and the resx;.lts a.re shpwri' inv Fig. 1h-1 through 1h-k4.

It is also interesting to investigate by experiment the:valid-
ity of the assumption tanB, = constant. This was done for a singﬁ.e case

(2b/s = 1.05, U/l r = .460) and the result is shown in Fig. 17.
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4.1 Comparison of Blade Force Predictions

The perturbation in y-component force on the blade, as discussed
in Section 4, is shown in Fig. 14-1 through 14-4. The conditions of the
experiment are indicated in the cgption. No experimental data concerning
blade forces were taken. The non-dimensional values of the Sears and
Isaacs "forces per chord length" per unit span are shown as the two bot-
tom curves. The next higher curve is simply an algebraic addition of the
two ai‘orementic;ned curves, hence it is also a non~dimensional graph of
"force per chord length" per unit span. All of these three previously
mentioned curves apply to a single airfoil passing through the distor-
tion. If we multiply the middle curve by the chord pitch ratio, 2b/ 8,
we find the non-dimensional "force per pitch" per unit span and if we
then multiply by A, the lattice coefficient (Appendix V), we finally
find the non-dimensional "force per pitch" per unit span of an asirfoil
in cascade. Thus we achieve the solid curve at the toi) of the figure,
which is compared with the Rannie-Marble prediction (2b/ g= 00 ),
dashed curve, for this quantity. Note that the relative size of the
Sears and Isaacs forces is related to the mean incidence, im‘ From
the theory, the Isaacs force = 0 if im is zero. This is of courée not
true i‘br the Sears force.

In general, the present theory predicts lower maxima and

higher minima than the previous theory.

4.2 Comparison of @; 6)) H

The perturbations upstream and downstream of the rotor as ob-

tained from the experiments and as predicted from the previous ‘tﬁeory
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and the present theory are presented in Fig. 15-1 through 15-4. The

Hl/ ue curve presented is of course part of the input information for
both theories. The 51 points enclosed by triangles on this curve are
either data points or points interpolated from the data, as explained in
Appendix IV.

The present theory corresponds more clgsely to the experimental
data for all of the downdtream perturbations ( & / U* ) &, / v and
He/Uz ) in each of the four experiments. The theory of Rannie-Marble ap-
parently offers a closer correspondence for the upstream quantities, 6 / UL
and @/ / ¢/ = - One should bear in mind several points, however, when
comparing theory and experiment. |

One factor is the ease with which ¥ @@ are "located" on the
compressor, compared with the difficulty of establishing the points 0.
This stems, of course, from the manner ( @_ZTX ) in which the funda-
mental harmonic of @ and. ﬁ decay with distance from the rotor. Thus
x-mislocation of & given amount has a larger effect on this factor for
small x tlgxan for large x. Actually, if one places the actdator disc at
the half chord position this exponential factor for either the +0 probe

g 645. That 1 his b
2 = . . o 8, on this basis
10.27 (5 =) 2 ’ ’

the theoretical curves for @//Uz) @, /Uj 6/U’—and @-/UZ

or the -0 probe becomes e -

are to be multiplied by .645 for a somewhat fairer comparison with ex-
periment. As may be seen, this tends to improve the correspondence be-
tween experiment and both theories. -

One would thus perhgps look to H2/‘U2 " as’'the most genuine com-
parison quantity for theory a.n—d. experiment.v It masy well be, but again

one point must be considered. In either theory, it is shown that, since
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the fluid is assumed inviscid, the perturbation in stagnation pressure is
carried undiminished by the main flow. The experiments are, of course,
conducted with a fluid of finite viscosity and the gradients are all di-
minished by viscous decay. This is perhaps the reason for the "under-
estimation" of the attenuation of H by both theories. As is noted in the
theory then, H_ /U2 = H_O/Ua. Also H;,_%/U2 = Hy o /U®. A comparison of
these quantities is made in Fig. 16. The downstream data tend to verify
the above discussion, though the upstream measurements do not allow one
to make this conclusion.

Another point is that in the computation of both theories rela-
tive stagnation pressure loss through the blade row was taken to be zero.
Both theories do allow for finite losses and, as showh in Ref. 26, the in-
clusion of this factor does in fact bring theory and experiment into closer

correspondence.

4.3 Effects of Flow Rate and Solidity

The effect of flow rate on the attenustion is shown in Fig. 18.
The experiment strongly indicates, for this case, larger attenuation at
the lower flow rate. The theory of Rannie-Marble clearly indicates the
opposite trend. The present theory agrees with experiment at least in
several y intervals and clearly must be considered as predicting the ex-
perimental results more adequately. Perhaps the agreement would have been
further improved if an appropriate non-zero loss coefficient had been as-
sumed for each flow rate. The lower flow rate curve could be associated
with a higher CD, perhaps giving more attenuation (Ref. 26) than that re-

sulting from the application of the smaller CD to the high flow rate
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curve.
The effect of varying solidity on the %ttenua.tion is shown in
Fig. 19. Experiment indicates increasing attenuation with increasing
chord/pitch. This trend is also predicted by the present theory, though
the effect is underestimated. In this respect note that, since the blades
are unstalled, increasing solidity implies & higher loss coefficient Cp
for the higher solidity case. Referring sgain to Ref. 26, we infer then
that if an appropriate CD is used in each case, the higher solidity curve
will receive more attenuation than the lower solidity curve, improving
the prediction of the effect of solidity. The Rannie-Marble theory of
course can offer no informg.tion on this effect.since their theory treats
only the single solidity 2b/s = 00 Note that, because in the experiment,
the attempt to keep flow rate constant at eagh solidity was not successful
(there being no convenient means to control this parameter for the dis-
torted flow except by measuring a representative velocity);one had to in-

terpplate‘ between flow rates, as indicated on this Figure.

*

It should be noted that, as is to be expected, the curves of Hl/U2

- are verynmearly the same in each case.
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5. CONCLUSION

A theory for asymmetric inlet flow in an isolated blade row has
been developed. This theory gives a prediction for distortion attenuation,
effect of flow rate, and effect of solidity variation which agrees more
closely with the present experiments than does the previous theory. For
the cases tested, attenuation was increased by reducing the flow rate
and by increasing the chord-pitch ratio.

The attempt to improve the prediction of blade forces
thus appears to have been a fruitful approach to the problem of asymmetric
inlet flow. In particular, the effect of velocity perturbations in the
direction of the mean relative velocity vector, often ignored, is seen to

be the dominsting influence at the larger values of mean incidence.
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APPENDIX I

A Boundary Relationship Between Two Cauchy-Riemenn Veriables

Since the two velocity components (u, v) in plane potential flow
Lo U _ M - )

satisfy the Cauchy-Riemann conditions ( a p: a), =0, Sx a)’
it will be convenient to derive the following in terms of these variables.
It is understood, however, that the following is true for any pair of
Cauchy-Riemann veriables. |

Let u be periodic along the y axis of period 1, and let this ve-
locity distribution be the result of a source distribﬁtion along the y axis,
also of period 1, Figure A - 1. That the introduction of the sources does
not make the following léss general follows from the secopd. :F‘undamental
theorem of potentiael theory: :Lf continuous boundary values are assigned,
on the surface of a regular region, to the normal derivatives, not more
than one function, apart from an additive constant, harmonic in the region,
can have normal derivatives with these values. For infinite regions, we
require that our harmonic function (in this case the velocity potential Qﬂ )
be regular at infinity. That is, /”C/ /‘Z;f B za;;ﬂ shall be bounded in
absolute value for all sufficiently large r, where /' is the distance from
any fixed point. That is, thus far all we have assumed is that u is peri-
odic along x = O, period = 1, and that the velocity potential ¢
regular at infinity. Our results will hold vhether this periodic distribu-

tion of u is caused by a periodic distribution of sources or not.
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Y
]
0% (X,y)
29
/ Jf _j/(f?)
AL “":_—_[;‘r
L
| —x
FIGURE A - 1

~The source strength a Q of an element is clearly 2.l 0/7 .
In the following, /Z) 7, X, )/ are all real. Consider the element
. : 2] o 0 o
shown in Figure A - 1 and the elements at /(71‘/)J //?7‘2)) Lo b /77"'7)) —4 (/"7))
o [+
/ [-//f'?)—/_z 4 [‘(/-7)47_7 that is, corresponding elements in the wave length.
Let d/@ be the complex potential at z due to the sources at these loca-

tions.

ﬂ’di=§—§:/n/z 47)r-27,/n[2 4/7;‘/)_77‘- 7‘-27- /;7[2 z(g;‘n)]f-zr/z -FL0- -) if _,_,.M[z /[//-7)

e "7—]}

“ox {/n (2-49 )¢ b /77-(2-40/2 H°//)(z-z°7- n)f

-‘/@ {/n/z Cp)thITn //f )//‘ )}
_‘% {/n (z-Cn)#in ITH™ 77‘[/—/@%—)7}

- ;Z/%((/n/z-zf?)%/n /TZ; _(@;i;m")?’]f & /—/-”Lf
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0
The 1ast term, /0 7]_ 7 , is a constant a.nd. will disappear in the sub-

seq_uen‘b d.ifferembiation, it is hendeforth 1gnored.
— [/ (2 i )/T[/‘((z—w}/é )L
7 [ V2= /7
The infinite prod.uct has a special form 3

l l / / /L
[Lm (55) = 555

y Y ,
AL = é/;4/ )57’.;7/7;/_;“;;373?;"-‘-ﬁ[/nS/ﬁW/z-A/Z)/z -7/ ]
7 |
é

disa.ppears in sub sequent differentiation.

Log
‘Naw, to fihd the ,V;i.n:f;’luence of all the sources, we must integrate
from O to 1.
// a._/@ . 24 0
D =), 2z smTie-in)/;
And finally we f£ind
4!@?-_'/// o o e Qﬁ% = e
Sz ), —tcol-enlz-iy) =T = -V
Specializing to z on the y axis

a’/, /
Ulo, )’)—_V/Xf Ccorm (-7 ?0'7) 2

6@7
Suppose that x = 0O is a line of discontinu:.ty (a.s, for example,

in actuator disc theory) Now we consid.er properties at x = 01» and at

X = 0-. For the region X > 0, since we h.s.ve assumed that dQ is & source,
and hence » 0, dqQ = 2/,&0’% U lor )/) / COfﬂ'()"f)/A/W?)/f and since
u $ 0 for x = 6—, Figure -A-l, for the region x { O we have dQ = -2 M-dy .
Note that, from synmetr;y, U (- X )/D) U( X )/0 )

?I/O‘J)/)— "/ 607‘77/ /7)/4 (o- 7)47

Whitta’.ker and Watson, Modern Analysn.s, Cambridge University Press, Page 33.



A similar derivation yields
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/
wloy)=* /A ol rly-p) wlop)dy  x=02

Example
Given u(O+, y) =.C, a constant

Then

Ten 77 (0%, y)=0

C
/!

vlory)=c ﬂléofr/}/-y)&/y= T

j/nls/y; b'/)"/)l - lsm ﬂ'yl }
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APPENDIX IT

gu, v, P} - { /%6;) @} Eguivalence; Translation of the Boundary Con-

ditions to Relstions in /4 SAC

The defining equations for /% é) @ are
Pt Vo = H
-Vu +UT = @
il =F
Rega.rding this as a set of three linear algebra.ic eq_uatiqns,

may solve for u, v, and p successively. One then finds that

_uH-6)-&V
U 7(_ Vl— A2-l
VIH-G)+UE
J = PAvE A2-2

%/jo = K2-3

Then, whenever u, v or p/p appears in a boundary condition we
substitute the expressions given above. This operation and the result-
ing simplifications are set forth as is shown.

The xﬁatching condition Uy = Wy becames

Uy-61 )-@, Vs _ UH-G)- BV, s
UL* VLL UL*V/L




letting

[
C

A2-4 becomes
Sh-B)E @ =L W-a)S e e

For the Bernoulli equation with losses, we have

FlerUlG-ar)=f/ e+t Wemaar)tlu, Co__ _ < (@raru)

cos‘ﬁm Z 205 Gm

Translating into @J 6; H notation

G+ WH=8) + UB, (1}-57)= & + hlbe-GG)+ V8. (150 ) #
Urry - U+ UE

/
VH-6)-Bv, ycr @+ UH-67)-8Y, pp]_ Co
UFE+YY cos®fm R /e zw573m
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letting
S - v(vV-ar)
3 UL_/_V’»
_ Ul-ar)
A U+
Sjﬂ _ l/z(l/z‘_fl/')
7 UFWE
_ vlh-aar)
g; - UL+V7/7/
/
_ v” Co _ Uar Cop
g20/ UM VY cos*Bmy Z;[ k1A zws’ﬁo
oy & _ vaoer s
22 UV Z 0057;47 {g U5V * 2@575»7
/
L= L Co
23 2 cosLﬁm
We then have

8+ (4-0)tf @G+ -6 v O, 4L, (4-6)-F, @, -
&, @ sk )L @
G (-4, t ey V-G ) (et vl ) B, =
G 7+ -G ) 1 @,



letting

5?6 =£ f/ fgplr'
£7 ng_gfz 7‘5)‘293—555

we finally obtain

G rEulh-0)rds, @ =63 +& (-5 )1 £ @),

” For the tangential momentum boundary ;_aquation, we have
2 Fy
TS =ulg-23 )t (V-1 )

= U(g-2 )t Vo~V ) +2 (Y1)

(v,-V;
=U(?),'”2)—2.)7",LL/V2.’V/) UU ,"-[/22 /u/ H//

U(l/-l/z.) 2
= Y- )t Wa-V))+2 Tz;rp,‘z//( U+ v )

-V, V>
= UG-v iy 1) Wé [Vutyg-v 0 +u
= VY- 0V )2 S ( o N vy

%,@—/UZI,‘V/M)[/I"]
1%

—_— ==

505 @ - &, -f—zcosé/?‘c?%@ faﬂgz)///, f @/7‘0”9/)1;_2-7



APPENDIX III
Tabulation of the <5
- __.(L___. _ l/z - (V)
1 Ut 2= U <3 UV E
.Y _v.lv-ar) _ylvi-ar)
‘S(;’ Uz*%" {5— U"f'l/," gt—uz+‘/lu
f'—' \A.(Vz.‘ﬂr) - gaz U(Vz‘_(Zr)
7 UEUE 3 Ut

5<;= z cos*6,(7an6, - fané,) S = 2¢05°0,(1an 6, ~13182.) /‘7”5}

£ - UMY &= V/lviy,?) £ - Ve

R 2 Yotnt) oY

f _ Vo (-2 r) ép __\//_&— V2mQr 5@___ \éf Vo= 1

72 Ulf'l/, = /5 U utvur e () U‘,L[/L"
_uvlvar) vV Co S var CplcosPBn, U vi-ar

75 s cos‘/m 2 wszﬁn vy 2 Uooutyt
_ _\///V/-.{)_/') us <o _uar C;/cos"/j’mr Vz(yz'ﬂ[)

g/;- / Uz,«.V/L UL#V’L Cosz—f’t’” Uz__/_l/"l' 2 ( Uif%

5(,07 = 55 "'/ ﬁo = /- 26052'(9/ /7‘4/46,-/*4452)/4” 5}



1‘ cosS ﬂm

/
/%5
= Coszﬁm

= Y,.Qr C‘_p/C&S ﬁm
zs urrv 2 /ﬂ .

s - v, (V.= r)

..37..

£ = A <o
22 U‘*V/"’ COSL/QM

unr ColecosBm
Uz/,%; 2 |

Uy Co/ cos”Bm

2 - UL C_P 7
i ™S
U Ty +V,*wsfm eS|
= uly, _(ZI") \/,U L C},/ _Yar Cpl/coszﬂm
27 T Ty aﬁﬁm o5 U = |
- Uvs- oy-
g, - Ve-zr) = b g

UrrV,* U

2
Vit ®



APPENDIX IV

Description of the Computation (Progremming)

The present theory was programmed, z;ot as a unit » but rather as
a main program and two auxiliary programs. The dlvigion exactly follows
the development in the text. That is, the main body of the theory, con-
sisting of "the operations indicated in Section 2.3 exists as the main pro-
gram. Both the Sears force and the Isaacs force occur as separate pro-
grams whose output, when operated on in the manner described in the test,
serves as partial input for the main program. A description of these pro-
grams, together with sample or 'test' solutions appears as subsections of
this appendix.

The computer was the M.I.T. Computation Center IBM 704 Electronic

Data-Processing Machine.

Al,1 Main Body of the Present Theory

The block disgrem for the computation is shown in Fig. 20.
Each instruction is of course not listed but rather the general mammer in
which the computation proceeds is indicated.
The input information for this program is:
a) 51 y-equispaced values of Hl e
. 47[/ /s/
b) 51 y-equispaced values of — 50—5- - ,

¢) 9 constants 3;)5,);,“;) ;4,93);7)§Z,J5’;) Sfo)gfs

The output information is 51 y equispaced values of each of @/j
@L )@ 63 and Hy . Since the theory involves essentially only the find-

ing of the complementa.fy functions (integration) and the solving of linear
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algebraic equations, it is easy to see that an alternate set of input in-
formetion is

a) 51 y-equispaced values of Hy/U®

b Aﬁ #
@ / i
) 51 y- quispa.ced. values of —_— ___(.j 2_ (7,

c) 9 constants f;) 5,6) gZ} gg) f;, fgj ;7, ﬁaj éﬁ

With this input, the output informetion is 51 y-equispaced values
of @/UZJ &, /ULJ éf/UZ ; @./Uza.nd H2/U2. The latter method
was actually used. As indicated, the program stops after the last (y = 1.0)
set of output is printed.

As is customary in machine computation, one checks to see thg.t
the programming is correct by using the program on & non-trivial problem
whose answer is known, from hand computation or elsewhere. For this pro-
gram the test solution was exactly the case illustrated in Fig. 26. The
required blade force information, labelled (b) above was artificially sup-
plied from a previous Rannie~-Marble solution: |

7L
I C) @ 4R
g5 = o ()= GRS (e - )

Therefore the test solution should be exactly that given in Fig. 26. This

was the solution achieved.
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At.2 Sears Force

Vpr (y) is first determined from Rannie-Marble solution as follows:
~Up = z[w,«o S/'fm + 2 COS ) + (., smﬂmv‘Zf.o wsﬁm )/

_ L

=2 [Z,w Sfﬂ/mf(@;o f&o)cos m_7

-4/ Vb G)-@:lh g, /8 l-GI1UE;

UL * Vbz— U?—-'L Vzb
v ///I'yl)*(/@/)
7 O ) = coS m]
The mathematical statement of the problem may then be written
o0
UP./}/) = Z Ln coS2 W’ﬁ/ Aly.2-1
/=0
Then p
1Yy, _ oo ()l
gDZéT,wZCOS Y @ Z dn S//’)/,:)@ _Ah.2-2
Nn=0o o
Let us let ©
(En
Shk.)=rha
Recalling that a)ﬁ = 27 we then have, from Ak.2-2,

A&w 227 —‘S%‘-/?Z'*gn)

oo
Jpzbzr,agcos o &2 Z Gn Pn 2
$n=0

'—'@ § gﬂﬂﬂ@
7=0

Yt 27y 7‘5”)
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2 ﬁcos/2/7‘/7/+5n)

However, it is not possible to represent by a cosine series such
as A4.2-1 which has common period 1, a general function whose period is 1.
Rather, to represent a function of period 1, we need cosines of commen

wave length 2.
Therefore, if we represent v.(y) as

w0 :
Ur /)/) =2 (n Cosnr/ Ak.2-3
n=o
the force expression will be given by
4] .
A:[)/v o0 ©
r _ L 27Th _
Sozbﬂ,u/;cas Ty Z Cn S/ﬁ/r)@ / A2k
=0
(24
(]
again, letting S [ t)=He* , Ab.2-4 becames
ALk.2-5

A:filfw 0 ’
fozéﬂ,w;ws o Z_ C’nﬂnwsfrn/'f5m)

W, is in general %gl.fl. The fundamental non-dimensional fre-

quency is
/é _ M)ré - ZF_Q(A/A)
7 A A
In the present experiments, the physical fundamental wave length

However as previously discussed, the computation is carried out

was gﬂ.
>
with twice this fundamental period. Therefore, for computation purposes,
_b_
Z/: 210 (775 ) _ /&b
4 Ap A5
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The input for this program was thus

a) 51 y-equispaced values of vr(y)(vr(o)....vr(l))

277.(2(5//\)
A,

c) mwocosBy

b)

7L
4 7y,

The output information was 51 y-equigpaced values of -——?ZZ;—
The test solution for this program is shown in Fig. 22. Twenty harmonics
are used in the computation. As indicate& in the block diegram, the values
of Ap and By, indicated in Ak.2-5, and characterizing the Seais‘function,
were‘stored in memory and located, according to the frequency of the parti-

cular harmonic; by a table interpolation subroutine.

Al.3 Isaacs Force

,ur(y) is first determined from the Rannie-Marble solution as

follows:

/(,L/' = f[(/u.,.o COSWM_U;-O SIN] Lowy )'/-&C-o COSfm—a__o S M>—7

= é[zwcas iy = Vo +?I_O)SM M_7

U(/L/Z 69) OL 1/1/ I/L('L/L-(ﬁ)'/'u@b
_2_[2 U;L-[/ OSM / U1+‘/LL 7L

\////7//’6327‘0@/ S/ﬁ/rﬂ]

A7
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00
We have seen that for Ayp= z L, smzar /7)/
%
4 )'&/' (pﬂ
© 26 = TSN, L cos/; Z /zﬂ*‘ > ——)wszrn/+

%(‘g/n f‘/f'f (,475) )S//’}Z?f”/ 1@,,50547’”)/ lﬂzn 5/&7"]’/7)/}

If, on the other hang, u, is represented as

00
ALy =Z EﬂCOS/?M),ﬂZ-

n=1
then the force could be wit’gen
1%
Lop o 2 En /746»'
2 S5 - TSy, Al COS Bm Z 5 ) / mt Z ) smhu.l +
n=y
En

/Zﬂ s zf//uf))coSﬂ - ,wzp smznu.l * fz”coswu)f}

Wb 21 (b/A)_ zw_a/;f/—a-)_ 3.0b
For present purposes, [/ﬂ: R - o = /LU; = b

P~
Alp= 2 £, cosz/‘m/

'AS

Aa‘/ o 20 én = & )
F‘gzﬂ:rrswlmwfwsﬂ Z 5 n ”/{/nf‘ /4)5//7277/7/7“
En/ /

& ' &, &, nt
T 5 /7;7)L)cosz Ty ~izz ten Sy 2L, COS‘/'T/?)/}



Then if the u,, representation is

A= Z (ﬁ,; S/ﬂzrn/+£n wszm/)

=/
with

/
| Dy=2 /oﬂf s/nzzﬂ/ay

{ £n "‘2[14,« 40527”7/44/

i é—o: [//44/4}/'_'0

the force perturbation will be

o
4\7[)’%,, (o 2 roz
.f,zz, "’/75//7/:,1(520s/ﬂm > {—ZL[(A%‘,;) +Q§'f) ]"‘

/ 27;'_(26 n 212k

)60527”)/ ,w'(hgln i /w" )5/1727'/7)/1"

VZ L ) & / En 2
=z +/+z’/j;)2)s/ﬁzrm)/ e (D35 ) )wszm),f

P = _[ £
A, {Zn COS‘H/W)/ fz.,q 5//7‘M'/7)/ T up 2y sntTny T 22,460647”7}/}
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Thus the input information for this program :}.s
a) 51 y-equispaced values of u. (up(o)....u.(1))

b) 2/wg
cj 2L /b//l)
A

d) = sin imwoacosﬁm Jp[‘L
AHYe,

° 26
The block diagram of the computation is shown in Fig. 23.

The output information is 51 y-eqp.ispaced. values of

As the reader may suspect, this presented a formidable programming ef-
fort, even compa.reﬁ. to the other three programs in this report. Part
of the complication, as may be seex; from the governing equations is that
the Bize of the perturbation n, here enters in a much more complicated
fashion than does the corresponding quantity v, in the Sears force com~
putation. In the latter computation we could characterize both size
of 1lift and phase by k. (with vy entering as & simple multiplicative fac-
tor); in the Issacs force computation, kr and w, together determine size
of 1ift and phase. Therefore, whereas in the Sears force computation we
needed only a single interpolation at a time, now we need a double inter-
poiation.. for each lmm. The use of the double interpolation subroutine
is indicated in the block disgram. Since this subroutine takes about 1
second for the order of interpolation used (first order) in each of the
primary and secondary variables*, it was decided to econamize on com-
puter time by taking only 10 harmonics, compared with 20 in the Sears
force computation. This is apparent in the test solution, Fig. 2k.

.The lp's a.nd 1'p's indicated in equation 33 were all computed

by hand, stored in memory and extracted, as discussed, by the double

*
Campare with the time required to find a sin or cos, using sin, cos sub-
routine UAS+Cl: 3 milliseconds.
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interpolation subroutine according to the u, and k. in guestion.

Ak.4 Rannie-Marble Theory

The complete theory of Rannie and Marble is given in Ref. 6.
In that theory, as mentioned elsewhere, the boundary condition P, =
constant or a variation thereof is used. Therefore the theory is much
like that presented in Section 2.1. The programming therefore is also
quite similar. The block diagram is shown in Fig. 25; the test solution
appears in Fig. 26.

The input information for this program is

| a) 51 y-equispaced velues of H;

b) 5 constants:

-V
fpo= =G
Py ) lar-v,)* pV) U5 /
g = - A L AT vz 7
v
Hp = =
7 U
__ _URu”
r- oQr
f/“ = _ UL'ILI/pL-.(Z/’VP
UvRr

P is here a known function of ta.nﬁ', vwhich describes the total

bpres',sure loss as defined by

4y = (0 (vt)™ P an 4,)
5/= a’ﬂ

a 7‘4/%



..14,7..

In both the Rannie-Marble theory and ﬁhe present theory, losses
were always taken to be zero. Some idea of the effect of assuming finite
losses may be implied from Ref. 26.

The output information is 51 y-equispaced values of 5/)62 g, @/, @L)

and H2o

For the same reason# set forth in Ak.l it is permissible to use

H]_/U2 instead of H, in the input. Then the output will be 63/ U ;677./ U 1; @// U)z

@. /" /U™
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APPENDIX V

Determination of im and A

The theory has been written for an uncambered flat plate air-
foil; the experiments were conducted using airfoils of considerable cam-
ber: NACA 65-(12)10.airfoils.

In a.ccounting for this effect, the effect of airfoil thick-
ness, and also the effect of neighboring blades, the lift of the cascade

has been represented by

f—é _ Aswilam-D)= psini,
/i

)
|
, / ’ ="
/ .
- o
77«:40) i
Ay

The value of ¢ may be found from linearly interpolating the
results of tests of the present airfoils, described in Ref. 29, at the
appropriate solidity and stagger.

For the case 2b/s = 1.05, A\ = 52.7; ¢ was found to be -8°.

For the case 2b/s = 0.525, \ = 52.75 @ was found to be-5.5°.
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The value of A may be determined from the mean flow as follows;

gfzfosu/wz-v,) =/ co5 /B

VA
-f'(o(zé)/%z'

C, = 2imsm ey —B) =

Then

- vlv-v,)
(—Zs—b-) TS (2 - B cos f”i

The value of A in each experiment conducted is shown in Fig. 1h.
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LIST OF SYMBOLS

X (distance normal to the plane of the cascade)/rk
Yy (distance measured in the direction of the wheel speed vector)/rk
r radial coordinate

y x direction component of mean velocity

v y direction component of mean velocity

P mean pressure

u X direction velocity perturbation

v y direction velocity perturbation

P perturbation in pressure

P density

4] direction of flow, absolute coordinate system

g direction of flow, relative coordinate system
qnr rotor speed

A primary wave length (radians) of the distortion
s blade spacing

2b length of the blade chord

time
a constant

p/p + Uu + Vv

t
&

H

i p/p
&)

Uv - Vu
i incidence
w mean relative flow velocity
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1
2o+ )
%(v.m +v_,)

perturbation in velocity in the direction of the mean relative
velocity vector -

perturbation in velocity normal.to the mean relative velocity
vector '

circular frequency, radians/sec

fundamental circular frequency

Y.
Ao b

fundamental non-dimensional frequency = 7
(2

drag coefficient = %‘fi’?

2pv, <

non-dimensional frequency =

nean value of the force acting on the blade in the y direction
X

perturbation to )/

1ift

1ift corresponding to LA

'elementary' 1lift (virtusl mass and wake effects are neglected)

w/ v,

K3 (1k)
Theodorsen function; C(k) = F(k) + 1G(k) = Ko(ik) + Kliik) |
A c(x)
v/ o(x)
real part

imgginary part
modified Bessel functions of the second kind

1

Sea.zjé function =
ik [ Ko(ik) + Kl(ik)J

JT

index
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modulus of S(nkr), A, = |S(nkr)|
angular coordinate of S(nkr), S(nkr) = AneiBn

cépfficiénts in the Isaacs force, associated with sin Fourier
térms '

coefficients in the Isaacs force, associated with cos Fourier
terms

index

veloclty potential, also angle defined in Appendix V
camplex potential

complex coordinate, z = X + 1y

infinite product

auxiliary varilable

Reynolds number based on blade chord

lattice coefficient

Subscripts

1

2

- 00

Just upstream of the cascade, (b-, ¥)
Just downstresm of the cascade, (o+, ¥)
(-0 ,¥)

(+ 00 ,¥)

complementéry fungtion

cycle

mean
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