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Abstract

Flight control law validation issues raised at NASA Dryden Flight Research Center ate
described, and these problems are recast into the real-jt analysis framework. To solve these

problems, a recently developed algorithm for computing real-t is extended to include repeated real
perturbations. Worst-case ditection information also is provided; such information is useful in
applic-tions that require proper weighting of the perturbation block structure. An iterative weighting
procedure that indicates the relative importance of the real uncertainties being analyzed is described.
Other developments motivated by flight-test issues are also described: block structures for analyzing
phase margin and transport delay, robustly guaranteed gain and phase margins, and in-flight
robustness measurements. These tools and techniques are demonstrated on the X-31 flight control
laws.

The problem of gain adjustment in an existing control law is cast into the framework of
modern control theory, which results in a real-diagonal block structure of gains and time constants
to be adjusted. The desire to recover performance in the form of input-output properties, as well as
handling qualities, is introduced as a mixed cost functional. Linear Matrix Inequality (LMI) based

solutions for H.. and H> based costs are discussed, as well as a Quasi-Newton approach. The
handling qualities of the F/A-18 HARV during refueling serves as a motivating example for the
method. Eight gains in the existing flight control system are adjusted to recover the performance
and handling qualities of the standard F/A-18. The eight gains are gain scheduled against dynamic
and static pressure throughout the flight envelope. The functional dependence of these gains on the
scheduling parameters results in the definition of 39 coefficients. A Fixed-Structure Linear
Parameter Varying (LPV) synthesis method is used to gain schedule the longitudinal and lateral-
directional control augmentation system of the F/A-18. The goal is to retune the control law so that
it could be used as the Control Augmentation System (CAS) for the F/A-18 HARV, which has
much different dynamics. The example illustrates how modem methods can be used to improve
both the handling qualities and the input-output charactetistics of an existing control system, and to
do so automatically over a wide range of operating. Automated tuning of the gain schedule is
achieved via optimization over a large region of the flight envelope. The presented approach is
systematic and emphasizes the reuse of conceptual structures and architecture. The CAS with the
new gains was implement on the fixed base NASA Dryden flight simulator. Several tracking
maneuvers were performed by six different pilots on the flight simulator. The fine tracking
performance of the F/A-18 HARV with the new gain schedule received a Cooper-Harper (CH)
rating identical to that of the standard F/A-18 HARV.

Thesis Supervisor: James Donald Paduano
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Modern control theory can be divided into two main branches: analysis and synthesis.
Analysis deals with the performance and robustness of an existing control law while synthesis
deals with the design of control laws that meet specified requirements of performance and
robustness. In this thesis we will consider some of the major problems arising in flight
control law design and analysis. Our goal is to develop low level tools based on modern
control theory, to help control engineers face current problems, such as stability and
robustness of multivariable systems, gain scheduling, and design of fixed structure

controllets.

For this reason the thesis is divided in two major parts; the first dedicated to flight
control law analysis and verification, and the second to flight control law design. In the next

two sections a brief description of the main aspects of these two parts is given.

1.1 Controller Analysis: low level tools for engineers

Recent years have seen the steady maturation of real-p and mixed-g as a framework
for analyzing the robustness of multivariable control systems, as well as algorithms for
computing upper and lower bounds for 4 [Ref.1-1, Ref.1-2, and Ref.1-3]. The pfimary
application of the methodology is often considered to be design: once algorithms are in place
to reliably and efficiently compute p, they are folded into a synthesis procedure which

attempts to define a controller that minimizes its maximum value [Ref.1-4].

The application consideted in this thesis will be fundamentally different. In a flight
test and control law validation environment, such as NASA Dryden, robustness
characterization is an end in itself: given a complex flight control system and a nonlineat
model of the flight dynamics, determine what can go wrong in flight, during maneuvers, or at

the next flight point in an envelope expansion. The problems which must be dealt with in
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this environment often involve delays, nonlinearities, actuator position and/or rate
saturation, mode switching pathologies, handling qualities, and pilot/cockpit interactions.
The goal of the thesis will be to address some of these problems, by recasting them in the
real-yt framework [Ref.1-5 and Ref.1-6].

Specifically this thesis will address questions like:

© How can we iteratively select the weighting, so that the parameters that are most

important for the stability of the system ate made apparent?
° How can phase and transport delay be included in the real-y robustness problem?

® How can robustness to several aerodynamic parameters be characterized in a way

which is useful to flight test engineers?

® How ca a measure of multivariable robustness be detived during a flight test and

presented in the control room?

We have developed a set of algorithms which ate explicitly aimed at solving the
problems described above. These tools have properties that we feel will make them useful to
the practicing engineer: they are straight-forward to use in the context of flight control
design, they are sufficiently low level and versatile enough to be incorporated into vatious

analysis scenarios, and the results are easily interpreted as standard engineering measures.

Admittedly, these problems constitute only a narrow subset of the issues faced during
flight test and control law validation. However, these relatively simple questions are
important application issues which must be addressed before even the most rudimentary

implementation of structured singular value analysis is attempted.

1.2 Controller Synthesis

In the last two decades, control theoty has evolved in an unprecedented manner, and
vatious attractive design approaches have been conceived. Unfortunately a large gap between

theory and practice has emerged. There are only few examples of modern control theory
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applied to real flight control systems. In this section we will first describe the current control
law design practice and how it translates into a lack of acceptance of modern control theory,
and then we will introduce an alternative approach whose goal is to reduce the gap between

some of the theories and practice.

In order to achieve the highest level of aircraft performance, modetn fighters utilize
multiple actuation devices — such as aerodynamic surfaces, thrust vectoring, and pneumatic

vectoring — and different sensors for attitude determination. Even as aircraft become more
and more sophisticated in their physical layout, the ever-present drive for simplicity in
control system design remains, and possibly becomes stronger. Simplicity not only results in
reduced hardware (which means cheaper, lighter, and less voluminous control system), but
also allows control engineers to understand the physical interpretation of the control law and
adapt the controller to changes in the aircraft or in the environment it has to operate — we
call this property maintainability. The aircraft design process is a highly iterative process, and
the aircraft’s configuration goes through several major changes during the development
phase and some minor changes during the operative phase. As a result, the flight control
system is often redesigned and tuned with changes in the aircraft’s configuration: this
redesign is enabled by the simplicity and accessibility of current control law designs. It is a
matter of fact that minor changes late in the development or when the aircraft is already

operative can be very expensive.

Simplicity in the control law design must be balanced with the desire to achieve ever
increasing performance levels, and to do so over expanded flight envelopes (especially in
terms of angle of attack), where the aircraft dynamics are highly nonlinear. Specialized gain
scheduling schemes (including blends, and switches) constitute the most common design
approach used to captute the nonlinear behavior of the airplane and insure high performance
levels. The design process involves obtaining a set of linear plants for a set of values of the
scheduling parameters, designing controllers for each of these points, and then linearly

interpolating the linear controllers to cover the whole flight envelope.
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The SISO classical control design approach naturally gives rise to control laws that
have a well defined structure and are suitable for gain scheduling. For this reason, gain
scheduling of classical SISO designs has been the most common approach to flight control
law design. Unfortunately there is very little in the way of a theoretical foundation for
scheduling. There is a lack of tests which can be applied to guarantee stability of the
scheduled system. Stability and performance analyses rely on point-by-point analysis and
extensive time-simulations, that make the engineer confident but do not guarantee anything

(see Ref.1-7 and Ref.1-8).

The process of tuning a flight control system is thus extremely long and expensive,
especially as the inherent complexity of the control system increases. Several gains and filters
may need to be simultaneously adjusted for best performance; this translates into a
multivariable optimization even when the system is originally classically designed. In order to
reduce the design cost and time, we aim in this research for a rigorous and automnated
approach to controller design that addresses tuning, gain scheduling, accessibility, and

maintainability, as described above.

MIMO modermn control theory addresses a completely different set of issues than
those described above. Typically these procedures are concerned with robustness,
multivariable synthesis, and automation (ie. creating an optimized point design
automatically). To address these concerns, unfortunately, design methods such as LQG, H..,
LPV, Dynamic Inversion, and feedback linearization rely on extremely complex control laws,
requiring a large number of calculations for a large number of parameters, which conflicts
with the essential need of simplicity, accessibility, and maintainability. For instance these
systems are not well suited for gain scheduling, because of the large number of parameters
that are re-optimized at every design point, and the fact that the control law itself is not
sufficiently constrained. Thus controllers can change dramatically between neatby flight
points, and switching between control laws presents serious problems. Cleatly what is needed
is an approach which marries the automation capabilities of modern control design

methodologies and the practicality of current flight control design practice.
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The concept of automated gain scheduling is not new. What we hope to provide here
is a procedure in which both the control law and the design goal (for instance, the target
petformance) ate more highly constrained by the flight control engineer, and which is flexible
and modular enough to be incorporated into existing practice. These are the goals that set the
desired procedure apart from, for instance, LPV, optimal control based approaches, and

previous attempts to fixed-structure control law design.

In Fig. 1-1, a specific road map for flight vehicle modeling and control law validation
is illustrated. Flying and handling qualities requirements are the starting point of the design
process; as a result they can be defined as a measure of the ease with which the pilot can
carry out specific tasks. With full-authority augmentation systems, the flying qualities of the
aircraft can be adapted as the operating envelope is traversed and as the mission task is
changed. Thus the controller’s task is to achieve acceptable performance throughout the

flight envelope.

The most common approach is to design a set of linear controllers on linearizations
of the plant for a set of values of the key parameters (altitude, Mach number, dynamic
pressure, static pressure, angle of attack, and sideslip angle) which covers the operating
envelope. Based on this approach, some controller blending scheme must be implemented as
the flight envelope is traversed. Control switching and control scheduling are subject to
particularly tough design specifications; pilots desire a highly predictable response from the
controlled aircraft, and any perceivable transient effect on actuators or aircraft states will be
considered unacceptable. Regarding this particular aspect the military specificaion MIL-
8785-C states that:

The transient motions and trim changes resulting from the intentional engagement or
disengagement of any portion of the primary flight control system by the pilot shall be such that
dangerous flying qualities never resalt. ...... With the controls free, the transients shall not

exceed 10.1 g normal or lateral acceleration at the pilot's station, and 13 degrees per second rol.
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Flight Vehicle Acceptance

Fig. 1-1 Aircraft Modeling and Flight Control Law Validation

The scope of this thesis will be to define a control methodology that meets the
requirements of simplicity, maintainability, controller scheduling, and controller switching.

Stability will also be guaranteed throughout the entire flight envelope.

The first two objectives — simplicity and maintainability — will be achieved by
considering a fixed structure flight control. This means that only the parameters (gains, time
constants, etc.) in a pre-specified control structure will be allowed to change. Conventional
controllers, of the type we will consider, have been successfully used for many years in flight
control systems and they still often petform as well as vety complicated controllers (H.. and
dynamic inversion based control laws) and they are very well suited for gain scheduling. H..
controllers in general do not have such an explicit structure and scheduling still represents a

problem.
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The second objective — controller scheduling — will be accomplished by predefining

the dependence of the controller gains on the key parameters which capture the nonlineat

behavior of the system. In this way smoothness of the control law when traversing the flight

envelope will be 2 built in feature. We will also recast this gain scheduling technique in the

general framework of LPV theory, giving to the methodology that theotetical foundation that

has long been missing.
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Chapter 2
Robustness Measures via Real Structured Singular

Values

2.1 Introduction

At the beginning of the 80’ Doyle and Safonov introduced the notion of Structured
Uncertainties as a framework for analyzing the robustness of multivariable control systems
(Ref.2-1, Ref.2-2, Ref.2-3, and Ref.2-4). Doyle and Young then extended the concept of
structured uncertainties and defined the real structured singular value . Since the definition
of u succinctly captures practically motivated robustness questions, much of the recent
literature has coucentrated on methods for computing tight bounds while reducing
computation time (Ref.2-5, Ref.2-6, Ref.2-9, Ref2-10, Ref.2-11, Ref.2-12, and Ref.2-13). In
this chapter we present a method to calculate a lower bound of the real-u that has the
valuable property of identifying the direction of the worst case perturbation. Once the
element or the elements that strike the stability boundary are identified an iterative weighting

procedure is then used to maximize the size of the stable hypercube.

The approach that will be used is to develop methods to answer specific questions
raised during the analysis of the flight control laws of the X-31 Enhanced Fighter
Maneuverability Demonstrator. These methods form building blocks for analysis of more
complex robustness questions. The X-31 lateral-directional flight control system will be used

to motivate the analyses and demonstrate the procedures.

This chapter is organized as follows: the definition of the robustness problem is first
given, and Dailey's algorithm for computing a lower bound of real-y is desctibed and
extended to the repeated-real case. Then the issue of iterative weighting is discussed and an

illustrative example is used to highlight the importance of iteratively re-weighting for detailed
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robustness analysis. Next, block structures are developed that allow phase and delay to be
included as part of the real-u problem. These block structures become part of a second
example, where we use the concept of "robustly guaranteed" gain and phase margin as a
bridge between classical robustness measures and the modern techniques used here. Finally,

we briefly describe the methods used to include flight test information in the analysis
problem, and show how an expetimental p-plot might be useful as part of flight test

envelope expansion procedures.

2.2 Stability Robustness Analysis With Iterative Weighting Procedure

The notation that will be used is faitly standard. Superscript * denotes the complex

conjugate transpose of a complex mattix M, a £X £ identity matrix is denoted by I,, and the

largest singular value is denoted by 6(M ).

The first step in the real-u analysis is to transform the problem into the

intetconnection structure of Fig. 2-1, in which M(s) represents the nominal closed loop

dynamics, and all perturbations are captured in the structured uncertainty A.

— M(s)

At

Fig. 2-1 The standard robustness problem.

The matrix M(jw) is defined at each frequency @ with M( jw)eC™. The

structured uncertainty A is composed by » diagonal blocks, with 7 < . The block structure

K{m) is a set of positive integers

K(m)=(k, kyy ..., k)
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that specifies the dimensions of the perturbation blocks (these dimensions must sum to #» for

compatibility with M).

The set of all allowable perturbations then is defined as
Xy ={A: A= block ding(8,1, , 8,1,,, 8,1, , ... , 81, )}

If the dimensions &, i~ different from 1 for some 4, &, # 7, we say that we have 'repeated real’

uncertainties in A, If £, =7 Vi, then a conceptually simpler uncertainty structure exists (see

sections 2.3.1 and 2.3.2).

The size of the smallest destabilizing perturbation in Xk is characterize by calculating

Uy(M) at each frequency where Y, is defined below.

Definition 1. The structured singular value (M) of a matrix M(jw) e C™ with respect to a
block structure K(m) is defined as

-1
ﬂx(M)={gl,i{g[5(A) : deta-AM)=0]}

with P, (M) =0 ifno A€ X, solves det(I-AM ) =0.

The preceding definition if applied to our set of allowable perturbations Xk, can be

simplified. In this case the 2-norm lal=G(A) is identical to the norm

max|5 ,|

i=1l,...

which is more easily interpreted in applications. Because the size of A is often of interest, it is

convenient to define K, = A’ . Thus the size of the smallest A (where size is defined in terms

of the preceding norms) that destabilizes the system in Fig. 2-1 is by definition K. The next

statements follow in a straightforward mannet:

1) The system in Fig, 2-1 is stable for all A € X such that
max|§|< K,

i=l,.m
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This inequality defines a hypercube of perturbations for which the system is guaranteed to

remain stable.

2) If a weighting matrix W( 0) is introduced as in Fig.2-2, the resulting system is stable for
all Ae X, with |A]<7 if and only if

[Wijomi o))<t Voe(o,e)

M@s) — W

A Je—

Fig.2-2 Standard robustness problem with weighting matrix.

3) If Wis a diagonal frequency independent weighting matrix,
W=diag(w,, Way e w,,,)

then the system in Fig.2-2 is stable for all A€ X, such that
9

W,

max
I=l..m

This inequality defines an elongated hypercube of guaranteed stable perturbations.

2.3 A New Algorithm for Computing Real-[t

Several algorithms have been proposed for the calculation of upper and lower bounds
of pt; we adopt the approach outlined by Dailey. Although this algorithm is not as efficient or
general as other approaches it provides valuable insights into the robustness scenatio, which

we translate into procedares for iterative weighting.

The main assumption that is made in this algorithm is that the worst-case
perturbation at a given frequency, the size of which determines g, is in the vicinity of one of
the corners of the largest stable hypercube in the uncertain parameter space. What we mean
by vicinity is that all but two elements of the worst-case A are equal to 7/y; the remaining

two elements are less than or equal to 7/u. In most of the cases we will see that one of the
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two elements is in fact equal to 7/u and the other is bigger. Our experience with this
procedure has supported the validity of the assumption, especially in the frequency region
wete p is maximum. In all the cases that we run the distance between the upper bound
computed using Young's approach (Ref.2-9) and the lower bound computed using Dailey's
approach (Ref.2-15) was always less than 20%. Dailey's algorithm does not include the
possibility to have repeated real uncertainties in the 4 block; in section 2.3.2 we will extend

the analysis to include repeated real uncertainties.

2.3.1 Distinct Real Uncertainties

In this case all uncertain elements have multiplicity one. The set of allowable

perturbations is then defined as
X, ={A: A=block diag(8, &, &, ... . 5,), & eR}

To direct our search in the region of each of the corners of the stable hypercube, we
fix all but two elements of the A block at initial values of 4, (All combinations of the sign
of each element must be checked and all possible couples & and & must be considered.) The
values of the remaining two elements, which we designate s and 68, for which det(I-AM)=0
can be computed by solving a quadratic equation. Manipulating the A and M matrices it is
always possible to put the couple (&, §) as the first two elements of the A4 block. We thus

have the following general equatinn

ded 7|22 O [ M M)
0 kR|M, M,
Where £; is the current estimate of &, R is a diagonal matrix of 1 which define the
direction of the corner of the actual search, and Asz = diag(d;, J2). Rearranging this
determinant,

Iz _Aanz "Alelz
det =0

m,
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det(l,, -, = k,RM, ) det(l, = Ay, (M, + My, (I - k,RM ;)™ k RM,, ))=0

Where the det(l,,,'_2 —kaMn) is different from zero except under pathological

circumstances. Now if we let
P(k,)=M, +M,(I~k,RM,)" k RM,,

and also partition P appropriately, we can write
det| 1, _[51 0] Putky) Byl ) _
0 6, Pk,) Py(k,)
The condition to be met with minimum norm of (&, &) is then

(1-8,P, (k,)Y1-8,Py (k,))-8,8,P, (k, )Py (k,) =0

Given a certain value of 4, the last equation can be solved for & and 8. If &/ and 6,

are complex, or if their norm is greater than 4, then no solution exists with A=k, ; we

therefore increase &; and repeat. On the other hand, if the norm of (81, &;) is smaller than 4,

then a solution with [|A| =k, does exists; in this case, we decrease £; and repeat. The possible

search scenarios are shown in Fig. 2-3. On the left side is desctibed the situation when & and
02 are real, the search stops when £; is equal in magnitude to the norm of (&, &2). In this case
all but one element in the A-block have the same magnitude £,. On the right side is described
the situation when (&1, §z) are sometimes complex during the search. In this case it may be
necessary for the search to stop on the lower right branch when the norm of (8, &) is lower
than &y; in this case all but two elements in the A-block will have the magnitude &,. The latter
case is very rare, and in practical situations we never encountered this situation, especially

when we ate dealing with a large number of uncertainties.

In three dimensions the first search scenario corresponds to a solution on the edge,
i.e. the stability boundary is hit by an edge of the stable hypctcube. The second scenatio
corresponds instead to a solution on the side, the stability boundary is tangent to one side of

the stable hypercube.
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Fig. 2-3 Single direction possible y search scenarios.

The search thus converges toward the minimum value of &, for which a solution

exists with |[A] =k, , and this gives us a lower bound on u:
By =k;' 2 max(k;')

This search is repeated for all combinations of "all but two elements fixed," and the
maximum lower bound obtained is, in practict, an excellent lower bound on p.. Because of

the combinatorial nature of the procedure (the number of searches conducted is
m(m—1)*""%), the practical use of the algorithm currently is limited to a maximum of nine
uncertainties.

It is possible to avoid seatching in all directions using some simple expedients.
Normally this procedute is applied to a transfer function matrix M( ) over a range of

frequencies. At most frequencies, the norm of (8, 82) converges to the tightest lower bound
during the first search because one simply chooses to search in the direction that worked at
the previous frequency. The remaining searches are then unnecessary; as soon as the
minimum value of &, is found, one simply verifies that there are no other directions for

which a solution exists with [|A|=k,. Only when a solution actually exists in a separate

direction does one switch faces and search in the new direction.

The main advantage of this algorithm is that together with the value of u we also

know which single uncertain element is actually causing the minimum 4. This information is
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particularly valuable when we want to weight the variables to find the most voluminous

stable hypercube. A weighting procedure based on this information is described later.

Hundreds of test were run using this algorithm and the one available in the Mat/ab y-
toolbox (Ref.2-19). Complex random matrices were used to compare the two algorithms.
One of the main disadvantages of the Matlab 1-toolbox was its inability to calculate a lower
bound when random complex matrices were used. Tab. 2-1 summarizes the results of the

test conducted on a sample of 200 complex matrices.

Size of the uncertainty block A n=4 n=6 n=8
Mean Difference Between Upper and Lower Bound * 23.22% 18.86 % 17.64 %
Maximum Difference Between Upper and Lower Bound ** 77.78 % 3207 % 29.05 %
Minimum Difference Betwesn Upper and Lower Bound *** 328% 4.80 % 3.59 %
Mean CPU time for the Matlab J1 upper bound calculation 0.4036 sec | 0.4503 sec | 0.5244 sec
Mean CPU time of Dailey's algorithm 0.4637 sec 1.8708 sec | 11.0761 sec

*  Calculated as: AU = (up-fho)/Pup*100
**  Calculated as: max(Ay)
*¥% Calculated as: min(AL)

Tab. 2-1 Comparison between the Matlab p-toolbox upper bound and
Dailey's lower bound on the real g

As expected the computational time necessary to calculate the lower bound with
Dailey's algorithm is higher than the Matlab computational time. The computation time of
Dailey's algorithms increases exponentially with the size of the uncertainty A-block, and as
already mentioned it becomes not practical if the number of real uncertainty is greater than
10. On the other hand Young's algorithm, implemented in Matlab, was never able to

converge for randomly generated complex mattices.

Example

We are going to apply the algorithm described in the previous section to 2 single
complex matrix M, Me C%<, In this case the structured uncertainty A is composed of 6 non

repeated real blocks. The matrix M is given by:
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0.16-0.17i -0.48+0.20i 0.02-0.04i -0.17-0.21i 0.44+0.36i -0.34-0.04i
-0.38+0.21i 0.09-0.11i 0.27-0.10i -0.05-0.40i 0.46-0.26i 0.02-0.27i
M 0.45+0.08i 0.22+0.44i -0.43-0.26i 0.24-0.28i -0.25+0.21i -0.39+40.30i

= | -0.02+0.37i 0.00+0.11i -0.06-0.42i -0.29+0.30i -0.43-0.24i 0.34-0.01i
0.12+0.26i -0.45-0.14i 0.48-0.08i -0.33+0.03i -0.38-0.12i -0.13-0.50i
0.41+0.34i -0.06+0.04i -0.03-0.031i -0.13+0.174 0.03-0.42i -0.08-0.231

Using Dailey's algorithm we were able to calculate a lower bound on the real
structured singular value g, that is 4 = 7.7483. The worst case perturbation, i.e. the A-block
that gives the maximum g is:

-0.87084705969641
-0.87085586461396

| -0.87085586461396
A=diag | -0.20962260018560
0.87085586461396
-0.87085586461396

It is immediate to verify that det(I—AM)=0. The real structured singular value of

the same matrix M was also calculated using the Matlab pi-toolbox. As is often the case,
Matlab was not able to calculate the lower bound while the urer bound found was, p =
1.2943. The difference between our lower bound and the Matlab upper bound is 0.7460, or
11.28 %.

In the worst case perturbation we have four elements that have the same magnitude
and two elements with different magnitude, the first and the sixt®, The first element is equal
(to within the tolerance of the search) to the other four elements, this means that the solution
that we found lies along an edge of the stable hypercube. The first element is thus the one
fixing the norm of the worst case perturbation vector. If we intend to apply the iterative
weighting procedure, described in section 2.5, this is the element whose weighting must be

reduced in order to enlarge the stability boundaries at the next iteration.

2.3.2 Repeated Real Uncertainties

The 4 search, in the direction of each corner, required in the case of a repeated real
block structure is more complicated than the one desctibed above. In this case, we still fix all

but two elements and perform a search, but the solution for a given £, is not given by a
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simple quadratic equation. Instead, a sub-search for the (7, 8z) with minimum norm must be

conducted for each value of &, Otherwise the procedure is unchanged.

Let us describe the sub-search. Suppose that the current direction of our search is
defined by the diagonal nrxmr matrix R with diagonal elements equal to +1 or -1 defining the
direction of the search. The remaining two uncertainties form a two-block structure of

diagonal uncertainties whose multiplicity are £7 and £z

A It.5| 0 otk
=1 o 1k152 ny =Ktk

We are looking for the minimum norm A' such that

A" 0 |[M, M
det 1—[ J[ ! "] =0
0 k,RIM, M,
where £; is the current estimate of &, and M has been suitably partitioned. Rearranging this

A| 0 In . 0 M" Mlz
© =10 k1 o rRja, Mm,|~°
8ing Ay 22

InA- -A'Q, -A'Q;,
det =0
-ng2l In, —ngZZ

determinant,

we have

where the definitions of Oy are obvious. Because dcct[I"‘t —ngzz] is different from zero

except under pathological circumstances, the mattix invetsion lemma allows us to convert

the preceding condition to
~1
det[I,,A, ~AQ, -A'Q,(1, ~k,0,) ngz,] =0

Now, if we let
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P(k,) =0, +Q12(In, 'k,Qn)-| k,Qzl

and also partition P(&,) appropriately, we can write

L6 0 R(k) Pk,
dﬁt{l,,‘,"l: 0 1‘2521%,(,“) Pn(k,) =0

The condition to be met with minimum norm of (8, 62} is then

In,—alpll(k‘) "5|P12(k,) _
det[ —62P21(k,) Iu, -&lpu(kg) —0

Again, we apply the matrix inversion lemma, which gives
-1
det(I, — &P, (k, ))det{l,h -az[pn(k, Y+ Py (kI — 8Py (k,)) 8Py (k, )]} =0

As before det(I,,l -8, (k, )) is not equal to zero, so we have the following result:

Given a value of 4, and a guess at the size of &, the minimum value of &, that makes

det(I — AM) =0 is given by
8, = min—
ker|A {B(8;,k,)}

B(5 k) = Pak,)+ Byl )T, ~ 8 Ru(k,)) 6, PaCk,)

where

Here we have used the fact that

as(1,, -5,8) =T l1- 84 (2)]

where np =k, +n,. Clearly, the minimum & to perturb the determinant to zero is
determined by the maximum real eigenvalue of B(8y, &), — the sub-search for the value of 1

that minimizes max(| 8|, | 62|) thus can be conducted.
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2.4 Algorithm Performance

In order to develop the upper and lower bounds on the real g it is necessary to define

some sets of block diagonal scaling matrices.
O ={AeXx,: & el-1 1}
Dy = {block diag(D,....,D,) : D, = D} >0, D, e C** }
Gy ={block diag(G,.....G,) : G, =G, G, € C**}

The following theorems give us the theoretical basis for the calculation of a lower and

upper bound of the real .
Theorem 1 For any matrix M € C™, and any compatible block structure K

%PR(QM)WK(M)

This theorem, taken from Ref.2-5, gives us a theoretical lower bound since for any
Q€ 0Oy, pr(OM) < (M). Unfortunately this is a non convex optimization problem and only
local maxima can be found. An efficient algorithm based on a power iteration is described in
Ref.2-5 and is implemented in Ma#/ab in the u-Analysis and Synthesis Toolbox. The iteration
scheme converges very quickly but it is not very robust. As we will show later, in many

situations the algorithm is not able to converge to a lower bound.

The calculation of the real u upper bound is based on the following theorem taken
from Ref.2-7.

Theotem 2 For any matrix M € C™, and any compatible block structure K suppose 0. is the result of

the following minimization problem

o = inf [min{a: (M"DM + j(GM - M"G)—0D) < 0}]

DEDK . GEGK aeR

then (M) < 1/rnax(O,Ot.) .
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This is a convex optimization problem that can be solved via LMI or a whole array of

other numerical techniques. An efficient algorithm described in Ref.2-9 is implemented in
the Matlab u Toolbox.

For the purpose of testing the algorithm it is highly desirable to be able to generate

matrices M € C™ for which the solution is know a priori. In Ref.2-10 an algorithm was

developed for the purely complex case and in Ref.2-9 the same algorithm was extended to

the mixed p case. We are going to describe how to obtain such matrices M € C™ for the

pute real case. The algorithm is divided into the following steps

3)

b)

Randomly generate the matrices D€ D, G€ G, and Q€ O, with the additional
restriction that Q is unitary, 0" Q=1. In addition create a random matrix Y e C*”,
and a real non-negative diagonal matrix X = diag(o,...0,) with

o, =1 jfor i=l.r

G, <1 for i=r+l.n
where r is some integer satisfying /< r < n. Then generate a random unit vector

11 € C" with the condition that:

n,=0  for i=r+l..n
Compute a unitary mattix X € C*” which satisfies the equation:
Xn=(Q" - G)I,+G")"’ 1
This can be done in the following way. First calculate the vector » as
v=Tn where T=(Q0"-;G)I,+G)™Y
Then define a matrix P as
P=[y p, = »]

whete 9, p2, ... pa ate independent columns. Then using the Gram-Schimidt method
we can orthogonalize the columns of P and define an orthogonal matrix 2. The first
column of Q will be 2 multiple of 4, such that Q% = ». We can then wriie

v=QFQ'y
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where E is defined as follows:
E 1 0
“lo H

and H is any unitary matrix, H € R"" "™ At this point we can calculate the unitary
matrix X as

Xn=Tn=TQEQ'n = X =TQEQ'

c) Now we can compute M as

M =D™\(X=Y'(I, +G*)" + jG)D

This algorithm allows us to generate random matrices M with 1 equal to the upper
bound defined in Theorem 2, and equal to one. It is also clear that in this case there is no gap
between the upper and lower bounds, even if we have to solve a non convex optimization
problem to find the lower bound and thus there is no guarantee that there will be no gap in
the final solution.

We are going to apply the algorithm presented in section 2.3.1 and 2.3.2 to a set of
random matrices generated with the procedure just described. It is important to point out
that Dailei’s algotithm gives the exact value of u. The way we generate the random matrices
puts the worst case perturbation vector in the direction of a corner, exactly were Dailey’s
algorithm is searching, The matrix O, defined at point (a), is diagonal with its elements equal
to +1 or -1, this is also the direction of the worst case perturbation. The results of the tests

are reported in the next two sections.

Test 1: Distinct Real Uncertainties

The scope of this test is to verify the Matlab function that implements Dailey’s
algorithm for the case of distinct real uncertainties. During the test, matrices from size 2 to
size 8 were considered. Thousand of matrices were generated and in all cases the lower
bound calculated with the new function was always equal to 1. The worst case perturbation

vector was always in the direction defined by the Q matrix (a part from some sporadic cases).
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This confirms that the algorithm was correctly coded. Tab. 2-2 summarizes the results of the

tests conducted on the new algorithm and compares it with Matlab mu function.

The upper bound mean error stays around 3% even for A blocks larger than 8. The
lower bound calculated with Mat/ab, using power iteration, converges to a solution that is
exact almost 70% of the time. The function implementing Dailey’s algorithm was always
calculating the correct it and was always converging. Unfortunately we can see that the CPU
time increases exponentially with the size of A. Up to uncertainty blocks of size 6, the CPU

time of the new algorithm is comparable to that of Mat/ab lower bound.

n=2 n=3 n=4 n=5 n=6 n=17 n=8
Matizb upper bound mean error * 060% | 134% | 249% | 305% | 336% | 340% | 346%
Matlab lower bound mean error ** 000% | 001% | 000% | 000% | 000% | 000% | 000%
New algorithm lower bound mean esror 000% | 001% | 000% | 000% | 000% | 000% | 000%
Matlab upper bound mean CPU time [sec] 0.4269 0.4582 0.4356 0.4525 0.4033 0.5288 05484
Matlab lower bound mean CPU time fsec) 1.7900 0.8956 0.9698 0.9630 1.4183 1.8284 1.8323
New algorithm mean CPU time [sec] 0.0171 0.3703 03745 0.8603 2.0941 64396 | 149339
Matlab lower bound average convergence ratio 1.0% 84.5% 65.5% T10% 615% 73.0% 67.0%
* Calculated as (4-1)*100 ** Only when converging
Tab. 2-2 Summary of the tests conducted on the algorithm for distinct real
uncertainty A block

Test 2: Repeated Real Uncertainties

This test was conducted to check the algorithm implemented in Matlab for the case of
repeated real uncertainties. We considered an uncertainty 4 with four blocks of different
sizes. The scope of the test was to compare the new lower bound with the upper and lower
bounds calculated from Matlab. There was always an almost perfect match between the two

lower bounds when Matlab was able to converge.
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n=8 n=12 n=16 n=20 n=24 n=28 n =32
Matlab upper bound mean error * 511 % 6.28% 6.82% 7.03 % 7.10 % 7.16 % 1.22%
Matla lower bound mean error ** 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
New algorithm lower bound mean error 0.01% 0.01% 0.01% 0.01 % 0.01 % 0.01% 0.01 %
Matiab upper bound mean CPU time [sec] 0.3825 0.4764 0.6043 0.7882 1.0553 1.4235 21316
Matlab lower bound mean CPU time [sec] 0.9256 1.0729 1.2564 1.4925 1.8517 23118 3.2245
New algorithm mean CPU time {sec] 2.9689 3.2948 3.7519 4.3102 51224 6.1294 7.3924
Marlab lower bound average convergence ratio 81.5% 87.0% 87.5% 87.0% 88.5% 87.0 % 84.0 %

* Calculated as (u-1)*100 ** Only when converging

Tab. 2-3 Summary of the tests conducted on the algorithm for repeated
real uncertainty A block

We understand that several other tests need to be done to check the algorithm. In this
section we only gave the results of some tests to give an idea of the benefits and the

limitations of the new algorithm with respect to the one implemented in Mat/ab.

2.5 Iterative weighting procedure

When analyzing several uncertainties in an engineeting environment, it is of
tremendous intetest to determine which uncertain elements dominate the robustness
measure, which elements are interrelated, and which elements do not greatly affect the

stability of the system.

The iterative weighting procedure that we are going to describe is one way to address

these questions. Fig, 2-4 illustrates why weightings are important.

Unstable

.
.
R Y R R R R

Stable

8,

Fig. 2-4 Effect of weighting on guaranteed stable region.
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In this simple example the stability of the system is less sensitive to uncertainty in &r.
However, with equal weighting on these two parameters, 4 analysis will not uncover this fact
without additional analysis of the sub-blocks. From Fig, 2-4, we can see how reweighting the
parameters in the A block using a real diagonal weighting matrix I helps to improve our
knowledge of the stable space. As the relative weighting on 82 goes down, the guaranieed box
becomes elongated in the & direction. In the two-dimensional case, this continues until the
corner of the box strikes the stability boundary; in multidimensional cases, a different edp= of
the stable hypercube usually strikes the boundary; weighting on the new edge is then
necessary. Thus, reweighting gives a more complete picture of the robustness
interrelationships. Reweighting also, in general, enlarges the guaranteed stable region, because

the union of any two guaranteed stability regions is also stable.

In the previous section, we described an algorithm for calculating a lower bound of u
that is based on determining the specific uncertain element that is actually causing the
maximum L. It is reasonable then to argue that by reducing the weighting on this element we

will allow larger stability bounds on the other elements, just as in our 2x2 example.
Let us say that we have 6 uncertainties and that we start with the following weighting
matrix:
W, =diag(1, 1, 1, 1, 1, 1)

After running the algorithm we find a certain value of the structured singular value uo.
We then know that stability is guaranteed in the following n-dimensional box:

1
so-{a: mels =

We also know, based on the parameters that the algorithm must iterate, that the
element causing the maximum J is, for example, the second one, weighted by W2, 2). For

the next weighting matrix we choose

W, =diag(1, 09, 1, 1, 1, 1)
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We then solve for ls. The associated guaranteed stable region is

Wy

So ={8, : max|5,|$—}

i=l.m, ”1

In many cases, {; < i, such that the new guaranteed stable region is more voluminous.

If the reduction in the weighting W2, 2) is not too large, the stability boundaries on
all of the elements other than A2, 2) are larger than before. The bound on A(2, 2) is tighter

than before, because we reduced the weighting on this element.

As we continue changing weights, the elements that never strike the stability boundary
represent uncertainties that tend not to affect the stability of the system. At the end of this

process, the overall guaranteed stable region is
S=(S,us,US, )

From Fig. 2-4, we can see how the union of all of the stability regions can provide
extra information about the shape of the stability boundary. In many practical situations after
only five or six reweightings, we gain a good deal of information about the robustness

picture.

2.6 Phase and Delay as Real Uncertainties

The algorithm and weighting procedure described is applicable to the general class of
problems described in the previous sections. In applications, however, an interesting step is
often that of creating the A-block structure to be analyzed, based on commonly asked
engineering questions. For instance, classic measures of robustness (gain matgin and phase
margin) are still common tools for assessing the stability of flight control systems. Although
singular values and structured singular values are more general measures of robustness, their
interpretation is sometimes difficult; the intuition that engineers have developed for phase
and gain margins is still valuable. Furthermore, the concept of delay margin is a very

important variant on phase margin — transport delays are often a primary concern during
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flight system development, because they can change as the flight code grows. For these
reasons we would like to incorporate gain changes, phase changes, and delays into our
toolbox of available perturbations to the flight system. After describing block structures for
these types of perturbations, a useful way to present the resulting analysis for engineering

interpretation is presented in the following sections.

2.6.1 Gain Margin

It is straightforwatrd to incorporate gain-margin concepts into a robustness problem.
The interconnection of Fig. 2-5 shows how we have chosen to do this using a multiplicative

uncertainty in the feedback path.

r=0 __,O__>+ En » K(s)G(s) > ¥

¥

-K(s)G(s)

Fig. 2-5 Gain margin gm and gain uncertainty 8m.

If the uncertain gain » is the only uncertainty in the system, then the single loop gain

margin is computed as gw = 7 % 6n.

2.6.2 Time delay and phase margin as real uncertainties

Although a direct relationship exists between gain margin and a real uncertainty, no
such relationship exists for time delay and phase margin. Instead, we use a n'-order Padé

approximation of a delay, and thus break out the magnitude of the delay as a real uncertainty.
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We know that the Laplace transform of a pure delay 7 is

Hf@e-1))=e"F(s)

An n®-order Padé approximation provides a way to incorporate delay (or phase

change at a specific frequency) without subsequently changing the gain of the system:

e = 1- p, () + p, (15)” -+ p,(7s)"
1+ Pl(TS)'*'Pz(TS)z w+ P, (T8)"

To incorporate 7 into a real U perturbation structure, we start with a first-order Padé

and then do some block-diagram manipulation to isolate T from the rest of the block

diagram.
x —»] e |—» X — 1-(7/2)s >
y 1+(c/2)s Y
Delay First order Pade approximation

Fig. 2-6 Time delay and first order Padé approximation.

In order to isolate the magnitude of the time delay we need to transform the first

order Padé approximation shown in Fig. 2-6 as an additive perturbation (Fig. 2-7).

——p! D(s) z

Fig. 2-7 First order Padé alternative block diagram.

The transfer function of the block diagram shown in Fig. 2-7 must be the same as the

transfer function of the first order Padé approximation. The transfer function D(s) is then

1=(¢/2)s "
1=D() =17t 72)s = DO =1 wDs
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We can now rearrange the transfer function from x to z as follows

=y = +2(r/2)s=x7s = -ﬁ( l)
=14t 12)s araris=x =X

These manipulations tresult in the reatranged block diagram shown in Fig. 2-8, this
block diagram can be incorporated easily into, for instance, a Simulink representation of the
flight system. During the robustness analysis the derivative block s in the upper path (equal to
) is incorporated into Mfja).

The procedure to create a phase-margin block diagram is analogous to that for a time

delay; we simply realize that the phase lag introduced by the Padé approximation is a

function of frequency. So, to incorporate a pure phase lag that is independent of frequency,
we need a frequency dependent time delay &xp/-7(@)s], where T(@w)s = j¢. This results in the
block diagram in  Fig. 2-9.

—» T =P 5 — : +9i %( -
i >0
NemmH) .
z K({o)G(o) |e———-"
i +>é >y M(jw)

----------------------------------------------

Fig. 2-8 First order Padé rearranged to isolate 7. Fig. 2-9 Robustness problem for phase
masgin.

2.6.3 Higher-order approximation of phase shift

In many practical applications, a first order Padé approximation may not adequately
describe the delay or phase uncertainty. For instance, in cases where more than 180 deg of
phase lag is introduced by a time delay in the frequency range of interest, the first order Pade

approximation will not be adequate, because the maximum phase lag it can introduce is 180
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deg. Fig. 2-10 compares the phase of a pure delay (¢7'*7) to the phases of a first and second
order Padé approximation of a time delay. From the figure it is evident that a first order Padé
approximation becomes inadequate at frequencies higher than 10 rad/sec when a delay of 0.1

sec is considered.

0 T
st 4
100 b =01 [seq] 1** order Pade
200 k-
E
o 2" order Pade’
g -300 |
A
-400 | ;
e-m
_sm 4 1 1 osbube
10- 100 101 102 103

Frequency [rad/sec]

Fig. 2-10 First and second order Padé approximations of a time delay.

The two plots in Fig. 2-11 make more clear the error introduced by a first and second
order Padé approximation, and can help in the decision on which approximation to adopt.
The x-axis represents the amount of delay that we want to consider and the y-axis is the
maximum delay error introduced by the two approximations. In these plots we have assumed
that the maximum frequency of interest is 15 rad/sec This is a reasonable assumption for
many aerospace applications. Plot (b) shows the actual error in seconds and plot (a) shows
the percentage of the error with respect to the delay approximated. The advantage in the use
of a second order Pade¢ is evident, the maximum percentage error introduced is about 38%

for a delay of 0.1 sec.

The problem is then to translate a second order (or even higher) Padé approximation

into a real yu problem.
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Fig. 2-11 Error in time delay introduced by a first and second order Padé

We will show that this can be efficiently accomplished using an approach that is

similar to the one described eatlier. For example, for a second order Padé we have

o 1=(0/Ds+(e*/112)s kw7
14+ (t/2)s+ (12 112)s* T 15—a, T—a,
where
6
a|=—3+iw/§

k,=i';/—-§'

In this case the phase uncertainty in the robustness problem takes the form of a pair
of repeated real uncertainties. The block diagram that describes the second-order Padé phase

uncertainty is shown in Fig. 2-12.

The matrices T and Q are defined in the following way. Let x and y be the input and the

output of the second order Padg,
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Fig. 2-12 Second order Pad¢ phase uncertainty.

Now we can define the following variables:

ks k, s
x u, = T X

With some simple algebra operation we can rearrange the above equations as follows

1 k
w(ts—a,) =k, Tsx = u = Zu, —:x)

At this point we can define an auxiliary variable »;

L1k
|“al“1 a,x

The same operation can also be done on #, defining an auxiliary variable »,. Finally

we can write

12 l/a, 0 —k//a, ||y " s 0w,
v|=|] 0 1/a, -k /a |u [u]=[0 ts][v :l
y 1 1 1 2

2

From the last equation it follows immediately the definition of the matrices T and Q
and the block diagram of Fig. 2-12.

T—[j¢ 0] 0= lloa1 1/(21‘ ::ljzl
0 j¢ 1 1 1

1 1 1
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The block diagram of Fig. 2-13 is in the form of a standard repeated real stability
robustness problem. As before, we have converted from delay to phase uncertainty by letting

75 = j¢ and incorporating ; intoc M(ja).

-------------------

ooooooooooooooooooooooooooooooooooooooooo

Fig. 2-13 Standard repeated-real stability rcbustness problem.

2.6.4 Correction of the Padé approximation phase error

The phase margins calculated with the procedure described in the previous
paragraphs can be optimistic due to the phase error introduced by the Pade approximation.
Depending on the frequency and the size of the delay this etror can lead to phase margins
that are larger than in reality. Fig. 2-11 shows the errors introduced by the first and second
order Padé approximations; if we are interested in frequencies up to 15 rad/sec the first

order Padé approximation can easily double the expected phase margin.

Fortunately a simple expedient can help us to solve this problem and get a more
accurate solution. Let us assume that 7 and @ are the time delay and the corresponding
frequency obtained via the real uncertainty robustness test. 7, and @ result in 2 unity
magnitude number in the complex plane that puts the system at the verge of instability.

Assuming that a first order Padé approximation was used, this complex number is defined

by:
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o+ jf=7—"F loc+ jgl=1

The phase of this complex number is the correct phase margin of the system, i.e. the
amount of phase lag that we have to add in order to destabilize the plant. The correct phase
margin is then defined as:

2-jo.T, )

= pha.
¢carr p Se(z + j wcTc

From this phase margin we can then calculate 2 more precise time delay as:

In practice once we have calculated the approximated phase margin we need only to
calculate the phase of the Padé approximation for the particular destabilizing 7. It is clear

that this is only valid at the particular frequency @ where the phase margin is occurring. In

the following example we will show the importance of this corrective procedure.

2.6.5 Numerical Example
This section illustrates the use of the first and second order Padé approximation in

the calculation of the phase margin. Consider a system with the following loop gain function:

90(s + 1)(s + 25 +44)
s*(s+2s5+82)(s* +2s+101)

G(s)=

The Nyquist plot of Fig. 2-14 shows that this system has three crossover frequencies
with three phase margins 37.9677° at 0.7784 rad/sec, 84.6331 at 9.2997 rad/ sec, and 25.9080
at 9.9951 rad/sec.

As already mentioned, the first order Padé approximation describes the phase margin
as a single real uncertainty in the standard robustness problem. In the case of a single

uncertainty it is possible to solve directly for the destabilizing perturbation at each frequency.
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Fig. 2-14 Nyquist diagram of the system in the example,

With some simple algebra it can be found that the destabilizing perturbation is given by:

1-M(jo)

@D =2/T M w)

In the last equation unity negative feedback has been considered. The phase matgin is
calculated at the plant input. At each frequency we need to check if the destabilizing
perturbation is real or complex; if the perturbation is real then it represents the phase matgin
of the system at that frequency. Fig. 2-15 is a plot of the destabilizing perturbation at each
frequency when a first order Padé is used to approximate the delay. The dashed line
represents the imaginary part and the solid line the real part of the destabilizing perturbation;
as expected the perturbation becomes real at the three frequencies cotresponding to the
phase margins. In a similar way it is possible to solve for the destabilizing perturbation when
a second order Padé approximation is considered. In this case we need to find the largest
positive eigenvalue of a 2x2 mattix. For brevity we will not describe the algebra for the

second order Pade.
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Fig. 2-15 Real and imaginary part of the destabilizing perturbation.

A summary of the results obtained is given in Tab. 2-4. Both the first and second
order Padé approximations give optimistic solutions, in the sense that the predicted phase
margins are larger than the actual ones. In order to obtain a more precise estimate of the
phase margin we can use the procedure described in the previous section. If we add to the
calculated phase margins the error introduce by the approximations, we obtain the values @
listed in Tab. 2-4. After the correction has been made both the first and second order Padé

give almost perfect estimates of the three phase margins.

Method W¢ ¢ T ¢oon- Tcorr
[rad/sec] [deg] [sec] [deg] [sec]
Exact 0.778 37.9677 0.8513 - -

1t Order 0.778 39.4233 0.8839 37.9696 0.8513
204 Order  0.778 37.9797 0.8515 37.9698 0.8513
Exact 9.299 84.6331 0.1588 - -

1 Order 9.299 104.3569  0.1959 84.6474 0.1589
204 Order 9.299 85.1498 0.1598 84.6474 0.1589
Exact 9.995 25.9080 0.0452 - -

1% Order 9.995 26.3702 0.0460 25.9189 0.0453
2d Order  9.995 25.9204 0.0453 25.9189 0.0453

Tab. 2-4 First and Second Osder Padé Phase Margins
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In this introductory example we have shown how the first and second order Padé can
be used to recast the phase margin calculation in the more general standard robustness
framework. The phase correction procedure is also an effective way to recuperate the error

introduced by the delay approximation.

Once gain and phase perturbations can be incorporated into a system block diagram
and manipulated into the standard A-block form, one can simultaneously look at guaranteed
gain and phase margin variations for multiloop systems using real y. By separating gain and
phase into separate real perturbations, several advantages over complex uncertainties are
realized. First, one can scale gain and phase separately to reflect the relative importance and
magnitude of each. Also, using the algorithm described in the previous paragraph, it is
possible to consider only gain and phase variations in directions that are consideted
important. For instance, if one is primarily interested in the effects of phase lag, then phase
lead perturbations can be excluded from the p-search. Another advantage of the block
structures presented here is that time-delay robustness and delay margin can now also be
analyzed directly and in a non conservative manner. Finally, specific robustness questions can
be answered directly in terms of standard engineering measures; this is the topic of the

following chapter.
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Chapter 3

Flight Control Law Validation: The Real-u Application

3.1 Introduction

"The motivation for the analytical discussion just completed is the need for methods of
flight control law validation. The following section presents flight control law validation
issues raised at NASA Dryden, and recasts these problems in the real-y analysis framewotk.
We ate going to present three distinct problems that use the procedures just introduced. The
first is an application of the weighting procedure to determine the relative importance of
several aerodynamic parameters to the robustness of the X-31 lateral-directional control
system. The second example shows how to calculate a robustly guaranteed phase margin in
the face of uncertainties in the aerodynamic parameters. The concept will be illustrated using
the X-31 Quasi-tailless experiment. The last application describes how robustness measures

can be implemented during flight test.

3.2 The X-31A Quasi-tailless flight test

The X-31A Quasi-tailless flight test will be used as a motivating example for the use

of the robustness tools presented in the previous chapter.

The X-31A aircraft was built by Rockwell International and Deutsche Aerospace in
order to demonstrate enhanced fighter maneuverability by using thrust vectoring to fly
beyond stall limits. The X-31A was equipped with a thrust vectoring control system which
was able to provide pitch and yaw moments by deflecting the thrust vector. A simple
mechanism with three paddles placed symmetrically around the exhaust nozzle was used to
deflect the engine plume (see Fig. 3-1). The X-31 program has shown that enhanced fighter

maneuverability can be successfully obtained using thrust vectoring,
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The importance of the X-31A Flight Control Law (FCL) is that it represents one of
the first application of a Linear Quadratic Regulator to flight control system. A good
description of the control law is given by Beh and Hofinger in Ref.3-1. We will give only a

brief description of the control law.

The basic structure of the X-31A FCL is shown in Fig. 3-2. The flight control law is
based on three major units: the feedback LQR gains (Ki.qr), the feed-forward input function
(Kru), and the feed-forward output function (Kgy).

Pc K, Ye 3 »| A/C y

\

Krqor

_J—Eﬂ Vo + i

Fig. 3-2 The basic structure of the X-31A FCL.

The feed-forward input function Kr, calculates the steady state surface deflections

necessary to trim the aircraft in accordance to the pilot command input vector pc. At the
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same time the function Kg calculates the steady state output vector based on the pilot input
command. This structure is necessary to implement the Linear Quadratic Regulator in the
form of a Linear Quadratic Servo. All the state feedback signals need to be calculated from
the pilot input in order to generate the required etror signal. The error signal is then passed
through the Kigr gains. Kr, and Krs are nonlinear functions of the aircraft flight condition
and desctibe the inverse steady state model of the aircraft. The Kigr gains are scheduled
against Mach number, altitude, and angle of attack. A Simulink version of the X-31 FCL is
shown in Fig. 3-3.

A recent flight program at NASA Dryden Flight Research Center was the X-31
Quasi-tailless flight test, in which the rudder channel control augmentation system was
redesigned in otder to simulate the removal of the tail. In practice the LQR gains of the
rudder channel were changed in order to destabilize the aircraft and to place the closed loop
poles of the lateral directional axis in a location similar to that of a reduced tail aircraft. Many
remarks can be made about the methodology used to simulate a reduced tail aircraft, but in
general we can say that this was an effective and practical method to verify the capacity of

the thrust-vectoring system to stabilize a tailless aircraft.

The quasitailless configuration is a conservative and safe approach to testing the
performance without the tail. It is safe because the tail can be brought back in place at any
time, by switching back to the nominal flight control law. It is conservative because one can
phase out the tail incrementally, using changes in the control laws instead of hardware, and

fly the aircraft with, for instance, 25, 50, 75, or 100% of the tail removed.

The concept behind the Quasi-Tailless experiment is to simulate a tailless aircraft
using the rudder and the differential flap to cancel the stabilizing effect of the vertical tail. No
stabilizing command is then given to the rudder. Assuming that a linearized model for the

tailless aircraft has been obtained from wind tunnel test, we can write:
X=Apx+Bru,
Where the subscript TL stands for tailless. The state vector is x=[p r B ¢]" and

the tailless controls ate uy, =[5, 0 &]1". In order to replicate the tailless dynamics using
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the rudder and the differential flaps a destabilizing feedback controller was implemented.

The X-31A dynamics can be written as:
X = Ax+ Bu,; + Bu

whete the subscript DS identify the destabilizing input. A static feedback controller that
replicates the dynamics of the tailless X-31A can be defined in the following way:

ups = Kpox = x=(A+BK ¢ )x + Bu,,
and
(A+BK ;)= A, = Kps = (B"B)™! BT(An_ - A)

The matrix Kps is represented by the blocks DES_P, DES_R, and DES_B in Fig. 3-3.
From the figure it is possible to see that the destabilizing command of the rudder is also sent
to the thrust vectoring with its sign changed. This command is also scaled by the ratio of
control effectiveness. In this way the thrust vectoring is used to overcome the destabilizing
effect of the rudder. A whole family of tailless dynamics, corresponding to different levels of
tail removal, were calculated using wind tunnel data. This was an effective and simple way to
simulate different levels of tail reduction. The Quasi-tailless flight test was accomplished in a
large flight envelope covering both supersonic and subsonic speed. A simulated approach to

a carrier and a ground attack profile were successfully flown (see Ref.3-2).

In this chapter we are going to present three different stability robustness tests that
can be used to validate the X-31A FCL in the Quasi-Tailless configuration. The tests are
based on a linearized model of the aircraft dynamics and were performed at a single flight

point.
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The model employed represents the decoupled lateral dynamics of the aircraft
linearized at Mach 0.6 and altitude 20,000 ft in straight level flight. The fourth order rigid

airframe dynamics include three stable modes: a second order Dutch roll mode, a first order
spiral mode, and a first order roll mode. The state vectoris x=[p r B ¢]" and the tailless
controls ate up =[8y; & &1 . All the angles are measured in degrees. The state space

matrices that describe the linear mode are:

-1.9708 1.1512 -29.9509 0 :-90.0515 12.0536 0.4005

-0.0157 -0.3857 3.3499 0 : -3.6307 -3.7732 -2.2436

0.1262 -0.9888 -0.1871 0.0512 : 0.0565 0.0401 0.0154

AiB 1.0000 0.1251 0 0 : 0 0 0
esaseans = | ceeveccceacesrscsnscsnssssssscstscraccranse L R Py PR R

C:D 1.0000 0 0 0 - 0 0 0

. 0 1.0000 0 0 : 0 0 0

0 0 1.0000 0 - 0 0 0

0 0 0 1.0000 0 0 0

The angle of attack at this flight condition is & = 6.9566 deg. The robustness analysis
was done using a Simulink block diagram of the linearized lateral directional dynamics. Fig. 3-
4 is an example of the Simulink block diagrams utilized for the analysis, showing the main
blocks that comprise the simulator. Linear modcls are implemented to simulate the actuators

and the sensors.

LM—} pkemax |——p Alleron Qctuator
DRP dbetdxr } P Smoothing Filter
P LAR Rudder Actuator
P &
${ Compensator Smoothing Filter
> TWAgtuator [—’@
P Smoothing Filter
— PN,
To I—']r ¢ ¢
1 Stabillty | g— Sen:ors ¢ X-31A
Fiters |qg I—m‘—l Linear Model
< o | 1 —— ————

Fig. 3-4 X-31A Simulink block diagram of the closed loop system.
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The LQR compensator block diagram is shown in Fig. 3-5. It is possible to identify
the set of LQR gains and the redistribution of the thrust vectoring cornmand to the other
surface. The thrust vectoring is used only when the aerodynamic surfaces are not capable of

delivering the required moment.

+ ¢+ +

'V‘
+ +
| S—

smsyuem?i

Fig. 3-5 X-31A Lateral-Directional LQR compensator.

This ends the description of the model utilized for the robustness test. In the next
section we describe how to incorporate flying qualities requirements into a robustness test. In
many practical situations a mere stability robustness test is not sufficient; we need instead to
guaranteed acceptable performance levels. Detailed flying qualities requirements for both the
longitudinal and lateral dynamics have been developed in the past; we will show how to

incorporate these requirement into our robustness measures.

3.3 Lateral Directional Flying Qualities Requirements

When analyzing the robustness of a flight control system it is important to

incorporate the requirements for flying and handling qualities. Lateral directional flying
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qualities are partially specified based on closed loop pole locations, and these specifications

form boundaries which can easily be incorporated into the robustness analysis.

The requirements that we will consider are those of a fighter (Class IV) in flight
Category A. Our robustness analysis will reflect the desire to maintain level 2 flying qualities.,

in the face of variations in the stability derivatives of the aircraft. The specifications are:
 Spiral mode: min time to double 8 sec (real pole to the left of 0.0866)

o Dutchmode:  min {q=0.02;
min (g6 = 0.05;
min Mng = 0.4;

« Roll mode: max roll time constant 1.4 sec (teal pole to the left of 0.7143)

Standard analysis indicates that the two modes that most greatly affect the robustness
of the X-31 in the lateral directional axes are, in order of importance, the spiral mode and the
Dutch roll mode. For this reason we incorporate only the requirements of this two modes.
During the stability test we need to find the condition at which the spiral mode moves to the
right of 0.0866 and the Dutch roll mode moves to the right of a line passing through zero at
an angle of 91.2 deg or inside a citcle centered at the origin of radius @, These requirements
can be incorporated in our robustness analysis by simply calculating det(I-AM(5)), from the
definition of y, along the following contour in the s-plane.

0.0866 for B=0

s=1-(?-p?)" + jB for Be[0, o] o =m~cos” (g,)

1 .
L-mﬂﬂﬂ for Be(0,)

From the above equations it appears that the requirement for the Dutch roll mode is
not as stringent as the one on the spiral mode; the un-perturbed closed loop pole is far from
the required boundary. We can thus expect it not to be critical in our multivariable
robustness analysis. On the other hand, the requirement on the spiral mode is very important

to the analysis because the nominal closed loop pole of the spiral mode is slightly unstable.
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Normally this condition would violate the assumptions of our robustness analysis
framework, which require that the poles of the nominal system be to the left of the jw-axis,
along which one normally computes £ But because the handling quality requirements allow
the spiral mode to be unstable, we can simply indent the contour a finite amount at @ = 0, so
that there are no nominal poles to the right of the contour along which we compute y. The

contour used in our g analysis is shown in Fig. 3-6.

................
0

.................

N

0 —— i
-05 -025 0 0.25 0.5

Fig. 3-6 s-plane contour for real-u calculation.

This approach must be treated with caution; in general a perturbation A might cause
the spiral mode to split with the roll damping mode a give rise to a complex conjugate pair
— the contour chosen would then be invalid. In this example, the pertutbations requited to
change the spiral mode dynamics to this extent are far outside the range of interest, and the

analysis gives meaningful results.

In the next two sections we will apply this approach to two different situations. In the
first example the robustness test is conducted on a set of uncertain aerodynamic parameters
and the spiral mode is identified as the critical mode for stability. In the second example a
robustly guaranteed phase margin in the thrust vectoring is calculated; in this case the Dutch

roll mode is the mode violating the stability boundaties
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3.4 Iterative Weighting to Isolate Important Lateral-Directional
Aerodynamic Parameters of the X-31

In this example we use iterative weighting to determine the relative importance of
several lateral-directional aerodynamic parameters to the robustness of a linearized X-31

lateral-directional control system. The analysis is performed at a Mach number of 0.6, an
altitude of 20,000 ft., and a 50% Quasi-Tailless configuration.

In Tab. 3-1 are listed the elements of the A matrix that have been chosen as
uncertain. Each element can be related to two aerodynamic derivatives; the first element in

parenthesis is the aerodynamic derivative that most strongly affects the corresponding

element in A.
Element Aerodynamic Derivatives | Nominal Value
ALY SCup, Crp) -1.9708
A(1,2) JCun Cri) 1.1512
A(13) SlCip Cng) -29.9509
A2 f(Crn, Cr) -0.3857
A@23) S(Cnp Cip) 3.3499
AG)) fiCrp -0.1871

Tab. 3-1 Uncertain elements in the A matrix and their aerodynamic
dependence

Once the uncertain elements in the state space model are selected, we need to
formulate the problem in the classical robustness framework. Morton and McAfoos in Ref.3-
3 proposed a method to isolate the uncertain elements in the mattices of a state space models
in a real uncertainty A-block. As an alternative to their approach, we can use a more intuitive
and flexible method using Simulink. The state space model is described in a Simulink block
diagram with each matrix element expressed as an individual gain. In Fig. 3-7 and Fig. 3-8
are shown the block diagram of the aircraft state space model with uncertain elements in the
A matrix, It is clear that a similar procedure can be used to insert uncertainties in the other

matrices of the model.

The state space miodel defined in Fig. 3-7 can then be inserted in the block diagram of

Fig. 3-4 and the standard robustness problem can be formulated.
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The next step is to define a weighting matrix that can give information about the
relative importance of each element to the robustness measure. One way of doing this is to

weight each element A(i,j) with its own absclute nominal value multiplied by a scaling

factor:
LW
W(k)= IANOM ("J)Iiakd
1 1
de )
2 P Mux AS——— )
Demux
; S
3 bta
dt el 4
¢ —] 4 phi
< IDA11 5
€ IDA12 8
ODA13 < 7] 'DA13
' o] 'bAz2
ODA23 10 | ¢ . IDA23
ODA33 IDA33

Fig. 3-7 State-space model with uncertainty in the A Matrix: Simulink
block diagram.

The factor my tepresents the percentage variation from the nominal value. At each

iteration stability will be guaranteed for vatiations of each element within:
AGJ) €| Ay G )|~
’ nou (1 J)| 100 L

In the last equation g is the maximum real structured singular value calculated with
this set of weightings. Applying the iterative scaling procedure described in Chapter 2 it is

possible to identify the elements that are most important for stability.
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The initial scaling is chosen so that 100% variations in each element are given equal
weighting; then the weighting procedure described in Chapter 2 is applied. In Tab. 3-2 are
listed the combined percent uncertainty that are admicsible simultaneously in each of the

matrix elements.

[Z(— Uncertalnty 4—@
] ALY g
E« Uncertainty l:—{ : |
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+ [ ——— A3
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. Je—— e
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n’ Uncertainty [< n
de———] A3 le
+| € *
+e————] AB2) ¢
[ 7 | Uncertalnty 7
de——{ A3 |
:

+ A(4,1)

e Al42;
sl ——— As3)

Fig. 3-8 A matrix with uncertain elements: Simulink block diagram.

In Tab. 3-2, note that the initial weighting allows equal magnitude percentage
perturbations in all the elements. Also note that each solution of the weighted real it problem
(each row) carries a flag (denoted by a star in Tab. 3-2) indicating the element or the elements
of the A-block that are responsible for the actual bound. The subsequent solution (rext row)

is computed with the starred elements of the previous solution reweighted as shown on the
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top of the row. The weighting on the starred elements is reduced by 0.1 while the weighting
on the non statred elements is increased by the same quantity. The allowable perturbation on
the starred elements is thus reduced, allowing the less important parameters to vary over

larger percentages.

Iteration  AA(1,7)  AA4(1,2)  AA(13)  AA@22)  AA@23)  AA(33)

1 w=10 w=1.0 w=1.0 w=1.0 w=10 w=10
43.08't 43.08 43.08° 43,08 43.08 43,08
2 w=09 w=11 w=09 w=11 w=1.1 w=11
3987 48.74 39.87° 48.74 48.74 48.74
3 w=08 w02 w=08 w=12 w=12 w=12
36.49° 54.73 36.49° 54,73 54,73 54.73
4 w=07 w=13 w=07 w=13 w=13 w=13
3292 61.14 3292 61.14 61.14 61.14
5 w=0.6 w=14 w=0.6 w=14 w=14 w=14
29.14° 68.00 2314 68.00 68.00 68.00
6 w=105 w=15 w=0.5 w=15 w=1.5 w=1.5
25.13° 75.38 25.1% 75.38 75.38 75.38

a Each row defines a stable hypercube of perturbations associated with the weighting (w) on top; the
union of these hypercubes is also guaranteed stable.

b Stars indicate the edge of the hypercube of perturbations that is striking the true stability boundary.

Tab. 3-2 Percent of allowable variations in the aerodynamic elements of the
X-31 lateral directional control system (0% Quasi-Tailless)

After only six iterations on weightings, the algorithm concludes that the two most
important elements (in terms of the multivariable stability of the overall system) are the
A(1,7) and A(1,3) elements. From the last iteration we can see that if these elements are
known within 25% accuracy, then all the other elements need to be known only with an
accuracy of 75%. In this application the worst case perturbation vector, calculated with
Dailey's algorithm, always had the same two elements equal to its norm; for this reason at
each iteration we were scaling down two elements, A(7,7) and A(7,3), and up 2il the other
elements. The elements of the worst case perturbation vector calculated from the Marlab
lower bound are instead identical; therefore this vector cannot be used to identify the
elements that dominate the robustness measure. The g upper and lower bounds calculated at
each iteration are shown in Tab. 3-3. The unscaled worst case perturbation vectors (real

element variations) are show in Tab. 3- 4.
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Iteration number 1 2 3 4 5 6

Upper bound (u-tool) 23211 22572 | 2.1923 21262 | 2.0587 1.9898
Lower bound (i-tool) 23210 | 2257 21922 | 21260 | 2.0586 1.9898
New Lower bound 23210 | 22571 21922 | 21260 | 2.0586 1.9898

Tab. 3-3 Real /1 upper and lower bounds.

Iteration AA(1,1)

AA(12)

AA(LY)  AAQRD)

AAR3)  AAG))

0.8491
0.7858
0.7192
0.6489
0.5744
0.4952

(= T T O FCR S

0.4960
0.5610
0.6302
0.7039
0.7829
0.8679

129044 -0.1662
11.9427 -0.1880
10.9302 -0.2111%
9.8614 -0.2359
8.7294 -0.2623
7.5262 -0.2908

-1.4433 0.0806
-1.6326 0.0912
-1.8338 0.1024
-2.0484 0.1144
-2.2782 0.1272
-2.5254 0.1410

Tab. 3- 4 Worst case perturbation vectors

Physically the elements A4(7,7) and .A(7,3) correspond to the aerodynamic coefficients
Cip and Crg, both of which have a strong influence on the spiral instability of the aircraft.

Throughout the analysis, the frequency corresponding to the maximum g was always the
zero frequency. This frequency corresponds to a real pole, the spiral mode, violating the
stability requirement. Tab. 3-5 shows the location of the closed loop poles when the worst
case perturbation was applied to the system. The last row of the table indicates the location
of the poles at the nominal conditions. It is always the spiral mode that reaches its
performance limit, the Dutch roll mode on the contrary remains well within its acceptable

limits. In Fig. 3-9 are shown the locations of the closed loop poles in the worst case scenatio.

Iteration Spiral mode Dutch rofl mode Roll subsidence
1 0.0872 -4.95374+1.70081 -2.2427
2 0.0871 -4.9809+1.62391 -2.2468
3 0.0870 -5.0097+1.54011 -2.2442
4 0.0869 -5.0398+1.44781 -2.2339
5 0.0868 -5.0706:1.34471 -2.2153
6 0.0867 -5.1010+1.2270i -2.1874
Unperturbed 0.0286 -2.9948+2.7080 -3.9056
Locations

Tab. 3-5 Close loop pole location at the worst perturbation
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Another important characteristic of real y that becomes evident in this example is the
discontinuous nature of this robustness measure. The value of g is discontinuous at the zero
frequency, where it reaches its maximum. This example shows the importance of checking
the zero frequency, to see if there is any real pole that crosses the jo axis at zero. In general
there can also be other frequencies where g is discontinuous and takes values that are higher

than expected.

O No perturbation

§ 1st lteration
‘>1.5¢ g
£ x

6th iteration

1 -

051
0 4 £ 3 . x 4 g
-6 -5 -4 -3 -2 -1 0

Real
Fig. 3-9 Worst case perturbation root locus.

In Fig. 3-10, Fig. 3-11, and Fig. 3-12 are shown the g plot corresponding to three
different iterations. In the upper left corner is shown the value of g at the zero frequency. In
the same figures are shown the upper and lower bound calculated with Matlab and our new
algorithm. We can see that there is a prefect match between the two lower bounds when

Matiab is able to converge to a solution.
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Fig. 3-10 Iteration 1: real u upper and lower bounds.
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Fig. 3-11 Iteration 3: real u upper and lower bounds.

74



35 . —
* . mu-toolbox upper bound

+ : mu-toolbox lower bound
o : new algorithm lower bound

28 reai-mu at zero frequency

Frequency [rad/sec]

Fig. 3-12 Iteration 6: real y upper and lower bounds.

3.5 Quasitailless X-31: Robustly guaranteed Phase Margins

In this section we utilize the phase-margin block structure introduced in Chapter 2
and present the concept of a robustly guaranteed margin, which is simply a phase margin or
gain margin that is guaranteed to hold in the face of other plant parametets variations. Once

again the X-31 Quasi-Tailless flight test is used to illustrate this concept.

The aerodynamic derivatives of the X-31 will change significantly in the tailless
configuration. The derivatives that will change the most, and are thus subjected to the
highest uncertainty, are those related to the size of the tail and those related to the lateral-
directional control power of thrust vectoring: Crg, Cng, CNn CLsp, and Cnep~ These
derivatives, in turn, factor almost directly into the state-space system matrix elements A(7,3),

A(2,3), A(2,2), B(1,3), and B(2,3).
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Using the weighting procedure described in Chapter 2 and looking at single-
input/single-output (SISO) and multi-input/multi-output (MIMO) gain and phase margins,
we have identified the phase margin in the thrust vectoring channel as the most direct
measure of directional stability in the quasitailless configuration (reduced rudder authority
increases the importance of thrust vectoring for stability). The question that we pose is the
following: What is the phase margin in the TV channel for different percent uncertainties in
the most important aerodynamic derivatives? In other words, what phase margin can we

guarantee in the presence of 30, 40, and 50% uncertainty in the derivatives listed earlier?

Fig. 3-13 shows the Simulink block diagram utilized for this example. The
uncertainties in the state space model are incorporated into the robustness problem using a
Simulink expansion of the linear models (as discussed in section 3.4). The five uncertainties in
the plant, and the phase uncertainty in the thrust vectoring channel are apparent in this

figure. A first order Padé approximation was used to calculate the phase margin.

Fig. 3-14 shows the SISO and MIMO (i.e. robusé) phase matgins in the TV channel as
functions of the percent tail reduction. The solid thick line represents the SISO phase margin
in the case that there are no uncertainties in the aerodynamic parameters. As expected, the
SISO phase margin is always higher than the MIMO phase margin. With 10% aerodynamic
uncertainty we have an average reduction of the phase margin of about 2 degrees, with 20%
uncertainty the reduction is 4 degrees, with 30% it is 8 degtees, and with 40% it is 11 degrees.
Under the SISO line lies also the line corresponding to a 1% uncertainty, with such a small
uncertainty it is not possible to distinguish the two curves. Considering that the SISO phase
matgin was calculated not using the real-p algorithm, this confirms the precision of the

algorithm that we used for the robustness analysis.

The conclusions one reaches from this plot is as follows: if a 45 degree phase margin
is required for flight safety at this flight condition, the SISO phase margins suggest that one
can fly up to about 73% quasi-tailless. On the other hand, the MIMO robust phase margin
indicates that, with 20% uncertainty in the uncertain elements, one should not fly above 59%
tailless. With 30% and 40% percent uncertainty in the aerodynamic patameters, one is

confident to fly only up to 48% and 40% quasi-tailless respectively. These results corroborate
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results at NASA Dryden obtained through more conventional engineering analysis of the
quasi-tailless configuration. Precision approach tasks were successfully flown with quasi-
tailless settings of 40 and 50 percent. During these flight the pilots didn’t feel changes in the
flying qualities caused by the quasi-tailless mode.

—>
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. <
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Rudder actuator Model Distributor Controller

Smoothing Filter ¢ Yaw Rate g
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< Sideslip Angle &
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Fig. 3-13 X-31 Lateral Directional Closed Loop System fot the robustly
guaranteed phase margins - Simulink block diagram.
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Fig. 3-14 Robustly guaranteed phase margin in thrust vectoring channel for
various levels of uncertainty in a set of five aerodynamic coefficients.

Fig. 3-15 and Fig. 3-16 show the real y plots for 30% uncertainty level at the 52% and
72% tailless condition. The two solid lines are the Matlab p1 upper bound and the lower
bound calculated with the new algorithm. The dots represent the Matlab lower bound. On
the left is also shown the value of u at zero frequency; in this case the spiral mode is not
critical and the value of u at zero frequency is not the maximum g. The maximum g is always
reacked at a frequency between 4 and 6 rad/sec, corresponding to the Dutch roll mode
violating the performance boundaries in the s-plane. In the previous example, when only
aerodynamic uncertainties were considered, the Dutch roll mode was not critical for stability.
In this case instead the addition of a phase uncertainty makes the Dutch roll the critical mode
for stability. The locations of the closed loop poles when the worst case perturbation is
applied are shown in Tab. 3-6. These values correspond to 30% uncertainty in the model. We
can see that the spiral mode is almost unchanged from its nominal (0.0286) and actually
becomes more stable. The Dutch roll mode is almost on the performance boundary. From

the real-y plots we can see that there is some uncertainty in the frequency whete u is
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maximum,; this affects the calculation of the maximum time delay and the exact location of

the closed loop poles.

In order to find the robustly guaranteed phase margin, an iterative weighting
procedure, that finds the weightings for which g is equal to one, was implemented. In all the
cases we found that the size of the stable hypercube was set by the phase margin in the thrust
vectoring channel, so the value of the weighting on the phase uncertainty when g is equal to
one is exactly our phase margin (before correction). Indicating with Wy the weighting on the

phase uncertainty, the weighting for the next iteration was defined as:
W, (New) %
ew) = —

¢ 7

Using this iterative scheme the algorithm was converging to g = 7 after about 10

iterations (using W = 90 deg at the first iteration).
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Fig. 3-15 u upper and lower bounds at 30% uncertainty level and 41%
Quasi-Tailless. Dots represent the Matlab real-y lower bound.
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Fig. 3-16 u upper and lower bounds at 30% uncertainty level and 62%
Quasi-Tailless. Dots represent the Matlab real-yt lower bound.

Tailless % Spiral mode Dutch roll mode Roll subsidence
0 0.0191 -0.46724i6.5822 -1.3168
31 0.0192 -0.2402+4.1611 -3.1413
41 0.0190 -0.2781144.15891 -3.5584
52 0.0190 -0.25201i4.1330 -3.7644
62 0.0189 -0.2633+i4.1243 -3.8570
72 0.0189 -0.2608+4.1137 -3.8978
83 0.0187 -0.30141+4.1132 -3.9215
93 0.0186 -0.37074H4.3218 -3.9339

Tab. 3-6 Close loop pole location at the worst perturbation

The last consideration that we want to make from this example is about the
discontinuous nature of real y. Fig. 3-17 shows the plots of the y lower bounds for different

levels of uncertainty in the model. If there is no uncertainty, real- is discontinuous and g is
real only at the exact frequency where the phase margin is located. As the uncertainty level in

the other parameters is increased, it becomes real in a larger and larger portion of the
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frequency axis. With small levels if uncertainty the calculation of a good phase margin can be
critical, in order to have a good estimate we need to have a very fine frequency grid at least in
the region where y is maximum. If the grid is not fine enough there is the risk of considering
a value of g that is much lower than in reality or in some cases we can completely miss the

peak and calculate the maximum g at the peak occurring in some other frequency region.
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Fig. 3-17 Real-u lower bound for different values of the uncertainty level.
These values are calculated for 62% Quasi-Tailless.
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3.6 Implementation of Robustness Measures During Flight Test

Having discussed a technique for analyzing the generalized robustness problem, and
given methods to apply the procedure to answer specific questions, we turn now to the
problem of implementing multivariable robustness measures during flight test. We address
two issues in this context. The first is the question of how to incorporate experimental data
into the problem; here we treat only uncertainties that can be reflected external to the
measured plant dynamics. The second issue is what specifically to display in the control room
to provide easily interpreted information to the flight test engineers. In this case we need to

keep in mind that we have a limited time for computations.

The question of what to include in the delta-block structure is also of interest; for our
example we choose simultaneous gain and phase margins at the plant input simply because
single-loop gain and phase margins are common practice at NASA Dryden. Thus
multivariable margins provide a smooth transition from currently used measures of system

robustness.

The procedutre shown here is a relatively straight-forward extension of the technique
implemented by Burken, who applied complex structured singular values to open-loop
transfer functions measured in flight. Procedures for determining open-loop transfer
functions in flight are also described by Burken (Ref.3-4), and will not be repeated here. It

suffices to give a brief description of the motivation and background of the problem.

During an envelope-expansion type flight test, a central goal is to determine whether
the behavior of the system is enough like that predicted to allow the next flight condition to
be confidently flown. One technique currently used at NASA Dryden to assess how well the
overall system is behaving, is in-flight phase and gain margin determination. Using either
injected signals or pilot inputs, the system’s open loop transfer function is deduced using
spectral analysis techniques. During flight the aircraft operates in closed loop as shown in

Fig. 3-18. A frequency sweep signal is inserted directly on the control surfaces and is
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represented in this case by r(#). During closed loop testing the open loop plant transfer

function G(jw) is determined from the equation:
G(jo) = Y(jo) *(I + X (jo))~

The matrix Y[jw) is the cross spectral spectral density function of the signals r(#) and
3(%), while X{j) is the cross spectral spectral density function of r#) and x(¥).

n{t)

+ o

G(jo)

Open Loop Plant

K(jw)

Fig. 3-18 A closed loop system.

Direct estimation of G(ja) based upon x(#) and y(#) gives biased results and unfeasible
frequency response. A detailed explanation on non-parametric system identification in the

case of closed loop systems can be found in Ref.3-5 and Ref.3-6.

The experimental transfer function G(j) is next used to determine the actual gain and
phase margins of the control system. As systems become more complicated and
multivariable, it is of interest to generalize this procedure to a multivariable robustness
evaluation procedure, Robustness can be defined in the general framework described above,

but one must work out how to incorporate expetimental data into the analysis procedure.

The plant transfer function is represented by the frequency domain transfer function
G(jw), and the controller by the transfer function Kfjw). We will assume that the controller
transfer function is perfectly known and that an estimate of the plant transfer function has
been obtained dv+ing flight. Fig. 3-19 shows the interconnection of the resulting stability

robustness problem.
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Fig. 3-19 Stability robustness problem for an experimental plant transfer
function.

We have the following relations:

wl B Pafy
and the transfer funciion from # to » can be expressed as:

-1
M =R, +P,G(I-P,G) B,

In this representation the P matrix represent the part of the transfer function M that is
perfectly known, (i.e. a manipulated version of the controller K), while G is the estimated
transfer function of the aircraft plus actuators and sensors (from measurable inputs to
measurable outputs). Using this equation, one can translate Gfjw) into M(jw) which is the
matrix transfer function required for robustness analysis. Once this experimental Mfjw) is

found, all the analytical procedures described in the previous chapter can be applied.

The Simulink blcck diagram of the linearized X-31A lateral-directional flight control
system is presented in Fig. 3-20. We have inserted gain and phase uncertainties at the plant
input, but any other set of uncertainties in the control system is possible; uncertain delays,

phases, and gains can be placed anywhere in the Simulink block diagram. We are again
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analyzing the quasi-tailless configuration: thus we are interested in determining from flight

data the robustness of the aileron and thrust vectoring channels.
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Fig. 3-20 Simulink block diagram for experimental multivariable phase and
gain margins.

The requirements for gain and phase margin are shown in Tab. 3-7. The gain and
phase margin on the rudder channel have been intentionally reduced because this is the
channel used to destabilize the aircraft and simulate the tailless condition. The other values

are reasonable combined multivariable gain and phase margins based on simulation studies.

Aileron Rudder TV
Delta Gain 0.5 0.1 0.5
Delta Phase [deg] 20 5 20

Tab. 3-7 Gain and Phase margin requirements for in-flight robustness
analysis

The question is now: are the above values of gain and phase margin simultaneously

guaranteed in a given actual flight condition? Gain and phase matgins at a given point are just

one of many aspects that must be verified before moving to the next flight point in a flight
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envelope expansion. Thus it is important to have a near real time measure that can be quickly

interpreted.

A simple way to check robustness is through a propetly weighted u-plot. 1f we choose
the weighting such that [|A] =1 corresponds to the gain and phase boundaries shown above,
then we know that stability is guaranteed within the given uncertainty level if the real-u plot
is less than one. Fig. 3-21 shows the plot of the upper and lower bound of real-u calculated
using an 'expetimental' G(jw) from a nonlinear simulation, implemented in the framework
described above. Frequency sweeps on each control sntface were injected in the nonlinear
simulator to simulate an in-flight system identification. The data were collected and an
'experimental' transfer function was calculated. Note that either the lower bound or the
upper bound provide an excellent measure of the actual proximity of the system to the
minimum robustness level set by the weighting, and that the flight test engineer need only

check the proximity of the plot to 1 to get a quick picture of the robustness situation.
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Fig. 3-21 Experimental Robustness Evaluation. Real-u upper and lower
bounds.
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From the p-plot we can see that g is less than 1. This means that the requested gain
and phase margins are fulfilled in this flight condition, even in the worst case scenario. We
can see that g has its peak at about 2.4 rad/sec which corresponds to an underdamped
Dutch roll mode crossing the jo axis. The worst case perturbation vector calculated by the
new lower bound is shown in Tab. 3-8. This vector indicates that the worst scenario
corresponds to the largest delay and gain reduction in the thrust vectoring channel, the
maximum anticipation and amplification of the rudder channel. Note that the rudder channel
is the destabilizing channel. The same conclusion can be reached by simple physical
considerations: delay and reduce the stabilizing control and anticipate and emphasize the
destabilizing signal. The phase in the thrust vectoring channel, as already emphasized in the
previous example, is the element playing the most important role in the stability of the

system.

DAL L0 O1v* GaL Grubp Grv
1.1025 | -5.7566 | 22.7424 | 0.5761 0.1152 | -0.5761

Tab. 3-8 Worst Case Perturbation Vector. Positive phase indicates a lag.
The starred element is the one fixing the maximum u.

This kind of analysis can be easily implemented in a flight test program. Therefore we
believe that such techniques can give immediate information about the robustness of the
flight control system. An in-flight robustness test can greatly help the flight test engineer in

the decision to move to the next point in a flight envelope expansion.
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Chapter 4

Synthesis of Fixed Structure Control Laws

4.1 Introduction

The design of flight control laws for modern high performance aircraft involves many
steps which have not been traditionally addressed by control theory. In this chapter and in
the next one we describe how some of these steps can be treated in the context of modern

control theory. The specific areas that we will address are:

1) modifying existing control structures in the face of changes in the plant to assure a

certain level of stability and performance;
2) incorporation of handiing qualities criteria in the control design process;
3) automatic gain scheduling,
We will briefly motivate these goals before introducing our approach.

In developing a complex engineering system, one of the many assets that can be
drawn upon is past experience. Practical flight control systems ate typically modifications of
previous control structures, modified for the specific aircraft to be controlled. Simple control
augmentation schemes designed via ad hoc methods to perform various flight tasks have
been successfully implemented in all different types of aircraft, to the satisfaction of both the

pilot and the control engineer.

Until recently so called classical flight control design techniques have been
disregarded in modern control theory as non-suitable for high performance aircraft. On the
other hand little practical application has been made so far of these modern control
techniques in aerospace applications. Modern flight control laws are radically different from

their classical counterparts, and they often are viewed with skepticism by the aerospace

industry.
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There are several reasons that contribute to this lack of faith in modern coatrol
theory, but the most important are associated with hardware issues and complexity.
Hardware issues are generally related to the speed of the processors that are flight qualified
for military aircraft and also to the memory available on the on board computer. More
precisely, we can talk about the limited CPU time and memory assigned to the control law.
In modern aircraft the flight control computer performs many tasks and only one is the flight
control augmentation system. Fairly complicated control laws including high order
compensators with large computations require an unacceptable amount of CPU time. There
are several programs — the EH101 helicopter was one case in which the author was directly
involved — in which complicated control laws had to be simplified in the course of program
to correct robustness problems caused by the large delays introduced by the control law.
Furthermore, to achieve acceptable performance throughout the flight envelope, the flight
control system needs to have some scheduling, switching, and/or blending scheme. It is not
conceivable even in modern control theory to design a time invariant controller capable of

providing the requested robustness and performance levels over the entire flight envelope.

To the author’s knowledge the most ‘modern’ flight control system employed so far
was the one implemented on the X-31 high maneuverability demonstrator, where an LQR
design was used (see Ref.3-1). The designers of the X-31 flight control law admitted that
several adjustments to the calculated feedback gains had to be made in order for the control
law to be scheduled throughout the flight envelope. Because of the large changes in aircraft
dynamics as the aircraft traverses the flight envelope, the scheduling of LQR gains presented
serious practical issues. Similar, if not more serious, difficulties would arise from scheduling

of high order H.. controllers (Ref.5-3). The issues of complexity and scheduling are
addressed by the fixed order gain scheduled H.. controllers (Linear Parameter Varying

controllers) presented in the next chapter.

At this point it is clear why methods which aliow a proven control structure to be
optimized for a new plant are valuable. Further, if flight test indicates that a control system
has inadequacies due to errors in the aero model, it is of interest to make simple changes to

the existing control system, which has already undergone extensive development and
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validation. Although outside our current scope, reconfiguring the control law of an aircraft
depending on its mission or its weight is also important as is reconfiguration of the control
law in the face of damages in the control system. The capability to easily design simple
control laws that take into account different types of damages, and subsequently store them
in the flight control computer can be of great value. It will become apparent how this would
be done with the method described here.

Another issue that must be addressed by flight controls is handling qualities.
Experience exists to help the designer choose feedback signals, weight stick inputs, and
provide 'force-feel' feedback to the pilot — all with the goal to improve the pilots® ability to
complete the mission in concert with the aircraft. Methods also exist to analyze the handling
qualities of a control system and its ability to perform satisfactory for different pilots
(high/low gain, high/low frequency pilots), and much effort has been expended in
improving this analysis (Ref.4-7, Ref.4-8, Ref.4-9, Ref.4-11, and Ref.4-16). Less work has
been done on explicitly including handling qualities in the design optimization step. If one
proposes to automate the modification of gains in an existing flight control structure,

maintaining or improving handling qualities is a central problem.

Finally, the flight control design (or modification) process must result in a control law
which is valid over a wide range of operating conditions, which causc variations in the plant
dynamics that are invariably represented using tabulated empirical coefficients. Design has
been quite successfully accomplished in the past using linear control law design at fixed
operating points, followed by gain scheduling within the context of a fixed control structuie.
Much of the complexity of modern control systems lies in the details of scheduling and
blending of various feedback gains and filters, to cope with the disparate requirements of

landing, up-and-away flight, acquisition, tracking, etc..

The approach presented is designed to retain these interconnections, blends, gain
schedules, and stick shaping filters, because they represent the accumulated knowledge of
many years of practical design experience, and because it is costly to re-code these when
problems are found late in development. Thus we are going to work on existing control laws

making only specific changes to improve the design and the handling qualities of the aircraft,
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which is more desirable than creating costly major architectural changes and often re-
introduce a high level of uncertainty. We will focus on optimizing the gain tables and other
numerical particulars of the control law, which are simple to change and do not require
revalidation of the software. We will also incorporate handling quality requirements in the
optimization and perform the optimization over a range of operating conditions, so that a

gain schedule results.

The rest of the thesis is organized as follows. In this chapter we describe the fixed
structure control problera and present two algorithms that can be used to find a solution, the
first algorithm uses Linear Matrix Inequalities (LMI) and the second a standard Newton
search. We then show how a handling quality metric, based on the Neal-Smith criteria, can
be included in the cost functional and become part of the design process. Finally, with a
realistic example regarding the refueling of the F-18 HARV, we will show how the design

procedure can be used in practice.

The next chapter is dedicated to the gain scheduling of fixed structure controllers. As
an example, some of the gains of the longitudinal and lateral CAS of the F-18 HARV were
redesigned in order to improve performance and handling qualities. The design includes a
large portion of the subsonic part of the flight envelope. Finally, we show the results of a
series of tests performed in the fixed base flight simulator at NASA Dryden. A refueling task
was performed by several pilots in the F-18 HARYV simulator with the new gain scheduling,
the old control law, and the standard F-18. Comparisons between the three configurations

are presented.

4.2 The Fixed Structure Control Problem
The fixed structure control problem can be stated in the following way:

given a certain controller structure and a set of free parameters within that structure, find

the set of free parameters that minimige a given cost function.

One of the first algorithms proposed for the optimization of controller parameters

within a fixed structure was proposed by Edmunds in 1979 (see Ref.4-4). He describes a
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method for designing linear multivariable control schemes which have a closed loop
frequency response as close as possible, in a least square sense, to a desired response. The
main limitation of the algorithm is that it assumes that only the coefficients of the C and D
matrices of a given controller can be adjusted. In other words, given a controller K(s)
=N(s)/ d(s), only the coefficients of the mattix of polynomials N(s) can be optimized while the

common denominator 4(5) is assumed fixed.

Another important method for the optimization of controller parameters is the one
that goes under the name of Mult-Objective OPptimization. The method was proposed by
Kreisselmeier and Steinhauser in Ref.4-1 and Ref4-2 and is implemented in the Multd
Objective Programming System (MOPS, Institut fur Dynamik der Flugsysteme at DLR). The
design problem is translated into a set of perfofmancc objectives that form a vector of
objective functions. The performance index vector can contain a variety of requirements
such as closed-loop pole locations, closed-loop frequency responses, and closed loop time
domain properties. Hyde in Ref.4-3 used MOPS as a benchmark against which to compatre

an H.. design to various fixed structure compensators. Hyde’s conclusion was that the

tradeoff between performance and controller complexity for the H.. design is not easy and
that model reduction techniques cannot be applied if gain scheduling is used. For this reason
he suggests using an H., design to set the achievable performance for the plant, then
performing a mult objective optimization on a fixed structure controller, and finally
comparing with the H., design. In practice his conclusion is that the H., design approach is

not feasible for application where the complexity must be kept low.

The approach that we present is in the family of the Multi-Objective optimization.
The framework that we use is based on block perturbations and norm-based objectives. It

has proven to be an excellent way to develop generalized solutions to the problem.

Our problem is characterized in Fig. 4-1. A linear controller Ky (s) contaius key gains

and time constants that need to be adjusted. We isolate these key parameters and break the

controller into a fixed part K(s) and a variable part described by a diagonal matrix AK,
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AK € R™" , where m is the number of parameters that characterize the controller. Depending

on the structure of the controller AK can also contain rgpeated real elements.
The transfer function P,(s) of Fig. 4-1 includes the plant augmented with the fixed
part of the controller. It can also include weightings and target dynamics, as we will discuss

later. The augmented plant is described by the following equations:

x(t) = Ax(t) + B,w(t) + B,n(t)
2(t) = Cix(t) + D, w(t) + Dy,n(t) [4-1]
¥(t) = C,x(t) + Dyyw(t) + Dy,n(t)

wl) —— g —— )
() o)
» K
" P4(s) )
AK  Je———

Fig. 4-1 The Fixed Structure Control Problem

The fixed structure control problem is then stated in the following way:

Jfind a diagonal internally stabilizing controller AK , AK € R™", such that n-norm IT;W (s)lL

15 less than 'y, where 'y is some prescribed performance level. If such a controller exists we will call
it a 'y suboptimal controller.
Depending on the norm that we minimize, this will be an H.. or an H: control

problem.

The performance objective can be defined in the classical form of an H., optimization
problem using a set of weighting functions W(s), i=1... n, acting on specific transfer

functions of the closed loop plant. This weighting function can be specified for example to
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obtain good disturbance rejection, good tracking, and robustness to unstructured

multiplicative output perturbation. Alternatively in order to achieve our desited goals we can
introduce a 'model matching' structure to compute "Tm (s)"r. Fig. 4-2 shows how this is done.

If we minimize the norm of the transfer function from » to g then the closed loop of the
plant P(s), the fixed part of the controller, and the diagonal matrix AK will be as close as
possible to the target plant P,(s) in terms of the chosen norm. The weighting function

W(s), shown in the figure, can be used to emphasize the frequency region whete model

matching is more important.

> Py :})—» '40) ———» Y
w(t) _l.__> ‘ :

: P

;4 “ 0 :

: )
Bl P

.
----------------------------------------------

Fig. 4-2 The H.. model matching problem

The reference model P(s) has the ideal ime domain response characteristics, which
the closed loop system is desired to follow. The target plant, P.(s), can be defined in many

different ways depending on the nature of the problem.

4.2.1 Multi-objective optimization

In many practical situations it is highly desirable to add to the norm-based cost
functional one or more additional terms that take into account other desired characteristics

of the closed loop system. We can constrain some poles to lie within a certain region of the s-
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plane, or constrain the shape of time domain response. In our example, we found it useful to
add a term describing the distance between the current Neal-Smith plot from the desired
Neal-Smith plot.

11 eal-Smith Critetion as ign objective function

Several methods exist to analyze handling qualities, methods based on pole-zero
specification, frequency response specification, and/or time-response specifications. The
Neal-Smith criterion is one of the most common and well known ways to analyze the
handling quality of a ciosed loop aircraft (Ref.4-16 and Ref.4-9). The Neal-Smith criteria was
specifically designed for good closed loop tracking performance. The criterion is formulated
by modeling the pilot-airplane control loop as a unity feedback system with a pilot model of
an assumed form in the forward loop. The pitch attitude control loop is modeled as in Fig. 4-

3

6, + . dep I(s 6
K e-'fp-f Tleads +.1 ) P(s) — ( ) >
P TS +1 dep(s)
Pilot Model Closed Loop Aireraft

Fig. 4-3 Pilot-Aircraft Closed Loop System for Neal-Smith Criterion

The pilot is modeled as a pure delay plus a phase advance. The critetion is based on
the hypothesis that if good closed loop dynamics are achieved with a simple pilot model then
real pilot will also be able to attain good performance. The criterion assumes the pilot to
impose a standard of task performance or degree of aggressiveness it. closing the loop. This
performance standard is measured in the frequency domain by the closed loop bandwidth

frequency @, The bandwidth requirement is task-dependent and determined from

correlation of available pilot ratings and comments. For a given value of time delay (7 is in
general within 0.2 and 0.3 sec), the pilot model parameters are adjusted to optimize the

overall closed loop performance in attaining the specified bandwidth. It is assumed that the

human pilot adjusts the lead, lag, and gain (Ti, Tie, and K in Fig. 4-3) so that the droop and
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peak magnification of the closed loop frequency response are minimized, as shown in Fig, 4-
4. The droop is calculated as the distance between the actual droop and an assigned one; a
droop of -3dB is often defined and the pilot parameters are adjusted in order to obtain such

a droop.

Flying qualities are evaluated by plotting the measured values of pilot compensation
and maximum closed loop resonance on the Neal-Smith parameter plane against the flying
qualities boundaties. Fig. 4-5 shows the Neal-Smith plot for the F/A-18 flying at an altitude
of 20,000 ft and Mach 0.6. We can see that for a task bandwidth within 2.5 and 3.0 a solid
level 1 flying quality is expected. The flying qualities then rapidly degrade for tasks with
higher bandwidths.

: ResoriancaPedk . . | .

Gain (dB)

0
> _50........:....l..:.,'..:.:.:.:........ .
3 ISR N L or i
E_-'oo ........ O R O RN \\E ,,‘.
450k e T R RS PRI EIRIRE
10™ 10° 10'

Frequency (rad/sec)

Fig. 4-4 Neal-Smith Criterion Parameters, Bandwidth = 3.0 rad/sec
F/A-18, H = 20,000 ft, Mach = 0.5

From Fig. 4-5 it is clear that a good flight control system is one capable of keeping the
Neal-Smith plot within the level 1 region for the largest bandwidth possible. Sharp increases

in the resonance peal: as a function of the bandwidth must thus be avoided.

Our approach will be to minimize the H.. norm of the transfer function Ty of Fig. 4-

2, while making the Neal-Smith plot as close as possible to the target plant.
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The cost that we wish to minimize is thus:
1=+ 2

where:

1 5
Tng =5 2N(B=B)'+ (R +R,)’ [4-3]

12

Resonance Peak (dB)

. 25 .
- Level1 .

-20 0 20 40 60 80
Lead Compensation (deg)

Fig. 4-5 Neal-Smith Plot for different bandwidths
F/A-18, H = 20,000 ft, Mach = 0.5

The handling quality metric in equation 4-3 represents the average distance between
the target and the actual Neal-Smith plot calculated at the following five values of the task
bandwidth: 2.5, 3.0, 3.5, 4.0, and 4.5 rad/sec. P:is the pilot lead compensation in rad and R; is
the resonance peak calculated from the Neal-Smith criteria at the bandwidths B The

subscript #indicates that the variable refers to the target plant.

Fig. 4-6 shows how the handling quality metric based on the Neal-Smith plot is
defined. Thete are several reasons why it is useful to add a term related to this handling

quality metric to a norm based cost. First, J,, provides the solution a certain level of

robustness against differences in the pilot bandwidth. If we are able to confine the Neal-
Smith plot in the Level 1 one region for bandwidths between 2.5 and 3.5 (see Fig. 4-6) then
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we can expect good handling quality for pilots with different characteristics. Additionally, this
handling quality metric will help the optimization routine to find a feasible solution when the
H.. optimization alone is not able to reach a physically realistic solution. This is needed
because when the target and the actual plant are too far apart and the controller parameters
are not able to match the target plant, a pure H., objective function can give rise to a solution
that is optimal in terms of the H., norm, but which has an undesirable shape. In this situation
the JHp cost drives the optimization to a more realistic solution. In many situations we also
found that the handling quality metric speeds up the convergence of the optimization

algorithm.

12F

10F

Resonance Peack [dB}
=N

Level 1
-20 0 20 40 60 80
Lead Compensation [deg]

Fig. 4-6 Handling quality metric definition

4.3 Flying Qualities Requirement Definitions

In this section we will give a btief description of some terms used in the assessment

of an aircraft flying qualities.

The flying qualities requirements depend on the type of the aircraft. For this reason

the aircraft have been divided in four different classes. Class I includes small and light
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aircraft, Class II aircraft of medium weight and normal maneuverability, Class III large and
heavy aircraft with normal maneuverability, and Class IV high maneuverability aircraft. In

our work we will always refer to Class IV aircraft.

Another important factor that distinguishes the handling qualities requirements is the
task or flight phase. The aircraft missions are divided in three different classes, in Tab. 4-1

are shown the three different flight phases.

Flight Phase Description

Phase A Non terminal phases of flight involving rapid maneuvering, precision
tracking, or precise control of the flight path. Included in phase A are:

e CO: air-to-air combat;

¢ GA: ground attack;

¢ WD: weapon delivery;

¢ RR: air-to-air refueling acting as a receiver;

o TF: terrain following;

e RC: reconnaissance;

FF: close formation flying;

¢ AB: acrobatics.

Phase B Non terminal phases of flight usually accomplished by gradual maneuvers
which do not require precise tracking. Included in phase B are:

e CL: climbing;

e CR: cruising;

o D: descending;

o AD: aerial delivery;

o RT: air-to-air refueling in which the aircraft acts as a tanker.

Phase C Terminal flight phases requiring accurate flight path control. Included in
phase C are:

e TO: take-off;
o L:landing
¢ PA: powered approach.

Tab. 4-1 Flight Phases Classification

The easy with which a mission can be completed is classified in three different levels.

These levels define the level of acceptability of a control system.
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Level | Characteristics

1 The flying qualities are adequate for the particular flight phase being considered.

2 The flying qualities are adequate for the particular phase being considered, but there is
either some loss in the effectiveness of the mission, or there is a corresponding increase
in the workload imposed upon the pilot to achieve the mission or both.

3 The flying qualities are such that the aircraft can be controlled, but either the
effectiveness of the mission is gravely impaired, or the total workload imposed upon the
pilot to accomplish the mission is so great that it approaches the limit of his capacity.

Tab. 4-2 Flying Level Classification

The level of acceptability is then related to the pilot rating scale using the so called
Cooper-Harper (CH) rating chart (Tab. 4-3) . The Cooper Harper rating was first presented
in 1969 (Ref.4-14) and has since become the most accepted scale to desctibe the pilot's
rating. The CH scale is directly linked to the three levels of acceptability and is then used to
define the flying level of the aircraft. The CH rating is determined by the pilots responses to

a simple set of questions.

This completes the description of our approach to the stated problem. Several
comments are in order before we describe the technical details and results. First, we have
adopted a modern framework, which allows additional robustness and performance
considerations to be included. In other words, it allows us to tap into the large body of
knowledge that has been built up around this framework in recent years. In particular, this
formulation can be modified to a Linear Parameter Varying (LPV) control problem, which
will allow gain scheduling to be addressed. No consideration has yet been given to
computational complexity; rather we have formulated a practical problem in the context of

current methods. We will see shortly how this approach leads to a non-convex optimization

problem.
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Level } Pilot Aircraft Characteristics Pilot's required operation
Rating
1 Excellent: High desirable Pilot compensation is not a factor for desired
performance
1 2 Goced: Negligible deficiencies Pilot compensation is not a facror for desired
performance
3 Fair: Some mildly unpleasant Minimal pilot compensation needed for desired
defidencies performance
4 Minor but annoying deficiencies Desired performance needs moderate pilot
compensations
2 5 Moderately objectionable deficiencies Adequate performance needs considerable pilot
compensation
6 Very objectionable but tolerable Adequate performance needs extensive pilot
deficiencies compensation
7 Major deficiencies Adequate performance cannot be achieved without
maximum pilot compensation. Controllability not
in question
3 8 Major de. iciencies Considerable pilot compensation is required for
control
9 Major deficiencies Intense pilot concentration needed to retain
control
3 10 Major deficiencies Coatrol is lost during some part of required
opzration

Tab. 4-3 Cooper-Harpe: Rating Chart

4.4 Algorithms for Solution of Fixed Structure Optimization

A closed form solution to the fixed structure control problem does not exist.

Fortunately fast computation and efficient numerical algorithms are widely available, and

sufficient to solve our problem. We will present two algorithms: one based on an LMI

formulation of the control problem and the other on Newton’s method. Other algorithms,

such as genetic algorithms or neural networks, could be used; in general it is good practice to

solve non-convex problems using different methods to help insure the optimality of the

solution.

4.4.1 LMI Solution of the Fixed Structure Control Problem

The LMI solution of the fixed structure control problem is based on two important

lemmas: The Bounded Real Lemma and The Maximum H; Norm Lemma. These two
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lemmas can be used to formulate the fixed structure control problem as a bilinear matrix
inequality.
With some simple matrix algebra we can define the closed loop transfer function of

the system described in equation 4-1 as follows

x(t) = A x(t) + B, w(t)
2(t) = Cy x(t)+ Dy w(t)

With the assumption that the feedthrough term D2, = 0, we have:

Ay = A+§F,k, B, =B, +§G,k, »
Cy =C, +§H,k, D, =D, +§,N,k, -
where:
F, =[i" column of B, |*[i"* row of C, ]
G, =[i* column of B, |*[i"* row of D,, ]
H, =[i" column of D,, |*[i" row of C, |
N, =[i" column of D, |¥[i" row of D, |
and

AK = diag(k,, ks, ky...., k,)

In this way we have expressed the closed loop state space matrices as linear function

of the controller parameters k; that we need to identify.

4.4.1.1 The H.. Fixed Structure Control Problem
The solution of the H., fixed structure control problem via LMIs is based on the

Bounded Real Iemma, which states that, for an LTI system given by:
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x(t) = Ax(t) + Bu(r)

y(8) = Cx(¢) + Du(2) [4-5]

the H., norm of the transfer function from # to y, is less than ¥ if and only if there exists a

serni positive definite matrix P, P 20, such that:

ATP+PA PB cT
5p |t [c D]<0 [4-6]

The importance of this lemma is that it transforms the H.. control problem into a finite

dimensional matrix inequality. If we substitute the closed loop state space model of equation

4-4 in equation 4-6, we get:
I q 9 q i
AT+ FTk, |P+P| A+ Y Fk, | P B,+iG,k,) Cr+Y Hk,
i=1 i=1 i=1 i=1
(Bl’ + iG,.’k,)P -A D + i N[k |<0 [4-7)
i=1 i=1
C, +iH,k, D, +iN,k, -
i=1 i=1

The variables in the matrix inequality of equation 4-7 are the positive definite matrix
P and the controller coefficients k;. Unfortunately equation 4-7 is nonlinear in the variables
P and k;, so we have a non-convex problem with no simple solution. For a given controller
AK the matrix inequality is affine in Yand P and defines a convex set in P; efficient interior
points methods from convex optimization are now available to compute the smallest feasible
¥ and the associated positive definite matrix P (this is the analysis problem). On the other
hand, for a given matrix P the matrix inequality is affine in ¥ and the controller parameters
k,; once again we can use interior pcint methods to find the smallest feasible Y and the
associated controller AK . The idea is then to find an optimal solution solving iteratively two
linear matrix inequalities: the first in Yand P for a given AK, and the second in Yand AK

for a given P. We have the following two step procedure:
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First IMI  given a controller AK * we can find the minimum ¥ for which there exist 2

positive definite matrix P that verifies equation 4-7;

Second LMI given a positive definite matrix P°, solution of the first LMI, find the
minimum ¥ and the associated controller AK for which equation 4-7 is

satisfied.

The algorithm is visualized in Fig. 4-7.

T r N

Z=g P=P

P>0
"\_2__/

Fig. 4-7 Iteration between Linear Matrix Inequalities
(g is a vector containing the controller parameters k)

In order to start the algorithm we need to have an initial stabilizing controller. In most
practical situations with fixed structure controllers this is not a problem. The algorithm
guarantees that the value of ¥ will not increase between iterations, but there is no guarantee
that a global minimum will be found. The first LMI also assures that the closed loop system
will be stable.

It is worth mentioning that it is not necessaty to express the closed loop matrices as
described in equation 4-4 to set up the LMI problem. The matrix AK can simply be kept in
its diagonal form. This formulation, however, becomes convenient when we solve the fixed

structure gain scheduling problem in Chapter 5.

Once the LMI problem has been formulated then there are several software packages

that solve linear matrix inequalities. In our examples we used the LMI Matlab toolbox (Ref.4-

17).
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41.2 ix ntrol Problem
The LMI can also be set up for the case when an H; norm is used ivstead of an H.,
norm. In this case the property we rely on is that the Hz norm of the transfer function from

# to y in equation 4-5, is less than Yif and only if D = 0 and:
Trace (CPC T) <y? [4-8]

subject to

<
prp  —1|°° [4-9]

P>0

[A’P + PA PB]

Again the norm criterion has been transformed into a finite dimensional linear matrix
inequality. Using the closed loop state space model of equation 4-4 and the maximum H;

norm lemma, our H; Fixed Structure Control Problem can be stated in the following way:

minimize Trace[(C, + i Hik, ) P( C'T + i H:T k )] [4-10]
i=1

i=1

subject to

[AT +iF,Tk,)P+ P[A+S:F;Tk,) P(B, +iG,k,.
i=]

= = ) <0 P>0 [4-11]
B’ +iG,Tk,)P -1
i=t

Ref.4-6 gives a detailed description of the problem and a complete historical reference

(Ref.4-6 page 141 and 78).

Again we do not have a convex problem, and we define a two step procedure and
iterate between two LMIs. Given an initial controller we can find the positive definite matrix
P that minimizes the trace in equation 4-10 and satisfies the inequalities of equation 4-11. We
can then use this matrix P and solve for a new controller that minimizes the trace in equation
4-10 and satisfies the inequalities of equation 4-11. Using this iterative scheme until a

minimum of the Hz norm is reached or the maximum number of iterations is exceeded, it is
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possible to find a controller that locally minimizes the Hz norm of the transfer function from

w {0 g, but there is no guarantee that a global minimum will be found.

4.5 Newton Search Solution of the Fixed Structure Control Problem

Besides the LMI approach, both the Hz and H.. fixed structure control problem can be
efficiently solved using a search procedure. The method we selected is the Quasi-Newton
method that uses the BFGS formula to update the Hessian (see Ref.4-18, Ref.4-19, Ref.4-20,
and Ref.4-21). An algorithm that implements this technique is available in Matlab and it is

straightforward to implement the fixed structure control minimization problem (Ref.4-22).

The main advantage of the Quasi-Newton method with respect to the LMI solution is
the speed of convetgence. The reduction in the cost obtained at each iteration between the
two LMIs is always very small; in ordet to solve a problem involving 5 controller parameters
and 14 states, we found that ~1000 iterations are required, requiring 10 hours on a
workstation. The Newton method was able to find a solution in less than one out. For
problems involving a small number of states (up top 10) the LMI solution demonstrated to

be reliable and fast.

Another advantage of the Newton search method is that it allows us to augment the
cost with additional terms to account for other important petrformance specifications, such as
the handling qualities cost described in the previous section. In the LMI framework it is
more difficult, if not impossible, to add additional elements to the cost, because in this case

additional terms in the cost must always be added as LMI constraints.

4.6 Single Flight Point Design Example

Let us take for example the task of in-flight refueling of the F/A-18 HARV. Although
this task is often performed on the standard F/A-18, the F/A-18 HARV has some

characteristics that make this task challenging.
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This design example is for a linearization of the F-18 HARV at Mach 0.6 and altitude
20,000 ft for the in-flight refueling task. This is an example where the fixed structure control
law design can really improve the performance of the aircraft. We will show that with only
small adjustments in the controller gains it is possible to recover the performance of the

standard F-18, in spite of the large difference in dynamics of the HARV.

Refueling is a critical flight control task because precision tracking is necesvary. Fig. 4-
8 shows the F-18 HARV being refueled by a KC-135 tanker (November 1995). In order to
refuel successfully and with a reasonable pilot wotk load, Level 1 flying qualities (Cooper
Harper rating from 1 to 3) are required. Refueling of the F-18 HARV was performed at
NASA Dryden by two pilots during two different flights, twice per flight. Both pilots found
the task amazingly difficult and their CH rating was 8 or 9.

Fig. 4-8 F-18 HARY refueling by a KC-135 tanker

We report some of the comments given during flight to show the level of frustration

of the pilots during the various refueling attempts. The comments of the first pilot are:

=> this is ridiculous

=> I have to use very low gain, you really have to go open hand with it

=> There is a gone, about five feet from the tank, where I cannot settle the airplane down
= Surely amazang

= I can't make any fine correction
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=> The problem is I have huge time delays

=> I cannot make the smallest correction

=> Once I get there I cannot fly formation

=> There is no doubt abont it, it is rough

=> It is amazing we haven't got it done yet

=5 To use this task as an H/Q experiment it is better you get an airplane you can fly

=3 ] cannot believe this

While those of the second pilot were:

= A listle bit more sluggish than a standard F-18

=> There is a longitudinal motion going on here

= Mostly I'm getting a longitudinal pitch motion attitude

=> You can see the airplane really lope longitudinally more than anything else

=> The airplane tends to get this rather low to medium frequency longitudinal movement going if you
Iry to make any fine correction to stay behind the basket. Need to use a kind of open handed
technique and it seems to stay out.

The first pilot has been characterized by NASA Dryden engineets as a high gain high
frequency pilot while the second is generally seen as a lower gain lower frequency pilot. From
the video of the task it is possible to see that the first pilot had a harder time performing the

task. There is an interesting comment in the flight engineering summary that says:

With the aircraft being sluggish in the longitudinal stick direction, it was discovered that
the pilot gains to control the longitwdinal axis were much less than anticipated.

It is clear that it was much harder for the first pilot to adapt his "aggressive" flying
style to such < low gain and low frequency task. On the contraty, the task was easier for the
second pilot. The different flying style of the two pilots is confirmed by the power spectral
density of their stick input during refueling. Fig. 4-9 shows the average power spectral

densities of the longitudinal stick input for the two pilots.
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The first pilot put most of his energy around 3 rad/sec and above while the second
most of the time worked around 2.5 rad/sec. The different levels of the PSDs confirm that

the first is a high gain high frequency pilot while the second one is a low gain pilot.

Despite the differing pilot styles their general comments about the refueling task on
the F-18 HARV were unanimous, their Cooper-Harper rating was 8 or 9. From the flight
data and the video it is evident that a strong tendency to PIO exists and that the pilot work
load is quite high. The same maneuver is performed regulatly on a standard F-18 and does
not present the same problem. The control law in both cases is the same; the difference lies
primarily in the mass and inertia characteristics. The moment of inertia around the y-body
axis is almost doubled in the HARV as opposed to the F-18 SRA, due to the weight of the
thrust vectoring assembly, spin chute, and associated ballast in the nose (see Tab. 4-4). It is
thus not surprising that the aircraft has poor performance in certain (surprisingly very

limited) regions of the flight envelope.
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Fig. 4-9 Comparison between the PSD of the stick input of the two pilots
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The approach taken here is to make the longitudinal transfer function of the F-18
HARYV as similar as possible tc that of the F-18 SRA. Our goal, then, is to re-optimize the
gains of this control system to recover the input-output characteristics and handling qualities
of the original F-18. The desired input-output characteristics will be defined as a 'target
plant', and the handling qualities will be based on the Neal-Smith criterion.

F-18 HARV F-18 SRA
Total Mass 1142.48 slugs Total Mass 988.01 slugs
CG Percent Chord 2288 % CG Percent Chord 21,50 %
CG Buttline 0.0in CG Buttline 0.0in
CG Watetline 102.96 in CG Waterline 10347 in
Moment of Inertia Ix 23466.9 slug*fi2 Moment of Inertia Ix 17178.3 slug*ft?
Moment of Inertia Iy 181600.7 slug*ft? Moment of Inertia Iy 119208.2 slug*fi?
Moment of Inertia Iz 196669.8 slug*fi? Mcement of Inertia Iz 132354.5 slug*fi?
Product of Inertia Ixz -1741.85 slug*ft? Product of Inertia Ixz -2148.64 slug*ft?

Tab. 4-4 F-18 HARV vs F-18 SRA Mass and Inertia Characteristics

4.6.1 Handling Qualities Analysis From Flight Data

In section 4.2.1.1 we introduced the Neal-Smith criterion as a method by which to
assess the handling quality of an aircraft. It is of interest to compare the comments tecorded

from the pilots during the refueling task with the Neal-Smith criteria.

During refueling both pilots spent a long time maneuvering at Mach 0.55 and altitude
20,000 ft. From the flight data it is possible to find the closed loop transfer function of the
aircraft (airframe plus control law) from the longitudinal stick to pitch rate or pitch attitude
angle. Even though this transfer function is obtained from closed loop data (the pilot is
closing the loop) the effect of the disturbances and sensor noise can be neglected. The same
calculation was performed using simulation data and the closed loop transfer function

obtained from closed loop data and open loop data were almost identical.

Fig. 4-10 and Fig. 4-11 show the transfer functions from longitudinal stick to pitch
rate obtained using the data from the flight example of the F/A-18 HARV. The thick solid
lines represent the average transfer function obtained from 7 refueling maneuvers performed

at almost the same Mach number and altitude. The thin lines are the transfer function
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obtained from the data of flight 300 and 366 respectively. The last plot of each figure
represents the power spectral density of the longitudinal stick input. The average transfer
function is obtained using the coherence at each frequency as a weighting factor. In both
figures it is possible to see that the coherence is very high in the frequency range where most

of the input energy is exercised.

The next step is to apply the Neal-Smith criteria to the average longitudinal transfer

function.
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Fig. 4-10 Flight 300 - q/dep Transfer Function - First Refueling Maneuver
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Fig. 4-11 Flight 366 - q/dep Transfer Function - First Refueling Maneuver
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Fig. 4-12 shows the average transfer function and its smoothed vetsion. In Fig. 4-13
the Neal-Smith carpet plot calculated from this experimental transfer function is shown. For
a bandwidth of 3 rad/sec the plot shows matginal level 2 flying qualities. The performances
rapidly degrade with an increase in the task bandwidth and at 3.5 rad/sec level 3 HQ are
predicted. The Neal-Smith plot confirms the Cooper-Harper rating given by the two pilots.
Considering that the refueling task (when the aircraft is acting as a receiver) is classified as
flight phase A and level 1 handling qualitics are required, we can see that the F-18 HARV
longitudinal response is not adequate for this task. As mentioned by both pilots, the best
strategy is to fly almost open handed. The pilots in general refer to fly open handed when

they have to be very gentle on the stick using it as minimum as possible.

In order to compare the fixed base flight simulator with the real flight, the q/dep
transfer function was also estimated using the data from the {light simulator. A series of
longitudinal pulses of different amplitude and length were injected by the pilot. This
maneuver was repeated by six pilots and an average transfer function was calculated from
this data. The longitudinal frequency response and the associated Neal-Smith carpet plot are
shown in Fig. 4-14 and Fig. 4-15.

Unfortunately the transfer function obtained from flight datz does not match the one
calculated from the simulation data. A compatison of the two fransfer functions (TF) is
shown in Fig. 4-16. The solid line TF is obtained from flight data and the dashed TF from
simulation data. The bandwidth of the two transfer functions is very similat, about 6 rad/sec
(calculated as the frequency wete the phase is equal to -90 deg). The phases are almost
identical but the magnitudes are different. The problem is that the flight data TF presents a
large droop that we don’t have in the simulation data TF. The Neal-Smith carpet plot
obtained from the simulated data is not as bad as the one calculated from flight data. At 3
rad/sec we are in Level 2 condition and the HQs rapidly degrade with higher frequency
tasks. We don’t have particular reasons to justify the different behavior of the fixed base
simulator from the flight; one thing that we can mention is that the coherence of the flight
data is quite small in the region were the large droop is shown, for this reason we are not

very confident in the transfer function obtained in this frequency region.
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So far we have analyzed the flight data and shown that the Neal-Smith criterion was
able to predict the poor behavior of the F-18 HARV during refueling. The next step in the
design of fixed structure controllers is the definition of a target plant, this will be discussed in

the next section.

4.6.2 Definition of the Target Plant

One of the most important tasks in the design of fixed structure controllers is the
selection of the target plant. The approach taken here is to make the F-18 HARV
longitudinal dynamics look like the ones of the F-18 SRA. Our target plant will have the
pitch response of the F-18 SRA at 20,000 ft and Mach 0.6. Our choice is based on the
assumption that refueling is judged to be level 1 on the standard F-18 and that the F-18 SRA

is a standard F-18 in all important aspects.

The longitudinal target plant is defined as the transfer function from the pilot stick
input (dep) to.the pitch rate (4). We are going to present two target plants that differ only in
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their order. A full order target plant that includes all the longitudinal states plus a complete
model of the longitudinal CAS, and low order target plant that uses the short period
approximation of the longitudinal motion and only the integrator states of the CAS.

The low order model is used when solving the fixed structure control problem via
LMIs. In this case we need to keep our model as simple as possible because the LMI
algorithm encounters convergence problems when the system has a large number of states.
The total number of states is the sum of the target states and the plant states an this defines
the size of the Lyapunov matrix P.If P is too large, solutions cannot always be found for

the two Linear Matrix Inequalities that are defined in section 4.4.1.1.

The high order model, on the other hand, is used when the opdmization problem is
solved with the Newton search. In this case a full order model can be used and a more

precise solution can be found.
The low otder target transfer function is:

G (5) 215638 (s+1692D (s+0.7653)
R \S) = (23956 % 2.5849i) (s+08254)

The high order transfer function in terms of poles, zeros, and gain is:

Poles Zeros
-61.6501 +/- 84.87761 | -5.6374 +/- 82.70681
-24.2142
-14.2553 +/- 31.10791 62880
-21.8051 -2.6788
55266 -1.6921
-0.9364 +/- 0.54121 °
4.2952 0.0120°
-2.2043 +/- 2.6588i * 0
-0.9096 +/- 0.5227i
00113 °
0.0027 *
Gain = -6.2824¢+004

Tab. 4-5 High order target plant transfer function. Starred elements
indicate poles and zeros of the plant.
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Note that in the high order target plant the phugoid poles have degenerated in two
real poles, one of which is slightly unstable but within the limit of level 1 flying qualities. The
phugoid poles are almost canceled by the zeros and thus don't play an important role in the

pitch-rate response.

4.6.3 The Interconnection Structure For the Model Matching Problem

Once the target plant has been defined the next step is to create the interconnection
structure that describes the model matching problem and select what gains and/or time
constants need to be redesigned. It is very important to select the parameters in the control
law that are important and necessary to achieve the desired target transfer function. Recall
that we will be solving a non convex optimization problem and that the algorithms may not
converge if too many variables are selected. It is critical at this point to have a good
knowledge of the plant and of the role that each element in the control law has in the closed
loop system response characteristics. Fortunately, classical controls are developed from

exactly this perspective, so this is a reasonable requirement.

We select three gains: the pitch stick proportional gain, the #, proportional gain, and
the pitch rate proportional gain. The nominal values of those gains at Mach 0.6 and altitude
20,000 ft are shown in Tab. 4-6.

Variable Description Nominal Value

PK15 Pitch stick proportional gain. Adjusts the DC 0.3823
gain of the transfer function.

PK16 Normal acceleration, n,, proportional gain. 1.3380
Acts on the frequency @y, of the short period
mode.

PK18 Pitch rate proportional gain. Changes the 0.3801
damping of the short period mode.

Tab. 4-6 Longitudinal CAS variables selected for design

A root locus that shows the effects of the feedback gains, PK16 and PK18, is shown
in Fig. 4-17. It is possible to see that the normal acceleration proportional gain (PK16) acts
on the natural frequency of the short period mode leaving the damping almost constant,

while the pitch rate proportional gain (PK18) changes the damping keeping unaltered the
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natural frequency. These three gains give us enough degrees of freedom to reach a good
matching with the target transfer function.
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Fig. 4-17 Short Period Mode Root Locus as a function of the gains PK16
and PK18

In order to cteate the interconnection for the model following problem a block
diagram description of the system can be of great help. We have presented the numetical
values only for the low ordet system. The block diagram of the longitudinal dynamics of the
F-18 HARV opened at the three controller gains is shown in Fig. 4-18.
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Fig. 4-18 F-18 HARYV Closed Loop Longitudinal Dynamics With Controller

opened at the proportional gains

The transfer function, P(5), has the following form

X = Ax+ B, dep+ B,,n
q=C,x+ D, dep+ D,,n
r=Cyux+ D, dep-+D,,n

whete 7 and r are the output and the input to the AK block. The matrices of the linear model

are shown in Tab. 4-7.

-0.2780
A=}617.3039
145292

C, =[57.2958

0
C, =| 01061
57.2958

-00062 —0.1208 0.0063 01208 —01208 —0.1208
-07056 -13543| B, =| 00708 | B, =| 13543 -13543 -13543
00592 01137 -4.6196 ~01137 01137 01137
0 o D, =[0] p,=[0 o 0]

0 0 7.0070 000
00220 00421| D, =|-00022| D,=|0 0 0

0 0 0 000

Tab. 4-7 State Space Matrices of the F-18 HARV with the Controller

opened at the proportional gains

At this point we are ready to form the interconnection structure for the model

matching, by simply placing the target plant in parallel to the F-18 HARV block diagram and
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calculating the difference between closed loop and desired pitch rate. This simple structure is

shown in Fig, 4-19.
Granl®) | aran ¢ €
F-18 8RA A >
Tarpat Plant
d '
T py |

F-18 HARV

Open CAS
PK15
PK18

PX18

Fig. 4-19 The structute of the model following problem

The linear model of the model matching problem can be easily obtained from the
state space models of the target plant and the F-18 HARV opened at the controller gains.

A 0 ] [ B, Bu]
A= B=
_0 ATAR _BTAR 0

-Cu _CTAR] D= -Dn _DTAR Dlz]
_CZI Y sz Dzz

The problem is now to find the set of gains PK15, PK16, and PK18 which minimizes
the infinity norm of the transfer function from dgp to ¢, where ¢, is the difference between

the target and actual pitch rate.

4.6.4 Results

The optimization problem was solved using the LMI algorithm described in
paragraph 4.4.1.1 and the Newton search procedure outlined in paragraph 4.5. The design

was petformed on both the low order model and the full otder model.

The actual gains of the longitudinal CAS were used as the starting point of the LMI
procedure. Fig. 4-20 shows the values of the gains as we iterate between the two LMIs. We

can see that after 30 iterations the gains stabilize around their final value. The H., norm of
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the pitch error (3) is shown in the last plot of Fig. 4-20. In the same plot the dotted lines
show the values of the gains and of the H.. norm obtained using 2 Newton search. We can
see that the end values are very close, the difference being related to the precision with which

we calculate the H,, norm.

In order to show that 2 minimum was really reached, Fig. 4-21 shows the contour
plots of constants norms and the path followed by the two gains, PK16 and PK18, during
the LMI iteration. The steep increase in the norm divides the plane into stable and unstable
regions. It is well known that the H.. norm goes to infinity when the plant become unstable.
For values of gains to the left of the boundary the system is unstable while for values to the
right it is stable. This kind of plot is very useful to check the solution: we can clearly see that
in terms of PK16 and PK18 the solutions corresponds to a global minimum. Similar plots

for different combinations of the gains showed that the solution is in fact a global minimum

for the three gains.
Variable Initial Value LMI Solution Newton Solution
PK15 0.3823 0.6596 0.6663
PK16 1.3380 2.6025 2.5594
PK18 0.3801 0.6222 0.6283
H.. norm () 3.2379 0.1915 0.1857

Tab. 4-8 Longitudinal CAS: initial and final gains

Fig. 4-22 compares the Bode diagrams of the F-18 HARV with the nominal gains and
the new gains, to that of the target transfer function. As ¢xpected the F-18 HARV vith the
new gains is very close to the target plant; the system now has a larger bandwidth and is more

damped.
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Fig. 4-23 Neal-Smith Carpet Plot of the F-18 HARV with the new gains

The Neal-Smith Carpet plot of Fig. 4-23 shows that the airplane with the new set of
gains has reached a solid level 1 flying qualities for a 3 rad/sec task bandwidth.

The design was also performed on the full order model. In this case the LMI
algorithm was unable to converge to a solution. The Newton optimization gave Ymin =

0.2756, which indicates that 2 good match with the target plant was obtained.

Fig. 4-9 shows the proportional gains of the new controller.

Variable Newton Solution
Full Order
PK15 0.6100
PK16 2.3097
PK18 0.5831
H.. norm (7) 0.2756

The linearized model included the five states of the rigid body longitudinal
dynamics, three second order models for the actuator dynamics, and a fourth
order CAS,

Tab. 4-9 Longitudinal CAS: high order system H., design
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The Bode diagrams of the target plant, the F-18 HARV, and the F-18 HARV with the
new gains are shown in Fig. 4-25. As in the previous case there is a good matching between
the target plant and the HARV with the new gain. Also the Neal-Smith plot of Fig. 4-26
shows that level 1 handling qualities are achieved for 3 rad/sec task bandwidth. The

introduction of the linearized actuators model made the system more sensitive to the task

bandwidth.
An H; design was also completed on the high order system. In this case instead of

minimizing the H.. norm of the error, we minimized the H> norm of the difference between

the target transfer function and the F-18 HARYV transfer function. The gains are very similar

to the ones obtained in the H.. design. The results are summarized in the following table:

Variable Newton Solution Newton Solution

Full Order - H, Full Order - H..
PK15 0.5974 0.6100
PK16 2.4150 2.3097
PK18 0.5633 0.5831
H2 norm (7) 0.2919 0.2756

Tab. 4-10 Longitudinal CAS: high order system H>design

Finally the algorithms were tested adding two more gains to the design problem. The
pitch rate integral gain (PK21) and the normal acceleration integral gain (PK19) were added
to the AK block of Fig. 4-19. The design was performed on the low order model. The LMI
algorithm didn't have any convergence problem and starting from the nominal gains it
reduced the cost function down to 0.1653. This value is a little lower than the minimum cost
obtained when three gains were redesigned (see Tab. 4-8). On the contrary the MNewton
search presented serious convergence problems; after several attempt a final of cost cf
0.1639 was reached and an optimal solution was found. Tab. 4-11 shows the proportional
and integral gains obtained at the end of the 5 gains design. The two gains that play the most
important role are the pitch stick proportional gain (PK15) and the pitch rate proportional
gain (PK18). Both algorithms converge to the same values for PK15 and PK18. The other

three gains are instead a little different at the end of the two optimization algorithms even if
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the final norm is almost the same. This indicated that the final value of the H., norm does

not change significantly with small changes in one of these three gains.

Variable Initial Value LMI Solution Newton Solution
PK15 0.3823 0.6683 0.6646
PK16 1.3380 2.2488 21034
PK18 0.3801 0.6182 0.6144
PK19 1.3380 1.0195 0.9217
PK21 0.2486 0.3190 0.3496
H. norm () 3.2379 0.1653 0.1639

Tab. 4-11 Longitudinal CAS: Five Gains Design

Fig. 4-24 shows the convergence of the gains to their optimal value when the LMI
algorithm is used. After about 100 iterations the cost has almost reached its minimum value

and the gains are stabilized at their final value.

4.6.5 Time Domain Nonlinear Simulations

The new set of gains obtained by the high order system design were implemented in a
full nonlinear simulator. A brief overview of the F-18 nonlinear simulator is given in

Appendix A. For a more complete description of the simulator refer to Ref.4-5.

The higher gains represent the major concern in the new design. In the case of large
pilot inputs we can expect to saturate the stabilator which can induce rate-limited PIOs. For
this reason large pilots inputs were used and the commands of the new control law were
compared with those of the old one. In general the difference in the surfaces activity was not

large enough to create a real concern.
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Pulses of different amplitudes, doublets, and ramps were used to show the
performance of the new CAS. The response of the F-18 SRA, the F-18 HARV, and the F-18
HARYV with the modified gains to pitch stick pulses are shown in Fig. 4-27, and Fig. 4-29.
The differences in the trim values of the pitch attitude and angle of attack reflect the
differences in the mass and inertia characteristics of the F-18 HARV with respect to the F-18
SRA. Looking at the time domain traces, we see how the modified control law has a response
very similar to the F-18 SRA. The response of the HARV with the unmodified control law is
slower with a longer longitudinal oscillatory motion. The modification to the control law
corrects this aspect almost perfectly. The peak time and the rise time (measured as the time
to go from 10% to 90% of the peak overshoot) of the F-18 HARV modified are almost
identical fo those of the F-18 SRA, the standard F-18 HARV as expected presents a slower
response. The beneficial effects of the new gains are less important for large stick inputs. In
this case the stabilator reaches its rate limit and also the modified gains are unable to speed
up the response of the F-18 HARV. This is evident in the time history of the pitch rate
shown in Fig. 4-29.

The stabilator deflection and rate time histories for both the control law are plotted in
Fig. 4-28 and Fig. 4-30. As we already mentioned, the main concern is rate saturation due to
higher gains. From those plots we can see that the modified CAS makes a stronger use of the

horizontal tail but the rate saturation level is still very similar to the standard CAS.
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Chapter 5

Gain Scheduling of Fixed Structure Controllers

5.1 Introduction

In the previous chapter, we formulated the fixed-structure control problem in a
framework consistent with modern control theory. The goal was to allow commonly
encountered flight-control redesign problems to be addressed in the context of currently

available computational techniques and theories. In particularly, we showed how to
formulate an H.. model-matching optimization, and append this optimization with a2 measure
of Neal-Smith handling qualities performance, to improve the refueling handling qualities of
the F/A-18 HARV.

The development was purposely set up to allow the additional issue of gain
scheduling to be addressed. This is the main topic of this chapter. Control law design must
be carried out at a large number of flight points to create a realistic flight control system.
Typically this is done using separate point designs, tied togethet through interpolations and
blends. It is our purpose here to automate this procedure by first defining the form of the gain
schedule, and then determining the coefficients in the gain schedule via optimization. By
utilizing recent theoretical developments for linear parameter varying (LPV) systems, we are

able to insure that the optimization yields stabilizing controllets.

This chapter is organized much like the previous one. We start by introducing the
Linear Parameter Varying control theory and we relate it to the gain scheduling of fixed
structure controllers. We then describe a motivating example, based again on the F/A-18
HARV Control Augmentation System. We show the practical use of the method by
designing a new gain scheduling that covers a large portion of the flight envelope. Finally we
show the results of a series of tests performed on a fixed based flight simulator at NASA
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Dryden. In particular we analyze the refueling task performed on the simulator by several

pilots and we show the improvements obtained with the new gain schedule.

5.2 LPV Systems and Gain Scheduling of Fixed Structure Controllers

Recent years have seen a growing interest in the use of LPV-based methods to design
controllers that work over a wide operating range of the plant. Conceptually there is a strong
relation between classical gain scheduling and LPV control theory. In both cases there is an
attempt to schedule the controller against the key nonlinear parameters that affect the plant
behavior. The classical gain scheduling technique is primarily a manual procedure in which
the control engineer builds up his control law piece by piece, considering one operating point
at a time and closing one loop at a time. In contrast, the LPV technique treats the design of a
full-envelope dynamic controller; the gain schedule is determined as part of the procedure.
The design via LPV comes with guaranteed robustness and performance, and in general LPV
theory has reached a high level of maturity and theoretical elegance. The main disadvantage
of this and other modern control techniques is that it is difficult to introduce additional
constraints (such as a fixed controller structure) or to adapt existing design ctiteria (such as
handling qualities). Thus years of experience and testing are ignored if the mathematical

framework is adopted unaltered.

Our goal is to combine the advantages of fixed structure classical gain scheduling and
LPV control theory. The possibility to retain the guaranteed robustness and performance of
an LPV design provides classical gain scheduling with the algorithmic approach and
theoretical foundation that has long been considered missing. We start by describing LPV
systems, then we show how the problem of gain scheduling of fixed structure controllers can

be viewed as an LPV control problem.

5.2.1 LPV Systems

In this section we introduce the Linear Parameter Varying control problem and a set

of definitions that will be used throughout this chapter.
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Definition 5-1 (Parameter Variation Set) Given a compact subset © < R’ , the paramieter variation

set &%, denotes the set of all continuous functions mapping R* (time) into © .

Definition 5-2 (Linear Parameter Varying (LPV) System) _Asswume that the following are
given: a compact st © C R®, and the comtinuous functions A:R'—R™, B:R'— R™™,

C:R° >R, and D: R’ = R"™™ . These represent an n'* order linear parametrically varying (LPV’)

[J‘c(t)]_[A[e(t)] B[O(t)]][x(t)] .
y()| 161 DIB)] [ u() [>-1]

These two definitions fully characterize LPV systems. In other words LPV systems

system whose dynamics evolve as

where 0 € F,

are linear systems where the state-space matrices A, B, C, and D are explicit functions of a
time varying parameter 6 (6 can also be a vector). LPV systems can represent different
situations depending on the definition of 6. They can represent linear system subject to
uncertainties (in this case 8 is a vector of time varying uncertainties), or a family of linear
systems derived from the linearization of a nonlinear plant (in this case 6 represents
measurable parameters that capture the nonlinear behavior of the system). In this work we

will consider the second definition of LPV systems.

An LPV description of a system can be obtained directly from the nonlinear
equations of motion (as an example see the LPV control design for pitch axis auto-pilot
Ref.5-4) or via interpolation of linear models obtained at vatious points of the operating
envelope (see the linear parameter-varying control of a ducted fan engine Ref.5-5 or the
linear parameter-varying control design of a pressurized water reactor Ref.5-6). In this

example we will use an interpolation of linear models to define our LPV system.

The next definition that we give is that of quadratic stability of an LPV system.
Suppose that we are given ©and the continuous matrix function A: R’ — R™" . Consider

the undriven LPV system
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x(t) = A[O())x(1) [>-2]

where @€ &, . Define the scalar valued function V:R"— R as V(x)=x"Px, where
P=P7>0. For any 0 € &%, along trajectoties of equation 5-2, the time detivative of V(x)

is given by
d T T
2V xOl=x O[ATI6(1)IP + PAIB()]]x(1) [5-3]
Definition 5-3 (Quadratic Stability of LPV Systems) The function A is quadratically stable
over © if there exists a Pe R™", P= PT >0, such that for all 0 € ©
AT[O(2)]P + PA[6()]1 <0 [5-4]

We now define the induced Lz - norm of a quadratically stable LPV system.

Definition 5-4 (Lz - norm of a qudratically stable LPV system) Given a guadratically stable
LPV system, for gero initial condstions, the snduced Lo - norm is defined as

“G% ||:= sup sup "_)’lz_ [5-5]

0e2s luy =0 [
ue

We now can define the main analysis lemma in the solution of the quadratic LPV y—

performance problem.

Lemma 5-5 (LPV y— performance problem) Given an LPV system, as in definition 5-2, and a
scalar y > 0. If there existsa Pe R™", P = PT >0, such that for all 0 € ©,

AT[6(N]P+ PA[O(1)] PB[6(] CT[6(1)]
B'[6(n1P -d  D'[6(]{<0 [5-6]
C16(»)] Do) -HA

then:
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1) the function A is quadratically stable over © ;
2) there existsa B <Y such that HG‘S " <B.
Proof: see Ref.5-1.
Note that if instead of an LPV system we have an LTI system, then Lemma 5-5 is

equivalent to A being stable and the H.. norm from # to y being less than ¥.

Once the LPV system analysis has been established, the next step in LPV theoty is a
performance-oriented, parametrically dependent, output feedback synthesis problem.

Packard in Ref.5-1 calls this problem the guadratic LPV ‘y-performance problem.

w(t) ‘ z(t)
() PO(] 0
K[0(®)]

Fig. 5-1 The H., synthesis structure for LPV systems

The problem is to derive a controller K[6(#)] (see Ref.5-1) that minimize the induced

L2 - norm from w to g. Let the open loop LPV system P[6(t)] be defined as:

)| | Al6()] B[6(N] B, [6(1] | x(1)
2(t) |=| G[6()] D, [6(1)] Dy, [6(1)] | w(r) [5-7]
y()] LCI8(] Dy[6(1)] Dypl6(1)]] u(r)
where 0€©.
In the context of LPV theory the linear feedback controller is defined as follows.
Given a nonnegative integer 7, and continuous functions Ay : R = R™", By : R’ = R™™,
C,: R* = R™*™,and D, : R’ — R™ , the linear controller can be written as

NERCO R :ACON EXC

%, (1)
[u(t) ]"[Cxte(t)l D, [6(1)] y(t)] [5-8]
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where 0 0.

With simple linear algebra it is then possible to calculate the state space model of the

closed loop system in Fig. 5-1.

X, (1) _ Ajlo()] By[6()] | x, (1) 59
0 |Tci6m1 D61 we) >9]
Where x| ==[x7 x{] and
- A+B)(I- DxDzz)-l DiC, B,(I- DK‘Dzz)—l Cx
A= ByC, + ByDy,(I - DyDy,) ' DyC, Ay + ByDy (I - DyDy,) "' Cy

[B, + B,(I - DyD,,)" D,D,, ]
@ | BeDy + BeDp(I = DyDy) "' Dy Dy,

C= [Cl + Dy, (I - DxDzz)-l DyC, Dy, (I —DyD,, )-l Cx]
D, = [Dn + Dy, (I - DyDy)™ DxDzl]
(In these equations we dropped the dependence of matrices on 6(t) for brevity.)

Using Lemma 5-5 we can say the guadratic LPV ‘y-performance problem is solvable if there
exists a controller [5-8] and a positive definite matrix Pe R™", P= P >0, such that for all

e

AT[B(HIF + PA[6(1)] PB,[6(D] CilO(D]
BJI6(1]P -¥  Di6]|<0 [5-10]
Ccl [B(l‘ )] Dcl[o(t )] - 'ﬂ

The condition defined by the Matrix Inequality in equation 5-10 can be converted to a

Riccati inequality using Schur complements
T o D" D'C
AZ,'P+PACT,+C2C+(PB+ ZD][I— ZD)(BTP+ 5 )<0 [5-11]
Y Y Y 14

Wherte again for simplicity we have dropped the dependence on 6(¢).
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We will not present the solutions to the quadratic LPV y-performance problem,
readers that are interested in a detailed description of the synthesis problem can find it in
Ref.5-1, Ref.5-2, and Ref.5-3. In Ref.5-9 the authors present the LPV control design for
pitch axis missile autopilot. In this case, due to the nonlinear dependence of the equation of
motion on the scheduling parameters, the synthesis problem is solved gridding the bi-
dimensional parameter space. In Ref.5-8 the same problem is solved using a self-scheduled
H., control. In this example the authors assume that the state space matrices A(6), B(6), C(6),
and D(8) depend affinely on 8 and that the time varying parameter 0 varies in a polytope ©.
The synthesis problem results in the design of LPV polytopic controllers.

In the next section we will show how the analysis of gain scheduled fixed structure

controllers can be recast to that of LPV systems.

5.2.2 Gain Scheduling of Fixed Structure Controllers: LPV formulation
In this section we will formalize the gain scheduling fixed structure control problem

using the LPV formulation.
w9 | | ——— 2@
! PO)] !
1u() y® :
ol | KOOI [0
: P,[6(2)] §

AK[B(9)]

Fig. 5-2 Fixed Structure LPV Control Problem

Fig. 5-2 shows the block diagram that describes the LP} formulation of the fixed

structure control problem. The transfer function P[6(1)] has the same role as that of Fig. 5-
1; it includes the plant and the weighting functions. The transfer functon K[0(t)] represents

the fixed part of the controller (fixed in the sense that the design procedure will not try to
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modify it) while AK[O(?)] is a diagonal matrix formed with the parameters of the controller

that we want to redesign.

The plant P[6()] in Fig. 5-2 is described by equation 5-7 while the fixed part of the

controller is described by the following LPV system:

@ | AI6M] B,l6()] B,[0()] || x.(0)
u(t) |={CuléM] Dy, [6(r)] Dy, [0(0)] | ¥(2) [5-12]
r(t) Ckl[e(t)] Dgzl [o(t)] Dkzz[e(t)] v(t)

The plant and the fixed part of the controller can be merged as an augmented plant

P,[6(1)]. The augmented plant is described by the usual state space model

0] [A6m] B0  Blo®] T x,(0)
2t) |=|Cul0] Dyl6] Dyl | wie) [5-13]
@) | |Cul0 Dl6(®] D01 v(r)

The block AK[6(t)] in Fig. 5-2 has the form:
AKIO()] = diag[k,(0) K,(8) ... k., (0)] [5-14]

where k,(0)eR' and 0€©. In other words AK[O(f)] is a diagonal matrix whose

elements are explicit functions of the time-varying parameter .

Analogous to section 5.2.1 we can now calculate the closed loop system of Fig, 5-2 as

[frc,(t)]{A,,[e(t)] Bc,w(t)]][x,,(z)} 5.15]

(1) C.10(n] D,[0(5)] | w(®)

Where x, = x,, and
Ay =[A,+BoAK(I ~ DK C [5-16]
B, =[B,, +B,AK(I - D,,AK)"D,,,] [5-17]
C, =[Cu + DyyAK(I = D,,AK) ' C,, ] [5-18]
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D,= [DAll +D,,AK(I - D,,AK )-l D.m] [5-19]

At this point we are ready to state the guadratic LPV ‘Yperformance problem in the case of
fixed structure controller. Using Lemma 5-5 we can say that the guadratic fixed structure LPV ¥-

performance problem is solvable if there exists a matrix AK[6(1)], equation 5-14, and a positive

definite matrix P€ R™", P= P >0, such that for all 6 e ©®

AGIB()IP+ PA[6(0]  PB,I6(®)] CilO()]
B[6(1)1P -f  Di6}|<0 (5-20]
C.L0(1)] D6  -H
The last equation can also be put in the form of a Riccati inequality. It is clear at this
point the analogy between the gain scheduling of fixed structure controller and the H., LPV
control problem. The synthesis of gain scheduled fixed structure controllers is discussed in

the following section.

5.2.3 Synthesis of Gain Scheduled Fixed Structure Controllers

So far we haven’t make any assumption about the dependence of AK on the
scheduling parameters 8. In order to define a synthesis procedure that automatically wakes
into account gain scheduling, the dependence of the control parameters &, on the time
varying vector 8 must be an integral part of the optimal control problem (see for example
Ref.5-7). Assuming for example a linear relation we have:

k@ =a,+2,0a, i=1..m, [5-21]
Jj=l

where the coefficients a7 determine the variable gain control law over the operating range
spanned by 6. We can also consider more general nonlinear relationships between the

control variables and the time varying parametets 6. For each controller parameter k, we

can define p; nonlinear functions F() and determine the coefficients 4 in the following

way:
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P,
LO=SF®a, i=1..m. [5-22]

j=1

The total number of coefficients that need to be calculate in this case is:

r=2p, [>-23]

Using equation 5-22 it is possible to rewrite the block AK[O(t)] in equation 5-14 as a
linear function of the g; coefficients that we need to determine.
AKTO()] = X, T[0), [5-24]
i=l
In the above expression the vector p contains the stacked-up coefficients 4; of
equation 5-22. The synthesis problem now reduces to finding the coefficients b, that verify

equation 5-20. As already discussed in section 4.4, this is a non-convex problem and a closed
form solution does not exists. In the next two sections we present two possible solutions of

the synthesis problem. The first method is based on LMIs and the second on Newton search.

2.3.1 ller Synthesi
The linear dependence of AK[6(#)] on the coefficients b, (equation 5-24) allows us to

set up an iterative procedure similar to that discussed in section 4.4. From equation 5-24 and

equation 5-13 it is possible to derive the closed loop state space model:

x(1) = A [0(D]x(r) + B, [6(1)]w(?)
(1) = C [0(D)x(1) + D, [8(1)](0)

With the assumption that the feedthrough term D,,, =0 in equations 5-16 ... 5-19, we have:

Ag[8(D]1= AJ0()]+ (B, [6OITIAM]IC,, 0],
i=1

B [0()] = Bu[0()]1+ X, (B [0NIT0(1ID,,,[8()1)p,

i=1
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Co[8] = Cul8)]+ X (D [OOITIOMNIC,, 18,

isl

D, [8(O]= D,,,[8(D]+ Z(D.uz 8(NITI8(NOID,,,[0(t )])b;

i=]

This expression is similar to equation 4-4. The matrices F, G,, H,, and N, of

equation 4-4 are now functions of 8 and are defined as follows:
F[8()] = B,,[8(OITI8(N]IC,,[6(1)]

G[8(1)]= B,,[8(OIT[6(1)]D,,[8(1)]

H[8()] = D,,,[8(DIT[B()]C,,[8(1)]

N,[0()]= D, [(DIT8(#)1D,,[0(8)]

In this way we have expressed the closed loop state space matrices as linear function

of the controller parameters b, that we need to identify. Using lemma 5-5 we can say that the

H.. norm of the transfer function from w to g, is less than Yif and only if there exists a P20

such that:
r -
(A: 1+ X F [0k, )P + :{AA o1+ i‘,F,[eve,] P(Bm 61+ 36, [eu,] CT, 01+ S H M,
=l =1 hl =y [5-25]
(B:,[ouicf Iﬂlé;)P - DI, [0+ S NT (0K, |<0
C 48]+ gHi[e]kl D 0]+ ilele]k: -1 J

Since this Matrix Inequality depends continuously on @ , in order to find a solution we

must resort to gridding the parameter set © and define a matrix inequality at each point of
the grid. In this way we define a system of matrix inequalities that is not linear in b, and P;to

find a solution we must set up a two step iterative procedure. This procedure is completely

analogous to that discussed in section 4.4, so it will not be repeated here.
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2.2.3.2 Controller Synthesis via Newton search
Newton’s method can also be used to find a solution to the synthesis problem. In this
case it is not necessary to express AK[O(¢)] as a linear function of the gain scheduling

parameters b,. We can rely directly on the closed loop state space model of equation 5-15

through 5-19 calculated at each point of the grid. If @, is the finite subset of © formed with

all the point in the grid, then the induced L,- norm (ot H., norm) over this subset can be
defined as

|G..(P,.AK)|_ = sup sup L sup(GIG,, (P,(8),AK(6), jo)]) [5-26]
= aee,Le 360"“'"2 0eo,

Several methods are available to calculate this norm; we can use the LMI of equation
5-20 and reduce ¥ until this LMI is unfeasible, we can reduce ¥ in the Riccati inequality of
equation 5-11 until the Riccati equation has no solution, or form the Hamiltonian matrix and
reduce yuntil M has an eigenvalue on the imaginary axis , or simply pick the maximum of the
maximum singular values calculated at each point of the grid (Ref. 4-6). In our applications
we used the Hamiltonian matrix and the maximum singular value methods. We didn't find
significant difference between the two methods. If the frequency region, where the
maximum singular value occurs, is well known then the singular value method is faster in

finding the the induced L, - norm over the subset.

Using any of these methods, a function that calculates the H,, norm on the finite grid

can then be implemented in Matiah. Once the H., norm is computed, numerical partial

derivatives are taken, and a standard descent is conducted. The algorithm can be stopped

when the norm is below a certain value or when a minimum is reached. If it is possible to

find a solution to this problem, we will call it a "}suboptimal fixed structure controller".

The Newton search has presented several advantage over the LMI algorithm. The
convergence is definitely faster and the H., cost can easily be augmented with other terms

that take into account frequency and/ot time domain constraints, and handling qualities. The

addition of a handling quality metric to the cost functional, discussed in section 4.2.1 , can
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directly be applied to the fixed structure gain scheduling problem. In the next section we will
desctibe how the model following problem and the handling quality metric, used for the
single flight point design in chapter 4, can be used in the gain scheduling of fixed structure

controllers.

5.3 Multi-Objective optimization in the gain scheduling problem

The use of the Newton search to find a solution to the fixed structure LPV problem,

described in the previous section, allows us to introduce a term that takes into account

handling quality requirements, in addition to the pure H.. cost in equation 5-26.

This cruitical feature will be described through the F/A-18 design example. The cost
functional that will be used includes two parts: the first is the H. norm of the difference
between the target plant and the actual one and the second is a measure of the distance
between the Neal-Smith carpet plot of the target and the actual plant, The cost functional is
then given by:

e =r. 6. +—ZJ (r©)-P,0) +R,©O-R,@)f 6c@  [527

Where the range of vatiation of 6, 6, is defined by the flight envelope, and the index §
is for the various bandwidths at which the Neal-Smith Criterion is evaluated. This handling
quality metric is the same as the one described in paragraph 4.2.1.1, the only difference being
that it now depends on the flight condition 6.

The target plant and the desited handling qualities at each of the flight points will be
those of a standard F/A-18. It is important to poini out that now the desired performance
changes throughout the flight envelope. It is clear that we cannot expect to have the same

target transfer function in different flight regimes. The transfer function T,, (0) defines a
model matching problem for each flight point in the flight envelope.
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Fig. 5-3 The H.. model matching problem

The block diagram of the model matching problem that we are going to address is
shown in Fig. 5-3. As in the single point design, K(6) contains the fixed part of the control
system, while AK(6) contains a diagonal matrix of gains to be adjusted. Pr[0(1)] is the target

plant its definition and dependence on the flight envelope is discussed in section 5.4.2.

5.4 Gain Scheduling in the F/A-18 HARV

We take as our example a typical flight test situation at NASA Dryden. The F/A-18
HARYV was built as a full-scale development vehicle, to study thrust vectoring and high angle
of attack fighters. Because of the additional inertia of the thrust vectoring paddles, the spin
chute, emergency systems, and ballast, the HARV has significantly different dynamics than
the original F/A-18. For this reason, and because the HARYV flies at significantly different
flight conditions (high alpha) than the F/A-18, new control laws wete developed. This new
control laws were also designed to include the thrust vectoring system in the flight controi
system. We will present an alternate approach to designing these flight control laws, based on
redesign of the original control laws to recover the input-output and handling qualities
properties of the F/A-18.
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To implement the control laws actually used on the HARV, the flight control system
was adapted from the existing flight control system by adding a reconfigurable research flight
control system (RFCS). The RFCS provided the capability to examine multiple control law
designs and their variants without compromising the safety of the pilot or aircraft. This
computer was designed to provide Class B (mission critical but not safety critical) conttol
environment that, by definition, ensured safe reversion back to the F/A-18 configuration if a
failure was detected or if the pilot desited to return to the original flight control system.
During normal flight operations, (i.e. when thrust vectoring is not specifically being tested)
the standard practice was to reconfigure the control system back to the original flight control

system, or reversion mode.

We mention these operational details to emphasize two points: first, in reversion
mode (and also during refueling) the original F/A-18 control laws were used, which resulted
in degradation of handling qualities. The changes to the gain tables we will suggest are aimed
at improving these handling qualities. The second point that we derive from this example is
that new control laws are rarely flown without extensive validation, and even in the case of
Class B validated HARV control laws, a reversion mode was required to maintain safety. The
modifications to the man-rated F/A-18 control laws that we will develop here could be
validated at much lower cost than a complete redesign of the control system, because no new

flight code is required.

Based on this discussion the objective is to redefine the gain schedule of the F/A-18
control laws. Our purpose will be to recover the performance of the F/A-18 on the HARV

over a wide flight envelope.

5.4.1 Definition of the Flight Envelope
The flight regime that we will consider is shown in Tab. 5-1 and Fig. 5-4. Although

this flight regime does not cover the entire flight envelope, it is a regime in which the
dynamics of the aircraft change so significantly that gain scheduling is necessary to maintain

tae same level of performance at different altitudes and Mach numbets.
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Flight | Altiude | Mach | Dynamic Static Flight | Altitude | Mach | Dynamic Static
Point [fe] Pressure Pressure Point [fe] Pressure Pressure

[psf} [psf] [psf] [psf]
1 10000 | o040 | 16970 1461.6 16 | 25000 | 0.0 91.82 7923
2 | 10000 | o0s0 | 27113 1465.4 17 | 25000 | o050 | 14671 793.0
3 | 10000 | o060 | 40114 1464.4 18 | 2500 | o060 | 217.06 793.9
4 | 10000 | 070 | 36363 1466.4 19 | 2500 | 070 | 30499 795.1
s | 10000 | o080 | 76345 1468.9 " 20 | 25000 | o080 | 41311 796.6
6 | 15000 [ o040 [ 13950 12020 21 | 30000 | 040 73.46 634.8
7 | 15000 | o050 | 22287 1203.1 " 22 | 30000 | o050 | 11738 635.1
8 | 15000 [ o060 [ 32974 1204.4 23 | 30000 [ o060 | 17366 635.8
9 [ 15000 [ o070 [ 46330 1206.0 II 24 | 30000 | o070 | 24401 636.8
10 | 15000 | o080 | 62756 12082 J{ 25 | 30000 | o080 [ 33051 638.2
11 | 2000 | o040 | 11351 978.6 26 | 35000 | 040 58.32 505.0
12 | 20000 | os0 | 18135 979.5 " 21 | 35000 | 050 93.18 504.8
13 | 20000 [ o060 | 26831 9806 |l 28 | 3s000 [ o0e0 | 13787 505.4
14 | 20000 | o070 | 37700 9820 |l 20 | 35000 { o7 | 19372 506.3
15 | 20000 | os0 | 51065 9838 || 30 | 35000 [ o080 | 26240 507.4

Tab. 5-1 Flight points aero data

In this example the six flight points in the lower right cotner of the flight envelope
(below the line) were removed from the synthesis problem. Both the dynamic and the static
pressure are very low in this flight regime and the longitudinal transfer function of the
HARV is very different from that of the F/A-18. To include these points, additional degrees
of ireedom would be required in the gain scheduling definition. Alternatively, and perhaps
preferably, we would define a new ‘gain region’ which handles the low dynamic pressure part
of the envelope. In this way we reduce the gain scheduling problem to choosing several

broad classes in which automatic gain scheduling is performed.
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[ e Lines of constant Mach
— = - Lines of constant Altitude

400 600 800 1000 1200 1400 1600
Static Pressure, PS [psf]
Fig. 5-4 Flight Envelope

Fig. 5-5 and Fig, 5-6 show the locations of the closed loop poles of the Short Period
and Dutch Roll modes for Mach numbers between 0.4 and 0.8 at an altitude of 20,000 ft.
Two things are apparent in these figures. The first is that the dynamics of the aircraft change
dramatically in this region of the flight envelope. The second is the large difference between
the dynamics of the HARV and those of a standard F/A-18. The circles (0) and plus signs
(+) represent the closed loop poles of the HARV and the F/A-18 respectively. We can see
that there are significant differences in the damping and the natural frequency. The short
petiod mode of the F/A-18 HARV has lower frequency and lower damping at each flight
point. While the damping of the standard F/A-18 is around 0.6, that of the HARV is
between 0.4 and 0.5. The differences in the Dutch Roll mode ate similar; the HARV has

lower frequency and lower damping.
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5.4.2 Preparation of linear models at the grid points

In this section we describe how the lineatized models of all the elements forming the
model matching problem of Fig. 5-3 wete calculated. All the models were obtained via
linearization of Simulink block diagrams.

Once the flight envelope has been define, the next step is to linearize the nonlineat
model of the aircraft at each flight point. This task can be easily performed using the F/A-18
nonlinear simulator for Matlab and Simubink described in Appendix A. The procedure
outlined in section A-1.10 was used to calculate the linearized models of the F/A-18 HARV
and of the standard F/A-18. The linearized models of the F/A-18 HARV define the block

P[6(?)] of Fig. 5-3.

In order to form the block structure for the model matching problem, we need also to
linearize the CAS opened at the gains that we want to reschedule. Fig, 5-7, Fig. 5-8, and Fig.
5-9 show the Simulink block diagrams of the CAS broken at the scheduling gains. This "open
loop" CAS corresponds to what we defined as the fixed part of the controller. As for the
plant, the CAS linearized models must be calculated at each flight point. The linearization of
the control augmentation system must be done with a certain caution; dead-bands need to be
eliminated and, if using the Matlab function hnmod, the levels of the perturbations must be

tuned in accordance to the sizes of the inputs. The models of the "open loop" CAS form the

block K/8(2)] of Fig. 5-3.

A linearized model of the standard F/A-18 CAS can be calculated just using the fixed
patt of the controller, K/B(#)], and introducing the nominal gains as AK[G(t)]. The linearized
F/A-18, augmented with this CAS defines the target plant at each flight point (the block
Pr[6(#)] of Fig. 5-3). The target plant for the longitudinal axis is the SISO transfer function
from pitch stick to pitch rate, while the target plant in the lateral/directional axis is the
MIMO transfer function from the roll stick and pedal inputs to the roll rate and yaw rate

outputs.
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In this section we have defined all the blocks forming the model matching problem
over the flight envelope shown in Fig. 5-4. In the following section we describe which gains

were selected for gain scheduling, as well as the form of the various scheduling functions.

5.4.3 Definition of the gains to reschedule

The longitudinal CAS gains that we will redesign are: the pitch stick proportional gain,
the #, proportional gain and the pitch rate proportional gain. Fig. 5-7 shows the Simulink
block diagram of the longitudinal CAS. As we already mentioned in chapter 4, the
longitudinal CAS is basically a PI controller. The integrator gains do not play a fundamental
role in the location of the short period poles and thus we will not redesign the scheduling of
those gains. For a description of the gain scheduling refer to Appendix B. The thick solid
lines in Fig. B-2, Fig. B-5, and Fig. B-6 represent the gain scheduling of the standard F/A-18
control law. The circles shown in these figures represent the optimum gain when a design at
each flight point is performed. In all the three cases the single point designs follow the
curvature of the actual gain scheduling; thus, the form of the gain scheduling function was
selected to follow that of the actual one. Furthermore, the shape of the actual schedule
suggests that the same form can be used for all the three longitudinal gains. The function
selected is:

X
K= Xl+X2*QC+Q—é+X4*PS QC=QC,

X+ X *PS QC<QC,
[5-28)

-[(X, - X))+ (X, - Xﬁ)PS]—,/[(X1 - X)+(X, - X,)PST —4X,X,
oG = 2X
2
In the last equation QC is the dynamic pressure, PS the static pressure, and Xi are the
coefficients that must be found. The X terms take the place of the a; coefficients of equation
5-22. The longitudinal gains do not depend on dynamic pressure in the low dynamic pressure
region; when QC is less than QC,. In the optimization we then have to find a total of 18

coefficients, 6 for each gain to be rescheduled.
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Fig. 5-8 shows the lateral directional CAS while Fig. 5-9 shows the directional part of
the control augmentation system. In this case we will redesign all the available gains with the
exception of the Rolling-Surface-to-Rudder-Interconnect (RSRI) gain. This interconnect is
used to reduce sideslip and angle of attack excursions during rolling maneuver. The reason
why we decided not to redesign the RSRI gain is because this gain is scheduled with angle of
attack and air data. This will add an additional term to the scheduling parameters making the
problem more difficult. A separate design for this gain can be conducted if large excursions

in sideslip appear during roll maneuvers.

In the lateral-directional CAS the gains selected for rescheduling are: lateral stick gain,
roll rate feedback gain, lateral acceleration gain, yaw rate feedback gain, and pedal increment
gain. Fig. B-8, Fig. B-10, Fig. B-13, Fig. B-14, and Fig. B-16 show the gain scheduling of the
actual CAS. In this case the form of the scheduling function has to be different for each gain.
As an example Fig. B-8 shows the gain scheduling of the lateral stick gain. The solid thick
line is the actual gain schedule and the circles are the optimal gain when 2 single flight point
design is performed. These plots suggest the use of a linear dependence on dynamic pressure
in the low dynamic pressute region and a quadratic one in the high dynamic pressure region.
The dependence on static pressure will also be linear. Thus the lateral stick gain scheduling

function has the following form:

X+ X,*QC+X,*QC* + X, *PS QC2QC,
T | X+ X, *QC+ X, * PS QC<QC,

oc, = (X, = Xg)+ (X, = X()? =4 X,(X, - X;)-4X,(X, - X,) PS
b~ 2X,

In this case there are 7 coefficients that need to be optimized.

Appendixz B contains all the other lateral/directional gains. We can see that in some
cases the gain scheduling function has a quadratic form, in some others is purely linear, and
in one case the gain is constant. A total of 21 coefficients define the new gain scheduling of
lateral/directional CAS.
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5.4.4 Optimization via Newton Search

The first thing to do in order to start the optimization routine is to define the initial
values of the gain scheduling coefficients. The selection of the initial condition is critical to
the convergence of the optimization. The number of coefficients that need to be defined is
very high and there is the setious risk that the Newton search does not converge or it
converges very slowly to some local minimum. One way to define the starting point of the
Newton optimization is obtained via a least squares fit of the single flight point design. In
other words, first we find the optimum gains at each flight point and then we find the
coefficients of the gain scheduling function via a least squares. As an example, consider the

gain of equation 5-28. Assume that the optimal longitudinal gains were calculated at each of
the 30 flight points. Let K; be the optimal gain at the # flight point. At each flight point

define the following two row vectors:

1
Fu=|:1 oG, Eéz- PS.']

F,=[1 ps]
We can then write:
. zl
K =a,*F,*y+a,,*F,*, = [au *F, ay *Fu{zz] [5-29]
where
T
4= [Xl X, X, X4]
T

L= [Xs Xs]

and

a,; =1 . a,; =0
if QC,2QC, 4 =1 if QC; <QC,,



QC,, is some initial dynamic pressure break point. Equations 5-29 can the be stacked

in a matrix form

- -
* *
a,*F, a,,*F,,

* *
a.*F, a,*F, |z

% *
K;OJ @30  Flao Gy30* Py |

At this point we can readily calculate the least square solution equation for the gain

scheduling variables as:
s =(M"MY'M'K’ [5-30]

The coefficients z,; can then be used as the starting point of the optimization code.

Repeating the same procedure for all the gains, we can define the starting point of the

optimization routine.

The single flight point design not only helps identifying the starting point of the
optimization routine but also gives us the minimum cost that can be obtained. The
knowledge of the minimum cost that we can reach is of fundamental importance during the
optimization; it give us a way to judge our final solution. In our case, it is possible to calcuiate
this minimum by simply evaluating the cost functional at each grid point with the gains
derived from the single flight point design. It is clear that the best scheduling function is the
one going through the single point design gains. If the final cost is too far from the
minimum, probably it means that the form of the scheduling functions that we selected is not

right. In the next two sections we summarize the results of the optimization routine.

The cost functional utilized in the longitudinal CAS design is defined in equation 5-
27. It is composed of two parts: the first is the H.. norm of the transfer function from the

pitch stick input to the difference in the pitch rate of the target plane and the actual one, the
second is the HQ metric. Tab. 5-2 summarize the results of the optimization. The first

column, 7y, is the value of the cost when the standard F/A-18 controller is used. The term
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Yis represents the cost when the least square solution is used. Yopt is the value of the cost at
which the optimization routine has converged. The last column, Ymis, is the absolute
minimum that can be reached. From these values we can see how the least square solution
already has greatly reduced the cost functional. At the end of the optimization routine the
cost was about 32% closer to its absolute minimum (calculated as (YLs-Yopt)/ (Ys~Ymin) *100).

Yo Yis Yopt Ymin
8.6795 1.1121 0.9611 0.6421

Tab. 5-2 Longitudinal Optimization: Minimum Cost Functional

The coefficients of the three longitudinal scheduling functions are listed in appendix

B (Fig. B-1, Fig. B-3, and Fig. B-5). These figures also show the Simuiink block diagrams that
implement the new gain schedules.

20r  _— — standard F/A-18 Gains
-—— Least Square Gains

gamma [dB]

_40 " 1 " L :
10" 10° 10
Frequency [rad/sec]

Fig. 5-10 H., part of the cost in the longitudinal model matching problem.
Flight condition: Mach 0.7, Altitude 15,000 ft

Fig. 5-10 shows the H.. part of the cost as a function of frequency. The flight
condition is straight-and-level flight at Mach 0.7 and altitude 15,000 ft. The plots shows a
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good match between the HARV with the new gains and the target plant. Fig. 5-11 shows the
bode diagrams of the target plant and the three configurations of the F/A-18. The F/A-18
HARYV with the new gains now has the same bandwidth as the standard F/A-18. The new
gain schedule also increases the damping of the short period mode. |

201 ~—— Target Plant
) — — Standard F/A-18 Gains -
2. 15F === Optimum Galns
3
=
=
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5 ; 'l Il LY
107 10° 10'
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Fig. 5-11 Bode Plot of the target plant and the three F/A-18 configurations.

As already mentioned the handling quality metric forms the second part of the cost
functional that is minimized. Fig. 5-12 compares the Neal-Smith Carpet plot of the three
aircraft: the F/A-18, the HARV, and the HARV with the new gain schedule. For brevity we
show only one flight point. We can cleatly see that while the HARV has level 2 flying
qualities, while the standard F/A-18 has solid level 1 handling qualities. The second plot
refers to the HARV with the new gain scheduling. We can see that the new gain scheduling
makes the handling quality of the HARV almost identical to that of the standard F/A-18.
This fact is further analyzed in the next section where a detailed study of the refueling task is

ptesented.
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Fig. 5-12 Compatison between the Neal-Smith Carpet Plots of the three
F/A-18 Configurations. Flight condition: Mach 0.7, Altitude 15,000 ft
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5.4.4.2 Optimization of the Lateral Parameters

Tab. 5-3 summarizes the results of the lateral-directional optimization. The cost
functional utilized in this design is the H.. norm derived from the model matching problem.
No handling quality metric was used in this design. Starting from the least square solution the

optimization reduced the cost by about 20%.

Yo s Yopt Ymin
12.8169 3.4013 3.0902 1.9196

Tab. 5-3 Lateral Optimization: Minimum Cost Functional

The optimum coefficients of the scheduling functions are listed in appendix B (Fig.
B-7, Fig. B-9, Fig. B-11, Fig. B-12, and Fig. B-15). The main difference between the

longitudinal and the lateral design is that in the latter we formulate a two input two output

model matching problem.
15
-- — - Standard F/A-18 Gains
Least Square Gains
7 N\
Optimum Gains / \
/ \
/ \
10f / \
/ \
3 / \
ﬁ' ! \\
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2 / \
(0] \
/
/ \
5 B V4 \
/ \
/ \
’ \
rd
~
_ -~
0 A . P 1 " 1.
10™ 10° 10'

Frequency [rad/sec]

Fig. 5-13 H. cost in the lateral model matching problem. Flight Condition:
Mach 0.6, Altitude 10,000 ft
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In this case the H. norm, at each flight condition, is equal to the peak of the
maximum singular value plot. Fig. 5-13 shows the maximum singular value plot of the closed
loop transfer function from w to g (see Fig. 5-3) at Mach 0.6 and altitude 10,000 ft. Notice
the large reduction in the peak singular value. Starting from standard F/A-18 gains with an
H.. norm of about 13, the least square solution reduces the norm down to about 4.5 and the
optimization code further reduces the norm to about 3.0. Fig. 5-14 shows the transfer
functions of the standard F/A-18 (target plant), of the HARV, and of the HARV with the
modified gain. The largest correction occurs on the transfer function from lateral stick to roll
rate. In any case all the transfer functions of the HARV with the new gains appear to be
fairly close to the target plant. For brevity we will not show similar plots for all the othet
flight points.
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5.5 Nonlinear Simulations
Before implementing the new gain schedule on the NASA Dryden fixed base flight

simulator, 2 seties of simulations on the Simwhink nonlinear simulator were performed. The
idea behind these "batch" simulations was to verify that the responses of the HARV with the
new gain schedule were made closer to those of the F/A-18. Another important aspect was
to vetify that the new gains didn't cause unacceptable rate saturation in the case of large

inputs.

The nonlinear analyses primarily consisted of a series of steps, doublets, and ramps
simulated on the batch simulator described in appendix A. These simulations demonstrated
the ability of the HARV with the new gain schedule to produce a response consistent with
that of the standard F/A-18. It is important to remember that the new gain schedule
reproduces the closed loop dynamics of the standard F/A-18, but can do so only to the
limits imposed by saturation and rate limit. The response of the HARV to large pilot inputs,
which saturates the actuators, will be unaltered by changes in the CAS gains. Once the
saturation limits are violated there is nothing we can do changing the characteristics of the

CAS.

For brevity we are going to present only the time histories of three tests. In all the
figures the thick solid line represents the F/A-18 HARV with the new gain schedule, the
dashed line represents the F/A-18 HARV, and the thin solid line represents the F/A-18. The
simulation presented were all performed at 20,000 ft and Mach 0.6 (the refueling task flight
point).

Fig. 5-15 and Fig. 5-16 shows the response of the airplane to a small step of the
longitudinal stick. From the time history of the pitch rate we can see that the modified
HARV now has the same rise time as the standard F/A-18. The F/A-18 HARV has a
tendency to lag behind and a tendency to oscillate when settling down. Fig. 5-17 and Fig. 5-
18 are the response of the aircraft to a large step doublet. The inclination of the HARYV to
oscillate is now more evident in the pitch rate time history. The HARV definitely has a

longer settling time. In this case, the stick input is large causing saturation of the control
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surfaces. As already mentioned, when large inputs are involved, the CAS gains don’t make
any difference. The HARYV is heavier and it cannot follow the response of the standard F/A-
18. On the other hand, the new gains do benefit the settling part of the response. The new
gain schedule makes the HARV more damped with almost the same settling time as the
standard F/A-18.

Fig. 5-19 and Fig, 5-20 show the response of the airplanes to a roll reversal maneuver,
0 — +90 > 0 = -90 — 0). A sequence of 3 inch lateral input of the exact time length,
required to achieve the desired bank angles, was applied. Also in this case changes in the
CAS gains do not change the overall response of the HARV. There is some difference in the
settling time of the heading angle; the HARYV has a tendency to oscillate a little longer before
settling down. Fig. 5-20 shows that the surfaces are almost always on the rate or saturation
limits. From this experiment we see that the saturation of the surfaces does not change
significantly when the new gain scheduled is used. This fact is comforting, us hecause it
means that the new gains don’t saturate the surfaces more than the standard gains. Extensive
simulations with various levels of pilot input show that the new gain schedule makes the
response of the HARV almost identical to that of a standard F/A-18. For brevity we don’t

present the data from these additional simulations.
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5.6 Fixed Base Flight Simulator Tests

A six-degree-of-freedom nonlinear simulation incorporated in a fixed-base cockpit
mock-up was used to analyze the new gain schedule. The cockpit mock-up incorporated the
usual F/A-18 pilot display and controls. A screen projection provided the pilot with a limited
view outside the cockpit. The simulation software was adapted to allow automatic switching,
from the simulation console, between a standard F/A-18 aircraft, the F/A-18 HARV, and
the F/A-18 HARV with the new gain schedule. In order to check one channel at a time it
was possible to engage or disengage the new gain schedule on each channel separately. This
set-up allowed the sim engineer to change the aircraft configuration without the pilot

knowledge.

The simulation also had the capability to project a target aircraft on the screen. Six
target aircraft trajectories were flown in advance and recorded. During the recording of the
target maneuvers, 2 standard F/A-18 dynamics were used. Six tasks wete performed for the
analysis of the new gain schedule: level flight, single pitch pulse, multiple pitch pulses,
multiple target acquisitions, refueling task, and descending 2-g turn. Each of these tasks is

described below.

The scope of the simulations was to verify the handling qualities of the HARV and
the HARV with modified gains, and compare them with those of the standard F/A-18.
Before each test, the pilot was allowed to train knowing which aircraft configuration he was
flying: the F/A-18, the HARV, and the HARV with new gains. After this training the test
was performed and the standard Cooper Harper CH questionnaite was given to the pilot in
otder to define his CH rating. In addition the pilot was asked which aircraft he thought he

was flying. The order of the aircraft the pilot flew was random.

179



5.6.1 Pilot Tasks

6.1.1 el Fligh

The scope of this task was simply to help the pilot familiarize himself with the three
aircraft configurations. The target aircraft is in level flight at 20,000 ft and Mach 0.55; the
distance from the target is set initially at 1,000 ft. The aircraft starts at the same speed and
altitude as the target and the pilot is allowed to perform any maneuvers required for
familiarization. Considering that there is not a specific task the pilot is simply asked to give a
general opinion about the response of the aircraft to longitudinal and lateral inputs. Some of
the pilots, due to the fact that they didn't have a specific task to accomplish, did not give a
CHR.

Aircraft Pilot
Configuration | A | B | c | D | B | F
F/A-18 - 2 3 12 - -
F/A-18 HARV - 3 5 23 . -
F/A18HARVNew | ~ 2 3 12 - -

Tab. 5-4 CHR for level flight task

Even in this mode the pilots were able to recognize the HARV as an heavier and less

responsive aircraft.

6.1.2_Single Pulse in itch Axi

The target aircraft was initially in level flight 200 ft in front of the piloted airplane.
After five seconds the target started a single pulse in the pitch axis. The pilot was asked to
follow the target as closely as possible. Appendix C contains some of the comments recorded
after this task. In general the pilots were not able to distinguish between the F/A-18 and the
modified HARV. The comments on the HARV were not as good: large overshoot,
difficulties in stopping the oscillations, and sluggish longitudinal response were some of the
comments common to several pilots. The CH ratings shown in Tab. 5-5 reflect the

unsatis/actory response of the HARV.
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Aircraft - Pilot
Configuraion | A | B | c | D | E | F
F/A-18 - 2 3 6 23 34
F/A-18 HARV - 3 45 8 45 23
F/AMBHARVNew | - 2 3 6 23 56

Tab. 5-5 CHR for pitch single pulse task

5.6.1.3 Multiple T Acauisiti

During this task the target aircraft appeared suddenly at different locations on the
display. The pilot was asked to acquire the target as fast as possible, maintaining the same
distance. Then the target was artificially moved to another location on the screen and a new

acquisition was requested.

The scope of this task was to test coupling between the longitudinal and lateral axis
during fast tracking. The tests did not revealed any major difference between ai.craft.
Unfortunately the task was dominated by the difficulty in maintaining a constant distance

between the two airplanes. Pilots' CH rating was strongly affected by this fact.

Aircraft Pilot
Configuraton | A | B | c | D ]| E| F
F/A-18 - 3 4 - 3
F/A-18 HARV -~ 4 4 = 5
F/AIBHARVNew | - 3 4 - 34 -

Tab. 5-6 CHR for Multiple Target Acquisitions

Fig. 5-6 shows the CH rating assigned by the three pilots that performed this task.
Two pilots out of three were able to recognize the HARV, assigning a higher CH rating,

5.6.1.4 Multiple Pulses in the Pitch Axi

There ate two reasons behind this task. The first is to have a set of data that can be
used to calculate an ‘experimental’ longitudinal transfer function, to utilize in the Neal-Smith
HQ critetia. The second is to verify gross tracking in the pitch axis. The target aircraft
performed 2 seties of pitch pulses along the longitudinal axis. The overall maneuver lasts 1

minute. The pilot was asked to keep a constant distance of 500 ft and track the target aircraft.
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Again the pilots had difficulties distinguishing between the three aircraft. Three pilots
were able to identify the HARV but the other three could not see the difference.

Aircraft Pilot
Configuaton | A | B | c | D | E| F
F/A-18 - 3 3 5 3
F/A-18 HARV -~ 4 4 a4 3
F/AI8BHARVNew | -~ 3 3 3 56 -

Tab. 5-7 CHR for Pitch Axis Multiple Pulses

Based on the Multiple Target Acquisition and Multiple Pitch Pulse tasks, we conclude
that gross tracking is not critical for the HARYV, and that the pilots were able to compensate
and perform the task on the three aircraft with the same confidence. Although the comments
from the pilots did not give a definitive answer about the respective handling quality of the
three aircraft, the frequency and Neal-Smith analysis on the data do give important insight

into their behavior.

Fig. 5-21 shows the time domain response of one of the tests. It is possible to see that
the pilot did not have difficulties remaining 500 ft behind the target. The second plot in Fig,
5-21 compares the actual pitch angle with the target one (solid dashed line); here it is difficult
to say that one aircraft was definitely better than the other. This to some extent explains the

fact that the CH ratings of the pilots do not always identify the HARV as the worst.

The simulation data were used to calculate an ‘experimental’ closed loop transfer
function. Fig. 5-22 shows the Bode diagram of the transfer function from the stick input to
the pitch rate. The frequency domain data clearly shows that the longitudinal response of the

F/A-18 HARV with the new gains resembles very closely that of the standard F/A-18.

The Neal-Smith carpet plot calculated using all of the simulation data confirms that
the F/A-18 HARV with the new gain schedule is very similar to the F/A-18. Fig. 5-23, Fig.
5-24, and Fig. 5-25 show the NS carpet plot of the three aircraft configurations. The plots
show that even the F/A-18 simulator does not meet Level 1 handling quality requirements.
This confirms the fact that all the pilots considered the refueling task harder in the simulator
than in reality. The NS plots of the F/A-18 and the HARV modified are almost identical; for
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a 3 rad/sec task the airplanes are near the boundary between level 1 and level 2. The HQ of
the HARV are in the level 2 region and rapidly degrade for tasks with higher bandwidth.

We can conclude that at least in terms of longitudinal transfer function and Neal-
Smith HQ criteria, the new gain scheduling corrects the deficiencies of the HARV and make
the aircraft very similar to a standard F/A-18.
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Fig. 5-23 F/A-18: Neal-Smith carpet plot calculated from the smoothed
experimental longitudinal transfer function
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smoothed experimental longitudinal transfer function
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Fig. 5-25 F/A-18 HARV: Neal-Smith carpet plot calculated from the
smoothed experimental longitudinal transfer function

5.6.1.5 Refueling Task

The refueling task was performed by four pilots. The target airplane, acting as a
tanker, established level flight at 20,000 ft and Mach 0.55. The piloted aircraft was initially
flying at the same altitude and Mach number as the tanker, at a distance of 200 ft behind the

tanker. The pilot was instructed to reduce his distance from the tanker to about 60 ft and

stabilize.

All pilots considered the refueling task in the flight simulator more difficult than in
reality. The major problem was the unrealistic behavior of the throttle; this caused the
maneuver to be dominated by a fore and aft movement. The aircraft was too tesponsive to
small adjustments in the throttle, an thus it was quite difficult to maintain the aircraft at 60 ft
behind the tanker. Furthermore there was a strong coupling between the lateral and

longitudinal motion, so that the pilot tended to enter into lateral oscillations.

For this reasons the CH rating given by the pilots was affected by the difficulty in
keeping distance within 60~70 ft. Pilot F, who spent the most time testing the refueling task,
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considered the task representative of the level of concentration needed during refueling.
During the final test he was able to recognize the heavier and more sluggish response of the
F/A-18 HARV. Once the gains in the F/A-18 HARV were changed he was unable to
distinguish between the HARV and the standard F/A-18. The PIO tendency that
characterizes the HARV disappeared almost completely with the new gain schedule. Fig. 5-
26 shows the response in the longitudinal axis. After about 60 seconds the pilot closes the

distance with the tanker and starts trying to stabilize the aircraft.

Aiccraft Pilot
Configuraton | A | B | c | D | E | F
F/A-18 - 7 56 - 3 3
F/A-18 HARV -~ 6 56 - 3 4
F/A18HARVNew | -~ 5 4 ~ 3 3

Tab. 5-8 CHR for Refueling Task

From the time domain data we can see how difficult the task was, but it is difficult to
see the difference between the three aircraft. In order to define the pilot’s workload the
power spectral density (PSD) of the longitudinal stick input was calculated. Fig. 5-27 shows
the longitudinal stick input PSD for each of the four pilots. The area below the PSD
measures the mean square value of the process; this is 2 common measure of the pilot’s

workload.

Tab. 5-9 shows the mean squared value (msv) of the pilots’ longitudinal stick input.
Higher msv correspond to higher pilot workloads. We can cleatly see that in all cases the
pilot workload was higher on the HARV. The workload of the standard F/A-18 is instead
very similar to that of the HARV with the new gain schedule.

Pilot B (1)* | Pilot B (2)** Pilot C Pilot E Pilot F
F/A-18 0.8595 0.3607 1.4710 n.a. 0.3007
F/A-18 HARV 2.5368 0.6065 2.5708 1.8235 0.9330
F/A-18 HARV New 0.5798 0.2634 1.3635 1.3935 0.2286
* First attempt ** Second Attemp t

Tab. 5-9 Longitudinal Stick Input: Mean Square Value
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The refueling task can be divided in two phases: acquisition and fine tracking. A more
detailed analysis of the pilot work load during this task require separate analyses of these two
phases. From Fig. 5-26 we can recognize that the acquisition and stabilization phase ends
after about 60 second. For the remaining two minutes the pilot is in the fine tracking phase.
Separate power spectral density functions were calculated for each phase. Fig. 5-28 shows the
PSD of the pilot input for each aircraft configuration. The first two plots, showing the F/A-
18 and the modified HARV, share the same characteristics. The pilot workload is larger in
the tracking phase than in the acquisition phase. We can infer that the pilots used the same
piloting style on the F/A-18 and the HARV with the modified gains. On the contrary the
third plot has completely opposite characteristics, the pilot work load is larger in the
acquisition phase than in the tracking phase. This confirms the comments of the pilots'
during flight and simulations. In order to successfully perform the refueling on the HARV
very low gains must be used. The pilot has to minimize his stick activity in order to avoid
PIOs. Thus the bad CH rating is not really related to a higher workload but rather to the fact
that a different piloting technique, which is inherently countetintuitive to the pilot, is

necessary on the HARV.
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5.61.6 Descending 2-g turn

This experiment was conducted to test the gain scheduling activity during an air-to-air
fine tracking task. The target aircraft had the dynarnics of a standard F/A-18. The maneuver
of the target was flown in advance and was designed to be an almost constant 2-g turn
descending from 30,000 ft to 20,000. The maneuver starts at Mach 0.4 and ends at Mach 0.8.
In Fig. 5-29 is shown the 3-D plot of the target trajectory. The pilot was asked to acquire and

track the target maintaining its distance within 2,000 ft.

Three pilots performed this task and they unanimously found the HARV heavier with
a tendency to fall behind. The task was rated as 'easy' and the worst CH rating was always
assigned to the HARV. The F/A-18 HARV with the new gains always received the same
rating as the standard F/A-18.

Fig. 5-30 shows the gain scheduling activity throughout the maneuver. As expected
the shape of the modified gains follows that of the standatd control law. The F/A-18 HARV
with the new gain schedule performed smoothly during the dive, and the pilots did not

experience undesired changes in the response of the aircraft.

Aircraft Pilot
Configuraion | A | B | c| D | E | F
F/A-18 - 2 3 - 3 -
F/A-18 HARV - 3 3 - 45 -
F/A-18 HARV New - 2 3 -- 3 -

Tab. 5-10 CHR for descending 2-g turn maneuver
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5.6.2 Summary of the Fixed-Base Flight Simulator Tests

The fixed-base flight simulator validated the purely analytical linear and nonlinear
simulation results. The pilot assigned CH ratings and comments further proved the validity
of the new gain schedule applied to the HARV.

The refueling task was commented favorably by the pilots. Although it does not
replicate in-flight refueling in all its aspects, this task is useful for providing an overall
evaluation of aircraft performance in the refueling flight regime. The refueling task can best
emphasize differences in the aircraft response that are not revealed by other tracking
maneuvers. The task requires a significant amount of simulation time for the pilot to adapt to
the fixed-base cockpit environment. The proficiency of the pilots improved significanty
during the simulations. Although pilots' comments and CH ratings not always were
consistent in identifying the HARV as the most difficult aircraft to fly, the analysis of the
simulation data confirmed our expectations. We therefore believe that detailed CH ratings
can be obtained only through an extensive simulation program. The CH ratings gathered
(appendix C) must be considered in terms of their relative and not absolute values. In so
doing we can distinguish a clear pattern in the CH ratings: in each task the average CH rating
assigned to the HARV is always higher that the other two. The average CH rating of the
HARV modified is instead slightly lower than the standard F/A-18. The reason may be
probably attributed to the higher longitudinal stick gain that made the HARV modified a

very responsive (may be too responsive) aircraft.
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Chapter 6

Summary and Conclusions

6.1 Robustness Analysis: Summary

In the first part this thesis we have described a set of developments that allow one to
apply recent multivariable robustness analysis measures to flight-test engineering questions.
In Chapter 2 a method to calculate the real structured singular value p, proposed by Dailey, is
developed and extended to include repeated real uncertainties. We introduced the idea of
iterative weightings as a means to determine which uncertain elements dominate the
robustness measure. In addition we showed how to cast phase and delay uncertainty as real
structured uncertainties in ways that provide easily interpreted information about flight
safety. The discontinuous nature of the real structure singular value g has been shown with
several practical examples. These procedures were applied to some specific control law
validation issues raised during the X-31 flight tests. The iterative weighting procedure has
been applied to determine the relative importance of several aerodynamic parametets to the
robustness of the X-31 lateral-directional control during the Quasi-tailless experiment. The
phase-margin block structure was used to present the concept of robustly guaranteed phase
margin. In Chapter 3 2 methodology to calculate the phase margin that is guaranteed to hold
in the face of other plant parameter variztions was presented. Finally, we showed how to
calculate and present in the control room a measure of multivariable robustness derived

during a flight test.

The specific contribution of this thesis are extensions to existing tools to make them

useful for robustness analysis in practical flight control applications:
e Dailey's algorithm was extended for repeated real uncertainties;

e An iterative weighting scheme was devised to identify elements critical to robustness;
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e Methods to analyze Phase Margin and "Robustly Guaranteed" Phase Margin were

introduced;

e The discontinuity of real-i was analyzed and conditions under which this can occur were

elucidated.

6.2 Fixed Structure Gain Scheduling: Summary

Chapter 4 and 5 were dedicated to the important issue of fixed structure control law
design. Through a realistic example using the F/A-18 flight control system, we have shown
how the problem of fixed-structure gain adjustment can be accomplished using modern
methods. The framework of block perturbations and norm-based objectives is an excellent
way to develop generalized solutions to the problem. However, this resulting class of design
problems is non-convex and therefore requires DK-style iteration on LMIs. The time
required by the LMI algorithm to converge grows exponentially with the number of states of
the system. The Quasi-Newton approach, however, is found to be an efficient and more
versatile way to find a solution for large systems. A mixed cost was introduced which allows
Handling Qualities, in terms of the Neal-Smith critetion, to be retained or improved during
gain adjustments. The generalized framework for gain adjustment was specifically tailored to
allow gain scheduling to be addressed. In Chapter 5 we draw upon the theory of Linear
Parameter Varying systems to develop a gain schedule for the F/A-18 HARV. The flight
data relative to the refueling of the F/A-18 HARV were analyzed and revealed a degradation
in the performance of the standard F/A-18 control law when used on the F/A-18 HARV.
The fixed structure LPV technique was applied to redesign the gain scheduling of the CAS in
the subsonic portion of the flight envelope. The new gain schedule was successfully tested on
the fixed based flight simulator at NASA Dtyden. The piloted sim confirmed that the new
gain schedule was effective in correcting the problems on the F/A-18 HARV. In general the
pilots wete not able to distinguish between the standard F/A-18 and the HARV with the
new gain schedule.
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It is clear from our example that our goal was to rely heavily on existing knowledge

concerning the structure of successful control laws, the input-output properties that are

important, and the handling qualities critetia that must be met by the final control law. It will

also be clear to the knowledgeable reader that many of the performance robustness measures

that have been popularized tecently can be directly incorporated into the structute

developed, without sacrificing the architecture of the flight control system. This highly

specialized and mature structure is presetved; as is the simplicity of form of the gain schedule

itself.

Again the specific contributions of this thesis are related to bridging the gap between

theory and practices:

The fixed structure control problem was cast as an LPV synthesis problem, and the

mathematical properties of this problem were elucidated;

A new method to introduce Handling Qualities into the optimization process was

developed;

A large-envelope gain scheduling of a real flight control system was designed with this
method and tested in a piloted simulator. Thus we have shown constructively and in

details how to bridge the gap from theory to practice.

6.3 Conclusions

Robustness Analysis: Clearly, useful analysis can be done using the structured singular
value framewotk. The examples presented here invariably corroborated previous results
obtained through conventional means, which requite more exhaustive approaches. More
work is needed to address the plethora of flight safety, flight dynamics, implementation,
and nonlinear issues that atise during flight control law validation, but the framework

demonstrated here shows promise due to its versatility and intuitive appeal.

Gain Scheduling of Fixed Structure Controllers: Procedures and guidelines in the

design of fixed structure controllers can be extremely valuable in flight control
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applications. With respect to the design procedure, we have utilized LPV theory only to
the extent that it can be applied in a fixed-structure situation with table look-up plant
dynamics. Whenever gridding of the operating points is required, guarantees regarding
intermediate points and time variations of 0 are lost. Although this limitation may appear
severe, in fact it has been imposed on the non-fixed structute applications of LPV that
we have found in literature. Two things are gained through utilization of the LPV
framework. First the robust control literature of recent years can be made consistent with
the practical necessity to gain schedule. Second, automation of the gain scheduling
process is made systematic. Such automation allows software reuse, and streamlines

development of control laws significantly.

e Piloted Simulations: Extremely important results can be obtained from piloted
simulations. The refueling task, thanks to its characteristic of fine tracking under stress, is
particularly useful in the study of PIO tendency of the aircraft, and in the analysis of the
response of the flight control law to pilots with different gains. The analysis of the
simulation data and the comments of the pilots closely reflect the conclusions of the
Neal-Smith criteria for the longitudinal Handling Quality. The number of redesigns due
to unsatisfactory comments from the pilots can be greatly reduced including Handling

Quality criteria 1n the design process.

6.4 Closure

The basic principle which inspired this work in its development becomes an essential
point of artival. As systems grow in complexity the need for specialized control laws
becomes increasingly important. The development of unstructured "generic" control
methods which ate apt to work on a variety of systems, although it represeats a significant
and interesting challenge, does not reflect the needs of practical engineering. Rather the
development of standard architectures, specific to classes of systems, and of automatic

methods for parametrized designs is of paramount importance.
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This idea is clearly not new. Throughout the DoD there is an increasing interest in the
concept of Software Reuse as a means to reduce the life cycle cost of systems. With the
increasing importance of software in aerospace applications, the software maintenance takes
almost 45% of the total Life-Cycle costs. The Report to Congress on the Software Reuse
Initiative (1996-2000) specifically says:

Department of Defense (DoD) software costs are expected to grow from about $30 billion in
1990 #0 §42 billion in 1995 .... effective software reuse would reduce software life-cycle costs
and improve the reliability ......

The minimization of software-specific costs atising duting maintenance is critical to
the success of a computer system. The activity of redesign and tuning existing control laws
from our point of view eaters in the category of a maintenance activity. The flight control
law, as all the other components of the computer system, must meet specific requirements of
maintainability, accessibility, and sirnplicity. The study presented in this thesis closely follows
the philosophy behind the Software Reuse Initiative: the fusion of reuse and its enabling
technologies and their unification with software engineering as it becomes a mature
engineering discipline. Using standard architecturcs and parametrized designs to build new

application systems will be considered engineering, not merely “reuse”.
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Appendix A

F/A-18 Nonlinear Simulator

A-1 Introduction

The design of modern flight control systems, using the most recent control
techniques, is highly related to the availability of a nonlinear flight simulator that is at the
same time high fidelity and versatile. In this section we describe a flight simulator for an
F/A-18 fighter aircraft that was recently developed at MIT using Matlab and Simulink.

Starting in the late sixties, many simulators have been developed for fighters and large
commercial aircraft. They are typically written in Fortran and more recently in C and other
high level languages, and their main objectives are fidelity and computational speed. In order
to achieve these two goals a price in lack of versatility needs to be paid. It is often difficult or
al least not immediate to break the loop at different points, inject signals at particular points
of the control law, alter aerodynamic parameters, or calcuiate transfer functions between
specific points of the closed loop system. Flight simulators have been mainly used for pilot
training and for flight control law verification and tuning. It is only in recent years that

nonlinear simulators have been used as a development tool for flight control law design.

Many software tools for control system design are presently available, two of the most
common being Matrix-X and Matlab. Incorporated in these tools are many functions that can
be of great help to control engineers, such as dedicated algorithms for controller analysis and
synthesis. These tools in many cases represent the state of the art in control theory. The time
required for the design of a new control law or the analysis and tuning of an existing control

law can be dramatically reduced with the aid of these software packages.

For this reason we believe that a high fidelity flight simulator, written in one of these
high level dedicated packages, is necessary for the design and tuning of modetn flight control
laws. Using the flight simulator of the F/A-18 that is currently used at NASA Dryden as a
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reference model, a new simulator for Simulink has been developed. One of the main
limitation of Matlab is its computational speed. The problem becomes particulatly critical
when there are hundreds of interpolations that need to be calculate at each frame. In order to
speed up the simulation time all the functions which comprise the aircraft model were
written in C and integrated into a Simulink block diagram. The diagram itself is self
explanatory: it is easy to identify each block, its intetfaces and its function in the overall
system. The input and output variables of each block can be easily recorded during the
simulation or plotted in real time at the designer’s convenience. Linear models at different
flight points can be obtained and new controllers can be easily wrapped around the open

loop aircraft model.

Fig. A-1 shows the Simulink block diagram of the F/A-18 model with the 701E
Control Augmentation System already inserted in the feedback path. In the sequel of this

document we will refer to the Simulink F/A-18 simulator using the SimSim moniker.

Clock |_’ ) 5
Engine 3
> Mode! > Forces Equation of
Variable & Mot Output
‘otion -
Throttle| Engine 1 || Distribution | variables
Levers Dynamic N Aerodynamic Moments six-dof 6 7
Model
Surface § r 4
Model
es dap(1)
S 0 Do 0]
CAS701E |«
; Latsral Directional ¢
Combi <_| 1 Mux CAS
mbine —
CAS 701E Control Variables|
¢ Longitudinal [€

Fig. A-1 SimSim: Simulink block diagram
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In the current version of SimSim, a trimming routine is not yet available. In order to
trim the aircraft we use the NASA Dryden nonlinear simulator (Release 14). Four hundred
trimming points, covering most of the F/A-18 flight envelope, were calculated and stored in
files that can easily loaded in the Matlab workspace. The user can select the desired flight
point from 2 table of Mach numbers and altitudes. The file associated with this point is then
loaded before the simulation is started. A routine ihat will allow to trim the aircraft at any
given initial conditions will be made available by the authors in the near future. Only minor
adjustments need to be made to the existing trimming routine in Matlab in order to speed up

the trimming process.

In order to show the performance of the simulator for standard simulation tasks, a 30
second maneuver in pitch and roll was performed on three different computers. The results
of this test are in Tab. A-1. One important characteristic of SimSim is its transportability
between different computers running the same version of Matlab and Simulink. The
simulator presented in this document has been developed in Matlab Version 4.2c.1 and
Simulink Version 1.3c. It is important to remember that the simulator is not transportable on

older versions of Simulbink.

Platform €CPU Time
Sparc 5 53.30 [sec]
Sparc 10 51.35 [sec]
Pentium 166 MHz 19.96 [sec]

Tab. A-1 Simulator computation time performance on different platforms

A-2 SimSim Description

The aircraft model has been divided into eight major blocks, each performing one
specific function in the overall simulator. The F-18 model top level Simulink blocks are

shown in Fig. A-1 and ate synthesized in the following table.
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N. | Block Name Block Type Description

1 Engine Dynamics C-Function Integrate second order engine dynamics..

2 Variable Distribution Simulink Block Prepare variables for the engine and aerodynamic models.

3 Engine Model C-Function Calculate the thrust forces and moments.

4 Aerodynamic Model C-Function Calculate aerodynamic forces and moments.

5 Forces & Moments Simulink Block Combine the aerodynamic and the thrust forces and moments.

6 Equation of Motion C-Function Integrated the 12 first order equation of motion.

7 Output Variables C-Function Calculate additional output variables using the state variables.

8 Surface Models Simulink Block State space models, rate and position limits for all the
aerodynamic surfaces.

Tab. A-2 SimSim top level blocks

In the following sections a brief description of each block and its input and output
variables is presented. The Variable Distribution block is not described in a separate
paragraph because it performs simple vector manipulations in order to prepare the input for
the Engine Model and the Aerodynamic Model. For the same reason the Forces & Moments
block is not described, it simply adds the contributions to the total force and moment due to
the aerodynamics and the thrust, and prepares the input data for the Equaton of Motion
block.

As shown above, two types of Simulink blocks are used in the simulator: Simulink
Blocks and C-Functions. The Simulink Blocks are simple Simulink diagrams that use the
basic built-in functions such as state space, integrator, derivative, mux, demux, gain, sum, etc.. The
C-Functions are instead dedicated C files that perform computationally intensive operations.
For instance the aerodynamic model is composed of more than one hundred interpolation
tables; coding this function in Ma#/ab would have tremendously increased the computation

time and made the simulator unusable.

In order to start the simulation it is necessary to call the matlab m-file sim_data.m. It
contains all the data necessary to initialize the simulation. Trimming data, aerodynamic data,
atmospheric data, and engine data are loaded at the beginning of this file. The file also
prepare all the variables that are passed as arguments to the simulink model. After this file is
loaded the simulation can be started within matlab or from simulink. In appendix A-7 is

given the listing of this file.
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A-3 Equation of Motion

In this section the six degrees of freedom equations of motion that describe the
nonlinear dynamics of the aitcraft are described. The following assumptions are used in the

derivation of the equations of motion:
¢ rigid body;
¢ flat Earth;

e constant aircraft mass and inertia characteristics.

These are common assumptions for aircraft control law design and flight simulation.

Details about the equation of motion can be found in Ref. A-1.

Force Equations
mU = m(RV - QW)— mgsin(0) + F,
mV = m(- RU + PW)+mgsin(¢)cos(8) + F, [A-1]
mw = m(QU - PV) +mg cos(§) cos(6) + F,

Kinematics Equations

¢ = P +tan(8)(Qsin(¢) + Rcos(9))
6= Qcos(¢) — Rsin(¢) [A-2]

- Qsin(¢) + Rcos(9)
cos(0)

Moment Equations
P=(cR+c,P)Q+c,L+c,N
Q=csPR-c(P* - R*)+ce;:M [A-3]
R= (c.P - c,R)Q +cL+cN

Navigation Equations

Dy = U cos(B)cos(y) + V(— cos(@)sin(y) + sin(¢) sin(6) cos(lp)) + W(sin(¢) sin(y) + cos(§) sin(6) cos(w))
P = U cos(8)sin(y) +V(cos(¢) cos(y) + sin(¢) sin(6) sin(w)) + W(— sin(¢) cos(y) + cos(¢) sin(8) sin(w)) [A-4]
k = U sin(6) - V sin(¢) cos(8) + W cos(¢) cos(6)

The constants ci, ... o are defined as follows [Ref. A-1].
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J -7 J
¢ =TI, o=t e = (A5
y Yy
¢ =— =T (d,=1,)7, +J: ¢, =T"J
"y x y/ x xz x
Where:
r=JJ,-J2 [A-6]

The mask of the Equation of Motions block is shown in Fig. A-2. Two parameters need
to be passed to the mask: the inertia and mass characteristics, and the initial conditions. The
vector JJ contains the 9 constants defined in equation A-5, plus two additional terms: the

gravity acceleration in ft/sec? and the initial mass of the aircraft..

Block name: 6-DOF Equation of Motion
Bleck type: [Mask]

Subsystem:
sys=funft,x,u.flag,.param]1,..)

Subsystem function name:

eqt_mot

Function parameters:
4, X0

Fig. A-2 Equation of Motion Six-DOF mask

The vector X0 contains the initial conditions of the 12 rigid body states described in
the first order differential equations (equation A-1, A-2, A-3, and A-4).

The input to the block are the three forces (Fx, F,, and F;) and the three moments (L,
M, and N) in the body axis reference frame. The output of this block are the twelve states
defined in the equation of metion. The 12 first order differential equations are integrated

using the method selected by the user in the simulation parameters mask of the Simulink
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diagram. In all the simulations presented in the sequel of this document a third order Runge-

Kutta method has been used.

Additional terms, representing the angular momentum of spinning rotots, have been
omitted in the equation of motions. In the original flight simulator they were taken into

account, for the scope of this simulator those terms are negligible.

A-4 Aerodynamic Model

The aerodynamic model implemented in the simulator is a direct derivative of the
aerodynamic model used in the NASA Dryden simulator. We are not going to desctibe the
details of the aerodynamic model because it goes beyond the scope of this document. The
inputs and the output of this block ate shown in the header of the C function in Appendix
A-3.

The output vector contains the three aerodynamic forces (FXAR, FYAR, and FZAR)
the three aerodynamic moments (MXAR, MYAR, and MZAR), and the six aerodynamic
coefficients (CY, CL, CN, CLFT, CM, and CD).

The aerodynamic forces and moments acting on the aircraft are defined in terms of
the dimensionless aerodynamic coefficients and are transferred in the body axes reference

system. Thus we have:

FYAR=QS*CY [A-7]

FXAR = QS *(-CD * cos(c) + CLFT * sin(a))
FZAR = QS * (~CD * sin(a) — CLFT * cos(ct))

MAR = gbar * § * char * CM + FZAR * deltax — FXAR * deltaz [A-8]

LAR = gbar* S *b* CL+ FYAR * deltaz — FZAR * deltay
NAR = gbar * S *b* CN + FXAR * deltay - FYAR * delatx

The aerodynamic model mask is shown in Fig. A-3. Two parametes are requested by
this block: geometric data for the aerodynamic model, IA, and thrust vectoring flag,
TV._FLAG. The thrust vectoring flag is used to engage the thrust vectoring (TV_FLAG =1

thrust vectoting on). The vector containing the geometric data is defined in Tab. A-3.
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Block name: Aerodynamic Model
Block type:

Mask]

Subsystem:
sys=funft u,flag,paramt,..)

Subsystem function name:

aero_mdl|

Function parameters:

IATV_FLAG

Fig. A-3 Aerodynamic Model Mask

1A Variable Description
IA(1) | cbar Wing mean geometric cord
IA(2) | b Wing span
IA(3) | mass Aircraft total mass
IA(4) | deltax CG shift along the X axis (+forward)
IA(5) | deltay CG shift along the Y axis (+ right wing)
IA(6) | deltaz CG shift along the Z axis (+ down)
IA() | S Wing reference area

The aerodynamic forces and moments are then passed to the Forces & Moments
block, where they are combined with the forces and moments resulting from the Engine

Model to generate the net forces and moments used in the equation of motions.

A-5 Engine Model

The model of the engine was divided in two separate blocks that enter the simulator

in two different locations. The first block is the Engine Model and the second block is the

Engine Dynamics.

Tab. A-3 Aerodynamic Mask: function parameters
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The Engine Model block is the C-Function where the thrust force and moment in
body axes are calculated as functions of the Mach number, the altitude, the angle of attack,
the throttle position command, and the thrust vectoring angles. This is a feedthrough block,

neither discrete nor continuous states are calculated in this block.

Fig. A-4 shows the mask of the engine model. One parameter needs to be passed to

this mask.

Block name: Engine Model
Block type: (Mask]

Subsystem:
sys=funftx.u.flag.parem1...)

Subsystem function name:

leng_mdl

Function parameters:

Fig. A-4 Engine Model Mask

The vector II is used to pass to the function the geometrical characteristics of the

engine. Tab. A-4 describes the entries of the II vector.

I Variable Description

II(1) | csanxy Cosine of engine cant

II(2) | snanxy[0] Sine of left engine cant
II(3) | snanxy[1] Sine of right engine cant

oll(4) | deltax CG shift along the X axis (+forward)

II(5) | deltay CG shift along the Y axis (+ right wing)

11(6) | deltaz CG shift along the Z axis (+ down)

II(7) | tdoc[0] Point through which left engine thrust passes
II(8) | doc[1] Point through which right engine thrust passes

Tab. A-4 Engine Model Mask: Input Vector II
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The second function, Engine Dynamics, is used to describe the dynamics of the
engine when the throttle command changes with time. This block is formed by a C-Function
that implements a simple second order model. In most of the simulations the throttle
command remains constant throughout the entire maneuver, for this reason the throttle
dynamic block remains unused in most of the cases. A vector with two elements is passed to
the mask of the Engine Dynamic block, it contains the initial conditions of the second order

system (see Fig. A-5 and Tzb. A-5).

Block name: Engine Dynamic
Block type: ([Mask]

Subsystem:
sys=funftx.u,fiag,paraml,..)

Subsystem function name:

|eng_dyn
Function parameters:
|Exu
Fig. A-5 Engine Dynamic Mask
II Variable Description
EX0(1) | X1(0) Initial condition
EX0(2) | X2(0) Initial condition

Tab. A-5 Engine Dynamic Mask: Input Vector EX0

Depending on the actual value of the throttle position, a different time constant and a

different level of rate limiting is used.

A-6 Surface Models

In order to model the dynamics of the control surfaces, a set of second and fourth

order linear niodels are implemented in the Surface Models block. The initial conditions of
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each state space model are calculated in the initialization routine using the following

R --------—---equation: S e e
x(0) =—A"Bu(0) [A-9]

Where #(0) is the initial position of the surface. The state space model describing the
dynamics of the surfaces are listed below. With each model is also shown the rate and

position limits associated to the particular actuator.

Leading Edge A_LE = [-82.90 26.90;
0.00 -26.90);

B_LE = [ 0.00;

1.00]);
C_LE = { 82.90 0.00);

D_LE = [ 0.00];
Position Limit: +33 + -3 [deg]
Rate Limit: +15 + -15 [deg/sec]

Trailing Edge A_TE = 1.0e+03 * [-0.0497 -1.2250;
0.0010 0.0000];
B_TE = [ 1.00;
0.00];
C_TE = 1.0e+03 * [ 0.0000 1.2250]);
D.TE = { 0.00});

Position Limit: +45 + -8 [deg]
Rate Limit: +18 + -18 [deg/sec]

Aileron A_AI = 1.0e+03 * [-0.0885 -5.6250;
0.0010 0.0000];

B.AI = [ 1.00;

0.00}1;

C_AI = 1.0e+03 * [ 0.0000 5.6250];
D_AI = [ 0.00}1;

Position Limit: +45 + -25 [(deg]

Rate Limit: +100 + -100 {deg/sec]

Horiz. Tail A_LH = [-124.25 -11088.00 -3.58 1069.50;
1.00 0.00 0.00 0.00;
0.00 0.00 -29.85 -1325.00;
0.00 0.00 1.00 0.00);
B_LH = [ 0.1928; 0.0000; 1.0000; 0.0000];
C_LH = [ 0.0000; 11088.0; 0.0000; 0.0000]};
D_LH = [ 0.0000];

Position Limit: +10.5 + -24 [deg]
Rate Limit: 440 + -40 {deg/sec]

Rudder A_RU = 1.0e+03 * [ -0.099498 -5.19841;
0.001000 0.00000};
B_RU = [1.00;
0.00];
C_RU = 1.0e+03 * [ 0.00 5.19841);
D RU = { 0.00);

Position Limit: 430 + -30 [deg]
Rate Limit: +82 + -82 [deg/sec]

The positions of the control sutfaces are then used in the aerodynamic model to

calculate the contribution of each surface to the six dimensionless aerodynamic coefficients.
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Fig. A-6 shows the contents of the Surface Models block. It is possible to identify the
state space models associated to each surface, the rate limiters and the saturation limits. The
inputs to the block are the surface commands coming from the Flight Control System while

the outputs are the actual positions of the surfaces.

> x' = Ax+Bu
y = Cx+Du

LEFL actuator Rate Limiter Saturation
> x' = Ax+Bu
y = Cx+Du

LEFR actuator Rate Limitert Saturation1

> x' = Ax+Bu
y=Cx+Du
TEFL actuator Rate Limiter2 Saturation2

P x' = Ax+Bu
y = Cx+Du
TEFR actuator Rate Limiter3 Saturation3

> x' = Ax+Bu
y = Cx+Du
LA actuator Rate Limiter4 Saturation4

Mux

m"’ Demux | X' = Ax+Bu
in_1 y = Cx+Du

RA actuator Rate Limiters Saturations

out_1

x' = Ax+Bu
y = Cx+Du

LHTD actuator Rate Limiter8 Saturation6

|

T liieiiis

x' = Ax+Bu
y = Cx+Du Mux
RHTD actuator Rate Limiter7 Saturation?

Demux

'

> x' = Ax+Bu
y = Cx+Du
RUDL actuator Rate Limiter8 Saturation8

b x' = Ax+Bu
y = Cx+Du
RUDR actuator Rate Limiterd Saturation9

Fig. A-6 Surface Models Simulink Block Diagram

A-7 Additional Output Variables Calculation

- In addition to the state variables, a set of additional output variables are calculated at
each frame time. This task is performed in the Output block shown in Fig. A-1. No

additional parameters need to be passed to the mask of this block. The inputs to this
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function are the twelve states calculated in the equations of motion block, while the outputs
are the twelve states and the ten additional variables listed in Tab. A-6. The flight path state

variables are calculated from the body state variables as foliows:

pir(2) pi
—tan- sin(®) + (u® + w?)sin(@) cos(¥) — vwcos(@) cos(®9)
p=tan V(wsin(d) + ucos(@) cos(8)

y= sin“( usin(?¥) — vsin(@)cos(?¥) — weos(@) cos(z?))
- 14

In addition to those variables, Mach number, static and dynamic pressure, and two
geometric variables used in the acrodynamic model (B2V and C2V) are computed in the
output block (see Tab. A-6).

Y Variable Description
13 Vt Total true airspeed [ft/sec]
14 Mach Mach number
15 alp Angle of attack [rad]
16 bta Sideslip angle [rad]
17 qbar Dynamic pressure [slug/ft/s"2]
18 ps Static pressure [PSF]
19 B2V (Wing span)/(2*Vt)
20 Cc2v (Mean aerodynamic cord)/(2*Vt)
21 mu Fljﬂpath angle [rad]
22 gma Angle between flight path and horiz. Plane
[rad]

Tab. A-6 Output Function : additional output vatiables

To calculate the Mach number, the dynamic pressure, and the static pressure a
standard atmosphere model is calculated in the Output C-function. The atmosphere model is
the same as that implemented by NASA Dryden: a set of look up tables are used to calculate
the speed of sound, the ai density, the gravity, the ambient static pressure, and the ambient

air temperature as a function of the actual altitude.
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A-8 Input-Output Variables Summary

In the following tables are listed the input/output variables of each block that

comprise the nonlinear simulator.

Block N.1: Engine Dynamics (C-Function)

Input u[0]: PLAL Pilot left throttle input deg
u[1): PLAR Pilot right throttle input deg

Output y[0]: pcthlc[0] Left throttle position command %
yl1}: pethlcfi] Right throttle position command %

Block N.2: Variable Distribution (Simulink)

Input Vector 1 Output from “Engine Model” block 3

Input Vector 2 Output from “Output Variables” block 7
Input Vector 3 Output from “Engine Dynamic” block 1
Input Vector 4 Output from “Surface Models” block 8
Output Vector 1 Input vector to “Engine Model” block 3
Output Vector 2 Inpat vector to “Aerodynamic Model” block 4

Block N.3: Engine Model (C-Function)

Input u[0j: Mach Mach number -
u[1]: Altitude Altitude ft
u[2]: alpha Angle of attack deg
uf3]: TV_LOSS[0] Left eng, Thrust loss due to vane defl. | -
uf4]: TV_LOSS[1] Right eng. Thrust loss due to vane | -

defl.
uf5]: tvjany[0] Left engine jet turning angle (xy plane) | deg
u[6]: tvjany{i] Right engine jet tuming angle (xy | deg
plane)
uf7]: tvjanp(0] Left engine jet turning anple (xz plane) | deg
u(8]: tvjanp(1] Right engine jet turning angle (xz | deg
planc)
uf9): pethic{0] Left throttle position command %
a[10): pethicf1] Right throttle position command Y%

Output y[0): thx Thrust force in x-body axis [ib]
y[1]: thy Thrust force in y-body axis [ib]
yi2J: thz Thrust force in z-body axis [ib]
y[3]: thl Thrust moment around x-body axis [ft-1b}
y[4): thm Thrust moment around y-body axis [ft-1b}
y[5): thn Thrust moment around z-body axis [ft-1b]
y[6}: FG(1) Left engine gross thrust {Ibf]
y[7]: FG(2) Right engine gross thrust [ibf}
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Block N.4: Aerodynamic Model (C-Function)

Input u[0}: Not Used
u[1]: Not Used
uf2j: Not Used
uf3}): Not Used
ufd): Not Used
ufs]: Not Used
uf6): p Roll rate rad/s
u[7): q Pitch rate rad/s
uf8]: « Yaw Rate rad/s
uf9}: Not Used
u[10}: Not Used
u[t1]: Altitude Alditude ft
uf12]: Not Used
uf13]: mach Mach number -
u[14}: alp Angle of attack sad
u[15}: bta Sideslip angle rad
uf16]: gbar Dynamic pressure slug/ (ft*s%)
uf17]: Not Used
uf18]: B2V (Wing Span)/(2*Vt) -
u[19]: C2V (Mean Aerodynamic chord)/(2*Vt) -
uf20}: alpdot Angle of attack rate of change rad/s
u[21]: dlefl Left leading edge flap position deg
uf22): dlefr Right leading edge flap position deg
uf23): dtefl Left trailing edge flap position deg
uf24): dtefr Right trailing edge flap position deg
u[25]: dlad Left aileron position deg
uf26): drad Right aileron position deg
uf27): dlhtd Left stabilator position deg
u[28): drhtd _Right stabilator position deg
uf29}): drudl Left rudder position deg_
uf30]: druds Right rudder position dep
u[31]: FG(1) Left engine gross thrust LBF
u[32): FG(2) Right engine gross thrust LBF
u[33]: tvjany(0) Left engine jet turning angle (xy plane) | deg
a4 tviany(1) Right cngine jet turming angle (sy | deg

plane)
uf35): tvjanp(0) Left engine jet turning angle (xz planc) deg
u[36): tvjanp(1) Right engine jet turning angle (xz | deg
plane)

Output y[0]: CY Total side force coefficient -
y[1]: CL Total rolling moment coefficient -
y[2]: CN Total yawing moment coefficient -
y[3}: CLFT Total lift coefficient -
y[4): CM Total pitching moment cocfficient -
y[5}: CD Total drag force coefficient -
y[6]: FXAR Body x-axis force at aefo reference slug*ft/s?
y[7l: FYAR Body y-axis force at aero reference slug*ft/s?
y[8]: FZAR Body z-axis force at aero reference slug*ft/s?
y[9]: LAR Acro rolling moment in body x-axis slug*fi?/s?
y[10]: MAR Aero pitching moment in body x-axis slug*ft2/s?
y[11): NAR Aero yawing moment in body x-axis slug*fi?/s?
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Block N.5: Forces and Moments (Simulink)

Input Vector 1 uf0]: thx Thrust force in x-body axis {Ib]
u[l]: thy Thrust force in y-body axis [Ib]
uf2): thz Thrust force in z-body axis [1b)
u[3]: thi Thrust moment around x-body axis [ft-1b]
uf4]: thm Thrust moment around y-body axis [fe-1b)
uf5): thn Thrust moment around z-body axis [ft-1b]
Input Vector 2 yl6): FG(1) Left engine gross thrust [ibf]
y[7}: FG(2) Right engine gross thrust [Ibf]
u2f2]: FZAR Body z-axis force at aero reference slug*ft/s?
u2[3]: LAR Aero rolling moment in body x-axis slugft2/s?
u2[4]: MAR Aero pitching moment in body x-axis | slug*ft2/s?
u2[5): NAR Aero yawing moment in body x-axis slug*ft2/s?
Output y[0}): Fx Net applied force in the x body axis slug*fi/s?
yl1): Fy Net applied force in the y body axis slug*ft/s?
y[2}: Fz Net applied force in the z body axis slug*ft/s?
yB3l: L Rolling moment slug*ft2/s?
yl4: M Pitching moment slug*ft2/s2
y[51: N Yawing moment slug*ft2/s?

Block N.6: Equation of Motion: six-dof

Input u[0]: Fx Net applied force in the x body 2xis slug*ft/s?
uf1]: Fy Net applied force in the y body axis slug*ft/s?
uf2: Fz Net applied force in the z body axis slug*ft/s?
uf3l: L Rolling moment slug*ft2/s?
uf4]: M Pitching moment slug*ft2/s2
u[5]: N Yawing moment slug*ft2/s?

Output y[0}: U Velocity in x body axis ft/s
yli} v Velocity in y body axis ft/s
y[2): W Velocity in z body axis ft/s
y[3]: phi Euler roll angle rad
y[4): theta Euler pitcl: angle rad
y[5): psi Euler yaw angle rad
yi6}: p Roll rate rad/s
yi7)k: q Pitch rate rad/s
y[8]: ¢ Yaw rate rad/s
y[9): pos_nord Position Nord ft
y[10]: pos_east Position East ft
y[i1]; altitude Altitude ft
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Block N.7: Output Variables

Input u[0}: U Velodity in x body axis ft/s
ufl} v Velocity in y body axis ft/s
uf2]: W Velocity in z body axis ft/s
uf3]: phi Euler roll angle rad
uf4]: theta Euler pitch angle rad
u[5]: psi Euler yaw angle rad
ufé]: p Roll rate rad/s
uf7}: q Pitch rate rad/s
uf8): ¢ Yaw rate rad/s
u[9): pos_nord Position Nord ft
uf10]: pos_east Position East ft
u[11]: altitude Aldtude ft

Output y[0): U Velodity in x body axis ft/s
yli: v Velocity in y body axis ft/s
y[2): W Velocity in z body axis ft/s
y[3): phi Euler roll angle rad
y[4}: theta Euler pitch angle rad
y[5): psi Euler yaw angle rad
y[6): p Roll rate rad/s
y[M: g Pitch rate rad/s
y(8): ¢ Yaw rate rad/s
y{9}: pos_nord Position Nord ft
y[10): pos_cast Position East ft
y[11]: altitude Altitude f
y[12]: Vt Total true airspeed ft/s
y[13]: Mach Mach number -
y[14]: alp Angle of attack rad
y[15]): bta Sideslip angle rad
y[16): gbar Dynamic pressure slug/ (ft*s?)
y[17): ps Static pressure PSF
y[181: B2V (Wing Span)/(2*Vt) -
y[19): C2V (Mean Aerodynamic ch..ad)/(2*Vt) -
y[20}: mu Flight path angle rad
y[21): gamma Angle between mu and horizontal | rad

plane
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Block N.8: Surface Models (Simulink)

Input uf]: viefl Left leading edge command deg
uf]: viefr Right leading edge command deg

“1-uff: vtefl — 1 Left trailing edge command - deg

uf]: vtefr Right trailing edge command deg

uf]: vcasail Left aileron command deg

uf]: veasair Right aileron command deg

uf]: veashtl Left stabilator command deg

uf): vcashtr Right stabilator command deg

uf}: vecasrdl Left rudder command deg

uf]: vcasrdr Right rudder command deg

Output y[: dlefl Left leading edge position deg
yl): dlefr Right leading edge position deg

y(I: dtefl Left trailing edge position deg

yl: dtefr Right trailing edge position deg

yll: dlad Left aileron position deg

yil: drad Right aileron position deg

y[): dlhed Left stabilator position deg

y[}: deched Right stabilator position deg

y{]: drud! Left rudder position deg

y[l: drudr Right rudder position deg

A-9 SimSim Verification

The SimSim performances were verified using two different types of tests. First a
series of lateral and longitudinal maneuvers were performed and the time domain responses
were compared to those obtained using the actual NASA Dryden nonlinear flight simulator.
Then the response of SimSim to longitudinal and lateral experimental doublets at different
altitudes and Mach numbers were compared to the real flight data and to the NASA

simulator.

The simulator was run in open loop because in the test we wanted to verify the
fidelity of the model of the aircraft only, not of the closed loop system. The open loop plant

was driven with the surface commands recorded during the simulation at NASA Dryden.

222



A-9.1 Pitch Doublets
Several pitch doublets were petformed at different Mach numbers and altitudes. In all

cases there was an almost perfect match between SimSim and the NASA Dryden Flight
Simulator. A summary of the results of the test can be found in Ref. A-4.

A-9.2 Roll Doublets

Roll doublets were also petrformed in order to compare the lateral directional
response of the twvo simulators. Once again the responses are very similar, almost

indistinguishable. A summary of the results of the test can be found in Ref. A-4.

A-9.3 Longitudinal and lateral flight doublets
In order to compate the results of the SimSim simulator with real flight data, a series

of pitch and roll doublets at different Mach numbers and altitudes were performed on the
F/A-18 SRA. The F-18 SRA is instrumented to record all data necessary to run the open
loop SimSim simulator. All the commands to the aerodynamic surfaces and the engine power

levels are recorded during flight. These input data were used to run the open loop SimSim.

A description of these tests is give in Ref. A-4. There is a good correspondence
between flight data and SimSim data on the axis were the maneuver is performed.
Unfortunately there are some annoying discrepancies in the coupling between lateral and
longitudinal axes. When a pitch maneuver is performed, there are differences in the lateral
states between flight data and simulation data. The same thing happens when a pure roll
maneuver is performed. The tesponses of SimSim are identical to those of NASA simulator

but both are different from flight in terms of axis coupling.

A-10 Calculation of Linearized Models

It modern control theory it is often necessary to linearize a nonlinear model around
one or several operating points. Built into the Simulink toolbox is a function called
linmod(‘system’) that allows the linearization of nonlinear plants described as Simulink block

diagrams around a defined operating point. In this paragraph we are going to describe how
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easily one can calculate a linearized model of the aircraft using SimSim and the function
linmod. We will also show how the response of the linearized model compares to the response

of the nonlinear simulator in the case of a longitudinal pulse input.

The first thing is to define the inputs and outputs of the linear model and to eliminate
the states that we don’t want to take into account in the linearization. Considering that the
actuators’ states are already defined in terms of state space models there is no reason to
include the block Swurface Models in the linearization. The linearized model can easily be
augmented with the actuator states after the linearization is performed. Due to the fact that
most of the control system design is done with fixed throttle also the “engine dynamics” can

be omitted from the linear model.

The states and controls are then defined as follows:

x=[l¢ u w 9 R pr B o v ¥ N [A-11]

E=[5ud Ours Os O Ompa Our O 8]’5:] [A-12]

The subscript 4 used in the control variables stands for differential and identifies the
lateral/directional controls while the subscript s stands for symmetrical and identifies the
longitudinal controls. All the angles are expressed in degrees, the altitude in ft, and the
velocity in ft/sec. The linearized model is defined in the standard form:

(1) = Ax(1)+ Bu(r)

(1) = Cx() + Du(z) [A-13]

The Simulink block diagram used in the linearization is shown in Fig. A-7. There are
eight in-ports that correspond to the control inputs defined in equation A-12. The block
called States in Fig. A-7 selects the output variables so that the eleven states defined in

equation A-11 appear at the out-ports.
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Fig. A-7 Simulink block diagram used for the linearization

___ As an example we will calculate the linearized models at the flight conditions listed in
the following table and then we will show how the response of the linear model to a pulse in

the longitudinal axis compare with the response of the nonlinear simulator.

Point Mach Altitude [ft]
1 0.6 15000
2 0.7 20000
3 0.7 30000
4 0.8 35000

Tab. A-7 Flight points used for linearization
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The longitudinal states are the first five states in equation A-11 and the longitudinal
control are the last three variables in the control vector of equation A-12. In addition to the
longitudinal states is also necessary to feedback to the longitudinal control augmentation
system also the normal acceleration Nz. For this reason the normal acceleration output is
added in the outport 13 of Fig. A-7. So the output of the lineatized model is be composed of

the five longitudinal states plus the normal acceleration.

The longitudinal state space models calculated at the flight conditions listed above are

shown in the following tables.

Flight Point N.1 : Mach 0.6 Altitude 15,000 f

[~ -0.3375  0.0002 -0.0073 0  0.0000 : -0.1475 -0.0163 0.0159 |

-35.3995  -0.0089 0.0593 -31.8109 0.0000 : 0.0372 0.0225 -0.0278

629.2496 -0.0688 -0.8478 -1.9627 0.0010 : -1.6445 0.2585 -1.8847

1.0000 0 0 0 : 0 0 0

AB verenenee 0.0, 0:0562 50,9984 399.9606 . ........0. ... 0 Ol
= ~.0000 0 0 0 0 : 0 0 0

cD 0 1.0000 0 0 0 : 0 0 0
0 0 1.0000 0 0: 0 0 0

0 0 0 1.0000 0 : 0 0 0

0 0 0 0 1.0000 : 0 0 0

0.1291 0.0021 0.0264 0 0.0000 : 0.0512 -0.0080 0.0586

licht Point N.2 : Ma i 2

[ -0.3499  0.0002 -0.0075 0  0.0000 : -0.1690 -0.0213 0.0186 |

-35.3404 -0.0068  0.0538 -31.8410  0.0000 : 0.0592 0.0334 0.0029

720.8548 -0.0611 -0.8640 -1.7158 0.0010 : -1.8147 0.2734 -2.0911

1.0000 0 0 0 : 0 0 0

AB reveeeen0....0:0890 50,9988 . 388.1785 . ........0.5........0.........0. ... .0
col °© 1.0000 0 0 0 0 : 0 0 0
0 1.0000 0 0 0: 0 0 0

0 n 1.0000 0 0: 0 0 0

0 0 0  1.0000 0: 0 0 0

0 0 0 0 1.0000 : 0 0 0

0.1281 0.0019 0.0269 0  0.0000 : 0.0565 -0.0085 0.0651 |

licht Poin : Mach Altitude

[ -0.2327 0.0001 -0.0042 0 0.0000 : -0.1099 -0.0153 0.0124

-50.9995 -0.0009  0.0175 -31.7308 -0.0001 . 0.0137 0.0706 -0.0422

691.8357 -0.0643 -0.5822 -2.5646  0.0011 : -1.1918 0.1660 -1.3354

1.0000 0 0 0 : 0 0 0

A B veeeennn0....0:0735 50,9973 394.2306 ... 0.0 0. 000
col © 1.0000 0 0 0 0: 0 0 0
0 1.0000 0 0 0: 0 0 0

0 0 1.0000 0 0: 0 0 0

0 0 0 1.0000 0: 0 0 0

0 0 0 0 1.0000 : 0 0 0

0.0830 0.0020  0.0181 0 0.0000 : 0.0371 -0.0052 0.0415
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Flioht Point N.d ; Mach 0.8 Altitude 35.000 f

-0.2328 -0.0014 -0.0051 0  0.0000 : -0.1181 -0.0189 o.onﬂ

-52.2569 -0.0048  0.0400 -31.7603 -0.0001 : 0.0072 0.0778 -0.0477

774.0359 -0.0697 -0.5699 -2.3510  0.0012 : -1.2327  0.1605 -1.3776

1.0000 0 0 0 0 : 0 0 0

AB] _ fiiieeid 0,..0.0673,  ,-0.9977,.372.2033,.........0 L FE SN 0 iiiinnnadd R
col = 1.0000 0 0 0 0 0 0 0
0 1.0000 0 0 0. 0 0 0

0 0 1.0000 0 0 0 0 0

0 0 0 1.0000 0: 0 0 0

0 0 0 0 1.0000 : 0 0 0

| 0.0792 0.0022  0.0177 0 0.0000 : 0.0383 -0.0050 0.0429

Once the linearized model has been calculated we can simply create a new Simulink
block diagram where instead of the nonlinear simulator we have 2 linear state space model of
the longitudinal dynamics. Some attention must be put in connecting and feeding back the

correct variables, but at the end we obtain the block diagram of Fig. A-8.

i ——

>
Stick Input g
P! LonarruoinaL Surface F18 output ||
- ) —p .
CAS Models u s fab
o Longiudinal S Varisbles T
Cilock I ps(1) }-—’ U= [HT LETE]
| IS [ ) Y =[quwtha H Nz]
1)
[_a J'i-l [Capha &y [ Nz |&-

Fig. A-8 Longitudinal Linearized Closed Loop Simulink Block Diagram

In order to show how the linear model compates with the nonlinear model a pulse
stick input was simulated at each of the flight point. Fig. A-9 and Fig. A-10 show the time
domain responses obtained at flight point 1 and 4 of Tab. A-7. The solid line represent the
linear simulation while the dotted line the nonlinear sim. We can see how in general the
response of the linear sim follows the one of the nonlinear simulator. At low angle of attack

(high altitude and mach) it is almost impossible to distinguish between the two.

With this example we wanted to give only a qualitative idea of how the nonlinear sim

can be used for a variety of tasks. The main idea is to have a versatile flight simulator that can

227



be easily used in flight control law synthesis and analysis. One of the great advantage is the
possibility to break the loop in many different points, ask for the linear models of only
portion of the overall simulator, inject signal at different locations, test system identification
technique, test different control laws, and simulate a variety of maneuvers. We believe that
with this flight simulator we have combined the high fidelity of the NASA Dryden flight
simulator with all the different capabilities of a modern language as Matlab and Simulink

dedicated to control systems analysis and design.
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Appendix B
F/A-18 CAS Gain Scheduling

This appendix contains the gain scheduling of the F/A-18 CAS. The scheduling
functions resulting from the optimization are shown in their mathematical forms and
simulink block diagram implementations. Plots of the gain scheduling as function of static
and dynamic pressure are also furnished. These plots show: the original scheduling curve
(thick solid line), the new gain scheduling (thin solid lin€), the optimal gains resulting from a
single point design (circles).

The following gains are plotted:
- PK15 Pitch Stick Gain
- PK16 Normal Acceleration Proportional Gain
- PK18 Pitch Rate Proportional Gain
- RK5 Lateral Stick Gain
-RK6 Roll Rate Feedback Gain
- YK13 Lateral Acceleration gain
- YK17 Yaw Rate Feedback Gain

-YK19 Pedal Increment GAIN
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Fig. B-10 RK6: Roll rate feedback gain schedule
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Appendix C
F/A-18 Simulations: Pilots’ Comments and CHR

This appendix contains the pilots’ comments and Cooper Harper ratings of the
simulations performed on the NASA Dryden fixed base flight simulator. There are six tables,

one for each pilot.
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N. { Maneuver Aircraft CH | Comments

1 | Level Flight F/A-18 -- | The longitndinal axis looks OK, I have problems with the
lateral axis. I expect this to be an F/A-18.

2 | Level Flight F/A-18 HARV - | The longitudinal axis is not as good as before (1), The
lateral axis is still the same.

3 | Level Flight F/A-18 HARV New - | This is better than the last one (2). I feel that it is much
more controllable.

4 | Pitch Single Pulse F/A-18 - | Very nice, a little bit of overshoot but not as much as in
the previous one (5).

5 | Pitch Single Pulse F/A-18 HARV - | This is not very good. There is a large overshoot and a
tendency to lag behind. This is the HARV.

6 | Pitch Single Pulse F/A-18 HARV New - | This is OK, difficult to see any difference from the
previous one (4). It is almost better than before (4). This
is an F/A-18.

7 | Pitch Multiple Pulses | F/A-18 - | Good longitudinal control, I like this response. It is
probably an F/A-18.

8 | Pitch Multiple Pulses | F/A-18 HARV ~ | I don’t like this one. There is a high overshoot in the
longitudinal axis and it is difficult to stop the oscillations.
The most trouble to fly, it must be the HARV.

9 | Pitch Multiple Pulses | F/A-18 HARV New —~ | Same as the previous one (7). This is another F/A-18.
Good longitudinal control.

10 | Multiple Acquisitions | F/A-18 ~ | Longitudinal axis is OK. I have problem in controlling
the lateral axis. The maneuver is dominated by lateral
oscillations and so it is hard for me to say what is better.
Probably an F/A-18, but I'm not sure.

11 | Multiple Acquisitions | F/A-18 HARV — | The previous airceaft (10) was better. The task is too large
for me to say. May be this is the HARV, but I'm not sure.

12 | Multiple Acquisitions | F/A-18 HARV New ~ | Jongitudinal is OK. Same overshoot as the first aircraft

(10). Basically I like this. This is probably an F/A-18.

Tab. C-1 Pilot A: Cooper Harper rating and comments
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N. | Mancuver Aircraft CH | Comments

1 | Level Flight F/A-18 2 | Itis OK, I can fly it easily.

2 | Level Flight F/A-18 HARV 3 | This is a little bit harder.

3 | Level Flight F/A-18 HARV New 2 | Similar to the first I flew (1). It is OK.

4 | Pitch Single Pulse F/A-18 2 | This is very easy to fly.

5 | Pitch Single Pulse F/A-18 HARV 3 |1 have some difficulties in stopping the oscillations.
Oscillations last longer.

6 | Pitch Single Pulse F/A-18 HARV New 2 | This looks like the first one (4). Longitudinally is OK,
better than before (5).

7 | Pitch Multiple Pulses | F/A-18 3 | Itis fine. The task requires a lot of workload.

8 | Pitch Multiple Pulses | F/A-18 HARV Even more workload than before. Probably this is the
HARV.

9 | Pitch Multiple Pulses | F/A-18 HARV New 3 | It looks normal, may be a little bit harder, in general is
similar to (7). This is an F/A-18.

10 | Multiple Acquisitions | F/A-18 3 | It looks easier again. This is very similar to the first one
(12).

11 | Multiple Acquisitions | F/A-18 HARV 4 | A little harder than before. The lateral has problems and
there is an annoying delay in the pitch channel. The
coupling between pitch and roll is bad.

12 | Multiple Acquisitions | F/A-18 HARV New 3 | It looks OK. This is probably a standard F/A-18. The
task is difficult.

13 | Refueling Task F/A-18 7 | This is very hard to fly. The throttle is not realistic, it is
too sensitive. A little increasc takes you under the tankes.
Real refueling is not as difficult.

14 | Refueling Task F/A-18 HARV 6 | Still very hard. High workload but the task is feasible in
rough parameters.

15 | Refueling Task F/A-18 HARV New 5 | Better than before (14) but still very hard to stay on the
basket.

16 | Gross Task F/A-18 2 | The task is quite simple. The aircraft is easy to fly. This
can be an F/A-18.

17 | Gross Task F/A-18 HARV 3 | I can perform the task also with this airplane even if it is
more sluggish. There is a delay in the longitudinal
response.

18 | Gross Task F/A-18 HARV New 2 | This is like the first one (16). It is OK.

Tab. C-2 Pilot B: Cooper Harper rating and comments
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Maneuver

Aircraft

CH

Comments

Level Flight

F/A-18

Good response. The aircraft is active and fast to respond
to pilot inputs. I think this is an F/A-18.

Level Flight

F/A-18 HARV

This is definitely more sluggish than before (1). There is a
PIO tendency in the pitch channel. The response is
slower than before. Probably this is the HARV.

Level Flight

F/A-18 HARV New

This is the most active. The response is fast, I like this.
This can be an F/A-18.

Pitch Single Pulse

F/A-18

Only 2 mild compensation is necessary. In general is
good. This is an F/A-18.

Pitch Single Pulse

F/A-18 HARV

4/5

The aircraft is much more sluggish in the longitudinal
channel. I feel that I fall behind and then there is a
tendency to overshoot. 1 think this is the HARV.

Pitch Single Pulse

F/A-18 HARV New

The response is very similar to the first one (4).

Pitck Multiple Pulses

F/A-18

This is also OK. It is very similar to the one before (9). I
think this is an F/A-18.

Pitch Multiple Pulses

F/A-18 HARV

Not very different, may be a little more difficul with
higher pilot workload.

Pitch Multiple Pulses

F/A-18 HARV New

This is a normal F/A-18. I like the response, I have
nothing to say.

10

Multiple Acquisitions

F/A-18

A little tendency to overshoot. Minor but annoying
deficiency. This can be an F/A-18.

1

Multiple Acquisitions

F/A-18 HARV

Similar to the one before (10). Now the I was closer to
the target, this can confuse my judgment.

12

Multiple Acquisitions

F/A-18 HARV New

Same comments as before.

13

Refueling Task

F/A-18

5/6

I have serious problems with the throttle. Throttle is too
sensitive, in reality it is not like this. The pitch response is
OK but I have problems in the lateral axis. This is more
sensitive than before (15).

14

Refueling Task

F/A-18 HARV

5/6

It looks better than befote (13). It looks more
controllable, may be I'm learming. The lateral response
has problems.

15

Refueling Task

F/A-18 HARV New

This is very simple. The damping is very good. I was able
to keep the relative distance within acceptable limits. This
one is noticeably easier than (13) and (14). Less tendency
to get in the lateral axis.

16

Gross Task

F/A-18

Same precision as the first case(18). May be there is more
lateral activity. Increased lateral activity.

17

Gross Task

F/A-18 HARV

This is definitely the HARV. Heavier stick forces Once
the target is acquired it is OK. I still have good precision.

18

Gross Task

F/A-18 HARV New

Minimal pilot compensation. There is no tendency to
PIO. I can control the flight path marker smoothly and
position it precisely.

Tab. C-3 Pilot C: Cooper Harper rating and comments
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N. | Maneuver Aircraft CH | Comments

1 | Level Flight F/A-18 1/2 | The response is OK. The task is not well defined, it is
difficult for me to give a CH rating on this task.

2 | Level Flight F/A-18 HARV 2/3 | I feel that the aircraft is heavier. Same comment as before
about the CH rating.

3 | Level Flight F/A-18 HARV New 1/2 | This is as good as the standard F/A-18.

4 | Pitch Single Pulse F/A-18 6 | I can stay 80% of the time within the two landing gears of
the target aircraft. The response is good. The task is not
well defined.

5 | Pitch Single Pulse F/A-18 HARV 8 | I can feel a slower frequency response in pitch. It is
harder than before.

6 | Pitch Single Pulse F/A-18 HARV New 6 | I can stay most of the time within the two landing gears
of the target aircraft. This is very similar to the standard
F/A-18.

7 | Pitch Multiple Pulses | F/A-18 5 | Itis hard to say. The task is very long and it is not clear

what is my objective.

8 | Pitch Multiple Pulses | F/A-18 HARV 4 | In this case I was further away from the target aircraft,
this make the task much ecasier.

9 | Pitch Multiple Pulses | F/A-18 HARV New 3 | I prefer this one, it is better than the other two, may be
I'm learning,

10 | Multiple Acquisitions | F/A-18

11 | Multiple Acquisitions | F/A-18 HARV

12 | Multiple Acquisitions | F/A-18 HARV New

13 | Refueling Task F/A-18

14 | Refueling Task F/A-18 HARV

15 | Refueling Task F/A-18 HARV New

16 | Gross Task F/A-18

17 | Gross Task F/A-18 HARV

18 | Gross Task F/A-18 HARV New

Tab, C-4 Pilot D: Cooper Harper rating and comments
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N. | Maneuver Aircraft CH | Comments

1 | Level Flight F/A-18 -- | None

2 | Level Flight F/A-18 HARV -- | None

3 | Level Flight F/A-18 HARV New -~ | None

4 | Pitch Single Pulse F/A-18 2/3 | Not bad. The aircraft is responsive.

5 | Pitch Single Pulse F/A-18 HARV 4/5 | Mote difficult than before. Tendency to oscillate.
Difficult to stop.

6 | Pitch Single Pulse F/A-18 HARV New | 2/3 | This is very similar to the first one (4). This is a standard
F/A-18.

7 | Pitch Multiple Pulses | F/A-18 3 | Tendency to fall behind. I was able to maintain the same
distance during the maneuver (tape).

8 | Pitch Multiple Pulses | F/A-18 HARV 3 | I feel that this is more controllable than before (tape).

9 | Pitch Multiple Pulses | F/A-18 HARV New | 5/6 | I was closer to the target than before and thus the task
was more difficult. It was hard for me to do the task.

10 | Multiple Acquisitions | F/A-18 Better response than before (12).

11 | Multiple Acquisitions | F/A-18 HARV This is much harder to fly. The coupling between lateral
and longitudinal is bad.

12 | Multiple Acquisitions | F/A-18 HARVNew [ 3/4 | The roll coupling is dominant in this task. The
longitudinal response is not bad.

13 | Refueling Task F/A-18 3 | It is hard to control pitch and roll. I can stay on the
basket most of the time.

14 | Refueling Task F/A-18 HARV 3 | I don't see much of a difference between this and the
previous one (13). The task is feasible.

15 | Refueling Task F/A-18 HARV New 3 | The pitch response is good. This is better than the other
two. But in general I was able to perform the task with all
the configurations.

16 | Gross Task F/A-18 3 | I'm able to acquire the target and siay stable on it (tape).

17 | Gross Task F/A-18 HARV 4/5 | Tendency to fall behind. A little more difficult but still
feasible (tape).

18 | Gross Task F/A-18 HARV New 3 | Good response. Easy to stay on target. I like this (1ape).

Tab. C-5 Pilot E: Cooper Harper rating and commments
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N. | Mancuver Aircraft CH | Comments

1 | Level Flight F/A-18 -- | Response is OK.

2 | Level Flight F/A-18 HARV -- | It does not seem a lot different from before (1). It is hard
to say.

3 | Level Flight F/A-18 HARV New - | Same overshoot as in the first simulation (1).

4 | Pitch Single Pulse F/A-18 3/4 | This was smoother than before (6). Less bubble. The task
is a little hard. It iz satisfactory.

5 | Pitch Single Pulse F/A-18 HARV 2/3 | This is good. May be I'm getting used to the task.

6 | Pitch Single Pulse F/A-18 HARVNew | 5/6 | There was more overshoot. It is not as good as number
(4). For me it is not obvious from this task to see any
difference between the three configurations.

7 | Pitch Multiple Pulses | F/A-18 — | The lateral axis is the most difficult to control. Pitch is
smooth and very well behaved. Easy to control in pitch.

8 | Pitch Multiple Pulses | F/A-18 HARV - | I cannot see any change in the pitch channel respect
before (7). It is hard to say. The lateral axis is bad.

9 | Pitch Multiple Pulses | F/A-18 HARV New - | No major difference. May be this one has a little bit more
bubbling. May be here the gains are higher.

10 | Multiple Acquisitions | F/A-18 - | It is hard to distinguish between the three. The response
in this case is smooth, in general I like it.

11 | Multiple Acquisitions | F/A-18 HARV — | More stick activity. But for me the overall error is the
same as before.

12 | Multiple Acquisitions | F/A-18 HARV New — | I cannot say, the response is good.

13 | Refueling Task F/A-18 -- | This is a good task. Godd pitch response.

14 | Refueling Task F/A-18 HARV - | The aircraft is heavier. Sluggish response in pitch.

15 | Refueling Task F/A-18 HARV New -- | Same response as (13).

16 | Gross Task F/A-18 3 | This is a very good task. It is hard to see the difference
from (15). This task is representative of the level of
concentration that you need during refueling.

17 | Gross Task F/A-18 HARV 4 | Low frequency PIO in pitch. This has a slower response
in pitch. Tendency to low frequency over control in
pitch. The pitch channel is definitely sluggish, I'm lagging
behind. Among the three I can easily pick up the low
frequency aircrfat, the HARV, With the HARV small
inputs has apparently no response, for this reason the
pilot tends to use larger inputs and starts PIOing. In the
other tasks, pitch pulses, it was not obvious to see the
difference, now I can.

18 | Gross Task F/A-18 HARV New 3 | The lateral axis is hard. It is a demanding task that well
represent the refueling. The task is dominated by the for
and aft movement. No high frequency bubble. I like this.

Tab. C-6 Pilot F: Cooper Harper rating and comments
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