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ABSTRACT

An implicit factored algorithm for the solution of the

thin shear layer approximation of the Navier-Stokes equations

is described and explicit boundary conditions are developed

for internal flow problems. This scheme is compared to

theoretical predictions and experimental data, as well as to

other more thoroughly tested numerical schemes. The examples

presented demonstrate the ability of the factored algorithm

to accurately predict internal flow fields and provide insight

into the difficulties associated with the numerical simulation

of internal flow fields.
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I am afraid that I rather give myself away when I explain.

Results without causes are much more impressive.

Sherlock Holmes
"The Stock-Broker's Clerk"

Sir Arthur Conan Doyle
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FIGURES

Figure 1: Computational grid for cascade calculations.

Figure 2: Geometry and theoretical incident and reflected
shock locations for inviscid diffuser.

Figure 3: Computational grid for diffuser calculations.

Figure 4: Convergence history for diffuser calculations.

Figure 5: Pressure contours for the inviscid diffuser as
computed by the present scheme.

Figure 6: Pressure contours for the inviscid diffuser as
computed by Tong (2) using a MacCormack scheme.

Figure 7: Wall pressure distribution for the inviscid
diffuser as computed by the present scheme.

Figure 8: Wall pressure distribution for the inviscid
diffuser as computed by Tong (2) using a
MacCormack scheme.

Figure 9: Pressure contours for the shock boundary layer
interaction example.

Figure 10: Wall pressure and skin friction distribution for
for the shock boundary layer interaction example.

Figure 11: Boundary layer velocity profiles computed for
shock boundary layer interaction.

Figure 12: Pressure contours computed for the viscous
diffuser by the present scheme.

Figure 13: Cascade blade pressure distribution at iteration
1000

Figure 14: Cascade blade.pressure distribution at iteration
1500

Figure 15: Mach number contours computed for the inviscid
cascade by the present scheme.

Figure 16: Mach number contours computed for the inviscid
cascade by Tong (2) using a MacCormack scheme.
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SYMBOLS 

a Speed of sound 

Cf Coefficient of friction 

e Internal energy 

Et total energy 

E Flux vector in X(or ~) direction 

F Flux vector in Y(or n) direction 

J Jacobian determinate 

j Node counter in ~ direction 

k Node counter in n direction 

k Thermal diffusivity 

1 Length 

n Time level 

p Pressure 

q Vector of flow variables 

R Viscous vector containing viscous terms due to 
X(or ~) variations 

Re Reynolds Number 

S Viscous vector containing viscous terms due to 
Y(or n) variations 

t Time 

T Temperature 

u Velocity component in X(or ~) direction 

U Total velocity 

v Velocity component in Y(or n) direction 
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x Physical space coordinate

y Physical space coordinate

p Density

Viscosity

Computational coordinate along body

n Computational coordinate normal to body

T.. Shear stress on i face in j direction

Reference value of ( ), usually the value at
upstream stagnation conditions

( )' Non dimensionalized quantity

(^) Vectors and matrices which have been re-defined
for a non-orthogonal grid system by multiplying
by the appropriate metrics
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1.0 Introduction

During the past several years there has been rapid im-

provement in the ability to numerically simulate flow fields

of aerodynamic interest. Most new algorithms developed have

been applied to external flows because of the relative com-

plexity of internal flows in which viscous layers, shocks

and complex geometries often interact. However, there are

now algorithms which appear to accurately model these phe-

nomena. The purpose of this thesis is to apply one of them,

an implicit factored algorithm described by Warming and Beam

( 1 ), to internal flow problems.

The flow fields studied were the flow through super-

sonic inlet diffusers and the flow through transonic com-

pressor blade rows. This study was not overly concerned

with the computational speed of the algorithm, but concen-

trated on studying the properties of internal flow calcula-

tions and the effect of boundary condition models. The com-

puter codes and boundary condition models developed give re-

sults which agree well with theory and experiments and will

serve as a base line calculation to which new, faster schemes

may be compared.

The thin shear layer equations were solved because they

incorporate the viscous and compressibility effects which

occur often in internal flow fields. The strong conservation

form of these equations was used to ensure conservation of

mass, momentum and energy through the computational domain.
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This form is retained through a general transformation of

the equations to computational space. This transformation

does not require that the grid mesh in physical space be

orthogonal.

The implicit factored algorithm was used to solve the

equations because of its generality, ease of conversion to

three dimensions and proven performance in computing exter-

nal flows. Another advantage of the factored scheme is that

it breaks the calculation into several small sections making

it possible to program and run the scheme on inexpensive

'mini' computers. Implicit schemes generally require more

operations per node point than explicit schemes to advance a

calculation one time step. However, they do not suffer the

severe time step restriction of explicit schemes and with

large time steps can often reach a converged solution in few-

er total operations. The stability limit of explicit schemes

is particularly severe when viscous flow fields are studied

because of the close grid spacing required to resolve large

shear stress gradients. Because of their stability proper-

ties, implicit schemes are gaining popularity for viscous

calculations.

Explicit boundary conditions were developed which were

shown to provide a good representation of the boundaries for

the examples considered.

A series of example cases were calculated to demon-

strate the accuracy of the solution scheme. The first exam-
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ple, an inviscid diffuser calculation, was compared to a

theoretical prediction and an independent calculation by

Tong ( 2) using an explicit, time marching algorithm. The

second example was a comparison of a shock boundary layer

interaction calculation with experimental results obtained

by Hakkinen, et al. ( 3 ). The third example, a viscous dif-

fuser using the same geometry as the inviscid diffuser, dem-

onstrated the effect that boundary layer blockage can have

on diffuser performance. Finally, a more complex example

was the calculation of the inviscid flow through a compres-

sor blade row. This flow was also compared to an explicit,

time marching calculation by Tong ( 2 ).
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2.0 Factored Schemes for the Unsteady, Compressible Navier-
Stokes Equations

2.1 System of Equations

The Navier-Stokes equations govern the flow of an un-

steady, compressible fluid. Throughout this thesis it is

assumed that the fluid is isotropic and that stress is linear

with rate of strain. These assumptions are valid for most

common fluids through the range of flow conditions of inter-

est. It is assumed also that Stokes' hypothesis (X = - )

is valid. This is equivalent to assuming that the bulk

viscosity is zero [see Schlicting (4 )].

Following Steger (5 ), the Navier-Stokes equations may

be written in vector form for two-dimensional flow as:

-q + E + F = a + S (2.1)
at ax ay ax ay

where

P Pu pv

pu pu + p puv
q = E = F = 2

pv puv pv + p

Et u(Et + p) v(Et + p)

0 0

T T

R y S

TT
xy yy

4 S4
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and

1 2Et = p(e + - U2)E 2

T = (X + 21) U + V
ax ay

xy ay ax

T = (X + 2-p) v+ X u
ay ax

-1 -1 2
R = UT +vt + k P (y - a4 xx xy R a

-1-1 3 2
S4 = uT + vt + k P R 1 (y- 1)- a

XY ay

Note that each line of the vector equation corresponds

to one of the conservation equations. The first line cor-

responds to the continuity equation, while the second, third,

and fourth lines correspond to the conservation equation for

X-momentum, Y-momentum, and energy, respectively. This form

of the Navier-Stokes equations is termed the "strong conser-

vation" form; when coupled with appropriate difference forms

local and global conservation of mass, momentum, and energy

is assured.
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2.2 Non-Dimensionalization for the Navier-Stokes Equations

To non-dimensionalize the equation system of Section

2.1, the following non-dimensional quantities are defined:

p = -
p0 a

1' - 1

p' = 2
2oo

1o

u' =

ao

ao
t = t -

el e

a2

k' - k

ko

v =

ao

T - T
T 0

E

where pO

ao

10

To

ko

= stagnation density at reference conditions.

= stagnation speed of sound at reference condi-
tions.

= reference length.

= stagnation temperature at reference conditions.

= reference viscosity.

= reference thermal diffusivity.

Using these non-dimensional quantities, the strong con-

servation form becomes:

q? + E' + - F' =R + S'
at ax ay Reo Lx y

(2-3)

Et

2
p~aO

(2.2)



16

where Reo = POU010 , and q' , E , F' , R' , and S' have the
110

same form as q , E , F , R , S , except that the non-dimen-

sional variables are used in their formation.

The non-dimensional variables can be combined with the

equations of state and energy and certain definitions to ob-

tain several useful relations. For example, when non-dimen-

sional variables are used,

p = pRT becomes p' = p'T' , (2.4)
y

e = CvT becomes e' = T , (2.5)
y (y- j)

and a = yRT becomes a2 = T'.

Other useful relations are:

p' = (y - 1)p'e' = (y - 1)(EI - pIt' ,2) (2.6)
t 2

M = M' ur (2.7)
a'

R = Re.Re' (2.8)

1
and Cf = -C ' (2.9)

Re
0

Because the reference conditions chosen correspond to

upstream stagnation conditions, it can be shown that the non-
1

dimensional upstream total pressure is - for all cases, or
Y



17

p' = -
Y

(2.10)

It should be noted that if the Prandtl number (PR) and

the specific heat (C p) both are considered constant, then

there is an identity between the non-dimensional viscosity

and thermal diffusivity.

2.3 Grid Systems

The strong conservation form of the Navier-Stokes equa-

tions written in vector form for two spacial dimensions

(x,y) is written as equation (2.1). If new independent vari-

ables are defined which transform the physical coordinates

(x,y) into a set of "computational" coordinates (tn), a

strong conservation form of the equation may be maintained

[see Steger ( 5 ) or Appendix All.

x

1T



Subject to the general

E = E(x,y) n= rn(x,y) (2.11)

the Navier Stokes equations can be written as

q + + F =

at a E Re L
R + - Si
35 BEj

J - ( )

J

E
J

Al

J
A = 1

J
A = 1

S
J

ax

a

-n)
x

ay \ay ax I

Ey +
ay

ay

Rt
\ay

RT
ay)

F

F

S

S'

where

(2.12)

transformation
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A proof that this form is equivalent to equation (2.1),

can be found in Appendix A-1. The computational coordinates

may be defined such that they form a rectangular grid in

which A = An = 1 . A solution scheme using this set of equa-

tions does not require analytic functions defining the trans-

formation functions E(x,y) and n(x,y). The solution of this

equation set requires only that the metrics

(C a , be determined. These are easily cal-
ax Dy a x ay /

culated from the derivatives x x , , y which

are themselves calculated by finite difference approximations

using only the physical location of the mesh points, for

example:

S- YJ,k+ - Y A (2.13)
-y 2 J 3kl k-l"

The following relations are used to compute the metrics from

the derivatives

, -x a a y.

- = J-y J (2.14 A-D)
ax an ay an

n -J---y -n=
ax ac ay
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The form (2.12) of equation (2.1) allows very general

solution schemes to be written because the equations are in-

dependent of the geometry chosen. Changing geometry requires

only that the metrics -, - , - , - 1 be changed.
3x Dy ax ay

2.4 Thin Shear Layer Approximation

High Reynolds number flows have a tendency to restrict

areas of significant viscous stresses to regions of small

spacial extent, e.g., boundary layers. Generally, it is dif-

ficult and expensive to resolve all viscous stress terms in

these areas, and some assumption about the flow must be in-

troduced to make calculations of practical value. For these

"thin shear layer" flows, the important stress terms are those

normal to the flow direction. In most cases, only these

stress terms need be accurately resolved. To take advantage

of this behavior, we space enough grid points normal to the

viscous regions to resolve the stear stress terms, while spac-

ing points in the streamwise direction approximately one layer

thickness apart. Because such a grid cannot resolve the

streamwise stress terms and they are assumed small, all vis-

cous derivatives in the streamwise direction are neglected.

The terms normal to the viscous region are retained. This is

known as the "thin shear layer" approximation.

For flows with solid boundaries, the viscous regions

are aligned with the boundaries. We may define the transforma-

tion to computational space such that it maps solid surfaces
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to n = constant surfaces, making E the streamwise direction.

Neglecting the ( ) viscous terms,equation (2.12) simplifies

to -q + L + -F = -
at ac an Re arn

where q , E , and F are defined in Section 2.3, and $ is

re-defined as:

0

-- n)

/ -n)2 + (an)
-xn \ay /

a

u

U + -- + - -v
3 9Y \a X an 1/ (ay an

2

kPRa ( +( n a yi 3fx( ) ( n (u +v )

+ yI 2

(3x

(u - ) v +2 fn (/n

ant A y 3n Tix ay

For flows with solid boundaries, the thin shear layer

approximation drops the same terms which are dropped in

boundary layer theory. However, the thin shear layer approx-

imation retains the n-momentum equation, and a constant pres-

sure is not imposed through the viscous region. Unlike bound-

ary layer theory, there is no need to match the inviscid and

viscous regions, and there is no singularity at separation

points.

(2.15)

a(uv
an

+ (-L n 2

ay )
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2.5 Approximate Factorization

The thin shear layer equations derived in the previous

sections may be descretized in time to obtain a large matrix

equation involving derivatives in both C and n . Approximate

factorization separates this matrix equation into a series of

equations, each of which contains E derivatives or n deriva-

tives, but not both. The time descretization and factoriza-

tion are described in the next sections.

2.5.1 Time Descretization

A generalized time differencing formula may be defined as:

n n n n-1OAt 3 Aq At a + _ A- 1A2 3
t+ + Aq + O[(®-e-At + At ]

1+6 at 1+E :t 1+ 2

(2.16)

An n+I n[seBa
r A - [see Beam and Warming ( 6 )]. This differ-

where Aq =q -q

ence equation is equivalent to many common time differencing

equations. The parameters 0 and e determine the type of

scheme and its accuracy. For example, 0 = 1, e = 0 reduces

equation (2.16) to the common Euler implicit difference formula:

,n+1 n /a n+ 0(At2q - q = at - + at)(2.17)

Other choices of 0 and e are listed in table 2.5.1* , along

with the differencing scheme they represent.

*See Beam and Warming (6 ).
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Table 2.5.1 - Partial list of schemes contained in Eq. (2.16)

e E SCHEME ERROR

0

2

0

0

2

Euler explicit

Leapfrog explicit

Trapezoidal implicit

Euler implicit

3-point-backward implicit

O(At2)

O(At3 )

3
O(At )

(t2)

O(At )

The thin shear layer equation may be written as:

+- + -- = -1
DE an Reo an

(2.18)

as described in Section 2.4. This equation can be solved

simply for -q to obtain:
at

(2.19)- = -- + -F + 1 - S
at a an k Reo an

This relation is substituted into the time descretization

equation (2.16) to obtain:

0

0

1

1
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n n

+At A a-+ - E +
1+e E: n

n-1
+ + -q

I AqE

A + $

-A + $nS

Re
0

-n+ 1 n

Reo

+ 0 (e - E - )At + t

At any location ( E,n), and F are functions of q only,

as can be seen from their definitions (Sections 2.1 and 2.3).

Thus, they are differentiable in q and the matrices A and B

may be defined as:

(2. 21.A)

(2.22.B)

These definitions imply the matrix relations:

(2.21.B)AE = A Aq

A =B A

AF = B A q (2.22.B)

(2.20)
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We note that S is more complex than E or P in that it

is a function not only of d but also (see Section 2.4).

However, the form of S is still such that M may be defined

where:

S = -- (2.23.A)

as explained by Steger ( 5 ). This implies the relation:

AS = M Aq (2.23.B)

These relations may be used in (2.20) to obtain:

r)A a__ n_ 1__ __ - n__

I + OAt a A + 3At -_ 1_ AqK +E: a a1 3n Re0

_ t n n + nAt a ^ A 1An A
-- E +i _-F + - S

1+e an \ Re/I

+ A qn-1+ 0[(6-- 1 )At2 + At 3 (2.24)
2

1+E

This is the time descretized form of the thin shear

layer equations. The time accuracy is variable depending on

the choice of the parameters which determine the differencing

scheme, e and E. This form is known as the "delta formulation"

because the dependent variable is Aq The procedure used to

march from time level (n) to (n + 1) is to solve for Aq , and

then add it to A .
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2.5.2 Factoring the Time Descretized Equation

Given the solution at time level (n), all the quantities

on the right-hand side of equation (2.24) may be computed to

any desired accuracy, if given appropriate difference expres-

sions. Thus, the right-hand side can be considered a "known"

quantity and will henceforth be abbreviated "R.H.S."

The operator acting on Aq in equation (2.24) may be

split into two operators by adding a term of order (At? in

Aq (At in q). The split equation is:

___ L n-At a / ^n ~ n
I + AAt I A] I + - B n 1 M q a = R.H.S. (2.25)

S 1+E 3 1+e 3n K Re J

Note that this factored equation differs from the original

equation by

OAt2 /9,^)(TJ n ^, A () j [B - - n . This term is the same
1+6 (aE 3 Re

order as the terms dropped in the original time descretiza-

tion and so does not affect the formal accuracy of the scheme.

This factored equation may be solved in two parts. If

we define

I +At a (A 1 n)^
Aq = + E: B rn n)]Aq (2.26)

L +s a Re0

n
then solving for Aq becomes a two-step process:
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n
A. Solve for Aq from:

I + A q = R.H.S.
1+E 3E

n
B. Solve for Aq from the definition of Aq*:

(2.27.A)

(2.27.B)At a /n n n= *L 1+ B e M

1 +e F3TI ~ Re0

These equations are block tridiagonal matrices when the

difference operators are expanded. These equations have the

form:

C
1

B2 C2

A 3  B 3  C3

A _ B CJ-1 J-1 J-1

A B

Aq1

Aq
2

Aq3

Aq
- 1

Aqj

rhs1

rhs
2

rhs.

rhs 1

rhs

(2.28)

where A. , B. , C. are .4x4 matrices ('blocks') and Aq.

and rhs. are 4 element vectors.

Notice that each equation now contains t or n derivatives,

but not both. This uncouples the two directions and reduces

the dynamic memory required and the operation count required

B
1

A2
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for a solution to the equations, as described in the next

section.

2.5.3 Advantages of the Factored Scheme
n

Equation (2.24) isamatrix equation for the vector Aq

Note that A, B, and M are (4x4) matrices and that Aq is a

large vector made up of (lx4) matrices. If the computational

domain has J points in and K points in n, the size of the

vector Aq is (4JK). The size of the matrix multiplying Aq

is (4JK) x (4JK). Inverting a matrix of this size requires

at least (4JK)2 storage locations and (4JK) 3 operations. A

typical problem with 100 grid points in each direction would

require 1.6 x 109 storage locations to store the matrix.

An alternative to solving this large matrix equation is

found in the approximate factorization technique described in

Section 2.5.2 . The factorization separates the matrix equa-

tion into two equations, one with E derivatives and one with

n derivatives. Using central difference schemes for the spa-

cial operators reduces each equation to a block tridiagonal

matrix equation. The storage requirement for each tridiagonal

matrix is 3 x (4JK). The storage may be reduced further by

noting that in the equation containing only E derivatives,

each line of constant n (K = const) is independent (similarly

for the n equation, lines of constant J are independent).

Thus, each line may be solved independently, and the storage

requirement for each matrix equation is only 3 x (4J). For
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J = K = 100, the dynamic memory requirement has been reduced

from 1.6 x 109 to 1200. The factorization has reduced a

single (4JK) x (4JK) matrix equation to (J + K) equations

using 3 x (4J) matrices.

The factored scheme also greatly reduces the operation

count. Inverting the large (4JK) x (4JK) matrix would require

on the order of (4JK) 3 operations. Each of the block tri-

diagonal matrices of the factored scheme requires only J(4) 3

operations [see Issacson and Keller ( 7 )], or (J + K) J(4)3

operations for the entire equation set. For the example of

J = K = 100, the operation count is reduced from 6.4 x 1013

to 1.3 x 10 operations.

Thus, the factored schemes have reduced both the opera-

tion count and the dynamic memory requirement. Besides the

obvious advantage of reducing run time, the factored schemes

have broken the equation into smaller sections which enable

large programs to be programmed and run on inexpensive "mini"

computers. Implementation of the scheme on minicomputers is

described in Section 2.7 .

2.6 Stability and Smoothing

A stability analysis of the factored scheme derived for

the thin shear layer equations in Section 2.5, would be quite

intractable. However, we can gain insight to the stability

of the scheme by studying the model linear one-dimensional

wave equation
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-u + a -u = 0 (2.28)
at ax

When written in a delta formulation, it has a form similar to

each operator of the factored scheme of Section 2.5. A Von-

Newmann stability analysis of this equation shows it to be

neutrally stable for all Courant numbers (u At/Ax) (see

Appendix A2 ).

The operators of equation (2.27) actually have non-

linear terms, and experience shows that it is necessary to

add dissipative terms to damp the growth of high frequency

(short wavelength) oscillations. The smoothing terms present-

ly employed are fourth derivatives acting on q , multiplied

by a constant and At. These terms, explained by Pulliam and

Steger in reference ( 8 ), are higher order and appended ex-

plicitly to the right-hand side of the equation. The smooth-

ing terms are multiplied by At to assure consistency with Aq.

Fourth derivative terms are used because they are small ex-

cept where 4 varies rapidly, that is, near the short wave-

length disturbances which are unstable.

These explicit smoothing terms introduce a stability

limit on the scheme which can be alleviated by adding similar

implicit smoothing terms to the operators of (2.27). The

implicit smoothing terms are second-derivative terms acting on

Aq , again multiplied by At to assure consistency. The addi-

tion of these implicit terms regains the unlimited stability

of the original scheme [see Pulliam and Stegar ( 8 )].
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2 33
The added terms are higher order (0 (At Ax 2 q)

ax 2 3t

and so do not formally affect the accuracy of the scheme.

However, if the constant multiplying the terms is large

0 2 , the time accuracy has been found to be dis-
_AtAx

turbed. This time error is such that the solution approaches

the steady state at a faster rate. Thus, it can be beneficial

if steady state solutions are sought. However, if time ac-

curate solutions are sought, this error is not acceptable,

and care must be taken that the smoothing terms are not so

large as to affect the time accuracy. Unfortunately, reduc-

ing the smoothing terms may lead to spacial oscillations

which do not die out in time. The trade-off between spacial

and time accuracy should be studied before time accurate solu-

tions are pursued.

2.7 Operation on Mini-Computers

Many of the inexpensive "mini" computers in use today

have a limited amount of storage accessible to a program.

For fluid dynamic calculations which often require many grid

points, and therefore a large amount of storage, this restric-

tion can limit the effectiveness of mini-computers and force

the use of large, relatively expensive, super computers. The

factored scheme described in Section 2.5 overcome the size

restriction imposed by mini-computers by breaking the calcula-

tion into smaller sections. Large regions can be computed by
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storing the large amount of data on an external device and

accessing this data one computational line at a time.

The present code runs on a Digital Equipment Corp.

PDP 11-70, which has a maximum program size of 64K bytes.

The "external" storage device used is the four million bytes

of extended memory available on this machine. This memory has

a rapid data transfer rate and is therefore preferable to rel-

atively slow disk or tape drives, but must be accessed through

the memory management hardware by subroutines which "map" a

portion of the memory region into the program address area.

The mapping subroutines essentially point 4K words of memory

to an area in the program.

The present version of the code allows grid lines of 90

nodes, that is, computational domains which have 90 points

in each coordinate direction. This is more than sufficient

for the examples we will use to test the algorithm.

2.8 Execution Time of the Code

The current implementation of this algorithm requires

115 seconds to advance the calculation one time step, on a

41 x 61 grid. Approximately 80% of the run time is used to

invert the block matrices defined in section 2.5.2. For a

41 x 61 grid there are 41 inversions of a 3 x 244 matrix and

61 inversions of a 3 x 164 matrix (see section 2.5.3). This

corresponds to approximately .091 seconds/node used during

the matrix inversion, on the PDP 11-70.
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3.0 Boundary Conditions

The thin shear layer equations usually require flow

conditions to be specified on all boundaries. The mathematical

conditions required generally are in terms of the flow prop-

erties or their derivatives. The numerical approximations

require information about all four variables which constitute

q (p , pu , pv , Et). However, the boundary conditions used

need not directly set p, pu , pv , and Et , or their deriva-

tives, as any four independent conditions can be used to de-

termine q . Often physical considerations, such as the domain

of dependence, limit the number of physical boundary conditions

to less than the four required numerically. For such cases,

the remaining variables required numerically, must depend on

conditions inside the computational domain and are calculated

from interior points.

In external flow problems, typically, the flow tends

asymptotically to freestream conditions far from the body,

making the specification of the physically proper boundary

conditions relatively simple. However, in internal flow prob-

lems where the upstream and downstream flow conditions general-

ly are not known until the solution is known, prescribing

boundary conditions becomes more difficult. Choosing the con-

ditions to prescribe can be done by carefully modeling the

physics of the flow and experimenting with reasonable boundary

conditions.

The variables which are to be determined from points in-
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side the calculation domain may be set implicitly or explicit-

ly. Setting the boundary conditions implicitly imples that

they are set during the finite difference equation solution

for the interior points. Thus, implicit boundary conditions

alter the basic solution scheme and make a change of boundary

conditions difficult to implement. Setting the boundary con-

ditions explicitly uses the solution of the previous time step

to compute the boundary conditions for the next iteration.

This type of boundary conditions becomes a modular element in

a program, which is changed easily. The explicit boundary

conditions reduce the time accuracy at the boundaries to first

order, but their versatility make them preferable to implicit

schemes for purposes of testing and validating the factored

schemes.

3.1 Upstream Boundary Conditions

The inviscid diffuser examples to be considered have

uniform supersonic flow upstream. Supersonic flow allows no

information to travel upstream and all flow quantities may be

specified. The upstream boundary is fixed at freestream con-

ditions at all times.

The viscous diffuser problems to be considered have a

supersonic core flow between two parallel flat walls at the

inlet to the calculation domain. If the walls are far apart,

the effect of the opposite wall is considered negligible and

viscous regions near the walls should behave as standard
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boundary layers. The equations governing boundary layer

flow are parabolic and may be marched forward in space. Be-

cause we expect boundary layer-like flow, we specify all

four flow quantities through the upstream boundary layers,

and since supersonic points may be marched forward in space

also, we specify all four flow quantities across the entire

inlet region. It should be noted that, in general, subsonic

regions near the upstream boundary have some upstream in-

fluence. This suggests that some flow variable should not

be specified but determined from inside the computational do-

main. It is only because we expect parabolic behavior similar

to the boundary layer equations that we do not need to "float"

one of the variables in the subsonic region of the upsteam

boundary layers. The inlet boundary layers were approximated

bylaminar flat plate boundary layers, with a zero freestream

pressure gradient. The profiles were generated on a computa-

tional grid by Usab ( 9 ).

The cascade problems to be considered have uniform

supersonic flow upstream. However, the upstream boundary

(figure 1 ) is not perpendicular to the flow direction and

the component of velocity normal to this boundary may not be

supersonic. In this case, information may travel upstream

and one flow variable should be determined from inside the

computational domain. If the boundary is far from the blade

sections, we expect any disturbances reaching the boundary

to be small, if the compressor is operating close to design.

Thus for the calculations done, the boundary is held fixed
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throughout the calculation.

3.2 Wall Boundary Conditions

In inviscid flow, the flow is tangent to a wall. The

magnitude of the velocity is taken to be the magnitude of the

total velocity one node off the wall. For viscous flows, the

condition of no-slip requires that the velocities at the wall

be zero. The energy at the wall can be determined by requir-

ing that the walls be adiabatic, that is, the change in total

internal energy is zero normal to a wall.

A fourth flow variable may be determined from a condi-

tion on the pressure at the wall. One such condition is to

set the derivative of the pressure normal to the wall to zero.

For viscous calculations with grids not normal to the wall,

this can be done by noting that the velocity at the wall is

zero, and combining the E and n momentum equations into a

single equation for the pressure. Following the work of

Steger ( 5 ), we take -n( -momentum equation) plus
ax

n (n - momentum equation) and solve the resulting tri-
ay

diagonal matrix equation for the pressure. After setting

the wall velocity to zero, this equation becomes:

Kxk) (&) +ay)( y [x a\y (y E)]\3.1

In finite difference form this equation is:
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a + a ("i+i ,k - j-1 ,k)
3x x y y 2AC

jkF a)2+Tpk + ( n2 - ,

(3.2)

The equations for each j along a wall can be combined into a

single matrix equation which can be solved by Gaussian Elimina-

tion.

This set of boundary conditions determines the four flow

quantities (u , v , e , p) at the walls, which uniquely de-

termines = (p , Pu , pv , Et).

3.3 Downstream Boundary Conditions

Supersonic downstream boundaries have all information

coming from inside the computational domain and no flow prop-

erties are to be prescribed. Subsonic outflow boundaries re-

quire that one, and only one, boundary condition be prescribed.

This is usually a condition on the pressure.

The easiest and most obvious way to determine the flow

quantities which are to be set by the interior points is to

extrapolate them along grid lines. This type condition has

been used with the algorithm and often gives reasonable re-

sults. However, they may lead to errors in the steady state
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solution because extrapolation techniques set the first or

second derivative of the extrapolated variable to zero, which

may not be a correct condition.

An alternative to the extrapolation techniques can be

found by examining the governing equation (2.24). Written

1
for a trapezoidal formulation (e = - , = 0) the difference

2

equation (2.24) becomes:

n n n n
I + At [ + $ - e n

at anRe

n a (-.n i ^n 3
At E + - F + - S + O(At )

e0 JRe
(3.3)

where E , F , etc. are defined in Chapter 2. This matrix

equation could be solved directly on the outflow boundary,
n

except that an expression for - is needed. If we lag

n n n n-1
this term [setting ( A ) A q = ( q) A n

and move it to the right-hand side, this implicit operator

becomes identical to the implicit n operator used in the

basic solution scheme, equation (2.27). The only modification

is done on the "known" right-hand side. Lagging this term

does not affect the formal time accuracy because

An n-1
Aq = A q + 0(At 2 ) (3.4)
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However, lagging the C derivative does affect the

stability of the scheme. For example, if a VonNeumann

stability analysis is done for a 2-D model wave equation

- u + a - u + b - u = 0 (3.5)
at ax ay

solved using this scheme, the scheme is shown to be only

conditionally stable (see AppendixA3).

3 .4 Periodic Boundary Conditions

Cascade geometries require a periodic condition up and

downstream of the blade section. This condition simulates an

infinite array of blades by assuring that the flow repeats

itself, that is, the conditions at the bottom of a blade pas-

sage are repeated at the top. An implicit periodicity condi-

tion is easily encorporated into this solution scheme by us-

ing a periodic block inverter in equation (2.27.B). Since

these "periodic" solvers require twice as many numerical op-

erations and twice as much storage as the simple tridiagonal

solvers, the present code sets the periodic conditions explic-

itly, lagging them one time step.

To update the boundaries for the next iteration, the

flow conditions are extrapolated across the boundary, setting

them to the average of the conditions above and below the

boundary. This condition should be sufficiently accurate pro-

vided that the grid is closely packed near the periodic bound-
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aries and there are not large gradients in the flow properties

along the boundaries.
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4.0 Example Calculations

4.1 Inviscid Diffuser Calculation

The factored scheme at Chapter 2 solves the thin shear

layer equations in the form:

q + -E + F - S ~. (41.1)
at ax ay ay

The viscous terms are contained in the vector S and when S

is set to zero, the equations reduce to the inviscid Euler

equations. Because of the relative abundance of theoretical

and computational predictions of inviscid flow fields, it is

of interest to compare the results from the present solution

scheme operating on the Euler equations, to other more thor-

outhly tester Euler equation solution schemes. These compar-

isons give an indication of the accuracy of the factored

scheme and information about its other properties.

The internal flow through a sharp cornered diffuser is

used as a test case because the theoretical solution is known

and because it contains examples of nearly all of the internal

flow boundary conditions. The Mach number at the inlet to the

diffuser is chosen to be 2.0 and the geometry chosen to gen-

erate a pressure rise of 1.4 across a reflected oblique

shock. The lower wall of the diffuser is flat and the upper

wall has a compression wedge of 3.090 (.054 radians). The

compression wedge generates an oblique shock at approximately

31' (.541 radians). The upper wall turns back to parallel



42

near where the reflected shock is expected to intersect the

wall. The geometry and theoretical shock structure are

shown in figure 2 .

The same computational grid was used for this example

and the viscous diffuser example in the following section.

The grid lines are clustered near the walls to capture the

large gradients in the boundary layer expected in the viscous

examples. There are 25 points spaced geometrically across

the expected boundary layer thickness and 11 points spaced

evenly across the rest of the channel. This grid is shown

in figure 3 . If only inviscid calculations are to be done,

the number of grid points across the channel can be reduced

from the present 61 to 15 with minimal affect on the computed

solutions.

The boundary conditions for this case assume uniform

flow through the upstream boundary. The wall conditions as-

sume an adiabatic wall T= and a pressure gradient of

\3n )

zero normal to the wall = 0. The velocity at the wall

is tangent to the wall and equal to the total velocity one

node off the wall. The downstream boundary conditions are

determined as described in section 3.3, except that the vis-

cous terms are set to zero. This boundary condition imposes

a Courant number restriction of .5 on the calculation, but

gives an accurate representation of the boundary.

The criteria used to determine convergence is the root
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mean square change in the density This value

j ,k

is normalized by the time step and convergence is assumed

when the value is less than 10~ , that is:

1 (A < 102 . (4.2)
At ,k

This case converged after 175 iterations. At convergence,

the largest fractional change in density at any point was

6. x 10-. The convergence history is shown in figure 4.

The run time on the PDP 11-70 is approximately 5.6 hours.

Figure 5 shows the shock structure for the converged

solution in the form of a pressure contour plot. The theo-

retical shock locations (figure 2 ) are overlaid as heavy

lines. The reflected shock is not completely cancelled,

partly because the expansion corner is not positioned exact-

ly where the shock intersects the upper wall, and partly be-

cause of the finite width of shocks in shock capturing type

solutions.

The flow field predicted by the factored scheme can

also be compared to a calculation by Tong ( 2 ) which uses an

explicit, time marching scheme due to MacCormack. Figure ( 6 )

shows the pressure contours produced by the calculations by

Tong. Comparison of this figure and figure ( 5 ) demonstrates

the similarity of the shock structures computed by the two

solution schemes. Figures ( 7 ) and ( 8 ) show the wall pres-
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sure distributions computed by the two schemes. The two

solutions have similar shock resolution but the factored

scheme does not have low frequency waves across the diffuser

which are apparent in the explicit scheme. The pressure

variations on the upper wall after location .6 are due to the

expansion corner and the reflected shock interacting with the

wall. The pressure drop on the lower surface after location

.8 is due to the upper wall expansion reaching the lower wall.

The similarity of the two computed flow fields, including

similar behavior at the boundaries, indicates that the

factored scheme, and the present set of boundary conditions,

can predict inviscid flow fields which agree with the predi-

tions of a well tested explicit, time marching MacCormack

scheme.

The present solution scheme compares well with both

theory and the MacCormack solution, indicating that the fac-

tored scheme can compute solutions of the Euler equations

with good accuracy. This scheme is presently slower than the

MacCormack algorithm because of the time step restriction

imposed by the boundary conditions. The advantage of the

scheme is its ability to compute viscous flows with little

additional effort.
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4.2 Oblique Shock Boundary Layer Interation

Flows of general interest, which we hope to simulate,

have both viscous layers and complex shock structures. In

order to assure that these phenomena can be accurately pre-

dicted, computed solutions must be compared to some'known'

solution. Unfortunatley, there are no theoretical predictions

and few reliable experimental measurements of these phenomena.

One notable exception is a series of oblique shock boundary

layer experiments done by Hakkinen, et al ( 3 ). The phenomena

observed and measured through the interaction region include

boundary layer velocity profiles, wall pressure and skin fric-

tion distributions. Thus, these experiments incorporate many

of the phenomena which are to be modeled and serve as a stan-

dard test case for viscous interaction computational models.

The shock boundary layer interaction is reproduced with-

in a supersonic diffuser because our goal is to produce inter-

nal flow calculations and develop reliable internal flow bound-

ary conditions. The shocks are easily generated within a dif-

fuser with a compression wedge, as in the inviscid diffuser

example. The drawback to simulating the interaction within a

diffuser is that there is a finite area and mass flow through

the diffuser, and there may be blockage effects due to bound-

ary layer growth. However, this effect can be minimized and

developing an accurate free-stream boundary condition is of

little value for internal flow calculations.
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The blockage due to boundary layer growth can be re-

duced by eliminating the boundary layer on the upper wall.

This can be done by simply not enforcing the no-slip condi-

tion on the upper wall. The blockage due to only the lower

wall is small until reverse flows are generated, substantially

increasing the boundary layer thickness. The blockage tends

to decrease the velocity (for supersonic flow) and increases

the static pressure. As will be shown, the pressure rise

due to blockage does not greatly influence the flow until

downstream of the region of interest.

The experiment chosen for comparison has an inlet Mach

number of 2.0 and a pressure rise of 1.4 across the reflected

shock. The geometry of the inviscid diffuser example pro-

duces the correct pressure rise across the reflection and the

same geometry and grid are used for this example. The Reyn-

olds number is chosen such that the shock reflects from the

lower wall at the Reynold's number corresponding to experi-

ment (ReSHOCK = 5.96 x 10 5). To avoid modeling the leading

edge boundary layer growth, the leading edge of the diffuser

is not within the computational domain. A flat plate bound-

ary layer profile at a Reynolds number of .25 x 105 is input

on the upstream boundary. The profile was produced by Usab

( 9 ).

This example retains all the terms in the thin shear

layer equations (section 2.4). The upstream boundary condi-

tion assumes uniform flow at the test conditions except along

the lower wall where the boundary layer profile is input (see
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section 3.1). The walls are assumed to be adiabatic and the

pressure gradient normal to the wall is zero T - 0, - 0).
\3n 3n

The condition of no-slip is not enforced at the upper wall;

there is no flow through the wall and the velocity along the

wall is equal to the total velocity one node off the wall.

The lower wall does enforce the no-slip condition on the ve-

locities. The downstream boundary is the one described in

section 3.3. This imposes a stability limit which requires

the Courant number ( to be less than .5
Ax /

The convergence criteria is the same as the one used

for the inviscid diffuser example, that is:

10 .
(4.3)

At j,k

This case took 492 iterations to converge and the largest

fraction change in density at convergence was approximately

10-6 . The run time on the PDP 11-70 is approximately 15.7

hours.

Figure 4 shows the convergence rate for this case and

the inviscid example. The initial convergence rate is similar

for the two cases, indicating that the initial shock structures

are formed in a similar number of iterations. Once these shock

structures are formed, the inviscid case converges rapidly.

The viscous case has much slower convergence rate because of

the interation of the shocks and the boundary layer. As the
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boundary layer adjusts to the pressure distribution of the

shocks, it disrupts the flow, causing a change in the shock

structure. This interaction slows convergence.

The pressure contours computed for this test

case are shown in figure 9 . These contours show a continu-

ous pressure rise between the incident and reflected shock

which is not evident in the inviscid example (figure 5 ).

This pressure rise is caused by the blockage due to the dis-

placement thickness of the boundary layer. The velocity pro-

files computed have a maximum displacement thickness which is

2.5% of the channel width. An area change of 2.5% in a Mach

2.0 flow will cause a pressure rise of roughly 10%. This is

the approximate rise seen in the contours.

The blockage has a significant effect away from the wall

where constant pressure is expected. However, near the wall,

where the shock generates a rapid pressure rise, the block-

age has a smaller effect and the contours are as one would ex-

pect for a reflected shock. The pressure rise is spread in

the upstream direction as can be seen by comparing the pres-

sure distribution of figure 10 to the inviscid pressure dis-

tribution in figure 7 . Figure 10 shows that the computed

wall pressure distribution is in good agreement with exper-

iment through the boundary layer interaction region. Near

the end of the reverse flow region (R ~ 3.2 x 10 ) the

blockage begins to raise the pressure. This rise is small

compared to the pressure rise due to the shock reflection and

does not greatly affect the skin friction coefficient until
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after the reverse flow region.

Figure 10 also shows the computed and experimental skin

friction coefficients. A b.oundary layer type calculation was

also used to predict the skin friction up to separation. The

boundary layer calculation used the computed free stream con-

ditions as the edge conditions. The agreement of the bound-

ary-layer calculation and the experiment indicate that the

shock structure is well modeled outside the boundary layer.

The good agreement of the computed skin friction with both the

experimental results and the boundary layer calculation in-

dicates that the viscous layers can also be predicted accur-

ately. The experimental apparatus could not measure negative

skin frictions but the edges of the reverse flow region are

well defined. These points are well predicted by the calcula-

tion giving an indication that the reverse flow region is

accurately modeled. The flow downstream of the reverse flow

region differs from the experiment because the upper wall ex-

pansion and shock re-reflection begin to interact with the

lower wall boundary layer.

The computed boundary layer profiles are also in general

agreement with the experimentally determined profiles (see

figure 11). The discrepancies are most likely due to insuf-

ficient boundary layer resolution and uncertainties in exper-

imentally determining velocity profiles.

The excellent agreement between this calculation and

the experimental data indicates that we can accurately pre-
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dict shock structures, laminar boundary layers, and their

interaction. We thus anticipate the ability to accurately

compute viscous internal flow problems of more general in-

terest.

4.3 Viscous Diffuser Calculation

The geometry of the previous examples is a typical

transonic diffuser geometry. If the transonic, viscous flow

through this geometry can be successfully computed, we can

expect to be able to accurately predict the flow through

arbitrary diffuser geometries.

The boundary conditions employed to compute this flow

field are the same as those used in the oblique shock bound-

ary layer interaction example, except that the condition of

no-slip is enforced on both walls. The convergence criteria

are the same used in the previous examples. That is:

-1/2

<_ 102 . (4.4)

atj . k

This example converged after 532 iterations, which translates

to approximately 17 hours on the PDP 11-70. At convergence,

the largest fraction change in density at any node is

-5
2. x 10 . As can be seen in figure 4 , the convergence

history is similar to the oblique shock boundary layer inter-

action example. The convergence rate is the same for both

cases but the magnitude of the error is slightly higher for
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this case because shocks interact with boundary layers on

both walls.

Figure 12 shows the pressure contours computed for the

fully viscous diffuser. This example produces a substantial

pressure gradient in the channel between the incident and

reflected shocks. This gradient is larger than computed in

either the inviscid or oblique shock boundary layer inter-

action example (figures 5 and 9 ). This is due to the added

contraction caused by the upper wall boundary layer displace-

ment thickness.

This example demonstrates that even relatively thin

boundary layers (maximum displacementthickness of each bound-

ary layer is less than 2.5% of the channel width) can greatly

influence the flow within a supersonic diffuser.

4.4 Inviscid Cascade Calculation

An internal flow problem which has received much atten-

tion in recent years is the flow through a two dimensional

transonic compressor cascade. Understanding flow of this

type is an important step in designing high speed axial com-

pressor stages which have improved performance and efficiency.

The factored algorithm described in this thesis was used

to predict the inviscid flow through a compressor cascade as

a first step towards a viscous cascade calculation. The so-

lution computed by this scheme can be compared to other well

tested solution techniques to determine if the numerical
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scheme is correct. Agreement of the schemes does not nec-

essarily imply the correct physical solution because it is

characteristic of internal flow problems that the far field

conditions must be determined as part of the solution and the

model used to predict the boundary conditions can affect the

solution. The solution can also be affected by the way the

Kutta condition is modeled. If the same numerical solution

is obtained by different solution schemes, using the same

boundary and Kutta condition models, then it can be inferred

that the numerical algorithms are correct. However, the

accuracy of the models must be proven before we assume that a

computed solution corresponds to the physical solution.

The cascade calculation was done with a typical tran-

sonic compressor blade geometry. The upstream flow angle was

64.140 and the non-dimensional exit static pressure was 0.4835.

The computational domain extends one chord length upstream and

downstream. The grid mesh was generated by von Lavante (10)

and is shown in figure 1 . This body fitted grid has lines of

constant n in the streamwise direction and lines of constant

( in the blade to blade direction. The lines are normal to

the blade at the blade surface and periodic upstream and down-

stream. There are 21 points on the blade and 10 both upstream

and downstream of the blade. The grid lines are clustered

near the blade with 20 points spaced geometrically from each

surface and 20 evenly spaced points across the rest of the

channel (see figure 1 )
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The solution presented was obtained after 1500 itera-

tions. The convergence criterion used for the previous

examples:

1/2

12 -

At k 9" \P/

was approximately 2.5 and the largest fractional change in

density at any node was 104 . The solution was plotted

every one hundred iterations and the blade surface pressures

were found to change less than five percent for five hundred

iterations (see figures 13 and 14).

The downstream boundary condition model is described in

section 3.3 . The flow through the boundary is assumed sub-

sonic and the static pressure is held constant across the

boundary. The Mach number contours of figure 15 demonstrate

the ability of the downstream boundary condition model to

allow flow disturbances to be convected downstream.

The inlet Mach number for this calculation was greater

than one, but the component of the Mach number normal to the

upstream boundary was less than one and information should be

able to pass through the boundary. Fortunately, for any given

back pressure there is a unique set of upstream conditions.

If the upstream boundary condition model fixes conditions

which are close to the correct conditions, and the upstream

boundary is far from the blade, we expect the flow conditions
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to adjust to the proper conditions before entering the blade

passage. For this calculation the upstream boundary condi-

tions were fixed and the back pressure adjusted to be compat-

ible with them. The small adjustment of the flow at the up-

stream boundary seen in figure 15 indicates that the flow can

make slight adjustments before entering the blade passage.

This boundary condition should be modified to allow upstream

influence so that the choice of upstream conditions does not

depend on the back pressure.

Figure 15 shows the Mach number contours computed for

the compressor cascade by the factored algorithm. The figure

shows many of the features we expect of cascade flows. There

is a small compression region at the leading edge due to the

turning of the flow, a large expansion region on the suction

surface, a shock wave between the pressure and suction surface,

and a disturbance at the trailing edge which is convected

downstream.

The most interesting of these phenomena is the disturbance

downstream of the blade section. In viscous flow we expect the

pressure and suction surface boundary layers to combine and

form a wake which is convected downstream. Inviscid flow theory

allows the stagnation streamline to leave the body at any loca-

tion, depending on the circulation around the blade. The Kutta

condition is introduced to produce a unique solution, generally

the one for which the streamline leaves the body at the trail-

ing edge. This eliminates an infinite acceleration around a
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sharp trailing edge and models the physical flow as closely

as an inviscid approximation will allow. The Kutta condition

model used for this calculation assures that the pressure is

continuous across the trailing edge. The Mach number con-

tours indicate that the stagnation streamline does not leave

the blade at the trailing edge but rather on the suction sur-

face. This indicates that the Kutta condition model used for

the calculation did not sufficiently simulate the expected

solution, despite the fine grid spacing provided at the trail-

ing edge (see figure 1 ).

Figure 16 shows the Mach number contours generated by

Tong (2) using an explicit, time marching scheme with the same

geometry and back pressure. This solution was computed on a

much coarser grid than the grid used with the factored algo-

rithm. This grid has 18 points on the blade and 10 evenly

spaced points between the blades. The characteristics of the

flow for the two calculations are very similiar. The expan-

sion region is in the same location although the highest Mach

number reached is only 1.8 for this calculation compared to

2.4 for the previous solution. This is probably due to the

fine grid resolution used with the factored algorithm. The

shock strength and location were also computed to be the same

in both calculations, although the shock is not spread as

much in the factored algorithm calculation. It is interesting

to note that the trailing edge flow is very similar in both

calculations despite the use of different algorithms and grid
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meshes. The explicit scheme also forces constant pressure

at the trailing edge to model the Kutta condition. This rein-

forces the notion that the low velocity region is a result of

the Kutta condition model used in the calculations, not a

result of grid spacing or a property of the solution algorithm.

The excellent agreement of the two schemes in predicting

the flow field characteristics implies that the factored scheme

is solving the Euler equations correctly. However, neither

solution accurately models the physical flow because the model-

ing of the Kutta condition does not force the velocity dis-

continuity to the trailing edge.
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5.0 Conclusions

The implicit factored algorithm presented solves the

two dimensional thin shear layer equations in internal flow

geometries. Boundary conditions have been developed which

correctly model the internal flow boundaries. This algorithm

and set of boundary conditions has been programmed and used

to predict the flow through supersonic diffusers and through

an axial compressor cascade. The algorithm has been shown to

predict flow characteristics which agree well with theory, ex-

periments and other computational schemes. This computer code

may be used as a baseline calculation to which new solution

schemes and new boundary condition models may be compared.

Improvements in the computational efficiency of the code

can be made by developing a new downstream boundary condition

which does not impose a stability limit on the calculation.

The upstream boundary condition should also be improved to

allow information to travel upstream in subsonic regions.

In order to more accurately simulate inviscid cascade

conditions, a Kutta condition model must be developed which

moves the velocity discontinuity to the trailing edge. This

development may be bypassed by going to viscous calculations

where there is no need for a Kutta condition model.
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APPENDIX Al

-STRONG CONSERVATION FORM OF THE NAVIER-STOKES EQUATIONS

WRITTEN IN NON-ORTHOGONAL COORDINATES-

The strong conservation form of the Navier-Stokes

equations written in vector form is:

-- + 2- + -[ aR + --- (Al.1)
at ax ay Reo ax ay

If a rectangular computational grid ((,n, t) is defined,

a general transformation to physical coordinates (x,y,t),

which are not necessarily orthogonal, may be defined as:

C = (x,y) n = n(x,y) t = t .

It will be shown that an equation of the form:

q + -E + -F' -+

at ac an Re L aE an J
0

where

q = q/J

= Ea + Fa/J

(Al.2)

(Al.3)



6o

F =E + F_/

ax( a y a i

R = +S /

a 
= R + S /

A (R an a/\
ax a y/

J = a a 3 -1

ax ay ay ax ax ay ax ay

a a3 an ac

is equivalent to the strong conservation form of the

Navier-Stokes equations.

To show that ( Al. 3) is equivalent to (Al.1) , the defin-

itions of E, F and $ are plugged into equation (Al.3) and the

equation is rearranged as follows.

q/J) + E + F +1 EF +

at a5 J ax Ja y/ an J 3x J ay

a (R 1 + S + R a+ S n (Al.4)
3 J ax J 9Y/ 37n \J ax J 3y
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a (q/J) +
at

1 aE 2E+

J ax a)
a /1 ax\
a E \J ax/!

+ (F + F
J ay \3a aE J y

Ea(n \J Y

(E J 3X/)

3\J 3x/

+
J ax\an/+

J axE/M

J ax\aJ/

+ 1 f)+

J ay an/

ay
J ay an

The underlined terms of (Al.5) are equation (Al.1) divided

by the Jacobian determinant and so it only remains to show

that the other terms sum to zero. This requires some simple

identities between the metrics. Two such identities may be

derived from the expressions for the total derivatives

d and dn .

dE = 3E dx + dy
ax ay

dn = "' dx + dy
ax ay

(Al.6A)

(Al.6B)

J ay/

(Al.5)

F-T
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Multiplying dt by -R and d9 by 3E and re-arranging gives:

ax a x

an d - dn
ax ax

- aE an dx + 31i di dy
ax ax ax ay

- a dx - -- a dy
ax ax ax ay

ax a-
\ax ay

dy
ax ay/

= -Jdy

+ 1 dn

This equation implies the identities:

an - _J ay .1 = 3.ay

ax a ax an

Similiar relations may be derived by evaluating

(Al. 8A,B)

(-a d( -
ay

a- d to
ay /I

3_ - J ax an= j ax (Al.8C,D)

an ay E

The two terms of equation (Al.5) containing E cancel

as we can see by inserting the relations (Al.8A,B) .

= -J_J(3-d (Al.7)

obtain:
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E- + E (iLa)- E J ) + -((_JaYi))
a \J ax/ an \J ax) aE \Jan a n J\ a

=0 (Al.9)

Similarly, the terms containing F, R or S may be com-

bined to show that they also vanish in pairs.

Thus, under this transformation, (Al.3) is identical

to (Al.1) . The only difference is the slightly more com-

plicated form of the flux vectors E, F', R and S. Thus the

computer time required to solve the equations is only mini-

mally changed while adding great flexibility to the geome-

tries which can be calculated. Changing the geometries only

requires recalculating the metrics.



APPENDIX A2

-STABILITY ANALYSIS OF MODEL ONE-DIMENSIONAL WAVE EQUATION-

The one dimensional scalar wave equation:

u + a u = 0
at 3x

(A2.1)

may be descretized in time

lation (see Section 2.5.1)

using a trapezoidal delta formu-

to obtain:

n t n n
Au -A a a au a at + O(At 2 )

2 ax ax
(A2.2)

If central difference expressions are used to approximate

the and n derivatives, the equation may be written:

n+1
u.

n aAt n+1
-u = - _Uj+1

n+1

-- 1

aAt n n
2Ax U j+1 U

If the solution is represented as:

n n i(pjAx)
U. = A e

+ 0 (At 2, Ax 2)

a VonNeumann stability analysis may be done using equation

(A2.3) . After this substitution and the use of Euler's
ie

e = cose + i sino , equation (A2.3) becomes:

(A2.3)

(A2.4)

n
-U _1)

Sn

-J U+

identity,
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(A - 1) = -aAt (21 sinP Ax) (A - 1) -aAt (21 sinp Ax).
4Ax 2Ax

Solving for A yields:

1 - aAt (21 sinp Ax)
4Ax

A =

1 + aAt (21 sin p Ax)
4AX

Thus the magnitude of the growth factor A is one for all

time steps (At), grid spacing (Ax) and wave numbers (p)

The scheme is unconditionally stable.
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APPENDIX A3

-STABILITY ANALYSIS OF MODEL TWO-DIMENSIONAL WAVE EQUATION

The two dimensional scalar wave equation

u + a a u + b -- U = 0 (3.1)

may be descretized in time using a trapezoidal delta formu-

lation (see Section 2.5.1) to obtain:

At a-- (Au n\ + b a Aun)
2 Lax y(

+ a U + 2b a u + O(At2 )

ax ay

n n+1
where Au =

n

(A3.2)

u - u . We can obtain the differencing

scheme used on the downstream boundary by noting that

n n-1
Au = Au + O(At 2) . Then, using central difference

approximations for the y-derivatives, and first order back-

wards difference approximations for the x-derivatives, the

finite difference form of equations (A3.3) becomes:

n
Au
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n \
- U j3,

aAt

2Ax

n

U 3k

n+1
bAt U.

4Ay

aAt n
U.

'$, i3k

n
-U

j -',k

n+1
- U -

3' -1

n
- U.

3-i ,k

n-I
- (U

j,k

/n
KU

bAt

2 AY

+ O(At2, Ax)

To perform a VonNeumann stability analysis,

At
C = b-

Ay

n
and U jk

n i(pjAx + qkAy)
=A e

Substituting these expressions into equation

dividing by a common factor of A
n-1 i(PjAx + qkAy)

e

obtain:

1
-C sinq
2 y

- e~5

A y)
jy

+ i C sinq Ay

e X)= A3.5- C~ (-

/ n+1
U.
\3,k ,

n-1
- U.

J -1

k+1

n
-U

j .1k -

( 
n
ji k+1

n
- U ,k-)

C aAt
x Ax

(A3.4)

we set

(A3.4) and

2
A ii

we

+ A
3

2
C 

1

0
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This is a quadratic equation with complex coefficients

for A. The roots of the equation can be found for a range

of courant numbers (C , C ) and wave numbers (pAx). The

scheme is stable if the growth factor (A) is less than one,

and unstable for A greater than one.

The growth factor has been calculated for a range of

conditions and the results summarized in figure A3.1 . Thus

the model wave equation is conditionally stable under the

scheme proposed.

C

y.

.51
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0

7 7// /

unstabl

/ 7/
/ /

stable / ///
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/7
7 -,

7 1 7
// 7

/7
/1

/

7 7'

/ 1:
.5 Cx

Figure A3.1: Stable region.
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Figure 1: Computational grid for cascade calculations.
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2: Geometry and theoretical incident and
reflected shock locations for inviscid diffuser.
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Figure

t,5

OP60
4F

or

.Ole

I i I I I

=2M



71

CD

-- o Inviscid Diffuser

A Shock Boundary Layer
Interaction

+ Viscous Diffuser
c)
c)

CD

LLJ

CD cD

CD
ci

0.00 10.00 20.00 30.00 40.00 50.00
ITERRTION X10'

Convergence history for diffuser calculations.Figure 4:



72

0. 130

0. 125

S120

.115

0. 110

0.105
0 100

Figure 5: Pressure contours for the inviscid diffuser
as computed by the present scheme.
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Figure 6: Pressure contours for the inviscid diffuser
as computed by Tong (2) using a MacCormack scheme.
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Figure 8: Wall pressure distribution for the inviscid
diffuser as computed by Tong (2) using a
MacCormack scheme.
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Figure 9: Pressure contours for the
boundary

shock
layer interaction example.
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Figure 10: Wall pressure and skin friction distribution
for the shock boundary layer interaction example.
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Figure 13: Cascade blade pressure distribution
at iteration 1000
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Figure 14: Cascade blade pressure distribution
at iteration 1500
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Figure 16: Mach number contours computed for the
inviscid cascade by Tong (2) using a
MacCormack scheme.


