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Parametric dependencies of aeroengine flutter

for flutter clearance applications

by

Asif Khalak

Abstract

This thesis describes the effects of operational parameters upon aeroengine flutter stability. The study is
composed of three parts: theoretical development of relevant parameters, exploration of a computational
model, and analysis of fully scaled test data. Results from these studies are used to develop a rational
flutter clearance methodology-a test procedure to ensure flutter-free operation.

It is shown, under conditions relevant to aeroengines, that four nondimensional parameters are necessary
and sufficient for flutter stability assessment of a given rotor geometry. We introduce a new parameter,
termed the reduced damping, g/p*, which collapses the combined effects of mechanical damping and mass
ratio (blade mass to fluid inertia). Furthermore, the introduction of the compressible reduced frequency, K*,
makes it possible to uniquely separate the corrected performance map from the non-dimensional operating
environment (including inlet temperature and pressure). Simultaneous plots of the performance map of
corrected mass flow and corrected speed, (rh,, Ne), with the (K*, g/p*) map provide a dimensionally com-
plete and fully integrated view of flutter stability, as demonstrated in the context of a historic multimission
engine.

A parametric, .computational study was conducted using a 2D, linearized unsteady, compressible, po-
tential flow model of a vibrating cascade. This study showed the independent effects of Mach number,
inlet flow angle, and reduced frequency upon flutter stability in terms of critical reduced damping, which
corroborates the 4D view of flutter stability.

Test data from a full-scale transonic fan, spanning the full 4D parameter space, were also analyzed. A
novel boundary fitting tool was developed for data processing, which can handle the generic case of sparse,
multidimensional, binary data. The results indicate that the inlet pressure does not alone determine the
flight condition effects upon flutter, which necessitates the use of the complete 4D parameter set. Such a
complete view of the flutter boundary is constructed, and sensitivities with respect to various parameters
are estimated.

A rational flutter clearance procedure is proposed. Trends in K* and g/p* allow one to rapidly determine
the worst-cases for testing a given design. One may also use sensitivities to extend the results of sea level
static (SLS) testing, if the worst case is relatively close to the SLS condition.
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Chapter 1

Introduction

To assure reliability and safety of jet propulsion, designers must mitigate possible blade vibrations in the

turbomachinery stages. The cyclical strains associated with blade vibration can rapidly accrue to promote

high cycle fatigue (HCF) failure, greatly diminishing blade life. The current work deals with blade flutter

in turbomachinery, a vibrational instability.

Flutter involves an interaction between the unsteady fluid mechanics, and the unsteady structural me-

chanics in which there is a net energy transfer from the flow to the structure. This leads to unstable

vibrations. The physical interactions involved are sophisticated enough that they do not reduce to an eas-

ily solved limiting case. Therefore, predictive models for this phenomenon are typically computationally

intensive, and it is difficult to ensure high fidelity. A contributor to the complexity of this problem is that

there are a large number of relevant physical parameters.

Rig and engine testing are therefore necessary in any engine development program. In general, the

parameters describing the system can be divided into those which are fixed for a particular engine and

those which vary during the operation of an engine, that therefore define the operating space of the engine.

The point of experimental engine flutter testing is to ensure that flutter does not occur throughout the

operating space.

The operating space relevant to performance in terms of pressure ratio and efficiency is typically measured

in terms of corrected mass flow, rhe, and corrected speed. For a given machine, these are equivalent to the
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axial and tangential blade relative Mach number, respectively. Flutter stability, however, is not solely

described by these variables, but requires other variables as well. In particular, the flight condition in terms

of inlet temperature and pressure is known to influence flutter stability. In the present research, we address

the effects upon flutter stability from the full (nondimensional) set of operating space variables.

1.1 Previous Work

Aeroelastic problems in turbomachines have been studied for almost 50 years. The AGARD Manual on

Aeroelasticity (Sisto and Carta, editors, 1987) summarizes the accomplishments in the field through the late

1980s. Since then there has been considerable further research, particularly in the area of computational

flow simulations. More recent reviews include Verdon (1993), F6rsching (1994), and Srinivasan (1997).

The analysis techniques have tended towards numerical simulations of the unsteady flow, starting from

the early work of Whitehead (1960, 1962) on 2-D, incompressible, inviscid, flat plate cascades. These have

been developed to the current 3-D, unsteady, viscous flow methods currently used. A number of parametric

studies have been performed using simplified flow simulations to gain insight into the parameter dependencies

of the flutter phenomenon (including Srinivasan and Fabunmi (1984), Kielb and Ramsey (1989), Smith and

Kadambi (1993), F6rsching (1994), Panovsky and Kielb (1998)).

The problem of flight condition effects upon flutter stability was first identified by Jeffers and Meece (1975)

in the context of a fan flutter problem during the development of the F100 Engine. Rig testing conducted

at sea-level ambient conditions initially indicated that the engine was clear of flutter instabilities. However,

a flutter problem was found during subsequent flight testing. Later simulated flight condition testing con-

firmed the effects of inlet temperature and density upon flutter stability. Further work on this problem with

the F100 was taken up at NASA (Mehalic et. al. (1977)), confirming the trends identified by Jeffers and

Meece (1975).

Another study of the effects of flight condition was included in the experimental parameter study on

an annular cascade (Jutras, Stallone, and Bankhead, 1980) which focused upon choke flutter in mid-stage

compressors. This study also showed temperature effects to be a significant contributor to stability. This

study, unlike the F100 development testing, did not find any effects of inlet density on flutter stability at a
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constant temperature. Later in the thesis, we suggest why the experimental setup, as described in Rutowski

et. al. (1978), might be expected to exhibit such behavior since it was carefully designed to tightly clamp

the blade to its supports, eliminating any frictional damping.

In general, the experimental approach in flutter is hampered by the fact that test data for fully-scaled

rigs are expensive and, therefore, scarce. Other publically available experimental flutter tests include the

studies of Stargardter (1979) and Jutras, et. al. (1981), which varied the corrected speed, Nc, and corrected

mass flow, rh,, but did not explore the effects of flight condition. Stargardter showed the classical procedure

of correlating flutter onset with respect to reduced velocity, U*, and incidence was not valid in his tests.

Since Stargardter's tests were taken at a constant inlet condition, increases in reduced velocity also entailed

increases in Mach number. This mixing of Mach number effects and reduced velocity effects is an important

element of Stargardter's results, which underscores the need to account for all the relevant parameters in

assessing aeroengine flutter stability.

Although flight condition effects are understood to be relevant to flutter stability, the understanding to

date is still incomplete as noted by Jeffers (1988) in the AGARD Manual:

"The adverse effect of increasing temperature on the stability of turbomachinery airfoils
has long been recognized but remains today one that is not fully understood.... The effects of
increasing temperature on the parameters that comprise reduced frequency, i.e., the frequency
of the unsteady airfoil motion and relative flow velocity, are well known. Unfortunately, the
resulting effect on aeroelastic stability, particularly for 'stall' flutter, is not."

This view is corroborated in Srinivasan (1997), who also makes the following general observation:

"One important scientific element that is conspicuously absent in our pursuit to improve
structural integrity is similitude. As blades operate in a harsh thermal and centrifugal environ-
ment, successful laboratory modeling would imply that we can develop scaling laws that can be
used to interpret data. There is an opportunity here for academia to assess the scope of needed
research and provide guidelines"

The concept of similitude and its application to aeroengine flutter is at the essence of the current work.
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1.2 Focus of the Present Work

The focus of the current work is to develop a rational methodology for flutter clearance; that is, for ensuring

that the boundary of the flutter instability for a particular engine lies outside the engine's operating envelope.

An analysis of the basic fluid and structural equations is conducted to identify the non-dimensional system

parameters. We formulate the parameters in a manner uniquely suited for operability assessment. This set

of parameters is discussed in relation to previously published results, as well as a computational parameter

study to identify dominant parametric trends. We incorporate data, provided by the Volvo Corporation,

from extensive, experimental flutter tests on a full-scale test rig. These data, coupled with the current

analysis, can provide new insight into the effects of flight condition in the context of flutter clearance.

Relevant engineering questions include:

9 What is a minimal, but complete, set of non-dimensional parameters relevant to describe flutter

stability of a given machine?

* What is the best choice of parameters for the purpose of engine flutter operability assessment?

* What is the role of the flight condition with respect to the non-dimensional description and how can

this be physically interpreted? Are there distinct effects of temperature and density or can these be

summarized by a single parameter?

* What is the sensitivity of flutter stability with respect to the non-dimensional variables specifying the

flight condition for a typical machine?

The thesis is laid out as follows: Chapter 2 develops a set of four non-dimensional parameters that is

necessary and sufficient for flutter stability; Chapter 3 integrates these parameters into a new technique

for representing flutter boundaries, and interprets this technique in the light of previous work; Chapter

4 explores the role of the non-dimensional parameters influencing the unsteady fluid forces on the basis

of a 2-D compressible, potential model with real airfoils in bending and in torsional vibrations; Chapter 5

describes the procedure used in analyzing a set of full-scale test data in which the full parameter dependence

was measured; Chapter 6 discusses the results from this full-scale engine testing; Chapter 7 presents a flutter
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clearance test procedure; and Chapter 8 summarizes the work and conclusions which may be drawn from

it.

1.3 Thesis Contributions

The key contributions of the thesis are the following:

1. It is shown, on the basis of the fundamental (Navier-Stokes) fluid and (linear) structural equations,

that a four dimensional parameter space is necessary and sufficient to assess linear aeroelastic stability

for a given geometric design, under conditions relevant to aeroengine operation. Furthermore, under

these circumstances, the parameter space of the vibration-induced fluid forces is three dimensional.

2. A representation for flutter stability boundaries has been developed for operability assessment. This

technique extends the commonly used performance map with a second map which, for given structural

parameters, spans the flight envelope in terms of inlet temperature and density. It is shown that the

particular choice of four parameters associated with this new technique uniquely separates the effects of

performance from the effects of flight condition. To the author's knowledge, this is the first description

to include all of the relevant non-dimensional parameters for a given machine in an integrated manner.

3. It is demonstrated that the effects of mechanical damping and mass ratio (between blade mass and

fluid mass) can be collapsed into a single parameter, which we term the reduced damping, g/p*, for

the high mass ratios found in aeroengines. This combination is novel in the context of turbomachinery

aeroelasticity.

4. A computational study using a linearized-unsteady, compressible, potential flow model shows that the

primary instability mechanism in this model both for bending and for torsion was local (i.e. a length

scale of the same order as the blade chord). That is, the instability arises from the effect of a vibrating

blade upon itself and its neighboring blades.

5. A data analysis procedure has been constructed for data which span the four-dimensional parameter

space to assess the flutter boundary. In this context, a novel, generic boundary-fitting technique using
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Support Vector Machines was developed to fit boundaries between stable and unstable data.

6. Stability boundaries that account for the full 4D parameter space were assessed from experimental

test data of a full-scale fan. Sensitivities of the flutter boundary were quantitatively assessed: These

parameter sensitivities can be used to extend data from ambient tests on similar geometries to estimate

the effects of flight condition.

7. A rational methodology is developed for flutter clearance. Using this methodology, the most sensitive

points in the parameter space can be quickly identified for rig testing, or for computational simulation.
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Chapter 2

Complete set of parameters for flutter

stability

The current methodology of designating flutter regions on the performance map of pressure ratio in terms

of corrected mass flow and corrected speed (see Figure 2-1) is useful, but incomplete. In particular, the

corrected quantities do not eliminate the dependence of inlet temperature and pressure on the flutter

boundary, although they do remove these dependencies upon compressor performance parameters (pressure

ratio, corrected speed, and corrected weight flow). Therefore, the boundary may "shift" depending upon

the inlet conditions as depicted for raised temperature in Figure 2-1, which occurred in the case of the F100

fan, as described in the introduction.

The thermodynamic conditions at the rotor inlet, the temperature, the pressure, and the density, are

dependent upon the flight conditions (altitude and flight Mach number), and the upstream geometry in

the engine. The stagnation quantities (temperature, T, density, p, and pressure, p) of the outside air are

defined as

T = To 1+ 1M2
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Figure 2-1: Schematic of performance map with stall flutter boundary shown. Changes in the thermody-
namic conditions can move the boundary, as shown.

Pt = Po 1+ 7~ M2

Pt = Ao 1 +7 -1M2

where the subscript 0 represents ambient quantities, and t represents stagnation (or "total") quantities, Mf

is the flight Mach number, and y is the ratio of specific heats. Figure 2-2 shows the effect of flight Mach

number, Mf on the stagnation quantities.

With an ideal diffuser, these stagnation quantities can be recovered as the air travels into the engine,

raising the static temperature, pressure and density at the rotor inlet to the front stage compared to ambient

conditions. For latter stages, these quantities will be further increased due to the work transfer from the

compressor to the fluid.

In this chapter, the problem of constructing a complete set of non-dimensional parameters for the stall

flutter problem is addressed, which goes beyond the classical performance map, and can account for the

inlet thermodynamic conditions. Precise conditions are described under which a set of four non-dimensional

parameters that are necessary and sufficient for flutter stability assessment.
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Figure 2-2: Ambient stagnation temperature, Tt, pressure, pt, and density, pt, as a function of flight Mach
number for two altitudes: Sea level and at 12km. Ideal diffusers are able to recover these conditions for the
first stage.
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2.1 Stability Analysis

Although we have noted the incompleteness of the performance map due to the dependency on flight

condition, the problem remains of constructing a set of parameters that does provide a complete description.

To approach this question, we begin with an idealization of the system as shown in Figure 2-3. Here, we

consider a single blade vibrational mode, with a given modal mass, mo, modal frequency, wo, and modal

(structural) damping g. The blade-to-blade coupling occurs as a consequence of the fluid dynamic forces.

A general form of the aeroelastic equation for a particular blade, j, is

modj; + mow2(1 + ig)qj = F, (2.1)

where q is the generalized coordinate, F is the unsteady fluid forcing, and the structural damping is

added as an imaginary stiffness. This aeroelastic formulation (see Crawley, 1988) uses a complex-valued

generalized coordinate such that the imaginary part of q is phase-shifted from the real part by 900. The

real part of complex-valued quantities are said to be "in-phase" with the vibration, and the imaginary part

is "out-of-phase." If the vibrations are sinusoidal with frequency wo (which occurs at resonance), then

q. = fjeiwot , and equation (2.1) is equivalent to the familiar forced, damped, harmonic oscillator, where the

forcing function comes from the flow:

moqj + 2mowoCqj + mowoqj = F (2.2)

where C = g/2. We consider solutions of equation (2.1) that are harmonic, with a complex frequency, w,

(see Figure 2-4). For cases near the stability boundary, the amplitude is small, and the frequency has an

imaginary part near zero. One might deduce from Figure 2-4 that the complex frequency is related to

stability. In fact, one can form an "aeroelastic eigenvalue", namely s = iw, which follows the same trends

as linear system eigenvalues do (Crawley, 1988). For example, if the real part of s is negative, then the

system is stable'. Correspondingly, if the imaginary part of w is positive, then the system is stable.

The unsteady fluid forces, F,, however are still unspecified. We presume the following form:

'Note that the substitution for q is essentially a Laplace transform, when viewed in this way
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Figure 2-3: Schematic model of the fluttering rotor for a specific mode of vibration. The blades are modeled
as second-order systems (corresponding to the structural mode being analyzed). The blades are subject to
fluid forcing, which generates an aerodynamic coupling between blades.

5 10 15
time

Figure 2-4: Example of real (solid) and imaginary (dashed) parts of generalized coordinate, q. The imaginary
part is 90* out of phase from the real part, and the frequency has a small imaginary part.
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y = O ii~p My(, . ,g;M, -2a, k*) (2.3)

where c is the blade chord, y is the ratio of specific heats, po is the inlet pressure, and 1j is the non-

dimensional fluid force coefficient for forces on blade j which depends upon i, the complex blade amplitude

of r7 = q/c, upon M, the inlet relative Mach number, a the inlet flow angle, and upon k*, the "compressible

reduced frequency" based on the oscillating frequency, Re(w),

- Re(w)c
V7yRTo

This compressible reduced frequency is a new parameter, which will be discussed further in the next chapter.

The ~ above the K* indicates that the oscillating frequency, Re(w) is used in computing k*, rather than

the natural frequency, wo, used in computing K*.

One should note that the inlet pressure in (2.3) can be written in terms of the inlet Temperature and

density, by the ideal gas law

po = poRTo. (2.4)

It is shown in Appendix A, that an alternate, but equivalent, expression for the forces, (2.3), is

F = c2poU 2 l(iA..., N; M, a, k) (2.5)

where poU 2 is the inlet dynamic pressure and Ic = Re(w)c/U is the classical reduced frequency based on

Re(w).

2.1.1 Fluid Dynamical Conditions

The conditions under which equation (2.3) describes the vibration-induced fluid forces are derived in Ap-

pendix A, and are as follows:

1. (a) fixed nominal flow path geometry,
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(b) structure with linear dynamics and a single blade mode, (mo, g, W),

(c) Prandtl number of unity, Pr ~ 1, and high Reynolds number, Re

(d) Adiabatic Blades

2. We assume that M and a act independently. This implies that we avoid the "unique incidence" region

(i.e. vertical speedlines on the performance map, see Cumpsty, 1989). In the case of unique incidence,

we must use the pressure ratio, 7r, to replace either M or a.

3. Existence of a steady flow solution (about which the unsteady flow may be linearized), which implies

that there are no large scale oscillations such as rotating stall or surge.

4. Inlet characteristic Mach number, M, and flow angle, a, captures the inlet flow distribution. This im-

plies an axisymmetric flow, with an inlet radial velocity distribution specified by a single characteristic

Mach number, M, and flow angle, a. That a single quantity is sufficient is a reasonable assumption

if the inlet guide vane (IGV) angles are scheduled with the corrected parameters (i.e. the corrected

mass flow, mC, and corrected speed, Nc).

2.1.2 Development of Stability Conditions

Substituting the form for the fluid forces, (2.3), into the aeroelastic equation, (2.1), and non-dimensionalizing,

we obtain

* *1i 1ljWi,...,?n;MaK) (2.6)
kWO P *J p*(p! K*)2

where p* is the non-dimensional air mass/fluid mass ratio defined in the following manner:

*PC
2

m0

if mo is given as a sectional mass, or pc3 /mo if mo is given as a total mass. This is related to the typically

defined blade mass ratio, M,

74
71=L-.
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For our purposes, we prefer using p* to highlight the role of the flight condition (i.e. inlet density). In the

context of assessing linear stability, we linearize for small amplitude vibrations, . Although the pressure

field is not necessarily linear with respect to small perturbations (due to shock motion), the integrated fluid

force does behave linearly. Furthermore, it can be shown that in the tuned (identically bladed), linear case,

switching to interblade phase coordinates (Lane, 1954), decouples the equations for the blades in (2.6).

Each interblade phase, oj, corresponds to a case in which all of the blades undergo vibrations with a fixed

phase shift, oa, between neighboring blades. The discrete interblade phase angles correspond to periodic

circumferential modes in the duct, the most unstable of which is relevant for stability assessment. The

aeroelastic equation for harmonic motions in interblade phase og is

-~ ~ ~ ~ ~ ~ ~ ~ ~~~o (-) ( ) 7,+()?U+ () 7i=(K)l(M, a, K) qoj (2.7)

Substituting w = Re(w) + i Im(w), and taking the real and imaginary parts gives the following pair of

equations,

1 \ 2 1 1
(Re(w) 2 + Im(w)2) + - = Re(l,, (M, a, k*)) (2.8)

2Re(w)Im(w) g 1- , + g--= K) Im(1, (M, a, K*)) (2.9)

As mentioned before, stability depends upon the imaginary part of complex frequency. In particular, a

positive Im(w) is stable. 2

Combining the mass and mechanical damping parameters

Since Re(w)/p* is always positive, the stability condition can be framed in terms of the right hand side of

equation (2.9). Furthermore, we consider the worst case (i.e. the least stable) interblade phase angle, Oj.

This produces the stability condition

2 Using the "aeroelastic eigenvalue" concept, this corresponds to Im(-si) > 0, or Re(s) < 0, which is more familiar for
linear systems
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1
/p* > (K*)2 (2.10)

Notice that a parameter reduction has occurred in this step. The damping, g, and the aerodynamic

mass ratio, p*, can be combined into a single parameter, g/p*, which we term the reduced damping.

Case of massive blades

We can now use the real part of the equation to find the condition such that k* ; K*. Since we are most

interested in neutrally stable solutions, it is reasonable to set Im(w) = 0 in equation (2.8). This implies that

(2.11)

It therefore follows that Re(w) ~ wo, or that K* ~ K* if

1 > 2 Re(l,, (M, a, K*)). (2.12)

Since p* is typically small for blades in aeroengines, 0(0.01), this condition is usually a good approximation.

Stability Condition

The stability condition can be written as

g/p* > ( max Im(1,, (M, a, K*)) (2.13)

Overall, there are four parameters that are necessary and sufficient for the assessment of flutter stability

of a given machine: the Mach number, M, the flow angle, a, the compressible reduced frequency, K*, and

the reduced damping, g/p*.

Alternate Stability Condition

A similar argument using the equivalent form, (2.5), results in the following, similar stability criterion:
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1
g/p* > -max Im(l, (M, a, k)) (2.14)

where k is the classical reduced frequency, k = woc/U.

2.2 Summary

The environment of high Mach number flight can significantly alter the inlet thermodynamic conditions

to an aeroengine from the sea level static point. Such changes influence flutter stability in a manner not

accounted by the corrected performance map.

Under specified conditions, the aeroelastic stability of a bladed rotor of a given design depends upon a

four variable parameter space, which is spanned by (M, a, K*, g/p*), where M is the Mach number, a is

the inlet flow angle, K* is a new parameter termed the compressible reduced frequency, and g/p* is a new

parameter termed the reduced damping.

The introduction of the reduced damping, g/p*, indicates that the effects of mechanical damping and the

fluid inertia parameter have coupled effects in the non-dimensional parameter space. Equivalent formulations

exist using either the compressible reduced frequency parameter, K*, or the classical reduced frequency

parameter, k. The new parameters, g/p*, and K*, are discussed in further detail in Chapter 3.

A flutter stability condition, (2.13), is derived in terms of the four non-dimensional parameters. This in-

volves an unsteady aerodynamic coefficent, l, which depends upon three of the four parameters: (M, a, K*).
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Chapter 3

A new technique for representing

flutter boundaries

In this chapter, a new technique is introduced for representing flutter stability. This technique continues our

focus upon the operability issues for a particular design. There are many ways to pick four nondimensional

parameters to span the parameter space described in the previous chapter as being necessary and sufficientto

describe flutter stability of a design. However, for operability issues, we show that a particular set uniquelyl

separates the influence of performance conditions, (rhe, N,) from the influence of flight conditions, in terms

of inlet temperature, To, and inlet density, po. This unique set includes two parameters not in common

usage: a reduced damping parameter, g/p*, and a compressible reduced frequency parameter, K*. The role

that these two parameters play in flutter stability is discussed.

A methodology is constructed, using this unique set of parameters, by which flutter boundaries may be

fully specified. A complementary plot to the performance map completes the parameter space. For given

structural parameters, this plot has a one-to-one correlation with the flight condition (inlet temperature,

To, and inlet density, po). This methodology can be used to look at the stability of a design throughout its

intended flight envelope.

1 The sense in which the set is unique is discussed precisely in Appendix B. For example, multiples of these parameters also
have these properties.
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Finally, these concepts are illustrated in the context of a multimission engine, which encountered prob-

lems with flutter at the flight test stage, due to temperature and density effects.

3.1 Uniqueness of Parameters

In this section, we address the question of how to choose a set of parameters to span the parameter space.

For the current purposes, we are concerned with describing the operability of a machine in a convienient

way.

We consider the chord, c, to be fixed, which is in keeping with the previous assumption of fixed, nominal

flowpath geometry. In this case, the Mach number, M, and flow angle, a, can be shown to be equivalent

to the corrected mass flow, rn, and the corrected speed, Nc. Since the map of ric and N, is the standard

way to represent performance, we reserve two of the four parameters for (rh, N,).

We would like the two parameters left to describe the location on the flight envelope. This would make

it possible to separate the effect of flight condition from the performance point, described by (rh, N,).

More precisely, we impose the condition that if the structural variables, (wo, ma, g), are constant, then the

flight condition, in terms of inlet temperature and inlet density, is solely described in terms of the two free

parameters.

Another desireable property is related to the functional form of the stability condition, (2.13). Here,

it is shown that the vibration-induced fluid coefficient is only a function of three of the four parameters.

It is beneficial to define our parameters such that this is the case, to avoid describing the fluid forces in a

manner that is more complicated than necessary.

It is shown in Appendix B that the aforementioned conditions establish a unique 2 set of four parameters.

(in, N, K*, g/p*)

where K* is a parameter that we introduced in Chapter 2, the compressible reduced frequency defined as

2 The parameters are unique within a continuous monotonic transformation of any of the parameters (e.g. x -+ x 2 )
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K*= w0c (3.1)
-V-:yR-To

The remainder of this section discusses the properties of this four parameter space and how a flutter

description based on these four parameters can complete the flutter boundary description, drawn solely

upon the performance map.

3.2 Reduced damping and compressible reduced frequency

Generally speaking, increases of the reduced damping, g/p*, and the compressible reduced frequency pa-

rameter, K*, have stabilizing influences on the rotor. In this section, the physical interpretation of these

two parameters is discussed, as well as their effect on stability.

3.2.1 Reduced damping parameter

In previous literature concerning turbomachinery flutter (see reviews by Srinivasan, 1997, and F6rsching,

1994) the mechanical damping, g, and the mass ratio, p (or, equivalently, p*), are treated as separate

parameters. Our use of a combined reduced damping, g/p*, is therefore novel in the current context.

However, the concept of a combined reduced damping parameter has been used in other areas, notably for

bluff-body fluid-structure interactions (Vickery and Watkins (1964), Scruton (1965), and Skop and Griffin

(1973)).

The roles of the damping, g, and fluid inertia parameter, p* (or, equivalently, mass ratio y), are often

neglected in discussions of turbomachinery flutter. Often, it is assumed that since g and p* are individually

small compared to unity (or, equivalently, p >> 1), the effects of the fluid inertia and mechanical damping

are, likewise, individually negligible. More specifically, the sign of Im(l,) which is often used as a flutter

criterion in predictive schemes, is not necessarily conservative for analysis of data from real machines.

Unfortunately, it is notoriously difficult to accurately estimate the mechanical damping. This problem

was extensively studied by Srinivasan (1981) (see also Srinivasan, 1997) who characterized the effects due

to material damping, and friction at the shroud and root attachment. According to the in vacuo tests of
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Srinivasan, material damping of a typical titanium blade is of order g = 0(0.0002), while damping on the

same blade due to frictional effects at the root is of order g = 0(0.01) for bending modes, and of order

g = 0(0.01) for torsional modes.

There has also been extensive work, on design of platform dampers, (Griffin (1979), Cardinale, Bankhead,

and McKay (1980), Srinivasan (1981)), to the more recent work of Sanliturk, Ewins, and Stanbridge (1999)),

and specialized blade inserts (El-Aini, 1996) which have been used to increase damping in turbine stages.

Furthermore, recent work has shown that significant material damping is possible using viscoelastic material

in interior cavities (Gordon, 1997), and in layers within composite blades (Kosmatka and Mehmed, 1998).

These can potentially provide an increase in the damping of order g = 0(0.01).

The fluid inertia parameter, p*, is dependent on the air density, the blade size (chord), and the modal

mass, mo. The modal mass, mo, depends on the modeshape and the blade density. For a typical fan blade

(taken from Fan-C, a NASA research transonic fan) at sea level static, the value of p* is approximately

0.009, based on the blade sectional mass and sea level conditions.

Combining these estimates, we find that for inserted metal blades,

0.01 (3.2)
0.009

For metallic blisks (integrally bladed disks), if the frictional damping is negligible, then the reduced

damping estimate changes dramatically to

0.0001
/p* 0.009 0.01. (3.3)

For blades with dampers, the associated g/p* may be substantially higher. However, roughly speaking,

the reduced damping is 0(1) for inserted blades. Thus, damping may not always be ignored in the stability

criterion (2.13). Those studies which account for damping and fluid inertia typically yield reduced damping

parameters on the order of unity, as those listed in Table 3.1.

Among these studies, Fbrsching's parametric study using an inviscid, incompressible model particularly

focuses on the effects of mass ratio and damping. He describes the "interdependent effects" of these two
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Study g p* g/p*
Kielb and Ramsey [1989] 0, 0.001, 0.002 0.0028- 0, 0.36, 0.71

Kaza and Kielb [1982] 0.004 0.0031 1.27

Bendikson 0.005, 0.02 0.004 1.23, 5
Friedmann [1980]
Fbrsching [1994] (review pa- 0, 0.005, 0.01, 0.0010, 0.0014, 0, 0.781, 2, 2.78, 3.125, 3.57,
per) 0.02, 0.03, 0.05 0.0016, 0.0018, 4, 5, 5.5, 7.14, 8, 10, 12, 12.5,

0.0025, 0.0064 20

Srinivasan and Fabunmi 0.4, 0.8, 1.2 1.4 0.28, 0.57, 0.85
[1984]

Table 3.1: Cascade flutter studies with damping effect included

parameters, noting that the level of mechanical damping strongly influences the sensitivity to mass ratio.

These effects are neatly encapsulated into the current description which uses a single reduced damping

parameter, g/p*.

In fact, the single g/p* parameter collapses the results of F6rsching's (1994) 2-D, inviscid, incompressible

parametric study of the 4th standard configuration (B6lcs and Fransson, 1986). F6rsching lists the results

as curves of critical reduced velocity, U* = 1/k versus interblade phase, for each combination of damping,

g, and mass ratio, p (equivalent to p*). Since the flow is modeled as incompressible, the classical reduced

velocity, U* = 1/k, is used.

Figure 3-1a shows the critical reduced velocity versus the reduced damping parameter for Fbrsching's

simulations in a combined bending-torsion mode. Each data point on the plot corresponds to a separate

curve of F6rsching (1994), with the value at the least stable interblade phase angle selected. The o, 0,

and o symbols denote different mass ratios, p, of 500, 700, and 900, respectively. As the reduced damping

increases, the critical reduced velocity, U*, increases linearly, as shown. The dashed line is a least-squares

linear fit. The effects of mass ratio (i.e. density parameter, p*) and damping, g, are very well captured by

the reduced damping, g/p*.

The Figure 3-1b shows this movement in least stable interblade phase, umin, with reduced damping,

g/p*. This shows that the least stable interblade phase, in this case, has a weak trend with the reduced
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Figure 3-1: Collapse of computations of F~rsching (1994) with reduced damping, g/p* for a combined
bending-torsion mode. The parameters g and p* are individually varied. A o represents p* =0.87 x 10-3,
(y = 900), a 0 represents p* = 1.12 x 10-3, (p = 700), and a 0 represents p* = 1.57 x 10-3, (p= 500). Two
plots are shown: (a) Critical reduced frequency as a function of g/p*, and (b) Interblade phase at stability
point. The single parameter, g/p *, summarizes the combined effects of damping and fluid inertia.
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damping.

This example shows that previous work in the flutter literature may be usefully reinterpreted using the

reduced damping, g/p*. The justification for the reduced damping, however, comes directly from a rigorous

mathematical development of the linear stability. Therefore, such a collapse is not dependent on the details

of unsteady aerodynamic modeling.

An important property, which is utilized later in the thesis, is that increasing the reduced damping has

a stabilizing effect on flutter stability. This is intuitive since an increase in damping typically mitigates the

occurance of vibrations. Furthermore, inspection of the flutter stability condition, equation (2.13), makes

it clear that increasing g/p* is beneficial to stability.

3.2.2 Compressible Reduced Frequency

The compressible reduced frequency, K*, is particularly convenient for use with the performance map, as

discussed in the next section. Here, we discuss in more detail the relationship of the reduced frequency

parameter, K*, to the classical reduced frequency, k, and to flutter stability.

It is helpful to consider the physical interpretation of the reduced velocity, k, and the compressible

reduced velocity, K*. They both can be interpreted as ratios of time scales between the unsteady fluid and

vibrating structure. In particular,

k woc flow-through time

U vibration time

K* wc _ acoustic time
K* yRTO vibration time

The "flow-through" time is the time required for a particle of fluid to pass through the blade passage, and

the "acoustic" time is the time required for a fluid pressure disturbance to pass through the blade passage.

Including the "vibration" time for one radian of the cycle to elapse, there are three relevant time scales.

These three time scales relevant to the problem are shown schematically in Figure 3-2.

If the Mach number is specified, the relationship between the two fluid time scales is likewise set. In

this case, either a further specification of the compressible reduced frequency, K*, or the classical reduced
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Mach number, M

c~

Q1 d

Figure 3-2: Diagram depicting three relevant time scales: inertial, acoustic, and vibrational, and rela-
tionships between these using Mach number, M, classical reduced frequency, k, and compressible reduced
frequency, K*.
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Figure 3-3: Fan test results of Stargardter(1979). Stable points are plotted as o symbols and flutter points
are plotted as x symbols. Since the data are taken with ambient air, the effects of Mach number and
reduced frequency are mixed.

frequency, k, determines the relationship among these three time scales.

Consider the "critical" reduced velocity, U*, of the y-axis of Figure 3-1. This is the maximum reduced

velocity, U* = 1/k, which may be attained before the occurrence of flutter. Based on the physical description

above, it is not obvious that there should be a single "critical" reduced velocity.

This is an idea which traces its roots to wing aeroelasticity (Bisplinghoff, Ashley, and Halfman, 1955,

and Fung, 1955). It is intuitive that at zero relative velocity the aerodynamic damping is positive (e.g. the

damping on a vibrating tuning fork is essentially fluid damping). The critical speed is, then, the speed at

which this aerodynamic damping changes so that the system is destabilizing overall. This stable maximum

speed is, in fact, termed the flutter speed.

This view, unfortunately, does not capture all the realities of turbomachinery aeroelasticity. In fact,

much of flutter occurs at part-speed, not at a maximum speed. This point is shown strikingly in the

experiments of Stargardter (1979) on the TS22 fan rig as shown in Figure 3-3. The data are plotted on

the flutter map (Snyder, 1988) of flow incidence, i, versus reduced velocity, U*. It appears that this is a

case in which there is not a single, critical reduced velocity. In places, increasing the reduced frequency (i.e.
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Figure 3-4: Effect of reduced frequency on aerodynamic damping in Fifth Standard Configuration, exper-
imental results (B61cs and Fransson (1986)). The interblade phase angle is held constant at 1800. The
damping decreases as K* decreases.

decreasing reduced velocity) is actually destabilizing.

.In this case, the explanation lies in the fact that the Mach number changes significantly over the plot

in Figure 3-3. The experiment was run, as is typical, at ambient conditions for constant geometry. Among

the three time scales in Figure 3-2, the acoustic time scale is fixed (by the ambient condition), and the

vibration time scale was also unchanged over the experiments. Thus, there is a linear dependency between

the Mach number, M and the classical reduced velocity, k. Only if one holds the Mach number fixed, as

in the incompressible computational study shown in Figure 3-1, can a "critical" reduced velocity may be

defined.

Experimental data for a high subsonic compressor is available for the 5th standard configuration (Bblcs

and Fransson, 1986) which addresses this point. Here, a cascade was oscillated at various frequencies at

a constant interblade phase of 180' with the flow held at a constant inlet Mach number of 0.5, and the

unsteady blade pressures were measured. Some results of these experiments are depicted in Figure 3-4.

The aerodynamic work, is plotted as a function of compressible reduced frequency, K*. The aerodynamic

work is a non-dimensional form of the energy transfer from the fluid to the blade, which is negative for
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Figure 3-5: Schematic relationship between K* and unsteady fluid phase lag, obf.

stabilizing motions and positive for destabilizing motions. The experiments show that for a constant Mach

number, and constant inlet flow angle, increasing compressible reduced frequency is stabilizing. In these

experiments, the parameter changed is the oscillating frequency; that is, the vibration time. Therefore, for

a constant Mach number (as in these experiments), the measured trends are valid both for the classical

reduced frequency and for the compressible reduced frequency.

We can interpret this stabilizing effect of reducing the vibration time (i.e. increasing frequency) by

considering the time lag between the blade vibration and the fluid reactions. The lag allows an exchange of

energy to take place between the blade and the fluid. The direction of energy transfer is determined by the

phase shift (caused by the time lag) between the oscillating fluid force and blade motion. The governing

mechanism which produces the lag in turbomachinery flutter has not been definitively established, and

remains an active research question. However, since the lag ultimately arises from the unsteady fluid

dynamics, we can expect that the time lag scales with the relevant fluid time scales. The phase shift,

however, is determined by the relation between the lag time and the period of oscillation.

lag time , WOC ,
Period v =fTRTo
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Figure 3-6: Effect of reduced frequency on phase between unsteady fluid forces and torsional oscillations
in Fifth Standard Configuration, experimental results (B61cs and Fransson (1986)). The interblade phase
angle is held constant at 1800. Data are plotted for two incidence angles, 40, as o symbols, and 6', as 0
symbols.

where Of0 is an initial phase shift from steady effects and r' is a non-dimensional fluid lag scaled by the

pressure disturbance time scale. Since the fluid takes a finite time to react, r' is a positive number. The

relationship between 0 and K* is depicted in Figure 3-5. If the value of -r' is roughly constant for a given

Mach number and flow angle, then the trends with reduced frequency are roughly linear for a range of K*,

as shown. Since the Mach number, M, is considered constant, the relationship between acoustic time and

inertial time is fixed. Although K* is used here (which we find convenient), a similar relationship holds

with k.

Although this phase argument demonstrates that changes in stability can occur due to changes in K*, it is

not obvious that the trend should have the direction shown in Figure 3-5 in which increasing K* stabilizes the

system. This trend is consistent with the empirical trend that increasing natural frequency stabilizes blades

with respect to flutter, as utilized in design practice (Snyder and Burns, 1988). Furthermore, the stabilizing

trend of increasing natural frequency is also found in the results of several idealized analyses including the

following: incompressible, potential flow over thin wings (Kemp and Sears, 1954), incompressible, potential
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flow over flat plate cascades (Whitehead 1960, 1962), inviscid cascades with strong shocks (Goldstein et.al.,

1977), and fully stalled incompressible flow (Yashima and Tanaka, 1977, and Chi, 1980).

The experimental data from the 5th standard configuration also corroborates this interpretation. In

Figure 3-6, the phase, of, is plotted as a function of K*. Two incidence angles are plotted, 40, as o

symbols, and 6*, as 0 symbols. Clearly, the phase of increases as K* is decreased. Both flow angles elicit

similar trends, but the effect of increasing incidence is destabilizing in general. Further results (B61cs and

Fransson, 1986) showed that with other parameters held constant, aerodynamic work increased smoothly

as incidence was increased, eventually to a destabilizing condition.

3.2.3 Remarks

We have, thusfar, shown that the corrected performance point, (hc, Ne), coupled with two new parameters,

K* and g/p*, is a valid approach towards spanning the parameter space for flutter stability, and that

this set uniquely satisfies some conditions (discussed in Appendix B). Further, trends have been developed

which suggest that increasing K* and increasing g/p*, for a constant corrected performance point, have a

stabilizing effect upon flutter stability. Here, we discuss the motivation for parsing the 4D parameter space

using the suggested parameters, and evaluate the scope of validity of the trends with K* and g/p*.

The three conditions, mentioned earlier, are that two parameters span the corrected performance map,

that the other two parameters span the flight envelope (inlet temperature and density) for a constant

structure, and that the fluid force coefficient is dependent upon only three of the four parameters.

One way to view these conditions is as a decoupling of the effects of corrected performance point upon

flutter stability from the other effects upon flutter stability. Before addressing the appropriate way to do

this decoupling, it may be helpful to discuss the the performance quantities themselves, briefly.

Some important properties, such as the pressure ratio, the efficiency, and the occurrence of rotating stall,

are a function of the corrected mass flow, rh, and the corrected speed, N,. Physically, Ahc and N turn out

to be one equivalent representation of the flow Mach number, M, and flow angle, a. From an operability

standpoint, however, rhc and N, are a preferred form, since they can be easily related to changes in the

rotor speed or operating line. This is evident in the terminology of the mass flow and rotor speed being
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"corrected" for the other variables (i.e. the flight condition). Other than these corrections, these other

variables do not influence the performance quantities such as the pressure ratio.

In the case of aeroelasticity, however, the flight condition variables (i.e. the inlet temperature and

density) have an influence which can not be accounted by simply using the corrected mass flow and corrected

speed. Thus, two more parameters, besides ri and N, are needed, as demonstrated in Chapter 2. It is

desireable to "decouple" the effects of these other two parameters from the effects of Ahe and Nc. Such a

decoupling is not mathematically precise, but requires some interpretation. One way to accomplish this is

to have the two other parameters span the space for which Ahe and N, are "corrected." The condition that

these other two parameters span the flight condition for a constant structure does this. In Appendix B it is

shown that the four parameters, (rc, N, K*, g/p*), uniquely satisfy the conditions. Thus, the introduction

of the parameters K* and g/p* can be thought of as an aeroelastic extension of the performance map of

corrected mass flow, rh, and corrected speed, Ne, to include all the effects relevant to aeroelastic behavior.

This point is developed in the next section.

We now turn to the trends of flutter stability with reduced damping, g/p*, and compressible reduced

frequency, K*. The trend that increasing g/p* stabilizes flutter is based upon the analytical derivation.

An inspection of the stability criterion (2.13) shows that an increase in reduced damping, g/p*, will always

benefit flutter stability. By similarity, if the other parameters are kept constant, a change in reduced

damping has the same sense as a change in the mechanical damping.

The trend that increases in K* stabilize the rotor is a property of the unsteady fluid forces and the

evidence for it is ultimately empirical. The physical argument presented supports the idea that increasing

K* will reduce the fluid force phase lag, and can change flutter stability. That this change with increasing

K* is stabilizing supposes that the quasi-steady behavior is destabilizing, and that the relevant value of K*

near the stability boundary is at the first zero-crossing of phase lag. The supposition that the quasi-steady

behavior is destabilizing is supported in many special cases analytically, as previously documented.

By similarity, the trend that increasing compressible reduced frequency stabilizes flutter, at a constant

corrected operating point, is equivalent to the trend that increasing blade modal frequency stabilizes flutter,

which is a widely adopted design principle (Snyder and Burns, 1988). Further, similarity dictates that the
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Figure 3-7: A family of boundaries, each for a particular g/p* and K*. Increasing either g/p* or K* has a
stabilizing influence. Trends are shown for constant g/p*, in (a), and for constant K*, in (b).

same trend with K* is also equivalent to the previously documented trend that increasing inlet temperature

destabilizes flutter (Jeffers, 1988). The use of the K* parameter, in fact, elucidates the direct relationship

between the effects of inlet temperature and the effects of natural frequency. This directly addresses the

issue raised by Jeffers (1988), as quoted in Chapter 1. We adopt this stabilizing trend of K* as a general

principle, relevant to aeroengines.

3.3 Fully specified flutter boundaries

In this section, the mass-damping, g/p*, and the compressible reduced frequency, K*, are used to extend

the performance map flutter boundaries to include all of the operating parameters for a given machine,

including flight condition. As discussed earlier, the set, (M, a, K*, g/p*), possesses some unique properties

for operability assessment.

In fact, boundaries with a constant g/p* and K* have roughly the same shape as the "usual" measured

boundaries boundary, as shown in Figure 2-1, assuming that the measurements are taken for constant inlet

conditions (e.g. sea level standard). Furthermore, to first approximation3 , performance correlations in

terms of corrected mass flow, rh, and corrected speed, Nc, are unaffected by the values of g/p* and K*.

3 Assuming that any resultant changes in steady-state blade deflection have negligible effect upon steady-state performance
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Figure 3-8: Map of compressible reduced frequency, K*, versus mass-damping, g/p*. Stability boundary
corresponding to a particular point on the performance map is shown.

As described in the previous section, and as is widely recognized, increasing the mechanical damping

and increasing the vibrational frequency have stabilizing effects. It follows that increasing g/p* and K* are

both stabilizing. This means that isolines of g/p* and K* on the performance map shift in a stabilizing

direction (away from the typical region of operation) with increasing g/p* and K*.

Therefore, a complete method for representing flutter boundaries is to use a family of curves on the

performance map, each for a specific value of g/p* and K*, as schematically shown in Figure 3-7a and 3-7b.

This family of curves extends the current formulation to one which can account for different flight conditions.

For constant K* (shown in Figure 3-7b), there is a limiting boundary as g/p* tends to zero (i.e. g/p* < 1).

It is also useful to look at a different view of the flutter boundary, restricted to a specific location on

the performance map, but for varying K* and g/p*, as in Figure 3-8. Since increasing K* and g/p* are

generally stabilizing, the stable region on Figure 3-8 is above and to the right of the boundary.

We can obtain a more complete look at the full flutter boundary using these two views simultaneously

as in Figure 3-9. One of the graphs, in Figure 3-9a shows the performance map, while the other, in

Figure 3-9b, shows a graph of mass-damping g/p* versus compressible reduced frequency K*. An x plotted
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Figure 3-9: Dual view of performance map and (K*, g/p*) map. Two simultaneous views give a reasonable
picture of a point (denoted by the x) in relation to the flutter boundary in the 4 dimensional parameter
space.
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Figure 3-10: Boundaries from computational model on (K*, g/p*) map. The
number at constant (K*,g/p*) is destabilizing.

effect of increasing Mach

simultaneously in each graph specifies all four parameters. The flutter boundary drawn on the performance

map, Figure 3-9a, corresponds to the (K*, g/p*) value at the x on Figure 3-9b. Conversely, the boundary

on the (K*, g/p*) axes corresponds to the x on the performance map. Movement of the x in one set of

axes causes the flutter boundary to move in the other set of axes. Thus, by using two axes simultaneously,

we can obtain a reasonable picture of a point in the 4-D parameter space, and its relation to the flutter

boundary.

Although stall flutter is generally associated with highly loaded operating lines, it is not always possible

to ascribe generic trends to the movement of the boundary on the (K*, g/p*) map with changes in the

performance point. Figure 3-10 shows the results of subsonic, potential computations of a cascade in the

10th Standard Configuration undergoing a torsional vibration. The critical g/p* is plotted as a function

of K* for various Mach numbers and for an inlet flow angle of 53*. This produces a boundary curve for
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each Mach number. The horizontal line at zero damping represents an absolute minimum for the reduced

damping, g/p*, which must always be positive.

The general shape of the stability boundaries is consistent with the idea that K* and g/p* are both

stabilizing, since the boundary is monotonic (negatively sloped). In this case, increasing Mach number is

destabilizing for constant flow angle, a = 53*.

From the stabilizing effect of increasing K* and its definition, equation (3.1), one may conclude that for

constant Mach number, M, flow angle a, and reduced damping g/p*, the destabilizing effect of temperature

is to be expected by similarity. This provides an answer to the question of the origin of the temperature

effect posed by Jeffers (1988). (i.e. it is a consequence of the stabilizing effect of K*).

The application of these complete boundaries to assessing real designs is described in the next section.

However, we first discuss a special case of the incompressible limit. It turns out that the traditional "flutter

map" (plot of reduced velocity versus incidence), which is not sufficient for the general, high-speed case,

has a firmer basis for low-speed machines.

3.3.1 Special Case: Incompressible limit and the "Flutter Map"

In the limit as Mach number becomes very small, the fluid dynamics problem tends to the incompress-

ible limit. In this case, the temperature may not be a relevant parameter. The parameters used on the

performance map (corrected speed, corrected weight flow, and pressure ratio) can be reduced to different

variables, with which the effect of rotor speed is eliminated. These are the flow coefficient, Cr/U, and the

pressure coefficient, 0, defined as

= pU 2

where C, is the axial velocity, Ap is the pressure rise, and jpU 2 is the dynamic pressure (based on relative

velocity, U). This expression of the performance map is useful only to "low-speed" compressors (i.e. low

Mach number).

In this case, the triangle of timescales in Figure 3-2 changes since the vertex associated with the acoustic
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timescale (i.e. pressure disturbance time) is no longer relevant anymore. Likewise, the Mach number, M,

and the compressible reduced frequency, K*, which relate inertial and vibrational scales to the acoustic

scale are redundant in this case as well, and can be combined into a single variable, the classical reduced

frequency, k.

The description of flutter stability can be dramatically simplified in this case. Two possible, equivalent,

descriptions are:

k, , ++ U*,i
kU p* Pp*

where U* = 1/k is the reduced velocity, and i is the incidence angle. The pressure coefficient, 0, is a

function solely of C.,/U, and may be omitted. These two descriptions are closely related because incidence

can be directly obtained from the flow coefficient. The flow coefficient, Cx/U, is essentially a restatement

of the flow angle, since

a = cos(CX/U),

and the incidence, i, is the upsteam flow angle minus the blade angle.

The first description, (k, Cs/U, g/p*), relates flutter stability directly to the performance map flow

coefficient, Cx/U, and pressure coefficient, I. In particular, the critical flow coefficient can be found for

various values of reduced frequency, k, and mass damping, g/p*. Since the flow coefficient does not depend

upon the absolute velocity magnitude (but only its magnitude relative to the axial velocity), k is independent

of C,/U for constant inlet state, unlike the corrected mass flow, 'rh, the analogue for high-speed machines.

The second description, (U*,i, g/p*), corresponds to the "flutter map" which has been in common

usage for a long time (see Fleeter, 1972). Typically, the effects of damping, g/p*, are ignored, and the

reduced velocity, U* = 1/k, is plotted against the incidence, i, to form the classical "flutter map," as shown

in Figure 3-11. That the classical flutter map not is always appropriate also has been recognized for a

long time (Jeffers and Meece, 1975, Stargardter, 1979). However, its convenience (successful designs have
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incidence, i

Figure 3-11: Classical flutter map of reduced velocity, U*, versus incidence, i, should work for incompressible
(low-speed) compressors, neglecting damping.

been made using correlations over a limited class of rotors) and lack of better alternatives has kept U*

vs. i correlations in use, with provisos to use them in accordance with "engineering judgment" (El-Aini,

Bankhead, and Meece, 1986).

By showing the relationship of the flutter map to the general 4D parameter dependence of flutter, the

strengths and weaknesses of the flutter map representation can be seen more clearly. The flutter map should

be capable of capturing a stall flutter effect which is incompressible in origin. The work of Stargardter (1979),

however, shows that compressible effects may limit the usefulness of the classical flutter map of U* vs. i.

3.4 Stability of a design

A technique for drawing flutter boundaries with a completely specified parameter dependence (i.e. with all

4 required parameters) is an important tool in understanding the flutter properties of a given design. In

this section, we show how this tool can be used to describe the flutter stability of a design on the basis of

data from experiments upon real engines and from idealized computations.

The thermodynamic state at the rotor inlet can be expressed in terms of temperature and density. It is

dependent upon flight condition in terms of weather, altitude, and flight speed. The weather and altitude
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Figure 3-12: Typical flight envelopes for subsonic (dashed) and supersonic (solid) aircraft are shown in
terms of the range of attainable Mach numbers for a given altitude. (Adapted from McCormick, 1995) In
assessing the aeroelastic performance of a design, the operating environment set by the flight condition is
relevant, as is the corrected performance.

determine the ambient density and temperature. Assuming standard weather conditions (i.e. standard

atmosphere), the typical range of flight conditions depends upon the type of aircraft. Figure 3-12 shows

flight envelopes of Mach number versus altitude for typical subsonic and supersonic aircraft (adapted from

McCormick, 1995).

For subsonic designs, the top speed (i.e. Mach number) is typically limited by maximum power con-

straints, while the minimum speed is set by stall and buffeting of the wings and other flight surfaces. The

supersonic aircraft is more complex. The maximum Mach number at lower altitudes (up to 10km) is set by

a maximum dynamic pressure condition, while a minimum speed must be maintained to avoid stall and buf-

fet. Although there is a small region of low speed flight attainable only by the subsonic airplane, in general,

the supersonic aircraft operates throughout a significantly broader flight regime. The maximum altitude

for the supersonic aircraft (flight ceiling) is set by an available power constraint, while the maximum mach

number is limited, not by maximum power, but by maximum temperature. The warming of flight surfaces

due to aerodynamic heating sets an upper limit to the Mach number of a typical supersonic airplane. (see

McCormick, 1995, for further details on flight mechanics).
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typical cases shown: a subsonic aircraft (dashed), and a supersonic aircraft (solid). The subsonic airplane
is restricted to a thin sliver on the state diagram.
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Depending upon the flight Mach number, the total temperature and total density may be significantly

higher than ambient conditions. Engine inlets are designed to "recover" this temperature and density in

a ram compression process, and are typically highly efficient. A fixed geometry inlet can provide a good

stagnation pressure recovery (about 95% at design) for flight Mach numbers up to about 1.5 (Kerrebrock,

1992). Above this, shock losses rapidly become important, and a variable geometry is needed to maintain

reasonably high (above 85% up to Mach 2.5) stagnation pressure recovery. For simplicity in what follows,

we assume that the engine inlets have ideal (isentropic) pressure recovery.

The range of conditions for a front-stage fan corresponding to the two aforementioned cases is shown in

Figure 3-13. Here, the flight envelopes for the subsonic (dashed line) and supersonic (solid line) aircraft are

viewed, not in terms of Mach number and altitude as before, but in terms of the thermodynamic state of

the air at the fan inlet. For latter stages, the relevant envelope in (T, p) shifts, approximately up a curve of

constant entropy. The subsonic envelope is restricted to a narrow path, but the supersonic aircraft covers a

sizeable region. One would expect flight condition effects to be a greater issue in the case of the supersonic

aircraft, since it encompasses a larger flight envelope.

We consider, for simplicity, the case in which the structural parameters do not vary significantly (i.e. the

modal mass, modal frequency, and modal damping are constant over the operating space). In this case, there

is a direct correspondence between the state diagram of (T, p), and the graph of non-dimensional aeroelastic

parameters, (K*, g/p*). Thus, the envelope of relevant inlet conditions as depicted in Figure 3-13, can be

directly mapped onto (K*, g/p*) coordinates. This is done in Figure 3-14.

Consider the region in Figure 3-14 corresponding to the flight envelope in the context of the schematic

flutter boundary of Figure 3-8. The dashed region, corresponding to the typical subsonic airplane, begins

near (1, 1), the sea level static condition. From there, the region moves up in both K* and g/p* along a thin

path. However, the general trend is that increases in K* and g/p* are stabilizing at a given performance

point, (rhe, N,), as depicted in Figure 3-8. It follows that for the typical subsonic aircraft represented in

Figure 3-12, the most unstable flight condition in terms of stall flutter occurs at low altitudes, near sea

level static conditions. In fact, the lowest combination of (K*, g/p*) is less than 5% away from the sea level

static condition. (Such differences are too small to see on Figure 3-14.)
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coordinates in which the condition of sea-level static (SLS) conditions is at the sea level static point. Two
cases are plotted: the subsonic (dashed) aircraft, and the supersonic (solid) aircraft.

61



flutter boundary for worst
case in flight envelope

operating
line

desired operating regime

Speed
line

Boundary refers to worst
case in operating regime

Corrected Mass Flow, in c

(D

C)

UNSTA /l

lea level static

relative K

Figure 3-15: Regions of desired operation and flutter boundaries on performance map, and (K*, g/p*) map

However, the plot in Figure 3-14 shows strikingly, that the sea level static condition is not the least

stable case for supersonic aircraft (solid line). There are clearly flight conditions with the relative K* and

g/p* less than the point (1, 1). Even neglecting g/p* effects, it would appear that an increase of at least 35%

is needed in the modal frequency, over that required to maintain stability for the sea level static condition.

As we shall see, for an engine discussed here (which, incidentally, has frictionally damped blades via the

shroud and root attachment), the sensitivity to K* is considerably more than the sensitivity to g/p*.

Furthermore, we can specify on the performance map of (hc, 7r), the region of desired operation (for

example, as a particular operating line and a "buffer" region). This is schematically shown in the simulta-

neous plots of Figure 3-15. In each plot, there is a region shown which encompasses the range of conditions

encountered during operation. On the performance map, this is a region surrounding the desired operating

line. On the (K*, g/p*) map, the region corresponds to the flight envelope. There is also a worst-case flutter

boundary on each map. The boundary on the performance map is the worst case (least stable) of all those

boundaries associated with points in the flight envelope on the (K*, g/p*) map. Conversely, the boundary

on the (K*, g/p*) map corresponds to the worst case of all the points in the desired operating region of the
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performance map.

A sufficient condition for stability can be simply expressed. Clearly, if the worst-case boundary does not

encroach upon the operating envelope then the design is stable. Each graph, thus, generates a separate,

but equivalent, condition for design stability. In the schematic example of Figure 3-15, the design is stable.

Obtaining stability information

Now that we have discussed how the stability information should be represented, it remains to describe how

to obtain the stability information.

In principle, the stability information could come from a computational model, as in the case of the

previously presented trends from an idealized, 2D, subsonic, potential model. In practice, computation

time and model fidelity are barriers. Aeroelastic codes have the potential to determine the aerodynamic

damping, crucial to stability, but it is not possible to accomplish this in a reliable, and numerically accurate

way. An important issue involves verifying the numerical accuracy aeroelastic codes, since the codes supply

detailed information which is difficult to independently verify. Building sufficient and efficient aeroelastic

codes to simulate stall flutter in turbomachinery is presently an active and important research topic (see

reviews of Verdon, 1993, Marshall and Imregrun, 1996).

Actual data from engine testing are best, since measurements are taken in the actual, relevant enviro-

ment. Unfortunately, the parameter space is vast (as we have shown, 4 dimensional for a fixed geometry)

and it is difficult and expensive to obtain and analyze such data. Furthermore, it is not currently possible

to reliably measure the aerodynamic damping. The best data currently available from fully scaled testing

consists of a listing of steady-state measurements of test points, with occurence of flutter events noted.

Systematic tests which encompass the effect of inlet state, such as those described in Chapters 5 and 6, are

rare indeed.

3.4.1 Example: Application to early multimission engine

Experimental data exist for an early multimission aircraft engine. More extensive data analysis of another

full-scale engine rig, which makes quantification of the sensitivities possible is presented in Chapter 5. The
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Figure 3-16: Performance map of early multimission engine. Flutter problem occurred at part-speed

current example is used to demonstrate how the new way of looking at flutter boundaries proposed in this

chapter applies to a real problem.

The vibrational mode of the rotor in question was an above-shroud torsion mode. The flutter occurred

exclusively at part corrected speed and raised inlet temperature conditions. This operating point is associ-

ated with high flight Mach number, on the upper right of the envelope in Figure 3-12. Subsequent full-scale

engine testing showed that merely raising the inlet pressure at ambient temperature was not sufficient to

elcit the instability. Inlet pressures from 0.5 atm to 1.5 atm were tested and shown to be stable at ambient

temperature. However, at raised temperature in which flutter was observed, the extent of the flutter region

was sensitive to the inlet pressure.

Several different trial configurations were tested before a satisfactory design was achieved, and the range

of attainable K* values was adjusted not only by changing temperature, but through structural modifications
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to the blade which changed the frequency, as well.

Furthermore, modifications to the inlet flow were tested in the form of various circumferentially uniform,

radial distortion screens. As described in Chapter 2, the specification of a single, representative Mach

number, M, and flow angle, a, assumes a specific swirl distribution along the blade span. Typically, such

a swirl distribution is set by the upstream guide vanes and the inlet geometry, and perhaps scheduled with

(i.e. a function of) operating point. Substantial radial distortions at the inlet modify the swirl distribution,

which can simulate the effect of different inlet geometries. Unlike circumferential distortions. such radial

distortions do not represent potential transient disturbances. Therefore, to consistently analyze a fan design,

data with different inlet radial distortion screens should be distinguished.

The flutter points for one of the test configurations are shown in Figure 3-16. This particular run of tests

is unusual in that both intersections of the flutter boundary with the fan operating line, with increasing

speed and decreasing speed, were identified. The points at the upper intersection (decreasing speed) are

more representative of the high Mach number flight condition, and therefore were focused upon. The cluster

of points near this condition are taken with various different inlet pressures, and temperatures.

For the present purposes, we consider the upper intersection of the stall flutter boundary with the

operating line. We consider the associated cluster of points to be at a single, effective operating condition.

In this case, there is a single flutter boundary on the (K*, g/p*) map. Thus, the (K*, g/p*) map is a

reasonable way to look at the data, as shown in Figure 3-17. The flutter points are shown as x's, along

with the stable sea level static test on the rig, shown as a 0, and the stable points for the successful redesign

at raised temperature and pressure, shown as a o. Since the precise value of the damping is not known,

the y-axis is, instead, the relative value g/p* compared to atmospheric conditions. From this plot, one can

separate the occurrences of flutter from the stable occurences by the shown dotted line.

It is clear that stability of the rig test, which was initially puzzling, is consistent with the raised temper-

ature data using the current technique of representing the flutter boundary. Notably, the classical flutter

map of (U*, i) failed to capture this appropriately. In terms of the present formulation, the data can be

interpreted as follows: the original rig tests were conducted at a value of K* which was on the stable side

of the part-speed flutter boundary on the (K*, g/p*) map. In flight, however, the raised inlet temperature

65



1.5

x x
xX

x 0

K

x

0X0

Figure 3-17: Fan data on (K*, g/p*) map for early multimission aircraft engine. A x symbol represents a
flutter point, while open symbols (0, o) are stable points. The O symbol shows the conditions for the stable
rig test at sea level static conditions.

at ram conditions moved the value of K* to the left, entering the unstable region of the stability boundary.

The last redesign, which increased the natural frequency, moved the corresponding K* value to the right

far enough so that it was stable, even at raised temperature.

We can go a step further, using the flight envelope information. Although the flight envelope for the

relevant aircraft was not available, we can use the generic supersonic aircraft of Figure 3-14. This flight

envelope is plotted on the (K*, g/p*) map in Figure 3-18 for two cases. The dashed envelope is computed

using the modal frequency associated with the original design, while the dotted envelope uses the modal

frequency associated with the eventual (successful) modification.

Note that the O denoting the stable rig test at sea level static is in the correct relative location on the

dashed envelope associated with sea level static (see Figure 3-14); also the a's are on the relative location

of the dotted envelope associated with high Mach number flight. In general, it can be said that changes

in temperature move a given point within the envelope on (K*, g/p*) coordinates, while changes in modal

frequency shift the location of the envelope on (K*, g/p*) coordinates, moving the given point along with
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Figure 3-18: Fan data on (K*, g/p*) map, for early multimission aircraft, with flight envelope for "generic"
supersonic aircraft. The dashed envelope is anchored to the 0, which is the original design at SLS. Note
that although the original design was stable at SLS, it was unstable at other flight conditions. The dotted
envelope is anchored to the o which comes from the successful redesign.

it, but in the same relative location.

The general solution to this problem can be described in terms of the design stability concept embodied

in Figure 3-15. The approximate boundary on Figure 3-18 represents the "worst case" boundary of Figure 3-

15. The considerable stiffening associated with the successful redesign shifted the envelope on (K*, g/p*)

coordinates to the stable region.

3.5 Summary

A methodology has been introduced for the assessment of stall flutter instability in rotor blades, for a given

flowpath and vibrational mode. It is framed in the full 4-D parameter space described in Chapter 2, in

terms of the parameters, (rhe, Nc, K*, g/p*), based on the following criteria:

" The parameters should span the full 4D space

" Two of the parameters should span the corrected performance map
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" The other two parameters should span the flight conditions (inlet temperature and density), for given
structural properties.

" One of the parameters is independent of the unsteady aerodynamic coefficient

The reduced damping, g/p*, combines the fluid inertia and the mechanical damping parameters. This

combination is shown to collapse the results of F6rsching (1994) which treats them separately. Furthermore,

the absence of density effects in Jutras et. al. (1980) may be explained by the lack of frictional effects, which

would tend to make g/p* negligible. For a typical case of inserted blades, however, the reduced damping,

g/p* is order 1, and impacts flutter stability. The effect of increasing g/p* upon flutter stability is stabilizing.

The compressible reduced frequency, K*, relates acoustic time scales with vibrational time scales. An

increase in K* tends to decrease the phase offset (i.e. increase the phase lag) between the fluid forcing

and the blade vibration. In theoretical special cases, and in measured experiments, the implication is that

increasing K* is stabilizing.

The simultaneous representation of the corrected performance map, (rhe, N,), and a map of (K*, g/p*),

provides a complete representation of the flutter stability for a given machine. To assess the stability,

information concerning the flight conditions which determines the relevant region on the (K*, g/p*) map is

necessary. This is demonstrated in the development experience of an early, multimission engine.
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Chapter 4

Exploratory study of aeroelastic

computational model

This chapter describes a parametric study of a 2D, linearized, compressible potential model of the vibration-

induced forces in a cascade. Unlike the actual case of a transonic rotor, this idealization can be accurately

and rapidly computed. Moreover, potential flow models form a familiar "baseline" case which have been

extensively studied in the literature dating back to the early work of Sisto (1955), Shiori (1958), and the

seminal computations of Whitehead (1960, 1962), to the more recent parametric studies of Smith and

Kadambi (1993), and Panovsky and Kielb (1998). The present parametric study explores the parameters

relevant to a fixed cascade geometry in a subsonic, inviscid flow spanning Mach number, flow angle, reduced

frequency, and interblade phase angle. In particular, we focus on the vibration-induced fluid forces which

govern flutter stability.

Trends were studied in the parameter space of Mach number, M, flow angle, a, and reduced frequency,

k. The most unstable case of 20 interblade phase angles, a, computed was considered as representative for

each point. Several cascade geometries were tested, notably the 10th Standard Configuration.

The primary computational model used is that of Hall (1993), which can handle airfoils of arbitrary

geometry and mean loading. The limits of the potential flow approach are that the effects of viscosity are

ignored, and the flow must be fully subsonic, M < 1 everywhere.
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Particular attention is given to the interpretation of the trends of the vibration-induced fluid forces in

terms of the parameters introduced in Chapter 3, namely the compressible reduced frequency, K*, and

reduced damping, g/p*. The "critical" reduced damping is proposed as a stability metric with direct

interpretation in terms of design parameters.

Vibrations in pure bending and pure torsion (about the midchord) were analyzed with the model.

Destabilizing forces in bending occurred only at extremely low reduced frequency (order k = 0.05), whereas

destabilizing forces in torsion occurred at relatively higher reduced frequencies (order k = 0.3). This is in

keeping with trends from previous studies.

For subresonant, compressible flows at moderate Mach numbers (0.4 to 0.8), the compressible reduced

frequency, K*, can well-approximate the combined effects of Mach number and reduced frequency on the

phase between motions and vibration-induced fluid forces, 0. The generality and implications of this

reduction are explored.

4.1 Description of Study

4.1.1 Parameter Space Description

One of the complexities of the flutter problem in turbomachinery is the large number of design and opera-

tional parameters relevant in the problem. For our current focus on flutter clearance, we consider only those

parameters which may vary during the operation of a machine. More specifically, we restrict the study to

variations for a fixed flowpath geometry. Several different cascade geometries were tested to establish that

the trends identified are not unique to one particular case.

In this context, design parameters such as solidity and camber are considered constants. The parameter

dependency of the flutter criterion is given by equation (2.13), or

Im(l' (M, a, k))
gp > max vn

where 1' is the vibration-induced fluid force non-dimensionalized by inlet dynamic head, pU2, n h
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chord, and p is the inlet density and U2 is the inlet relative flow velocity. In Chapter 3, a new version of

the reduced frequency (termed the compressible reduced frequency), K* = k - M, is used. It can be shown

to arise from non-dimensionalizing the fluid forces by the inlet pressure, po, as developed in Chapter 2. In

this formulation,

g~p* >maxIm(',, (M, a, K*))g~ >rnax2 -
en K*2

where l, is similar' to l', but instead of the inlet dynamic head, it is non-dimensionalized by -Ypo, where po

is the inlet pressure and -y is the ratio of specific heats. The former version (l) is more conventional, and

will be used in the present exploratory study.

Through linearized unsteady subsonic potential computations, we aim to characterize the fluid forces,

max,, Im(l.). This model is clearly an idealization, since the real flow is viscous and may have strong

shocks. However, the trends in this idealized case can be viewed as the "baseline" for comparison with

more realistic physical effects found in experimental measurement or more complicated models, since it

is analytically simpler. It should be recognized that such a parametric characterization of the vibration-

dependent fluid forces is relevant to both flutter stability and forced vibration, the dynamic response of a

stable rotor.

There have been many previous parametric studies using linearized potential models. An early study

was reported by Whitehead (1960) in which the vibration-induced force coefficients are tabulated for an

incompressible flat plate cascade at zero incidence as a function of interblade phase, o-, reduced frequency,

k, and stagger angle (which equals the flow angle, a, for zero incidence). More recently, researchers have

presented sensitivities of the zero-damping flutter boundary with respect to various parameters (e.g. Smith

and Kadambi, 1993, Fdrsching, 1994, and Lorence and Hall, 1995). The current study is unique in that it

explores trends in l, within the full 3D parameter space of (M, a, k) for a fixed geometry.

1n.b. this issue of non-dimensionalization affects only the representation of the forces, but not their computation. It should
be clear that 1,/k 2 = 1'/K*.
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Table 4.1: List of non-dimensional parameters. Restrictions are imposed by assumption, to stay within the
limits of the dynamic model. Incidence, i, and upstream angle, ai, are equivalent since the geometry is
fixed. The compressible reduced frequency, K*, is the product of k and M. In the definitions column, U is
upstream relative flow velocity, T is temperature, c is chord, and Wo is the blade natural frequency.

Name Symbol Definition Model Restrictions
Mach No. M U/VoRT M < 1 everywhere
reduced freq. k woc/U k > 0
upstream angle ai range set by M < 1 criterion
(incidence) i II
compressible red. freq. K* woc/xAjyRT K* > 0

4.1.2 Description of Dynamic Model

The flow model consists of a two-dimensional, compressible, linearized unsteady, potential flow code, written

by Hall (1993). Since it is a linearized unsteady model, there are two parts: a non-linear steady flow solver,

and a linear unsteady flow solver. Although the code can handle compressible flow, the entire flow field

must be subsonic. The blades are assumed to be in a tuned 2D cascade. Twenty possible interblade phase

angles (from 0* to 360' in increments of 18') were computed; so, in this sense, the rotor was 20 bladed.

Cases of pure bending vibration and pure torsion (about midchord) were considered.

The code was found to be fast and robust. On a DEC AlphaStation 4100, each run of the steady solver

took about 2.6 seconds of CPU time, and each unsteady case, for a specific reduced frequency and interblade

phase, took 1.9 seconds of CPU time. This makes it possible to compute the 13 000 or so unsteady flowfields

that it takes to cover a region of parameter space (20 o-'s x 8 a's x 20 k's x 4 M's = 12800).

4.1.3 Code Verification

The code was verified using flat plate cascades at zero incidence, by comparison to D.S. Whitehead's LIN-

SUB code, as described in Whitehead (1987). LINSUB uses an extension of the method of Whitehead (1960)

to handle compressible flows and matches the tabulated results of Whitehead (1960) in the limit of incom-

pressible flow. Further comparisons of the case of finite turning with a Linearized Euler code and with

cascade experiments is contained in Hall (1993).

Two distinct cases were computed for bending and for torsional vibrations, as described in Table 4.2.
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Table 4.2: Parameters for flat plate cascades used in verification runs. For the comparisions with LINSUB,
the incidence is zero, and therefore, a equals the stagger angle.

Cascade Gap/Chord Ratio Stagger Angle Mach Number Reduced Frequency
Cascade A 1 450 0.1 0.25
Cascade B 1.2 600 0.6 0.5
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Figure 4-1: Comparison of Hall's linearized potential code, shown by o's, with LINSUB code, shown by x's.
Cascade A refers to a flat-plate cascade, staggered at 45*, gap/chord=1, Mach 0.1, and reduced frequency
of 0.25. Cascade B refers to a flat-plate cascade, staggered at 60', gap/chord=1.2, Mach 0.6, and reduced
frequency of 0.5. The values computed by the two codes are almost identical.
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Table 4.3: Geometric summaries for various cascades computed in this study.

Name Blade Type Gap/Chord Ratio Stagger Angle
Cascade A flat plate 1 450
Cascade B flat plate 1.2 60*
1st Stand. Config NACA 65 Series 0.75 550
10th Stand. Config Cambered NACA 0006 1 450
Fan-C (Sect. J) GE E3 design 0.715 650

These cases are labeled "Cascade A" and "Cascade B." The comparisons between LINSUB and the current

code in these two cases are depicted in Figure 4-1. The two methods produced nearly identical results. The

y-axis in each case is the out-of-phase part of the fluid forces, Im(l,), which govern stability. In the case

of bending, this is the imaginary part of the unsteady lift coefficient, Im(F). In the case of torsion about

the mid-chord, it is the imaginary part of the unsteady moment coefficient, Im(M). The superb agreement

between these quantities between the two codes is thus demonstrated for varying Mach number, reduced

frequency, and different cascade geometries (in terms of stagger and gap/chord), indicated that the present

implementation were an accurate numerical solution to the compressible potential problem.

Further detailed discussion and verification of the specific technique of computation may be found in

Hall (1993). Notable features include using the Finite Element Method (FEM) to solve the variational

form of the compressible potential problem, solving the unsteady problem on a deforming grid to provide

numerical robustness for arbitrary vibrations, and a downstream condition which accounts for a harmonically

oscillating wake without assumptions regarding the wake velocity.

4.1.4 Cascade Geometry

The cascade primarily studied was that of the 10th Standard Configuration, as defined in Fransson and

Verdon (1993), and depicted in Figure 4-2. Other geometries such as the 1st Standard Configuration (B61cs

and Fransson, 1986), a section of the Fan-C rotor (Jutras, et. al. 1982), and flat plate cascades were

investigated to investigate the generality of the trends with respect to changes in cascade geometry.

The geometric definitions of various cascades used is summarized in Table 4.3. The 10th Standard

Configuration consists of a modified, cambered (camber of approximately 220) NACA 0006 cascade. The
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Figure 4-2: Geometry of Tenth Standard Configuration. The cascade used in the present computations con-
sists of a cambered NACA 0006 aerofoil (modified at the trailing edge), staggered at 450, with a gap/chord
of 1. Points depicted here are the same as those used to define the aerofoils in computations.

upstream flow angle, a, specified in the Tenth Standard configuration is 550, and the flow angle of the test

were taken near this value. The cascade is depicted in Figure 4-2.

Other cascades tested included the 1st Standard Configuration, for which there is data at low Mach

number, and the Fan-C Rotor configuration, for which there is steady-state data at ambient conditions.

These cascades are depicted in Figure 4-3.

4.1.5 Range of Parameters

The attainable parameter space was limited, as was mentioned previously, by the condition that the flow

be everywhere subsonic. When there are locally supersonic regions, the steady code diverges. The Prandtl-

Glauert tranformation, x' = x/l - (M)2 , to handle the compressibility effects becomes singular at M = 1.

For a given geometry, the maximum local Mach number is a function of inlet relative Mach number, M, and

of the inlet flow angle, a. The range of reduced frequency, k, tested ranged from about 0.1 to 1.2. Values

outside this range, however, were computed in specific cases to investigate limiting behavior.

To assess the region of available Mach numbers and flow angles, runs with the steady potential flow
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Figure 4-3: Geometry of First and Fifth Standard Configuration, (a) and (b) respectively. Points depicted
here are the same as those used to define the aerofoils in computations.

computations alone were surveyed relatively densely to define appropriate regions for the combined linearized

unsteady runs. Figure 4-4 shows such a survey for the 10th Standard Configuration. As Mach number

increases, the range of flow angles for which the code is valid decreases. The other cascade geometries had

similar domains of validity, each centered near the zero-incidence inlet flow angle.

Two specific surveys of (M, a, k, and o-) within the range of validity of the code were focused upon in

this study. These are depicted in Figure 4-5. In square region, region A, the critical stability parameter,

max, Im(W0 ), typically corresponded to evanescent disturbances (in the range of k's tested). The triangular

region, region B, contained points in which the least stable inter-blade phase was near the onset of acoustic

waves, corresponding to a so-called "weak instability," or an acoustic resonance. Surveys in other regions

were conducted to investigate specific questions, such as the trends at very low Mach number.
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Figure 4-5: Schematic of regions of study in parameter space for 10th Standard Config. Two adjacent
regions were studied in detail, labeled A and B, respectively. The o's denote points tested in the parameter
space and the small x's denote areas outside the model's validity (code did not converge). The range of
reduced frequency, k, tested was 0.1 to 1.2.
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Table 4.4: Definition of unsteady force coefficent, various studies. The pressure is scaled in a variety of
ways. Here, p is the air density, U is the blade relative velocity, c is the chord, and w is the vibrational
frequency.

Study Name Type Pressure Scale

Hall and Clark [1993] Subsonic/ Transsonic CFD pU2

Crawley [1988] Theory, review Epc2 w 2

Hall [1993] Pot. Flow (CFD) pU2

Hall and Silkowski [1997] Multi-row, (CFD) pcwU

Whitehead [1960],[1962] Vortex (Potential) Model 7rpcwU

rp* (U*) 2

Buffum and Fleeter [1990] Experiment ipU2

Kielb and Ramsey [1989] Supersonic (Lane) Theory Epc2 2

F6rsching [1993] Review ipU 2

Srinivasan and Fabunmi [1984] Theory EpU2

lrp*(U*)

Smith and Kadambi [1993] CFD (Euler) pU 2

Yashima and Tanaka [1977] Expt./ Theory pU 2

Bendikson [1986] Supersonic Theory pU 2

p*(U*)

B5lcs and Fransson [1986] Comparison Report PX - P-co

4.2 Metric for Stability Assessment

Before describing the results of the computations, it is important to define the metric for stability in this

context. We show that the metric of critical reduced damping, (g/p*)cr has some unique 2 and advantageous

properties for assessing forced vibration and stability of a particular unsteady aerodynamic model.

For a tuned rotor, the aerodynamic stability may be assessed using the non-dimensional work-per-cycle,

or equivalently, Im(l,) (Fung, 1955). However, there is no consensus regarding the appropriate technique

of non-dimensionalization. Table 4.4 lists various studies of turbomachine flutter and the pressure scale

2 More precisely, the class of smooth, monotone functions of (g/p*)cr have these properties.
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used to non-dimensionalize l, in each case, which shows the differences in formulations. In the discussion

of Chapters 2 and 3, the choice of parameters based upon operability assessment suggests a scaling based

upon the inlet pressure, as in equation (2.3).

Although the metric of Im(l,) is certainly valid but it is not uniquely defined in the literature. Fur-

thermore, the answer to the basic question "What is a large value of IIm(l,)I" is not obvious. These issues

are addressed by using the critical reduced damping, (g/p*),r as a stability metric. Since the value of

reduced damping, g/p*, itself does not influence the aerodynamic work-per-cycle, it forms a plausible basis

for comparison. At sea level static, a typical bladed rotor with inserted blades has a value of g/p* of order

1. This order of magnitude approximation can be used to assess the magnitude of the vibration-induced

fluid forces at a given point. At different flight conditions, density variations affect the reduced damping,

g/p*.

Using the unsteady fluid model, the critical value of g/p* can be computed for each point, according to

equation 2.13

(9/p*)cr = mx (4.1)

Thus, the stability condition becomes

9/p* > (9/p*)cr (4.2)

for stability. For values of g/p* above the critical, the cascade is stable. Note that the expression (4.1)

is relevant to the specific case of non-dimensionalizing 1' with the inlet pressure, pU 2. For other cases,

equation (4.1) contains a different factor instead of k2 .

Note that using (g/p*)cr is completely general, since it is simply a rescaling of Im(' ). However, this

rescaling makes it comparable to the reduced damping, which is independent of the unsteady flow problem,

and is set solely by the mechanical damping and the flight condition.
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4.3 Results for torsional and bending stability

4.3.1 Bending vibrations

We now turn to the results of the computations of the flow model for bending vibrations. In the range of k

from 0.1 to 1.2, the flow model predicts a stable cascade throughout regions A and B defined in Figure 4-5.

However, a bending instability was'observed at very low k, for finite turning. The critical reduced damping

is plotted as a function of interblade phase, a for a typical case in Figure 4-6. The least stable case occurs at

an interblade phase of a = 0' (i.e. all the blades move in unison). The critical reduced damping is sharply

peaked at zero, and falls off away from zero with the most stable case being at a = 1800.

One way to interpret these results is to consider the influence of the individual blades upon one another.

It can be shown (Crawley, 1988) that the rotor description in interblade phase coordinates is related to the

individual blade description. The transformation formula is the same as that of a Digital Fourier Transform

(DFT). Thus, the influence of the blade upon itself is reflected in the mean value (zeroth harmonic with

respect to interblade phase), the influence of the nearest neighbors depends upon the first harmonic, and

so on. The influence of "local effects" upon a reference blade by its own vibrations and the vibrations of its

nearest neighbors is reconstructed as the solid line in Figure 4-6. Near an interblade phase angle of a = 0,

the "local" effects do not well describe the critical reduced damping which is where the region of minimum

damping is.

Figure 4-7 summarizes the parameter study of bending vibrations in regions A and B. The most unstable

interblade phase is selected for each (M, a, k) point. This is presented in two ways in Figure 4-7a as the

non-dimensional work-per-cycle, and in Figure 4-7b in terms of the critical reduced frequency. For each

reduced frequency, k, value, there is a spread of points, indicating variations due to Mach number and

incidence. For comparison purposes, data for (essentially) incompressible flow, M = 0.01, and a constant

flow angle, a = 550, are plotted as large circles, which lie in the middle of the spread of points for a given

reduced frequency, k.

Interestingly, the trend for the work-per-cycle appears to be a reduction in stability as the reduced

frequency, k, is reduced, whereas the critical reduced damping becomes more negative as k is reduced. This
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Figure 4-6: Typical case of bending vibrations of 10th Standard Configuration. The y-axis is (g/p*)ar0 =
Im(F/k2 ), which is the reduced damping at neutral stability for a particular interblade phase. The solid
line denotes the reconstruction of effects of blade self-damping and neighboring blade influence, given by
the content of the zeroth and first harmonics with interblade phase, o-.

apparent discrepancy occurs because the magnitude of the fluid forces increases as k is reduced (like 1/k2 ).

Therefore, although the non-dimensional work-per-cycle appears to tend towards zero as k is reduced, the

net effect is to increase the stabilizing fluid forces. The critical reduced damping, (g/p*)cr, can be used, for

example, to determine how disturbances would decay (or amplify) with no mechanical damping, according

to the model. For example, other things being equal, at k = 0.2 a bending disturbance will likely decay

significantly faster than at k = 0.6, although this is not readily obvious from the work-per-cycle plot

Figure 4-7a.

Although the trends from region A and B appear to indicate that the bending mode is completely stable,

we will see that reducing the reduced frequency, k, can cause an instability if there is blade loading.

Loading Effects in Bending

The results from regions A and B suggest that the model does not predict a bending instability, which

is consistent with some results in the literature (e.g. Smith and Kadambi, 1993). However, it turns out
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Figure 4-7: Overall trend with k in bending vibration parameter study. For each (M,a,k) point in 'Region
A', the stability is presented two ways: in figure (a) in terms of the Work-per-cycle for the worst interblade
phase, o, and in (b) in terms of the critical reduced damping. The large circles are data for a Mach number
of 0.01 and a flow angle, a, of 55*.
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that for very low k, which corresponds to the case of quasi-steady flow, the current model predicts an

instability if there is blade loading. A quasi-steady flutter mechanism for such an instability in bending has

been proposed for cascades with finite turning (Ginzburg, 1974, see also Kerrebrock, 1992). Furthermore,

previous computational models of incompressible flat plate cascades with turning have predicted instability

in the bending mode for cases of large turning (Shiori, 1958, Whitehead, 1962).

To further look at these affects of blade loading, the code was run for 'Cascade A' (see Table 4.3),

a flat plate cascade, in the incompressible limit which corresponds to similar computations in previous

studies by Whitehead (1962) and Shiori (1958). The code was run for Cascade A at an inlet flow angle

of -10' and a reduced frequency of k = 0.1. The critical damping under these conditions is plotted for

the current study, from Whitehead (1962), and from Shiori (1958) in Figure 4-8. The trends in unsteady

forces with interblade phase angle are similar, although the values differ. It should be recognized that

the current model handles the flow (especially the wake) in a physically more realistic manner than the

model of Whitehead (1962) or Shiori (1958). Shiori's analytical method used a single bound vortex for

each blade to simulate loading superimposed with an asymptotic solution for the problem for the case of

o- =?. In Whitehead's computation, the vorticity wake generated during vibration was assumed to travel in

a straight line following the aerofoils at the mean flow velocity. Hall's code, on the other hand, includes a

harmonically oscillating wake, and does not make any assumptions regarding its velocity. This may account

for the discrepancy. It is significant to note that the case of large negative incidence, with the inlet flow

angle of a = -10*, has a positive critical reduced damping for a = 270*.

To investigate this bending instability further, bending runs on the 10th Standard Configuration were

conducted in the limit of incompressible flow (M = 0.01), for a larger range of flow angles, and lower reduced

damping, k. With significant loading, lowering the reduced velocity k consistently led to an instability.

Typical cases are depicted in Figures 4-9a, which shows a high incidence (a = 65*) case at k = 0.035, and

Figure 4-9b, which shows a large negative incidence (a = 400) at k = 0.065. The behavior with interblade

phase is very different from the typical case of Figure 4-6. The "local" effects in each case, represented by

the solid curve, captures the overall behavior well. The zeroth harmonic (mean value), which corresponds

to the blade's self-influence, is stable, but the first harmonic, which corresponds to the influence of the
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Figure 4-8: Bending instability of a flat plate cascade at negative incidence. The fluid forces from Hall's
code, shown by e's, are compared with the computations of Whitehead (1962), shown by o's, and the model
of Shiori (1958), shown by x's for bending vibrations at finite incidence. A flat plate cascade with 450
stagger and gap/chord ratio of 1 was computed with an upstream flow angle of a, = -10'. The imaginary
parts of the unsteady lift, which governs stability, is plotted.
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neighboring blades, is large enough to generate an instability.

In the high incidence case, an instability emerges for low k near a = 720, while in the large negative

incidence case, the instability occurs near a = 2700. This is consistent with the quasi-steady mechanism

proposed by Ginzberg (1974). According to this mechanism (also described in Kerrebrock, 1992), the

neighboring vibrating blades generate a variation in the streamtube width which can generate destabilizing

forces. For cases, such as compressors, in which the loading is positive an instability would be expected for

inter-blade phase of a = 900. However, if the loading is negative (i.e. for turbines), which occurs in our

case of large negative incidence, the interblade phase for instability is expected at a = 270'.

The trend of (g/p*)cr of the least stable interblade phase with k is shown in Figure 4-10. Decreasing k is

stabilizing up to a point, but dramatically becomes destabilizing for very low k. It should be mentioned that

the values of k considered here are much lower than encountered in aeroengine applications. For example,

the instability in the case of high incidence occurs near k = 0.04, or a reduced velocity, U* = 25. The

typical reduced velocity at flutter in real machines is order 1. Thus, for this bending flutter mechanism

to be relevant in aeroengines, other effects not captured in the inviscid model (e.g. viscous lags), must be

present.

4.3.2 Torsional vibrations

Typical trends in subresonant regime

Unlike the case of bending vibrations, the current compressible potential flow model predicts that a stability

boundary lies for torsional vibrations in the range of k from 0.1 to 1.2. Typically, for zero reduced damping,

the boundary lies near k = 0.25. While this is still somewhat low compared to the situation in applications,

it is about an order of magnitude larger than the reduced velocity, k, for the bending instability. Also, while

the Mach number sensitivity is relatively weak in bending, the case of torsional vibrations has a substantial

sensitivity to Mach number.

The critical reduced damping for torsional vibrations is plotted as a function of interblade phase, a,

for two typical cases in Figure 4-11a and Figure 4-11b. The first case, in Figure 4-11a, shows a roughly

sinusoidal variation with interblade phase, which corresponds well with the influence of a reference blade
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Figure 4-9: Instability in Bending. Trends with interblade phase, o-, for high incidence, a = 650, at k = 0.035
depicted in figure (a), and large negative incidence, a = 100, at k = 0.065 depicted in figure (b). In both
cases the symbols represent actual values, and the curves represent the "local" content.
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Figure 4-11: Trend of critical reduced damping versus interblade phase, a, in torsion. In Figure (a), a
typical torsional vibration case in region A is shown, which roughly corresponds to the "local" effects of the
influence of the reference blade and its immediate neighbors (solid curve). In region B, however, as shown
in figure (b), there is significant deviation from the "local" effects. This spike occurs for interblade phase
angles, o-, corresponding to the superresonant region.
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and its neighbors, shown by the solid curve. The second case, in Figure 4-1 1b, is taken at a higher k and also

has a clearly discernable first harmonic component. However, near zero interblade phase, o, there is a large

deviation from the solid curve, which again represents the influence of a reference blade and its neighbors.

As indicated in the figure, this spike is coincident with the superresonant region (i.e. with propagating

acoustic modes).

4.3.3 Separation of subresonant and superresonant regions

Since the axial flow is subsonic, circumferential acoustic modes are "cut-off" in the duct, meaning that

energy in these modes does not propagate axially. Spikes which deviate from the "local" trends consistently

occur in the range of interblade phase angles in the superresonant region, corresponding to propagating

acoustic waves, indicate that the spikes are associated with such waves. A definitive interpretation of

the mechanism for acoustic wave instabilities is a relatively involved issue, and beyond the scope of our

exploratory study. Acoustic wave resonances have been studied in the recent experimental work of Camp

(1999) on a low speed compressor. Roughly speaking, conditions are set up in which acoustic modes can

travel circumferentially, but not axially. This allows for the possibility of build-up of acoustic energy in

the cut-off region. Rather than focusing here upon possible mechanisms for destabilizing effects, we simply

describe the conditions which lead to the occurrence of propagating circumferential acoustic waves (i.e. the

superresonant region).

The condition for propagating circumferential acoustic waves (i.e. the superresonant region) is analyt-

ically derived in the case of a 2D duct with flowing fluid based on the linearized compressible potential

equations. In our case, the frequency of the acoustic mode is determined by the reduced frequency, k,

and the wavelength, A, is dependent upon the interblade phase, a. The corresponding condition for the

propagating circumferential acoustic waves (i.e. the superresonant region) is as follows (Whitehead, 1987)

aio < a < ahi (4.3)

where
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Ulo,hi = kI2 (s/c) (M sina (1 M2 cos2 a) . (4.4)

where s/c is the spacing-to-chord ratio.

It turns out that the range of interblade phase for superresonant behavior, especially ohi is relatively

insensitive to flow angle in regions A and B. Therefore, the superresonant range is approximately a function

of the first factor of equation (4.4), K*/(1 - M2 ). Figure 4-12 is a plot of least stable interblade phase, a,

versus the aforementioned factor of K*/(1 - M2 ) for all of the points in regions A and B (spanning Mach

number, M, flow angle, a, and reduced frequency, k). The dotted lines represent the values of ahi and alo,

which shows that the variations in flow angle did not significantly affect Chi. There is some scatter in the

lines specifying al. due to flow angle effects. However, none of the cases in regions A and B had the least

stable interblade phase near al., so this scatter does not affect the analysis of the least stable points.

The points on Figure 4-12 in the upper region are cases in which the least stable interblade phase occurred

under conditions conducive to superresonant behavior, while the points below the ahi line occurred under

subresonant conditions. Thus, by determining whether a particular case is in one group or the other provides

a means of separating the conditions associated with the behavior in Figure 4-11a from those conditions

which are associated with Figure 4-11b.

In region A, the effects of propagating acoustic waves (in the superresonant region) do not play an

essential role for determining stability, since the points associated with destabilizing forces are almost

exclusively in the subresonant regime (the triangles of Figure 4-12). Although there were some situations

in region A in which the least stable interblade phase was in the superresonant region, these typically were

stable (small circles of Figure 4-12).

4.3.4 Torsional stability in region A

The boundary according to equation (4.2) in region A for g/p* = 0 is shown in Figure 4-13. The unstable

portion of parameter space is "under" the surface in the orientation of plot. In every case in region A (and,

in fact, generally), a sufficient reduction of k leads to an instability.

This boundary, however, is only valid for zero reduced damping, g/p* = 0. We can gain more information
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by looking at the critical reduced damping for specific cases. The stability is most sensitive to the reduced

frequency, k. Therefore, we consider trends in critical reduced damping, (g/p*)cr, with reduced frequency,

k, as shown in Figure 4-14 for M = 0.6 and two separate inlet flow angles. From Figure 4-13, it can be

inferred that for any values of Mach number, M, and flow angle, a, we pick there is always a transition

to instability as k is reduced, for the case of g/p* = 0. Thus, as expected, a zero-crossing in the trend of

(g/p*)cr with k always occurs at some point for decreasing k.

The stability for a given case, such as the circles associated with M = 0.6 and a = 53*, can be interpreted

according to equation (4.2). If the value of the reduced damping is greater than the critical damping, then

the cascade is stable. Thus, the cascade is stable on the upper right part of the graph for the condition

given. For example, for g/p* = 2, the point of stability occurs for k at approximately 0.23. For values of k

above this (keeping M and a constant), the system is stable.

The effect of changing the inlet flow angle, a, is also reflected in Figure 4-14. As the inlet flow angle

is changed from a = 530 to a = 570, the critical reduced damping becomes lower. Thus, a lower value
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of reduced damping is necessary to ensure stability at a given k. For a fixed g/p* value, the minimum

allowable k is lower for the higher value of a. Other results using an inviscid model, such as those of Smith

and Kadambi (1994), also exhibit this same trend.

In real machines, however, observations show that increasing the flow angle often leads to a (stall flutter)

instability. Thus, inviscid models can not capture some important trends found in real machines.

This view of the flutter stability using k and g/p* is similar to the (K*, g/p*) map was was shown to

be helpful in Chapter 3 for constructing a complete methodology for operability assessment with respect to

flutter. Since the Mach number is held constant at 0.6, variations in k are equivalent to variations in K*.

Therefore, this similarity is to be expected.

If the Mach number is varied, as in Figure 4-15, then the behavior with respect to K* looks different

from the behavior with respect to k. This shows through in the difference between Figure 4-15a and 4-15b.

In figure 4-15a, the x-axis is the classical reduced frequency, k, while the x-axis in Figure 4-15b is the

compressible reduced frequency, K*. In each plot, the trends of torsional stability, (g/p*)cr, with reduced

frequency, k are depicted, for a flow angle of a = 550 and for two different Mach numbers, 0.4 and 0.7

respectively.

In the case that the stability data are plotted with respect to k, as in Figure 4-15a, the effect of increasing

Mach number (at a constant k and a) is to lower the critical reduced velocity. Such a change in Mach number

at constant k and a is stabilizing, and it moves the critical reduced damping boundary down and to the

left. However, if the data are plotted with respect to K*, the same increase in Mach number has the effect

of moving the critical reduced damping boundary to the right, which is destabilizing. Although this may

at first appear to be contradictory, it simply indicates that comparisons at constant K* are very different

from comparisons at constant k. From the standpoint of operability of a machine with constant structural

parameters, the comparison at constant K* is one in which the inlet temperature is kept constant, while a

comparison at constant k is one in which the inlet relative velocity is kept constant.
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4.3.5 Torsional stability in region B

So far, we have focused upon the "main" boundary of region A, depicted in Figure 4-13 for zero mechanical

damping. These trends are due to the typical cases in which the critical stability point is in the subresonant

region, as in Figure 4-1Ia. We now address the effects of the "spikes" of Figure 4-11b, which are an exception

to the general behavior. Since these spikes are in the superresonant region, one should note that in the

current flow domain, the upstream and downstream boundaries are non-reflective. This corresponds to the

case of a rotor in an infinite duct. In reality, of course, a given rotor will not lie in an infinite duct and may

have other components in close proximity. The values of the vibration-induced forces have been shown to

be sensitive to the details of the upstream and downstream boundary (Hall and Silkowski, 1997), but we

limit the current exploratory study to the infinite duct case.

The spikes have been observed in previous linearized inviscid flow studies (e.g. Bendiksen and Friedmann,

1981), and are considered a "weak" instability since their destabilizing effects can be eliminated with

sufficient damping. Figure 4-16 shows the points in parameter space simulated from both region A and

region B. A o denotes a stable point, and an x denotes an unstable point. Solid lines mark the boundary

between stable and unstable regions. The boundary shown in Figure 4-13 can be identified with the lines

in Figure 4-16a, but the latter view is upside-down from the former. Inspection of Figure 4-16a indicates

that several disconnected "lobes" of instability are present, in the low flow angle (negative incidence), and

high Mach number are corresponding to region B (of Figure 4-5). These lobes come from the superresonant

region. A small amount of reduced damping, g/p* = 0.5, generates a new stability boundary, as shown in

Figure 4-16b, in which the lobes diappear. The "main" stability boundary is also modified, however. At low

mach numbers, such as M = 0.4, the boundary moves significantly, while the effect of increasing reduced

damping, g/p*, is much less effective at higher Mach numbers such as M = 0.7. This is consistent with the

trends with Mach number that one might observe in Figure 4-15a.

A slice of unstable region near the lobes is in greater detail by considering the critical reduced damping,

or as a function of reduced frequency in the region of parameter space where the lobes occur. Figure 4-17

shows the trend of (g/p*)cr with k for the conditions (M, a) = (0.73,520). The main trend from region A,

as shown in Figure 4-15, still exists, but some bumps occur at higher k addition to the main trend. These
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bumps correspond to the lobes of instability, as seen in Figure 4-16a. The plot in Figure 4-17 shows that

just a small amount of reduced damping, relative to the O(1) typical value, may be sufficient to mitigate

the bumps.

The details of the bumps/lobes of Figure 4-17 can be seen more clearly in terms of the work-per-cycle,

which is shown in Figure 4-18. The critical reduced damping scaling tends to hide some of the details

at high k, since the magnitude of the fluid forces diminishes here. The work-per-cycle is helpful in seeing

this structure. One can see in Figure 4-18 several distinct bumps. Each bump corresponds to a different

interblade phase, o-, for the spike of Figure 4-11b. As the range of interblade phases corresponding to the

superresonant case increases (i.e. as ohi of equation 4.4 increases), the interblade phase, o, associated with

the spike of Figure 4-11b increases as well.

These bumps contradict the main trend that increasing frequency improves stability. This is an exception

to the general rule of Chapter 3 that increasing K* improves stability (n.b. in this case of constant M,

trends with k are equivalent to trends with K*). However, the dominant trend, even in the region of the

lobe, is that of stabilizing K* rather than of the exception (i.e. the lobes). Furthermore, this exception is the

result of acoustic wave resonance, which has not been observed as self-excited phenomenon. Rather, such

acoustic resonances are usually fed by upstream disturbances, and are increasingly considered as distinct

from flutter (Camp, 1999).

4.4 Reduction of mach number trend

4.4.1 General trends of phase with Mach number

Although only the out-of-phase portion of the fluid forces affects flutter stability, it is useful to look at

other information which characterizes the unsteady flow problem. Trends in these other parameters may

reveal insights into the unsteady forcing mechanism. In particular, the phase of the vibration-induced forces

(relative to the blade motion) is related to the time lag in the unsteady flow, as mentioned in Chapter 3.

Thus, by studying the phase, we can learn more about the unsteady fluid lags, in the approximation of 2D

compressible potential flow.
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Figure 4-19: Fluid force phase, #, as a function of Mach number for the 10th Standard Configuration.
Trends are shown for constant inlet flow angle, a = 550, for three cases: constant k = 0.2 (x's), constant
K* = 0.12 (o), and constant k/(1 - M 2 ) = 0.3125 (E). There is little variation in the case of constant
k/(1 - M 2 ).

In the context of this exploratory study, we identify gross trends and comment on their implications. We

focus on the torsional mode, in which there exist destabilizing fluid forces within regions A and B of Figure 4-

5. In general, a negative phase, -1800* < q < 0', indicates that the fluid forces have a stabilizing influence,

while a positive phase, 00 < # < 18000, indicates that the fluid forces have a destabilizing influence. The

ultimate system stability, for finite mechanical damping, depends on the magnitude of forces as well, since

a flutter instability requires that the destabilizing fluid forces overcome the mechanical damping.

The unsteady flow problem involves three physically distinct time scales: the vibration time, 1/wo, the

acoustic time, c/v/FlRTj, and the flow-trhough time, c/U. Their relationship can be described using the non-

dimensional parameters of the Mach number, M, the classical reduced frequency, k, and the compressible

reduced frequency, K*, which is schematically represented in Figure 3-2. By similarity, only two non--

dimensional parameters are necessary to capture the time scale behavior.

Figure 4-19 shows some trends in fluid force phase, 0, as a function of Mach number, M in the 10th

Standard Configuration for a constant inlet flow angle of a = 55*. Three curves are shown, each keeping
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some combination of the three relevant timescales constant: the x symbols keep the classical reduced

frequency constant at k = 0.2, the o symbols keep the compressible reduced frequency constant at K* = 0.12,

and the 0 symbols keep a combination of the three relevant timescales, k/(1 - M2 ) constant at 0.3125.

The trend of Mach number with classical reduced frequency, k, is roughly constant for low Mach number,

but sees significant Mach number effects at higher Mach numbers. At low Mach numbers, we do not expect

the acoustic effects to play a significant role. Eliminating the acoustic time, leaves k as a single non-

dimensional parameter to describe the unsteady behavior. Thus, the limiting behavior for k at low Mach

number is to be expected.

With the compressible reduced frequency, K*, constant there is a maximum in the phase, 0, near

M = 0.6 where the phase appears to be relatively insensitive to Mach number effects. However, at low

Mach numbers (below 0.4), there is a strong effect.

Keeping the quantity k/(1 - M2 ) constant leads to a roughly constant value of fluid force phase, #, for

the whole range of Mach numbers tested (at higher Mach numbers the potential code diverges). This is

significant since it suggests that, for cascade potential flow, the vibration-induced fluid force phase is solely

a function of k/(1 - M2 ), independent of the Mach number.

Ultimately, the trends we are studying come from solutions to the linearized unsteady potential equa-

tions. If the mean flow has a Mach number, M, and is in the x-direction, then the pressure perturbation is

described by (Lane and Friedman, 1958, Whitehead, 1970) the following equation:

(1 - M 2 ) 82 + 2 + - M2 I (4-5)

where AF is the harmonic perturbation amplitude, described by

T = pexp (iK*(tc/ x/7RTo) + iK*(x/c)) (4.6)

Of course, boundary conditions are needed to complete these field equations, but we have already

imposed a spatio-temporal periodicity associated with the vibration. An analytical, explicit solution for the

fluid phase, #, is not known, even in restricted cases (which is the reason why the computational code is
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necessary). There are several non-dimensional coefficients suggested by the above equations, such as K*,

k, and the coefficient to T in equation (??), or (K*) 2/v/1 - M2 . It turns out that keeping these quantities

constant does not minimize the variation of the fluid force phase, 4, as much as k/(1 - M 2). Evidently,

the quantity k/(1 - M2 ), captures a mixture of timescales which is relevant to the flutter mechanism in

this case. Since the flutter mechanism still not completely understood on a physical basis, this trend may

provide an important clue towards establishing the physical basis to flutter in this idealized case.

We investigate the range of conditions under which the phase is described by k/(1 - M 2) by running

the model in a series of test cases. The issue of finding an analytical connection between fluid force phase,

0, and the quantity k/(1 - M2) is left to future studies. The trend in Figure 4-19, there is shown for a

single value of k/(1 - M2), for a specific cascade geometry (10th Standard Configuration), for a single value

of inlet flow angle, a, and for conditions of decaying acoustic waves (i.e. for subresonant behavior). We

explore each of these issues in the remainder of this section.

4.4.2 Effects of varying frequency on trends of fluid force phase

Figure 4-20 shows the fluid force phase, q, for several Mach numbers, M (0.4 to 0.7), for a range of values of

reduced frequency, k, and for a constant inlet flow angle at a = 560. The fluid force phase data are plotted

in two ways: (a) as a function of k/(1 - M2), and (b) as a function of reduced frequency, k. The quantity,

k/(1 - M2 ), appears to collapse the Mach number dependence. As the fluid force phase leaves a band from

about 00 to 10', the scatter for the different values of Mach number increases. At k/(1 - M2 ) = 0.2, there

is about a 30 difference between M = 0.4 and M = 0.7. This is larger than the difference of less than 1' at

a value of k/(1 - M2 ) = 0.3125 shown in Figure 4-19. There is a similar growth in scatter for low values of

b. This indicates that the "collapse" is not exact, but simply an approximation which minimizes the Mach

number dependence.

By contrast, the trends in the same data with respect to reduced frequency, k, as shown in Figure 4-20b,

have a discernable Mach number dependence. At a constant k, increasing the Mach number reduces the

fluid force phase, 4. This behavior with Mach number is consistent with the previously discussed trends of

Figure 4-15.
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Figure 4-20: The fluid force phase, q, is plotted for constant inlet flow angle, a = 560, in figure (a) as a
function of k/(1 - M2 ) for various Mach numbers, x for M = 0.4, o for M = 0.5, + for M = 0.6, and 0
for M = 0.7. The parameter k/(1 - M2) effectively collapses the effect of Mach number in region 'A' of
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Figure 4-21: The phase of the fluid forces is plotted versus Mach number for constant a = 55 and constant
k/(1 - M2 ) for several geometries (solid lines). For reference, the constant k and the constant K* cases are
shown for the 1st standard configuration as dashed and dotted lines, respectively.

4.4.3 Effect of varying geometry on trends of fluid force phase

We now turn to the question of sensitivity of the collapse with respect to changes in the cascade geometry.

Figure 4-21 shows as solid lines the trend with Mach number for a constant k/(1 - M2) = 0.3125, and

a constant inlet flow angle (at a small positive incidence) for three different geometries: the 1st Standard

Configuration (B61cs and Fransson, 1986), the 10th Standard Configuration (Fransson and Verdon, 1993),

and a radial section of the Fan-C rotor (Jutras et. al., 1982). For reference, trends with constant k and K*

are shown for the 1st Standard Configuration as dashed and dotted lines, respectively.

It is clear that the stability characteristics of the three geometries are different, since the Fan-C section

categorically has a much higher phase, 0, than does the 1st Standard Configuration, and (in turn) the 1st

Standard Configuration has a significantly higher phase, 4, than the 10th Standard Configuration. Keeping

the quantity, k/(1 - M 2), constant appears to diminish the Mach number effects on fluid force phase, 4, in

all of the geometries. The 1st Standard Configuration and the Fan-C section have greater spread in terms

of absolute value of phase over the Mach number range. However, the relative scatter over the range of
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Figure 4-22: Effect of inlet flow angle on fluid force phase. A range of Mach numbers (the range tested
in region 'A' of Figure 4-5) is shown for two inlet flow angles: * for a = 53' and 0 for a = 57*. For the
current potential flow model, the effect of increasing the inlet angle is to reduce the fluid force phase.

Mach numbers is about the same, around 10%.

4.4.4 Effect of varying inlet flow angle on trends of fluid force phase

Changing the inlet flow angle, a, affects the fluid force phase, q, as might be expected from the fact that a

influences stability (see Figure 4-14). However, the collapse of phase, q, with k/(1 - M2 ) does not depend

on the value of inlet flow angle, a, kept constant, as long as one remains in the subresonant regime.

This is shown in Figure 4-22. Two inlet flow angles are shown: a = 530, as *'s, and a = 57*, as 0

symbols. For each flow angle, a range of Mach numbers (within region A), are plotted. The collapse of

Mach number effects on the fluid force phase, 4, occurs for both inlet flow angles, but increasing a from

530to 57*shifts the trend (for all the Mach numbers) down. This is a stabilizing shift which is consistent

with the trends previously identified in the critical reduced damping.
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Figure 4-23: Fluid force phase, q, in the region B as a function of k/(1 - M2 ), for superresonant points. The
flow angle is kept fixed at a = 51.80, and two Mach numbers are shown: x for M = 0.7 and L for M = 0.84.
In contrast to the points near the main stability boundary of region A, the factor of k/(1 - M2 ) does not
collapse the Mach number dependence. Each bump corresponds to a different (worst-case) interblade phase,
9, as designated.

4.4.5 Break down of Mach number "collapse" in superresonant regime

The "collapse" of Mach number effects with the single parameter, k/(1 - M2 ), breaks down when the

condition of superresonant behavior occurs for the least stable interblade phase angle. That is, even for a

constant k/(1 - M2 ), changing the Mach number, M affects the value of 0. This is depicted in Figure 4-23

in which the flow angle is kept constant at a = 51.80. Each bump in the trend corresponds to the acoustic

resonance of a different interblade phase angle, o. Since 20 interblade phase angles, a, were considered for

each point in parameter space, these bumps correspond to 18*increments in interblade phase, a, as shown in

the figure. In this instance, increasing the Mach number from 0.7 to 0.84 at a constant k/(1 - M2) increases

the fluid force phase, 4, significantly. At k/(1 - M2 ) = 1 the gap is about 8*, while at k/(1 - M 2 ) = 1.2,

the gap is almost 20 degrees. Evidently, there is not just a shift in value of 0, but a difference in trend in

the superresonant regime.
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4.5 Summary

A computational study of the vibration-induced fluid forces upon a 2-D cascade was conducted using a

subsonic, linearized-unsteady, potential flow code (Hall, 1993). Mach numbers up to 0.7 were considered.

The primary cascade studied was in the 10th Standard Configuration, but other geometries were also

investigated.

It is suggested that (g/p*)cr is a useful metric for stability to replace the "work-per-cycle." The critical

reduced damping can be computed using only information from the unsteady flow problem (not the modal

mass, or damping, for example), but is directly comparable to the actual reduced damping.

The results of the exploratory parametric study exhibited an instability in both bending and in torsional

modes. In both cases, the predominant instability mechanism was local; that is, it was associated with the

influence of the vibrating blade upon itself and its nearest neighbors. In these cases, the effect of increasing

the compressible reduced frequency was stabilizing.

The bending instability occured for very low reduced frequency (k - 0.03), and high loading. This

is consistent with classical studies of bending using a flat-plate potential model (Whitehead, 1962, Shiori,

1958).

In torsion, however, the instability occurred at a significantly higher reduced frequency (k ; 0.2), and

was explored across the full range of parameters. These results indicated that the torsional instability had

independent effects of reduced frequency, k, Mach number, M, and of flow angle, a.

In the case of torsion, there was also a destabilizing non-local effect, associated with an acoustic res-

onance. The physical viability of acoustic resonance is controversial in the literature, but it has been

previously shown to be a solution to the idealized model equations. This acoustic resonance led to small

"lobes" of instability for low a and high M, which violated the trend that increasing frequency is stabilizing.

The case of finite damping, g/p* = 0.5, does not have these lobes, but has the local instability mechanism.

In the case of decaying acoustic waves (i.e. no acoustic resonance), it was found that, for a given flow

angle, the quantity k/(1 - M 2) described the fluid force phase, with relatively small independent effects of

Mach number, M. These trends were checked for varying Mach number, and reduced frequency. Modifying

the cascade geometry, or the inlet flow angle retains the same trends.
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Chapter 5

Technique for Analysis of Full-Scale

Engine Data

5.1 Overview

The most reliable way to learn about the stability characteristics of a machine is to experimentally test it.

In this chapter, we focus upon data analysis of full-scale test data using the non-dimensional variables and

the methodology described in previous chapters.

Flutter data for full-scale test data are relatively scarce, especially those data in the public-domain.

Previous efforts, discussed in the introduction, have been able to characterize the problem and identify

the major trends, but have not been able to quantify these trends and have left some important questions

unanswered. This is partially because it is very expensive to conduct a full-scale test, and flutter testing

which spans various points on the flight envelope is rare.

Here, we consider data taken from full-scale testing at the Volvo Corporation of a fan which exhibited

flutter in the 2nd bending mode. This data spans the performance map as well as flight conditions, giving

more information onto the full 4-dimensional parameter space than available from the aforementioned stud-

ies. Using the non-dimensional parameters discussed previously, along with novel data analysis techniques,

it possible to characterize the flutter stability in the full four-dimensional space, and quantify these trends.
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development, the goal is flutter clearance. However, by careful analysis, the data can be used to obtain the
sensitivity of stall flutter to parameters.
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5.1.1 Analysis Process

Figure 5-1 shows the overall data analysis process for a given machine and modeshape. The process begins

with raw data, which are usually steady state measurements of the inlet conditions and the compressor

performance, and an indication of whether or not the mode in question is in flutter. These raw data are

reduced into a non-dimensional set of reduced data.

With the reduced data, perhaps with the aid of trends and sensitivities, one may be able to find the

range of parameters for flutter clearance for a particular design. This is typically the goal of flutter testing

during engine development.

However, one may also further explore the data, by visualization, or by abstracting the data into curves

and surfaces. To address the problem of finding boundary curves from this sort of data, a novel reduction

procedure using Support Vector Machines was used, as described later in this chapter and in Appendix C.

With the curves, the trends may be quantified to obtain the parameter sensitivity of the flutter boundary.

These sensitivities can then be used for several purposes, including demonstrating consistency of the trends

used in the flutter clearance process.

5.1.2 Range of Sampled Data

The measured data on the Volvo rig are spread across the performance map, as shown in Figure 5-2. The

stable points, shown as x, and the unstable points, shown as o, are intermingled in a cloud which occupies

most of the lines (dashed) of constant corrected speed. The overlap between stable and unstable points is

caused by variations in K* and g/p*. One must, therefore, remove the effects of K* and g/p* to separate

the performance map into regions of stable and unstable operation.

In principle, this is simple: restrict attention to a narrow range of K* and g/p*, and then determine the

flutter boundary with this restricted set of data. In practice, however, there are not usually enough data

points in such a "narrow" range to determine a flutter boundary.

To address this problem, we must choose the subset of points more carefully. In particular, we account

for the effect of centrifugal stiffening, and we use the result, motivated in previous chapters, that increases

in K* and g/p* are generally stabilizing. This leads to a rule for selecting subsets of data with distinct
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Figure 5-2: Measured data on the Performance Map. The stable points (x) and the
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Table 5.1: Raw variables measured in engine tests.

stable and unstable regions on the performance map, while retaining enough data in the subset to estimate

the boundary between regions.

The problem of estimating the flutter boundary, even with sufficient data of this form, is challenging.

Standard regression techniques, such as a least-squares fit, are geared towards finding a curve which passes

through a set of points. In this case, we need the curve which separates the stable points from the unstable

points, rather than one which passes through the points. A new, generic method for this type of problem

was developed. This method is based upon the theory of Support Vector Machines (Vapnik, 1995).

In the remainder of this chapter, the aforementioned steps are described more specifically. First, the

reduction of the raw data is described. Second, the effects of centrifugal stiffening are assessed. Third, the

rule is developed for extracting distinct stable and unstable regions on the performance map, followed by a

discussion of how to interpret the boundary between regions. Finally, the aforementioned boundary fitting

technique is discussed.

5.2 Reduction of Raw Data

The raw data available from the steady state experimental measurements are listed in Table 5.1. These

include inlet temperature and pressure, rotor speed, mass flow rate, exit pressure, frequency of vibration

and stress level.

Unfortunately, the mechanical damping is not among the measurements available. We, therefore, cannot

determine the actual value for g/p*. Instead, the mechanical damping of the machine is presumed constant

during operation, and a relative value of g/p* is used, referenced to the ambient condition.
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Name Symbol
inlet temperature Tin

inlet pressure Pin
inlet density Pin
rotor speed N

mass flow rate rh
exit pressure Pout

vibrational frequency wO
stress level O-b



Table 5.2: Similarity variables determined from measurements.

( -/p* Pamb Pamb (5.1)

P* /rei (9/p*)amb P p

A value of 1 in (g/p*)rel, therefore, corresponds to the reduced damping under ambient conditions. Although

four non-dimensional parameters are sufficient to represent the system, as shown in Chapter 2, various

formulations of these four can be considered to focus upon one aspect or another. Table 5.2 lists some

non-dimensional' system parameters which can be determined from the raw data.

If the duct area and the rotor radius are specified, then there is a direct relationship between the corrected

quantities (corrected mass flow and corrected speed) and the inlet relative Mach number, M, and the inlet

(relative) flow angle, a. Using the relation for 1-D compressible flow (Shapiro, 1953), a relationship can be

made between the corrected mass flow and the axial Mach number, Max, as follows:

-/-I

hc = -ax - (1+ 2  Max) (Aci7ref

where Ad is the duct area and "ref" indicates conditions at sea level standard atmosphere.

One can also relate the corrected speed to the tangential Mach number, Man.

.Mtan 27rNer
4,RTref

where, in this case, 7r represents the number, not the stage pressure ratio.

1Actually, corrected quantities such as corrected speed and corrected mass flow are a non-dimensional variable multiplied
by a dimensional constant based on the definition of standard atmosphere
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Name Symbol Definition
Reduced damping, relative (g/p*)rel see eqn. (5.1)

Compressible reduced frequency K* woc/gvyRT
Centrifugal corrected K* Ko see eqn. (5.6)

Corrected mass flow rhe h(P/P0)/T/T0
Corrected speed Nc N/-T/To

Rotor Pressure Ratio r Pout/Pin
Tip relative Mach number M see eqn. (5.3)

Inlet flow angle a see eqn. (5.2)



The blade relative Mach number and flow angle, then, are clearly defined in terms of the axial and

tangential Mach number.

tan a = Mtan tan OIGV (5.2)
Max

M = Max (5.3)
cos a

where OIGV is the inlet guide vane (IGV) exit angle. In the case that the inlet flow is axial, OIGV = 0, as in

the case in a front-stage fan with no inlet guide vanes, the formula for the relative Mach number simplifies

to

M 2 + Mean

Categorization of flutter points vs. stable points

There is an issue of categorizing the points as either stable points or flutter points. There are also points

due to forced vibrations which are identified and eliminated from further consideration. This was done on

the basis of the magnitude and frequency of the stress signals.

The magnitude of the stress signal was used to determine whether or not there were significant vibrations

present. If the stress signals exceeded a cutoff of 1 MPa, they were considered significant. A histogram of

the stress measurements is shown in Figure 5-3.

The frequency of the stress signal was used to determine whether a point of significant magnitude was

a flutter point or whether it was a forced vibration. If the frequency was within 2% of the blade's rotating

natural frequency, wo, (discussed in the next section), then it was considered a flutter point. Otherwise, it

was considered a forced vibration and discarded from further consideration. Some points associated with

an engine-order excitation were discarded by this criterion (see Figure 5-5).

The following table indicates the selection criteria:
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Figure 5-3: Histogram of Measured Stress Level. The stress (normalized by the maximum stress) is plotted
on the x-axis. There is a peak at zero stress (corresponding to the "clear" points) and a broad peak at a
finite stress level, corresponding to the measurements in flutter.

5.3 Centrifugal Stiffening

When the rotor is spinning, the natural frequencies of the blades may increase for a given modeshape. This

is called centrifugal stiffening, which occurs when the modeshape of vibration has a small radial component.

As the blade mass moves radially, it changes in potential energy due to the action of the centrifugal forces.

This is analogous to the case of a spring-loaded pendulum shown in Figure 5-4, in which a spring represents

the elastic restoring forces, the gravitational acceleration is analogous to the centrifugal acceleration, and
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force
field

Figure 5-4: Idealized, suspended, mass-spring system. A gravitational, force field, g, can increase the natural
frequency. Similarly, a centrifugal force field can stiffen a flexibly supported rotating mass.

the rigid-body pivoting of the pendulum is analogous to the modeshape of the blade. In the case of a

spring-loaded pendulum, the effect of the gravitational acceleration increases the natural frequency, just as

the centrifugal effects increase the natural frequency of a rotor blade.

The effects of centrifugal stiffening upon the blade frequency can be seen on the Campbell diagram,

which is shown in Figure 5-5. Here, the rotor speed is plotted on the x-axis, and the frequency of vibration

is plotted on the y-axis. The resonant points follow an upward sloping curve shown by the dashed line.

The dotted lines correspond to the engine orders (i.e. the multiples of the rotor speed). Forced vibrations

typically occur along these lines, and the corresponding points were eliminated from the analysis.

The dashed line is fit to a model which follows the spring-loaded pendulum analogy. This leads to the

following form for the frequency:

wo = (Wrest + sNraw) (5.4)

where Wrest is the frequency (at rest) without rotational effects, Nraw is the (uncorrected) rotor speed, and

s is an empirical coefficient, the Southwell coefficient, which is modeshape dependent. For the case of the

present rotor, s = 0.5.

Since the frequency, wo, is speed-dependent, it is difficult to experimentally survey the performance

map at a constant compressible reduced frequency, K*, since the inlet temperature must be adjusted as a
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Figure 5-5: Campbell diagram of full-scale engine test data. The x-axis is the wheel speed, and the y-axis is
the measured vibrational frequency. Dotted lines indicate engine orders (i.e. multiples of the wheel speed).
The blade natural frequency, which is excited due to flutter, has a speed sensitivity due to centrifugal
stiffening effects. The dashed line is a fit to the natural frequency, using a Southwell coefficient of 0.5.
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function of rotor speed to maintain a constant K*. In the present data, the surveys were taken at constant

inlet temperature and pressure, rather than scheduling these quantities to maintain constant K*.

Recall, however, that the construction of the K* parameter was based upon separating the flight con-

dition effects from the performance map for constant structural quantities. In the present case, the natural

frequency is not constant, but changes with speed. We can, however, extend the separation of flight con-

dition from performance to this case in which the frequency shifts according to (5.4). Substituting the

frequency dependence from (5.4) into the definition of the compressible reduced frequency, we find

K* = ((K*)2 + sC2 TN2 . (5.5)
vf-RTref

where Kg is

K* = WrestC (5.6)
V4t RT

Therefore, the compressible reduced frequency, K*, can be separated into a speed-independent part, Kg,

and a part dependent upon the corrected speed, Nc. The coefficient of the Nc term in (5.5) is a constant

depending upon modeshape (through the Southwell coefficient), and the chord.

Since wrest is constant for a given machine, and Kg, is the speed-independent portion of the compressible

reduced frequency, replacing K* with Kg leads to the desired separation of the performance map from the

flight conditions in the case of centrifugal stiffening (see Appendix B). Furthermore, the manner in which

the data are sampled (i.e. surveys at specified flight conditions), clusters the sampled data in small bands of

Kg and (9/p*)re. Figure 5-6 shows how data are clustered in small ranges of KK and (9/p*)rel. A similar,

small range using K* instead of K would have considerably fewer points.

5.4 Rule for Selecting Data Subsets

Within each cluster on the (Ks , (9/p*)rel) map, the points are taken across a broad range on the performance

map. This contrasts to the situation of the multimission engine discussed in Chapter 3 in which the data

were sampled near a particular location on the performance map. Thus, the flutter boundaries can not yet
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Figure 5-7: Flutter data for a specific (KG,(g/p*)reI) cluster in which 0.68 < Kg < 0.69 and 0.74 < g/p* <
0.75. A o represents a flutter point, and a * represents a clear point. Without further information, the data
do not well define the flutter boundary.

be directly drawn on the (Ks, (g/p*)rel) map, without accounting for this variation in performance point.

To do this, we estimate the flutter boundary on the performance map, for each (Ks, (g/p*)rel) pair in

question. Unfortunately, the clusters of Figure 5-6 do not always fully specify the flutter boundary. An

example of this case is in Figure 5-7, which shows the data corresponding to a specific cluster, plotted on

the performance map.

An experienced practitioner may be able to interpret such data, by using the right assumptions. For

example, by knowing that the instability is stall flutter, one can ensure that the instability region encom-

passes the upper part of the speedlines. The assumption (e.g. that of stall flutter) could be justified by

global trends, or perhaps by a computational analysis. Furthermore, the extent of the flutter region might

be estimated using stable points from nearby clusters, leading to an "eyeball fit" of the flutter boundary.

Such an ad hoc technique can be a positive step beyond the raw data, making it possible to assess the

flutter boundary using "engineering judgement."
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Unfortunately, this technique is not sufficient for our analysis, since we would like to quantify trends

in the flutter boundary. Such a quantification requires an unbiased estimate of the boundary location. To

accomplish this, we apply the following:

e Increasing reduced damping, g/p*, has a stabilizing effect upon flutter stability

* Increasing compressible reduced frequency, K*, has a stabilizing effect upon flutter stability

These two concepts were discussed in Chapter 3. In terms of applying these to selecting a subset, we

can augment the data from a particular (Ks, (g/p*)rel) box (see Figure 5-8) with corners at (XminYmin)

and (XmaxYmax), using the following rules:

1. Unstable points with a K greater than xmax and a (g/p*)rel greater than ymax can be included.

2. Stable points with a K less than Xmin and a (g/p*)rel less than ymin can be included.

These conditions are schematically shown in Figure 5-8. The logic is as follows: if both Kg and (g/p*)rej

are greater than the values in the box, then according to the assumptions, the machine should be more

stable in this region than in the box. Therefore, an unstable point in this region should be unstable in the

box as well. Conversely, if both Kg and (g/p*)rel are less than the values in the box, then the machine

should be less stable than in the box. Thus, stable points in this region should also be stable in the box.

Applying these conditions leads to a technique of selecting enough data in a subset to estimate the flutter

boundary. In Figure 5-9, the subset of data shown in Figure 5-7 is augmented sufficently to delineate the

stable and unstable regions. The technique for fitting the boundary between regions, shown as a solid curve,

with such data is non-standard, however, and the approach developed to estimate this curve is described in

the next section.

5.5 Fitting the Stability Boundary using Sampled Data

The boundary curve in Figure 5-9 divides the performance map into stable and unstable regions. The

procedure which governs the construction of this curve is derived in Appendix C. Here, only the main

principles are described.
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Figure 5-8: Schematic of rules for selecting data on KG, (g/p*) map. Based upon the trends with KK and
g/p* previously specified, measured data of the designated type outside the box specified by (kmin,9min)
and (kmax, max) are assumed to be relevant within the box as well.
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Figure 5-9: Use of "assumed data" in boundary fits. Here the stability boundary is fit to the data on the
performance map for a specific (K*, g/p*) pair (0.68 < KO* < 0.69 and 0.74 < g/p* < 0.75). A o is a
point in flutter, and a * shows the clear point, inside the above specified ranges. The + locations are stable
measurements taken at a lower KO* and g/p* than the range, and the > points are taken from unstable
measurements at a higher KO* and g/p*. The +'s and the >'s are assumed to apply in the box of (KO*, g/p*)
under consideration according to the principle depicted in Figure 5-8. A flutter boundary is estimated from
the data using the technique described in the text.
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Optimal Hyperplane

support vectors

Figure 5-10: Diagram of the optimal separating hyperplane between two groups of data, represented by the
xs and ovals, respectively. The separating hyperplane, a line in this 2D case, maximizes its distance from
both groups of points. In this sense, it is optimally "between" these groups. The dashed lines, parallel to
the optimal line, are supported by data of each group. The points in each group which touch the dashed
lines (between which the optimal curve is equidistant) are called "support vectors."

As mentioned earlier, the problem of drawing the boundary is more akin to classification than to regres-

sion (curve-fitting). By classification, we mean to separate the space, the performance map in this case,

into regions. Our approach is based upon the use of Support Vector Machines (SVM) developed by Vapnik

(1995). The SVM algorithm finds the "optimal" separating hyperplane between two groups of points, shown

in Figure 5-10 as a solid line. Optimality is defined in terms of maximizing the normal distance from the

hyperplane to the data. The dashed lines, which are "butted" against the data (mathematically speaking,

supported) on either side, have a maximal distance between them in the optimal case. The points which

touch the dashed lines (i.e. support them), are called "support vectors" which gives rise the name "Support

Vector Machine."

Unfortunately, not every group of data can be separated by a hyperplane. In these cases, we use the

technique of Cortes and Vapnik (1995) in which points which fall on the wrong side of the boundary are

penalized in the optimization. This is described more fully in Appendix C.

Using this principle of finding the optimal separating hyperplane makes it relatively straightforward
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Figure 5-11: Commutation diagram for non-linear extension to SVM fit. The optimal hyperplane procedure
can be extended to perform non-linear boundary fits by putting the original data through an invertible
map, 1P, then finding a linear hyperplane, and finally then transforming through the inverse map, T-1. The
non-linear boundary shape is T-1 composed with the hyperplane.

to see how a linear boundary might be found. However, the flutter boundary (for example, the one in

Figure 5-9) is not a line, but curved.

To generate non-linear boundaries, we send the data through a transformation, T, into a new space, then

find a linear boundary in this space, and finally put the boundary through the inverse transform, T-. If T

is non-linear, then a curved boundary may be obtained. This procedure is summarized in the commutation

diagram of Figure 5-11.

The selection of a particular T determines the class of functions from which the boundary may be

expressed. For the current purposes, a polynomial fit was used of the following form:

a -IT(x,y) = ax 3+ a 2X2 + a 3 + a4 XY +a 5Y3 + a 6 y 2+a7Y + a8  (5.7)

where a is a 8-dimensional vector. In this case, T transforms the vector space from the 2-dimensional space

of (x,y) to the 8-dimensional space of a. For boundaries on the performance map, the transformation 4

operates upon the corrected mass flow, rh, and the pressure rise, 7r, in which case the (x, y) of equation (5.7)

are replaced by me,, and 7r. Variations on this form for I, using different polynomial terms for example, did

not measureably change the fitted boundaries.

Note that although the expression (5.7) is non-linear in x and y it is linear in a. The boundary is a

hyperplane in the 8-dimensional space of a, which satisfies the equation, a - T = 0. The SVM algorithm

determines the a, which specifies a hyperplane in a-space but specifies a curve in (x, y) coordinates.
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5.5.1 Error Estimates

The dashed lines on Figure 5-10 represent the range over which the optimal line can be moved and still

separate the data. This range can be used to assess the error in how well the boundary, from a given

function class, fits the data.

The error range for the data from Figure 5-9 is shown in Figure 5-12 as dashed curves surrounding the

"optimal" boundary. In this case, there are data points within the range of uncertainty, unlike the schematic

of Figure 5-10 in which no data lie between the dashed lines. If the data can not be perfectly separated with

a curve from the function class specified by 1, then the dashed curves are pushed apart. The misclassified

data are a result of a mismatch between the function class specified by T and the data.

In general, the "assumed data" appear to be consistent with the assumptions. The assumed unstable

data, c, tend to be at higher pressure ratios than the unstable data in the "box" of Figure 5-9, and the

assumed stable data, +, occurs at lower pressure ratios. To assess the validity of the assumptions in the

present case of the Volvo data, one can look at the cases of "misfit" data. That is, assumed points which

wind up on the wrong side of the flutter boundary. The occurrence and the specifics of such cases show

that the data is consistent with the assumption. In fact, such misfit points are rare, with only 5 such cases

out of 1387 assumed points in all of the boundaries analyzed.

One misfit point is shown on Figure 5-12, a stable point near rih = 110, lying above the upper dashed

line. Since the data are sparse in this region, it is concievable that the boundary curve could be drawn around

this point. However, this requires a boundary with considerably higher order terms than the one specified

by (5.7), since small modifications to (5.7) which keep it roughly the same order do not significantly affect

the boundary. The data are sparse around this particular point, so the boundary shape is not definitive.

In particular, there are no contrary (i.e. unstable) points between the misfit point and the fitted boundary.

All five of the misfit cases have this same property, and could be higher-order effects rather than exceptions

to the assumption. Without further information, it is not possible to confirm this, however.

The fitted boundary curve appears to be a reasonable approximation to the flutter boundary. This

behavior holds generically for subsets of the data, corresponding to a specific (K&, (g/p*)el) box. For a

detailed look at other subsets see the raw fits in Appendix D.
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Figure 5-12: Range of uncertainty in boundary fits. The stability boundary of Figure 5-9 is shown with
dashed curves indicating the uncertainty of the fit. A o is a point in flutter, and a * shows the clear point,
inside the above specified ranges. The + locations are stable measurements taken at a lower Ki and g/p*,
and the > points are taken from unstable measurements at a higher KK and g/p*.
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5.6 Summary

A technique for analyzing raw data from scaled flutter tests is described in the context of the measured data

from a Volvo test rig. It is presumed, as in the case of the Volvo rig, that only steady-state data is available,

with the flutter measurements limited to a frequency measurement and the stress level. The stress level

leads to a binary classification into stable and unstable points, depending upon whether the stress is below

or above a given (low) threshhold.

Centrifugal stiffening, which causes a dependency of the blade frequency upon the rotor speed is dis-

cussed. The blade frequency is characterized in terms of a fundamental frequency and a Southwell coefficient,

which is useful in assessing the appropriate frequency for stable points which did not exhibit vibrations.

For this case of centrifugal stiffening, the Kg parameter, which is a generalization of K*, is used.

Since the data spanned all four non-dimensional parameters, data sparcity was a major issue. To address

this, a procedure was developed for selecting data relevant to a particular (Ks, g/p*) location based upon

the trend that KG and g/p* are stabilizing.

Furthermore, a novel boundary-fitting procedure was introduced, based upon Support Vector Machines

(see Appendix C), which allowed for automatic determination of the stability boundary between the stable

and unstable sampled data.

This analysis procedure was able to reliably, and automatically generate flutter stability boundaries from

the raw data.
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Chapter 6

Results of Experimental Data

Analysis

This chapter is focused upon describing the results of analyzing full-scale engine test data for aeroelastic

stability of a shrouded fan in a second bending mode. As mentioned in the previous chapter, data which

include variations in simulated flight condition were available from testing conducted at the Volvo Corp. In

general, the behavior was found to be consistent with the trends outlined in the introduction and further

discussed in Chapter 3.

Flutter boundaries were estimated on the performance map, corresponding to "analysis boxes" on the

(Ks, g/p*) map, using the procedure described in the previous chapter. The corresponding analysis boxes

are shown in Figure 6-1. These boxes in Figure 6-1, which are used in this chapter, all meet the criterion that

the boundary points (i.e. the points near the boundary which determine its shape) have a median Kg and

g/p* which falls inside the box. If there are too few data in the box, then the appropriate (Ks, g/p*) location

corresponding to the resulting boundary is ambiguous, since the boundary shape is primarily determined

by data outside the initial analysis box. A comparison of the raw data to the fitted boundaries for each box

used in the current analysis, including boundary uncertainty estimates are given in Appendix D. Here, we

focus upon the parametric dependencies of the fitted boundaries.

The (Ks, g/p*) locations of the boxes in Figure 6-1 make it possible to investigate three types of trends:
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Figure 6-1: Boxes on the (KG, g/p*) map for analysis of the full-scale engine data presented in this chapter.
A flutter boundary for each of these locations was estimated using the procedure of Chapter 5. A comparison
of the boundaries with the raw data are located in Appendix D. In each case, the median of the points
adjacent to the boundary was located inside the box, as shown by the *s.
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variations of Kg at constant g/p*, variations of g/p* at constant Kg (at two Kg locations), and variations,

for the given configuration, at constant inlet pressure.

To quantify the trends, we consider the effects at a constant corrected speed, N. That is, we track the

intersection of the flutter boundary and a speedline on the performance map. For any chosen corrected

speed, this intersection occurs at a critical pressure ratio, 7rcr, and a critical corrected mass flow, (2e)cr.

Although the corrected mass flow and corrected speed, together, sufficiently specify the intersection, it is

useful to track the critical pressure ratio as well, since this makes it easier to interpret requirements framed

in terms of the pressure ratio.

The effects of changing the reduced damping, g/p*, or the compressible reduced frequency, KG, can be

quantified in terms of the changes in the critical re, or the critical 7r. We estimate sensitivities, or partial

derivatives, of the critical rn, and critical 7r with respect to g/p* and Kg.

Viewing the boundary on the (K&, g/p*) map corresponding to a specific location on the performance

map, is particularly insightful for flutter clearance purposes since this can be directly interpreted in terms

of the flight conditions. We estimate these boundaries through an "inversion" procedure which uses the

fitted boundaries on the performance map.

6.1 Trends in Flutter Stability

In previous chapters, the stabilizing trend of increasing the reduced damping, g/p*, or of increasing the

compressible reduced frequency, KG, was discussed. In this section, we wish to look at the overall parametric

trends in terms of the measured data, preceeding the more detailed investigation in following sections.

The general shape of the boundary is shown in the example of Figure 5-9, and is consistent with a

subsonic/transonic stall flutter classification. That is, the flutter region occurs at part-speed, on the upper

part of the speedlines. The current rotor has a relatively broader region of flutter, relative to the case of the

historic, multimission engine of Figure 3-16. In each case, the region above the boundary (i.e. for higher

pressure ratio) is the unstable region, and below the boundary is stble.
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Figure 6-2: Shown here, on the performance map, are a family of boundaries with KK = 0.685, and varying

g/p*. Each boundary corresponds to one of the analysis boxes of the inset plot; the * indicates the median
location of points adjacent to the boundary. The topmost boundary (highest 7r) corresponds to the topmost
box (highest g/p*), and so on. The trend for decreasing g/p*, at constant K* is for the flutter region to
become larger and for the boundary to shift down to lower values of 7r.

6.1.1 Trends with varying reduced damping

To determine the qualitative effect of varying g/p*, we compare the boundaries from a series of boxes in

which the compressible reduced frequency, KG, is held constant and the reduced damping, g/p*, is varied.

This is depicted in Figures 6-2 and 6-3, for two different cases of KG, 0.685 and 0.705, respectively. For

the sake of clarity, only the boundaries are shown; the uncertainty estimates are shown, along with the raw

data, on the individual boundary plots in Appendix D. Each boundary separates the flutter region (above

the boundary) from the non-flutter region (below the boundary).

The trend in the flutter boundary with increasing g/p* is, as expected, to stabilize the flutter boundary,

and to move the flutter region away from the region of operation. The crossing of boundaries in Figure 6-2

in the region between rh, = 100 and rh = 110 falls within the uncertainty of those boundaries.

The movement corresponding to shifting the value of g/p* from 0.6 to 1 is striking since it moves the
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Figure 6-3: Shown here, on the performance map, are a family of boundaries with Kg = 0.705, and varying

g/p*- This has a similar trend to the case of Kg = 0.685 of Figure 6-2 in that decreasing g/p* is destabilizing.
However, these boundaries are, on the whole, more stable than those of Figure 6-2 due to the higher value
of compressible reduced frequency, Kg.
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boundary nearly halfway up the range tested on a particular speedline. For example, on Figure 6-2 at 83%

corrected speed, a change in the reduced damping from (g/p*)rel = 0.6 to (g/p*)rel = 1 leads to an increase

in the pressure ratio at the boundary of 15%.

The trends with g/p* are similar for the two values of KG of Figures 6-2 and 6-3. However, the case of

KG = 0.70 is generally more stable, particularly for higher corrected speeds (dashed lines are constant N,).

More subtle relationships can be assessed by looking at the intersection of the corrected speed lines with

the flutter boundaries. This approach is taken up in later sections.

6.1.2 Trends of varying compressible reduced frequency

Some sense of the stabilizing effect of increasing K can be gained from comparing the boundaries in

Figures 6-2 and 6-3. This is shown more explicitly, for the case of g/p* ; 1, in Figure 6-4, which spans a

larger variation in KG from 0.68 to 0.75. The overall trend of increasing the compressible reduced frequency,

KG, is towards a more stable boundary, as expected. The boundaries shown in Figure 6-4, are at a relatively

high g/p* ~ 1, and are more stable than those boundaries near 9/p* = 0.6 in Figures 6-2 and 6-3.

One point to note is that on Figure 6-4, the stabilizing effect of increasing KG is prominent at lower

corrected speeds. At lower values of g/p*, near 0.6, comparing between Figures 6-2 and 6-3 shows little

difference between the boundary curves at the two values of K3. This indicates that the sensitivity of the

flutter boundary to KG can be dependent upon the value of g/p* and N,. This is investigated more fully in

later sections, by focusing upon the intersections between the flutter boundary and the (dashed) corrected

speed lines.
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Figure 6-4: A family of flutter boundaries are plotted on the performance map, for g/p* ~ 1, with each
member having a different Kg, as shown in the inset figure. The uppermost boundary corresponds to a
value of Kg = 0.75, the middle boundary corresponds to Kg = 0.705 and the lowest boundary corresponds
to Kg = 0.685. The trend for decreasing Kg, is a reduction in stability, shifting the flutter boundary to
lower pressure ratios, 7r.
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6.2 Effect of Pressure

The analysis, up until now, has followed along the lines of considering the temperature and density as inde-

pendent parameters, which contribute to the various non-dimensional groups discussed in Chapter 2. These

non-dimensional groups can be expressed in terms of any selected primitive variables, and the temperature

and density were selected for ease of derivation.

Using the ideal gas law to relate the pressure, temperature, and density, these similarity groups can

be written explicitly in terms of the inlet pressure, if desired. For example, if one chooses temperature

and pressure as primitive thermodynamic variables (leaving density as a dependent variable), then the

compressible reduced frequency, K*, remains unchanged, but the reduced damping becomes

gmoRT (6.1)
g PC3

which comes from replacing p with RT/p in the definition of g/p* for the case of 3-D blades. Thus, the

effect of pressure (at constant temperature) can be interpreted in terms of its effects upon g/p*.

However, it is widely understood that the effects of flight condition, at constant corrected quantities, can

be understood in terms of the change in inlet pressure. The pressure ratio is correlated with the corrected

quantities, from which the exit pressure may be found if one knows the inlet pressure. Thus, in terms of

performance, the corrected quantities and the inlet pressure are sufficient to assess the performance.

One might think that, by analogy, the aeroelastic effects can also be summarized solely (or at least

primarily) in terms of the inlet pressure. We study this possibility in the context of the measured data.

6.2.1 Static Deformations

An assumption used to derive the similarity parameters was that the flowpath geometry was nominally

constant. This assumption may not hold if the changes in inlet pressure deform the blade angles and

thereby influence flutter stability. This pressure effect was first proposed by Jeffers and Meece (1975) as a

contributor to the pressure effects they observed, but has not been experimentally assessed in the literature.

We show that such effects are negligible in the present case.
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To investigate this possibility, we look for deviations in the performance correlations with inlet pressure.

A given corrected speed, Nc, and corrected mass flow, m, can be correlated with the pressure ratio, -r,

for a specific blade geometry. If the inlet pressure deforms the blades and significantly changes the blade

angle, then the performance correlation (i.e. the pressure ratio) should change accordingly. Conversely, if

the effect of the inlet pressure upon the performance correlation is negligible, then static deformations do

not significantly alter the steady flow problem, and thus do not significantly affect flutter stability.

Figure 6-5 shows measured points, with varying inlet pressure, which correspond to the same corrected

speeds as those used to measure the performance correlation (i.e. the dashed speedlines). The data appear to

follow the speedlines fairly well, irrespective of pressure ratio. This is quantified more fully in Figure 6-6, in

which the inlet pressure is plotted against the fractional deviations from the speedlines. There appears to be

no obvious correlation between inlet pressure and deviations from the performance correlation. Furthermore,

the fractional deviations are in the range of the measurement noise, and are considerably smaller than the

effect of KG and of g/p* upon the flutter boundary. Therefore, in this case, the effect of static blade

deformation cannot explain the effects of flight condition (i.e. K* and g/p*) upon flutter stability to any

significant extent.

6.2.2 Effect of temperature at constant pressure

Increases in inlet pressure due to ram effects have corresponding increases in temperature and density, as

shown in Figure 2-2. As mentioned earlier, for purposes of performance assessment, the inlet pressure alone

summarizes the flight condition effects.

In the case of a typical low-speed aircraft, Figure 3-13 shows that the temperature and pressure effects

are coupled. Clearly, if the thermodynamic state variables are coupled, then a single variable can be used

to summarize the effects. This single variable can be either the temperature, the pressure, or the density;

however, the pressure may be most convenient in this case.

For a high-speed aircraft (e.g. a supersonic fighter), however, the temperature and the pressure can

independently vary, also shown in Figure 3-13. To assess whether the flight condition effects on flutter can

be understood solely in terms of the pressure, we investigate whether, at a constant pressure, temperature
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Figure 6-5: The performance correlation, taken at sea level static conditions, is shown here along with data
at the same corrected speed and at varying pressures. There is no obvious correlation between the pressure
level and deviations from the speedline, indicating that the effect of inlet pressure on the blade angle is not
significant.
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Figure 6-6: The fractional difference between the measured stage pressure ratio for a given inlet pressure and

at sea level static, at the same corrected speed and corrected flow is shown. The data shows no significant

deviations in the performance characteristics as a function of inlet pressure. Therefore, static deformations

of the blades due to differences in inlet pressure do not significantly alter the flowpath geometry.
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can have a significant effect on the flutter boundary, especially in the context of our measured data, which

represents a typical case.

By inspection of the definitions of K* (equation 3.1), and g/p* (equation 6.1), we can see that the

pressure only appears explicitly in g/p*. Thus, for the case of zero damping, the value of g/p* = 0, and

changes in inlet pressure at constant temperature are irrelevant to flutter stability.

In general, since the temperature appears in both K* and g/p*, increasing the temperature at a constant

pressure implies an increase in g/p*, but a decrease in K*. This trades off the stabilizing effect of increasing

g/p* with the destabilizing effect of decreasing K*. Thus, for a typical case with finite damping, it is at

least possible that the competing effects cancel out and that the inlet pressure alone governs flutter stability.

In the case of the multimission engine of Chapter 3, the flutter stability appeared to be relatively less

sensitive to the g/p* parameter than to the K* parameter, indicating that the pressure may not summarize

all the effects.

Using the measured data in the current analysis, we can address this question more precisely. We

compare the flutter boundaries from two (K*, g/p*) locations corresponding to approximately the same

pressure, but with substantially different temperatures, as shown in Figure 6-7. There is a measureable

decrease in stability for the case at higher temperature (i.e. lower K*). Thus, the pressure alone cannot

adequately explain all of the flight condition effects upon flutter stability, unlike the case of flight condition

effects upon performance.

In general, changes in pressure at constant corrected operating point combine two distinct effects upon

flutter stability: first, a change in the vibration-induced fluid force phase associated with the change in K*,

and second, a change in the relative magnitudes of the mechanical dissipation to vibration-induced fluid

force magnitude embodied in g/p*. Thus, a single parameter such as the pressure cannot simultaneously

capture these two effects.

6.3 Effects of K* and g/p*

In this section, we quantify the previous statements made concerning the trends with respect to reduced

damping, g/p*. To accomplish this, the intersections between the estimated flutter boundary and the
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Figure 6-7: Effect of temperature at a constant pressure. A series of flutter boundaries are shown cor-
responding to points at the same pressure (within 2%). Increasing in temperature, at constant pressure,
destabilizes the flutter boundary.

145

1.2

1

0.8

0.6

0.65

CO

0.7
K* 0

2.6 -

2.4 -

2.2 -

2

1.8-

1.6-

1.4-

1.2-

1'
7

ng temnp
press.



7C error bound for mc

error bound
-. ........... .. for it

flutter boundary
w/ uncertainty
bound % constant speed,

% Nc

Ic

Figure 6-8: Points were selected at the intersection of a flutter boundary, corresponding to a specific
(Ks, g/p*) pair, and a line of constant N. For this (Ks, g/p*, N,) triplet, a critical corrected mass flow,
(7!)c, and pressure rise, 7rr, are found. Uncertainty estimates upon the critical parameters can be made
using the uncertainty bounds on the flutter boundary.

measured speedlines were found. These are the intersections between the solid curves and the dashed

curves in Figures 6-2, 6-3, and 6-4.

6.3.1 Speedline/Flutter Boundary Intersections

Each intersection is associated with a (Ks, g/p*) pair corresponding to the boundary, and a value of N

corresponding to the speed line. Furthermore, at each intersection, a critical value is determined for corrected

mass flow, (rc)cr, and pressure ratio, 7rcr. Thus, for the (Ks,g/p*,N0 ) combination associated with a

particular intersection, flutter occurs for corrected mass flow less than the critical value, (rhe)cr, and pressure

ratios larger than the critical value, 7rcr. To obtain uncertainty bounds for these critical values, (rhe)cr, and

7rer, at the intersections, the uncertainty estimate for the flutter boundary was used (see Appendix D for

uncertainty estimates of any particular boundary). This process is schematically shown in Figure 6-8.

6.3.2 Trends with respect to changes in reduced damping

The critical mass flow, (rh,)cr, and critical pressure ratio, 7rcr, are shown as a function of reduced damping,

g/p*, in Figure 6-9 for five cases of corrected speed. For each corrected speed, increasing reduced damping
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Figure 6-9: Critical mass flow and pressure ratio at flutter for KO = 0.685, and varying g/p*. Figure (a)
is the critical pressure ratio, and figure (b) is the critical mass flow. In each case, there are five corrected
speeds, N, = 63%, 70% 74%, 78%, and 83% design, as a function of reduced damping, g/p*.
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Table 6.1: Flutter boundary sensitivity estimates. Sensitivities of critical pressure ratio and critical mass
flow with respect to changes in reduced damping, g/p*, and compressible reduced frequency, Kj, are listed.

Ki = 0.685 K0 = 0.705 g/p* = 0.98
% Nc e7rcr/(gIP*) 19(rhc)crIO(g/p*) 497rcrj/(g/p*) &(ric)cr/O(g/p*) i9rcr/eK 8(rhc)crh9K

63 0.25 -14 0.4 -20 1.0 -136
70 0.3 -13 0.5 -20 1.1 -88
74 0.35 -15 0.55 -22 1.2 -79
78 0.45 -9 0.6 -14 1.4 -52
83 0.45 -9 0.4 -10 1.1 -32

increases the critical pressure ratio, and decreases the critical mass flow. These stabilizing effects are the

same as those shown in Figure 6-2. A linear fit to the data, is displayed for each corrected speed. The slope

of this linear fit is the sensitivity of the flutter boundary to reduced damping, for each corrected speed, for

the case KK = 0.685. These sensitivities can be expressed as the following partial derivatives

O(Thc)cr , and, a7rcr
ag/p* ' IP

where it is understood that these partial derivatives are taken at constant Nc and constant K . In Figure 6-

9, it appears that the sensitivities with respect to (Thc)cr are approximately constant for different corrected

speeds, while the sensitivity with respect to lrcr increases as N, is increased. An inspection of Figure 6-2

shows that, at the intersection locations, the slope of the speedlines is greater at higher Nc, which explains

this. In fact, the speedline slope can be found by taking the ratio of the sensitivities. That is,

(a7rcr)/(O9/p*) (r

0(rh&c)cr)/099/P* ahc IN.

Alternately, this shows that one may deduce one of the sensitivities (e.g. that of ircr) from the other and

the speedline slope (&r/irhc).

6.3.3 Comparison of g/p* effects at Kg = 0.685 and K* = 0.705

Similarly to the analysis of Figure 6-9 for KK = 0.685, an analysis of the case of KK = 0.705, corresponding

to the boundaries in Figure 6-3 can be conducted. It is useful to compare the results of these two analyses
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to get some indication of the effects of Kg upon the flutter boundary location and sensitivity with respect

to g/p*. A separate sensitivity analysis with respect to Kg is conducted in the next section. A listing of

the sensitivities estimated for the various cases is shown in Figure 6.1.

A comparison of the critical pressure ratio, ircr, between the two cases is shown in Figure 6-10 for four

different corrected speeds, ranging from 70% to 84% design speed. The critical mass flow, (ril)cr, for the

same cases are shown in Figure 6-11.

Just as in the case of Kg = 0.685, the trends with reduced damping are monotonic for Kg as well.

Increasing g/p* has a tendency to stabilize the machine by increasing the critical pressure ratio, 7rcr and

decreasing the critical mass flow, (rhc)cr. Furthermore, the change in KO* from 0.685 to 0.705 improves the

stability of the machine, since it typically leads to higher values of critical pressure ratio, 7rcr, and lower

values of critical mass flow, (rhc)cr-

Depending upon the rotor speed, the sensitivity to reduced damping may differ. These sensitivities can

be estimated by the slopes of the fitted trend lines in each comparison plot. For the lower speeds shown

in plots (a), (b) and (c) of Figures 6-10 and 6-11, the critical values (7rcr and (7hc)cr) for KO = 0.705 are

more sensitive to the effects of g/p* than for Kg = 0.685. This increased sensitivity appears to decrease

as corrected speed increases so that at 83% speed, the slope of the ircr trend, shown in Figure 6-10d, is

approximately the same for the two Kg values, and the slope of the (rhc)cr trend appears to be slightly less

for the case of K = 0.705 than for Kg = 0.685. This indicates that the sensitivities with respect to g/p*

near Kg = 0.7, as listed in Table 6.1, change for different values of Kg, near KK = 0.75. Estimates near

Ki = 0.75 can be roughly estimated, as done in the next section.

Thus, it appears that the sensitivity to g/p* is dependent upon both corrected speed, No, and the value

of Kg. There are two effects which are relevant as corrected speed increases, and which may be responsible

for the difference in sensitivity. First, there is a transition, at the fan tip, from subsonic relative flow to

supersonic relative flow, which occurs near Nc = 74%. As the corrected speed increases, the region of the

blade with supersonic relative flow will increase as well. Second, for a constant KG, as the corrected speed

increases, there is a smooth increase in the value of K* due to the centrifugal stiffening effects, as described

in equation (5.5). Therefore, even independent its role in determining the mean flow, one would expect the
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Figure 6-10: Critical 7r comparison between Kg = 0.685 (shown by *'s) and Kg = 0.705 (shown by D's),
at several corrected speeds. Figures (a), (b), (c), and (d), correspond to Nc = 70%, 74%, 78%, and 83%
design, respectively.
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value of corrected speed to have an effect.

6.3.4 Trends with respect to changes in K

The effect of Kg is evident in the comparison plots of Figures 6-10 and 6-11. For the case of g/p* = 0.98,

the trends with KG in critical pressure ratio, -7rr, and critical mass flow, (rhc)cr, are shown in Figure 6-12.

This further confirms the montonicity of trends with the Kg parameter at a constant corrected speed. As

Kg is increased, 7r, increases and (ric)cr decreases.

Judging from Figures 6-10 and 6-11, the level of reduced damping, g/p*, as well as the corrected speed,

Nc, significantly influence the sensitivity of the KG parameter. At g/p* = 0.6, there is very little difference in

the values of 7rcr for 70% and 74% corrected speed. At 84% corrected speed, however, there is a substantial

difference. Near g/p* = 1, there are substantial effects of Kg at all speeds.

We can look at this case more fully in Figure 6-12. This includes the data for a higher Kg value as well,

near Kg = 0.75. The Kg trends from the comparisons in Figures 6-10 and 6-11 are consistent the data at

the Kg = 0.75, within the error of the estimates for 7rcr and (mc)cr-

Changes in Kg affect the sensitivity with respect to reduced damping, g/p*. The dependence upon g/p*

is characterized fairly well near KG near 0.7, using several points for each sensitivity estimate. Although

the data to estimate this in the same way near Kg = 0.75 is not available, we can generate upper and lower

bounds near (Ks, g/p*)=(0.75,1). This sensitivity is of particular interest, since it is the sensitivity at the

"most stable" extent of the measured regime.

An obvious lower bound is zero, which comes from the assertion that mechanical damping can not

destabilize the machine. Other estimates can be estimated by using two (Ko ,g/p*) points: the measured

locations at (0.75,1) and the location at (0.73,0.75). See Figure 6-1. Applying the trend that increasing Kg

is stabilizing, an upper bound for the sensitivity comes from ignoring the Kg difference. Labeling the point

at (0.75,1) point A, and the point at (0.73,0.75) point B, we have

0 < cr < lrcrIA - 7rcrIB

0< /9gp*) ) A P*)A - (AP*6).

An estimate which lies between these bounds, and which is expected to be more accurate, is to use the
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Figure 6-12: Critical mass flow and pressure ratio at flutter for (g/p*)rel = 1, and varying Kg. Figure (a)
is the critical pressure ratio, and figure (b) is the critical mass flow. In each case, there are five corrected
speeds, N = 63%, 70% 74%, 78%, and 83% design, as a function of reduced damping, g/p*.
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Table 6.2: Estimate and upper bound of flutter boundary sensitivity using point data. The sensitivity with
respect to reduced damping, (9Tcr/O(g/p*), at KK = 0.75 and g/p* = 1 is assessed using a 2-point estimate.
An approximation and an upper bound to the sensitivity are listed. The lower bound is zero.

% Nc 8 rcr/0(9/P*)
estimate upper bound

63 0.29 0.37
70 0.19 0.28
74 0.12 0.21
78 0.07 0.16
83 0.03 0.12

previously assessed K sensitivity to eliminate the KG effects. This can be expressed

Oier (Arcr)A-B - OKm)A - (AK )AB(
(6-3)

JA/ * (Ag/p*)A-B

where A is used to indicate the difference between the subscripted points. Equations (6.2) and (6.3) can be

used generally for local sensitivity estimates in regions of sparse data.

For the case of interest, point A at Kg = 0.75 and g/p* = 1, these estimates for the g/p* sensitivity are

listed in Table 6.2.

6.4 Flutter boundary on frequency-damping map

Projecting the flutter boundary onto the performance map for specific values of reduced damping and

compressible reduced frequency, although it is particularly familiar, is only one way to represent the flutter

boundary. We now look at the boundary on the map of compressible reduced frequency, KG, versus reduced

damping, g/p*. This is useful since this map is understandable in terms of the flight envelope of the aircraft

powered by the engine, as depicted in Figure 3-14. In particular, one can assess the flight regime of flutter

stability corresponding to a chosen operating point.

Furthermore, such a view can help sort out the effects of KG and g/p*. From the previous analysis, it

is clear that these parameters have a coupled effect on flutter stability. It has also been demonstrated that

the coupling can not be explained only as a pressure effect. Looking at the information on the Ks versus

(g/p*)rei map can help us gain insight into the coupled effects.
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Figure 6-13: A flutter boundary on (Ks, g/p*) map is shown for a specific point on the performance map,
corresponding to the x on the small set of axes. The stable points on the (Ks, g/p*) map are shown as
x symbols and the unstable points are shown as o symbols. A (Ks, g/p*) point is considered stable if
its corresponding boundary points is lies above the performance point under consideration. A dashed line
indicates an estimated flutter boundary on the (Ks, g/p*) map for the point in question.

Figure 6-13 shows a boundary estimate, corresponding to a given point on the performance map, depicted

on the inset plot. This boundary was found using the previous boundary fits on the performance map, which

are shown individually in Appendix D. Whether the given point on the performance map falls within the

flutter region of each boundary on the performance map determines the stability of the corresponding

point on the (Ks, g/p*) map. Since there are only 12 (Ks, g/p*) points considered, the boundary on these

coordinates can only be roughly estimated as the dividing line between these 12 points. If one had more

points, then a better fit using the SVM boundary fitting technique described in Appendix C can be done.

One benefit of this approach is that, although the resolution on the (Ks, g/p*) map is limited, one

can form a boundary for any chosen pair of corrected speed, Nc, and critical mass flow, (Thc)cr. Equiva-

lently, one may specify the corrected speed and the critical pressure ratio, 7rcr. Figures 6-14 through 6-18

show (Ks, g/p*) maps, each for a particular corrected speed, Nc, and which demarcate the boundaries

corresponding to various levels of critical pressure ratio, 7rcr.

For each dashed boundary, the points on the upper right of the boundary corresponded to cases in which

the critical pressure ratio at that corrected speed was higher than that labeled on the boundary. Thus,
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these locations in (Ks, g/p*) would be stable for the pressure ratio listed on that boundary, for the corrected

speed relevant to that plot. Conversely, the points to the lower left of the dashed boundary correspond

to cases in which the locations in (K&, g/p*) would experience flutter at the pressure ratio listed on the

boundary.

The series of boundaries for each corrected speed gives an indication of the coupled effects of K and

g/p*. The boundaries tend to curve downward, being flatter for lower Kg and lower g/p*, but steeper for

higher Kg and higher g/p*.

The curvature in the boundaries indicates that the sensitivity changes as one moves in the parameter

space. It should also be recognized that the flatter boundaries are at lower pressure ratios as well. There-

fore, the changes in boundary slope may be a result of considering the boundary for a different corrected

performance point, besides being at a different (KO, g/p*) location.

Irrespective of the mechanism, the sensitivity of the relevant stability boundary changes for large changes

in K or in g/p*. From inspection of the plots, we can roughly say that changes in K of 5% (from 0.68 to

0.72) and changes in (g/p*)rel of about 20% (from 0.95 to 0.75) can change the sensitivities with respect to

KG and g/p*. We therefore restrict applicability of the sensitivity estimates at a given point to patches of

these limited ranges.
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Figure 6-16: Family of flutter boundaries on (Ks, g/p*) map,
flutter boundary location for the labeled values of ircr-

K> 1

0.72 0.74 0.76 0.78

for 74% corrected speed. Dashed lines indicate

/

1.64 ,

1.62 a

1-58
1.54, **~~-*a~~ a'

0-

0-p

0.62 0.64 0.66 0.68 0.7
K*O

SI
411 (

0.72 0.74 0.76 0.78

Figure 6-17: Family of flutter boundaries on (Ks, g/p*) map, for 78% corrected speed. Dashed lines indicate
flutter boundary location for the labeled values of 7rcr
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6.5 Summary

The data from the Volvo rig was analyzed using the procedure from Chapter 5 with the following main

results

* The effects of increasing Kg and g/p* were significant and were stabilizing.

* At constant inlet pressure, there was a measureable effect of inlet temperature. The inlet pressure is

not the only flight condition effect upon flutter stability.

" Sensitivities of the flutter boundary (e.g. in terms of a critical pressure ratio) with respect to KG,

g/p* and N, are valid locally, but may change for large movements. Sensitivity estimates at a point

are applicable in a local patch of roughly 5% in Kg, 5% in Nc, and 20% in g/p*.

" Viewing the flutter boundaries, for a specific (Ne, 7r), on the map of (Ks, g/p*) is useful in assessing

the combined effects of Kg and g/p*.
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Chapter 7

Flutter Clearance

Flutter clearance refers to the testing procedure performed to ensure that the engine blades will not flutter

throughout the engine's intended operating regime. In this chapter, we discuss the requirements of such a

testing procedure in terms of the set of similarity variables (rhe, N,, K*, g/p*) introduced in this thesis.

We then describe a methodology for designing such tests. An example of flight regime assessment is given

using the Volvo data previously discussed in Chapters 5 and 6.

7.1 Design of Experimental Tests

The testing environment for aeroengine flutter is harsh on the measurement equipment and the machine

being tested. It is desireable to minimize the test time, especially that spent in flutter to avoid accruing too

many fatigue cycles. However, unlike compression instabilities such as surge which are likely to compromise

the engine integrity if not immediately mitigated, it is possible to run an engine at low levels of cyclical

stress during testing.

In the data discussed in Chapters 5 and 6, many data points were taken in flutter at low stress levels.

In this case, the strain gages were placed in the location of maximum stress for the mode of interest. If the

sensor is located in a different location, such considerations should be based on an estimate of the maximum

stress. Such an estimate could be made by picking the appropriate mode (using the vibrational frequency),

and applying an appropriate amplification factor based on the modeshape. It is important to place the
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sensor(s) in a location where there is measureable strain for each relevant vibrational mode.

In this section we focus upon the design of an experimental test from the standpoint of sampling the

appropriate region of parameter space to ensure that the engine is free of flutter. Other aspects of flutter

testing, including instrumentation, data acquisition, and testing procedures are beyond the current focus,

but are discussed in existing literature (Mehalic et. al. 1977, Stargardter, 1979, Jutras et. al. 1982,

Stargardter, 1987).

Even in absence of instabilities, it is important to efficiently sample the space. Sensor degradation is

an issue when running the machine, even under stable conditions. For example, during the NASA flutter

tests which followed the F100 engine development (Mehalic et. al., 1977), testing was conducted at various

inlet densities and rotor speeds at progressively higher temperatures. Flutter was only observed at the

highest temperature tested, but at the point when this temperature was reached in testing, many of the

stress sensors were broken from previous testing! This limited the number of points which could be usefully

sampled to learn about the flutter instability. Sensing technology has improved significantly, but the main

point remains of efficiently planning the tests to get the necessary information for a low testing cost.

The design of a flutter test, can be framed in terms of the general theory of "Design of experiments."

An introductory reference to this subject may be found in Mongomery (1976). The basic procedure is to

identify the factors which determine the phenomenon, and to design a test matrix, or a testing schedule, to

span these factors. In this case, the factors are given by the similarity variables developed in Chapter 3:

(7he, Nc, K*, g/p*).

Flutter testing (and stability testing in general) is non-standard in that the results are binary, rather

than a real number. That is, at each condition sampled, one ultimately finds out only whether or not the

machine is stable, but does not have a quantitative estimate of the system damping1.

Binary data makes it a non-standard problem to interpolate between points in parameter space, and

impossible to meaningfully extrapolate without outside information. The problem of interpolation is ad-

dressed by the SVM technique described in Appendix C. Furthermore, we can use some of the principles

developed earlier in the thesis to extrapolate data and simplify the test matrix.

IThere is active research in the area of measuring the total damping, but this has not yet been developed to the point of
giving accurate damping estimates for use in flutter clearance.
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7.1.1 Requirements for Flutter Clearance

In Chapter 2, it was shown that, for a given blade vibrational mode, four non-dimensional parameters span

the operating space of a machine.

The requirement for flutter clearance is that the machine must be stable for every combination of factors,

(Th, Ne, K*, g/p*), that it is designed to encounter. Testing every permutation of factors is performed

in a so-called "full factorial" test. Such a test was performed on an idealized, computational model in the

parameter study of Chapter 4, in which the increment of each factor was small enough to resolve the details.

Although this would satisfy the requirement, it is neither practical nor essential for flutter clearance.

Using the concept that flutter stability increases with increases in K* and g/p*, the test matrix can be

simplified. This trend with K* and g/p* was discussed in Chapter 3 in general terms which are based upon

established trends, and was further evident in the data analysis as well.

We, therefore, use the stabilizing trend of increasing K* and g/p*, similarly to the data analysis technique

depicted in Figure 5-8. In this case, however, we focus upon sampling data on the (K*, g/p*) map in the

most effective locations for flutter clearance. At a given (K*, g/p*) location, a stable measurement also

holds for higher values of (K*, g/p*), and an unstable measurement is relevant for lower values of (K*,

g/p*). This principle is outlined in Figure 7-1.

Using this trend, we can modify the above stability requirement in the following manner: for every

performance point of operation, (mh, N), the machine is stable at (min K*, min(g/p*)), where min denotes

the minimum value encountered for the given (ft, Ne). The behavior at this minimum (K*, g/p*) pair must

estimated by some reliable means, the most straightforward of which is to take experimental measurements

there.

7.1.2 Mission Requirements

Two parts of the requirement for flutter stability depend, not upon the physical characteristics of the

machine, but rather upon how the machine is to be used. First, one must specify what is "every performance

point of operation." Second, one must specify what the values of K* and g/p* are to be encountered. These

specifications come from an analysis of the mission requirements.
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In the case of a front stage compressor or fan, and for constant structural parmeters, the flight envelope

(in terms of expected altitude and flight Mach number) can determine the range of K* and g/p* seen. The

increases in static pressure and temperature, from upstream stages can also influence these parameters. An

example of the expected range on the (K*,g/p*) map is given in Figure 3-14.

The range of operation on the performance map is specified by a desired operating line, which gives the

pressure ratio, 7r, requirements for every corrected speed, N,. It could also be specified, if desired, in terms

of the corrected mass flow, rhez instead of the pressure ratio. On top of the nominal operation, one specifies

"margins" for performance. This can be done in terms a margin (e.g. 5%) in pressure ratio, -r, at each

corrected speed. To protect the operating line fully, one may also specify a margin at the maximum N, in

terms of N, itself. This is depicted in Figure 3-15.

In some cases, the mission requirements may not be available, or may be determined by the flutter

stability. The requirements and limitations which are considered in determining the flight envelope include

the intended use of the airplane, the available power, and airframe/engine instabilities. Such analyses

are discussed in McCormick (1995). Before testing, one should at least construct minimally sufficient

requirements, as well as optimal requirements, so that testing can be planned accordingly. The results of

the testing can then be used to decide if any modifications are needed in the design, or if the planned flight

envelope need be restricted, perhaps based on a cost-benefit analysis.

7.2 Examples

To illustrate the testing design concepts discussed in the previous section, we present two flutter clearance

examples. These are fictitous examples meant only to demonstrate the flutter clearance methodology, rather

than to simulate a specific application.

For simplicity, we make the following assumptions in the examples:

" The mechanical damping does not vary significantly during the operation of the machine.

" The relevant modeshape, frequency, and Southwell coefficient have been identified.

In an actual case, experimental testing can check all the modes simultaneously. Also, the properties
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of the mechanical damping may differ for different modes, and may be dependent upon other factors (e.g.

temperature and force of contact). If such variations are expected to be significant, one can account for this

by assuming that the damping does not significantly vary from that tested, but requiring flutter clearance

at an appropriately lower value of min g/p*.

We consider a machine with the same stability characteristics as that of the Volvo engine studied in

Chapters 5 and 6. Simulated experimental tests in the examples are taken from the Volvo data analysis,

in particular Figures 6-14 through 6-18. For a given corrected speed, Ne, we consult the appropriate figure

and use the critical pressure ratio based on the K and (g/p*)ri point.

Two cases are considered. In the first case, it is assumed that estimates are available (perhaps from a

previous development program) regarding the K* and g/p* sensitivity of the flutter boundary. This case

is that of a subsonic transport in which the sea level static (SLS) condition is close to the worst case.

Sensitivities are used to extend SLS testing to the worst case (at a little lower Kg and g/p* than for SLS),

and thus clear the engine using only SLS tests. In the second case, it is assumed that no information is

known about the machine beforehand. The objective in the second case is to clear the operating line for

high speed flight.

7.2.1 Case 1: Low Speed Aircraft

In this case, we consider a fan for use in a powerplant for a subsonic transport. We assume that the SLS

condition corresponds to a value of KK = 0.75. Thus, the point at (Ks, (g/p*)rel) = (0.75,1) is relevant to

this condition. The flutter boundary under these conditions is shown as a solid curve on the performance

map of Figure 7-2. On this map, the desired operating line is also shown as a solid line.

We also require a range of flight conditions for this subsonic aircraft. We consider a typical case, in

which the lowest Kg and lowest g/p* occur at sea level at a Mach number of M = 0.6, as in the dashed

curve of Figure 3-12. The corresponding minimum values are Kg = 0.735 and g/p* = 0.90.

Since there is only a small percentage change in this minimum condition from the sea level static

condition, we use the sensitivities estimated in Chapter 6 to estimate the position of the flutter boundary

at the worst case location. This is done at each corrected speed on the map. For example, at 74% corrected
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speed, the difference between sea level static and sea level at M = 0.6 is estimated to lead to an change

(decrease) in the critical pressure ratio of A7rer = -0.027, which is computed in the following manner

A7rcr = (9r) I(Ko)SLS - (K)minI + (o rr I(9/p*)SLS - (9/p*)minl

The estimated boundary is shown as a dashed line on Figure 7-2 next to the solid SLS boundary. In this

case, there is a flutter margin between the worst-case boundary and the desired operating line, indicating

that the engine would be flutter-free. The necessary margin is based at least partially upon the expected

transient behavior of the engine; however, for the purposes of these examples, we neglect such concerns and

consider an engine cleared if the flutter boundary does not penetrate the specified operating line.

7.2.2 Case 2: High Speed Aircraft

In the second example, we consider a front stage fan of a high-speed (i.e. supersonic) aircraft. For this case,

we assume that the structural design is such that the value of KK = 0.8 at sea level static (SLS) conditions,

and that the mechanical damping is taken to be the same as in the Volvo data (which leads to the same

values of (g/p*)rel). Furthermore, we assume that SLS testing does not exhibit flutter.

The minimal region on the (K*,g/p*) map depends upon the mission requirments. Typically, the

mission requirements of a high-speed aircraft are quite sophisticated, and are based upon accomplishing

specific scenarios. Such an analysis is well beyond the scope of this current example, and we limit the current

discussion to the simplified requirements depicted in Figure 7-3a. Minimum required Mach numbers are

specified for low altitude (take-off and climb), and for higher altitudes (cruise and supersonic dash). There

are two critical points for the purposes of flutter, labeled 2' and 2", respectively. The corresponding region

on the (K*,g/p*) map is shown in Figure 7-3b.

Since the clearance region specified in Figure 7-3b is relatively large, estimating flutter boundary using

sensitivities may not be accurate. The analysis of Chapter 6 shows that the sensitivities themselves change

with the changes in K* and g/p*. In any case, we presume that in this case such information is unavailable.

It is proposed to test the engine successively at the numbered points: 1, 2, and 3 on the (Ks, g/p*)
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map, depicted on Figure 7-3b. At each point, the engine should be run along the operating line to check

for possible intersections with the flutter boundary. This type of testing requires the capability to adjust

the values of KO and g/p*, the most straightforward method of this being to set the temperature and the

pressure of the inlet flow to achieve the desired Ki and g/p*.

Using the principle shown in Figure 7-1, it can be shown that clearing the engine at point 2 is sufficient to

clear the entire minimal region. However, if a flutter event is found at point 2, then the minimal region may

be cleared by clearing points 2' and 2". Using these three points, further measurements (off the operating

line) can provide sensitivities, relevant to the critical region.

If points 1 and 2 are both clear, then it is useful to determine the flutter limits of the engine. This would

entail testing towards point 3, which would clear a region beyond the minimal requirement. This may

be useful in higher-performance extentions of the current application, or for use of the engine in different

aircraft.

In the case of our example with the Volvo data, the relationship between the flutter boundary and the

operating line is depicted in Figure 7-4. Although the information at point 1 (the SLS point) lies beyond

the measurements, we presume that it does not exhibit flutter. However, point 2 would show a flutter event

on the operating line. Further testing at points 2' and 2", however, would reveal that the operating line

is clear throughout the minimally acceptable range of flight conditions, but that extensions beyond this

minimally acceptable range (i.e. to point 2) can lead to a flutter event.

7.3 Summary

The application of flutter clearance testing is discussed in the context of design of experiments. The trend

that K* and g/p* are stabilizing can be used to reduce the testing from all the operating points to 'critical'

points.

Two hypothetical examples of clearance testing were discussed. For small changes in K* and g/p*, as

might be experienced over the flight regime of a subsonic transport, the use of estimated sensitivities is

appropriate as in the first example. For larger changes in K* and g/p*, relevant to high-speed aircraft,

direct testing is preferable.
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Figure 7-4: Flutter boundaries for various points in Case 2. The tests are performed by running the engine
up and down an operating line at four points: first, at sea level static (point 1), then at point 2, where a
flutter occurs on the operating line, then at points 2' and 2", which establish that the minimally acceptable
envelope is clear, but is close to a flutter event at point 2.
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Chapter 8

Conclusions

8.1 Thesis Summary

This thesis addresses the influence of system parameters upon aeroengine blade flutter stability, and the

problem of ensuring flutter-free operation of the blades throughout the range of operation.

The study is composed of three parts: a theoretical development of parameters, a computational pa-

rameter study, and the analysis of full-scale test data. The results of these studies are then applied to the

problem of flutter clearance testing.

The theoretical development is addressed in Chapters 2 and 3. A set of parameters is constructed which

is necessary and sufficient for flutter stability assessment for a given design. These parameters are derived

based upon the assumption of linear structural dynamics and a fluid operator based upon the full Navier-

Stokes equations, with boundary conditions appropriate for the general case of turbomachinery blading,

some discussion of which is contained in Appendix A. Of the relevant system parameters, some of which

can be eliminated based upon approximations which are relevant in the case of aeroengines (e.g. high

Reynolds number). The condition for linear stability is developed, and it is shown that four parameters are

sufficient for the description of flutter stability. This requires the introduction of a new parameter, g/p*,

the reduced damping, which combines the blade mechanical damping, g, and the fluid inertia parameter,

p*, (i.e. ratio of effective fluid mass to structural mode mass) into a single parameter. Although g, and p*
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are individually small, their ratio, g/p*, is order 1 in the typical case of inserted blades, which indicates

that the effects of mechanical damping upon flutter stability can be significant.

Among the possibilities of four parameters to represent the system, there are many choices. We base

our choice on the following requirements: (a) two parameters can be used to specify the position on the

performance map in terms of corrected mass flow, fne, and corrected speed, Nc, (b) for constant structural

properties, the other two parameters specify the flight condition in terms of the inlet thermodynamic state,

and (c) that the unsteady aerodynamics problem is dependent upon only three of the four parameters. It

is shown in Appendix B that a particular four parameter set, (Th, Nc, K*, g/p*), uniquely satisfies these

requirements. This representation introduces another new parameter, the compressible reduced frequency,

K* = M - k, where M is the blade relative Mach number, and k is the classical reduced frequency. A

straightforward generalization can be made to the case of centrifugal stiffening, in which the structural

parameters vary during operation, by replacing K* with a centrifugally-corrected form, K&. These new

parameters can be thought of as decoupling the performance effects from the flight condition effects in

terms of their influence upon flutter stability. This is discussed in more detail in Chapter 3.

The properties of the new parameters, g/p*, and K*, are discussed in the context of flutter stability.

Increasing g/p* has a stabilizing effect on flutter, a trend which is based in the analytical form of the

stability criterion. The trend of increasing K* is also stabilizing, and can be understood in terms of the

effects of K* on the fluid force phase. Although this trend has been shown to hold in a variety of idealized

cases, the support for it is ultimately empirical. We take both of these trends as general principles, upon

which we build further results. A representation of flutter boundaries using the full four-parameter set is

established, using a technique which extends the viewpoint of the corrected performance map for aeroelastic

behavior.

To quantitatively explore the parameter space, a computational study was performed using a two-

dimensional, linearized unsteady, potential flow model of a vibrating rotor, as described in Chapter 4.

Using the critical reduced damping, (9/p*)cr, as a stability metric in unsteady flow computations appears

to have some advantages over the work-per-cycle as normally defined, since its magnitude can be directly

interpreted.
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The computational results exhibited instability in both bending and torsion. The bending instability only

occured at extremely low reduced frequency, about an order of magnitude less than the reduced frequency of

torsion. In both cases, the predominant instability mechanism was local in the sense that the unsteady forces

upon a given blade were determined by that blade and its neighbors. Non-local effects could be attributed

the effects of "acoustic resonance," whose physical viability is controversial (experimental studies have not

found acoustic resonances as a flutter mechanism). A technique of separating the results associated with

acoustic resonance and those associated with the local effects was formulated, and the local effects were

studied in detail for the case of torsion.

The effect of increasing K* was stabilizing in the case of bending and for the main instability of torsion.

Further study of the main instability in torsion, showed that the combined effects of reduced frequency and

Mach number upon the phase of fluid forces could be summarized by a single parameter, k/(1 - M2), to a

good approximation. This trend holds for a range of inlet flow angles, and for several cascade geometries.

This collapse has not been recognized previously in the literature, and is not obviously related to previous

analyses of the unsteady, compressible, cascade flow problem. However, it appears that the full unsteady

aerodynamic operator (magnitude and phase) must be described in terms of three similarity parameters

(e.g. Ne, rh, and K*).

Fully-scaled experimental test data provides information directly applicable to aeroengine components.

In Chapters 5 and 6, the technique of analysis and the results from such data, which spans the full four

dimensional parameter space, is presented. The data indicate whether or not the machine was in flutter,

at various operating conditions. A novel algorithmic procedure utilizing Support Vector Machines (SVM)

was developed for estimating the stability boundaries, as described in Appendix C. Further, to alleviate

the problem of data sparcity, the trend that increasing g/p* and K is stabilizing was used to develop a

rule for generating subsets of data relevant to a particular (Ks, g/p*). This rule, along with the SVM

boundary-fitting procedure, makes it possible to find stability boundaries directly from data, rather than

visually estimating the location of the boundary. In Appendix D, the stability boundary is plotted on the

performance map, with error estimates as well as the relevant measured data, for various cases of (Ks,

g/p*).
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The results of the experimental data analysis quantify the trends with KK and g/p* upon flutter stability,

and discuss the effect of inlet pressure, for constant structural properties. It was shown that inlet pressure

effects alone were not sufficient to account for the changes in flutter stability, since at a constant inlet

pressure, the effects of temperature upon flutter stability were present. This underscores the necessity of

considering all four non-dimensional parameters.

Trends were assessed for constant KG, at two locations, and at constant g/p*. These were framed in

terms of intersections between the flutter boundary on the performance map, for a particular (KO , 9/p*) and

lines of constant corrected speed, Nc. For each corrected speed, the sensitivity of the flutter boundary, with

respect to K* and g/p*, was estimated in terms of the critical pressure ratio, lrcr, at that corrected speed,

and in terms of the critical corrected mass flow, (Thc)cr, at that corrected speed. Besides the sensitivity

analysis, flutter boundaries were found on the (Ks, g/p*) map, for a specific (Ne, 7rcr) pair. This view shows

that the sensitivities with respect to K and g/p* can vary, depending upon the value of Nc, Kg, and g/p*.

Chapter 7 discusses the application of these concepts to the problem of flutter clearance testing. The

basic requirement that the machine must be confirmed to be stable at every point of operation, can be

simplified by utilizing the trend that increasing K* and g/p* is stabilizing. This trend is founded in the

physical arguments and the results of previous investigators, as discussed in Chapter 3, as well as the

computational and experimental results in Chapters 4 and 6. It can be used to identify critical points in the

required operating regime for clearance testing. Two examples are shown, based upon data from the Volvo

rig discussed in Chapters 5 and 6. These indicate that the use of sensitvities can extend the flutter boundary

for relatively small changes in inlet conditions as might be experienced in a subsonic transport applications.

However, since the sensitivities vary with flight condition, it may be necessary to test applications with a

wide range of flight conditions, such as a supersonic aircraft.

8.2 Conclusions

* For a given geometry, four parameters are necessary and sufficient to assess flutter stability, under

broad, specified conditions. The unsteady aerodynamics can be framed in terms of three parame-

ters. In particular, the parameter set, (rh, Ne, Kg, g/p*), is uniquely well-suited to flutter operability
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assessment in the general case.

" A new parameter, the reduced damping, g/p*, collapses the combined effects of mechanical damp-

ing, modal mass, and air density. In the typical case of inserted blades, it is order 1 and impacts

flutter stability. Further, the critical reduced damping, (g/p*)cr, is a useful metric for aeroelastic

computations.

" The effect of increasing g/p* for a constant ihc, N, and Kg is stabilizing, which is a consequence of

the criterion for flutter stability. Further, the effect of increasing Kg at constant rh,, N,, and g/p*

is also stabilizing. This ultimately has an empirical basis, but unifies separately observed trends in

the literature of the stabilizing effect of increasing frequency and the destabilizing effect of increasing

inlet temperature.

" A data analysis procedure was developed which makes it possible to estimate flutter boundaries in

the full 4D space using steady-state rig data. This procedure incorporates a novel, generic boundary-

fitting procedure for binary data, based upon a classification algorithm. The procedure was applied

to the analysis of data from full-scale engine tests.

" The full-scale test data indicated that the inlet condition effects upon flutter stability can not be solely

attributed to the effects of inlet pressure. In general, a single parameter can not capture the effects

of flight condition upon flutter stability.

* A rational procedure for flutter testing has been developed. Since increasing Kg and g/p* has a

stabilizing effect, clearance at minimum values of Kg and g/p* is sufficient.

8.3 Future Work

The work described in this thesis may be further developed in a number of different directions.

* Although the focus in the current work has been upon flutter stability, the non-dimensional parameters

developed are generally applicable to general aeroelastic properties of the blades. In particular, the

effects of flight condition upon forced vibration could be expressed in the same terms, using the
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parameter set (rhe, Nc, KG, g/p*). This parameter set could be coupled with the parameters which

govern the forcing to construct a unified view parameter dependence of forced vibrations.

* The clearance methodology has not been used in planning of engine testing ' priori. It would be useful

to apply the metholology under such circumstances to develop a practical testing protocol, based upon

this methodology.

* The current work addresses the problem of characterizing the operational parameters for a given

engine design. A useful extension of this work for use in preliminary design would be to account for at

least some of the changes between different designs. In particular, the effects of the blade structural

modeshape are known to have significant effects.

" The investigation of stall flutter using the 2D, invisicid, compressible model revealed a highly sug-

gestive relationship between the fluid force phase and the quantity k/(1 - M2 ) for a variety of Mach

numbers, reduced frequencies, which held for several different cascade geometries, and flow angles.

This gives a clue as to the proper combination of acoustic and inertial time scales for the flutter

mechanism. This could be the starting point for work to elucidate, on a physical basis, the flutter

mechanism in this idealized case of compressible, potential flow. Ultimately, such work could recast

the vibration-induced fluid forces, I (M, a, K*), into a more specific form motivated by the flutter

mechanism.
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Appendix A

Derivation of the Non-dimensional

Fluid Operator

In this appendix, the conditions associated with the form for the vibration-induced fluid forces, (2.3),

Fj= CPU' 1j, .,nM,a, k*)

are delineated. For the general problem, one needs to include the compressible Navier-Stokes equations and

boundary conditions from all the blades. The solution to these equations is the fluid pressure field, p. The

generalized force for blade j is a weighted integral over the unsteady pressure field, written as

= - Iblade
p (# -dA) (A.1)

where 0 is the modeshape, and dA is the (outward) directed differential area.

A.1 Equations for the pressure field

The non-dimensional pressure, p', is defined in terms of the inlet pressure, po. Thus,
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Table A.1: List of fundam

heats.

ental fluid dynamic scales. R is the gas constant and 7 is the ratio of specific

p = -ypop' = po(yRTo)p' (A.2)

The fundamental flow scales are listed in Table A.1. Using these same scalings, the mass, momentum, and

energy balances for a compressible, viscous fluid in the rotating coordinate frame of the blades become

Dp'(A)
D+ p'V' U' = 0 (A.3)

pDU' = -V'P'I + MV'' - 2p'D,2 r'i- p''(2 x U'), (A.4)
Dt' Re

DT' = M Vt - (k'V'T') - -(I' : V'U') - p'V' . U' (A.5)
(7 - 1) Dt' = --1 Pr Re Re

where primed quantities are non-dimensional, with definitions listed in Table A.1. These field equations

bring several non-dimensional parameters into the problem including the characteristic blade relative Mach

number, M, the characteristic Reynolds number, Re, the rotation (Rossby) number, I', and the Prandtl

number. Not all of these turn out to be necessary. Before discussing simplifications based on the flow regime

of interest, we first introduce the extra parameters from the boundaries.
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Quantity expression units

blade chord c length

inlet density PO mass/(length)3

inlet temperature TO temperature

inlet sonic speed V'yRTo length / time



Quantity value description

p' p/7 RpoTo non-dimensional pressure

p' P/Po non-dimensional density

x' x/c non-dimensional position

U' U//7RTO non-dimensional velocity

t' tvj7RTO/c non-dimensional time

T' T/To non-dimensional Temperature

V' cV non-dimensional 'del' operator

Ir' r/yRpoTo non-dimensional shear stress

k' k/ko non-dimensional heat conductivity coefficient

Table A.2: List of non-dimensional flow variables. These are defined in terms of the scales in Table A.1. ko

is the heat conductivity at the inlet.
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A.1.1 Boundary Conditions

The boundaries of the flow problem can be categorized into two parts: (1) the upstream, and downstream

fluid boundaries, and (2) the rigid (hub and casing) and flexible (blades) solid boundaries. Therefore, we

organize the domain boundary as follows:

OD = aDu U ODd U QDr U 0Db1 U ... U oDb. (A.6)

where the terms on the right hand side denote the upstream (OD), downstream (ODd), rigid (ODr), and

the blade boundaries (of the form ODb,). For the present purposes, only the parameter dependencies of the

boundary conditions are of interest. In particular, we seek to find what other parameters (besides those in

the previous description) are necessary in the flow problem description.

Since there are 5 equations in the field (conservation of mass, three components of momentum equation,

and the energy equation), it is clear that 5 variables must somehow be accounted on each boundary.

Although the number of explicit conditions is at most 5, for the purposes of parameter dependencies, only

those explicit conditions which require outside information are relevant. A general discussion concerning

boundary conditions in this problem can be found in Verdon (1993).

Upstream and Downstream Boundaries

We specify conditions at the inlet: in particular, the steady-state values of U', T', and p'. By definition,

T' = p' = 1 at the inlet, which does not require outside parameters. Furthermore, the U' distribution is

assumed to be specified by two parameters: (a) a characteristic Mach number, M, and (b) a characteristic

flow angle, a. The assumption that these two quantities specify the inlet velocity is equivalent to specifying

that the inlet swirl distribution is fixed by operating point and is axi-symmetric.

Using information only at the inlet raises the issue of well-posedness of the boundary conditions. The

downstream boundary can not be deduced from the inlet conditions (and the field equations) in the case

of "unique incidence." In our case of stall flutter, the compressor operating point typically lies outside

the unique incidence region, in which lines of corrected speed are vertical on the performance map (see

Figure A-1). Therefore, specifying conditions (M, a) at the inlet is sufficient to specify the operating point
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potential stall flutter

unique
incidence

mass flow, mn

Figure A-1: Typical compressor performance at constant corrected speed, N.

for conditions relevant to stall flutter.

So far, we have described the boundary conditions (on aD, and 8Dd) for steady flow. With vibrating

blades, however, it is important to make sure the boundary does not artificially reflect unsteady waves.

Such non-reflective boundary conditions are relatively sophisticated, but do not require outside physical

parameters. See Giles (1988) for further discussion on non-reflective conditions.

Solid boundaries

The conditions for the rigid surfaces (9D,) can be specified by the no-slip condition for the three velocities,

and by an adiabatic condition for the temperature, which is reasonable for fans and compressors. The hub

velocity is zero in the rotating frame, and the casing non-dimensional velocity depends upon Q', which was

identified in the discussion of the momentum equation.

At flexible boundaries, 8Db3 , the no-slip condition also holds. The blade vibration is manifested in both

the location of the boundary as well as the value of the velocity at that location. If we label B (x') as the

unperturbed location and qjoj(x')eiwt as the pertubation (where #5 is the modeshape and r7 is the modal

coordinate), we can write the boundary condition for blade j as

U'(x',t),,EagDb = ( K(x')e t ). (A.7)

Here, we assume that the frequency and modeshape are effectively the same for each blade, but that they
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may vibrate out of phase, according to the complex argument of 9. Since the boundary ODb3 itself is

moving, it is more explicit to write

U'(Bj (x') + qjkO(x')ew, t') = OW4(x') 19t . (A.8)

Note that there are two time variables in (A.8), the dimensional time, t, and the dimensionless time, t'

(from Table A.1). We can relate these timescales using the parameter, K*

k c Re(w) - t'Re(w) (A.9)
VyRTo t

Here the ~ indicates that we are using the "actual" frequency, Re(w), rather than the natural frequency,

wo.

The relevant flow at neutral stability has Im(w) = 0, or zero growth/decay. In this instance, the condition

for blade j, (A.8), becomes

U'(B (x') + qj 4 (x')ei2k'', t') = iO q(x')*eikit'. (A.10)

From the standpoint of the parameter dependence, the details of equation (A.10) are not relevant, other

than the fact that it introduces non-dimensional parameters not included in the field equations. Since there

are boundaries for each blade, the complex blade amplitudes, i5, for j = 1 ... n, are necessary (where n is

the number of blades), as is the compressible reduced frequency K*, as defined in equation (A.9).

A.1.2 Summary of Dependence

The non-dimensional pressure field, p', is completely specified by equations (A.3), (A.4), (A.5), and the

above mentioned boundary conditions, including (A.10). This introduces a number of non-dimensional

parameters, and entails several assumptions as well.

We outline the assumptions up to this point, and apply some conditions to reduce the number of non-

dimensional parameters. The foregoing assumptions are:
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" (a) fixed, nominal flowpath geometry
(b) single blade mode, #, with modal parameters (MO, g, w)
(c) adiabatic blades

" Inlet flow boundary conditions are sufficient to specify the steady flow problem.

" Inlet flow is axisymmetric and has a radial swirl distribution which is specified by Mach number, M,
and flow angle, a.

The first condition is relevant to the solid boundary conditions, including (A.10), and in relating the

pressure field with the generalized fluid forces, (A.1). The second and third conditions are relevant to the

upstream and downstream boundary conditions. The field equations used are the compressible Navier-

Stokes equations in a rotating frame.

At this point there are several non-dimensional variables in the problem.

Re, M, W', Pr, a, K*, 1, 7q

However, three of these can be eliminated from consideration due to the flow regime and the above

assumptions. The flow regime in aeroengines is typically very high Reynolds number, 0(106), and has

a Prandtl number, Pr s 1. Adding this as an assumption eliminates the effects of Reynolds number

and Prandtl number. The viscous and heat conduction effects that they are typically associated with are

important; however, the changes in values of Re and Pr keep the flow in the same regime with respect to

these effects and does not significantly change the results. For example, Isomura (1997), found that changes

in Reynolds number by a factor of 2 did not significantly affect his viscous flow computations of aeroengine

flutter (which had Re = 106).

Second, the rotation number, f', can be defined in terms of the corrected speed, Nc, as follows:

27rcNe

where Tr is a (constant) reference temperature. Since, we are considering a fixed, nominal flowpath geometry,

c is constant, and Nc can be expressed in terms of M and a, which are already included as non-dimensional

parameters. Therefore, we can consider 1' to be a dependent parameter.
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Form for the generalized fluid force

Thus, the pressure operator becomes

p'I = P'( i,.. N, M, a, k*). (A.11)

The generalized fluid force, F, can then be expressed

Fj = pU21j (ql., qn, M, a, k*) (A.12)

as required. The only additional conditions beyond those identified above are those of (a) high Reynolds

number, Re, and (b) Prandtl number near unity, both of which are present for aircraft engine applications.

Periodic Side Boundaries

With the additional condition of linearized, unsteady dynamics it has been shown by Lane (1954), that one

does not actually need all the complex amplitudes for all the blades, %y for j = 1 ... n. Rather, it suffices to

assume that the interblade phase, the phase difference between the complex amplitudes of adjacent blades,

is fixed. The inter-blade phase, a, can take on n possible values: a3 = (27rj/n). Thus, we can write the

force coefficient as

(i ... , ?nMAk*) = ly (!ie",ie22, .. ., 1, M, a, k*) = lj (qi, m, a, k*,a). (A.13)

Since, we furthermore, have assumed that 13 is linear with q, we can further simplify this as follows:

lj(qi, M, a, k*, a) = l(M, a, k*, a) % = l,(M, a, k*)%g (A.14)

where 1, is a notation used to signify the a dependence upon 1. Ultimately, for stability purposes, all

possible motions are considered (either in terms of individual blades, %yj, or in terms of interblade phase,

a), and only the worst case is selected. However, it is helpful to consider the parameter reduction using

the inter-blade phase angle in the expression for the fluid forces, since this is the form used in nearly all

186



computational solutions.

A.2 Alternate, equivalent formulation

Consider the following variation on the definition of the non-dimensional pressure:

p'2 =M
2p p

Using p' instead of p', the fluid forces become

j=po U211 (j7-..1 g, M, ci, K*)

where 1' is defined as

nM -
3i =M2 (A.15)

Furthermore we can make the substitution k = K*/M for K* in the parameter dependence of 1,, since

M is available as a independent parameter. Thus, we can write

(A.16)

as an equivalent formulation (in the sense of parametric dependence).
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Appendix B

Uniqueness of operability parameters

The purpose of this appendix is to demonstrate that under a particular set of operability requirements, one

set of variables uniquely specifies the 4-D parameter space, in some sense. In particular, this motivates the

use of the compressible reduced frequency, K*, instead of the classical reduced frequency, k, for operability

purposes. We also discuss a generalization to the case of centrifugal stiffening, in which it is helpful to use

a centrifugally-corrected frequency parameter, Kg.

The parameter space is constructed in Chapter 2, and may be spanned by the four variables: (M, a,

k, g/p*), where M is the blade relative mach number, a is the inlet flow angle, and g/p* is the reduced

damping. Typically, the choice of variables to span this non-dimensional space from deduction from the

basic physical scales of the problem. However, in the types of stall flutter which are of interest, there are

several competing physical effects, and it is not obvious which choice of scales is most appropriate. We

approach this question from the standpoint of selecting the parameters most useful for assessing operability

limits. The requirements that we impose are, for a fixed geometry (i.e. chord),

1. The four parameters must span the whole parameter space.

2. Two of the parameters specify the corrected performance map.

3. The other two parameters, for constant structural properties, specify the flight condition in terms of
inlet temperature and density.

4. The vibration induced fluid force coefficent, 1, is independent of (at least) one of the parameters.
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The first requirement is obvious.

The second requirement is in keeping with current practice in assessing steady-state aerodynamic effects

for such devices, since the corrected performance map alone is sufficient for these purposes. The purpose of

these corrected variables (corrected mass flow, rhe, and corrected speed, N,) is to "correct" for the effects

of changing inlet stagnation pressure, which scales out of the purely aerodynamic problem.

The third requirement places, for constant structural properties, the inlet conditions in terms of the

other two variables in the parameter space. These other parameters can be thought of as the factors which

are "corrected out" of the corrected performance parameters. This will be made mathematically precise

later in this appendix.

The fourth requirement serves to "simplify" the problem. Since the unsteady aerodynamics is the most

complicated part of the problem, structuring the parameters such they do not depend upon it makes things

as "simple" as possible. It turns out that this can only be done with the reduced damping, g/p*.

B.1 Primitive Variables

The non-dimensional parameter space must be defined, ultimately, in terms of primitive dimensional vari-

ables. The primitive variables in this problem are as follows, grouped by category:

flight condition To, po

flow vars. U, a

structural vars. wo, m, g

geometry c

here To and po are inlet temperature and density, respectively, U is the inlet relative velocity, and a is the

characteristic flow angle, and wo, m and g are the modal frequency, mass, and damping, respectively. In

what follows, we consider a fixed geometry, such that c is fixed.
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B.2 Derivation of the Parameter Set

By the second requirement, two of the variables in the parameter space must span the corrected performance

map. This is accomplished in terms of the primitive variables by the corrected speed, Nc, and the corrected

mass flow, rhc. Although the correced speed and corrected mass flow are technically dimensional parameters,

they are composed of a non-dimensional parameter times a dimensional constant. Therefore, we treat them

as non-dimensional parameters. From their definitions, it can be shown that for constant geometry as

specified, the pair, (ih, N) is equivalent to the Mach number and flow angle (M, a) (see Kerrebrock,

1992).

The comment in Appendix A concerning the case of "unique incidence" is relevant here. In this case, the

Mach number and flow angle are dependent. The remedy is to use the pressure ratio, 7r, as a non-dimensional

parameter, replacing either the corrected mass, or the corrected speed in the final set of parameters (which

are framed in terms of the above parameters) with the pressure ratio. Such a remedy does not alter any of

the conditions above. Strictly speaking, this can be thought of as "non-unique" since we can choose whether

to use the pressure ratio or to use the corrected speed, for example. In practice, however, the performance

*map is well understood in turbomachinery aerodynamics, and it is reasonable to consider the parameter

space "unique" even in the face of this ambiguity.

Theorem:
Given the above definitions of primitive variables (for a fixed chord), and a parameter set, (hc, Nc, x, y),
which spans the parameter space of (M, a, k, g/p*). The requirements

" For const. structural vars., flight condition is a smooth, one-to-one function of x and y

" Vibration induced force coef., I (rh, Ne, x) is independent of y.

imply that,

x = fn (K*), and,
y = fn (g/p*)

where fn means "a smooth, one-to-one function of" (i.e. a diffeomorphism).

Proof For the first condition to hold, we must be able to express the temperature and density in terms of

unknown, smooth, monotone, functions fi and f2 as follows:
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To = fi(xy; wom,g, c,7R), and, (B.1)

po = f2(x,y;wom,g,c,yR). (B.2)

In this case, the flight condition in terms of the thermodynamic state (inlet temperature, To, and density,

po), can be expressed as a one-to-one function of the unknown parameters x and y for constant structural

properties (wo, m, and g).

By the implicit function theorem, we can use these combine these relations to solve for the functional

form of x and y. Since the functions fi and f2 are diffeomorphisms with respect to x and y, the result is

global. Thus,

X = f 3 (y, To,po,wo,mg,c,qyR), and, (B.3)

y = f 4 (x,To,po,wo,m,g,c,-yR). (B.4)

we can further substitute one relation in to another and solve to obtain

X = f 5 (To,po,wo,m,g,c,7R), and, (B.5)

y = f 6 (To,po, wo,m,g,c, fR), (B.6)

again invoking the implicit function theorem.

At this point, the principle of similarity is applied (Buckingham, 1914). There are five variables and two

constants (c and yR) in f5 and f6. These have the following units:

TO PO WO m g c -R

temp mass/length' 1/time mass - length length 2 / time2 / temp

Since there are seven variables and four fundamental units, we expect to see 3 non-dimensional II groups.
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Three groups which incorporate the parameters are (K*, g, p*) where

K* = 7 0  ,and,
,byRTo_Vpoc

=PC C
3

m

Thus, we can write

X = f 7 (K*, g, p*), and,

y = fs(K*, g, p*).

(B.7)

(B.8)

Now, the second condition that 1, is independent of y and is a function of rhc, Nc, and x. As discussed

previously, (rhe, Nc) is equivalent to (M, a). Thus, we can say that the second condition requires that there

exists a diffeomorphism between (M, a, k), and (M, a, x). This is true if we can say that there exists a

diffeomorphism h, such that

X = hi(M, a, k) (B.9)

However, we also have another expression (B.8) for x. We can make the following deductions:

----- 0
49g 09g
Ox Oh1----- 0
OP* Op*

we can therefore drop the g and p* dependences in (B.8) and write
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x = f9 (K*).

where f9 is a diffeomorphism.

Also, the independence of l, from y implies the following:

01, (M, a, k) l,a 8ky
ay aM Oy '0 aay ok oBy

Thus,

OM _a 0k
ay Ty y

(B.11)

This implies that y can not have any dependence upon K*, otherwise there would be a Mach number

or reduced frequency dependence. Hence,

y = fio(g, p*).

To complete the space, y must take the following form

y = fl(g/p*)-

where fl is a diffeomorphism. This proves the theorem.

B.3 Generalization to the Case of Centrifugal Stiffening

We can extend these results to the case in which the structural parameters vary during the operation of the

machine due to centrifugal stiffening. In this case, the vibrational frequency becomes

(B.12)= (West + SNraw) -
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The extension to the compressible reduced frequency, K*, is the centrifugally corrected form, Kj, as

defined in equations (5.5), and (5.6),

((K.*)2 +s Nc2)
Nf^-yt R Tr er f,

where

Wrestc

If we modify the third condition such that it holds not for constant structural parameters (i.e. s = 0

in equation B.12), but rather for a specified, non-zero s, then we can satisfy the conditions by using the

parameter set: (rc, Nc, KG, g/p*).

This result follows from the same proof as above, but by modifying the primitive variables used, replacing

w with wo. In this case, the parameter set which emerges includes K&.

Since, for s = 0, we retain the original case of constant structural parameters, the parameter set: (mho,

N, KG, g/p*), is, in fact, a generalization rather than a special case.
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Appendix C

Boundary fitting using Support

Vector Machines

This report describes a data-abstraction technique based upon an algorithm called a Support Vector Machine

(SVM), which has been previously applied to the problem of optimally classifying binary data (Vapnik, 1995,

Burges, 1998). Given two types of data points situated in a multi-dimensional space, the current procedure

can estimate the equations of curved surfaces (from a specified function class) which separate the two types of

data. This is somewhat different from the usual formulation of classification using Support Vector Machines

which does not explicitly construct the boundary surface. The extension to generating the equation of the

bounding surface is novel.

This general technique is applied to the problem of fitting flutter stability boundaries in parameter space.

We first describe the stability boundary fitting problem and how the current technique might be used in

this context. Then, the boundary fitting technique is derived, including the description of a Support Vector

Machine. Finally, some test cases are presented to show the performance of the procedure.

Although we discuss the SVM boundary-fitting technique in the context of fitting boundaries to stability

data, it should be clear that the technique is general, and may be applied towards boundary-fitting of any

sort of data.
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C.1 Description of Aeroelastic Stability Data

The experimental aeroelastic data taken from aeroengine tests typically lists the operating points (as well

as modeshape and frequency) of flutter points encountered when testing a given machine. From this raw

information, we would like to deduce the stability boundary. Before describing the boundary-fitting, we

first discuss the general context of linear stability.

With the assumption that the flutter instability obeys linear dynamics, the stability can be determined

by a scalar: the system damping, 6. For positive values of 6, the system is stable, while for negative values,

the system is unstable. The stability boundary is defined by the equation 6 = 0.

The overall damping is governed by the most unstable vibrational mode. Figure C.1 schematically

shows a stability curves in an operating space, V. The particular curve which corresponds to zero damping

separates the stable region from the unstable region.

The ith experimental data point can be represented as an

ordered pair, (vi, si), where vi is the location in the operating

space and si is 1 for stable points and -1 for unstable points.

In our case, the sampling of the data in the parameter space is

relatively sparse. From these sparse data, we need to estimate

the shape of the stability surface which is defined as the region

where 6(v) = 0 is satisfied.

Usually, the stability data lies close to the stability bound-

ary. Sometimes, however, points in "deep" flutter are tested.

Also, stable data can also help define the boundary, by apply-

ing the criterion that the boundary should not penetrate into

the region of stable points. Finding the boundary is similar to

Figure C-1: Picture of abstract operating
space, V, with lines of constant damping, 6.

the mathematical problem of "classification": based on training points associated with 2 groups, determine

the regions of parameter space associated with each group. This is distinct from the problem of regression

(fitting a curve through points). Recent techniques (Vapnik, 1995) of Support Vector Machines (SVM)

allow this classification to be done automatically, optimally, and for high dimensional data.
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Figure C-2: Schematic of boundary fitting procedure. The binary experimental data is run through a
classification algorithm which selects the best among a class of boundaries. For a specific damping model,
this specifies the free constants in the model.

A model for the parameter dependence upon damping (for a given mode) takes the form 6i (v; ci ... cL),

where v is the point in the operating space, and c1 ... ci are constants which specify the model. Such a

model can be helpful in data analysis by parameterizing the boundary in terms of the c's. The equation,

51(v; c1 ... cj) = 0,

defines a class of boundaries in V, parameterized by the c's. By restricting to this model for boundaries, one

can use SVM classification to select the most appropriate values for the c's on the basis of the data. This

begs the question: in what sense is this selection of the c's "most appropriate"? As will be further discussed,

the SVM picks the c's with a minimium in expected generalization error by maximizing the distance the

boundary lies from each group of points.

The overall process is shown schematically in Figure C-2.
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C.2 Data Classification using Support Vector Machines

Applications using support vector machines (SVM) for classification and regression are recent (for a review

see Burges(1998)). The general idea for SVM has been around longer than the applications and was

originated by V. Vapnik (Vapnik, 1979). It has a mathematical foundation in statistical learning theory,

and there is an extensive theory concerning bounds of the expected performance of proposed boundaries

(see Vapnik (1995)). Here, instead a formal treatment of the general principles, a specific implementation

of a Support Vector Machine is derived. More extensive explanations of SVM Classification may be found

in Burges (1998), Sch6lkopf et. al. (1999), and Vapnik (1998).

C.2.1 Optimal Separating Hyperplane

Support Vector Machines are founded upon the derivation of the optimal separating hyperplane between

two groups of points. A hyperplane in an n dimensional space is defined as an n - 1 dimensional linear

subspace. For example, in 2D this is a line, and in 3D this is a plane.

The hyperplane is optimal in the sense that it maximizes the distance to the closest point in each group

of data. Since the hyperplane is also supposed to separate the two groups, it is useful to use the directed

distance from the plane. Then, for a hyperplane which lies between the two groups, the distance to points

in one group is negative, while the distance to points in the other group is positive.

The pair (vi, si) describes a data point, where vi is the location parameter space, V, and si is -1 for

points in the first group and 1 for points in the second group. We label n as the number of data points and

m as the dimension of V. The hyperplane is defined by the equation

w -v + b= 0 (C.1)

where w E V is the directed normal of the hyperplane, and |bj/jjwjl is its distance from the origin. The

distance from the hyperplane to a given data point is given by

d - w -vi + b
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Since the hyperplane should separate the data, we would like d, to be positive for data points in one

group and negative for those in another group. Or,

dj e for si=1

d, < -c for si =-1

for some E > 0. If such an e exists, the data are considered linearly separable. The case of linearly

inseparable data will be treated later in this section. The above separability constraints do not uniquely

define the hyperplane, however. Without loss of generality, we consider only w's for which cliwli > 1. The

separability condition becomes

w-vi+b 1 for si = 1

w - vi + b < -1 for si = -1.

Which can be more compactly written

si (w -vi + b) > 1. (C.2)

Among all of the hyperplanes which satisfy the separating condition, (C.2), the optimal hyperplane is

that one which maximizes its minimum distance from the data. For each group, the minimum distance

satisfies

1 l 1 w.vi+bI > 1

The optimal separating hyperplane (i.e. the one that maximizes Idv4 to each group) is the one which

minimizes 1w11 2. Figure C-3 shows graphically the effect of selecting the hyperplane with the largest

minimum distance. The problem of finding the optimal hyperplane (w, b) for linearly separable data can

be framed in terms of minimizing
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Figure C-3: Distinction between separating hyperplanes which (a) do not maximize distance to groups of
data, represented by x and o symbols, and (b) which do. The boundary in (b) is expected to have better
generalization capabilities.

F(w) =I1wII2 = -(w-w) (C.3)
2 2

subject to the constraints

si (w -vi + b) >1,i = 1...n (C.4)

There are various algorithms available to solve this constrained optimization problem, known as a quadratic

programming (QP) problem, since the objective function, F, is quadratic in w, and the constraints are

linear.

The constraints on the solution, (C.4), require that the separating hyperplanes must be at least a unit

distance away from each of the data points. For the optimal solution, this constraint is pushed to an equality,

for at least one point in each group. We can thus consider the hyperplanes parallel to the optimal, which

are a unit distance on each side. These "touch" the data on either side, or in mathematical terms, they

"support" the data on either side of the optimal hyperplane. A diagram of these supporting hyperplanes

in relation to the optimal is shown in Figure C-4. The data which lie on the supporting hyperplanes are

called "support vectors." For the current application to boundary fitting, it is useful to note that the region

between the support vectors contains no data in the separable case (in the non-separable case, penalties
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Optimal Hyperplane

support vectors

Figure C-4: The optimal hyperplane, solid line, lies between the supporting hyperplanes of each group,
dashed lines. The points which lie on the supporting hyperplanes are called "support vectors." In the
context of boundary fitting, the range between the supporting hyperplanes can be interpreted as the range
of uncertainty in fitting the boundary.

widen this region). Thus, the supporting hyperplanes can be used as bounds of uncertainty for which the

optimal hyperplane represents the most probable estimate. Even in the case of non-separable data, which

is addressed in the next section, this scaling of a range a unit distance from the optimal hyperplane forms

a useful uncertainty estimate.

C.2.2 Extension to non-separable data

Unfortunately, the data may not be separable. To handle this case, Cortes and Vapnik (1995) introduced

the idea of slack variables,

which relax the constraints for certain points, but which contribute as a penalty to the objective function

in the optimization. In this case, the optimization problem, as defined by (C.3) and (C.4), becomes
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n

Q(w, e) = 2|wI2 + CZ(i (C.5)
i=1

subject to the constraints

si (w - vi +b) -(,i .. n
(C.6)

i > 0, i=1...n

Instead of solving this optimization problem directly, it turns to be more effective to solve its dual

problem, which can be shown to have the same solution. Briefly, the dual problem optimizes a different

function, whose solutions produces the Lagrange multipliers of the original (primal) problem. For more

details on duality theory in optimization, see Bertsekas (1995). The derivation of the corresponding dual

problem for the current case follows.

First, the QP problem of (C.5) and (C.6) should be written in terms of a Lagrangian, as follows:

L(w,b,e,a,b) = (ww) +C Z i- ai(s(w-vi+b) -I + ) -Z i/ (C.7)
i=1 i=1 i=1

where a = (a, ... an) and b = (#1... f3) are the non-negative Lagrange multipliers associated with the

constraints in (C.6). For such a quadratic programming problem, the following Kuhn-Tucker conditions

(see Bertsekas, 1995, for details) are necessary and sufficient to guarantee optimality:

T- = 0Ow,

aL = 0 (C.8)b

=L 0

s2 (w-vi+b) > 1-(.

~i 0 I(C.9)
ai 0

(C.10)
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aj(sj(w-vj+b)-1+ j) = 0
(C.11)

'34 = 0

where i = 1 ... n. This set of conditions can be categorized into four groups. The equations specified

in (C.8) state that the partial derivatives of the Lagrangian are zero for the variables to be optimized.

The conditions (C.9) are the original constraints from the QP problem. The positivity of the Lagrange

multipliers is reflected in (C.10). Finally, (C.11) are the complementarity conditions. In each equation of

(C.11) there are two factors, a Lagrange multiplier factor and a constraint factor. From (C.9) and (C.10)

one can observe that both factors are non-negative. Therefore, the linear complementarity conditions (C.11)

imply that either the constraint factor or the Lagrange multiplier is zero for each i.

By plugging in the Lagrangian, (C.7), the derivative conditions, (C.8) become

(W,)* = Zn aksk(vi)n, i=1..

E n aksk = 0 (C.12)

3i = C-aj, n

which holds at the optimal point, (w*, b*). To derive the dual problem, one plugs in the conditions for

the optimal solution (C.12) into the Lagrangian (C.7) to derive a new quadratic form, Qd, in terms of the

Lagrange multipliers, a and b. The dual problem is to maximize this quadratic form, Qd, with respect to

the conditions upon the Lagrange multipliers from (C.10) and (C.12).

Equations (C.12) and (C.7) can be combined to find Qd, as follows

1 n *_(n (n +n n n
Q=(a,b,e) = (w*-w*)+CE i-w* Eaisivi) +b Eaisi+ Ea- Eaii -E04

= i=1 i=1 i=1 i=1 i=1
n n n

S (w*w)+Zai+E(C-aij-i) i+bEZ ssi
i=1 i=1 i=1

1n n n
-EE(aiaisis(vi-vj))+Eaj

i=1 j=1 i=1

This Qd is considerably simpler than the Q of the primal problem, (C.5), because it depends only upon a
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and the slack variables, e, and b drop out. The dual optimization problem, then, is to maximize

Qd(a) = 2a THa+p-a (C.13)2

where H and p are defined by

Hij= sis3 (vi - v) (C.14)

p = (1, ...,11) (C.15)

subject to the constraints (combining (C.10) and (C.12)),

0 < a < C
(C.16)

aisi = 0.

The penalty condition from the slack variables comes in the dual formulation as a limitation on the size

of ai. Once an optimal a* for this quadratic program, the hyperplane can be found by

n

W = akSIVk (C.17)
k=1

Typically, many of the points in the data set have ai = 0. Those points for which a2 : 0 are called support

vectors. These are the data that contribute to the shape of the boundary. Using the complementarity

conditions on the support vectors, (C.11), b can be determined. Typically, one averages the results over the

correctly classified support vectors (i.e. 0 < ai < C).

mean
b ={jIo<a,<C (sj - w* - vj) (C.18)

C.2.3 Non-linear boundary characterization

For many types of input data, a linear boundary may not be sufficient. However, an extension to non-linear

classifiers is relatively straightforward in the dual formulation (C.13). The only place the input data appears
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Table C.1: Listing of some commonly used Kernels and the function classes to which they refer

is in a dot product in (C.15), a matrix associated with the quadratic term in Qd. It can be shown (as in

Vapnik, 1995) that non-linear function classes can be obtained by generalizing the dot product into a kernel

function. Then,

Hij = sisj K(vi, vj) (C.19)

where K is a positive definite kernel function. Table C.1 shows several common kernels and the classes of

functions to which they correspond. One should note that these function classes are valid for any dimension

of input data.

The boundary surface, which was defined as (C.1) in the linear case becomes

n

ajs1K(v1 , v) + b = 0.
i= 1

Since only the support vectors have ai : 0, this can also be written

E aj sjK(v3 , v) + b* = 0. (C.20)
jESV

where SV is the set of support vectors. Unfortunately, the form of this expression is highly dependant upon

the data. For example, the number of terms is equal to the number of support vectors. For classification

purposes, when one is only interested in numerically computing the LHS of (C.20) to classify locations of

V, this is sufficient. However, if the purpose is to characterize the boundary with an equation, then this

formulation (C.20) of the boundary is too cumbersome to be useful.

To proceed further, however, we need a model for the boundary, a specific equation whose solution set
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K(x, y) Class of Functions
x-y Linear

(1 + x _ y)f Polynomials of degree n
exp (-lix - y11 2) Gaussian Radial Basis Functions
exp (-lix - yi) Exponential Radial Basis Functions



designates the boundary. The SVM can be used to find the coefficients in this equation in an optimal

manner. Consider a boundary of the following form:

cifi(v) + c2f2(v) + c3f3 (v) + ... + cfg(v) = 0 (C.21)

where v is a point in V, fi are scalar fields (not necessarily linear) over v, and the ci's are linearly independent

coefficients to be determined by the optimization.

Although it represents a non-linear surface in the space of data, (C.21) represents a hyperplane in the

appropriate space obtained by placing the data, v through the non-linear map,

4 : V -+ (fi(v), f2(v),..., ft(v)) (C.22)

which allows equation (C.21) to be rewritten as

c - )(v) = 0 (C.23)

where c = (ci ... ci). This boundary is similar to equation (C.1), but it lacks an offset term b. The dual

optimization problem changes in this case, with the only difference that the constraints (C.16) are replaced

by

0 < ai < C. (C.24)

By setting fi to a constant value, the offset can be implicitly computed by the coefficient c1. The appropriate

kernel function to replace the dot product between vectors is

K(vi, v) = 4(vi) - 1(v ) (C.25)

which is used in computing H as in (C.19). The coefficients, ci, to (C.21) can be found from the solution

to the ak's as follows:
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ci = Sk ak fi(k) (C.26)
kESV

The coefficients ci can be numerically computed on the basis of the data, and using the model (C.21),

the boundary corresponding to a specific data set can be characterized by its ci's.

A useful further extension of this method lies in adjusting the value of the penalty weights associated

with boundary errors for different data points. This is very easy to implement by changing (C.24) to

0 < ai : Ci (C.27)

where Ci, the error penalty, is selected differently for each data point. This allows for a weighted classification

without any additional computational cost.

The final form of the procedure derived fits boundaries to a non-linear model for non-separable data,

and can accomodate independant weights for each data point. To summarize, one finds the coefficients to

a model of the type (C.21) from the data using (C.26) where the a's associated with each data point are

the solution to the quadratic program which minimizes

G(a) = 1aTHa - p - a (C.28)

where

Hij = sisZfk(i)fk(vj) (C.29)
k=1

p = (1,...,1) (C.30)

subject to (C.24). (n.b. the dual maximization problem is converted to a minimization problem here by

taking the negative of the objective function).
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C.3 Performance of Procedure on Test Cases

The boundary fitting procedure described in the previous section is constructed to minimize the expected

generalization error. That is, to minimize the probability that, following the fitting based upon a given

(training) set of data, the grouping information of a new data point is correctly predicted. Typically, one

might assess error in this context by measuring rates of erroneous classification. However, in the current

context of stall flutter stability, the data are scarce, so all of it is needed to construct the boundary. In this

section, we use some test examples to characterize the performance of the boundary fitting procedure. The

results from the test examples can provide some insight into the performance of the procedure.

In particular, we look at randomly sampled points in a segment of a parameter space, whose group

information has an underlying stability surface which is a conic section (a paraboloid in 3D). With the test

examples, the effects of data sparsity can be addressed directly.

The reason that random data are sampled is to avoid the effects of bias within the sampling domain. The

position of the envelope of data samping is also moved in the case of the 3D paraboloid. For the intended

application of stability boundaries, we expect the data to be nearer to the boundary than in the cases

studied here. However, the point here is to study the general performance of the method in a well-defined

test case, rather than to simulate the case of flutter stability data.

C.3.1 3D Paraboloid

The example boundary is a paraboloid in 3D. The data are sampled in a cylinder which cuts the paraboloid,

as schematically shown in Figure C-5. The paraboloid is special in the sense that it is oriented along the

z-axis. However, its location is arbitrary. This restricts the relevant equation for the 3D paraboloid from

16 terms (the general case), to only five terms as follows:

c 1 (x 2 + y 2 ) + C2X + C3y + C4Z + C5 = 0

where the ci are the unknown coefficients. Furthermore, we can normalize this equation so that the value of

c5 is constant. We pick a single paraboloid, and two different cylinders. The equation of the test paraboloid
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Figure C-5: Diagram of paraboloid oriented on z-axis. Randomly selected points from the dotted cylindrical

region are ascribed a group based on their location with respect to the paraboloid. The boundary fitting

technique aims to recover the paraboloid from the data

corresponds to the equation

z = 2+ (x2 +y 2 ) (C.31)

which describes a paraboloid with a minimum at (0,0,2) and which is concave upwards (towards +z). The

normalization of c5 was selected to be c5 = 2. Therefore, the equation corresponds to (c1 ,c2,c3,c4) = (1,

0, 0, -1). Two cylinders were selected: "Cylinder A" with a center at (x,y) = (0,0), a radius of 2, and a z

range from 0 to 8, and "Cylinder B" centered at (x,y) = (1,1), a radius of 1, and a z-range from 0 to 8.

Since, in this case, the model for the boundary is coincident with the actual equation for the boundary,

the error is measured in terms of how well the coefficients match. These results are shown in Table C.2.
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Cyl Npts Ntriais mean, c 1  std, c1  mean, c2  std, C2 mean, C3 std, c3  mean, c4 std, c4

Actual 1 0 0 -1
A 10 125 1.3422 5.2448 -0.3943 3.4025 0.1427 3.2067 -1.0623 3.5915
A 30 40 1.1865 0.5842 -0.0269 0.0274 0.7157 0.5096 -1.1084 0.2801
A 50 40 1.0134 0.3090 -0.0457 0.3708 -0.0318 0.3054 -1.0260 0.1252
A 100 40 1.0044 0.1214 0.0413 0.1669 -0.0087 0.1214 -1.0020 0.0478
B 10 125 0.8446 1.5035 0.0225 1.1579 0.2057 1.4796 -0.9877 1.0237
B 30 40 1.3596 1.1607 0.0829 1.0110 0.0395 0.6998 -1.0609 0.2224
B 50 40 0.9013 0.7923 0.0362 0.5898 0.1468 0.4636 -1.0053 0.1357
B 100 40 0.9379 0.3576 -0.0506 0.3158 -0.0813 0.3171 -1.0089 0.0584

Table C.2: Results from boundary fitting of paraboloid test case. The first line, labeled "actual" gives the
coefficients of the underlying paraboloid. Otherwise, the mean and standard deviation are given of each set
of trials.

For each entry, the mean and standard deviation of independent trials are listed.

C.3.2 2D Ellipse

We now address a 2D ellipse as a test case. This is also a conic section, just as the 3D paraboloid. A

schematic of the general situation is shown in Figure C-6.

In this case, the ellipse is selected such that its axes are oriented along the x and y axes, but its location

is arbitrary. The equation describing such a conic section is

cIx2 + C2Y2 +c 3 x + c4y+ c5 = 0.

depending upon the values of the c's, this equation may describe a parabola, a hyperbola or an ellipse. Note

that this equation has the same number of undetermined coefficients as the 3-D paraboloid. However, the

data are situated in only two dimensions (only x and y) rather than three. Again, the coefficient c5 is a free

parameter and can be normalized. We choose the following ellipse for the tests:

4x2 + y2 - 8x - 2y + 4 = 0 (C.32)

this corresponds to an ellipse centered at (1,1) with the major axis aligned with the y-axis. The major axis

length is 2 and the minor axis length is 1. Accordingly, the c5 parameter is normalized to be 4. Random
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Figure C-6: Schematic of an ellipse in the plane. Randomly selected points from the boxed region are used
as test data in characterizing SVM performance.
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Npts Ntriais mean, ci std, ci mean, c2  std, c2 mean, c3  std, c3  mean, c4  std, c4
Actual 4 1 -8 -2

10 125 6.6342 30.8235 2.1193 13.4280 -11.0047 38.6501 -4.4621 23.2327
30 40 4.1787 0.4874 0.8905 0.5654 -8.2679 0.7765 -1.8591 0.9830
50 40 4.0574 0.3454 0.9652 0.2823 -8.1325 0.5621 -1.9179 0.4670
100 40 4.0091 0.1935 1.0149 0.1394 -8.0020 0.2952 -2.0303 0.2691

Table C.3: Results from boundary fitting of 2D ellipse test case. The first line, labeled "actual" gives the
coefficients of the underlying ellipse. Otherwise, the mean and standard deviation are given of each set of
trials.

points were selected from the box with corners at (0,0) and (2,2). The results from fitting tests are shown

in Table C.3.
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Appendix D

Flutter boundary fits

This appendix contains figures of the flutter boundaries on the performance map for the Volvo rig discussed

in Chapters 5 and 6.

Each plot has the same format. The x-axis is the corrected mass flow, and the y-axis is the pressure

ratio. The performance curves at constant corrected speed are shown as dashed lines. An inset plot shows

the (Ks, g/p*) location associated with the boundary as a boxed area, and star (*) which shows the median

location of points on the boundary. Open circles (o) indicate unstable points measured inside the box, and

stars (*) indicate stable points measured inside the box. Open triangles (r>) indicate unstable points taken

at a higher KK and g/p*, which are presumed to be unstable inside the box as well, and the plusses (+)

indicate the stable points taken at locations with a lower KG and g/p* than the box. The solid line is the

boundary curve fit using the Support Vector algorithm described in Appendix C. The dashed lines give an

uncertainty range for each boundary.
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Figure D-1: Flutter boundary on performance map, for K* = 0.685 and (g/p*)rel = 0.60
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Figure D-2: Flutter boundary on performance map, for K* = 0.684 and (g/p*)rel = 0.85
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Figure D-3: Flutter boundary on performance map, for K* = 0.685 and (g/p*)rel = 0.98
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Figure D-4: Flutter boundary on performance map, for KO = 0.684 and (g/p*)rel = 1.06
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Figure D-5: Flutter boundary on performance map, for K* = 0.705 and (g/p*)rel = 0.63
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Figure D-7: Flutter boundary on performance map, for K* = 0.728 and (g/p*)rel = 0.75
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Figure D-8: Flutter boundary on performance map, for K* = 0.671 and (g/p*)rel = 0.89
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Figure D-9: Flutter boundary on performance map, for K* = 0.685 and (g/p*)rel = 0.69
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Figure D-10: Flutter boundary on performance map, for KJ = 0.706 and (g/p*),el = 0.93
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Figure D-11: Flutter boundary on performance map, for KK = 0.705 and (g/p*)rel = 0.80
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Figure D-12: Flutter boundary on performance map, for KG = 0.706 and (9/p*)rel = 0.70
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