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ABSTRACT

Three ways in which secondary flow can be generated in a straight

compressor cascade have been investigated.

1. Wakeflow. The inlet flow is characterized by a constant

inlet angle and a varying stagnation pressure over the span.

2. Skewed flow. The inlet flow is characterized by a constant

stagnation pressure and a varying inlet angle over the span.

3. Skewed wakeflow. The inlet flow is characterized by a varia-

tion of both stagnation pressure and inlet angle over the span.

For a certain ccMbination of inlet angle and stagnation pressure

distribution (presented in a formula) in the skewed wakeflow case no second-

ary flow is generated behind the cascade.

The kinetic energy of the secondary flow was found to be very

small in all three cases.

The secondary flow itself did not create any losses but the

blades stalled in the skewed flow layer and in the skewed wakeflow layer

causing great losses.

The stream pressure and the tangential blade force were lower

in the disturbed flow region.

A small perturbation theory (for a non-viscous, incompressible

fluid) had been developed to describe analytically the secondary flow.



Formulae readily adaptable for numerical calculations of flow deviation

angles, kinetic energy of the secondary flow, and tangential blade force

are presented.

Good and satisfactory correlation of theory and experiment was

found.

Applied to compressor design the results imply: The secondary

flow is very small and may occur as an overturning or an underturning of

the flow at the casings depending on the actual design.

The kinetic energy of the secondary flow may be neglected when

considering the losses.

The ends of the blades stall in the skewed boundary layer at

the casings causing losses. This could be reduced by twisting the blade

ends to account for the increased incidence angle.

The stream pressure varies in spanwise direction through the

boundary layer on the casings.
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SECONDARY FLOW AND LOSSES IN A COMPRESSOR CASCADE

1. INTRODUCTION

In order to obtain design criteria for a compressor the flow

phenomena in it have to be understood. The bulk flow outside the boundary

layers (on the inner and outer casing) seems to be closely predicted by

using data from two-dimensional cascade tests for turning angles and losses,

and assuming axial symmetry when applying the radial equilibrium equation.

The flows in the boundary layers on the casings are, however, extremely com-

plicated and the knowledge of these flows and the magnitude and the mech-

anism of the losses created there is very limited. Due to these boundary

layer flows and to the fact that there is a finite number of blades in each

blade row secondary flows are created. The secondary flow is here defined

as the difference between the actual flow and the axi-symmetric flow.

The losses in an actual compressor cascade have conveniently but

arbitrarily been divided into two-dimensional profile loss, wall skin fric-

tion loss, and secondary loss (1). Secondary loss is then defined as the

difference between the actual loss in a compressor cascade and the two-dimen-

sional profile loss plus the wall skin friction loss. The secondary flow

has been made responsible for this loss which includes effects such as in-

teraction between moving blade rows and blade end clearance flows. A more
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adequate name for these losses- would be complementary losses and the name

secondary loss would then be reserved for the loss connected with the sec-

ondary flow only.

There has been a great interest in secondary flow in cascades in

the past years as indicated by the numerous investigations dealing with this

subject. Measurements (2 + 9) and visual studies (10 + 15) of secondary

flow in channels and cascade passages have been performed and attempts have

been made to describe analytically (16 + 36) the secondary flow. These ana-

lytical studies have succeeded in describing the general nature of the sec-

ondary flow but have not been successful in showing the mechanism or the

nature of the large losses attributed to secondary flow encountered in a

real compressor.

An inlet flow to the channel or cascade with constant angle of at-

tack and varying stagnation pressure are assumptions common to all these

studies. In a real compressor, however, the boundary layers on casings are

skewed i.e. both the inlet angle and the stagnation pressure vary. The var-

iations depend on the actual design from which principally two cases occur

as can be seen in Figure 1, where the flow entering the hub of a rotor blade

row is shown. In Figure la the stator blade row preceding the rotor is

equipped with a shroud. The tangential component of the flow entering the

rotor at hub has a finite value. The relative velocity in the boundary layer

entering the rotor blade row is thus of almost constant magnitude but of

varying direction tending to stall the blades at the hub.

In Figure lb the stator blades preceding the rotor have no shrouds

and the rotor extends under the tips of the stator blades. Due to viscosity
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the flow adheres to the rotor which, in this case, is the inner casing, and

the axial component of the flow entering the rotor is zero at the hub. The

magnitude of the relative velocity in the boundary layer entering the rotor

blade row increases from zero at the hub up to the free stream velocity out-

side the boundary layer and at the same time the direction of the flow

changes from tangential at the hub to the free stream flow angle. Also in

this case the flow tends to stall the rotor blades in the boundary layer.

In Figure 1 it was assumed that the flow outlet angle from the stator row

was constant in the boundary layer. In reality the flow is also skewed

there, however, the general picture of the flow entering the rotor blade

rows is similar.

Richardson and Moore (9) experimentally investigated a skewed

boundary layer on the end wall between two adjacent blades in a straight

stationary compressor cascade. The results were presented as the values of

the different terms in the momentum integral equations for a turbulent layer.

Only a qualitative description of the flow was given due to the difficulties in

solving the pertinent equations for the boundary layer flow.

If these phenomena are to be satisfactorily understood it seems es-

sential to start with simpler cases and then to use the knowledge gained to

aid in the attack on the more complex but more realistic problems encountered

in a real compressor. The intention of the present investigation was then

to study the secondary flow and resulting losses for an incompressible non-

viscous flow in a straight compressor cascade for three different cases

simulating the skewed flow in the boundary layers at the casings of a com-

pressor. The three cases are as follows:

1) wake flow



The three case

2) skewed flow

5) skewed wake flow, which is superposition of the

two foregoing cases.

s are illustrated below:

U, U,

(1 ) M2) G)
In the above cases, when the mechanism of the secondary flow for a non-

viscous flow is understood a better basis for solving the viscous flow

problem is established. The case of a wake flow has been studied in many

other investigations and the reason for studying it here is only because

it was to be used as a basis for the investigation of the skewed wake flow.

The accepted idea in studying the boundary layer flow on the cas-

ings of a compressor has been to assume that the static pressure is im-

posed by the main bulk flow and does not vary in spanwise direction through

the boundary layer. This, plus the fact that the boundary layer is en-

ergized by the relative motion of the blade rows leads then to the assump-

tion that the flow in general (design point) does not separate at the cas-

ings. The validity of these assumptions is examined herein in the case of

a non-viscous flow.

The requirement of the skewed flow was ther efore that it should

14.
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have a flow direction approximately 200 toward the positive stall from the

mainstream direction which means that it is well beyond two-dimensional

positive stall incidence angle for the cascade configuration that was chosen.

The increase in incidence angle is somewhat less than what can be expected

in a real compressor. To get a realistic figure of the ratio of the skewed

layer and the blade height a skewed layer of about 2 inches was chosen. The

flow should of course be uniform in tangential direction, simulating axial

symmetry in a compressor.

2 EXPERIMENTAL EQUIPMENT, INSTRUMENTATION, AND MEASURING TECHNIQUE

To perform the desired experimental work an apparatus was built

along much the same line as a conventional two-dimensional cascade testing

tunnel. The primary departure from work done in the past arose in de-

veloping the desired inlet flows.

2.1 Wind Tunnel

Testing was carried out in the Gas Turbine Laboratory low speed

cascade wind tunnel which is an open-return tunnel of wooden construction

and has a test section of 22 x 16 inches. A description of this tunnel is

given in reference (40). Adjustable air bleeds on the plenum chamber made

it possible to keep the approach air velocity to the cascade constant (ap-

proximately 123 ft/sec) during the tests.

Figure 2 is a diagrammatic sketch of the tunnel. The suction

slot at the plenum chamber outlet nozzle removed irregular velocity
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distributions formed in the plenum chamber. The suction slots immediately

ahead of the cascade were provided for removal of the boundary layers

formed on the upper and lower walls. A suction slot on one of the side walls

of the tunnel immediately ahead of the cascade had to be installed in order

to prevent the corresponding end blade of the cascade from stalling.

2.2 Wake Flow Generator

In order to produce a velocity profile with constant inlet angle

and with varying stagnation pressure over a part of the span a splitter-

board was inserted upstream of the cascade at midspan. The splitterboard

was made of an 1/8 inch thick aluminum sheet with a length of 15 inches in

streamwise direction and reaching across the tunnel in tangential direction.

It was placed with its trailing edge about 13 inches ahead of the cascade.

In order to get a thick turbulent wake very coarse sandpaper was glued to

the two sides of the splitterboard.

2.3 Skewed Velocity Profile Generator

The problem of designing a device that would generate a desired

skewed velocity profile was made the subject of an S.M. thesis and was ex-

cellently solved by John W. Mc Donald. The different methods of creating

the desired flow is examined and a detailed description of the device is

given in reference (41). Figures 3 and 4 are diagrammatic sketches and

Figures 5 and 6 are photographs of the device.

To provide the skewed velocity profile a duct was inserted at

midspan upstream of the cascade-in the tunnel. The duct was 2 inches



high, extended 17 inches in main-stream direction and was supplied with air

by a centrifugal blower rated at 3600 cubic feet per minute at 1.25 psi

gauge static pressure. A settling chamber 28.5 inches square by 43.5 inches

long, internal dimensions, was placed in the system. The flow was straightened

and smoothed by a set of flow straighteners (1 inch diameter x 1/16 inches

wall, paper tubes 6 inches long) and a screen (standard 14 x 18 mesh). The

flow from the settling chamber was accelerated through a nozzle directly in-

to the ducting crossing the wind tunnel. The outlet of the ducting where

the ducted flow met the mainflow was covered with a screen 14 x 18 mesh

that turned the air to the proper angle and smoothed out the flow. Control

of the skewed flow was provided by a throttling valve at blower exit. The

flow was monitored by a wall pressure tap in the ducting connected to an

inclined "Meriam" oil manometer. The system gave a skewed flow with most

of the desired features. However, it was not possible to get a constant stag-

nation pressure in spanwise direction because the boundary layer built up

on the top and bottom walls of the ducting thus giving rise to two wakes,

one above and one below the skewed layer. The deficiencies appear to be a

characteristic of the skewed flow that may be diminished but not entirely

eliminated. As the flow moves downstream of the duct these wakes smooth out

-but the thickness of the skewed layer increases and the angle variation re-

duces at the same time. For this reason the distance between the duct and

the leading edge of the cascade was made 10 inches.

7.



2.4 Cascade

A typical compressor cascade configuration was chosen. The

characteristics of the cascade are given in the following table:

Blade profile NACA 6409 with 1% trailing edge thickness

Number of blades 8

Length of blades 16 inches

Chord 4.5 inches

Gap 4.445 inches

Gap-chord ratio 0.988

Aspect ratio 3.556

Stagger angle 60*

Inlet angle 450

Outlet angle 65*

Turning angle e 20*

Reynolds number 2.8 x l05

All angles are measured to the tangential direction of the cascade. A

sketch of the cascade configuration is shown in Figure 7. The chosen

inlet angle of 45* gives a minimum loss for tbi s cascade conf iguration (equal

to i* according to Howell's (1) definition). A compromise between minim-

izing end effects and operating at an adequately high Reynolds number to

insure turbulent boundary layer on the blades surfaces gave the 4.5 inch

chord length.

The cascade discharged into the test cell and the flow was un-

restricted downstream of the cascade.

8.



2.5 Instrumentation

The purpose of the tests was to map the flow upstream and down-

stream of the cascade inorder to get information about the nature of the

secondary flow and losses, and to get experimental data against which

analytical solutions could be compared.

2.5.1 Reference Pressure

A pitot static tube was used as a reference probe and was located

in the mainstream 1 9/16 inches ahead of the cascade and four inches from

midspan. All measurements were taken at a constant dynamic pressure (= 3.27

inches of water).

2.5.2 Upstream Measurements

2.5.2.1 Location of Measurements

Since both the skewed flow and the wake flow are subject to dif-

fusion processes tending to change the velocity profiles as the flow moves

downstream it is desirable to measure the flow as close to the leading

edge of the cascade as possible to get the proper inlet conditions. On the

other hand each blade in the cascade is surrounded by a static pressure

field that extends upstream of- the cascade and measurements too close to the

leading edge would then show non-uniformities in tangential direction tend-

ing to mask the true inlet conditions. As a compromise the measurements

were taken in a plane parallel to the cascade and located 1 5/8 inches in

axial direction (2.25 inches in mainstream direction) ahead of the cascade.

The flow was investigated over an area 8 inches in spanwise direction by

8.89 inches in tangential direction covering the central portion of the

flow through the cascade.

9.
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2.5.2.2 Probes and Traversing Rigs

Stagnation pressures and inlet angles were measured simultaneously

with a three-hole cobra probe shown in Figure 8. The tubes were .035" OD

and .023" ID cut off at the tip to an angle of 60.

In the skewed flow cases the stream pressure was measured with a

stream pressure probe made up of a tube 0.095" OD and shown in Figure 8.

The probe was set according to the angles found with the three-hole probe.

The traversing mechanism was made up of a probe holder of Pratt and Witney

design fastened to a slide that could be traversed along the cascade by a

lead screw connected to a crank. The slide could be positioned with an

accuracy of I0.02 inches. The probe holder was operated by remote control

and could traverse the probe in spanwise direction by increments of 0.002".

Angles were measured to one tenth of a degree.

2.5.3 Downstream Measurements

2.5.3.1 Location of Measurements

It is difficult to make accurate measurements in the strong wakes

which exist imndiately after the blades. For this reason, the flow con-

ditions behind a cascade are usually measured about half a chord downstream

where the wakes frcm the blades have been reduced due to viscous action.

However, the same viscous action tends also to reduce the secondar'y flow.

To record the whole secondary flow created measurements should be made as

close -as possible to the trailing edge of the cascade. Measurements have

therefore been taken at two positions behind the cascade: namely at 2.25

inches behind the cascade and at 0.1 inches behind the cascade. The data

measured further downstream are considered more accurate than those measured
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closer to the cascade. With this arrangement it is also possible to measure

the decay of the secondary flow downstream. The areas traversed were 8

inches in spanwise direction x 8.89 in tangential direction (two blad spac-

ings) covering the central portion of flow through the cascade. One cross

section was covered by a mesh of about 400 measuring points.

2.5.3.2 Probes and Traversing Rigs

Traverses downstream were made with the three-dimensional travers-

ing mechanism described in reference (42). This rig, used with a five-hole

probe, allowed nulling for flow directions in horizontal and vertical planes

and measurements of stagnation pressure, simultaneously. The positioning

of the probe is accurate to 0.01 inches and the angles are measured to one

tenth of a degree. Figure 9 shows the traversing rig. The five-hole probe

Figure 8 vas of 0.080 inches outside diameter with tubes of 0.016 inches

inside diameter. The angle measuring tubes were arranged in pairs with op-

posite tubes spaced 0.056 inches center-to-center. This spacing introduced

errors in measuring angles in steep pressure gradients. The stream pres-

sure was measured with a stream pressure probe made up of a tube of 0.058

inches OD and shown in Figure 8. The probe was set according to the angles

measured with the five-hole probe.

2.5.4 Blade Taps

To measure pressure distributions on the blade surfaces, static

pressure taps were provided on two blades. Taps of 0.016 inches diameter

were drilled in rows normal to the blade span into 0.049 inches diameter

tubings recessed into the blade surfaces. Pressures on both surfaces were

measured in the same passage by tapping the pressure surface on one blade

and the suction surface on the adjacent blade. There were 8 rows of holes



at different spanwise positions and each row had 17 holes on the pressure

side and 26 holes on the suction side. The greater number of holes on the

suction side was provided to facilitate detection of separation. The pres-

sure ta-p rows were located in the lower part of the blades and at the fol-

lowing positions measured in inches from midspan -- 1/8, 2/8. 3/8, 5/8, 7/8,

1 1/8, 2 1/8 and 4 1/8.

The tubings recessed into the blades made the surfaces uneven

and increased the profile losses on the blade with the pressure taps on the

suction surface, and also made it more prone to stall.

2.5.5 Pressure Indicators

All pressure data were taken with differential pressure trans-

ducers (maxufactured by Statham Laboratories, Los Angeles, California).

Stagnation pressures were measured against stagnation pressure of

the reference probe.

Stream pressures were measured against the reference stream pres-

sure in measurements upstream, and against atmospheric pressure in measure-

ments downstream of the cascade.

Flow directions were measured by adjusting the probe until the

transducers were balanced.

An original calibration of the system was performed using an

NACA manometer (43).

Transducer systems of two different ranges and sensitivities were

used.

A transducer with a range of about 5.5 inches of water was used

to adjust the inlet mainstream dynamic head (= 3.27 inches of water) and

I P.
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was also used to measure stagnation pressure differences greater than 1.2

inches of water.

Accuracy of this system was estimated at 0.01 inches of water which

is better than 1% of the measured pressures.

Pressure differences less than 1.2 inches of water were measured

with a transducer with a range of about 1.4 inches of water and which had

two regions of sensitivity. Pressure differences up to 0.5 inches of water

were measured on thehigh sensitivity scale providing an accuracy of t0.002

inches of water and pressure differences between 0.5 and 1.2 inches of water

were measured on the low sensitivity scale providing an accuracy of tO.005

inches of water which is better than 1% of the measured pressures.

The transducer system used for measuring angles readily detects

angle variations of 0.10.

In the tests the measured angles were reproducible within 0.2 of

a degree except in regions close to separation.

2.6 Streamline Traces in Carbon Black

The processes taking place in the boundary layers are largely re-

sponsible for the losses occuring either because of the friction itself or

less directly as a result of separation and vortex formation. To get a

qualitative picture of the flow pattern on the blade surfaces and thus of

the causes of the losses the streamlines on the blade surfaces were traced

in carbon black. It must be emphasized that the information gained from

this is only of a qualitative nature when the pictures are interpreted.

The absolute velocity of the flow, for instance, plays less part in the pro-

duction of the pattern than the velocity gradient near the wall, so that the



character of the picture also depends to a large extent on Reynolds number.

Since the blades are placed vertically, the force of gravity also tends to

influence the pattern. Consequently, these flow patterns cannot be inter-

preted by rigid rules but can only be satisfactorily judged against the

background of qualitative knowledge of the processes taking place in the

boundary layers.

A suspension of finely-graded carbon black in kerosene painted

on the blade surfaces with a brush was used for this investigation.

3 TWO-DIMENSIONAL CASCADE TESTS

Two-dimensional cascade tests were performed to get basic data

for the cascade configuration against which the three-dimensional flow data

in the later tests could be compared.

3.1 Upstream Conditions

Inlet angles and stagnation pressure were measured over the test

area upstream of the cascade. The flow was steady and fqirly uniform. The

inlet angle varied between 43* and 46.5* and the stagnation pressure varied

less than 0.4/l.

3.2 Downstream Conditions

The area integrated mean values of the measured data over the test

areas are given on the next page.

14.
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AXIAL POSITIAIS

0.1"2.25"t

+0.2 +0.3

Transverse flow anfle 64.7 0 -0.7 64.4* -0.7

+0.1 +0.3

Spanwise flow deviation angle 0.1* -0.1 0.1* -0.2

+0.05 +0.09

Stagnation pressure defect = C 1.84% -0.g0 1.57% -0.09

Horizontal traverses were made at different spanwise positions and the

average values over two blade spacings were calculated for each traverse.

These average values were then averaged over the span. The values in the

columns to the right of the mean values in the table above are the greatest

differences found between the average value over the area and the average

values of each traverse. These differences are small indicating that the

flow in the cascade is truly two-dimensional and that the accuracy of the

measurements is good. Comparison of the values at the two test planes

shows good agreement between the angle measurements but indicate greater

losses closer to the cascade than further downstream. This apparent viola-

tion of the second law of thermodynamics is the result of averaging losses

over the area instead of averaging over the mass transported through the

area which is the correct but more cumbersome way of calculating losses.

The losses were therefore also mass averaged and showed then the same value,

1.31, for the two traversed positions showing a good accuracy between the

two measurements.
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3.3 Pressure Distributions Around the Blade

Stream pressure on the blade surfaces was measured at 4 different

spanwise positions. The positions were located at 1/8", 1 1/8", 2 1/8" and

4 1/8" from midspan.

The results of the measurements axe presented as plots of the tan-

gential component of the pressure distribution on the blade surfaces and as

the tangential pressure coefficient CT. Figure 10 shows the pressure distribu-

tion for the measurements at 1/8" from midspan. It is to be noted that pres-

sures on the suction surface are measured on one blade and the pressures on

the pressure surface on the adjacent blade. In this investigation however

it has been assumed that the flow is uniform in tangential direction and so

the pressure distributions have been plotted on the same graph to represent

the pressure distribution around one blade. The area between the two curves

has been integrated to yield the tangential pressure coefficient CT

C EJ ]pessure [e fP 2di ucvon de

Nomenclature is given in Figure 10.

Measurements gave CT = 0.508 10.008.

The tangential component of the pressure force on the blade surfaces

causes the flow to turn and is therefore a measure of the turning flow. As-

suming that the axial velocity is the same upstream and downstream of the

cascade, CT can be related to the flow angles through the following formula;

CT= 2 _ * . "Cto( CK C.t4)



The outlet angle calculated by this formula with the measured value of CT

was = 63.8* which agrees airly well with the value of direct angle

measurements.

The static pressure rise through the cascade was also measured

and is presented as the pressure coefficient Cp

S-P

Measured value C = 0.36.

Combining the energy equation with the continuity equation and

assuming no change in axial flow velocity gives

This formula relates also the outlet angle to the static pressure measure-

ments and gives, using the measured value of CP

a2 = 62.1*

which gives a fair agreement with the values found by measuring the pres-

sure distribution on the blades and by direct angle measurements.

l'[.
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4 WAKE FLOW

4.1 Results of Measurements

4.1.1 Upstream Conditions

Figure 11 shows a vertical traverse of the stagnation pressure at

the inlet to the cascade. The flow was uniform in tangential direction over

the traversed area and so this stagnation pressure profile may represent the

flow over all the measured area. All pressures have been non-dimensionalized

by dividing by the reference dynamic pressure. The stagnation pressure pro-

file showed a defect of 47.5% in the center of the wake which hd a width

of about 2.5 inches at its base. The stagnation pressure defect area averaged

over the span (16 inches) was 3.7%.

The stream pressure was not measured but assuming this to be con-

stant in spanwise direction the velocity was calculated. It varied from 123

feet/sec in the mainstream to about 90 feet/sec in the center of the wake.

The inlet angle varie d between 43* and 46.50 which was also the

case in the two-dimensional tests.

4.1.2 Downstream Conditions

The results of the measurements downstream of the cascade have

been presented as contour maps over the areas traversed showing stagnation

pressures, stream pressures, tranverse flow angles, and spanwise flow de-

viation angles.

4.1.2.1 Stagnation Pressure

Figures 12 and 13 show contours of constant stagnation pressure,

i.e. contours of Bernoulli surfaces, at the two positions.
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These pictures show that a fairly strong secondary flow had been

created in the cascade and persisted as the flow moved downstream. The

Bernoulli surfaces had been turned about 50 at the trailing edge of the cas-

cade and about 10* half a chord downstream. The pictures show that the

secondary flow was directed toward the center of the wake on the pressure

side and out from the center on the suction side of the blades.

The blade wakes had attenuated half a chord downstream while the

stagnation pressure defect in the wake changed only slightly and the shape

of the contours at the two positions were essentially the same. The wake

had, however, flattened and broadened due to viscous action as it travelled

through the cascade and kept on changing, though at a slower rate as it

moved downstream of the cascade.

4.1.2.2 Stream Pressure

The stream pressure distribution in a plane 0-35 inches behind

the cascade is shown in Figure 14. Except at midspan the blade wakes were

at higher than atmospheric pressure. At midspan the pressure in the wake

was lower than atmospheric. Low pressure regions were established in the

center of the wake between the blades with their centers somewhat closer to

the suction surfaces of the blades. Between these low pressure region, in

the center of the wake, high pressure regions were located. They were of

smal ler size and were located close to the suction sides of the blades.

These are the locations where the secondary flow has stagnation points.

Both the spanwise and the transverse velocity components of the secondary

flow are zero at these points. The lower pressure regions then indicate

strong secondary flows.

The overall low stream pressure in the horizontal wake indicated
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a flow toward the center of this wake tending to smooth it out.

4.1.2.3 Transverse Flow Angles

Contour maps of the transverse flow angles are shown in, Figures

15 and 16. Close to the cascade there was a strong overturning of the flow

between the blades indicating a strong secondary flow in the wake directed

from the pressure sides to the suction sides of the blades with maximum ve-

locity in the centers of the blade passages. This agrees well with the ob-

servations made from the study of the stream pressure distributions. At

the outer edges of the wake there was a slight underturning of the flow in-

dicating a slight secondary flow in the opposite direction to the secondary

flow in the wake.

Further downstream the mainstream had smoothed out as indicated

by the disappearance of most of the angle variations in the blade wakes.

The transverse flow angles due to the secondary flow, however, had re-

duced only slightly and the shape of the contours were almost unchanged.

It is of interest to note that the flow angles in the blade wakes

remained almost constant in spanwise direction. This justifies the later

analysis which assumes that the blade wakes are plane surfaces. The same

observations can be made from the contour maps of the stagnation pressures

and of the spanwise flow deviation angles.

4.1.2.4 Spanwise Flow Deviation Angles

Figures 17 and 18 show contours of constant spanwise flow de-

viation angles at the two traversed positions. As can be seen there was

no spanwise flow in the center of the wake and in the centers of the blade

wakes. Somewhere in the center of the passages bounded by the blade wakes
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there was also a region extending over the span where the spanwise flow de-

viation angl es were zero.

4.1.2.5 Streamline Traces in Carbon Black

Streamline traces in carbon black on the blade surfaces are shown

in Figure 19 (pressure side) and Figure 20 (suction side).

The dark region extending in spanwise direction and located about

30% from the leading edge on the pressure side indicates transition from

laminar to turbulent boundary layer. The long white streaks pointing down-

wards are caused by gravity which becomes controlling in regions where the

skin friction is small. The lighter region at midspan is caused by the wake.

The dark transition region is much smaller here and located closer to the

leading edge. The higher turbulence level in the wake causes earlier transi-

tion to turbulent boundary layer. The lighter colour in the wake region in-

dicates a larger velocity gradient there at the blade surface than outside.

The direction of the streaks indicates a spanwise flow towards the center

of the wake.

The picture (20) showing the suction side shows only the rear

part of the blade. At midspan the streaks indicate a spanwise flow away

from the wake. No indication of separation an the blade surface can be

detected. The streamline traces thus confirm the general results found by

other measurements.

From the interpretation of these contour maps and the streamline

traces in carbon black we get the picture of the secondary flow pattern shown

on the next page. The fluid flows along the pressure side of the blades to-

ward midspan where it turns into horizontal direction flowing toward the



suction side of the adjacent blade and where it again turns following the

suction side away from midspan. When it reaches the outer edge of the wake

it gi'adually deflects toVaxd the pressure side of the adjacent blade form-

ing a closed loop. At the intersection of the center of the wake and the

blade wakes the secondary flow has stagnation points.

4.2 Analysis of the Secondary Flow

4.2.1 Derivation of the Secondary Vorticity Components Along

a Streamline Behind the Cascade

component

caused by

Squire and Winter (17) derived a formula for the secondary vorticity

in streamwise direction behind a cascade when the vorticity was

a variation of the approach velocity along the span of the blades.

d 7

LIZ
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where the E = cascade turning angle

and = incoming vorticity strength.

This result is strictly applicable only for an inviscid incompressible flow

in an impulse cascade in which the basic motion is a free vortex. The in-

01U,coming vorticity J has to be small.
d7

Hawthorne (20) developed a general theory for the flow in an in-

viscid, incompressible rotational fluid and gave the follwoing formula for

the vorticity component along a streamline behind a cascade:

A) 2f~)~ C,

L 3fAL TO ENOULLI SURFACE
VP.

PRINCIPAL
NORMAL OF

STREAMLINE

STREAMLINE

BERNOULLI SURFACE

CENTER OF CURVATURE
OF STREAMLINE

n7.



where = vorticity ccmponent tangent to a streamline

U = velocity

P0  = stagnation pressure

= stream density

= angle between principle normal to streamline and to Bernoulli

surface

0 = turning angle

Louis (45) integrated thL s formula under the following assumptiois:

1) The vorticity component 3 , along a streamline at the inlet

to the cascade is equal to zero, yielding =

2) The vorticity is being transported by the two-dimensional flow

through the cascade and not by the induced velocity.

3) The turning of the Bernouilli surfaces is small, giving

sin 0 = 1.

4) The stagnation pressure varies only in spanwise direction and

is given by its value at the inlet of the cascade, yielding

35"- __ bZ f dZ,

5) The stream pressure is constant at the inlet to the cascade,

yielding

W7Ro dU,

6) Infinitely thin blades, yielding the continuity equation for

the two-dimensional flow

U sin a = U sinca .
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The result of the integration is (with the notation of this report):

Ccmparison of the formulae for i yields, with the data of this cascade

45*

that

\t= .04 3

where

is the secondary vorticity component given by 4

, is the secondary vorticity component given by 4-l

As can be seen they give almost the same result in this case and will thus

predict almost the same secondary flow.

A different integration of 4-2 based on other assumptions will be

given here. Assumption (1), (2) and (3) in Louis' derivation will be re-

tained here. Assumption (3) is supported by the result of the measurements

of the rotation and warping of the Bernouili surfaces.

Assume now:

The stagnation pressure varies only in spanwise direction based on the fact

that the rotation of the Bernouilli surfaces is small and that the broaden-

ing of the wake is slow.

therefore =- () + U

The measurements show that the variation of the stream pressure in span-

wise direction is small downstream of the cascade and is probably small
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upstream too as the pressure variation through a wake is in general smal .

The variation is greater inside the tascade but is till small compared to

U) 22 . Therefore neglect a (, ) compared to U ; yielding

4-2 then becomes

2

U. 2 0 Do3 4-5

The velocity gradient -Y varies as the flow moves through the cascade as
*a 2

can be seen from the measurements and is thus a function of 9. In order to

simplify the integration, . is assumed to be constant and the average

value between inlet and outlet is chosen

() - (Ui +U2) 4-6

Assuming infinitely thin blades, the continuity equation for the two-di-

mensional flow through the cascade yields

U sin (X = U sin ai 4-7

Combining 4-5, 4-6 and 4-7 and integrating yields:

69 ~ L-4ub /2c ato 4-8

This formula looks quite different from Squire and Winter's expression but

it can be shown that the two formulas coincide as 0- a1 i.e. for in-

finitely small turning.

The prodf is given below:

4-8 can also be written as

~~11,1) //27 o
- c' 2*r
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As a2--a

2 1 -2 i

and so

Comparison between 4-8 and 4-1 for the actual values yields

The difference is appreciable and is due to the fact that formula 4-8 cor-

rects for the pressure rise over the cascade.

In the following portion of this report the notation for

according to 4-1 will be used. Also the results using 4-8 will be presented.

4.2.2 Determination of Secondary Velocities

Consider the flow in a plane perpendicular to the mainstream bo-

hind the cascade according to Figure 21. The rectangular boundaries of the

plane are made up of the top and bottom walls of the cascade and two ad-

jacent blade wakes from the two-dimensional flow. As the secondary vorticity

vector is parallel to the flow direction the secondary velocities will be

induced almost completely in the y, z - plane. Neglecting any velocities

induced in the x - direction the continuity equation for the seconary flow

becomes

6v -= 0 4-9
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The vorticity may be expressed as

W - - 4-10

Introduce a stream function 4' for the secondary flow such that

4-11

and which satisfies the continuity equation 4-9 identically. Ccabining

4-i) and 4-11 yields

where is given by equation 4-1 and 4-8.

This is Poisson's equation which has to be solved for LP together with ap-

propriate boundary conditions.

Boundary conditions:

At the boundary the cross flow velocity ccponents have to be zero. The

flow is symetrical about the midspan and so this can be taken as a boundary:

for z0 4-13
W2j 4-b

WV =o r r 4-14
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These equations may be integrated yielding

(4 = const at the boundaries

As the constant is arbitrary it is chosen equal to zero. The boundary con-

ditions are then

4o= 4-15

The equation 4-12 with the boundary conditions 4-15 has been solved analyti-

cally by Squire and Winter (17), Ehrich (26), amith (24) and Hawthorne (29).

By using expression 4-1 for and expressing e in a Fourier series

n -= -sW n- 4-16

Havthorne derived the following formula for p

(4'z:wn- 4-17

where

-8eb n ;, U k- /
J(-nu nT t/b Mr b

+-Ll -'w nw/ d 4-18
ia on Y/b ,, d'42;

In 4-18 'C replaces z as a dummy variable.

The derivative of 4 with respect to z is

I = n C1 -v as '~sh c(1 ou --J n--' T r -f, "
_ d Z. nr s1r)T j/db b

..* iT J dAhzA4 i di b 4-19
"5" ni k/6 dX b
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The secondary velocities v and w are then given by 4-13 and 4-14 which to-

gether with 4-17, 4-18 and 4-19 yields

8E sl hrJOS '/b Ldu g IL
nV PT dZ b

n=1.3,5 ' -

- s Tr f U s"n d/l s nTr 4-ao
s" nir P/b ad d

%A = 8p -s "" Ui nTr 21b 9LQ %" -~
h 14 nr IL/, d b

ID - l nor --- d swm ni - 4-21
sL4n-r t/bJd b b

4.2.2.1 The Trazvere Velocity v and the Transverse Flow

Deviation Angle J8

The maximum value of the transverse velocity v at any position of

z occurs at y = b/2 and is given by

- - 1) 4-22

The transverse velocity v varies across the blade passage, It is of inter-

est to find its average value in tangential direction. The y average is,

however, equivalent to the tangential average because the secondary flow has

been assumed not to vary in mainstream direction.

The average value of v at any z is then

V= f Vd = P , 4-23
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The transverse secondary flow component v causes a change 1 in transverse

flow angle at the outlet of the cascade.

The maximum change in transverse flow angle 0 is given by

Tame.) 4-24

which when combined with the two-dimensional continuity equation 4-7 yields

-S ,0(%.4-25
U. 4i()K1

Similarly the average change in transmrse flow angle p in tangential direc-

tion is

tDA = 4-26
S UIX U, C I

A positive value of the transverse flow deviation angle indicates an under-

turning of the flow through the cascade.

4.2.2.2 The Spanwise Velocity w and Spanwise Flow

Deviation Angle I

The maximum value of the spanwise velocity w occurs at the blade

wakes i.e. y = 0 and y = b and is

W W 4-27
b

The average value of w over one blade spacing at any z position can be shown

to be equal to zero.
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The maximum spanwise flow deviation angle Y caused by the ve-max
locity w is given by

Uz 0 / 4-28

Averaged over one blAde spacing the spanwise flow deviation angle caused by

the secondary flow is, of course, zdro.

4.2.3 Mathematical Expression for the Velocity Distribution of

the Wake at the Inlet to the Cascade

The velocity distribution in the wake could be described very well

with two different mathematical expressions

[1- 4-29

S=-c E I + C-05 7r
DI 4-30

where the notations are given in Figure 21.

The first expression 4-29 is given by H. Schlichting (46) for the ve-

locity distribution in a two-dimensional wake. The second formula is given by

Forstall in reference (48). When substituted in the formulae for Ye, and

the first expression 4-29 gave integrals that could not be integrated in closed

forms. The second 4-30 gave simple integrals and so that was used in the cal-

culations. See Figure 22.

The integrations at the expressions for Y, and Y'+ have to be

performed in two regions 0 l c - & and J5 Z 9-. because Ui! is not



continuous over the whole region

So
dtU,

~~oi~7 <<~

Sor 5 < Z <

Inserting 4-30 in the formulae for y, 4-18 and 4), 4-19 and integratbg

yields

for o s 2 .

In is" n-w/bb

U,(

I+ n )nr
lw co 4n 25T

nw 1/ b 

and for ES 7 ~. <

8= -sb U, ZC
(n i (n n or b z

33,

0 S -A -S L

wn U, 0-
(nTr)" 1+(n- Yyx-b

4-33

010- ( gf ' nw /b -O-% i
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Details of the integration can be found in Appendix A.

Remembering the expressions for the secondary velocity components

v and w,4-ll,some conclusions can now be drawn about those velocities, caused

by a wake described by 4-30.

Both components v and w are directly proportional to the turning

angle C and to the velocity defect 200. in the center of the wake.

The expressions for the velocity componets are built up of non-dimensional

factors:

- Blade height
b width of the blade passage at outlet

b - half wake width
width of the blade passage of the outlet

and 2, 1 , and which are geometrical positions of the actual ve-

locity components.

4.2.4 Camparison of Theory and Experiments

The actual values for the cascade configuration and the inlet flow

(given in Appendix A) have been inserted in the formulas derived above and

the transverse flow deviation angles and spanwise flow deviation angles have

been calculated. In these calculations the three first terms in the series

for LP and . have been retained i.e. n = 1, 3 and 5.

The results of these calculations and the experiments are given

in Figures 23, 24, 25, and 26.



4.2.4.1 The Maximum Transverse Flow Deviation Angle,

Omax.

The variation of the maximum transverse flow deviation angle pm

over the span is shown in Figure 23.

The position of both the maximum overturning and the maximum under-

turning was located on a vertical line at about midway between two adjacent

bladewakes. The maximum overturning occurred at the center of the wake and

amounted to 9.7* at 0.1 inches behind the cascade and 6.90 at 2.25 inches

behind tlxe cascade.

The maximum underturning at the cascade exit amounted to 2.8* and

occurred at about 1.1 inches from the center of the wake which is also the

spanwise position of the edge of the incoming wake. The position of the

maximum underturning moved away from the wake center as the flow travelled

downstream and was located at about 1.5 inches from the wake center at 2.25

inches behind the cascade. The magnitude of the underturning had only

changed slightly.

The theory predicts that the location of both the maximum over-

turning and maximum underturning should occur at midway between two adja-

cent blade wakes and the experiments confirmed this.

Using expression 4-1 for the secondary vorticity gives a maximum

overturning of 14.20 which is about 50% higher than the experiments showed

and predicts an underturning of 30 which is very close to the measured value.

The theoretical values are here compared with the measured values at the

cascade exit plane as the theory is only applicable for this case.

Using expression 4-8 instead gives a maximum overturning of 11.20

which is about 15% higher than the experimental value and a maximum

-35.0
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underturning of 2.4* which is somewhat less than the measured value.

Both formulas predict the same locations for the extreme values

namely the wake center for the maximum overturning and at about the edge

of the incoming wake for the maximum underturning. The agreement with the

experiments in this respect was excellent.

4.2.4.2 The Average Transverse Flow Deviation

Angle ~

Figure 24 shows the variation of the average transverse.'flow devia-

tion angles, I, over the span.

The measured transverse flow angles were averAged over two blade

spacings at each spanwise traversed position. The difference between these

values and the average of the two-dimensional transverse flow angles is called

the average transverse flow deviation angle 3. The shape of these curves a-

grees closely with the shape of the curves of maximum transverse flow deviation

angles. They both show maximum overturning in the center of the wake. The

maximum overturning at the cascade exit was 6.7* and 4.4* half a chord down-

stream. The position of the maximum underturning was located at about 1.3

inches from the center of the wake at the cascade exit and about 1.4 inches

at half a chord, downstream. The magnitude of the underturning was about

0.70 at the cascade exit and this value had increased to about 1.9* half a

chord downstream. The shape of the curve outside the wake had changed too.

The average value of the transverse flow angle differed about 20 in the free

stream outside the wake on the two sides of the wake at cascade exit, This

phenomenon can probably be traced back to the inlet conditions where a change

in inlet angle of about the same magnitude on the two sides of the wake was

noticed. Most of this difference had disappeared half a chord downstream
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and this rearrangement of the flow may have caused the noted change in magni-

tude of the maximum underturning.

The predicted values using expressions 4-1 and 4-8 for the second-

ary vorticity are shown in Figure 24 and yield 11.60 and 9.80 respectively

for the maximum overturning and 2.40 and 1.9* respectively for the maximum

underturning. These values are to be compared with 6.7* and 0.7* respectively

which were the measured values. Also in this case the values calculated by

using 4-8 agree fairly well and are much closer to the experimental values

than the ones that 4-1 predicts.

4.2.4.3 The Maximum Spanwise Flow Deviation Angle max

The variation of the maximum spanwise flow deviation angle r over

the span is shown in Figure 25 and Figure 26. The average value over one

blade spacing of the spanwise flow deviation angle due to the secondary flow

should be zero at each spanwise position. However, the measurements showed

an average angle variation over the span at the two different measuring pos-

itions. This is due to the diffusion of the wake as it moves downstream

thus causing spanwise flows toward the center of the wake. This is brought

out by the curve of the average spanwise flow deviation angle shown in Fig-

ure 26. The measured values of the spanwise flow deviation angle have there-

fore been corrected with the flow angle caused by the diffusion of the wake.

The measured maximum spanwise flow deviation angle at cascade

exit was 5.80 and it was located very close to one of the blade wakes and

about 0.5 inches from the center of the wake. About the same magnitude of

the corrected maximum angle was fiund at both the pressure and the suction

side of the blade wakes. The spanwise position of these maximum values was,
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however, different. It was located closer to the center of the wake on the

pressure side of the blade wake which can be seen in Figure 17 and Figure 18,

and was caused by the spanwise flow which is directed toward the center of

the wake on the pressure side and away frm the center on the suction side

of the blade wake. Half a chord downstream this angle had reduced to 3-5*

at one side of the wake and to 4.7* at the other side and the spanwise posi-

tions for these maximum values had moved out to about 0.8 inches from the

wake center.

The theory predicts the maximum spanwise flow deviation angle to

occur at the blade wakes and the experiments confimed this. The calculated

value for the same angle is 7.80 when using formula 4-1 and 6.2* using 4-8.

Even in this case formula 4-8 gives a value close to the experimental results

while formula 4-1 gives too high a value. Both formulas predict the same span-

wise position, about 0.6 inches for the maximum value which is slightly higher

than the measured position on the pressure side, and slightly less than the

measured position on the suction side. The spanwise position predicted by

the theory agrees well with the average measured position on the two sides

of the blade wake.

4.2.4.4 Conclusion

Close agreement between the measured and calculated values of the

flow angle deviations at cascade exit due to the secondary flow is achieved

when formula 4-8 is used to describe the distributed vorticity in stream-

wise direction behind the cascade. When formula 4-1 is used instead of 4-8,

the predicted values are about 50% higher than the measured ones. The posi-

tions of the maximum flow angle deviations are predicted closely by the

theory and both formulae predict identical positions.
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4.3 Losses and Kinetic EergZ of Secondary Flow

4.3.1 Results of Measurements

The magnitude of the velocity vector was computed at cascade

exit plane by using the measured values of stagnation pressure and stream

pressure. The stagnation pressure was measured 0.1 inches behind the cas-

cade while the stream pressure was measured 0.35 inches behind. In these

calculations, however, it was assumed that the stream pressure did not

change between the two axial positions. When computing the correspond-

ing values half a chord downstream it was assumed that the stream pressure

was identical with the atmospheric pressure. Using the measured flow de-

viation angles and the computed magnitudes of the velocity vectors the

secondary flow velocity components v and w were computed. The sum

v/"-) was formed at each measured point and these values were in-

tegrated and averaged over two blade spacings at constant spanwise posi-

tions. The values were divided by the value of the kinetic energy of the

inlet flow and were plotted vs. distance over the span. The area under the

curve was integrated. The resulting curves are shown in Figure 27. At

cascade exit the following result was obtained

1)= o~S %
ICEM. '

and half a chord downstream

3)
D O.0-7 16

The kinetic energy of the secondary flow had apparently decayed due to

viscous action to about 50% of its value at cascade exit.

The curve of the kinetic energy of the secondary flow has two

maximum points and one mi6imum point. The absolute maximum is located in
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the wake center caused by the transverse component of the secondary flow

which also has its maximum value there (= maximum overturning). The

second maximum point which is lower than the first is located at about the

same spanwise position as the edge of the incoming wake and this maximum is

also caused by the transverse component of the secondary flow which has

another extreme value here, namely maximum underturning.

Between these maxima there is a minimum point the location of

which corresponds to the position of zero transverse velocity component

of the secondary flow. See Figures 23 and 24.

The ratio of the kinetic energy of the spanwise flow and the

total kinetic energy of the secondary flow was also evaluated.

This ratio was 0.57 at cascade exit and 0.50 half a chord down-

stream. The accuracy of the measurements and calculations does not per-

mit a definite conclusion about their relative values.

The conclusion to draw is that the kinetic energy of the second.-

ary flow is divided equally in the spanwise and transverse flow components

and that this ratio is preserved as the flow moves downstream. This im-

plies that the two velocity components of the secondary flow decay at the

same rate.

4.3.2 Theoretical Calculation of the Kinetic Energy of the

Secondary Flow

The kinetic energy per unit volume of the secondary flow is

given by

0)= y 0 WI) 4-35
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After some calculations this expression transforms into:

JI= A f ( E b 002 n_ 3

+ - h Mr 4-36
TD+ (nf)s" n-r% 9-

Details of these calculations are given in Appendix F.

The expression for the kinetic energy per unit volume of the

inlet flow to the cascade has been derived in Appendix F-2 and is

KE El Qs io,{- ( -0 -a) 1+ ]4-37

The ratio of the kinetic energy of the secondary flow and the kinetic

energy of the incoming flow is then given by

+[ I)e/(n

4 sLr,1b -s n 1 4-38

Formula 4-38 expresses how much of the kinetic energy per unit volume of

the incoming flow that has been used to produce the secondary flow. The

kinetic energy per unit time instead of per unit volume is a more correct

expression for the total transformation of incoming kinetic energy into

secondary flow and would have been achieved if formula 4-35 had been multi-

plied by the transport velocity (= the axial velocity) before integrating.

Correspondingly alsc the expression 4-37 of the kinetic energy of the in-

let flow. This would have reduced the magnitude of the ratio D/K.E.inj

since the transport velocity is lower in the wake where most of the
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secondary flow is located. However, no simple expression such as 4-38

would have been achieved then and it was felt that a simplification was

justified for two reasons:

The evaluation and processing of the experimental data was

greatly facilitated.

The numerical value of the kinetic energy of the secondary flow

was found to be very small and could be neglected compared to the losses.

The expression for the ratio D/Kinl is formed by non-dimensional

parameters. The most important of which are:

the turning angle 6 of the flow

the magnitude, a, of the wake

the outlet angle C2 in form of sin a2, which all occur

to the second power.

The actual values for this cascade configuration have been inserted in

formula 4-39 and gave

D = 0,23

when formula 4-1 was used to express the secondary vorticity, and gave

D _

KE;nl

when formula 4-8 was used.

Good agreement between predicted and measured values of the

kinetic energy of the secondary flow was obtained when formulae 4-38

and 4-8 were used. The combination of 4-38 and 4-1 yielded too high a

value as might be expected since the deviation angles predicted by using

4-1 were also too high.
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If 4-35 is integrated only over y i.e. in the tangential direc-

tion the following expression is obtained (see Appendix F-5).

2 2 2

n--/..5--4-39

This formula gives the spanwise distribution of the kinetic energy of

the secondary flow and can be expanded further by substituting the ex-

pressions for Y and 5 given in 4-31 through 4-34 but as Y, and f,' have

to be computed in order to calculate the secondary flow these values are

given as functions of z and it is convenient then to use 4-39.

The actual values for this flow have been substituted in formula

4-39 and the results of this calculation are shown as curves in Figure 27.

Both formulae 4-1 and 4-8 have been used to express the vorticity. The

theoretical curves have the same shapes as the measured ones with two

maximum points and one minimum point. Formula 4-39 together with 4-1 how-

ever yields values that almost everywhere exceed the curve of the measured

data. Formula 4-39 combined with 4-8 predicts too high a value at the wake

center and too low values over the rest of the span. The agreement ith ex-

periments is, however, better for this curve.

4.3.3 Losses

The measured stagnation pressure defects have been area averaged

over two blade spacings at constant spanwise positions at the two traversed

planes and these averaged values have been plotted vs. distance over the

span as shown in Figure 28.



4.lj

The inlet wake has broadened and its maximum value has re-

duced as it moved through the cascade. Outside the wake the stagnation

pressure defect is greater than zero. This is caused by the friction at

the blade surfaces and is a measure of the two-dimensional cascade loss.

A stagnation pressure loss is here defined as the decrease of stagnation

pressure along a streamline. In a two-dimensional cascade flow the loss

can easily be calculated as the average stagnation pressure defect over

one blade spacing at a constant spanwise position since all the stream-

lines remain in the same spanwise plane. In a three-dimensional flow the

streamline cannot be easily traced and a streamline entering the cascade

at one spanwise position may leave it at another. The difference be-

tween the reference stagnation pressure upstream of the cascade and the

stagnation pressure at a point downstream of the cascade is therefore

called stagnation pressure defect at that point. However, the difference

between the integrated stagnation pressure over the whole area upstream

of the cascade and the integrated stagnation pressure over the whole

area downstream of the cascade may be called the stagnation pressure loss

for the cascade. In this case it includes all the three-dimensional ef-

fects on the losses.

The loss calculations were performed in the following way. The

two-dimensional stagnation pressure defect outside the wake is assumed to

maintain its value even inside the wake. This implies that the friction

effect on the blade surfaces is larger in the wake than outside, as the

dynamic head in the wake is lower than the reference dynamic head and

also the stagnation pressure defects in the wake have been divided by

the reference dynamic head. The pictures of the streamline traces in



carbon black indicate that this is true. The magnitude is, however, not

known and cannot be calculated with any accuracy. This assumption will,

however, not change the conclusions about the three-dimensional losses.

The stagnation pressure defect in excess of this two-dimensional loss

has been averaged over the total span, 16 inches, giving a mean value of

3.73% at cascade exit

and 3.72% half a chord downstream.

These two figures agree very well. However, the defect is greater at cas-

cade exit than further downstream which violates the second law of thermo-

dynamics. This depends, however, on the fact that the defects have been

area averaged instead of mass averaged. The same situation occurred in

the two-dimensional tests (3-2). If the average inlet stagnation pressure

defect, 3.7%, is subtracted from the figures above there is left a stagna-

tion pressure defect that may be called a complementary loss and accounts

for the losses created by the secondary flow. These figures are very mall,

0.03% and 0.02% respectively and comprise effects such as mixing of the

wake and the free stream as the flow moves through the cascade. The second-

ary flow probably causes a more extensive mixing than would occur if the

Bernoulli surfaces were not turned. The figures are, however, smaller than

would be expected from pure mixing of a wake in an adverse pressure field.

This depends on the fact that the above figures are the result of an area

integration instead of a mass integratcn in which case the inlet mean value

would have decreased proportionally more than the outlet mean value thus

giving higher losses. However, the results show that there is only a very

small contribution of the secondary flow to the overall losses created in

the cascade.

45.
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In the above figures the kinetic energy of the secondary flow

has not been treated as a loss. In an actual machine most of the kinetic

energy of the transverse flow is probably recovered in the following stage.

The kinetic energy of the spanwise flow may be lost.

Even if all the kinetic energy of the secondary flow is lost

this is a fairly small value amounting to 0.13% of the kinetic energy of

the inlet flow to the cascade and is only about 8% of the two-dimensional

cascade loss.

4.4 The tangential Component of the Blade Force

4.4.1 Results of Measurements

Stream pressure on the blade surfaces were measured at 5 differ-

ent spanwise positions. The positions were located 1/8", 3/8", 1 1/8",

2 1/8" and 4 1/8" from midspan.

The results of the measurements are presented in Figure 29A as

plots of the tangential component of the blade force divided by the refer-

ence dynamic pressure called the tangential pressure coefficient C T. A

contour map of the pressure distribution is shown in Figure 30.

There seems to be remarkably little change in the pressure dis-

tribution in the wake region. However, the curves show that the stream

pressure in the wake is reduced over most of the chord. The defect is

greatest at the leading portion of the suction side and reduces toward

the trailing edge where the defect is slight. This gives a lower pres-

sure rise along the chord in the wake than in the free stream. The de-

fect on the pressure side is less and almost constant over most of the

chord.

This defect of the stream pressure in the wake results in a lower
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tangential pressure coefficient CT there, as can be seen in Figure 29B.

The pressure coefficient is here based on the reference dynamic pressure

and it changes from CT = 0.461 in the free stream to CT = 0.382 in the

center of the wake.

If the pressure coefficient instead is based on the actual inlet

dynamic pressure at the same spanwise position as the pressure measurements

were taken CT increases in the wake and equals 0.725 in the wake center.

This cascade configuration has been tested in a uniform flow in another wind

tunnel for different inlet angles covering also the stalled flow region.

The onset of stall has here been defined as the inlet angle for which the

two-dimensional cascade losses are twice the minium loss. At this inlet

angle the flow at the rear part of the suction surface is separated.

Substituting the measured, angles from this' test into the formula

for CT given in section 3.3 yields CT = 0-590 for the onset of stall. At

the wake center where CT = 0.725 no separation could be detected. Cascades

generally behave differently in different wind tunnels especially close to

and inside the stalled flow region but the conclusion to draw is that

values of CT achieved from two-dimensional cascade data will not give the

same information about the flow behaviour in a three-dimensional case.

4.4.2 Theoretical Calculation of the Tangential Component of

the Blade Force

In Appendix G derivation of the formula for the tangential pres-

sure coefficient, CT, is presented:

C 2,5' 7;(CO n;-olc)/- - -d''- 4-4o
T 4 i Eg<f
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This expression may be interpreted in the following way

(1)2s'-,o cz'/ - coewz) is the tangential pressure coefficient

if the flow is uniform over all the span

(2) -2C/ (coto - %,2( - is the reduction in CT due to the de-

creased mass flow in the wake

(3) - is the reduction in CT due to the

creation of secondary flow.

It is to be noted that only term (3) changes when the different expressions

4-1 and 4-8 are used to express the streamwise vorticity component.

The actual values for this flow including the measured value of D have been

substituted in formula 4-40. The results of this calculation is given in

the following table:

Term Value

(1) 0.521

(2) -0.018

(3) -0.002

CT 0.501

The decrease in CT from its two-dimensional value is about 3.8% of which

term (2) contributes 3.4% and term (3) about 0.4%. The contr from

the secondary flow is thus very small.

The measured free stream value of CT was 0.461 to be compared to

the calculated value 0.521.

The average value of CT over the span was determined through

a graphical integration of the areA under the CT curve and gave CT = 0.445

compared to the calculated value of 0.501.

As can be seen the calculated values are about 12 % greater than
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the measured ones. The decrease in CT from its two-dimensional value is

about 3.4% to be compared to a calculated figure of 3.8%. The theory pre-

dicts a greater decrease in C due to the wake flow than the measurementsT

show but the agreement is good.

5. SKEWED FLOW

5.1 Results of Measurements

The results of the measurements have been presented as contour

maps over the traversed areas showing stagnation pressures, stream pres-

sures, transverse flow angles and spanwise flow deviation angles.

5.1.1 Upstream Conditions

5.1.1.1 Transverse Inlet Flow Angles

Figure 31 shows the transverse inlet atbgle variation over the tra-

versed area upstream of the cascade. The angles varied between about 450

in the free stream to about 24* in the center of the skewed layer. The

angle distribution was fairly uniform in tangential direction. The non-

uniformity was larger in the free stream than in the skewed layer.

5.1.1.2 Stagnation Pressure

The stagnation pressure distribution over the traversed area is

shown in Figure 32. The intention was to have a constant stagnation pres-

sure over the whole area but due to the reasons mentioned in section 2.3

this could not be realized. Two wakes located about 1 inch on each side

of the midspan and extending in tangential direction were created. The

pressure defect in the centers of these wakes amounted to about 25% of
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the dynamic pressure when the flow was adjusted so that there was no pres-

sure defect of the skewed flow layer at midspan. The width of each of the

wakes was about 1 inch at the base. The distribution was fairly uniform in

tangential direction.

5.1.1.5 Stream Pressure

A contour map of the stream pressure distribution over the traversed

area is shown in Figure 33. The stream pressure distribution around the

blades of the cascade can clearly be seen as vertical contours modified by

the pressure distribution in the skewed flow layer. A higher stream pres-

sure was built up around each blade since the flow had a stagnation point

at the leading edge of each blade. The stream pressure in the skewed flow

layer was about the same as, or somewhat higher than, the stream pressure

midway between two adjacent blades.

5.1.2 Downstream Conditions

5.1.2.1 Stagnation Pressure

Figures 34 and 35 show contour maps of the stangation pressure dis-

tribution at the two traversed areas downstream of the cascade.

The blades were heavily stalled in the skewed flow layer as can

be seen in Figure 34. A real back flow was created at the suction side of

the blades. This back flow was made visible by placing a thread glued to

the end of a pin pointed stick in the flow. In the region of back flow

the thread was blown in the direction from the trailing to the leading

edge of the blade. At the transition region between the back flow and the

free stream the flow was very unsteady. The limiting line on the contour

maps between the back flow region and the through flow region may not be
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considered to be very accurate. The region of back flow was much larger on

the blade which had the pressure taps on its suction surface than on the

blade with the pressure taps on the pressure side indicating the importance

of the surface eveness in the stalled flow region.

The two wakes in the inlet flow to the cascade could be traced

downstream of the cascade as two horizontal wakes seen in the center of

the blade passage. The skewed flow impinged on the pressure side of the

blades and spread out from the center toward the blade ends creating a

secondary flow. This flow, made up of the high energy fluid in the span-

wise center of the incoming skewed flow, distorted the two horizontal

wakes towards the blade ends and reduced their magnitude on the pressure

side of the blades.

An intensive mixing between the high energy flow at the pressure

side of the blades and the low energy flow at the suction side of the blades

effectively eliminated the back flow half a chord downstream. The flow was,

however, very unsteady in the regions of previous back flow. The centers

of low stagnation pressure had moved slightly away from the suction side of

the blades toward the center of the blade passages. The centers of the high

stagnation pressure at midspan had moved less, so that the blade wakes

remained fairly straight. The Bernoulli surfaces were turned in different

directions at the two sides of the blade wakes. The stalled flow regions

blocked part of the blade passages and acted as obstacles around which the

fluid had to flow causing the Bernoulli surfaces to turn.' This effect per-

sisted as the flow moved downstream.

The stalling of the blades effectively masked the influence of the
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of the skewed flow on the behaviour of the cascade and made an interpreta-

tion of the flow measurements difficult.

5.1.2.2 Stream Pressure

The stream pressure distributions at the two traversed areas are

shown in Figures 36 and 37.

The stream pressure in the wake was slightly lower than the surround-

ing atmospheric pressure at the exit plane. Within the wake there were re-

gions of very low stream pressure located at the centers of the back flow.

The pressure difference between these regions and the surrounding atmosphere

amounted to 25% of the dynamic reference pressure. The size of the low

stream pressure region was larger at the blade with the largest stall flow

region which could be expected, since a separation reduces the turning of

the flow and thus reduces the pressure rise over the cascade.

Half a chord downstream most of the pressure differences had van-

ished. The stream pressure in the wake was just slightly lower than the

surrounding stream pressure indicating an overall spanwise flow toward mid-

span. The centers of the low pressure regions had moved only slightly from

the suction side of the blades toward the centers of the blade passages and

the pressure difference between these centers and the atmospheric pressure

was only 4% of the reference dynamic pressure. As the low stream pressure

changed very fast in streamwise direction these low pressure regions seem

not to be caused by vortices in streamwise direction.

The stream pressur.e distribution around the blades which was clear-

ly observable in the free stream at cascade exit had almost completely dis-

appeared half a chord downstream giving a uniform stream pressure in tan-

gential direction in the free stream flow.
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5.1.2.3 Transverse Flow Angles

Contour maps of the transverse flow angles are shown in Figures

38 and 39. The distortion of the flow from the stalled flow regions is

clearly shown at cascade exit. The blockage of the flow in the stalled

regions acted as a solid boundary and thus effectively decreased the width

of the through flow passages in the skewed layer flow region.

A strong underturning of the flow occurred in the skewed flow

regions at cascade exit. The center of this region was located about in

the center of the effective flow passage at midspan. This underturning

indicates a strong transverse secondary flow at the spanwise center of

the skewed flow directed toward the pressure side of the blades and

reaching its maximum value at about the center of the effective through

flow passage.

At the cuter edge of the skewed flow layer there was a region

of slight overturning indicating a secondary flow directed opposite to

the secondary flow at midspan. The petitions of the center of the regions

of underturning were located somewhat differently at the two sides of mid-

span. One was located at about the center of the effective flow passage

while the other was located closer to the pressure side of the blade. Apart

from this, the flow showed good symmetry about m dqpan. The flow angles in

the back flow region could not be measured.

Half a chord downstream the flow angles had changed differently

in the regions close to the blade wakes at midspan. At the blade with the

smaller back flow region (left blade in Figure 39) the center of the under-

turned flow region remained approximately at the same relative position to

the blade wake when the flow moved downstream, On the other side of the
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blade wake a new region of underturned flow was created, made up of the

flow from the previous back flow region. Due to the separation on the suc-

tion side of the blade this flow had not been given an equal amount of tan-

gential momentum as the rest of the flow in the cascade and so this flow

was turned less. The two regions were partly separated by the blade wake.

The position and magnitude of the overturned flow region remained almost

the same as the flow moved downstream.

At the blade with the greater back flow region (right blade in

Figure 39) a different lbehaviour of the flow was shown. The region of

underturned flow in the adjacent flow passage at cascade exit had com-

pletely disappeared. It had moved across the blade wake' and joined the

flow from the previous back flow region at the suction side of this blade

and the two flows had jointly formed a region of strongly underturned fluid.

The cause of this was the strong low pressure region located at this posi-

tion at cascade exit and which sucked in the flow from the opposite side

of the blade wake. This low pressure region was larger' than the one at

the adjacent blade wake as can be seen in Figure 36.

A very interesting discovery made was that the average transverse

outlet angle in the free stream flow was about 4*9greater than the angle

measured in the two-dimensional cascade test. The reason for this may be

the changed stream pressure distribution around the blades. A greater stream

pressure difference between the blades and the blade passages was established

in this case causing the flow to turn more. The strong spanwise stream pres-

sure gradient may also have acted to force the boundary layer on the suction

sides of the blades to flow toward midspan reducing its thickness and so
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reducing the deviation between the blade profile outlet angle and the

flow outlet angle. The pressure rise in the free stream was also lower

in this case than in the two-dimensional cascade test and this too causes

a reduction in boundary layer thickness on the suction side of the blades.

5.1.2.4 Spanwise Flow Deviation Angles

Figures 40 and 41 show contour maps of the spanwise flow de-

viation angles at the two traversed planes. In each blade passage four

regions of large spanwise flow deviation angles were found at the cascade

exit. They were located next to the junctions of the outer edges of the

skewed flow layer and the blade wakes. At the suction side of the blades,

however, the tangential positions were displaced toward the outer edges of

the back flow regions and the regions were elongated along the edges of the

back flow region, once more stressing the point that these back flow regions

may be looked upon as solid obstacles in the blade passages. The secondary

flow indicated by these angles was thus directed out from midspan at the

pressure surfaces of the blades and toward midspan at the suction side of

the blades. The secondary flow directions in the back flow regions were

not measured.

At about two inches from midspan almost no spanwise flow was ob-

served. The spanwise flow angle distributions at cascade exit showed great

symmetry about midspan.

Half a chord downstream this synmetry began to disappear. The re-

gions of spanwise flow at the pressure side of the blade wakes had only

moved slightly toward the suction side of the blade wakes but the spanwise

flow deviation angles in these regions had been greatly reduced. The fluid
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in the regions of spanwise flow at the back flow regions behaved differ-

ently at the two sides of midspan as the flow moved 4ownstream. Above mid-

span the spanwise flow region at cascade exit had separated into two regions

half a chord downstream. One region, made up of the fluid in the skewed

layer region, had moved over the blade passage toward the pressure side of

the adjacent blade wake while the other region made up of the fluid just

outside the skewed flow layer remained at its relative position and estab-

lished a new center of spanwise secondary flow. The magnitude of the flow

angles were greatly reduced in both regions.

Below midspan this division in two parts had not occured but the

fluid in the skewed layer had moved toward the suction side of the adjacent

blade wake while the fluid outside the skewed flow layer remained at its

relative position thus elongating the region of spanwise flow. The magni-

tude of the spanwise flow deviation angles had, however, reduced considerably,

more so than in the regions above mndapan.

The spanwise position of the regions of maximum spanwise flow

angles were about the same at the two traversed planes.

5.1.2.5 Streamline Traces in Carbon Black

Streamline traces in carbon black on the blade surfaces are shown

in Figure 42 (pressure side) and Figure 43 (suction side).

The transition from laminar to turbulent boundary layer on the

pressure side of the blades is indicated as a dark streak extending over

the span and located at about 30% from the leading edge. The black streak

is intercepted at midspan where the skewed flow layer impinges on the blade

surface, creating a strong velocity gradient at the blade surface which
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removes the carbon black. The streaks at the center part of the blade are

pointing away from midspan indicating a spanwise flow out from midspan.

In order to detect the separation on the suction side of the blades

two different techniques were used. The whole surface on one blade was

painted while only a strip at the trailing edge of another blade was painted.

When the wind tunnel was started the suspension in the strip moved toward

the leading edge of the blade in the central part indicating a back flow

over that part of the span. This can clearly be seen in Figure 43. The

shape of this region was almost a semicircle and the leading edge of this

sei.circular area was dark indicating the strip separating the stalled flow

region from the unstalled. The flow direction on the blade surface in this

stalled region was pointing out from midspan. The information from the con-

tour maps and the streamline traces in carbon black now allow us to draw the

following picture of the secondary flow pattern in a blade passage. The

flow pattern shows a similarity to the secondary flow pattern found for the

wake flow in section 4.1.2.4. However, the flow direction is opposite to

that created by the wake flow. Inside the back flow region an opposite flow

is established.
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The mixing of this flow with the main flow further downstream may

be the cause of the irregular spanwise flow deviation angle distribution

found in Figure 4l. The influence on the transverse flow angle distribution

is less since the secondary flow in the pack flow region is mostly in span-

wise direction due to the shape of the region.

5.2 Analysis of the Secondary Flow

5.2.1 Statement of the Problem

The problem to, be considered is the three-dimensional flow in a

cascade caused by skewed flow at the inlet to the cascade. It may be

specified as follows:

Given the velocity profile entering the cascade, determine the

flow field inside and downstream of the cascade.

As the skewed flow is generated at midspan the influence of vis-

cosity action is small except of course at the blade surfaces. The ap-

parent friction due to turbulence can be of importance since the turbulence

level in the skewed layer flow may be high. However, in order to simplify

the problem mathematically it will be assumed that the flow is governed by

inviscid flow equations of fluid mechanics. This implies that the flow

losses in the cascade are not calculable. This apptoach is justified only

by simplification of the theory and by the results obtained in the inviscid

treatment of the wake flow (section 4). The Mach number of the flow is

very low (about 0.1) and so the flow may be considered incompressible.

With these assumptions and assuming a steady flow, the flow field

can be described by the momentum and continuity equations as follows:

vx3 17 5-1
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where

= 7x9 5-2

7.V 0 5-.3

In this case the stagnation pressure P. is constant at the inlet to the

cascade and since inviscid fluid is assumed, the stagnation pressure re-

mains constant all over the flow field. This makes the right hand side of

5-1 equal to zero and so 5-1 becames

Substituting 5-2 in 5-4 and transforming the resulting equation we obtain

7(7-7v)-72  =0

which together with the continuity equation 5-3 yields

7,=7 5-6

or equiTilantly

7 Z V25-7

This system of Laplace equations,one equation for each velocity component,

has to be solved together with appropriate boundary conditions. The bound-

ary conditions are:

Upstream of the cascade the velocity distribution is prescribed

V = known function of space

Inside the cascade the velocity vectors at the blades surfaces have to be
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parallel to the surfaces.

7-V G(xIY,) =0
where

G(X, Y ) = 0 is the mathematical expression for the blade surfaces.

Infinitely far downstream no changes in the velocity components take place.

= O i= /,2) 3.

These boundary conditions make the problem so difficult that an analytical

solution is impossible to obtain. Instead of trying to solve for the flow

field over all space we therefore restrict ourselves to try to solve for

the flow field just in a plane downstream of the cascade.

5.2.2 Approximate Solution

A solution to 5,4 is that the vorticity vector CO is parallel with

the velocity vector i , i.e.

A- Pk 5-8

where k is a scalar and may be a function of space

k= *(z,y,z) s.

Consider the flow in a plane behind the cascade, the plane being

perpendicular to the direction of the two-dimensional outlet flow. The

boundaries of the plane are made up of the two end walls of the cascade and

the neighboring blade wakes from the two-dimensional flow. The axes and ve-

locity components are chosen according to Figure 44.

In this coordinate system 5-8 and 5-3 are

9 _ =- =kU 5-8a
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' a= --= k V 5-8b

- 3- = / '/ 5-8c

+ av - = 5-10

The velocity components are given by

t= U op , 5-hia

V = U s/70 cos 5-11b

W= 1a'1er 5-lic

where U is the magnitude of the velocity vector, and Y and 1 are the flew

deviation angles caused by the skewed flow. For the pure two-dimensional

flow u = U, Y and 1 are zero and their magnitude is a measure of the dis-

turbance effect of the skewed flow on the two-dimensional flow. u, v and w

are then secondary flow velocity components in accordance with the definition

of secondary flow in the introduction of this repOrt. Far behind the cascade

the stream pressure is constant in space and since the stagnation pressure

also is constant, U will be constant.

U = constant 5-12

Differentiating 5-11a, b, c with respect to x, y, and z, respectively

=_ U _ _/+ . 5 1  ,n d 7 5-13
35 by 3Z.
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V U I6vsY&osp - o I
ow 33

- J .s / -

5-14

5-15

Assume the two dimensional flow through the cascade is disturbed

by the skewed flow and that this distrubance is small. This implies that

the flow deviation angles P and ' caused by the skewed flow, are small.

5-16

5-13, 5-14 and 5-15 then become:

U~ Y (~
+

From this it is seen that 6'

2V

is of a smaller order of magnitude than

and

may then be neglected in the continuity equation 5-10 yielding:

+ - a

Equation 5-20 allows us to define a stream function y such that

5-17

5-18

5-19

5-20

5-21

rag / b3
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5-22

q- is then the stream function for the secondary flow in the considered

plane.

Introducing 5-21 and 5-22 in 5-8a we arrive at

+ =-ku

This is a Poisson's equation for 9.
Before solving this equation it may be of interest to study the order of

magnitude of the vorticity components g, Q and (

From 5-8a, b, and c:

k t- 5-8a

r= k v 5-8b

= kw 5-8c

Substituting 5-16 into 5-11 a, b and c, 5-8 a, b and c, may be written:

~k U 5-2ka

r) k5-24b

~k OU 5-24c

As can be seen and 9 are of smal ler order of magnitude than g.
This implies that the secondary flow will essentially be induced in the yz-

plane.

To solve equation 5-23 for Y,, either g or k has to be determined.
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From above

vx 5-2

;7 =5-8

07.V=Q 5-3

The divergence of 5-2 and 5-8 yields:

= V( Vx ) :0 5-25

- 7- ( 7- 7 < 5-26

Combining 5-25 and 5-26 yields, together with 5-3

5-27

Equation 5-27 expresses the fact that k is constant along a streamline

(v k has no component in the flow direction).

Along a streamline, 5-8 may now be written

Z = C.0r e4 a 7 5-28

Note that the streamlines mentioned inconnection with 5-27 are not the same

as those in 5-21 and 5-22. The streamlines in 5-21 and 5-22 are streamlines

for the secondary flow in a specific plane behind the cascade while the stream-

lines in connection with 5-27 are streamlines for the complete flow in the

whole field. No simplifications have been made in the derivation of equation

5-27 and thus equation 5-28 is exact for the flow considered.

k is thus a constant along each streamline. For the vorticity

component j tangent to a streamline equation 5-28 becomes

/2 U /5-29
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where subscript 1 refers to the upstream plane and subscript 2 refers to

the downstream plane. At the inlet plane upstream of the cascade, the ve-

locity distribution is prescribed and thus the vorticity distribution is

known. If we could trace the streamlines for the flow through the cascade

we would then find the vorticity distribution behind the cascade.

However, the streamline pattern of the flow is unknown and is, in fact, the

one to be determined.

If the disturbance effect of the skewed flow on the two-dimensional

flow is small, the induced velocities are small and we may assume the vorticity

to be transported by the two-dimensional flow alone and not y the induced

flow. 5-29 may now be written:

Z2 LI- 5-30

where u, and u2 are the velocity components of the undisturbed two-dimen-

sional flow, and so

Ix) = U, 4Z = 5-31

g, is given by the flow conditions upstream of the cascade. The stream-

wise vorticity component decreases as it moves through a compressor cas-

cade since the outlet velocity is lower than the inlet velocity. In a tur-

bine cascade it would increase.

Equation 5-29 can be derived from Hawthorne's formula 4-2 when

noting that 7 P = 0.

The flow at inlet is assumed to vary only in spanwise direction. is

then given by 5-8a as

- - 5-32
3B .
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and

V = - Ug zr r/ 5-33

where 13 is the angle between the skewed flow and the two-dimensional main

flow.

/

Substituting 5-33 in 5-32 and noting that U, is constant, yields:

= 1  %. 1 ,&i 5-34

Combining 5-30 and 5-34 yields

5-35

The previous assumptions imply P, to be small and so

which yields

Oz0 a 5-36

where the partial differential has been changed to the total differential

since 1l is a function of z only.

Substituting 5-36 into 5-23 yields

Z =u 55
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This equation has to be solved for Y together with appropriate boundary con-

ditions.

Boundary conditions:

No cross flow occurs at the boundaries. The flow is symmetrical about mid-

span and so this may be taken as a boundary. These boundary conditions are

the same as the ones for the wake flow, section 4.2.2, and so we get

I = 0 5-38

at the boundaries.

The similarity between equations 5-37 and 4-12 and the boundary conditions

in both cases make it possible to immediately write the solution of 5-37

00

b 5-39

where

4u 2 6, (5snhflnrL? of sn F

+5h f Soh d 5-
and b

- 4U, ________4-

nTr L aihr oa

b

5An4ri 
.5 di 1 E -

SinSil-71 t $

The secondary velocities v and w are then given by 5-21 and 5-22

which together with 5-39, 5-40 and 5-41 yield:

~ 6- 5-42

sand r b gb *.
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5.2.3 The Transverse Velocity v and the Transverse Flow

5-43

Deviation Angle p

The similarity between the equations for the wake flow and

the skewed flow immediately permit us to write the following formulae:

= ~/V(~ ~) S%

r 15ax- n

5-46

5-47

5.2.4 The Spanwise Velocity w and the Spanwise Flow Deviation

Angle /

The formulae for the above quantities are the same in this case

as in the wake flow case.

n=1.3.5.

Vrmx = i 1

/I.
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U 2 5-49

The average value of w over one blade spacing at any z-position is zero,

and therefore the average spanwise flow deviation angle over one blade

spacing caused by the secondary flow is zero.

5.2.5 Mathematical Expression for the Skewed Flow Angle Dis-

tribution at the Inlet of the Cascade

The transverse angle in the skewed flow at the inlet of the cas-

cade varied slightly in tangential direction.

The measured inlet angle distributions in spanwise direction at

five different, ecqually spaced, tangential positions were plotted and a

curve was faired through these five different sets of data, see Figure 45.

This curve, representing the average angle distribution in spanwise direc-

tion was mathematically represented by a Fourier series

,COS M 6 5-50

The derivative of Pl with respect to z is

'6 / 5-51M-/

Note that this series starts with m = 1 while'the series for Pl starts with

m = 0. However, the term corresponding to m = 0 is a constant and so its

derivative is zero.

With N- given by 5-51 the integrations of t, 5-40 and
/

5-41 may be performed. The integrations have to be performed in two

regions 0 6 and 6 L because is not continuous
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over the whole region 0 C 2 5 /L.

: for 0i2-

dor f r r S/2 .

The details of the integration may be found in Appendix B and the results

are:

for

Am COS W7 6 n MTJnTsnrnT 5-52
( n +( ml(D 'Tn n7 LbSn Mr b

'bmb b

C0L WTI -) 5-53
nr,7 I + ((Egf 6 5;4iA,12y 6 45

A - M b

C. 4e2l j AdS Mr 5 k ny 5-54
/2 (1-} 6nn

~~ b

7 A 2 COMT _ C05 ( ? nZ (1- 5-55
b>= b kbL

These expressions and the corresponding ones for the wake flow 4-31, 4-32,

4-33 and 4-34 are nearly identical. From these expressions some conclusions

can be drawn about the secondary flow velocity components v and w caused by

the skewed flow described by 5-50.

Both velocity components are directly proportional to the outlet

velocity U2 and the inlet angle distributiop described by the Fourier co-

efficients, Am.
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The same non-dimensional factors appear identically as in the ex-
S

pressions of the velocity components for the wake flow (section 4-23). There-

fore the same cascade parameters are of equal importance in the two different

flows. The width of the wake is 2 6 in the wake flow, while in the skewed

flow 2 6 is the width of the skewed flow layer.

5.2.6 Correlation of Theory and Experiments

A Fourier series, 5-50, using four terms m = 1, 2, 3 and 4 has been

used to describe the inlet flow angle variation to the cascade, see Figure 45.

The actual values of the cascade configuration parameters (given in Appendix

B) have been substituted in the formulae derived previously, and the trans-

verse and spanwise flow deviation angles have been calculated. In the cal-

culations the first three terms in the series for Y and Y have been retained,

i.e. n = 1, 3 and 5. The magnitude of the inlet velocity was not constant

but two wakes were generated at the ends of the skewed flow layer. The second-

ary flow caused by these two wakes has also been calculated. This calcula-

tion was performed as for a pure wake flow i.e the inlet angle distribution

was assumed to be constant. Details of this calculation are given in Appen-

dix C. The results of these calculations and of the experiments are pre-

sented as curves in Figures 47, 48 and 49.

5.2.6.1 The Maximum Transverse Flow Deviation Angle Pmax

The variation of the maximum transverse flow deviation angle over

the span is shown in Figure 47.

The position of the measured maximum underturning, 14*, was located

at midspan and about at the center of the effective flow passage at cascade

exit. The maximum overturning occured near the edges of the skewed flow layer
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and was about 2* on one side of midspan and about l on the other side.

Half a chord downstream the magnitude and distribution of the

maximum flow deviation angles were almost unchanged. The location of this

distribution in the flow passage had, however, moved toward the pressure

side of the blade wake.

The theory predicts the maximum underturnign to occur at the cen-

ter of the flow passage between two adjacent blades at midspan. Dut to the

stalling of the blades the effective flow passage did not coincide with the

flow passage established by the blade geometry. The tests showed that the

maximum underturning occurred at the center of the effective flow passage

instead of at the geometric center.

The theory predicts the maximum underturning to be about 11* and

to occur at midspan. The measured value was 14*. The shape of the theoreti-

cal curve at midspan is different from the shape of the measured one. The

inlet transverse flow angle curve represented by a Fourier series had a de-

fect at midspan (Figure 45) and the effect of this defect has been increased

through the calculations as canbeseen. If the correlation between the measured

inlet angle curve and the curve represented by a Fourier series had been bet-

ter the defect in the transverse flow deviation angle would have disappeared

and the overall correlation been better.

The theory predicts an overturning of about 6.5* while the experi-

ments showed only 20. The experimental curves show another region of under-

turning located about 2 inches from midspan and with a magnitude of about 10.

The theory does not predict this. However, the outlet transverse angle out-

side the skewed flow region had increased about 4 above the value measured

in the pure two-dimensional test. The transverse flow deviation angles have
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been measured from the direction of this increased free stream outlet angle,

since the theory used in the calculation is that of the effect of a small

perturbation on the two-dimensional cascade flow. If the transverse flow

deviation angles had been measured from the direction of the transverse

outlet angle, measured in the two-dimensional test, the correlation between

the theoretical and measured maximum overturning would have been close while

the correlation of the maximum underturning would have been somewhat poorer,

and a discrepancy of about 40 would have occurred between the theoretical

and measured curves in the free stream.

Adding the influence of the secondary flow caused by the two wakes

does not change the theoretical curve much. The maximum underturning in-

creases about 1*, but the mAximum overturning remains about the same. The

spanwise position of the maximum overturning shifts slightly toward mid-

span.

5.2.6.2 The Average Transverse Flow Deviation Angle P

The variation of the average transverse flow deviation angle over

the span is shown in Figure 48.

Due to the back flow at the cascade exit no averaging of the

measured angle distribution could be done there. Half a chord downstream

the maximum average transverse flow deviation angle, 10, occurred at mid-

span. No overturning occurred. This may be due to separation over the

central part of the cascade. The flow in the separated region has a lower

tangential momentum and is therefore turned less. When this flow moves down-

stream it mixes with the rest of the flow and reducees the average tangential

momentum, thereby decreasing the average transverse outlet angles in the mid-

span region.
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The theory predicts a maximum average underturning at midspan of

about 7@. However, the same argument about this value and about the shape

of the curve is valid here as it was in section 5.2.6.1. The theory also

predicts a maximum average overturing of about 35*o located near the outer

edge of the skewed flow layer but the measurements do not show this. The

explanation for this is given above.

Including the effect of the secondary flow due to the wake flow

does not change the theoretical curve much. The maximum average under-

turning increases by 10 while the magnitude c.maximum average overturning

remains almost the same. The spanwise position of this maximum average

overturning is shifted slightly toward midspan.

5.2.6.3 The Maximum Spanwise Flow Deviation Angle (max

Figure 49 shows the variation of the maximum spanwise flow devia-

tion angle over the span.

The average value over a blade spacing of the spanwise flow de-

viation angle due to the secondary flow should be zero at each spanwise

position (see section 4.2.2.2). However, the measurements half a chord

downstream (no averaging could be done at cascade exit due to the back flow)

showed an average-angle variation over the span. The axial velocity in the

skewed layer upstream of the cascade was less than in the free stream due

to the more nearly tangential direction of the skewed layer. After the cas-

cade the difference between the angle of thp skewed layer and the main stream

was less and so the axial velocity discrepancy between the skewed layer and

the free stream was less. This caused an overall spanwise flow toward mid-

span and was shown as a finite average-spanwise flow deviation angle. The
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measured spanwise flow deviation angles should therefore be corrected

with this average angle distribution before they are correlated with the

theoretical curves. However, this can not be done for the measured curve

at cascade exit, since no averaging could be done at that position. The

general trend, however, has to be remembered when the correlation is done.

The measured maximum spanwise flow deviation angle at cascade

exit was about 10* and 7* on either side of midspan. If they are corrected

for the overall spanwise flow these values would probably increase by about

2*. The location of these maximum angles was about 1 inch on either side

of midspan and very close to the pressure side of the blade wake. Half a

chord downstream these values were reduced to 7 and 5*, respeatively, or

corrected for the overall spanwise flow to about 90 and 7*, respectively.

The spanwise position for these maximum angles remained almost the same.

The maximum average spanwise flow deviation angle was about 2*, located

at about 1.2 inches from midspan.

The theory predicts the maximum flow deviation angle to occur

at the blade wakes and this is confirmed by the measurements. The theory

predicts the maximum angle to about 10* which agrees well with one of

the two uncorrected measured values obtained at cascade exit. The posi-

tion for this maximum angle agrdes, also, with the measured value. Add-

ing the influence of the secondary flow due to the wake flow increases

the maximum angle to about 110 which also agrees farily well, and certainly

better, with the corrected maximum angle due to the overall spanwise flow.

The spanwise pogition of the maximum angle is changed only slightly to-

ward midspan.



76.

5.2.6.4 Conclusions

The partial stalling of the cascade has essentially disturbed the

flow by blocking part of the cascade and thus changing the effective geometri-

cal configuration. It has also reudeed the, turning of the flow in that part

of the cascade and is probably responsible for the overturning of the flow in

the free stream. Under these conditions a very close correlation between

theory and experiment is not to be expected. Nevertheless the experiments

did prove the general predictions of the theory and in some respects a good

correlation between predicted and measured values was obtained. This was es-

pecially true for the positions of the extreme values of the flow deviation

angles. The correlation for spanwise flow deviation angles was better than

the correlation for transverse flow deviation angles. This is probably due

to the fact that the partially stalling of the cascade has less influence on

the flow in spanwise direction.

5.2.7 Actuator Disc Theory

5.2.7.1 Statement of the Problem

As the flow moves downstream from the cascade exit the stream-

lines shift their spanwise positions thereby causing a change in the trans-

verse angle distribution. The problem can then be stated as follows: given

the transverse angle distribution at cascade exit determine the distribution

infinitely far downstream. As a means to do this an actuator disc approach

will be applied.

5.2.7.2 Solution

The cascade is replaced by an actuator disc which may be essentially

regarded as a cascade containing an infinite number of blades of infinitesimal
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chord. This actuator disc produces an abrupt change in transverse velocity

across the disc but permits a continuous variation of the axial and spanwise

velocities across the disc. The nomenclature and coordinate system is shown

in Figure 50.

Since the disc is uniform in transverse direction all properties

are independent of y and so

a- = 0-o9 5-56

The equations 5-8., b, and c and 5-10 are still valid in this case and insert-

ing 5-56 in these equations yields:

k u- 5-57

k 
kv 5-58

+ = 0 5-60ak a Z
Multipilying 5-57 by -w and 5-59 by u and adding, the result yields:

aV + W 05-61

This equation expresses the fact that v remains constant along a streamline.

From equation 5-27 (which is valid, in general, when VP = 0 )

we know that k is constant along a streamline. Equation 5-58 then shows that

is constant along a streamline. It is to be noted that the results above

are only valid in each of the flow regions separated by the disc and are not

valid across the disc.

Multiplying 5-58 by u and 5-57 by v and subtracting the result
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yields:

utq - v = -.( z- a)- V =0 5--62

But 1 is of a smaller order of magnitude than !4- and so may be written

S =5-63

Introducing 5-63 into 5-62 yields

. +v2 a 5-64

At the disc 5-64 beccmes

. 09- =0 5-65

(x, 2) is constant along a streamline. Assuming the spanwise shift of

the streamlines small, () may be considered a function of z only, and

so

Go tz ) ?z5-66

Introducing 5-66 into 5-65 yields

S-a? + v -5-67

But vo= u cot ao2  5-68

which substituted in 5-67 yields

da 5-69

The partial derivatives have been changed to thtal ones since u., u and

ao2 are functions of z only.

is, to the approximations above, independent of x. This im-

plies that the axial velocity at the disc (x = 0) is the medn of the values

at x = -00 and x = +00
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i.e. V. = 2. + 5-70

Introducing 5-70 into 5-69 and rearranging yields:

2(2+ C 2/ / 'o u 5-71 Cea .7 d- +Coe -,z da
This is a linear non-homogeneous differential equation with variable co-

efficients. It can easily be solved to yield

= d7C
/Z 62o, 2,cogZcg d 5-72

where C may be found by applying the continuity equation. Equation 5-72

relates the axial velocity distribution at cascade exit to that upstream

when the transverse angle distribution at cascade exit is known. The aver-

age transverse angle distribution found by the secondary flow analysis may

t e taken to represent the angle distribution at cascade exit. Since ao2

is given by a very complicated formula, a .numerical'. solution of 5-72 has

to be performed.

Using 5-70 the axial velocity distribution far downstream may be

computed. Equation 5-61 showed that v is constant along a streamline. It

was assumed that the shift in streamlines was small. This gives

OZ 2 = 2Z)5

or a0 COdQt = Lt2

and so

This formula relates the transverse flow angle far downstream to the one at

cascade exit. Duie to the stalling of the cascade no average-transverse flow
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angle distribution could be found at cascade exit and thus no check on the

validity of the derived formulae could be performed.

5.3 Losses and Kinetic Energy of Secondary Flow

5.3.1 Results of Measurements

Due to the back flow at cascade exit no measurements of the kinetic

energy of the secondary flow could be performed there. Half a chord downstream

the magnitude of the velocity vector was computed using the measured values

of stagnation pressure and stream pressure. Using this value of the magni-

tude of the velocity vector and the measured flow deviation angles, the kine-

tic energy of the secondary flow was computed and plotted in the same way

as for the wake flow, section 4.3.1. The resulting curve is shown in Figure

51.

The curve has two maximum points. One at midspan caused by the

large underturning of the flow there and one of much smaller magnitude

located about 1.5 inches from midspan. This was caused by the flow deviation

at that position. As was noted in sections 5.2.6.1 and 5.2.6.2 the maximum

transverse flow deviation angles showed a slight overturning at this position

while the average transverse flow deviation angles showed underturning. The

overall result of this was a very slight increase of the kinetic energy of

the secondary flow above the values at neighbouring spanwise positions.

The area integrated value of the kinetic energy of the secondary

flow was

P =-0,14 %
in0



81.

The ratio of the kinetic energy of the secondary flow bound in the span-

wise flow to the total kinetic energy of the secondary flow was 0.21.

This is a much lower ratio than the one for the vake flow. It may be due

to stalling of the blades at midspan which caused an additional region of

underturned flow and- thus increased the kinetic energy of the transverse

secondary flow and also caused this flow to persist as it moved downstream

while the spanwise velocity component decreased rapidly (see Figures 47

and 49).

5.3.2 Theoretical Calcualtion of the Kinetic Energy of the

Secondary Flow

In Appendix F is given the derivation of the formula for the

ratio of kinetic energy per unit volume of the secondary flow to the kinetic

energy of the flow entering the cascade.
C') (2)

C + 2a57

where f, g and h are functions given in Appendix F.3.1.

This formula is composed of three parts.

1. the contribution from the skewed flow only

2. the contribution from the wake flow only

3. the contribution from the interaction between the

skewed flow and the wake flow.

The comments made on the corresponding formula, 4-39, of the wake flow are

applicable also for this formula.

The actual values for this test were substituted in 5-75 and gave

as a result

- = 0. 26 %/,
K-Iis
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The contribution to this value from the three different terms in 5-75 were

1. 0.252%

2. 0.022%

3. -0.018%

The influence of the wake flow is almost negligible as most of it was can-

celled by the "interaction term". This could be expected from the distribu-

tion of the flow deviation angles (Figures 47, 48 and 49) where it was

shown that the influence of the wake flow was very small.

The theoretical value of 0.26* is to be compared to the measured

value of 0.14% half a chord downstream. Half a chord downstream the measured

underturning flow angles agreed well with the calculated ones but there was

no correlation between the predicted overturning angles and those actually

measured. The measured spanwise flow deviation angles were much less than

the predicted ones. From this it would be expected that the measured kine-

tic energy of the secondary flow would be less than the theoretical, the

discrepancy being greatest where the theory predicts overturning of the flow,

which is also the case (Figure 51). The magnitude of the actual velocity

vector is smaller than the theoretical one at midspan since the stalling of

the cascade there reduces the stagnation pressure and so tae velocity.

This increases the discrepancy still more between the predicted and measured

values of the kinetic energy. Noting these effects, the correlation between

predicted and measured value of the kinetic energy of the secondary flow may

be considered satisfactory.

The spanwise distfibution of the kinetic energy of the secondary
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-~ ~ ' 2- YfP (lZ / / (iT2c'L)7
bH EL5 (PS ~ n n +n~wJhL~n o/ sr WJ 5-76
n

This formula is composed of three parts:

1. the contribution from the skewed flow only

2. the contribution from the wake flow only

3. the contribution from the interaction between 1 and 2.

Tbe actual values for this test have been substituted in 5-76. The results

are shown graphically in Figure 51.

The shape of the curves for the predicted and measured values

is similar except at the midspan where the predicted curve has a defect.

This defect is caused by the defect in the curve representing the inlet

transverse flow angle and would have disappeared if one more term had been

added to the Fourier series representing the inlet angle distribution. The

predicted curve also confirms the statements about the discrepancy between

measured and predicted values of the kinetic energy mentioned before.

5.5.5 Losses

Most of the discussion concerling the three-dimensional losses

for the wake flow in section 4.3.3 is valid even for this case and will

therefore not be repeated here.

The measured area averaged stagnation pressure defect distribu-

tion over the span, half a chord downstream, is shown in Figure 52. The

maximum pressure defect amounted to 37.5% of the reference dynamic pressure.

The two-dimensional loss outside the stalled region amounted to about 1.6

which was the value measured in the two-dimensional test (section 3.2).

The stagnation pressure defect, in excess of this two-dimensional loss,

83.
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averaged over the span, 16 inches, was 6.6%. The inlet stagnation pres-

sure defect, due to the two wakes, averaged over the span was 2.5%.

The difference between the averaged outlet ("in excess") and

inlet stagnation pressure defect is called the complementary loss and

was 4.1%. This is a large loss and is somewhat greater than the losses

usually measured in an actual compressor stage and attributed there to

secondary losses. However, its magnitude depends on the size of the span

over which it is averaged. The energy of the secondary flow was 0.14%

and is not included in the complementary loss above. As can be seen the

kinetic energy of the secondary flow is almost negligible and is less

than 10% of the two-dimensiional loss. The conclusion from this result

will be drawn in section 7.

5.4 The Tangential Component of the Blade Force

5.3.1 Results of Measurements

Stream pressure distribution on the blade surfaces was measured

at 6 different spanwise positions located 1/8", 3/8", 5/8", 1 1/8", 2 1/8"

and 4 1/8" from midspan.

The results of the measurements are presented as plots of the

tangential component of the pressure distribution around the blade sur-

faces, and as the tangential iressure coefficient, CT. The plots are

shown in Figure 53 and a contour map of the pressure distribution is

shown in Figure 54. The curves show a strong separation over most of

the chord in the skewed flow region. The stream pressure there is al-

most the same as the stream pressure of the reference probe upstream of

the cascade. The spanwise change of stream pressure on the pressure
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side is slight over most of the chord. At the trailing edge the stream

pressure drops in the skewed flow region while it is higher than the free

stream value a short distance behind the leading edge. This is due to

the increased angle of attack of the flow in the skewed layer, which

moves the stagnation point away from the leading ddge.

The defect of the stream pressure in the skewed flow region

results in a lower tangential pressure coefficient there, as may be seen

in Figure 55.

5.4.2 Theoretical Calculation of the Tangential Component of

the Blade FQrce

In Appendix G the derivation of the formula for the tangential

pregsure coefficient, CT is presented:

Cg z ~ % N 2,c e ('.. *'' 4

f??!5 4 0//no! 2 16 S/In f

This expression may be interpreted as follows:

1. z/ o1 ' - Co) is the tangential pressure coefficient

if the flow is uniform over all the span;

2. -2/2'/ .d-7'is a reduction due to the decreased mass

flow in the two wakes;

3. is an increase due to the increased flow

angle of attack;

4. -Z coZ cy (coe-C cc,4,( 4 is a reduction due to the decreased mass

flow in the skewed flow;

SDw,5.- is a reduction due to the secondary

2- flow caused by the wake flow
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6.- 'c'- is the same as 5 but caused by the
2

skewed flow;

7-"- DS + .. s1 i d' z SW, is an increase caused by the interaction
flglP2 , 2 )W
2

of the wake flow and the skewed flow.

The actual values for this test liave been substituted in formula 5-77.

The results of this calcualtion are given in the following table.

TERM VALUE PERCERTAGE

1 0.52088 S. 51283
2 -0.00815 -1.55%

3 0.04345 8.34
"0.00181 -0.35

4 -0.04526 -8.69

5 -0.00056 -0.l1

6 -o.oo448 ..o.oo469 -0.86 -0.79

7 O.0 00 35 0.07

CT 0.50633 Sum: -2.69%

The decrease in CT from its two-dimensional value is thus 2.7%, of which

term (2) contributes more than half. The reduction due to the secondary

flow is small. The measured reduction is 4.9, to be compared with the

calculated value of 2.7%. A reason for this discrepancy is the partial

stalling of the cascade which reduces the tangential momentum, and which

is not accounted for in the theoretical value.

In the calculation leading to the above results the two-dimen-

sional value of the transverse outlet angle of 64.4* has been used in-

stead of the measured free stream value of 68.40. This gives CT = 0.521

in the free stream (term (1) in the table above) to be compared with the
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measured value of CT = 0.508 which agrees favorably with the value measured

in the two-dimensional test (section 3.3). The calcualted value is 2.5%

greater than the measured one. Using the measured outlet angle, 68.4o,

gives CT = 0.604 which shows the rapid change in CT with a . This cal-

culated value is 19 % greater than the measured one. In deriving formula

5-77 a two-dimensional flow was assumed, where the streamlines do not

shift position in spanwise direction. In the investigated flow this was

not the case. Boundary layer growth on the end walls, partial blockage

of the cascade through stalling, and secondary flow shift the streamlines

and change the axial velocity profile, thereby violating the assumptions

above and causing great errors in the calculation of the free stream tan-

gential pressure coefficient. The reduction from its two-dimensional value

of the average tangential pressure coefficient due to the secondary flow is,

despite the violations of the assumptions, fairly well predicted. This will

also be demonstrated in the skewed wake flow case.

6 SKEWED WAKE FLOW

6.1 Results of Measurements

The results of measurements are presented as contcur maps over

the traversed areas showing stagnation pressures, stream pressures, trans-

verse flow angles and spanwise flow deviation angles.
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6.1.1 Upstream Conditions

6.1.1.1 Transverse Inlet Flow Angles

Figure 56 shows the transverse inlet flow angle variation over

the traversed area upstream of the cascade. The angles varied between

about 45* in the free stream and about 20* in the center of the skewed

flow layer. There was a variation of the inlet angle of about 40 in

tangential direction in the center of this layer, over the traversed

area. This disturbed the assumption of tangential uniformity.

6.1.1.2 Stagnation Pressure

The stagnation pressure distribution over the traversed area

is shown in Figure 57- The stagnation pressure defect in the center of

the skewed wake flow amounted to about 55% of the dynamic reference pres-

sure. The distribution was fairly uniform in tangential direction. The

spanwise width of the wake was about 3.5 inches. The spanwite profile

of the wake was wave shaped. The pressure defect was slightly greater

half an inch from either side of midspan than at midspan itself thus

giving rise to two small wakes inside the big wake all three extending

in tangential direction.

6.1.1.3 Stream Pressure

Figure 58 shows the variation of the stream pressure over the

traversed area. The stream pressure distribution for this flow is very

similar to the one for the skewed flow. The stream pressure distribution

around the blades of the cascade can clearly be seen as vertical contour

lines modified by the pressure distribution in the skewed wake flow layer.

Also this distribution showed a slight lack of uniformity in tangential

direction.
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6.1.2 Downstream Conditions

6.1.2.1 Stagnation Pressure

The stagnation pressure distributions at the two areas traversed

are shown in Figures 59 and 60.

The blades were heavily stalled over a large part of the central

span as can be seen in Figure 59. The right-hand blade of the two that

were investigated was more heavily stalled than the other due to the un-

even suction side surface. A constant back flow was .created at the suc-

tion side of the blades around midspan. The back flow was traced in the

same way as it was in the skewed flow case so that the limiting line on

the contour map between the back flow region and the through flow re-

gion may not be considered very accurate. The back flow did, however,

extend over a greater part of the span in this case than in the skewed

flow case.

The spanwise width of the wake was reduced close to the pres-

sure side of the blades at cascade exit indicating a spanwise flow toward

midspan at this position. The Bernoulli surfaces were slightly turned

from the horizontal, partly because of the secondary flow and partly due

to stalling, which reduced the flow passage area.

Half a chord downstream, Figure 60, the back flow had disap-

peared leaving a region of low stagnation pressure in its previous posi-

tion, and the skewed wake had diffused slightly. The distortion of the

Bernoulli surfaces persisted, being greateat in the region of previous

back flow. The two small wakes, inside the big wake, in the inlet flow

were traced as two horizontal wakes at about the center of the blade
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passage at midspan. The centers of low stagnation pressure had moved

slightly away from the suction side of the blade wakes toward the centers

of the blade passages.

6.1.2.2 Stream Pressure

Figures 61 and 62 show the stream pressure distributions at

the two traversed areas.

In each flow pasopge at cascade exit, defined by two adjacent

blade wakes, there was a region of low stream pressure located close to

the suction side of the blade wake and with two minimums, each located

about 1.5 inches from midspan. The pressure defect in these minimums

ranged between 14 and 20% of the reference dynamic pressure. The low

pressure in these regions was caused by the partial stalling of the

blades which reduced the turning of the flow through the cascade and thus

reduced the pressure rise over the cascade in this region. Close to

the pressure side of the blade wake at midspan was a region of stream

pressure slightly higher than ambient. The pressure defect here was about

6%. This is the region where the secondary flow should have a stagnation

point. Another stagnation point should be located at the suction side of

the blade wake at midspan. The stream pressure here was slightly higher

than further away from the midspan.

Half a chord downstream the shape of the pressure distribution

remained the same but the magnitude of the greatest pressure defects had

been reduced to about half their values at cascade exit. The locations

of the pressure defect minimums remained almost unchanged relative to the

flow passages between the blade wakes. These two low stream pressure
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regions persisted fairly well as the flow moved downstream. This in-

dicates that they were the centers of two vortices extending in stream-

wise direction.

6.1.2.5 Transverse Flow Angles

The transverse flow angle distributions at the two traversed

areas are shown in Figures 63 and 64.

The strong distortion of the flow due to the stalled flow re-

gion makes an interpretation of the contour map at cascade exit difficult.

The transverse flow angles in the skewed wake flow region at cascade exit

differed very much from the two-dimensional values. The angles varied

from a slight underturning at the pressure side to a stz'ong overturning

(axial flow direation) close to the back flow region. The flow angles

in the badk flow region could not be measured. This overturning was

caused by the back flow region with its low stream pressure and is not

to be attributed to the secondary flow. Due to the low dynamic pressure

in this region the transverse velocity components were small despite the

large flow deviation angles.

There were two regions of slight underturning located sym-

metrically about 2.5 inches from midspan and midway between two adjacent

blade wakes, thus indicating a secondary transverse flow from the suc-

tion side of one blade wake to the pressure side of the adjacent blade.

Half a chord downstream the flow picture had changed radically.

There was now strong underturning in the flow regions where previously

there had been back flow with strong overturning. This proves that the

overturning in the back flow region at the cascade exit was not caused



by the secondary flow but by the stalling of the blades. This fluid had

been given less tangential momentum in the cascade due to the separation

and was thus turned less. At cascade exit this was masked by the back

flow. Around midspan between the regions of underturned flow the trans-

verse flow angle remained f irly constant and was almost the same as in

the free stream. The disappearance of the strongly overturned flow is

evidence that this flow was due, to stalling and was not caused by the

secondary flow. A4 a summary of these measurements we may say that the

variation of the transverse flow angle due to the secondary flow was

small but the partial stalling of the cascade caused a large distortion

of the flow angles.

6.1.2.4 Spanwise Flow Deviation Angles

Figures 65 and 66 shQw contour maps of the spanwise flow devia-

tion angles at the two traversed areas.

A very complex flow angle distribution was found at cascade

exit. Several regions of large -spanwise flow deviation angles were

located in the skewed wake flow layer.

Two of these were located at opposite sides of midspan about

1.5 inches apart and close to the pressure side of the blade wakes. The

angles there indicated a spanwise secondary flow toward midspan.

There were also two regions of spanwise flow, located sym-

metrically about 3 inches from midspan at the edges of the back flow re-

gion, with the flow directed away from midspan. The positions of these

regions agreed with the positions of the stream pressure minimums.

Closer to midspan and slightly away from the back flow regions were two

other regions in which the flow was directed toward midspan.

92.*
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Half a chord downstream the regions of spanwise flow deviation

angles at the pressure side of the blade wakes persisted and the magni-

tude of the angles there was almost unchanged while most of the other

spanwise flow deviation angle regions had disappeared. Whether these

spanwise flows were created by the secondary flow or by the partial

stalling of the cascade could not be determined. It seems, however,

they were not due to the secondary flow since then the spanwise flow to-

.ward midspan at the pressure side of the blade wakes would be followed

by a spanwise flow away from midspan at the other side of the blade wake.

The flow angles in the two regions would then be almost the same, the

only difference being caused by an overall spanwise flow toward midspan

from the smoothing out of the skewe.d wake.

6.1.2.5 Streamline Traces in Carbon Black

Streamline traces in carbon black on the blade surfaces are

shown in Figure 67 (pressure side) and 68 (suction side).

The dark region behind the leading edge of the pressure side,

extending in spanwise ,direction, indicates a transition from laminar

to turbulent boundary layer terminating at the cuter edges of the skewed

wake flow layer. At these positions the flow was very turbulent due to

the interaction between the skewed flow and the free stream. The magni-

tude of the velocity was almost the same as in the free stream thus the

skin friction at the blade surface was high, removing the carbon black.

Inside the skewed wake flow layer the velocity was low resulting in low skin

friction indicated by the. dark region there. The streaks at midspan posi-

tion are pointing toward midspan indicating a spanwise flow in this direc-

tion.
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The stalled flow region was separated from the unstalled flow

region on the suction side by a dark line, visible in Figure 68. The

stalled flow region was triangular in shape with its tip toward the lead-

ing edge and its base along the trailing edge, where it covered a large

part of the span. Due to the low velocities in this region the direction

at the blade surface was difficult to 4etermine. It seems, however, that

the flow was directed away from midspan.

6.2 Analysis of the Secondary Flow

6.2.1 Statement of the Problem

The problem to be considered is the three-dimensional flow in

a cascade caused by a skewed wake flow at the inlet of the cascade. The

problem is thus the same as the one of the skewed flow, however, the in-

let conditions are different and more complicated in this case. The gen-

eral assumptions made about the flow in the skewed flow case are valid

here. An exact analytical solution of the flow field of the skewed

flow was shown not to be feasible and thus the same will hold true for

this case. Even in this case we must restrict ourselves to try to solve

just for the flow in a plane downstream of the cascade.

6.2.2 Determination of the Distributed Streamwise Vorticity

Component Downstream of the Cascade

To solve the problem, a small perturbation theory will be

applied. Consider the flow in a plane perpendicular to the direction

of the two-dimensional flow behind the cascade. The similarity be-

tween this problem and the one of the skewed flow permits the use of

the same coordinate system and the same notations (see Figure 44).
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The equations for the vorticity components are

_= 2V 6-1
Dy ' z

3V- 6-2

'_ av aU 6-3

Considering the secondary flow in the selected plane the continuity

equation becomes

a v - 6-4

Define a stream function T for the secondary flow such that

and which satisfies the continuity equation identically and transforms

6-1 to

- + = - 6-5

where

= distributed vorticity component along a streamline.

This must be calculated before equation 6-5 can be

solved. However, 9 is given by formula 4-2 which

was derived by Hawthorne (20) and is applicable for

this case.



96.

2

(. ~ f zf ofIcde
2_ UI ? 4-2

The notation in thi s formula are explained in section 4.2.1. The in-

tegral has to be evaluated along a streamline from upstream of the cas-

cade (where the flow is defined) through the cascade, to the considered

plane behind it. However, at this stage the streamline pattern is not

known and so an exact integration of 4-2 cannot be performed. In order

to get a solution, we now assume the vorticity to be transported by the

two-dimensional flow instead of being transported by the induced velocity

and then integrate along a two-dimensional streamline. This method has

been used in the two previous flow cases and is applicable only if the

effect of the perturbation of the skewed: wake flow on the two-dimensional

flow is small.

The vorticity component E, is given by the inlet condition

6-6

But

wI = 0

and

V, = U, .5;nf,

thus

, U

6-7

6-8

6-9

) W, ' -
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Substituting 6-9 in 4-2 and rearranging gives
2

2 , (5') -220 IV Td 6-1o

whdre the partial derivative has been changed to the total since Ul and

1 are functions of z only.

The integral in 6-10 may be evaluated to yield either formula

4-1 or 4-8. However, formula 4-8 showed better correlation of theory

and experiment in the wake flow case and will therefore be used here.

Substituting 4-8 in 6-10 gives

.. UZ A .U516 (|+ ~o C050,- C0.5CX. '7 A
Z Ud si 1 / enOe, U, dE 6-11

Let

(0 +el 6-12Si/ 5 '1in o(,

6-11 then becomes

2 ~ dZ U + K 6-13

But

, U=.J - U 6-14

where

A U, <<U, 6-15

and
6-16

substituting 6-14 and 6-16 in 6-13 and neglecting second order terms
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The continuity equation is

U,6 n('h = U, 6; n oe 6-18

which "combined with 6-17 gives

-- ~ 11di3 ___

dz O ?z d a 6-19

or substituting the expression for K

z = U -(+ 5/1 7e -,,I- cosoei U

-- C5oo a t 6-20

This expression for the secondary vorticity, , is a superposition pf

the secondary vorticity for the skewed flow (5-36) and the wake flow (4-8).

The solutions obtained in sections 4 and 5 may thus be superposed to give

the solution of this flow problem.

If 4-1 is used instead of 4-8, would -then become

-j 2z'-E 'lu 6-21

Equation 6-5 together with 6-13, 6-20 or 6-21 with the pertinent

boundary conditions may now be solved. The boundary conditions in this

case axe the same as the ones for the wake flow and the skewed flow, i.e.

6-22

for y = 0, y = b, z = 0, and z = 1

Before solving equation 6-5 it will be of interest to study the ex-

pression for Sz -

6.2.3 Requirement for No Secondary Flow

The magnitude of the streamwise vorticity component, 2  is

a measure of the generated secondary flow. If 5 = 0, no secondary flow



will be established behind the cascade since in this case equation 6-5

changes an aPoisson's equation to a Laplace's equation, which together

with the boundary conditions Y = 0, along the boundaries, gives only

the solution T = 0 over the whole plane. The requirement for no second-

ary flow behind the cascade then becomes using 6-13

dz(U, + K)] = 0 6-23

which may be integrated to yield

U,(sinf, + k) = C = (os+rn+ 6-24

where C is given by the boundary condition:

at the edge of the skewed wake flow

3 = C) - U, = U 6-25

Substituting the value of C determined from 6-25 and 6-24 into 6-24

yields

- , i6-26
Assuming 1 and A ), to be small and substituting the value of K yields

Sin r) 06 ) CO 5, - CO S Oel 0
SIn oa/ nn V i 6-27

Using 6-21 instead of 6-13 gives

2 -
5 / /7ce QZ U/ 6-28

If the velocity distribution and the angle of attack at the inlet to

the cascade correlate according to formulae 6-27 or 6-28 no secondary

flow will be established behind the cascade.

99-
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6.2.4 Mathematical Expressions for the Inlet Flow Conditions

The magnitude of the velocity in the center of the skewed wake

flow was set so that, according to formula 6-28, no secondary flow would

be created at midspan. The reason for using 6-28 instead of the more

correct formula, 6-27, was that the latter had not been derived when this

experiment was made. A complete absence of secondary flow behind the

cascade could not be expected since the velocity profile could not be

varied to correlate with (equation 6-28) the inlet angle distribution

everywhere over the span.

The transverse flow angle distribution upstream of the cascade

varied slightly in tangential direction. In order to get a distribution

that might represent the average condition a faired curve was drawn through

the measured data (Figure 69). This curve was closely represented by a

4-term Fourier series as shown in Figure 69.

In the same manner the stagnation pressure distribution was

represented by a faired curve as shown in Figure 70. From this faired

curve the velocity distribution was calculated with the assumption that

the stream pressure was constant over the span. This is a fairly valid

assumption as shown in Figure 58. This velocity distribution was then

closely represented by a 4-term Fourier series as shown in Figure 71.

The same base width, 2 6 = 3.5 inches, of the two mathematical curves

representing the angle and velocity distribution, was used. A better

correlation between the mathematical curves and the measurements would

have been oipbtained if different base widths had been used i.e.

2 = 3.2 inches for the angle distribution and 2 S = 3.8 inches for

the velocity distribution. The reason for using the same value for the
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two curves was that it reduced the numerical calculations considerably

and this was justified by the fact that the severe stalling of the cas-

cade effectively masked the secondary flow caused by the skewed wake

flow, so that an accurate correlation of theory and experiment would not

be expected.

Two different calculations have been made. In the first, a

skewed flow and a wake flow were calculated separately using the inlet

conditions represented by the two previous Fourier series. Their results

were superposed to give the secondry flow deviation angles due to the

skewed wake flow. Formulae 4-8 and 5-36 were used to represent the stream-

wise vorticity component. The values used in th.'e numerical calculations

are shown in Appendix D and the results are shown graphically in Figures

73, 74 and 75.

In the second calculation the more accuxate expression, 6-11

for the streamwise vorticity component has been used. The function

U, (sin Pl + K), in this expression, was calculated from values taken

from the faired curves of the inlet angle distribution and the velocity

distribution, and was represented by a 4-term Fourier series as shown in

Figure 72. The values used in the numerical calculations are shown in

Appendix E and the results are shown graphically in Figures 73, 74 and

75. In all the calculations the first three terms in the series for

Y and L have been retained, i.e. n =1, 3 and 5.

6.2-5 Correlation of Theory and Experiment

The partial stalling of the cascade distumbed the flow severely,

effectively masked the secondary flow caused by the skewed wake flow, and
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made a correlation of theory and experiments very difficult. The cas-

cade was also partially stalled in the skewed flow case but the stalled

flow region was smaller and the secondary flow much stronger, thus mak-

ing a correlation easier. The secondary flow was assumed to be very

small in the present case.

6.2.5.1 Maximum Transverse Flow Deviation Angle, smax

Referring to section 6.1.2.3 the only conclusion to be drawn

about the measured maximum transverse flow deviation angle due to the

secondary flow is that it is small.

The calculated spanwise distribution of the transverse flow de-

viation angle is shown in Figure 73.

The first method, superposing the solutions of a wake flow and

a skewed flow, gives a maximum underturning of about 5-50 at midspan and

a maximum overturning of about 1.5* at the outer edge of the skewed wake

flow layer.

The second method gives two locations for maximum underturning,

one at midspan and one about 1.2 inches from midspan. The magnitude of

the underturning is about the same, 2.50, at each position. There are

also two locations of maximum overturning, one located about 0.7 inches

from midspan and the other about 1.8 inches from midspan, both having

the same amount of overturning (less than 10).

The cross product term which is neglected in the first method

is responsible for the difference between the two results and it may not

be neglected in a case where the inlet distortions are great.



103.

6.2.5.2 Average Transverse Flow Deviation Angle,

The variation of the measured aerage-transverse flow deviation

angle over the span half a chord downstream of the cascade, together with

the calculated distributions are shown in Figure 73.

The measured curve shows an underturning over the central part

of the span. This is mainly caused by the separation of the blades over

this region. In this i 2gion of general underturning there are three

peaks of underturning, one at midspan and one on either side of midspan

located about 4 inches apart. They are all of about the same magnitude,

3-5*, Between these peaks of underturning there are two regions of

smaller underturning located at about 1 inch on either side of midspan.

The underturning in one of them is about 20 and is almost zero in the

other.

The average flow angle in the free stream had increased by

about 1-5' above the value measured in the pure two-dimensional test.

The two calculated curves have the same general shape and show flow de-

viation angles of the same order of magnitude as the measured one, but

due to the influence of the stalling on the measured data no correlation

may be made.

6.2.5.3 Maximum Spanwise Flow Deviation Angle, Ymax

Figure 74 shows the calculated curves of the maximum span-

wise flow deviation angle distribution.

The first method gives a maximum angle of 3* while the second

method predicts 1.50. The locations of these maximum values also differ.

According to the first method the maximum should be located about 0.7
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inches from midspan while the other method places it 1.5 inches from

midspan.

6.2.5.4 Conclusions

The partial stalling of the cascade has essentially disturbed

the flow by blocking a large part of the cascade and thus changing its

effective geometrical configuration. It has reduced the turning of the

flow in the stalled part of the cascade and is probably responsible for

the overturning in the free stream. The stalling of the cascade effec-

tively masked the secondary flow caused by the skewed wake flow. A

close correlation of theory and experiment may not be expected under

these circumstances and the only conclusion to draw is that the measured

secondary flow downstream of the cascade caused by the skewed wake flow

was very small, which was predicted by the theory.

6.3 Losses and Kinetic Energy of Secondary Flow

6.3.1 Results of Measurements

The experimental data; flow deviation angles, stream pressure,

and stagnation pressure, were used to calculate the kinetic energy of

the secondary flow in the same way as for the skewed flow (section 5.3.1).

The result is shown in Figure 76. The curve has two maximum points.

One located at midspan, caused by the transverse flow at this position.

The other, located about 2 inches from midsapn, is of greater magnitude

than the first and is caused by the underturning at this position as

may be seen in Figure 74. The amount of underturning is about the same

at this position as at midspan, however, the magnitude of the velocity

vector is much smaller at midspan due to the wake and so the kinetic

energy of the secondary flow is smaller at midspan.
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The area integrated value of the kinetic energy of the secondary

flow is

E-L =- O13

The ratio of the kinetic energy bound in the spanwise flow to the total

kinetic energy of the secondary flow was about 0.3.

6.5.2 Theoretical Calculation of the Kinetic Energy of the

Secondary Flow

An Appendix F is given the derivation of the formula for the

ratio of the kinetic energy per unit volume of the secondary flow to the

kinetic energy of the flow entering the cascade:
C') (2) (3)

'S _ C '1 C 1/5/2. /Z Ct/e z

L F-46

where f, g and h are functions given by formula F-31, F-40 and F-41 in

Appendix F-4.

For convenience the meaning of the three terms in F-46 is re-

pea ed here.

1. is the contribution from the skewed flow only

2. is the contribution from the wake flow only

3. is the contribution from the interaction between the

skewed flow and the wake flow.

The actual values for this test were substituted in F-46 and gave

S0,05-%

The contribution to this figure from the three terms in F-46 was

1. 0.41%

2. 0.18

3. -0.54
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The predicted value of 0.05% is to be compared to the measured one of

0.13% half a chord downstream. It would be expected that the predicted

value should be greater than the one measured half a chord downstream

since the secondary flow has been diminished. However, the measured

value includes the effect of the stalling of the cascade which results

in increased flow deviation angles, and thus in higher measured kinetic

energy of the flow in the plane studied. The result of this part of the

investigation can therefore be summed up: the kinetic energy of the flow

due to the secondary flow and to stalling are of the same order of magni-

tude, and the kinetic energy of the secondary flow is very small.

The spanwise distribution of the kinetic energy of the secondary

flow has also been calculated using formula F-49, derived in Appendix F-5.

The result is shown in Figure 76.

The predicted curve shows three maximum points due to maximum

flow deviations at these locations. The minimum point located about 1.2

inches from midspan is caused by the fact that there is no transverse -

flow deviation and only a very small spanwise flow deviation at this

position. The theory predicts the kinetic energy distribution to be con-

centrated more around midspan than was actually measured.

6.3. Losses

Most of the discussion concerning the three-dimensional losses

for the wake flow in section 4.3.3 is valid for this case and will there-

fore not be repeated here.

The measured area averaged stagnation pressure defect distribu-

tion over the span half a chord downstream of the cascade is shown in
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Figure 77. The maximum stagnation pressure defect amounted to 48% of

the reference dynamic pressure. The two-dimensional loss outside the

stalled region amounted to about l.6% which was the value measured in

the two-dimensional test (section 3.2). The stagnation pressure defect

in excess of this two-dimensional loss, averaged over the whole span

(16 inches) amounted to 11.4%. The inlet stagnation pressure defect, due

to the wake, averaged over the span was 5.7%.

The difference between the averaged-outlet stagnation pressure

defect (in excess of the two-dimensional defect) and the inlet one is

called the complementary loss and amownted to 5.7%. This is. a large

loss and is greater than that part of the loss usually attributed to

secondary flow in an actual compressor.

The measured kinetic energy of the secondary flow and the flow

deviations due to the stalling, amounting to 0.13%, has not been included

in the complementary loss for the reasons mentioned in section 4.3.3.

This kinetic energy is negligible compared to the complementary losses.

The conclusion of this result will be dr.wn in section 7.

6.4 The Tangential component of the Blade Force

6.4.1 Results of Measurements

Stream pressure distribution on the blade surface was measured

at the same spanwise positions as in the skewed flow case (5.4.1) and

the results have been plotted in the same way.

The variation of CT over the span is shown in Figure 55, the

projected stream pressure on the blade surfaces in Figure 78, and a con-

tour map of the pressure distribution in Figure 79. The curves show a
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very strong separation over most of the suction surface in the skewed

wake flow region. The pressure peak at the leading edge was reduced

in the skewed wake flow due to the reduced dynamic pressure there.

The stream pressure on the pressure side was lower in the skewed wake

flow than in the free stream and remained almost constant over a very

large portion of the chord.

6.4.2 Theoretical Calculation of the Tangential Component

of the Blade Force

The derivation of the formula for the tangential pressure co-

efficient CT is given in Appendix G together with an interpretation of

it. (The reader is referred to that when interpreting the results given

below.) The actual values for this test were substituted in formula G-41:

Value

0.52088
0.47993

-0.04095

0.04962
0.00207

-0.05169

-0.00260
0.00033

-0.00465

0.00692

o.478

Percentage of (1)

-7.86

9.53

-9.92

-0.50

-o.89

1.33

-8.31

The decrease in CT from its two-dimensional value is thus 8.3%, of which

term (2) contributes about 95%. The total effect of the changed angle

of attack in the skewed layer (terms 3 and 4) on the tangential blade

force was very small since the increased momentum due to the increased

Term

(1)

(2)

(3)

(4)

(5)

(6)

(7)

CT
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inlet angle was cancelled by the decreased mass flow in the same region.

The reduction due to the secondary flow (terms 5, 6 and 7) was also very

small. The measured reduction was 10.2% to be compared to the predicted

value of 8.3%. A reason for the discrepancy was the partial stalling of

the cascade which reduced the tangential blade force and which had not

been accounted for in the theoretical calculations.

In the calculations leading to the results above the two-dimen-

sional value of the transverse outlet angle, 64.4*, was used instead of

the measured free stream value of 66.0*. This gave CT = 0.521 in the

free stream (term 1 in the table above) to be compared to the measured

value of CT = 0.520. Using the measured value of 66.0* gave CT = 0.555.

In deriving formula G-41 by means of which these free stream values have

been calculated., a two-dimensional layer flow was assumed, i.e. the stream-

lines do not shift position in spanwise direction. In the investigated

flow this assumption was violated through the partial blocking of the cas-

cade due to stalling and thus changed the velocity profile and therefore

did not permit a good correlation. From Figure 55 it may be seen that

the value of CT in the free stream is about the same for the two-dJimen-

sional test, the skewed flow test, and the skewed wake flow test, but

not for the wake flow test. It may be just a coincidence but it could

also indicate that when only part of the flow is changed over the span,

in a fixed cascade configuration, so that the cascade is partially stalled.,

the flow adjusts itself so that CT remains constant while C varies in

the free stream. There are, however, no obvious reasons for this to occur.
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7 SUMMARY AND CONCLUSIONS OF THE INVESTIGATION AND THEIR APPLICATION TO

COMPRESSOR DESIGN

We have investigated three ways in which secondary flow is gen-

erated behing a compressor cascade.

1.) Wake flow. The inlet flow is characterized by a constant

inlet angle and a varying stagnatim pressure over the span. It may be

described by vortex sheets parallel to the top and bottom plates of the

cascade and with the vorticity-vectors perpendicular to the streamlines.

These vortex sheets turn when they move through the cascade so that the

vorticity vectors then have components along the streamlines and thus a

secondary flow is set up behind the cascade causing an overturning at

the spanwise center of the wake, and a smaller underturning at the edges

of the wake.

2.) Skewed flow. The inlet flow is characterized by constant

stagnation pressure and varying inlet angle over the span. It may be

described by vortex sheets parallel to the top and bottom plates of the

cascade, with the vorticity vectors parallel to the streamlines. The

vorticity vector changes proportionally with velocity vector along a

streamline, and so the vorticity vector reduces its magnitude when mov-

ing through a compressor cascade and increases its magnitude through a

turbine cascade.

An increased angle of attack in the skewed flow layer entering

the cascade causes a secondary flow behind the cascade opposite to that

caused by a wake flow.
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3.) Skewed wake flow. The inlet flow is characterized by a

variation of both stagnation pressure and inlet angle over the span, and

may be considered as a superposition of a wake flow and a skewed flow for

small variations of inlet angle and stagnation pressure. It may be de-

scribed by vortex sheets parallel to the top and bottom plates of the

cascade and with the vorticity vector at an angle to the streamline.

This, in general, causes a secondary flow behind the cascade. The direc-

tion of the secondary flow is dependent on the inlet conditions. For a

certain combination of inlet angle and stagnation pressure distribution

(given in formula 6-11) no secondary flow is generated behind the cascade.

There might be a secondary flow within the cascade but it is probably

small.

The secondary flow generated in all three cases is concentrated

in the vorticity region i.e. in the wake, the skewed flow layer, and the

skewed wake flow layer, respectively. The secondary flow outside these

regions is slight.

The difference in flow conditions, in this investigation of a

straight compressor cascade, and an actual compressor is appreciable and

the results from this investigation may only be applied to compressor de-

sign with great caution. Skin friction at the casings and radial pressure

gradients in a compressor can greatly change the flow picture from that

of this investigation. However, the skewed boundary layer on the casings

of a compressor is qualitativley the same as the skewed wake flow, thus

the secondary flow and the turning of the Bernoulli surfaces in a com-

pressor may be expected to be small.
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7.1 Flow Deviation Angles

The severe stalling at midspan in the skewed flow and skewed

wake flow case disturbed the flow appreciably and made a correlation of

the theory and experiment difficult. However, the flow deviation angles

predicted by the theory were, in general, well confirmed by the experi-

ments.

7.1.1 Transverse Flow Deviation Angles

In all investigated cases the maximum transverse flow devia-

tion angle was located at midspan i.e. in the center of the wake and the

center of the skewed flow layer respectively. The wake flow caused an

overturning at this position while the skewed flow generated an under-

turning. At the edges of the wake and the skewed flow layer a smaller

transverse flow was generated opposite to the direction of that at mid-

span. In the skewed wake flow case only a very small transverse flow

was generated.

The main stream was turned more in the skewed flow and skewed

wake flow cases than in the two dimensional test.

In an actual compressor the transverse flow deviation angles

may be expected to be small and may show up as an overturning, or an

underturning at the casings depending on the actual compressor design.

7.1.2 Spanwise Flow Deviation Angles

The maximum spanwise flow deviation angles were located close

to the blade wakes and about halfway between the edge and the center of

the wake, or skewed flow layer, respectively. The spanwise flow was in

opposite directions in the wake flow and skewed flow cases.
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The spanwise flow deviation angles due to secondary flow may

also be expected to be small in an actual compressor.

7.2 Kinetic Energy of the Secondary Flow

The kinetic energy of the secondary flow was in all cases con-

centrated in regions of high vorticity i.e. in the wake and the skewed

flow layers, respectively. The kinetic energy of the secondary flow was

very small and may be neglected completely in an actual compressor design

when considering the losses.

7.3 Losses

No losses created by secondary flow were found in the wake flow

case.

In both the skewed flow and the skewed wake flow cases the cas-

cade stalled over its midspan region. The stalled flow region extended

further in spanwise direction in the skewed wake flow case than in the

other case. Two vortices, one on either side of the midspan, where shed

from the stalled flow region in the skewed wake flow case but not in the

skewed flow case. The partial stalling of the cascade caused large losses,

in fact they were greater than those usually measured in a well designed

compressor blade row.

The flow in the stalled flow region was very unsteady and caused

unsteadiness in the free stream. This was observed visually by placing

a grid of streamers in the flow behind the cascade. Both the losses and

the unsteadiness of the flow were greater in the skewed wake flow case

than in the skewed flow case.

Applying the results of this part of the investigation to



an actual ccmpressor design may only be done with great caution. However,

secondary flow itself does not seem to give rise to any losses. The relative

motion between the blade rows increases the velocity gradient at the cas-

ings increasing the skin friction and thus the losses there. Since the

cascade stalled in the skewed flow and skewed wake flow cases, in this

investigation, where there was no end wall and the angle of attack was

less than can be expected in a real compressor, we may draw the conclu-

sion that, in an actual compressor, the blades stall at the casings, the

amount of stalling being dependent on the actual design. These losses

caused by the partial stalling of the cascade in the skewed boundary layer

regions at the casings may then be the losses that have been erroneously

attributed to secondary flow. The separation will probably be smaller

if the tangential velocity component has a finite value at the casing

at entrance to the blade row considered (see Figure la). From this view-

point shrouded stator blades will decrease the separation and losses at

the hub of the rotor blade rows.

The stalling at the casings blocks that part of the cascade,

changing its effective geometry and distorting the flow conditions in

the main flow. It also changes the inlet conditions to the next blade

row and gives rise to very unsteady inlet flow conditions to portions of

the following blade row which may increase the losses there and also

cause blade vibration.

A way to avoid this would be to twist the ends of the stator

blades in tangential direction to reduce the angle of attack and so

reduce, or eliminate, the stalling there. This would also reduce

the angle of attack in the skewed boundary layer at the casings
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in the following ro.or blade row and thus also improve the flow conditions

there.

7.4 The Tangential Component of the Blade Force

The stream pressure on the blade surfaces was reduced around

midspan in all three flow cases. The reduction was greatest for the

skewed wake flow and. smallest for the wake flow. This was expressed

by the tangential pressure coefficient, CT, based on the dynamic refer-

ence pressure. The reduction in CT due to secondary flow was very small

and could be neglected compared to the reduction due to the decreased

mass flow in the wakes. The spartial stalling of the cascade also reduced

C . This reduction was much smaller than the reduction due to the de-

creased mass flow in the wake, in the skewed wake flow case.

The increased tangential momentum per unit volume due to the

increased angle of attack in the skewed flow layer was balanced by the

re'Ouced mass flow in the same region so that its total influence on CT

for the cascade was almost zero.

The local value of C. actually obtained in the wake flow case

is higher than can be obtained in a two-dimensional cascade without separa-

tion. This shows that values of CT obtained from two-dimensional cascade

data will not give the corresponding information about a three dimension-

al flow.

CT in the main strem remained almost constant for the two-

dimensional, the skewed flow, and the skewed wake flow tests but was re-

duced in the wake flow test. This may just be a coincidence but it
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could also indicate that when only part of the flow is changed over the

span, in a fixed cascade configuration, so that the cascade is partially

stalled, the flow adjusts itself so that CT remains essentially constant

while C varies in the free stream. C decreases with increased stall-
P p

ing due to the increased losses. The effects above also show up as increased

transverse outlet flow angles in the free stream, in the skewed and skewed

wake flow cases.

Applying this part of the investigation to compressor design

would imply that the stream pressure varies in spanwise direction through

the skewed boundary layer on the casing. This being contrary to the gen-

erally accepted idea of a constant spanwise pressure in the boundary layer

on the casings. The variation in pressure is dependent on the actual de-

sign.

The reduction in tangential momentum in the skewed boundary

layers can be calculated just by correcting for the decreased mass flow

there.

75 Correlation of Theory and Experiment

The partial stalling of the cascade in the skewed flow and

skewed wake flow cases disturbed the flow appreciably and masked the ef-

fects of the secondary flow, .-aking a correlation of theory and experiment

difficult. Despite this, good and satisfactory correlation of theory and

experiments were found in all cases investigated.
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8 SUGGESTIONS FOR FURTHER WORK

This investigation could be extended as follows:

1.) Reduce the angle of attack in the skewed layer in order

to unstall the blades. This would allow a better correlation of theory

and experiment.

2.) Reduce the spanwise thickness of the skewed layer. It

is felt that the spanwise variation of stream pressure and the stalling

is dependent on the ratio of the skewed flow layer thickness to the chord.

3.) Twist the blades in the skewed flow layer in tangential

direction to allow for the increased flow angle of attack. This would

test the theory of reducing the losses.

4.) Insert a splitter board at midspan inside the cascade.

This splitter board would simulate the casings in a real compressor.

5.) Tests 2 and 3 repeated with the splitter board.

6.) Tests in a real compressor
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maiu
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APPENDIX A

A.l Integration of the Expressions for W, and 4.' for the Wake Flow

The formulae for , and W,' axe:

y)=8E b jrnAflT% b U~,~d
BE b -5 Z n T-/b db

qy8 csI ny 3/b d1_b
Y 

n -dU nZn 4-19

*M4d) /a- dy 0  b J

The velocity distribution is given by:

For 0 0 ' S
Be ?-,z f A-I

-/ = 1- cc r + toTr )4-4

Ud U, 4

valid in the wake, while

do '= A-2

outside the wake.

dUI

Because is not continuous over the whole region, 0 

the integrations of (4) and 4)m' have to be performed in two regions,

and S L
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We then get

for o 6
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Substituting AAl in the integrals above and integrating by parts yields
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Substituting A-7, A-8 and A-9 into A-3, A-4, A-5 and A-6 yields, after some

rearraigement:

For o s -i s S
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A.2 Numerical Calculations

The actual vlues for the cascade configuration and the inlet flow

(given below) have been substituted in the previous derived formulae and

the flow deviation angles have been calculated. In these calculations the

first three terms in the series for q) and 4) have been retained i.e., n =1,

and 5.

The values used in the calculations were:

= 8.000"

a = LI"

. = 4E. 7

C6= 64.4-*

E = 19.4-

When formula 4.8 has been used instead of 4.1 to express the stream-

wise component of the distributed vorticity vector, 2 E , has been changed

to (+- 0"Of ) (4co5 ' - C-S0Q in the previous formulae (A-10 - A-13).

The results of the calculations are shown in Figures 25,24, and

25.



B.l

APPENDIX B

B.1 Integration of the Expressions for W,) and 4), for the Skewed Flow

The formulae for t), and LP axe:

4L2b -s' ft
(n~? 'doTr f/,

" )nTr L/b J b

40 UZ fCask -r C,-"nr' c-
n-rr L n r jod b

tk n_ 7T7b U nTr . 5-41
S;A,, nr 9/b f T b

The inlet angle distribution is given by:

For O i 0 "

5-50

-, = A.,cos m r-
m-O

For 2 
_.

o) B-1

Differentiating 5.50 with respect to'2 gives

- m A,, me mT B-2

valid in the skewed flow layer, while

' B-3

outside the skewed flow layer.
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Because -fM is not continuous over the whole region, 0 "; 1

the integrations of LVnand Lt4)' have to be performed in two regions,

o5 S '>- < and

We then get

For o ; ; F

( __E-G sinTr 9L .Z
(nr)*I-s n L/b bd

42=4U.2 mT c& 1, _d-'s" n~r Z. L -
MT .Lg n&r g J d 2: b

- osk-*I onl - s'j, nor 4 4 d-2 B-5

tAI~co rr C04

and

for ;

Cprl= ~ ~ ~ L -- 40 Svk )I4-Lb Lrnx r . B-6
(Mr)' ztk nTr-/bo d2:

(Vn -%COS'k r)Tr --- ... s'"v ng c B-7{
U s 4 nuL/b o b

Substituting B-2 in the integrals above and integrating by parts yields:

frd 2; b

A, cos m~ 7 n-rOr -9sm osknT B-8
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B-10

Substituting B-8, B-9 and B-10 into B-4, B-5, B-6 and B-7 and rearranging

yields:

For S
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B.2 Numerical Calculations

The actual values for the cascade configuration and the inlet flow

(given below) have been substituted in the previously derived formulae and

the flow deviation anglbs have been calculated. In these calculations, the

first three terms in the series for Lp and 4)' have been retained, i.e. n 1,5

and 5.

The values used in the calculations were:

1 = 8.000"

= 2.250"

a= 45.0*

a2 = 68.6*

A, = 0.19478

A2 = 0.02731

A3 = -0.02402

= -0.Q1122

The results of the calculations are shown in Figures 47, 48 and

49.
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APPENDIX C

C Correction of Flow Deviation Angles due to the Two Wakes in the Skewed Flow

C.1 General Procedure

The two wakes at the edges of the skewed layer cause a secondary

flow in the cascade. This secondary flow will be calculated here under the

assumption that the trnsyerse inlet angje is constant over the span i.e.

generated by a pure wake flow. The secondary flow due to this wake flow

will then be added to the secondary flow caused by the skewed flow. The

justification for this superposition is given in section 6.

The formulae developed in section 4 are applicable in this case

and will be modified only according to the changed inlet conditions. The

notations of equation 4,l will be used to calcualte the secondary vorticity

component in streamwise direction but the actual values will be calculated

using equation 448 .

C.2 Inlet Conditions

The inlet velocity profiles varied slightly in tangential direc-

tion. The velocity profile at the tangential center line of the cascade

was chosen to represent the average velocity profile at cascade inlet. The

velocity profile of each wake could be represented by a sinusoidal curve

(see Figure 46). Since the conditions are symmetrical about midspan, only

the flow conditions in one half of the span are studied.
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Using the notations of Figure 46 the velocity profile is given

by the following expressions

For 0 ? -Z . s,

01= U,

For

01 _ i c2
=-&= I - s ( -+1

And for S, <! _ L )

0, = -,

C--l

C.3 Integration of the Expressions for 4)n and Yn

These integrations are performed in three regions

~I~z ~'l

because the function dO is not continuous over the whole region.
dt2

There

will then be three equations for both LP, and L,' , valid in their respective

regions.

From section 4.2.2.

L
_ SEb c %"Tr nb )-

i s *" nr L/b Y

-c4, nTr /ZA/
n" Lziv1% nn 2/ AZ b



For o -z S, S.

Introducing the integration limits 0 and S1 in 4-18 and 4-,19 yields:

8E b sk n Tl/b 2_ 1 n 0 C, C-2
(_w? C. lTUb - 0

nw snA f /, Z d b

For 32

In this region, 4ri8 and 4-J9 are

-s"b nv 7r % " u, ae -e

+ -s n-r ai -U nw T c-4
b -sLnK /b

.. cosl mr b fSig.,c-

m" nit K/lb d 4) b

*~A~i(\ flu

For E, ! ~2 <_ )_

4,18 and 4r.9 reduces in this region to

_ bC~ d1u n 0-6
(nTT- -s niT Vb A,

4),cs 8  k rrr _n C-7
n_____ f/s *i, w nis
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The integrals in these formulae are to be evaluated using

dU' = U1a. CL T -G -2) c-8
dr 4 84

which is derived from C-1 changing z to'Z as a dummy and substituting

54

After some calculations the following expressions are then found:

%" n co r'--'vn12)f TL
d4b

-~ [Co's IT (E --2)O.n S < ra ( -)'i njT

2+ J n ' b ,4 bi -

64

- ~ ~ -ir osr(-- - -2)sk ni -c((-f4 2)- Y T __ -+
b- n -8 C-4



b

(- 2 Is hn-r }+ cos r-(- > - )rr - +-2 b~ -

7r (T-,2) cosk nw- 2L-- - U-2Tr -2) uosk r)-j]

dU -sJ nTr =

-+rJ -ost2) - ) hT + co5 T1(a -, 2)\L'knTr +

+ 3 S TT (L- 2) LCO)S 0-,T -
b

- n -rr( '..2 )Cd nrFLjb b _

Introducing the expression C-9 through C-12 into the formulae C-2 through

C-7 and noting that

arrangement:

For <

8 ~-7 -o,
(rT -2

and - J
3.4

yields, after some re-

n1~ i -h my-S n m L'J r

JL-& -\I C -d, n Tr -- s T~ ^'

n7r,+ (n-!) -js" nir /b

C-13

c-14

I-
d, a'

C.5

b

+ nb si'n C-11

C-12

-i

U Sh)01 IL --



For E,< .

S-8bU , -
nh nio Yb: A1T

C-15hn- n1 - [ --- ] +
s'44 -WTr/' b/s 9

-S wh flre T b cmk n Tl- -2)

+ -se Tr alcok 0)7r 9- [1 - COSIT -
" Or b/b

And for

-=B biJa CL "s n rM --a'/nbe
El + dn )S" nTr /

n-rr w +(n -- s n.r L/

S)_ r g._I )r6: 9-

00-5,L
b t

C-17

)

The formulae given in section 4.2.2 and 4.2.2.1 for the secondary flow ve-

locities and deviation angles are valid, as they stand, for this case.

C. 6

c-16

ti &6 -SV (I -- -1 )b



C.7

C.4 Numerical Calculations

The actual values for .the cascade configuration and the inlet

flow (given below) have been substituted in the previous derived formulae

and the flow deviation angles have been calculated. In these calculations

the first three terms in the series for ,,p and .p' have been retained, i.e.

n 1,3 and 5.

The values used in the calculations were:

1 = 8"

Q.5t t
3,. = 1.5"

3= 1.0"

4 5tf

= 4.13856"

q. = 0.070

= 45.00

a 68.6*

The results of the calculation are shown in Figures 47, 48 and 49.
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APPENDIX D

D.l Integration of the Expressions for LP and (44 for the Skewed Wake Flow

The- skewed wake flow is in this case considered to be a super-

position of a skewed flow only and a wake flow only.

D.1.1 Skewed Flow

The expressions for this case are given in Appendix B and are re-

peated here.

For O Z S

_Pn= - 402b A __
(n-r)7 +6

{ m Co 1T n -sin h-) 1T 7-
." rOr M/b b 5 M b T

n- 19 - " b-

For

n= - 4U-.b cA i-A Tr /nn g Ag.. r
---A+ b n -w

nTYL na ~ nt W Vb

rl'

B-11

B-12

B-13

B-1 4
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D.l.2 Wake Flow

We have

W Ei b 421 -sv n- JL-

f n-w!--a.L 4-18
s nTr C oA b

BE nTr

h r --fA 4-19
a ny 1/ r 9-16 o

The velocity distribution is given by:

For <;'

U,=~~~~" 0 1. 8tss

For*

au,8 cor r VI B, jsi ~VI Ani D-3
U,= U D-2''~b 4.l

Differentiating U, with respect to l| gives

valid in the wake flow layer, while

dV, o D-4dIo

outside the wake flow layer.
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Because -S-' is not continuous over the whole region, c ( . Q<,
CA Z

the integration of ( and ,' have to be perf ormed in two regions, < ' ,

and

For ' <

'6E b duo ni -5vt- da

+Tsunr %/ 'dLG I -Tr. 9X a,: c-5
z ,vk nir J-/b, 4*2 b

W in_ I d __, u . .
niT -s" ng TT/b J i4 b

r Vb J0 b

and for S, ' < y

C .. - mSLr0 f Y E '-l '
Cnorr )-s nir V/, o dA?

c.o-h nTr
n-i 9b

n -
D-7

D-8
o '% 

f1

Substituting D-3 in the integrals above and integrating by parts yields

nTr d =
fo Li 1

=3'm -C<s 1T -s ()T + n z rA~ To )IT
b- b W

D-9



ii du d ==&d -U

I + (.rL b 5-, b
N_ b

S 1 T C- n IT (\--- )

Substituting D-9, D-10 and D-l into D-5, D-6, D-7 and D-8 and rearranging

yields:

For 0

~bT3"
(tlTr)

I.VIY, T nT
6Z% flIi

~Tl - U- Or

ui-=ah- Co's VI-
n 7r r

s n '

k IT Q/b
bh n 51

For x

4n b U' _ COS M7
(nf )' + 1(f n

flir S6
s' r fi/T

nTr b

3':=~ - S' - eSoS NT T Sr cosh r)r ( .... ] )TT F n. bb

D-1O

D- I.

D-12

- CoS I TT D- 13

D-14

D-15

t" 6 vk n-q S,
ua cm hi Tr b+ ( )
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D.2 Numerical Values

The actual values for the cascade configuration and the inlet flow

(given below) have been substituted in the previous formulae and the flow de-

viation angles have been calculated. Formula 4-8 has been used instead of

4-1l to express the streamwise component of the distributed vorticity vector

and so 2E has been replace &:by (I+ . ') co*6 - Cos 0& in the pre-

vious formulae. In the calculations, the first three terms in the series

for ( and q-' have been retained i.e. n:= 1 ,, and 5.

The values used in the calculations were:

1 = 8.000"

= = 1.750"

5-= 4500

a2 =66.0*

A1 = 0.19684

A2= -0.04920

A = -0.00646

A4 = 0.0l274

Bi 0.18000

B = -0.06560

B = -0.01665

B4 = 0.01762

The results of the calculations are presented in Figures 73, 74 and 75.
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APPENDIX E

E. 1 Integration of the Expressions for qn and q, for the Skewed Wake Flow,

Using the Complete Expressions for the Streamwise Vorticity Component

We have

U= 2 U ( 6-13

where K- (i+ " )5 Ie- cX0 6-12

Introducing the continuity equation

U. SV, =4 Us s'% 6-18
6-13 may be written

-- ' CA E-1

Let

s ,+ K)= E-2

thus E-1 is

CK E-3

Compare this expression with the one for the skewed flow

z 5-36

The formulae E-3 and 5-36 look similar and so we may expect similar solutions.

We can now immediately write down the expressions for qp and (44' for the skewed



E,2

wake flow by changing U to U, s7"' and J to 1 in 540 ana

5-41. The formulae for and ' then are:

4niT bSvc & -sv. n-r -l- C1 - n2: i
nTr !'/ c(+," nr d b-

n4n- n- d E-
nrru 1/Y b

___v Co4 h7 f 0

rnLrn Vbb

In the skewed wake flow layer is expressed in a Fourier series:

For _

2E-6

And for '

Differentiating with respect to yields

CiI = -a I M n E-8
dI - 5 V"5

valid in the skewed wake flow, while

C= oE-9

outside the skewed wake flow layer.

The similarity between 5-40 and E-4, 5-41 and E-5 and B-2 and E-8 allows

us to write down the final expressions for (- and L-I4:

For 0

On= - -6 l C C S 0
(nr -S" 10e + fs -- f)r Al b 3

-SL%4 MITE-10



E-3

---5. oMT E-11

And for 8 < L

-6___ ~ E-12

__ __ y"~4 E-13
4n rM -SC" Oe, iH- Cos M7IT 5 b Z

E.2 Numerical Values

The actual values for the cascade configuration and the inlet

flow (given below) have been substituted in the previous formulae and the

flow deviation angles have been calculated. In these calculations the first

three terms in the series for y and LP/ have been retained, i.e. n = 1, 3,

and 5.

The values used in the calculations were:

S = 8.ooo" i = 66.0* C3  = 0.01859

S = 1.750" C1 = 0.00272 C4  = -0.00470

a 45.0* C2 = 0.00430 K = o.65700

The results of the calculations are presented in Figures 73, 74 and 75.



F.1

APPENDIX F

F.l Derivation of the General Formulae for the Kinetic Energy of the

Secondary Flow

The kinetic energy per unit volume of the secondary flow, contained

in one blade passage, over half the span is

W=(t W) d F-1

Expressing the secondary flow velocity components as derivatives

of the stream function 4), of the secondary flow, and substituting in F-1

yields:

In the general case the secondary flow is caused by a superposition of a

wake flow and a skewed flow and so the stream function (P is the sum of

the stream functions of the wake flow and the skewed flow. The justifica-

tion for this is given in section 6.

Therefore

( L -+F-3

where

t4h = stream function of the secondary flow caused by the

skewed flow only

= stream function of the secondary flow caused by the

wake flow only



F.2

Substituting F-3 into F-2 yields

> JOt02 ~hv) + (~+ -P sg

Consider the expresssion

')
F-5

. F-4

t ( ) dE

Integrating by parts yields:

Orb(~~sj .2 ( 6 i2 9w) I - kr)jL I i~

Jf uj

=j -,

Lqt> z ~~ fLj
EcK-f- - cs 1-4

But .ts = 0 for y 0 and y b, and so:

F-6

The second part of F-4 may be intograted with respect to z in the same way:

thus

WS* JLv) tj

F-7

The middle term in F-5 was integrated to yield . By

changing the order of integration this may also have been integrated

4- '2 WS - "w + q). ] Yw %J= b

E (4),, - -ST 111WO

+ cA -a
Lj -a I

5L b
+ a 7 CA 7+ Lvw

2h

fof b ) + 2 b-

4=

0 I-ID

J)= -b

' t.V4 &7p
6 b 7FLi



to yield 2Lf)

come

, and the middle term in F-7 would then be-

leaving the other two terms unchanged.

Furthermore

b2(P +?% --- 1_, t _
6cI _ a

e 4. + ?w=

0, for 8 -S z < .

-g., fOr 0 ! a ! _

0 owtzride +he region

inside +he region

~' .z S2

SI *E 8~

The notations in F-10 are chosen from section 5 where the vorticity region

is located between 5, and $ , Formula F-10 is also valid for the skewed

wake flow (section 6) if we make 5 = 0. Substituting F-9 and F-10 into

F-7 and changing the integration limits accordingly yields:

(I ) (2) (3)

)= f f _ bj f qj d Z + & F- 11

This formula is composed of three terms.

(1) the kinetic energy of the secondary flow caused by the skewed

flow only

(2) the kinetic energy of the secondary flow caused by the wake

flow only

(3) the kinetic energy of the secondary

action of the skewed flow and the vake flow (cross

If the middle term in F-7 had been changed to F-8,

flow caused by the inter-

product term)

the third term in F-11

F-8

F-9

F- 10



would have been

6f S
2f 0 C cd 7z F- 12
Jb o

Since these two terms have to be the same we get:

ps S ., ~d F -1 3

This relation will be used in the derivation of the tangential blade force

in Appendix G.

Furthermore

= 4 1>61 n Tr F-14
n

C4= Pan b T

F-16

-- 2E d. F-17

where the notation of 4-1 is used in the expression for & Substitut-

ing F-14, F-15, F-16 and F-17 into F-1l and integrating for y, between

y 0 and y = b yields:

2~~u d%+2Dd +4 d] F-18n JI dZ r)d 3

Using the relation F-13 the third term in F-18 may be written as

8F __

4E qnd2 ="2) 17 F-19
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With known functions of 4  
/ , t4) and f4)n formula

F-18 may be integrated with respect to z.

In this report the expressions for 44, and (4 remain the same

in the three investigated flows but the expression for differs in all

three cases and so separate integrations of F-18 have to be performed, one for

each case.

F.2 Wake Flow

F.2.1 Derivation of Formulae

In this cese '==o and so F-18 redfces to

D =~. 14f EU1Z F-20

where the subscript w of LP, has been dropped.

From section 4.2.3.

U, = 1- 0e ( 1-t COS - ) 4-30
U, 7

-- I+ -,c1 { b1

Differentiating 4-30 with respect to z and substituting together with 4-31

into F-20 yields, after rearranging:

+ r ii r v (b n.i OT ) ndy F-21
t," nr t/b b 9
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But

-5jM 2 Trj d-Z =F-22
0 S2

r *vatr -n Tr F-23

and so

rr~~Y~~~Ui~~nJ L-l677~L~i- b TJTlT F-241

Formula F-24 gives the kinetic energy of the secondary flow due to a wake

flow in terms of known quantities. However, still more interesting is the

Tuestion: What percentage of the kinetic energy of the flow entering the

cascade is converted into the kinetic energy of the secondary flow? To

calculate this, the kinetic energy per unit volume of the flow entering the

cascade has to be determined.

The expression for the kinetic energy per unit volume of the in-

let flow to the cascade is:

KE 4.= I S U2 cdd- F-25

Since U1 is constant outside the wake and is also constant in transverse

direction F-25 may be integrated to yield:

KE . F-26

The integral in F-26 may be written as

) d - )Z - + d-1 - F-27



where

I = base width of half the wake

= displacement thickness of half the wake

e = momentum thickness of half the wake

Substituting F-27 into F-26 yields:

KSE ubs{itu f U in2 - a

Substituting 4-30 into F-27 and integrating yields:

- [I - u - q)+ ]

Combining F-24,

b =

b -

F-28 and F-29 and uoting that

s sin a1

s sin a2

yields

c- t -- ,a L.1W W 2 -15+

W[((t-)j FVAX 30~/

F.2.2 Numerical Values

= 4.445" t

= 4.500"

8. 8000"1

- 4.oo"

S

a

a1

a2

= 1.130"

0 0.137

=45.0

64.40

Both equations 4-1 and 4-8 have been used to describe the distributed

vorticity component in streamwise direction. When 4-8 has been used, 2FE

F.7

F-28

F-29

5

c

1

b
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in F-30 has been replaced by

(\- ' e ) CO5 gi - C

The calculation has been performed for n 1, 3 and 5.

The results of this calculation are given in section 4.3.2.

F.2 Skewed Flow

F.2.1 Derivation of Formulae

In this case

~4L s. [- A _
(4 _ r r M . _. f

(C05 spvk nwT t/b

nn (- Z
__ ?V [~i n-+ -

- Tyr /h

- --- TMAssr av g

da. (Z= -'2)'Ju '4 r

n 3
"' b

WIT 5-52

ni s n -
b <54

C-15

5-51

c-8

( iTo y
b 3

N', ny 1- 9-[ -l ] -+ ,
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Consider the first term in F-18

0)=~~ S2d

Substituting 5-51 and 5-52 into (1) and rearranging yields:

(t)~ =A (.4f COS~VmA
n, 1+$ (r]

SVV nT
rYTT 0 /b b i

n vTrd

But

o 
t

J6

n nTr I+( )
COS -T r) Tr

dI 7l d2=2

Substituting these integrals into (1) and rearranging yields:

61)== n dz =

______(_f_ - I__d 11TT

+ n UF b -*jo b f

where f is given by the double summation in F-31

Consider the second term in F-18

(2) = '2 E dc)1
dZ n

6 M- b n

F-31

n r

=7~4 L 6
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Substituting C-8 and C-15 into (2) and rearranging yields:

rnr --
b 2

_ niT -S Wl

But

i IT - 2 win m
fs> SI E

nIT U -1 ) S'n'r 7

1+ ( 4-'

- 2 ' k - b +n 4. -2) teos-, niT
b

- n -s wrr(E -2)co-s nrT

Substituting the actual values

above formula yields:

-- 2 ):s bni CAdZEl

Simi larly

1.Tr ( -

Tr(1
6+

-2 )-,v4 n r I- ( X- ) d -e - - .... -% Iy -E + -s y

-2 )d7F = 2

7 E ' 6
,r 8

+ cvs m -

Cos 'Tr b

7&InTr '-4

,CtncL a
;54

into the

bT -

- + 0 1 ( - 2 ) dk 7.

S4.

.I adn ]
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Substituting these expressions into (2) yields:

(2.)=2 d.2 di =
, d 2 n n

II n-) I+ (+ f L{Jn+r , f]nk ./b 1
- v r)Ti i)+

F-32+nT ='- ) ebvb e
:S" nw Vt916I

where g is given by the suzmmation in F-32

Consider the third term in F-18

& II d 7Z
!isd a- r

Substituting C-8 and 5-52 into (3) and rearranging yields:

(3) = B , 0-" . -A E,
IT L "T(I-

1 -9

s 1 W eb
S n IT(-2 )--

- a 3 rS i has lr (d - s2 l nd

The first integral has already been solved and

X _ -' T(-K

5 E;4

I45 V T 5 N - )

V^A -j 2)

uV" -T -VV 1T -Z .) l -. a =

= -I
a7
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(3) then finally becomes:

(3)== 4Ef

sn 1rr L/.- U2 -6b11 r- Af
k m n, i-t (.)E -

S7-. - S, -bb

yCs I (C - )- Tr (C_ -_,-

4

F-33--r h is g , ohe

where h is given by the double stumation in F-.33.

Substitutizg the expressions for (1),

t=-- L'(u -2'T,'au + -- uUQ La hi

Introducing the continuity equation,

into F-34 yields

.Tr- 'L, ( + 2 F I + .

(2) and (3) into F-18 finally

yields:

F-34

F-36
I/

d~~ ) ==IAt

- S
k .(n b

I -,(C + Y" -2
S4 IN

F-35



F.1 l

where f, g and h axe given by F-31, F-32 and F-33.

In calculating the kinetic energy per unit volume of the flow en-

tering the cascade it is assumed that the flow enters at a constant inlet

angle, a,, which is the inlet angle of the free stream.

/

6

Under this assumption the formula F-25 is valid and may be integrated to

yield

K - VL5, L [\- 2] F-37

which differs from F-28 only through the factor 2, inside the brackets.

However, in this cae 'the whole wake is inside the flow region and thus

giving this factor of 2.

With notations of this flow F-29 becomes

C, - CL)8I. -3



F.1.4

Combining F-36, F-37 and F-38 yields

_W_ 8 T C
-A4. Fo )s. " 1 '

J f- +-

CV S4 E,

where f, g and h axe given by F-31, F-32 and F-33.

F.3.2 Numerical Values

Us = 4.445"

c = 4.500"

1 = 8.000"

b = 4.1386"

= -

- 68.6*

1.5"

0.5"

a = 0.070

45.00= = 2.25"

A, 0.19478

= 0.02731

- -o.o24o2

- -0.01122

Equation 4-8 has been used instead of 4-1 and so 2E in F-39 was

replaced by ( + SvMO(, ) CO50Q( C-0 S Oe
'S C"C-. ) S" oe

- The calculation has been

performed for n = 1, 5, and 5. The result of the calculation is given

in section 5.3-2.

F.4 Skewed Wake Flow

F.4.1 Derivation of Formulae

In this case

4 b A . S MIT W_ ( b ) -

rr2 -n +4 m b ,~

F-79

5-52

D-12

A 2



- Asw YmfT~

U 8 .50 ~

8 n1Tb
dT'Z IE

The first term in F-18 wilI remain the same as in the skewed flow:

:A
bT_ _

7r=A U" bf

Consider the second term in F-18

Cq)= 2EJ n

F.15

l)-3

W L sm nI) IL I S
nxT I1(7 vn- [\+('&)' b 5nit fr b 'i-m b

F-31
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Substituting D-3 and D-12 into (2) and rearranging yiel4si;

1 6
1.

~ D+(~J
n St S4. vT d

But

-ar ~r?~t
z~f b = comrit -s" n' at

J S'NoTr .

Substituting the values of these integrals into (2) yields:

(2)= 2EJ d Z n

-~ij +(p )'' rwrD( f)j
b s' nrr
b ni ,

nid te b. t

Consider the third term (5) in Figure F-lb

amd nAu

-s" nid r
-S" n LA

V" S n r

Io

b 0. b

F-40

I

W5M

-165'n h
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Substituting D-3 and 5-52 into (3) and rearranging yields

n w b V% n~ -

_____" _ nw mV6 s, T ~bI Cr.. .'

The first integral has been evaluated before, and

VbWT ZS VI T .1 0' S4, -~Tr

Note: If S - S, . the integral above becomes

In the numerical calculations

becomes 2

Then (3) becomes:

and so the integral

9)

rn Am +mfus T { Cb11T+( ) j

a" 1--
Is"t rnrQ-/ 4 a- -

F-41= ,U -~

Substituting the expressions for (1), (2) and (3) into F -18 gives

2.

F-42

-116 a
_Tr I U,

4Q, "; L-V-","b d-fCi -Z L n

1)=~ ~ ~ ~~~~9 02 b'~1{+4W0 - -r -h~}
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or with the continuity equation F-35

F-43
_ =(J U b'S, S V+4 a - S4jO '

The same assumptions about the kinetic energy of the flow entering the cas-

cade is made for this case as for the skewed flow case and so

KEn. = f UM - \- QD+9 F-44

where

I- la \-+ ) F-45

Combining F-.34,, F-44 and F-45 yields

ir 'zT -

where f., g and h are given by F-31, F-4o and F-41.

i 4E -+ )
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F.4.2 Numerical Values

The actual values for this flow are listed below

S = 4.445" a, = 45. 0* B1  = 0.18000

C = 4.500" 2 64.4* B2  = -0.06560

1 = 8.000" Bo = 0.21133 B3 = -0.01665

S -. 750" B4 0.01762

Equation 4-8 has been used instead of 4-1 and so 2 E in F-46 was re-

placed by ' 0 . ) O3a<'C -,-Oa . The calculations have been per-

formed for n = 1, 3 and 5. The result of the calculations is given in

section 6.3.2.

F. 5 The Spanwise Distribution of the Kinetic Energr of the Secondary Flow

The kinetic energy per utit volume of the secondary flow averaged

over one blade spacing at a constant spanwise position is:

b

D= -- CV 2+w') F-47

Expressing the secondary flow velocity components as derivatives of the stream

function, 4) , of the secondary flow and substituting into F-47 gives

b

Substituting F-3, F-14 and F-15 yields

b
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which may be integrated and rearranged to yield
03) ,1 I)

Z)Z 6 + [(n p-b 3+

+ 2[qv V , V + (-I)j 61, LPWS ] kv j F-50

This formula is composed of three parts

(1) is the contribution from the skewed flow only

(2) is the contribution from the wake flow only

(3) is the contribution from the interaction between (1) and (2)

(cross product term)

Although this formula may be expanded further by substituting the

values of Y. and 44., it is of prqtical interest to stop here, since those

expressions are very complicated and the values of 4nand O44n are known from

the calculations of the secondary flow velocity components.

In order to make D. dimensionless F-50 is cdividea by the expres-

sions for the kinetic energy of the energy of the flow entering the cas-

cade, i.e. by F-28, F-37 or F-44 depending on the case under consideration.
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APPENDIX G

The Tanential Component of the Blade Force

G.1 Derivation of Formulae

The tangential component, T, of the blade force over half of the

span is given by the tangential component of the momentum equation:

00(

-.w, 0( (UZ CoM 0(2 - U, co:s O,) G-1

where cxi' and a.' are the total transverse flow angles, i.e.

IX 11 P G-2

-
' 42 132 G-3

where a, and a2 are two-dimensional transverse flow angles, and sl and

P2 are the transverse flow deviation angles. Assuming no spanwise shift of
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the streamlines through the cascade the continuity equation may be 'written

U1 sin al = U2 sin C2' G-4

This assumption is good only if the perturbation is small, i.e. a mall second-

ary flow is created and no blockage effects in the cascade are created due to

stalling. Substituting G-2 and G-3 into G-1 and rearranging yields

-T= -s U Q( (c-0to(- c2 o )ci --5

Assuming 13 and P. to be small, the expressions in the paranthesis may be

reritten using G-2 and G-3.

cCT0(2 = - )+G-6

Simi l arly

SWLCO( S L,-4 C.r ,r0(,G-8

Sibstituting G-6, G-7 and G-8 into G-5 neglecting second order terms and re-

arranging yields:

-T= 73Y s~v' , d crCt c C-i T 0(, ) A-Z -

-bt 2 cdt (cto(,i - cyr 0(, )] (3,Uc01 + J(f 2U \ G-9
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Consider the integral of the first term in G-9. It may be ritten as

0G-10

where

displacement thickness of half of the wake

9 mmomentum thickness of half of the wake

J 0 (..) G-11

r G-12

The first term G-9 then becomes:

1I)- Wf 'f 0 <, (czroe2 -Coto(, (A-6-6 G-13

Consider the integral of the second term G-9: J I I

U1 may be written

(I,= , -G-14

where

ALU is the velocity decrease in the wake, less than the two-dimen-

sional uniform flow U

If

Uh G-15

then

U,2 U>- 2L, AU, -1G-16



and

The integral then becomes:

U , Zd-Z U j(3 dz

but

IA- A., to's mit 2-
m=O

for -

and

*=O for S S9L amd *ere fore

J, di = (,d =Ac- 3

The second term in G-9 then becomes:

G-20

G-21
(2) - sfU, s4iV, D + 2 cetoe, (cec c - ,3-AO

Consider the integral of the third term in G-9: $. U, d-

12 is the average transverse angle given by: (see for instance 4-23 and

4-26 and note that tank 3 fk)

G-22
U2 , Tr n r)

G-1'7

G-18
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Eliminating U2 using G-4 yields

.2 .L . G-23P ff U, O(FC

In this formula

9n - 4V,, -+ P-,. G-24

is the sum of the derivatives with respect to z of the two stream functions

W... and L wn.

Using G-2 and G-3 and noting that a1 and are smal l gives

( i+,coo(,- ,.~et& )G-25

Substituting G-25 into G-23 and dropping the last term in G-25 (as it im-

plies a correction to a correction) gives

Consider the term ju d c Z n G'26
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Integrating the parts yields:

jU-iL~d-~ Eu. [u, ! JLj d

The first term on right hand side is zero because

(Pn-= O for 7-=o cd 7=.

Substituting

n= G-i7 * w n

in G-27 gives

d?

G-27

CV-2P8

G-29) d - - 2. di

But from the expressions of the kinetic energy of the secondary flow, F-18,

we see that

9_U1 I4 d Z 1r ._ SW G-30
d2 n 4Fb

.dad Z -_ D G-31

where

D = kinetic energy of the secondary flow Lue to the wake flow

only

Dsw = kinetic energy of the secondary flow due to the coupling

of the skewed flow and wake flow.

J (LU11 L P rl' (I -a



The first term of G-26 then becomes:

(S Xx + D?-S )
?Eb s @(. 2

Consider the termu L, _ dZ in 6'26

Using the same arguments as when deriving G-17 we get

and so

fU1 (3, dZ m D

Integrating by parts as earlier and noting that

and S - Ic and substituting G-28 yields

G-35

= - TrD
P6 L 2

J 0 dAQ, I 1- a 2
SdZ n

'Al Wn d IT = -SW
dz n d6 bU.

where

Ds = kinetic energy of the secondary flow due to the skewed flow only

Dsw = kinetic energy of the secondary flow due to the coupling of the

G-36

G-37

skewed flow and the wake flow

G.7

G-32

G-33

.pn = C for

C-4

L.J( LP InC aI-hC
jo O"' 7-

But from F-18 and F-19

.PI dZ- ,

-U, Ol dPr i z
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The second term of G-26 becomes:

-82-01 "St" a(2 cat o & )
,bh

Substituting G-4 for the main stream conditions into G-38

D fS Uz. Svy L Y(A

G-39
U2 - 4 U.

which yields

G-40.2. N01 C-Oto , ( +> )t D
. b Sev-0eS

The third term in G-9 then becomnes:

(3) ~ ~ ~ ~ i z-3 0 0 '

G-41

Changing the sign for T and rearranging, G-9 finally becomes:

~TIA

=2s o( c o c-cre (-5 + _ c oT ,< eg o(, - cK- o z } Ain,
C-ru + - 50

-S, oe, D 2 skv o4s cos a(' + ~D>S__W
E -A-C 2 3i1c(

2

523o-, 30(

= "%Ak of&.42AeW +R (-L + 29 S -"tel )l
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where

C T tangential pressure coefficient.

The expression for CT may be interpreted as follows:

1) 2S O(l (. ct o(, - cKt Oe) is the tangential pressure coefficient

if the flow is uniform over all the span,

2) - 2 , (.o-t, - ctrr ) is a reduction due to the decreased mass

flow in the wake,

3) A is an increase due to the increased flow

angle of attack,

4) -2c ct'(, (Del vcI- ct ok) A. is a reduction due to the decreased mass

flow in the skewed flow,

5) , - is a reduction due to the secondary flow

caused by the wake flow only,

6) - s__o_. O(' same as 5 but caused by the skewed flow

only, and

v)- , + 2 O 2 0"500 is an increase caused by the interaction

of the wake flow and the skewed flow.

G.2 Wake Flow

In this case G-42 reduces to

2 s Co< Cvrol -Q&T-OCLOel T-4
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Numerical Values

The actual values for this flow are listed below:

= 4.445"

C = 4.500"

1 8.ooo"

5= 1.130 "

a = 0.137

'2 = 64.4*

In the calculations formula 4-8 was used instead of 4-1 and so 2 E in the formula

G-43 was replaced by

The result of the calculation is given in section 4.4.2.

6.5 Skewed Flow

In this case G-42 becomers:

CT -2 2 wC2-O cott(, a Qvt o)/ A'2

:2
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The only difference from G-42 being the factor of 2 in front of the term

. This comes from the fact that in this case the whole wake

is inside the investigated region.

Numerical Value s

The actual values for this flow are listed below

8 = 4.445" S4  = 0.500"

c = 4.500" a = 0.070

1 = 8.ooo" cc 45-0*

2.250" a2= 68.6*

S, = 0.500" Ao = 0.15449

S2 = 1.500" A = 0.19478

3 = 1.000" A = .027
2

A3

A4

= -0.02402

= -0.01122

In the calculation, formula 4-8 was used instead of 4-1, and so 2E in formula

G-44 was replaced by (I-- ) C-'' - C 06- . The result of the cal-

culations is given in section 5.4.2.

G.4 Skewed Flow

In this case formula G-42 is applicable without modification.
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Numerical Values

The actual values for this flow are listed below:

= 4.445"

= 4.500"

= 8.000"

&, = 1.750"

=45.0

66.0*

0 0.22685

= 0.19684

A2

A 3
A4

Bo

B,

B2

B 3

B

= -0.04920

= -o.oo646

= 0.01274

= 0.21133

= 0.18000

= -o.o656o

= -o.ol665

= 0.01762

Formula 4-8 was used instead of 4-1 to express the streamwise component of the

distributed vorticity vector and so 2 E was replaced by

in formula 0-42.
T~ae ) C Os ct on -4

The result of the calculations is given in section 6.4.2.

s

1

al

C'2

A
0

A1
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FIGURE 8 PROBES. UPSTREAM MEASURING PROBES:

1. 3-HOLE PROBE.

2. STREAM PRESSURE PROBE.

DOWNSTREAM MEASURING PROBES:

3. 5-HOLE PROBE.

4. STREAM PRESSURE- PROBE.



FIGURE 9 DOWNSTREAM TRAVERSING RIG.
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FIGURE 19 WAKE FLOW. STREAMLINE TRACES IN

CARBON BLACK ON THE BLADE PRESSURE

SIDE.
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