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Abstract

An asymptotic technique is developed for analysing the

propagation and dissipation of wave-like solutions to finite

difference equations. It is shown that for each fixed

complex frequency there are usually several wave solutions

with different wavenumbers and the slowly varying amplitude

of each satisfies an asymptotic amplitude equation which

includes the effects of smoothly varying coefficients in the

finite difference equation's. The local group velocity

appears in this equation as the velocity of convection of

the amplitude. Asymptotic boundary conditions coupling the

amplitudes of the different wave solutions are also derived.

A wavepacket theory is developed which predicts the

motion, and interaction at boundaries, of wavepackets,

wave-like disturbances of finite length. Co'mparison with

numerical experiments demonstrates the success and

limitations of the theory.

Finally an asymptotic global stability analysis is
developed which gives results which agree with other

stability analyses and which can be applied to a wider range

of problems.
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1. Introduction

Consider the following very simple problem and

numerical solution. The partial differential equation is

au + c 3u (1.1)
3t 3x

where c is a positive constant. The domain

considered is O<x<1 . The initial condition is

u(x,O) = exp[-200(x-0.5)2 ] cos(kx) (1.2)

with k=80. This form of distribution is usually

called a wavepacket. The cos(kx) term defines the

oscillation of a group of waves and the exp[-200(x-0.5)1 ]

term is an amplitude 'envelope'.

The upstream condition is

u(O,t) M 0 (1.3)

The solution of this problem is

u(x-ct,0) ct < x < 1
u(x,t) = (1.4)

0 0 < x < ct

The numerical solution uses a uniform grid with

computational domain 0<j<200 and a trapezoidal scheme.

Un+1 n + r n+1 + U )(U+l +n)= 0 (1.5)
j j 4 j+1 j+1 j-1 + -)1

cAt
where r = --- (1.6)

Ax

In this example r=1. The initial condition is

0
U = u(x.,0) (1.7)
j

and the upstream boundary condition is
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Un =0 (1.8)
0

In addition a numerical boundary condition is

required at the downstream boundary. For this condition

space extrapolation is used.

Un nU n U n(1 .9)
200 199

Figure 1 shows the numerical solution at intervals

of 60 time steps with each plot drawn to the same scale.

The first two plots show the initial wavepacket travelling

downstream in the direction of the physical characteristic.

Corresponding wavecrests are labelled a-e and it can be seen

that the propagation velocity for the wave crests is greater

than for the amplitude envelope. Note for example that the

amplitude maximum lies approximately midway between crests b

and d at n=60 but at n-120 the, maximum is clearly nearer

crest b. At n=180 the numerical disturbance is interacting

with the downstream boundary. The solution appears to be

the sum of two waves, one with the original wavelen.gth , and

one with'a very much shorter wavelength. At n-240 there is

a reflected wavepacket of wavelength slightly greater than

2. and the plots at nm300,360 show that this wavepacket

travels back up the domain at approximately the same speed

as the original wavepacket. This solution is clearly

numerical and not physical since the analytic, physical

solution moves from left to right across the domain and then

out the downstream boundary. The analytic equation does not

have any solutions with waves travelling from right to left.

At n=420 the wavepacket is interacting with the upstream

boundary, and at n=480 there is a reflected wavepacket with

the original wavelength. This completes one cycle. If the

solution was continued the wavepacket would travel down to

the downstream boundary and then reflect again into a
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wavepacket with short wavelengthjand a decreased amplitude,

travelling upstream.

The qualitative and quantitative prediction of the

behaviour of numerical solutions in problems such as the

above is one of the two objectives of this paper. The

second objective is a global stability analysis

incorporating boundary conditions and smoothly varying

coefficients and predicting both stability and accurate

asymptotic estimates of convergence rates.

To achieve these aims a technique is developed to

analyse the approximate time evolution of an amplitude

modulated wave, i.e. a wave with fixed frequency and a

slowly varying amplitude. Chapter 2 derives the theory for

partial differential equations, while chapter 3 derives the

theory for finite difference equations incorporating

smoothly varying coefficients and boundary conditions. In

the case of dispersive, non-dissipative wave propagation, it

is found that the amplitude is convected at the local group

velocity, a principle which is well understood in partial

differential equations.

Chapter 4 applies the theory to the motion of

wavepackets which are wave-like disturbances of finite

length and constant frequency such as in the earlier

example. Chapters 5 and 6 derive global stability analyses

with different levels of asymptotic approximation. Chapters

7-9 develop further topics and examples including

comparisons between numerical experiments and theoretical

predictions.

Throughout this paper a finite operator notation is

used which greatly simplifies analysis and is a neccessity
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for general proofs. Since there is no universally accepted

standard notation Appendix 1 details the notation used.

Very little previous work appears to have been done

along the lines of this paper. The concept of group velocity

in partial differential equations is well understood and is

explained in many texts 1,2. The asymptotic approach of

chapter 2 is not common due to the advantages of other

methods but is discussed by Whitham 1. Kentzer 3 has

discussed the use of group velocity in analysing finite

difference equations but does not derive a general equation

for the amplitude or calculate the quantitative effects of

boundary conditions. Vichnevetsky and Bowles 4 derive the

the group velocity in finite difference equations using an

approach which is valid only for constant coefficients.

They also derive amplitude reflection coeffficients at

boundaries and discuss some of the examples given in this

paper.
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2. Amplitude Analysis of Partial Differential Equations

2.1 Fourier Analysis

Consider a homogeneous partial differential equation

L u(x,t) = 0 -C < x < W ,

where L is a constant linear differential operator

by,

L = Z

m,n

C m
Cm n 3-x)

atn

and the coefficients C are conmn

An eigenfunction of the operator

u(x,t) satisfying

L u = Xu

where X is a constant called the

(2.2)

stants.

L is a function

(2.3)

eigenvalue.

An eigenmode is a solution of the homogeneous

equation (2.1) i.e. it is an eigenfunction with eigenvalue

zero.

-- ex [i(kx-ul.)]
ax

3
Sexp(i(kx-ut))

ax

(.I) exp i(kx-t)]

= ik exp[i(kx-ut)J

= -iu exp[i(kx-ut)]

im n= (ik) (-ia)

defined

t > 0 (2.1)

(2 .4a)

(2. 4b)

(3 X, exp Ci (kx-w t)I ( 2. 4c)
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^ - (3 m (I In
m-- -- exp i(kx-wt)] =

C (ik)m(-i. )n exp[i(kx-it)]
mn

Thus exp[i(kx-ut)] is an eigenfunction of

, -- , - and L with eigenvalues ikat ax at)

(ik)m (-i,) and (ik) m (-i)n
mn

respectively

Hence ,

u(x,t) = exp[i(kx-ut)]

is an exact solution of (2.1) provided

mn
m,n

This relation between k and u is

dispersion relation.

Examples of dispersion relations

Surface waves on deep water W2 =

Acoustic waves

Waves propagating along a waveguide U2 M

called the

are

I gki

= c2 k2

c2 (k + ke)

where g , c aid k. are constants.

A general solution of (2.1) is a superposition of

eigenmodes which in the case of a partial differential

equation is expressed as an integral over all the

wavenumbers k of the sum of all the eigenmodes with

wavenumber k.

N

-an=1

A (k) exp[i(kx-n t)) dk
ni n

m,n

X ,

(2 .4d)

-iw ,

(2.5)

(2.6)

2. 7a)

2.7b)

2 .7c)

(

U(x,t) = (2.8)
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If the dispersion relation is of order N in w , i.e.

it contains powers of w up to uN , then

.(k) , 2(k) ....... ., WN(k)

are the N values of w which satisfy the dispersion relation

for a given value of k and the A (k) are the corresponding
n

constant amplitudes of those eigenmodes.

If A (k) is non-zero for all k,n then a neccessary and
n

sufficient condition for u(x,t) to remain bounded and not

increase exponentially is that each eigenmode must remain

bounded. Splitting w into its real and imaginary components

gives

+ I (2.9)

RR I
exp[-iutl exp(-iw t + W It] (2.10)

Thus the condition that every eigenmode remain

bounded, and hence a general solution remain bounded, is

U < 0 for all kn.

This analysis is lacking in three respects. The

first is that in some situations the initial disturbance is

zero except for a finite region and one wants to know the

time evolution of this disturbance, in particular the

propagation velocity for the energy. The second failing is

that when the initial-value problem is replaced by an

initial-value / boundary-value problem with boundary

conditions at x = 0,1 there is no easy way to include the

effect of the boundary conditions in this stability analysis.

The third failing is that exp(i(kx-ut)] is an eigenfunction

of L only when the coefficients C are constant. The
mn

analysis breaks down when the coefficients are non-constant.
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The resolution of these problems requires the analysis of a

wave of constant frequency with an amplitude which varies

over a characteristic length scale much greater than the

wavelength.
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2.2 Asymptotic Amplitude Equation

The problem now being considered is

L(x) u(x,t) = 0 -W < x < M, t > 0

where L(x) is a non-constant linear differential operator

defined by,

L(x) =

m,n

C (x) 3 Xam t n
C( (x) -- --_ (2.12)

and the coefficients C mn(x) are slowly varying functions of

x.

The theory calculates the approximate evolution of a

wavetrain with waves of a constant frequency u and a slowly

varying amplitude, so u(x,t) is written as

u(x,t) = A(x,t) exp(iY(x,t)] (2.13)

where A(x,t) is the slowly varying amplitude and

'(x,t) is the phase of the wave which is related to the

frequency w and wavenumber k by

3'!
at

-- = k3x

(2.14)

(2.15)

The frequency u is constant but the wavenumber k

will vary slowly with x because of the slowly varying

coefficients C (x) so the above relations can be integrated
mn

to giv'e,

x

T(Xft) f k( ) dE

0

- cat (2.16)

(2.11)
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To explain the asymptotic approximations which are

made two characteristic length scales L and L and one
k A

characteristic time scale TA are defined. Lk is the length

scale for variations in k, LA is the length scale for

variations in the amplitude A, and T is the time scale for
A

variations in A. Numerical values for L k LA and T are
k A A

are given by ,

L = min k -- (2.17a)
k 3x

L = min A -A (2.17b)
A ax

TA = min A 3 (2.17c)

The asymptotic approximations used in this theory are

L >> k' L >> k-' T >> W-I
k A A

which imply

3k A3A
-<< k -- << Ak 3- << Aw

axax ax at

A Taylor series expansion of A and F about a point

(Xo,to) gives ,

3A 3A
A(x,t) = AO + -- (x-xo) + -- (t--to) + H.O.T (2.18)

axo 3 t a

x
Y(x,t) = o- (t-t0 ) +f k(Z) dE

X0

x

W (t-to ) + [ko + ak ( -x, )+ H.0.T I dC
f ax
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= 0o - W(t-ta ) + k, (x-xo ) + .1 3
2 3x,

(x-xo )2 + H.O.T.

Subscript * denotes terms evaluated at (x0 ,to).

The H.O.T. , higher order terms, includes terms

3 2 A 32A 32k A
which are O{A(L k)-2,A(T A )2,A(L. kk)-21

and are neglected in this asymptotic approximation.

exp(iY(x,t)] =

= exp il,

= exp if 0

+ iko (x-x, )

+ iko (x-x0 )

- iW(t-t,)

- iw(t-to)]

i 3k
2 ax0

C1

(x-xo )

i 3k
+ -ax 0

+ H.O.T.

2 + H.O.T

(x-xo ) )

(2020)

Hence ,

u(x,t) = exp iY0 +ik,(x-x,)

( A,
+

1 +

3A
a (x-x)

+
3A
a t (t-to )

i 3k

2 3x,
)2)

+ H.O.T.

+
aA
j-~(x-x0 )

- iW (t-t0 )]

+ 3(t-tO) i+ A0  (x-x,3k0

+ H.O.T.

To evaluate derivatives of u(x,t)

two-variable version of Leibnitz's

at (x,,t, )

rule is used.

m nb

P=O q=O

f(x,t) g(xt) ] =

m! n!
p!(m-p)! q!(n-q)!

(2. 19)

like

= exp[i?, + ik0 (x-xo )

* AO )2)

(2.21)

a

C M-p
a3 ) pax) 3t)

( n-q

Iat) 9

-iU (t-to )I
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Let

f(xt) = exp iT. + ik,(x-x, )

g(x,t) Ao + A (x -x) + (t-t0 )at 0
+

2
ACT- (x-X0

0

Then,

C '(af t
= (iko) (-iu) q

go I AG

Sx0

at0

exp i(j i

3A
a x

3A

iAo ax
3 x3x 2

and all other derivatives of g(x,t) evaluated at

are zero. Hence ,

mt u(x,t)
a

= exp(i,] *0

ik rn m n + m

+ . M(m-1) A 3k
2 axo

(ik )M-1 (-i)n

nm-2 n

+ A
+ a -- (iko ) n-1

+ H.O.T. (2.30)

and so ,

(2.22.)

(2.23)

(2.24)

(2.25)

(2.26)

(2. 27)

(2.28)

(2.29)

(ax

C A0

(x0 ,t )

- iw (t-to )I
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L(x) u(x,t) =- exp(i] Cl n A(ik)m (- )n +

m,n

SA
3x

.M(M-1)
1-2

(ik)m- a) n

A k
ax

3A

im-2 n
(ik) (-ia)

(ik)M n-1

)
To satisfy the homogeneous equation (2.12)

amplitude

a, (k,a ,x)

+

+ H.O.T. (2.31)

the

A(x,t) must satisfy ,

A + a, (k,u,x)
3A
at

+ a2 (k,ca,x)
3A
ax

+ a, (k,u,x)
3k

A - 3x

= 0 + H.O.T.

where ,

ao (k,w,x) =

m,n

a (k,u,x) = Z
m,n

C (x)

C (x)in

(ik)m (-n

iM n-1
n (ik) (-ica)

3 a,
= __j

a 2 (k, u,x)

m,n

C (x)
in

m (ik) m-l)n

= -i a3 (2. 33c)

and a, (k,u,x)
KI
mmn

C (x)in
iM(M-1)

2
(ik)M-2 n

2 2 k

of the asymptotic assumptions ,

A >> W-1 3A
at

k-1 2-
3x k- 2 A 3x

so (2.32) can only be satisfied if

(2.32)

(2 .33a)

(2. 33b)

Because

(2. 33d)
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a*(k,c,x) = 0 (2.34)

This is the dispersion relation between k and w.

k is now a slowly varying function of x due to the slow

variation in the coefficients. Thus the characteristic

length scale L k is related to some characteristic length

scale LC for variations in the coefficients.

Neglecting the H.O.T. and dividing by a, gives the

asymptotic amplitude equation.

-

+ C 3A A (2.35)
at g 3x

where c -a, / a, (2.36)

ak
and C - a, -- / a, (2.37)

a x

If c is real the left hand side of (2.35) is a
g

Lagrangian-type total time derivative with respect to an

observer moving with velocity c . If the coefficients C
g mn

are all constant, k is constant, e = 0 and so the amplitude

A is constant along rays moving with velocity c . In a

wavepacket individual wavecrests move with phase velocity

w/k ,usually denoted c , but the wavepacket, or amplitude

'envelope' , moves with velocity c * For this reason c is
g g

called the group velocity.

Because the group velocity is the propagation

velocity for the amplitude and energy of the wavepacket the

group velocity is often more important than the phase

velocity. One example is the Sommerfeld radiation condition

which states that the waves generated by a fixed source have

a group velocity directed away from the source. In some
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unusual cases the phase velocity of the waves is actually

directed towards the source. A second example is that the

group velocity never exceeds the speed of light which is the

limiting speed of propagation of information while the phase

velocity can exceed the speed of light , as happens in wave

propagation along an electromagnetic waveguide.

To link this derivation of group velocity to other

derivations the dispersion relation (2.34) is differentiated

with x held constant.

da =2--* dk + --a du
3k au

= 0 (2.38)

Hence = -(ak) x const k 

= a2 / a,

= c (2.39)
g

The most common method of showing that
3k) x const

is the group velocity uses the method of stationary phase

which is well explained in the available literature [1,2]

The usual approach is to combine the dispersion relation ,

the.definition of the group velocity and some physical

principle suci, as energy conservation to calculate the

propagation of energy. The approach given above is not

usually used partly because sometimes the exact partial

differential equation is not known and the dispersion

relation has been determined by asymptotic methods (e.g.

water waves) or from empirical data (e.g. seismic waves).

This approach is however suited to analysing finte

difference schemes in which the exact finite difference

equations are known and there is no general equivalent to
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the principle of energy conservation.
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3. Amplitude Analysis of Finite Difference Equations

3.1 Fourier Analysis

Consider a homogeneous finite difference equation

L Un = 0

As explained in the appendix A.1, L can always

expressed as a sum of step operators,

L S C E E
, mp mx pt

m~p

(3.1)

be

(3.2)

where the coefficients C are constants, but it is
mp

often more simply expressed as a polynomial of finite

difference operators written symbolically as,

L B P(Exx, ILx4,Et,6tsIt) (3.3)

The eigenfunctions and eigenmodes of L are defined

exactly as in 12.1. The finite operators all have the same

eigenfunctions, exp(i(j -nQ)). 0 and 0 are related to the

wavenumber k and frequency w of the physical wave being

modelled by,

$ = kAx

= WAt

(3.4)

(3.5)

As shown

exp[i(j$-nQ)

exp(i(jO-n9)j

exp(i(jo-ng)]

in the appendix A.1

= exp(i$) exp(i(j$-ng)]

= 2i sin(0/2) exp(i(jo-ng)]

= cos(0/2) exp(i(jo-nQ)]

M exp(-in) exp(i(jO-nQ)]

E

x
6

x

Et exp(i(j$-nQ)]

(3.6a)

(3 .6b)

(3 .6c)

(3 .6d)
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at exp(i(jO-nQ)] - -2i sin(0/2) exp[i(j*-ng)]

Vt exp[i(j -nQ)] = cos(9/2) exp(i(jo-ng)]

Emx Ept exp[i(j$-nQ)] = exp(i(mo-pQ)] exp~i(j$-ng)j

Thus exp(i(jj-nQ)] is an eigenfunc'tion of

E x , x

exp( i),

cos (/2)

Sr Et1 t It and Emx Ept with eigenvalues

2i sin(/2),

,exp[i(meo-pil

cos(/2), exp(-i),

)] respectively, and

-2i sin(Q/2),

L has eigenvalue

Cmp exp[i(m$-pil)]

P[exp(i0),2i sin($/2) ,cos($/2),

exp(-iQ),-2i sin(U /2),cos(Q/2)]

depending which expression for L is used.

Un== exp(i(j$-nQ)J
J

is an exact solution

L Cmp exp(i(mi-pQ
Mr,p

of (3.1) provided

)] = 0 (3.8)

This is the dispersion relation between 0 and 9.

Since exp(2nuiJ

equivalent to $ so only

-w < Re(O) < I

-n < Re() < 

need be considered.

= 1 for all

solutions in

integers n, + 2ni is

the ranges

If L involves P+1 time levels and

the dispersion relation is a polynomial of

exp(-ia) and of degree M in exp(i$). Thus

there are P corresponding values of 0, and

M+1 spatial

degree P in

for a given

for a given

(3 .6e)

(3.6f)

(3 .6g)

rIp

or

(3.7)

nodes
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there are M corresponding values of 0.

A general solution of (3.1) for periodic boudary

conditions is a superposition of eigenmodes.

P

U = A (0) exp(i(jo-n )] (3.9)

0 p pi

The 0 summation is a summation over all the values

of 0 which satisfy the periodic boundary conditions, and

the p summation is over the P values of Q corresponding to

each value of 0.

If Ap (0) is non-zero for all O,p then a necessary and
pn

sufficient condition for U.n to remain bounded and not
J

increase exponentially is that each eigenmode must remain

bounded. Splitting a into its real and imaginary components

gives,

a = a2 + in1 (3.10)

exp(-ing] = exp(-ingR + nil ] (3..11)

Thus the condition that every eigenmode remain

bounded , and hence a general solution remain bounded , is

2 < 0 for all $,p.

This analysis is lacking in the same three respects

as the analysis of partial differential equations by

eigenmode expansion in the last chapter. The analysis

gives no information about the movement of an initially

localised disturbance, cannot incorporate boundary

conditions or analyse schemes with non-constant

coefficients.
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3.2 Asymptotic Amplitude Equation

In this section the coefficients C in the
mp

definition of L (3.2) are assumed to be slowly varying

functions of j. The analysis is performed in computational

space with coordinates (j,n) in which the grid spacing is

Aj-1, An-i. Variations in mesh spacing in physical

coordinates are incorporated directly into the variable

coefficients of the finite difference equations.

The theory calculates the approximate evolution of a

wavetrain with waves of a constant frequency Q and a slowly

n
varying amplitude , so U. is written as

n
U. = A(j,n) exp(i?(j,n)] (3.12)

)

where A(j,n) is the slowly varying amplitude and

Y(j,n) is the phase of the wave and is related to the

frequency Q and wavenumber * by

- - - (3.13)
an

-- $(3.14)

which can be integrated to give,

j
'F(j,n) * 0( ) d4 - nil (3.15)

0

As in 12.2 two characteristic length scales, L for

variations in *, and LA for variations in the amplitude A

and one characteristic time scale T for variations in the

amplitude A , can be defined with numerical values being

given by,
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LO = min 1

LA = mi A 4

TA= min (A

The asymptotic approximations are

L >> 1

which imply

3,-- << 1
Sj

LA >> 1

A A
-A << A
aj

TA

aA

A Taylor series expansion of A and V about a point

(j,,n,) gives,

3A 3A
A(j.+m,n0 +p) = Ao+ m j+ + n

7(j,+m,n,+p) = V, - p +
jo

+ H.O.T (3.17)

I( ) d,

= To - pa + jO+ [O + ( -j 0 ) + H.Q.T ] d

= V, - pQ + m0 0 + m + H.O.T.

Subscript a denotes terms evaluated at (j,,n,).

The H.O.T. , higher order terms, includes terms like

,2 A 2A which are O{ALA-2,ATA- 2,AL,-2}

3n 2 3j 2
and are

neglected in this asymptotic approximation.

(3.16a)

(3.16b)

(3. 16c)

1

A

(3.18)

3a2
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exp [i'f( j.+m,n,+p)]

= exp[ i1!0

= exp[ i' 0

- ipa + imo, +
2 3h

- ipo + imo 0 1

+ H.O.T I

im a 0
1 3 2 a0J + H.O.T.

Hence ,

= exp~iF]J exp[i(m$-pn)]

3A
+ m(AO

1

+3p 
A

2  3

+ H.O.T.

= exp(il,] exp[i(m$.-pa )] CAO + m

+ H.O.T.

+ p + iM2
-in a 2 a j

(3.20)

Hence,

= exp iY] Z
m,p

( A
To satisfy

C (j)mp

3A
3aA

+ m a

exp[i(ms-pn)]

+A i
23j

the homogeneous equation

+ H.O.T.

(3.1) the

amplitude

a0 ( , a,j)

A(j,n) must satisfy,

A + a1 (O,0,j) + a2 (0,, i) + a3 ( fa,j)

where

a , ( $,n ,j)

a, ($,a,j)

=
m,p

= m7

= 0 + H.O.T.

C (j)mp

m~p

expfi(mo-p0)]

p expci(mo-pn)]

(3.22)

(3. 23a)

= i (3..3b= ) ,2 const

Un,+p
j 0+m

(3. 19)

L. U.
) )

(3.21)

A j

( 3. 23b)

2A
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a 2($,, - C mp (j) m exp[i(mO-pQ)]

mmp

-i -a. (3,.23c)
(a 0 c ,) const

im2
and a,(,,j) = C (j) -- exp(i(mO-pQ)]

T.mp 2
m,p

- a. 
(3.23d)

I L-ai ) Qj coans t

In the above derivation of a,,aL ,a2 ,a3 the general

shift operator expression for L. (3.2) is used. In
)

applications it is more convenient to use the finite

operator polynomial expression (3.3). a, is obtained by

replacing each operator with its corresponding eigenvalue

and then a,,,a2 ,a, are calculated by differentiating a,.

Because of the asymptotic assumptions ,

A >3A 3A A30
3n ' 3j ' j

so (3.22) can only be satisfied if

a ,j 0 + 0 { L '-,L A-T A- (3.24)

This is the asymptotic form of the dispersion

relation between 0 and Q and will usually be satisfied by

setting a. identically equal to zero. 0 is now a slowly

varying function of j due to.the slow variation in the

coefficients. The characteristic length scale L is related

to some characteristic length scale Lc for variations in the

coefficients.

Neglecting the H.O.T. and dividing by a, gives the

asymptotic amplitude equation.
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3 A 3 A
-+r A (3.25)

where rg = a. / a, (3.26)

and e - ( a, + a. ) a (3.27)

Differentiating (3.24) with 1 held constant gives,

da 3atd$ + 3a . dj*0 =.a3* J,j const a j ) , const

= 0 + H.O.T. (3.28)

Hence, neglecting the higher order terms,

9 (3a (a,
aj (ajo) 0,0 const 3T ) 2,j const

= ,Q const a 2  (3.29)

so E- -i a, ( , const al a2 (3.30)

If r is real the left hand side of (3.25) is a

Lagrangian-type total time derivative with respect to an

observer moving with velocity r . Thus the amplitude A is

being convected with velocity r in computational space.

Differentiating (3.24) with j held constant gives,

da0 = (. d + 2d
3 ) $,j const ao ) Q,j const

= 0 + H.O.T. (3.31)

Hence, neglecting the higher order terms,

Co) j const j ,j const 31 ) *,j const

= a2 / a.

r r (3.32)
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Substituting for 0 and * using (3.5a,b),

3 (WAt)r
g 3(kAx)

At 3W
Ax 3k

c At
=- (3.33)

Ax

Thus r is the CFL number corresponding to the group
g

velocity in physical space of the propagating numerical

wave. It is the number of spatial mesh intervals which a

localised disturbance travels in one time step. For the

rest of the paper r is called the group CFL number.
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3.3 Examrples

The model problem which is considered is,

+ c(x) a =
ax

0

Three different methods are

3.3.1 Trapezoidal Scheme

The trapezoidal scheme is

-W < x < W

analysed.

1 n nc
t n+1- n A +

A t i U 4Ax.
Un+1 +Un
j+1 j+1 - (U+1 +Ut )

j-1 i-1
= 0 (3.35)

which can be written using operator

r.
+ -

2
a 2x 11t

notation

U. 2 0
)

where the CFL number r is defined as

CA t
r. = -r Ax

J

1
and Ax. =- (x -x

1 2 j+1 3-1

a. is obtained by replacing the

eigenvalues.

operators

a. = -2i sin(0/2) + E 2i
2

sin( ) cos(9/2)

The dispersion relation is

a. = 0

so tan(Q/2)
= r
2

sin( )

a, , a 2 , a, are obtained by

(3.34)

as

(3.36)

(3.37)

(3.38)

by their

(3.39)

(3.40)

(3.41)

at t

differentiating a.
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a 0

= cos(0/2) + Esin() sin(Q/2)

a a

= r cos(O) cos(2/2)

= - ia

2 a2
2 3 4

- sin(o) cos ( /2)

Using the dispersion relation a,

simplified. -

= cos(U/2)

= cos(9/2)

S[ cos2 (a/

+ sin()
2

" tan(Q/2)

sin(0/2)

sin(Q/2)

+ sin 2 (a/2) ] / cos(n/2)

= 1 / cos(U/2)

= - r sin(

= - tan(Q/2)

= - sin(n/2)

= a 2 /

cos(Q/2)

cos (0/2)

(3.46)

a,

= r cos($) cos 2 (a/2) (3.47)

and e = -i a3  .

ir sin( ) c

, to const
/

[r

a, a, - a. / a,

sin(O) cos(U/2)

a2

a3

(3.42)

(3.43)

a1

(3.44)

and a, can be

a.

so r
g

(3.45)

o s ( n/ 2) I/ [r cos ((o)I
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- sin2 (0) cos(0/2) / cos(0) (3.48)
2 3i

There are three points of interest

i) sin(w-$) - sin(0)

so for all 0 there are two corresponding values of

0 given by the dispersion relation,

0,satisfying -1r/2 < Re(01 ) < -ir/2

and (0 2 1 - 1

ii) For real 0 in the range

0 < Q < 2 tan-'(r/2)

0 < tan(0/2) < r/2

so 0 < sin(O) < 1

Thus 0, and 02 are both real and

0 < 01 < ir/2

so r (0 ) > 0

and v/2 < 02 < T

so r ($() < 0

Henc. for every frequency in the given range there

is one forward travelling wave, travelling in the same

direction as the physical waves being modelled, and one

backward travelling wave with wavelength less than 4Ax.

iii) For real 0 in the range

2 tan-'(r/2) < 9 <i

sin($) > 1

so 0, and 02 are complex
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Let $, = /2 + i$

Then sin($ 1 ) = cosh(o )

so * is real and satisfies

=r
tan(U/2) - cosh()

2 I

2 = T -

= 1/2 -i

These are evanescent waves. If there are

boundaries at j = O,J and the boundary conditions force a

steady oscillation with a frequency in the given range one

wave will decay in amplitude exponentially away from the

boundary at j=O, while the other will decay exponentially

away from the boundary at j=J.
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3.3.2 Box Scheme

The box scheme is

+ Un+1
j+1

U nUj+ 1

(Un +

Un+ 1
j+1 - (Un + Un+ 1

which may be written in operator notation as

xt
+ r it 6x

a,= -2i cos(0/2)

Un+i. 0j 4.j.

sin(n/2) + 2ir cos(0/2) sin(0/2)

The dispersion relation is

tan (0/2) = r tan(0/2)

a1 = i aa3a

= cos($/2) cos (a/2) + r sin(n/2) sin((P/2)

-0

= sin(0/2)

i

sin(a/2) + r cos(n/2) cos (0/2)

a 2 a.

cos($/2) 1
sin(0/2) r cos(n/2) sin(0/2)

=- a0

= 0

Thus r =
g

a 2 / a,

sin(0/2)
cos ($/2)

sin(Q/2)
cos(9/2)

+

+

r
r

cos (0/2)
sin(2/2)

cos (/2)
sin( /2)

1 ( Un+1 U n ) +
j+1)

1
At

0 (3.49)

(3.50)

(3.51)

(3.52)

(3.53)

1
=

4

(3.54)

(3.55)
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tan(1/2) tan(Q/2) + r
1 + r tan(1/2) tan(U/2)

= r 1 + tan2 (4/2) (3.56)
1 + r 2  tan2 (0/2)

and C = 0 (3.57)

There are two points of interest

i) For each real value of a there is one corresponding

real value of $ given by the dispersion relation and the

group CFL number r is real and positive.

ii) When r=1, r 9r , so waves of all frequencies travel
g

at the same velocity as the physical waves being modelled.

This is because when r=1 the Box scheme reduces to,

Un+1 = Un (3.58)
j+1 j

which agrees exactly with the solution of the partial

differential equation,

u(x+ct,t) = u(x,0) (3.59)
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3.3.3 Backward Euler Scheme

The backward Euler scheme is,

1 (n+ 1 n
A (U+ - Ut j + j (Un+1 - U n+1

2Ax j+1 j-1

which may be written using operator notation as

1-
--

a,= 1

+ -
t 2

n+1
r. 6 ) U.

. 2x j

- exp(iO) + ir sin(O)

The dispersion relation

exp (iO] - 1 = ir sin(0)

. aa

= exp(in)

a. = a 3ag

= r cos($)

a , 1 a 2 a

1 .a2
2 3(o

r
= - r sin($

so r = a 2 / aI

= r cos(O)

and e = -i a, -a
(a j

exp (-in )

const /

sin($) 0 21 sin(O) ] / C exp(in) r cos($) I

1 3r 2

- sin() exp(-ig) / cos($)

(3.60)

= 0

is

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3 .66)

ir
2

a, a, - a. /

(3.67)

a1

(3.68)



40

3.4 Asymptotic Boundary Conditions

The general solution of

L. U. = 0 (3.1)
3 1

is a sum of waves with different constant frequencies 9 and

slowly varying wavenumber 0 and amplitude A

A (j,n) exp[i( m d -ni)] (3.69)

11 m-i 0

The outer summation is over different values of Q,

and the inner summation is over the M different values of *

which satisfy the dispersion relation for each 0.

For each Q,m the amplitude A satisfies its

asymptotic amplitude equation on the interior of the

computational domain independent of all the other waves.

All the waves of each frequency are however coupled by

boundary conditions.

Suppose a finite difference boundary condition at

j=J is

B Un = Fn (3.70)
J

where B is a constant finite difference operator which can

be expressed in operator polynomial form as

B p B(E ,65 ,4i ,Et t' ,t) (3.71)
B _ P3( x x -Vx J t at, t( .1

and Fn is a forcing function which can be expressed as a

sum of inputs of different frequencies.

Fn Z f(n) exp(-in) (3.72)
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Performing exactly the same asymptotic expansion as

in the derivation of the asymptotic amplitude equation the

boundary condition becomes,

3b 3A 3b 3A i a 2 b 3
b A + i -- im-m - - -- T A -m J

T. an a 3 2 a9 m 3j
Sm=1

exp(i( f M d -ni)l L f(n) exp(-ina) + H.O.T. (3.73)

0

where b(n,o ) P B exp(io m),2i sin( m/2),cos( M/2),

exp(-in),-2i sin(m/2),cos(a/2) (3.74)

The coefficients of exp(-ina) in (3.73) must be

asymptotically equal to zero for each 1 so,

M
3b 3A 3b 3A i 32b 3

b A + i -- -- T M - - -- A -- m *
m 3a n 4j 2 32 m 3j

m= 1

expi f m dZ I f(Q) +H.O.T. (3.75)

0

This paper is primarily concerned with stability

and convergence rates. When analysing perturbations from a

steady state or constant amplitude oscillation the boundary

condition ftr the perturbation has

f(a) = 0 (3.76)

Because the zero order terms will usually dominate

the normal form of the asymptotic boundary conditions is,

M i

)"b(n,o ) A M(J) exp~i f dZ 0 (3.77)

m=1 0
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The first order terms - _m , A -m are only
3n 3m a o

important when,

b(,O m) = 0 ( T ' L A- L $)

As explained in 13.1 if the finite difference

operator L in the interior scheme spans M+1 spatial levels

there will be M values of 0 given by the dispersion relation

for a given value of n. If the computational domain is

O<j<J the interior scheme gives finite difference equations

at J-M+1 nodes, so to complete the set of finite difference

equations there must be M finite difference boundary

conditions. Hence for each Q the asymptotic amplitude

analysis gives M independent amplitude differential

equations on the interior coupled at the boundaries by M

boundary conditions.
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3.5 Examples

The same model problem as in 13.3 is considered,

U + c 9 - 0 (3.34)
a t 3 x

0 < x < x

c(x) > 0

The analytic boundary condition is,

u(0,t) = F(t) (3.78)

For perturbation -analysis

u(0,t) = 0 (3.79)

The finite difference scheme using the trapezoidal

or backward Euler methods on the interior requires two

finite difference boundary conditions. For perturbations

the boundary condition at j=0 is,

U n= 0 (3.80)
0

The boundary condition at j=J is some form of

extrapolation. Four of the most commonly used are analysed.

3.5.1 Upstream Boundary

U = 0 (3.80)
0

B 1 (3.81)

so b 1 (3.82)

Hence AI(0,n) + A2 (0,n) = 0 (3.83)

In preparation for the theory developed in chapters

4 and 5 it is useful to define R0 , the amplitude reflection

coefficient as



R =A, 0n)
0 A 2 (0,n)

so in this example

R. = -1

3.5.2 Downstream Boundary : Space Extrapolation

The space extrapolation

U

boundary condition

= n
tJ- 1

B 1 -E

-jtx x

so b = 1 - exp(-io)

= 2i exp(-i$/2)

Hence

sin ( /2)

sin($ /2)
m

exp(i
0

m - i $ (J)/2 ] A (Jn)m m
=. 0 (3.89)

The amplitude reflection coefficient is defined

R =1' ( J,n)
J I, (J,n)

so in this example

R = -sin($ 1 /2)J sin(O 2 /2) exp

0
(01 - 02 d - loo (J)2
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(3.84)

(3.85)

is

(3.86)

(3.87)

2

M=1

(3.88)

as,

(3.90)

2 (3J)

(3.91)
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3.5.3 Downstream Boundary Space-time Extrapolation

The space-time extrapolation boundary

n n-1
U t1U

B J-1

B 1 - x E-t

b = 1 -exp(-is

= 2i exp[i(-$

Hence,

sin 2  ex

0

sin
R = -

sin 2

+ if)

)/2]

m

exp i

0

condition is

(3.92)

(3.93)

sin[($-n)/2J

- m (J)/23

($ -0 ) d| -

(3.94)

A m(J,n) = 0

iI ( J)-$2 ( J)

(3.95)

(3.96)

3.5.4 Downstream Boundary : Box Method

In this example the Box

in 3.3.2 as an interior scheme

downstream boundary condition.

method which was discussed

is now considered as a

6 t + r t x n = 0

B E E-t x 6t + r ut 6x

so b = exp[i(n-O)/2) { -2i cos($/2) sin(a/2) +

2i r cos(U/2) sin(o/2) }

Hence,

2

m=1

(3.97)

(3.98)

(3.99)
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sin(O /2)
m

- tan(Q/2) cos(o /2)

sin( It/2
s in (02 / 2

- i $ (J)/2

tan(9/2)
tan(0/2)

] A (J,n)

s(0, /2)
cos(0./2)

J)- 2 (J)) 3

2

M=1 Cr

exp(i

0

0
In

R
J

=- r
r

= 0

0exp ($1-02) d( - (1

(3.100)

(3.101)

)

)
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4. Ray Theory and Wavepacket-Particle Duality

4.1 Ray Theory

In addition to the asymptotic approximations made

in chapter 3 this chapter assumes that for all real

wavenumbers 0, the frequency n is real for all j and hence

the group CFL number r is real.

r (an) (3.32)
rg (0) j const

A Lagrangian-type total time derivative in

computational space is defined by,

d 3 3 (4.1)
dn an g 3j

so a 3 3 + r
dn an g 3j

= r (4.2)
g

From the asymptotic amplitude equation (3.25),

dA 3A 3A
dn 3n g 3j

= eA (4.3)

and using (3.26) and (3.29),

d = - - + r 30
dn 3n g 3j

30
= r --

g 33

a2 -3a a
a- ] 3jJ , const 2

i a a(4 .4 )a. 3j j *,0 const
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A general initial value problem for a wave of

frequency 0 and wavenumber *(Qj) can be solved by

integrating these equations (4.2)-(4.4) with initial

conditions

j(0) = jo (4.5a)

A(0) = A(jo1, ) (4.5b)

0(0) = 0(a.,j ) (4.5c)

Each value of j generates a ray and all of the

rays together cover the entire domain for n > 0. Figure 2

shows the motion of some typical rays in computational

space.

1 2 3

r

L

T

L

n

FIGURE 2. RAYS IN COMPUTATIONAL SPACE
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r is. a function of j so at a particular j all the
g

rays have the same slope d. Hence the time separation T of
dn

two rays, illustrated in figure 2 for rays 1 and 2, remains

constant but the spatial separation L varies as r varies.
g

As explained in chapter 3 if the finite difference

operator spans M+1 spatial nodes then for a particular

value of 0 there are M values of 0 which satisfy the

dispersion relation. Define M+ to be the number of

solutions $ for which the group CFL number is positive, and

similarly define M. to be the number of solutions * for

which the group CFL number is negative. Let the

computational domain be 0 < j < J as usual. At j=J there

are M+ rays leaving the domain and M. entering it. The

amplitudes are related through the asymptotic boundary

conditions each of which has the form,

M J

b(Q,$ ) exp[ if m d&] Am (J,n) = 0 (3.37)

m=1 0

Since the M+ amplitudes of the rays leaving the.

domain are known and the M. amplitudes of the rays

entering the domain are unknown there must be M. boundary

conditions to uniquely determine the amplitudes of the rays

entering domain. Similarly at j=0 there must be M+

boundary conditions to uniquely determine the amplitudes of

the rays entering the domain.
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4.2 Wavepacket-Particle Theory

In terms of ray theory a wavepacket is a ray tube, a

group of rays, along which the amplitude is non-zero. From

the discussion in the last section the time length TA of the

wavepacket remains constant but its spatial length LA will

vary whenever r has different values at the two ends of

the wavepacket. Provided LA << L all the rays in the ray

tube have approximately the same value for (Q,j) so the

motion of the wavepacket is given by,

r (A,$(j),j) (4-2)
dn g

and d= _ i 3a0,dn Yi 3j ) 0,,a const

The energy, in physical space, of the wavepacket is

defined as,

x

E(n) = jA(x,t )12 dx

x

- IA(j,n)1 2 
- dj (4.6)

0 dj

Hence the wave energy density in computational

space is detined to be,

p(j,n) = a(j) IA(j,n)12 (4.7)

where a(j) dx (4.8)
dj

Using (4.3) and the notation that A is the complex

conjugate of A it follows that

+ -(r) = L-(aAi) + a-(r aAi)
3n aj g 3n aj g
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- Aa A 3A -a3
= aA(-- + r -- ) + aA(-- + r -- ) + AA -- (r a)an g 3) an g 3 3 g

-dA dA - 3
= aA -- + aA -- + AA -(r a)

n dn 3 g

= aAeA + aAeA + AA -- (r a)
1j g

( + e + 3  (ra ) P (4.9)
a 3H e

Hence,

ap3n d

=0
0

- C
- -- (r p) +

3i g

JJ

r -p + S
g 0

0

+ C + - -(r a) Pa 3a g

+ + + pa 3j g

If the wavepacket is in the interior of the domain

away from the boundaries the energy flux r p at the

boundaries j=0,J is zero. Also assuming as before that

- 1ia
L << L then E + e + - -(r p) is approximately constant

A C a3j g
over the length of the wavepacket, so

dE -
dn ( E E a a(rga) p d

0

- + + (rga) E (4.11)

Thus equations (4.2), (4.4) and (4.11) completely

describe the motion of the wavepacket particle in the

interior of the computational domain.

J
dE4
dn f

0

dj

dj (4.10)
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When the wavepacket reaches the boundary it

interacts with the boundary conditions to produce one or

more reflected wavepackets with the same frequency but

different wavenumbers. The only case for which it is easy

to incorporate boundary conditions is when M=2 and

r ($ 1 ,j) > 0
g.

r ($ 2 ,j) < 0

An example of a scheme satisfying this condition is

the trapezoidal method which was applied to the model

convection problem in the introduction.

An additional assumption is that

r ($1,j)j, Ir ($ d

so that it takes much more than one time step for a

wavepacket to travel from one boundary to the other.

Suppose that initially there is one wavepacket with

wavenumber *1 as in the introductory example. The

wavepacket travels to the right with position and energy

determined by the equations of motion previously derived

(4.2), (4.4) and (4.11). When the wavepacket reaches the

boundary at j=J a proportion of the energy E, is reflected

into a left rtravelling wavepacket of frequency Q, wavenumber

02 and energy E 2 . Figure 1 illustrates this interaction.

Equation (4.10) is

J J
dE - 13

-- r p +1 + e + --- (rga) p dj (4.10)
dng J j g J

0 0

The outgoing energy flux is
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r ($ ,J) p1 (J,n) = r ( 1,J) c(J) IA, (J,n) I2 (4.12)

The incoming energy flux is

r ($2 J) P2 (Jn) = r (02,J) a(J) IA 2 (J,n) |2 (4.13)

The amplitude reflection coefficient R defined by

A2 (J,n)
R = (4-14)
J A 1 (J,n)

is a function of 0,$10,2 determined by the asymptotic

boundary condition.

The energy flux entering the reflected wavepacket is

a factor

r 9(0 2 1J) 1R 12

r (0 1 ,J)
g

greater, or less, than the energy flux leaving the incident

wavepacket and so the total energy of the reflected

wavepacket is given by,

r($ 2 ,J) 12
E2 = 9 R El (4.15)

r (01,J)
g

The reflected wavepacket travels left according to

the equations of motion for a wave 2 wavepacket until it

reaches j=O where it is reflected into a right travelling

wave 1 wavepacket. The reflected energy E, is given by,

r ($ ,0 II
E = g IR0  E 2  (4.16)

r 9(02,10 )g

A1 (O ,n)
where R = (4-17)

0 A 2 (0,n)

is determined by the asymptotic boundary condition.
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Figure 3 below shows the particle-like path of the

wavepacket in

iA
J

computational space.

(b)

(a) (c) (a) (c)

(d) n

FIGURE 31 WAVEPACKET PATH

In summary the equatic

the path are,

=
dn

IN COMPUTATIONAL SPACE

,ns for the different parts

r (0 1 ,j)

dn a, aj const

dEj
dn

(4.2)

(4.4)

(4.11)C +C +rg

(b)

(a)

of

r a ) )
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r (= 2 1 J) 12
(b) E = g R El (4.15)

r ( 1 i,J)
g

(c) = r (02 ,j) (4-2)dn g

1 -'.2 = i 3 a(4 )dn _ 3j) $,9 const

=dE - 1 3-2 = + + --(r a) E 2  (4-11)
dn a 3 j

(d) E = r 9(0 O) 10  E2 (4-16)
r (02,0)

In (a) and (c) the dispersion relation can be used

as a check on the accuracy of the numerical integration of

the equations or can replace the equation for the variation

of 0.

The total number of time steps for a round trip from

0 to J and back again to 0 is

3

N = [ r ( 1 ,j) ] - r ($ 2 ,j) ) dj (4-18)

0

The energy growth of a wavepacket travelling from 0

to J is given by

d
-- ln(E,) = 1 dE
dn E dn

- 1 3
= E + E + - -(r a) (4.19)

a 3j g

so - ln(E,) = d ln(E ) / d2
dj dn dn

E_ +__ 1 3
+-- -- (r a)

r r a 3j g
g g
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r
g

Hence,

lnCE, (J)]

a a
a j

J

= ln(E1 (0))

a
g

+
r

9
d j + ln(r a)

g
0

so E, (J) =
r (O$ ,J)9
r (01,0)

exp

J

'C+e

r
g

dj E1 (0) (4.22)

Similarly the energy growth of the reflected

wavepacket as it travels from J to 0 is

so E 2 (0)
r (02 ,0),

9
r (02 ,J)

exp

0

+E

r
9

dj E 2 (J)

Combining (4.15),(4.16),(4.22)

trip energy amplification factor X is

r 9( I, J)

r (oi,0)

r (02,0)

r (0 2 ,J)
g

exp

0

exp/

0

g

E +fl
r

g )2

dj

dj 0

and (4.23) the round

r ( 02 J)

r (0 1 ,J)

r (01,0)

r (O ,0)
g

E +g 3

r
g 2

C +ej
r

where r+

and C+
r
g

is evaluated at

I2

1,j

is evaluated at 02,i

The condition for stability

x < 1

(4.o20)

(4.21)

(4.23)

I1 R
J.

I R JI2

IR 012

J

exp

0

dj (4.24)

is

x =
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The equivalent average decay rate a is

1
a = - - ln(X) (4.25)

N

When M>2 and there are M+ waves with positive r and

M. waves with negative r , one wavepacket with positive r

reaching j=J produces M+ reflected wavepackets with

negative r , and one wavepacket with negative r reaching

j=O produces M+ reflected wavepackets with positive r

Thus the total number of wavepackets increases with time

exponentially. Since each wavepacket has finite length

this ultimately leads to the problem of determining the

effect of interference between overlapping wavepackets. In

general the sum of the energies of two wavepackets is not

equal to the energy of the sum of the wavepackets. If the

wavepackets are identical the latter is twice the former

while if the second wavepacket has opposite sign to the

first the latter is zero.
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5. Asymptotic Stability and Convergence Analysis I

5.1 Theory

In addition to the asymptotic approximations in

chapter 3 this chapter assumes that M=2 and there is one

boundary condition at both j=O and j=J and if *j is real at

j=O then $0 and 02 are real over the whole domain.

Examples of methods satisfying these conditions are

the trapezoidal method applied to the model convective

problem with variable CFL number r, and the backward Euler

method applied to the model convective problem with constant

CFL number. Methods which do not satisfy these conditions

include Lax-Wendroff and Runge-Kutta type schemes. For

these methods the general stability analysis of chapter 6 is

required.

As explained in 13.1 a standard Fourier series

analysis of the problem with constant coefficients and

periodic boundary conditions shows that the eigenfrequencies

are n(O) where 0 is a real wavenumber satisfying the

periodic boundary conditions and Q($) is the corresponding

frequency g-iven by the dispersion relation.

The common use of a Fourier series analysis to

predict the stability of problems with non-periodic boundary

conditions implicitly assumes that for real wavenumber 0,

a(0) is a close approximation to an actual eigenfrequency.

This chapter follows that assumption, calculates a

correction Q' to this ($) due to the boundary conditions,

and then determines the validity of the assumption for this

particular class of methods based on the asymptotic errors.
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For real $1,$2 and the corresponding complex 9 the

general solution is,

= A,(j,n)
0 * di A)n IN d j

exp i f d -ni + A2(j,n) exp i f2 d9
0O (t

where the amplitudes A, and A2 satisfy the asymptotic

amplitude equations

'm+ (r ) -AM= e A m=1,2
3n g m aj m m

and boundary conditions

b1 (2,( 1 ) A,(0,n)

b 2 ( , f1 ) exp

+ b 2 (a10 2 )

A linear

time-independent

+ b (,1 2 ) A2 (O,n) = 0

A, (J,n)01 dj

ex i

0
*2 dij A 2 (Jn)

system of finite

coefficients and

= 0

difference equations

boundary conditions h

eigenmode solutions of the form,

Un = (U ) exp(-in )U.SJ (5.5)

where a is the complex eigenfr.equency and U is

time-independent.

Suppose the frequency 0 in (5.1) is close to .

Define a ' by

(5.6)a = a + a,

Thus equating (5.1) and (5.5)

U
J

(n5

(5.2)

(5.3)

(5.4)

with

as



exp(-in') =

A, (j n)

so A,(j,n)

exp
j

40
= exp(-ing')

A 2 (j,n) = exp(-ini2')

and

(U ) = A 1 (j,0) exp i

j

40

+ A 2 (j n) exp K

A, (j ,0)

A2 (j ,0)

d3*1 + A 2 (j ,0)

Substituting (5.8),(5.9)

I rr
g m

A (jo)m

which can be integrated to give

A (JO) A (0,0) exp +
m m r

0 g )m

into (5.2) gives

m= 1 t 2

dj]

The boundary conditions

matrix form

(5.3),(5.4) then become in

B A 0

A
where A =

IA2

and

B2

B2 2

= B

B = I

%B 2 1

B b (0,
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(U )

j

0(02 (5.7)

(5.8)

(5.9)

d3

,1

-- [A (j,0)]
aj m

exp i

0

(5.10)

(5.11)

(5.12)

(0,0)

(0,0)]

(5.13)

(5.14)

(5. 15a)

(5.15b)
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B 1 2 = bj(a,02)

B2  = b2( ,01

B 2 2 = b 2 (2,02 )

exp i

exp i

J

0

J

4

01 dj]

02 dj
d

exp

exp

J

0

J

4

C + iQ

9

g
(+

A non-zero solution A of (5.13) exists if, and only

det B = 0

Hence

J

0

b2 U 2
b 2 (a 01 )

r (0,j)

b, (a 0 exp

the right hand side of (5.17)

its magnitude

b2
b2

( 2 2
(a,) 01

b, (a,05 )
b, 1 (, 2

multiplied by a phase factor

J

exp Re
g) 2

exp(i )

can be expressed

g i dj

where

barg " _bj (9 , 0) +1

0
02 -1 dj

If '01, 2 are chosen so that T/21 is an integer then

(5.17) reduces to

(5.15c)

dj]

di]

if,

(5.15d)

(5.15e)

exp ia'

(5.16)

- [ r 2 ,j) ]'I dj

J

0
2 - 1 dj] exp

J

0 g i

I
r- C.g) dj

gI

(5.17)

as

+ Im

0 g) 2
dj

IrgJ-g I

(5.18)
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2' = - ln b,0) b1 (1,t, ) + Re -
N b2 (o,*) b(2,$ 2  r

b2( 0 cg a

(5.19)

where as defined in chapter 4,

N = [ r (01,j) ]-1 - [ r ($ 2 1 j) ]-I dj (4.18)

0

The stability criterion is

Im(a ) = Im(O + 1') < 0 (5.20)

Thus the frequency Q resulting from a normal Von

Neumann analysis is corrected by an amount Q' due to

boundary conditions and variable coefficients. This

approach, using a as an initial approximation to 12 the

actual eigenfrequency, is valid provided the asymptotic

errors are small compared to a'.

The asymptotic error is O( LC A- 2 O( L C, 2 12

J
Now N = 0 -

r
g

so if r << J then N >> 1
g

and hence a' << 1 except near frequencies for which

b2 'Q,(P ) b, (n ,II_)
b2 (0101) bs (n01)

is zero, or infinite, which usually occurs at 2=0. However

these frequencies are heavily damped by the boundary

conditions and so an accurate estimate of their

eigenfrequencies is not essential. This method gives

accurate asymptotic values near the critical frequencies

which are least damped and which therefore determine the
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overall spectral radius of the scheme.
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5.2 Example

This example is the Backward Euler method applied to

the model convective problem with constant CFL number r and

space extrapolation at the downstream boundary.

The dispersion relation is

exp(ig) - 1 = ir sin(o) (3.63)

so if 01 is real, 02 = w - 01 is also real

b, (Qt ) = 1 (3.82)

(3.88)b 2 (2,$) = 2i exp(-io/2) sin(0/2)

so b2 (Q,01 )
b2 (a01 )

b (g,$l)
b, (0,02 )

exp[-i(02 -0 )/21

= exp[-i(0 2 -0 1 )/2]

sin(o,/2)
sin(-01/2)

cos (o /2)
sin($1/2)

cot(o1/2)

Since ar 0 ,

Hence T = -($

e =0

- 01)/2 + J(0 2 - 01)

= (J - 1/2) (w - 201)

7/21 = n, where n is an integer, implies

01 = w/2 - 21n / (2J-1)

The group CFL numbers are

= r cos(o1 ) exp(-iQ)

= r cos(0 1 ) / (1 + ir sin(o 1 ) )

(5.21)

r (01)

(5.22)

(5.23)
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= r cos(0 1 )(1 -

= - r cos(01 )(1

ir sin(01 )) / (1 + r2 sin2 (( 1 ))

- ir sin(O 1 ))/(1 + r2 sin2 (0 1 ))

Hence,

ir cos( 1 ) (1 - ir sin(0, ))

2J ( 1 + r2 sin 2 ( I)

exp[-2 Im(fl)) = I exp(in) 12

= 1 1 + ir sin(o 1 /2)

= 1 + r2 sin 2 (0 1 /2)

so Im(S2) 1= - in [ 1 + r 2 sin2 (0 1 /2)

Hence

Im( a + 2' ) 1
2 - in [ 1+ r 2 sin2 ($1 /2)

r cos( 1 ,/2)

2J(1 + r2 sin2 (0 1 /2)

Define the decay rate a

in [ cot($ 1 /2)

to be

a = - Im( a + a'

For small $ < 1

a r 
- 22

da

da
Thus dO*

+ in(2/$)2J

r2 r (
2J

0 at $ = (2rJ)~

so min a(O). - + - ln(8rJ)
43 43

The spectral radius X is

r (02)

(5.24)

(5.25)

in (cot( 1 /2) (5.26)

12

(5 .27)

(5.28)

I

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

I

I
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X = max exp(-a)

max (1-a)

1 - - 1 + ln(8rJ) (5.35)
4J

16.2 continues this example proving rigorously that

every eigenmode is stable, and deriving an asymptotic

expression for the decay rate of the eigenmodes near 0,=0,

showing as expected that the decay rate is greater than the

minimum decay rate obtained above and so the above analysis

is valid in calculating the spectral radius.
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6. Asymptotic Stability and Convergence Analysis II

6.1 Theory

This chapter continues the analysis of chapter 3

without any additional assumptions or approximations. The

eigenmodes of a linear system of finite difference equations

with time-independent coefficients and boundary conditions

vary exponentially with time so a general eigenmode can be

written as

n = exp(-inQ) A/ d| (6.1)ex. AY)ep. ~
m=1 0

Note that the amplitudes A are independent of n.

The time evolution of the eigenmode is contained solely in

the term exp(-ing). The complex amplitudes Am each satisfy

their asymptotic amplitude equation,

r --m = A (6.2)
g 3j m

so A (J)= A (0). exp f (rJdj (6.3)
m m r

denotes evaluated at $
rg)m r g m

Now that A (J) is related to A (0) the M asymptoticm m
boundary condions can be written in tensor summation form as

B A = 0 (6.4)
km m

where A = A (0) (6.5)
m m

and
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th
b. (9,O ) if the k boundary condition is applied

K m

B = at j=O
km'J

bk (0l0m) exp (r + i$ dj (6.6)

' 0 g) m

if the kth boundary condition is applied

at j=J

The term bkU(IO) exp i m dj comes from (3.77)

0

and the term exp t ()J dj is the factor relating Am

'0 Idm

to A (0) in (6.3).
m

A non-zero solution to (6.4) exists if, and only if,

det(B) = 0 (6.7)

Since all the elements of B are implicit functions

of 9 this is the equation which determines the

eigenfrequencies.

If the coefficients are constant all of the A are
m

constant and so there are no asymptotic errors. The theory

is then exact and is identical to the P-stability analysis

of Beam, Warming and Yee (5]. If the coefficients are

variable the asymptotic error is of order O(L -2,J-'LC 1)

The O(LC-2 ) comes from neglecting second derivatives of Am

and $ in the asymptotic amplitude equations. The O(J-'L C)

comes from neglecting the first derivatives of A and * in

the asymptotic boundary conditions.

For all but the very simplest problems it will be
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impossible to solve (6.7) analytically to obtain the

eigenfrequencies. Three possible numerical approaches are

outlined below.

6.1.1 Iterative Solution

Suppose 0n is a good approximation to an

eigenfrequency a and

an+1 Q n + ,n

is to be a better approximation

(6.8)

The terms in the definition of Bkm
J

rapidly with variations in 0 are exp

which change most

iS dj since thesem
0

are oscillatory functions because Im usually has a real

component of order 0(1).

30 (3a)

= rg) 1 (6.9)
\ /m

n+1 n (-1
Hence m n n + ()- An (6.10)

m m m

Subscript m means evaluated at Sm'I

Superscript n means evaluated at n n

Thus

exp if 0n+1 dj u exp i$ n dj exp ian (r d j (6.11)

0 10 0

Define
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n n th
b (1 O n ) if the k boundary condition
k

is applied at j=0

Bn
km bk (12n ) n + exn dj exp iA2 r n n dj

k) ,nr m gm
0 gm 0

if the kth boundary condition is at j=j (6.12)

Then choose AQ to be the smallest root of

det(B n) = 0 (6.13)

The method in chapter 5 performs one step in this

iterative procedure. As explained in chapter 5 the

asymptotic error remaining after a correction Aa is

0( A-2 ,L -2). For constant coefficients this gives
C

quadratic convergence to the true eigenfrequency. For

variable coefficients it will converge to a frequency which

differs from the true eigenfrequency by an asymptotic error

of order O(L 2 .

The solution procedure will fail as described in

chapter 5 near frequencies for which bk ' m) is zero since

the fractional variation in bk (S,0 ) is comparable to, or

may exceed, the fractional variation in exp [ i0 dj].

0
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6.1.2 Newton-Raphson Solution

The Newton-Raphson solution procedure is

n+1 n det[B( n), (6.14)

det[B(Un),

Although this seems straightforward there will be

problems in practice because det(B)=O has many roots and so

det[B(n )) has many zeros near which the Newton-Raphson

iterative procedure is badly behaved.

6.1.3 Stability Domain Method

If z is defined as

z = exp(i ) (6.15)

then the condition for stability is that det(B) has no zeros

in Iz( < 1. In very simple cases this criterion can be

tested analytically (an example is given in 6.2). In more

complicated cases because det[B(z)] is an analytic function

of z the 'Principle of the Argument' method outlined in

appendix A.2 can be used to find whether det(B(z)] has any

zeros in |zi < 1. To find the spectral radius X the same

method can be used to find the largest X for which there are

no zeros in IzI < X.
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6.2 Example

The example is the Trapezoidal method applied

the model convective problem with constant CFL number

space extrapolation at the downstream boundary.

to

r and

The dispersion relation is

tan(9/2)

Define K

z

= exp(

= exp(

= sin($)
2

i~)

-ia)

tan(Q/2)
1 exp(ia/2)
i exp(ia/2)

- exp(-ig/2)
+ exp(-ig/2)

1 - exp(-io)
i 1 + exp(-in)

1 1-z= - ---
i 1+z

sin(I) =
1
-I- [ exp(il) - exp(-il) I
2i

1
2i

Thus the dispersion relation becomes

1-z 
r

1+z 4

Note that if

other solution.

K, is one solution then K2 = -KI is

The condition for stability is that

< 1 for all eigenmodes.

Let z = R exp(iO) R,8 real, R > 0

Then 1-z 1 - R exp(i)
1+z 1 + R exp(iS)

[1 - R exp(iO )I
El + R exp(i) H

(1 + R exp(-iO)I
[1 + R exp(-iO)I

Then

(3.41)

(6.16)

.(6.17)

(6.18)

(6.19)

the

I z

(6.20)

(6.21)
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i) Stability domain for z

i:

r111/

~~1

ii) Stability domain for

/+

iii) Stability domain for K

/

r
1

i

FIGURE 4. STABILITY DOMAINS : SHADED REGIONS ARE STABLE
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M
1 - 2iR sin( ) - R2
1 + 2R cos(a) + R2

(1 - R2 ) - 2iR sin(e)

[1 + R cos(e)] 2
(6.22)

+ (R sin(G)] 2

Hence R < 1 => Re > 0
1+z

R > 1 => Re < 0
1+z

Thus if r is positive then R = I zi < 1 if, and only

1 -z
if, Re 1-z > 0

Now let K

<i=> Re(K -K-']

= R exp(i9)

> 0

(6.23)

- iR sin(9)= R cos(e) + iR sin(8) - R-1 cos(e)

= (R - R-')

so IzI < 1

cos(M) + i(R + R-1) sin(B) (6.24)

<==> Re[K-K-11 > 0

either R > 1 , -r/2 < 8 < w/2
or R < 1 , r/2 < 9 < 3w/2

Figure 4 shows the stability domains

different variables.

for the

The upstream boundary condition has

bi = 1

The downstream space extrapolation has

b
2

= 1 - exp(-iQ)

Hence B = 1
exp(iJ 1)[1-exp(-i$j)]

1 1

(-K-' ) J(1
(6.25)

+ K) 3

(3.82)

(3.88)

1 3

K - K I

,K 1(1
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det(B) = 0 implies

DC2J-1 (J 1) (-1) (K + 1) = 0

K+1 J 2J-1
>= (-1) 

Consider the two instability regions

in figure 4 iii).

In region I IK + 11 > IK - 11

so > (1) K2J-1
K K-1 1

In region II |K + 11 < IK - 11

so < (-1) K2J-1K K-1 1

(6.26)

(6.27)

I and II marked

and I KI > 1

and I KI < 1

Hence there are no possible solutions of (6.32) in

the two regions of instability. Every eigenmode is stable

and so the method is stable. This example is a special

example taken from a more general result, proved by Beam,

Warming and Yee [5], that the class of A-stable Beam-Warming

multistep methods with qth order space extrapolation at the

downstream boundary is stable.

Continuing this example asymptotic decay rates for

small 0, can be derived.

01 2 0 => K 1

Let K = 1 + 6

Equation (6.31) becomes

(1 + 6) 2J-1 (- ) (2 + 6) = 0

Now lim (1 + ) = exp(x)

(6.28)

(6.29)

(6.30)

so provided J >> 1 >> 6



(1 + 6) 2 a exp(2JS)

Hence exp(2JS) 6 -' (2 + 6) (1 + 6)= 2 (-1)

= 2 (-1) 6-1

If J is even this has a solution for

2J6 u ln(2/6)

so 6 1 ln(2/6)
2J

1 ln 4
2J ln(2/6)

ln(J)- + terms
2J

of order O(
ln[ln(J)]

3

Since K = exp(i*1 )

= 1 + io

= -id

i ln(J)
2J

Linearising the dispersion relation about *=O gives

a = r ,

- ir ln(J)
2J

The asymptotic decay rate is

a =r ln(J)
2J

If J is odd the smallest 6 solutions are

r ln(J) t Ti
2J 2J

and the decay rate is the same.
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(6.31)

real 6

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

)
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7. Assorted Examples and Further Developments

7.1 Instability of Backward Euler with Spacetime Extrapolation

Consider the Backward Euler method applied to the

model convective problem with constant CFL number r on

domain 0 < j < J with space-time extrapolation at the

downstream boundary and J >> r >> 1.

The dispersion relation is

exp(ia) - 1 = ir sin(O) (3.63)

The upstream boundary has

bi = 1 (3.82)

The downstream boundary with space-time

extrapolation has

b2= 1 - exp[i( -o)] (3.94)

The eigenfrequency equation, det(B)=0 reduces to

exp(iJO,){1 - exp(i(Q-$1 )]} = exp(iJ0 2){1 - exp ia-0 2)JH
(7.1)

Because $2 r- O, this can be written as

exp(2iJ$1 ) (1 - exp(i(a-$1 )]} - (-1) (1 + exp[i(+0)J} = 0

(7.2)

This and the dispersion relation form two equations

in the two unknowns 9 and 01. considering only the case in

which J is even, one eigenmode is given by,

a = r + a' 11' < W (7-3)

so ir sin(o 1 ) = -2 - ia' + O(a,2) (7.4)
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* - 2i - A + H.O.T. (7.5)
r r

Substituting into (7.3) with O'=0 gives

exp(-4J/r) {1 + exp(2/r)} - 1 + exp(-2/r) = 0 + H.0.T. (7.6)

Expanding the exponentials under the approximation

r >> 1 this reduces to,

J = ln(r) + H.O.T. (7.7)
4

For a particular even value of J the value of r

satisfying (7.7) makes this eigenmode asymptotically

neutrally stable. To find whether increasing r makes it

unstable or not (7.2) is differentiated by r.

d0
2iJ -- exp(2iJ$1 ) {1 - exp(i(O -

dr

+ exp(2iJO1 ) i- - i - expi( - )
dr dr

- -I + i -- exp i(a + 1 )] 0 (7.8)
dr dr

This is evaluated at 9'=0, J = ln(r) so
4

ln(r) 1o - { -i + + --. } 0 +H.O.T. (7.9)
dr r dr dr dr dr

dQ2 d
Hence dr-- ln(r) + H.O.T.

dr dr

2i ln(r) + H.O.T. (7.10)
r2

As r increases from the neutrally stable value,

Im(Q) becomes negative so the eigenmode becomes unstable.

Thus this eigenmode is stable only if

r
Z ln(r) < J
4

In numerical experiments it is found that this is
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the least stable eigenmode and so this condition is both

necessary and sufficient. The condition is asymptotically

equal to an exact stability condition derived by Beam,

Warming and Yee (5].
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7.2 Optimum CFL Number For Trapezoidal Method

Consider the Trapezoidal method applied to the

model convective problem with constant CFL number r on

domain 0 < j < J with space extrapolation at the downstream

boundary.

The dispersion relation is

tan(U /2) = sin(o) (3.52)
2

The upstream boundary condition has

bi = 1 (3.82)

The downstream boundary has

b 2  = 2i exp(-i$/2) sin($/2) (3.88)

Following the stability analysis of chapter 5, e=0

since r is constant, and the group CFL numbers are given by,

r = r cos(o1 ) cos 2 (0/2) (3.47)

r = r cos($ 2 ) coS
2 (/2)

= - r cos(01 ) cos.2 (0/2) (7.11)

so ' = arg ( by 2,$ ) + (02 - 01 dj
b,- (Q0 2 ) b, (Q0 2 ) f

0

+ Imf- dj (5.18)

0 2

= (J-1/2) ( 02 *1 )

= (J-1/2) ( T - 2$1 ) (7.12)

T/2r = n where n is an integer implies



I 2irn
1 2- - 1

a' = - A
N

= -

[ln b2 (n 102 )
b 2 ( " 0 2)

ln[ sin(02 /2) /

b1 (S,$j )
b1 (Q,$2 I

+ Re (r g)
0 2

sin($ 1 /2) I

= - ln[ cot(0 1/2)N

J
where N = f rg(Oij)]' - [r ($ 2 ,j)].'

0
dj

2J

r cos( L) cos 2 (S/2)

The

a =

decay rate a was defined as

- Im( 9 + n ' )

ra--cos($1 ) cos1 (n/2) ln~cot($ 1 /2)]

r cos(0,1 ) ln[ cot(0 1 /2) ]

2J C 1 + tan 2 (9/2) ]

2r cos(O.) In( cot(01 /2) I
J [ 4 + r2 sin 2 ( 1 ) ]

Figure 5 shows the dacay rate a

for various vlues of $.

as a function

When a system of finite difference equations

solved using a time-independent approach to a steady

solution, usually the initial conditions and the fina

solution are smooth so the initial error is smooth i.

error is predominantly in the low wavenumber, long

wavelength eigenmodes. For this problem suppose that

81

(7.13)

- d j

(7.14)

(5.20)

(7.15)

(5.30)

(7.16)

of r

is

state

1

e. the

the
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initial error is in the wavenumber range 0 < 0 < $* where $,

is a constant, $0 < 1/2

3a 2r sin(O) 2r 2 sin(s)cos2 (0) ln(cot(0/2)]
31 - J 4 + r2 sin 2 ( +) [4 + r2 sin2 ( ) 2

+ cos($) < 0 (7.17)
sin(O)[4 + r2 sin2 (g )

so over the range given above a has a minimum at 0, . To

maximise the overall rate of convergence the CFL number r

can be changed by altering At.

3a = cos(O) ( 4 - r2 sin 2 (0 ' ln(cot(0/2)] (7.18)
3r 2J [ 4 + r2 sin2 ( )

> 0 for 0 < r < 2/sin(0)

< 0 for 2/sin(O) < r

so a(o,) is maximised by choosing

r = s (7.19)
sin(O.)

The smoother the initial error the lower the value

of 0. and the higher the optimum CFL number. If the initial

error is not at all smooth with 0. approaching T/2, the

optimum CFL number drops down towards 2.
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7.3 Discontinuous CFL Number In Trapezoidal

Consider the

the model convective

following Trapezoidal method applied

problem.

2 t x
+

2 t x j
= 0 (7.20)

Suppose that

r
r. -

J r +

r is discontinuous

j < 0

j > 0

On the two sides of

solution of frequency 9 can

the discontinuity a general

be written as,

(j,n)exp[i(jO 1 -nQ)]

(j,n)exp(i(jO,-nQ)]

+ A 2 (j,n)exp[i(j$ 2 -nQ)]

+ A,,(j,n)exp[i(j$.-nQ)]

OIL and 02 satisfy the dispersion relation

tan( Q/2)
r

= -
2

with 0 2 = I - 01

and 0 < Re( 1 ) < w/2

*, ard 0, satisfy the dispersion relation

tan(9/2)

with *,

r
r + sin(0)

= IT - $

and 0 < Re( ,) < ir/2

Method

r

to

nU . =

A,

j < 0

(7.21)

j > 0

(3.52)

(3.52)
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The amplitudes A1 , A2 are related to A, , A. at j=0

by two equations. The first comes from the requirement that

the two expressions for U. are equivalent at j=O.
J

Thus Al + A 2 = A, + A, (7.22)

The second requirement is that

n 2 n '
+ 1 r + - r 0

t 2 j-t t x 2 j+j t x a
(7.23)

which implies

E6 +r 71~~n+l. (~+[ +r 7] -t nt + t ]t + t x 0 t +r+V t Ax

n+,L
U 2
0

(7.24)

The left hand

first expression for
n

involves U. at j=0,1
J

Neglecting derivative

equation is,

A,{ -2i.sin(9/2)

+ A 2 { -2i sin(n/2)

= - A,{ -2i sin(Q/2)

- A4{ -2i sin(n/2)

Substituting

relations and using

nside involves U. at
n i i

U is used. The right

j=0 ,-1

hand s

the second expression

so the

ide

is used.

f the amplitudes the resulting

cos(U/2)(1-exp(-i$1 )] }

cos(n/2)(1-exp(-i02 )1 I

cos(n/2)(1-exp(-i$,)j }

+cos(/2)(1-exp(-i0,)] }

tan(n/2) using the dispersion

exp(io) = cos(o) + i sin()

this reduces to

r_ A, 1-cos( 1)] + A 2 E1-cos(0 2 )1 I

= r +{ A, [1-cos( 3f)] + A, (1-cos(,)]

(7.25)

(7.26)

(7.27)
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In the general problem the two equations relate the

amplitudes on either side of the discontinuity at j=0. Now

consider the particular problem in which o, 02 0 03 , 04 are

all real and A. is zero. This is the situation when a

wavepacket with wavenumber 01 , and positive group CFL number

travels from j<0 to the interface at j=0 producing a

transmitted wavepacket with wavenumber 03 and positive group

CFL number and a reflected wavepacket with wavenumber 02 and

negative group CFL number. The reflection coefficient R and

transmission coefficient T are defined by,

R = A 2 / A, (7.28)

T A 3 / A,

Since AO,=

A1 + A 2 = A 3

(7.29)

(7.30)

so r {A1 [1-cos($ 1 )] + A2 [1-cos(0 2 )]} = r+[Al +A 2 II1-cos($ 3 )]

Hence R = -
r [1-cos(

r E1-cos(

(7.31)

(7.32)
(03)]

($3)1

and T = 1 + R

r [1-cos($ 2

r [1-cos($ 2

- r l-cos($ 1 )]

- r+[ 1-cos($ 3 )]
(7.33)

01

02

- r (1

- r +[
)]-

-cos

-cos
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8. Assorted Loose Ends

8.1 Degeneracy

So far in this paper it has been implicitly assumed

that no two eigenmodes have the same frequency 9 and

wavenumber Q. This section considers the degenerate case

in which this happens. An example is the Trapezoidal

method. The dispersion relation is

r
tan(9/2) = i sin(o) (3.41)

which has wavenumber solutions 0 and 0 = i-, . These are
2

identical when

$1' = $2' = ir/2

which occurs at the degenerate frequency Q' given by,

tan(U/2) = r
2

(8.1)

(8.2)

Note that r
g 30 j const

= r cos(') cos 2 (S'/2)

= 0 (8.3)

This is characteristic of degeneracy because in the

neighbourhood of the double zero

Q - a' = a( 0 - 01)2 , a = constant

r = --

= 2a( 0 - 0')

-0 at =0

For a # 0' the general solution for constant r is

so

(8.4)

(8.5)
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U. = Aiexpti(j 1 -ng

Consider the limit

0 - 0' t

so 01 - I' M - ( 02 - 0')

Hence Aexp(ij0 1] + A 2Eij0 2J

)] + A2 exp[i(j 2 -nQ)] (8.6)

approaches n'

(8.7)

(8.8)

Sexp(ij0'] { Aiexp(ij(o 1 - 0')) + A2 exp[ij(0 2 - 0')] }

= exp ij ' ] Aexp ij(0 1 - 0')] + A.exp ij(0'- 01)] 

= exp[ijo'] { (A 1 +A2)cos j($ -$')] + i(A1 -A 2 ')sin[j(01 -0')] }

a exp ijo' { A, + A,0 j }

where A, = A, + A 2

and A, = i(A1 - A 2 ) (01 - 0')

If A, and A.,

the limiting process

eigenfunction is,

are

the

UT (A, + A,j )
)

now considered to be constants in

general form of the degenerate

exp(i(jo'-nf')]

Another way of deriving

asymptotic amplitude equation.

time-independent, r

largest term is the

this

With

(8.12)

result is through the

the amplitude A

constant, and r equal to zero the

second order derivative of A so,

32 A

3j 2

which implies

(8.13)

(8.14)A = A, + A, j

In all the examples I have analysed I have not yet

(8.9)

(8.10)

(8.11)
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found a degenerate eigenfunction which satisfies the

asymptotic boundary conditions and so is a degenerate

eigenmode. The degenera'te frequency does however satisfy

the determinant condition

det(B) - 0 (6.7)

because two of the wavenumbers are equal so their columns

are identical and B is singular. This is not a problem in

the stability analysis because the separation of

eigenfrequencies, using the result from chapter 5 , is

approximately,

- 2ir [r ($0 ,j)]' - [r ($ 2 ,j)]"' dj

S0

0 as 0 + '

so there is usually a true eigenfrequency which differs

from the degenerate frequency by less than the overall

asymptotic error.
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8.2 Eigenmodes anid Eigenfrequencies

In chapters 5 and 6 it was stated that the

eigenmodes of a linear system of finite difference

equations with time-independent coefficients and boundary

conditions vary exponentially with time. This section

outlines the proof.

n n
Let U. - z V. (8.15)

J )

If the domain is 0 < j < J then there must be J+1

finite difference equations so V. satisfy

J

C V M 0 (8.16)

where V is the J+1 vector of V. elements and C is a (j+1)2

matrix whose elements are polynomials of z.

For there to be a non-zero solution requires

det(C) = 0 (8.17)

This is the equa-tion that determines the eigenvalues

z of the eigenmodes. Apart from the problem of possible

degeneracy the only remaining difficulty is to show that the

number of eigenmodes equals the number of independent

initial conditions needed to start a numerical solution.

For the Backward Euler method with space extrapolation at

the downstream boundary there are J-1 independent initial

conditions since

0
0 0 (8.18)

0 0
and U = U0 (8.19)J J-1
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r .z/2

z-1 rz/2

-r z/2 z-1

1

r z/ 2

-1

(8.20)

so det(C) is a polyn

eigenmodes. Thus any

eigenmodes which vary

omial in z of degree J-1 giving J-1

solution can be expressed as a sum of

exponentially with time.

1

-r 1 z/2

C =

z-1

-r2 z/2

r, z/2

z-1

-r, z/2

K



92

8.3 Other Asymptotic Approaches

One approach which can be used when the variation

in coefficients is extremely small is to let,

UT = A(j,n) exp(i(j -nO)] (8.21)

where 0 and $ are both constant and satisfy

a=(,$,j) 0 (8.22)

at some point j.

The asymptotic amplitude equation is then

aA 3A
aA + a, - + a 2 - = 0 (8.23)

where a,, a, and a 2 are defined and calculated as before.

L = minA/ --3AA ~ a

= 0 (a 2  / a.) (8.24)

so the fractional error using this method is 0 (a,/a 2 )2.

If the variations in the coefficients are small this is fine

but if the variations are O(1) the fractional error is O(1)

i.e. the method fails to give accurate asymptotic

approximatioi-s. The asymptotic approach used in this paper

allows total variations in the coefficients of O(1) and only

requires that the length scale of those variations is much

greater than 1.

Another approach is to set

n
U. = A(j,fn) exp(iF(j,n)] (8.25)

with = (8.26)
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and - = - a (8.27)
3n

and A, Q, I are all real and slowly varying. This approach

is used extensively in the analysis of water waves and other

partial differential equations with dispersion and very

little dissipation. This approach applied to finite

difference equations would'give poor results because

dissipation over one time step is 0(1) so if n is real A

reflects this dissipation and so T = 0(1). The method
A

presented in this paper is able to use constant complex n

rather than variable real a as in the above method because

the eigenmodes have constant complex eigenfrequencies

provided the finite difference equations are

time-independent.
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9. Wavepacket Test Program

9.1 Program Descrition

The program solves the model convective problem,

au au 0 91-+ c-= 0 (9.1)
at 3x

using a choice of Box or Trapezoidal methods on the domain,

o < j < 200 (9.2)

and time step range,

0 < n < 400 (9.3)

The CFL number

c.At
r. = (9.4)

j Ax.
J

is specified by the user at J=0,200 and the program

interpolates for intermediate values by fitting an

exponential curve through r 0 and r 2 0 0.

r(j) = r0 exp j ln(r2 0 0 /r 0 ) (9.5)

Methods 1-3 are different Trapezoidal methods which

are identical if r is constant. For these methods the

program offers a choice of space extrapolation, space-time

extrapolation or box condition as the downstream boundary

condition. Method 4 is the Box method. The wavepacket

theory for each of these methods is derived in the next

section.

The upstream boundary condition is,

n
Un = 0 (9.6)

The initial conditions are given by,
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x200

and X(n) E n)
0

200

E(n)
0

IU(xt )12 x dx

1 2dx
IU(j,n)12  x(j) dj

d3

so since U is discrete X(n) and E(n)

200

E(n) =

j=0
IUnI2 a

J J

200

X(n) = 1 20
E (n)

J0

IUn12 x. a.
J ) I

1
where a. = -(xj+ "-1

variati

(9.14)

are defined as,

(9.15)

(9.16)

(9.17)

In the program c is taken to be constant so

ons in r are due to variations in Ax.

(9.18)Ax = C t
r

so x j+1 - -1 r

A physical domain 0<x<1 is used so,

x. V r. -i
SJ -

k=1

200

k=1r. >
k= 1

After completing the 400 time steps the program

calculates predicted values for X(n) and E(n) using the

wavepacket equations derived in the next section with the

experimental values at n=1 as initial conditions.

(9-19)
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9.2 Theory

. Method 1 is a Trapezoidal method which

order accurate in Ax only when Ax is constant.

is second

r

t + 2 t
6 ] U

2x j

2cAt
r. = 2cat

3 j+1 ij-i

Following the analyses of

a. = -2i sin(U/2)

a, = cos(9/2) + r

a2 = r cos(I/2) c

-
a, = - cosU0/2)

chapters 3 and 4,

+ ir cos(0/2)

sin(n/2)

sin() )

sin( $)

os(I)

sin ( 0

The dispersion relation is

tan(0/2)

so a. =

r
=- sin()

0

and a, = cos(9/2) +

cos 2 (/2)

sin(a/2) tan(n/2)

+ sin 2 (g/2) ) / cos(Q/2)

= sec(Q/2)

r = a 2 / a.

dO
dn

= r cos($)

aj 1,

cos2 (S2/2)

o const / al

= 0 (9.20)

(9.21)

(9.22)

(9.23)

(9.24)

(9.25)

.(9.26)

(9.27)

(9.28)

(3.26)

(9.29)

(4.4)
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ar- - sin(P) cos 2 (2/2)

= -ia ( , a .) const

- - -a cos' (2 /2)
2 3

/ aI a2 - a. / a,

sin($) tan()

Since a is proportional to

1 aa

so
a aj

1 3r
r 3j

a(r a)
g

(r /r)
g

- r sin() c

- r sin(0) c

-- cos 2 (/2)aj

os2 (0/2)

os 2 (0/2)

sin(l) tan(l)

Hence the eqations of motion for the wavepacket for

real Q and o are,

A i
= r cos(O) co

dn

d P - 3r sin( ) 0
dn a

d
-

s2 (Q/2)

cos 2 (Q/2)

ln(E) = 0

Method 2 is also

second order accurate in

r A

t 2 t x

a Trapezoidal method which is

Ax only when Ax is constant.

r

+ - , V2 t x ]n+j2L
i

(9.30)

(3.30)

(9.31)

(9.32)

aj

3a
i -a / a.

(9.33)

(9.34)

(9.30)

(9.35)

= 0 (9.36)



cAt
r -

j+1 j

1
a. = -2i sin(U/2) + 1 cos (SI/2) r (exp(i$)-1] +

r. [1-exp(-i0)]

1 1
= -2i sin(9/2) + - cos(a/2) r + 1

2 ((r 2

(r. - 1 ar )[1-exp
j 2 3j

= -2i sin(Q/2) + ir cos(n/2) sin(O) +

1 3r cos(9/2)(cos( )-1]
2 aj

ar
-j )[exp(ii)-1]+

)] ) + H.O.T.

H.O.T. (9.38)

The H.O.T. are neglected because they are of the

same order of magnitude as other terms already neglected

the derivation of the asymptotic amplitude equation. To

this same level of asymptotic accuracy a,, a2 and a, are

exactly the same as in the analysis of method 1.

The dispersion relation remains,

r
tan(U/2) = - sin(l) (9

1 arso now a = - -- cos(0/2)
2 3j

Afte- some algebra

motion are,

(cos ($ )- 11 (9.39)

it follows that the equations of

n= r cos(O) cos 2 (/2)

do 1 3r
-=- - -- sin($) cos 2 (Q/2)
dn 2aj

d 3r
--ln(E) = ~-- [1-cos($)] cos 2(S/2)

Method 3 is a Trapezoidal method which is second

99

(9.37)

in

.26)

(9.40)

(9.41)

(9.42)



100

order accurate in

(r j+) 2

t r +r

Ax for cases with

r )2

t x r. + .

The dispersion relation is

1 and 2 so after some algebra,

and the

smoothly varying Ax.

g v ] U. 2 = 0 (9.43)
t x j

the same as for methods

a. = cosU(9/2) (cos(O)-1]

equations of motion are,

-1 r cos(O) cos2 (0/2)
dn

- 3 sin(0) cos 2 (0/2)
dn 3j

d n(E) = 2 [1-cos($)] cos 2 ( 0 /2)

(9 .44)

(9-45)

(9.46)

(9.47)

When the wavepackets of methods 1-3 reach the

downstream boudary at j=200 they are reflected into

backward travelling wavepackets. The energy -E2 and the

wavenumber 12 of the reflected wavepacket are related to

the energy E, and wavenumber $L of the incident wavepacket

by the equations,

02 = r - 01

ln(E 2 ) = ln(E, ) + 2 In IR i

(9.48)

(9.49)

where R is the amplitude reflection coefficient.

For space extrapolation (see 3.5.2)

sin(O,/2)
IR I = s ( /J sin(02 /

2 )

= tan(I 1 /2) (9.50)
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For space-time extrapolation

|R |

(see 53.5.3)

sin[((O,-Q)/21

sin((2-0)/2]

For the box boundary condition (see 93.5.4)

cos (01 /2)

cos(02/2)

tan (0/2)

tan(Q/2)

- r sin(0 1 /2)

- r sin(0 2 /2)

= tan3 (0I/2)

after substituting for tan(U/2) using the dispersion

relation and replacing (02

The reflection relations at the upstream boundary

(01 = 1 - 02

ln(E1 ) = ln(E 2 )

since R0= -1 (see 3.5.1)

Method 4 is the Box method discussed in

C 1x6t + t x j U

The dispersion relation is

tan( 0/2) = r tan(W/2)

and the equations of motion for the wavepacket are,

di

dn

dn
-n 2

r [ 1 + tan2 (0/2)

3r
- tan(0/2)aj

] cos2 (9/2)

cos2 (0/2)

IR iJ
=

(9.51)

by w-0 1 .

(9.52)

are,

(9.53)

(9.54)

= 0

3.3.2

(9.55)

(9.56)

(9.57)

(9.58)
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ln(E) w -2 - tan2 ($/2)dn aj cos 2 (2/2) (9.59)
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9.3 Numerical Results

9.3.1 Trapezoidal Method with Variable CFL Number

This example uses,

Method type = 2 ; one of the Trapezoidal methods

Boundary type = 1 ; space extrapolation

r = 0.05 r 2 00 = 0.2 rcrit 0.04

Figure 6 shows X(n) and ln[E(n)] both predicted and

experimental. This example shows the movement of a

wavepacket and the change in its energy due to the variation

in the CFL number. The agreement between the predicted and

experimental values is excellent. The energy of the

analytic solution is constant so the wavepacket theory has

successfully predicted almost all of change in the numerical

energy due to variable Ax.
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9.3.2 Box Method with Variable CFL Number

This example uses,

Method type = 4 ; Box method

r 0 = 0.05 r 2 0 0 = 0.2 rcrit = 0.04

Figure 7 shows X(n) and ln(E(n)]. As in 9.3.1 the

agreement between experiment and theory is excellent.
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9.3.3 Trapezoidal Method with Space Extrapolation

This example uses,

Method type = 1 ; one of the Trapezoidal methods

Boundary type = 1 ; space extrapolation

r = 1.0 r2 0 0  = 1.0 r . = 0.3

Figure 8 shows X(n) and ln(E(n)]. This example

illustrates the effect of the downstream boundary reflecting

a wavepacket with reduced energy. Because of the finite

length of the wavepacket the drop in energy is smeared and

X(n) does not quite reach 1.0 .
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9.3.4 Trpezoidal Method with Spac-e-time Extrapolation

This example is the same as 19.3.3 except that

Boundary type = 2 ; space-time extrapolation

Figure 9 shows X(n) and ln[E(n)]. The energy of

the reflected wavepacket is less than in 9.3.3. As a

consequence the first order terms which are neglected in

the asymptotic boundary conditions are more significant and

so the energy decrease is more smeared and there is a

larger discrepancy between the experimental and predicted

values.
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9.3.5 Trapezoidal Method with Box Boundary Condition

This example is the same as 19.3.3 except that,

Boundary type = 3 ; box boundary condition

Figure 10 shows X(n) and ln[E(n)]. The energy drop

in this example is three times that in 9.3.3 because,

ln(E 2 ) = ln(E1 ) + 2 ln(IR 1) (9.49)

ftan(l 1 /2) space extrapolation (9.50)
and IR j

tan3 (01 /2) space-time extrapolation (9.52)

Thus the box boundary condition increases the

overall convergence rate by factor 3 with minimal extra

computational effort.
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9.3.6 Wavepacket Outflow in Box Method

This example uses,

Method type

r = 0.4

= 4 ; Box method

r 2 0 0
= 0.4 r . = 0.2

crit

Figure 11 shows X(n) and ln(E(n)]. Note that when

the wavepacket reaches the downstream boundary the

experimental value for X(n) remains near 1.0 and ln(E)

decreases rapidly towards -w.
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9.3.7 Instability of Trapezqidal Method with Space-time

Extrapol.ation

This example uses,

Method type = 1 ; one of the Trapezoidal methods

Boundary. type = 2 ; space-time extrapolation

r = 3.0 r2 0 0  = 3.0 r . = 2.1

Figure 12 shows X(n) and ln[E(n)]. Both the

theoretical prediction and the numerical result show that

the energy increases every time the wavepacket reflects off

the downstream boundary and so the numerical scheme is

unstable. The CFL stability condition for the case with

constant CFL number is obtained by considering the

amplitude reflection coefficient.

IR I sin( 2  (9.52)

sin 2 )

The dispersion relation is

tan(0/2) = r sin( ) (9.26)

Now consider the two cases r<2 and r>2

a) r < 2

0 < 01 < w/2 ==> tan(n/2) < 1

> < r/2

> (w/2 - 0) > 0 and (r/2 - 0) > 0

Ir > (ir/2-0) + (ir/2-$ 1 ) I > I (ir/2-0) - (ir/2-,o ) | > 0

sin 2 > sin(" 2
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IR I < 1

b) r > 2

For O=i/2 , tan(n/2) > 1 => S > w/2

For $=i , tan(U/2) = 0 > f<$

As 02 varies from w/2 to r, n-02

continuously so at some intermediate value,

a = 02

and hence IR j=

==> n>$

varies

The numerical scheme is thus stable if, and only if,

the CFL number is less than 2. This stability condition

has previously been derived by Beam, Warming and Yee (5].

In a numerical experiment an infinite amplitude

reflection coefficient does not occur because the first

order derivatives of the amplitude which are neglected in

the asymptotic boundary conditions become significant. In

fact in all the unstable cases I have tried the agreement

between experiment and prediction is poor because of the

neglected first order terms in the boundary condition and

the neglected second order terms in the amplitude equation.

The example given is one of the best. The qualitative

effects of these neglected terms can be understood as

follows;

Sin 3A 3A
3 n r -3ng aj

all the second order terms in the

amliud euaio 32 A 32 A 3amplitude equation n2 ' 3 naj '2 c an be expressed in

3 2 A
terms of . Thus the amplitude equation including

second order terms has the form,

3A 3A 3A
- + r - = v3n g 3j 3 (9.61)
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where v is a function of nO and corresponds to an

artificial viscosity. The effect of this artificial

viscosity is to smear the wavepacket increasing its length

and decreasing its maximum amplitude. This has the largest

effect on X(n) since the longer the wavepacket the further

X(n) must be from the ends of the domain. X(n) still

oscillates approximately in phase with the predictions but

the amplitude of the oscillations decreases steadily. The

effect on the energy is much smaller.

The downstream boundary condition including first

order terms can be written as,

A2(j,Ln) + =2 2(J,n) R (A, (J,n) + T -1(J,n)) (9.62)3n J 3n

where Tr,rT are functions of Q,O. If T. and T2 are both

small compared to TA then (9.62) is approximately equal to

A 2 (J,n+T2 ) R Rg A1 (j,n+T,) (9.63)

Thus the amplitude is reflected with a delay of

T2-Ti -This explains the fact that in almost all the

examples in this chapter the reflected wavepacket lags

behind the position predicted by wavepacket theory.
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9.3.8 Instability of Trapezoidal Method Due to Varying Mesh

This example uses,

Method type = 3 ; one of the Trapezoidal methods

Boundary type = 1 ; space extrapolation

ro = 1.0 r2 0 0 = 10.0 r crit = 0.8

Figure 13 shows X(n) and ln[E(n)]. The agreement

between experiment and prediction is good for the energy

but as in 9.3.7 the agreement is poor for X(n) because of

the effect of the second order terms which are neglected in

the asymptotic amplitude equation. The significance of

this example is that this numerical scheme is stable for

uniform meshes which give constant CFL number r but if the

mesh, and hence r, varies sufficiently as in this example

the scheme becomes unstable. This instability is best

understood by expanding the finite difference equation in

computational space.

r + 1) 2 (r j 2

2 + A t + U n t x .= 0 (9.43) t rj+,+rj. t x rj+,+rj_ t x j

so [ + - +1 g 6 H.O.T. ] S0 (9.64)
t 2 t 2x 3j t x

The term -- p corresponds to a viscous term in
aj t x

computational space. If - is positive it corresponds to

negative artificial viscosity and so causes the instability

in the above example.
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9.4 Program Listing

The program is written in FORTRAN 4 PLUS to be run on a

PDP 11-70 with Versatec graphics subroutines.

C ***** PROGRAM WAVE

DIMENSION U(0:202),V(0:202),A(0:200,3),W(0:200),XJ(0:202)
DIMENSION EX(402),EE(402),TX(402),TE(402),T(402)

EQUIVALENCE (TX(1),U(0)),(TX(204),V(0)),(TE(1),A(0,1)),

(T(1),A(0,3),(T(202),W(0))

EXTERNAL RJ

REAL K,J

COMMON /RCONST/RO , Ri ,MT

COMMON /X/X(0:200)

C * Input parameters

TYPE * 'INPUT TERMINAL TYPE'

TYPE *10 VERSATEC'

TYPE *,'3 VT100 WITH GRAPHICS'

TYPE *,'4 CHROMATICS'

TYPE *,'5 VISUAL 500'
ACCEPT *,NT

TYPE *,' '

TYPE *, 'INPUT METHOD TYPE'

TYPE *,'1-3 DIFFERENT TRAPEZOIDAL METHODS - SEE NOTES'

TYPE *,14 BOX METHOD'
ACCEPT *,MT

IF (MT.EQ.4) GOTO 1
TYPE *,'

TYPE * 'INPUT DOWNSTREAM BOUNDARY TYPE'

TYPE * '1 SPACE EXTRAPOLATION'

TYPE * '2 SPACE-TIME EXTRAPOLATION'

TYPE *,'3 BOX METHOD'

ACCEPT *,MDB

1 TYPE *,' '

TYPE *,'INPUT CFL NUMBERS R(0),R(200),RCRIT'

ACCEPT-*,ROR1 ,RC

C ***** Omega definition explained in notes

OMEGA=2.*ATAN(0.5*RC)
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PI=3.14159
JMAX=200
M40 0
XJ(O)=0.

DO 2 J11,JMAX
DX=1./R(FLOAT(J1)-0.5)
XJ(J1)=XJ(J1-1)+DX
U(J1)=0.

2 V(J1)=0.

DO 3 J1=1,JMAX

XJ(J1)=XJ(J1)/XJ(JMAX)
3 X(J1)=XJ(J1)

C ***** Initialise U(j,0)+iV(j,0)

PSI=O.
J2=JMAX/2
DO 4 J1=J2-40,J2+40
IF(MT.LE.3) PHI=ASIN(RC/R(FLOAT(J1)))
IF(MT.EQ.4) PHI=2.*ATAN(0.5*RC/R(FLOAT(J1)))
PSI=PSI+PHI
AMP-EXP(-(J1-J2)**2/200.)
U(J1)=AMP*COS(PSI)

4 V(J1)=AMP*SIN(PSI)

W(0)=0.
KOUNT=O

9 TYPE *,'NO. OF STEPS TILL NEXT PLOT OF U?'
ACCEPT *,NSTEP
IF (NSTEP.LE.0) GOTO 5

DO 6 KOUNT2=1,NSTEP
KOUNT=KOUNT+1
IF (KOUNT.GT.M) GOTO 7

C * Calculate new U+iV

CALL METHOD(U,A,W,JMAXRMTMDB)
CALL METHOD(V,AWJMAXR,MTMDB)

C * Calculate new XLog(E) of wavepacket

S=0.
SJ=0.
XJ(JMAX+1 )=XJ(JMAX)
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DO a J1=1,JMAX
P=(U(J1)**2+V(J1)**2)*(XJ(J1+1)-XJ(J1-1))/2.
S=S+P

8 SJ=SJ+P*XJ(J1)

EX(KOUNT)=SJ/S
6 EE(KOUNT)=LOG(S)

5 CALL OUTPT1(XJ,U,203,'X

GOTO 9

C ****

C *
C *

','U ',NT)

Calculate predicted X(n),Log(E(n))
Initial value j(1) is passed to prediction subroutine PRED

as TX(1)

7 TX(1)=J(EX(1))
TE(1)=EE(1)
CALL PRED(TTXTEJMAX,MRC,R,MTMDB)

C ***** Plot results

12 TYPE *,'PLOT E,X?'
ACCEPT 1000,C
IF(C.EQ.'N ') GOTO 10
IF(C.EQ.'E ') CALL OUTPT2(TEETE,402,'N

IF(C.EQ.'X ') CALL OUTPT2(T,EX,TX,402,'N

IF(C.EQ.'Y ') GOTO 11

GOTO 12

11 CALL OUTPT3(TEX,TXEE,TE,402,'N

10 CALL PLOT(0.,0.,999)

STOP

1000 FORMAT(A4)
END

C ***** Function calculates R(j)

FUNCTION R(J)

COMMON /RCONST/RO , R1 ,MT
REAL J

R=RO*EXP (LOG (R1/RO ) *J/20 0.)
RETURN

','LN E',NT)

, 'x I,NT)

','X '','LN E',NT)

END
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C ***** Function calculates X(j)

FUNCTION X(J)

COMMON /X/XJ(0:200)
REAL J

IF(J.GT.200.) J=200.
IF(J.LT.O.) J=0.

J1=INT(J)

X=XJ(J1)+(J-FLOAT(J1))*(XJ(J1+1)-XJ(J1))

RETURN

END

C * Function calculates j(X)

FUNCTION J(X)

COMMON /X/XJ(0:200)
REAL J

IF(X.GT.1.) X=1.

IF(X.LT.0.) X=0.
J1=0

1 J1=J1+1

IF(XJ(J1).LT.X) GOTO 1

J=FLOAT(J1)-(XJ(J1)-X)/(XJ(J1)-XJ(J1-1))

RETURN
END

SUBROUTINE METHOD(U,A,W,JMAX,R,MTMDB)

C * METHOD sets up the coefficients of the tridiagonal equations
C for the calculation of the new U using method MT and downstream
C boundary type MDB, if needed. The tridiagonal equations are
C solved by TRID and the new values of U are returned to T.

DIMENSION U(O:JMAX),A(O:JMAX,3),W(O:JMAX)

IF(MT.EQ.4) GOTO 1

C * Set up coefficients for Trapezoidal and Backward Euler interior
C * schemes
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DO 2 J=1,JMAX-1

GOTO(3,4,5) MT
3 C1-0.25*R(FLOAT(J))

C2=-C1
GOTO 6

4 C1=-0.25*R(FLOAT(J)-0.5)
C2=0.25*R(FLOAT(J)+0.5)
GOTO 6

5 R1=R(FLOAT(J)-0.5)
R2=R(FLOAT(J)+0.5)

C1=-0.5*R1**2/(R1+R2)
C2=0.5*R2**2/(R1+R2)

6 A(J,1)=C1

A(J,2)=1.-C1-C2

A(J,3)=C2

2 W(J)=U(J)+C1*(U(J)-U(J-1))+C2*(U(J)-U(J+1))

GOTO(7,8,1) MDB

C ***** Set up coefficients for space and space-time extrapolation at
C downstream boundary

7 A(JMAX,1)-1.

A(JMAX,2)=1.

W(JMAX)=0.
GOTO 9

8 A(JMAX,1)=0.

A(JMAX,2)=1.

W(JMAX)=U(JMAX-1)

GOTO 9

C ***** Set up coefficients for box method on interior or at downstream
C boundary as appropriate

1 JMZN=JMAX

IF(MT.EQ.4)JMIN=1

DO 10 J=JMINJMAX
C=R(FLOAT(J)-0.5)
A(J,1)=1.-C

A(J,2)=1.+C

A(J,3)=0.

10 W(J)=U(J-1)*A(J,2)+U(J)*A(J,1)

C ***** Set up coefficients for upstream boundary

9 A(0,2)=1.

A(0,3)=0.

W(0)=0.
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14 CALL TRID(U,A,W,JMAX)

RETURN
END

SUBROUTINE TRID(U,A,W,JMAX)

DIMENSION U(O:JMAX),A(O:JMAX,3),W(O:JMAX)

DO 1 J=1,JMAX

C=A(J,1)/A(J-1,2)

A(J,2)=A(J,2)-A(J-1,3)*C

1 W(J)=W(J)-W(J-1)*C

U(JMAX)-W(JMAX)/A(JMAX,2)
DO 2 J=JMAX-1,0,-1

2 U(J)=(W(J)-U(J+1)*A(J,3))/A(J,2)

RETURN
END

SUBROUTINE PRED(TTXTEJMAX,MRC,R,MTMDB)

DIMENSION T(M),TX(M),TE(M)

REAL J,K
EXTERNAL R,X

DR(J)=100.*(R(J+0.005)-R(J-0.005))

PI=3.14159
J=TX(1)
TX(1)='(J)
T(1)=1.

IF(MT.EQ.4) GOTO 1

C * Prediction for trapezoidal schemes

K=ASIN(RC/R(J))

IF(RC.LT.0.) K=PI-K

OM=ATAN(RC/2.)*2.

C1=1./(1.+0.25*RC**2)

DO 2 KOUNT-2,M
T(KOUNT)=FLOAT(KOUNT)
DJ-R(J) *COS(K) *C1
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DK=-DR(J)*SIN(K)*C1 -
J=J+0 .5* (DJ+R(J+DJ)*COS(K+DK)*C1)

K=K+0.,5*(DK-DR(J+DJ)*SIN(K+DK)*C1)

TX(KOUNT)wX(J)

DE=DR(J+0.5*DJ)*C1*(1.-COS(K-0.5*DK))
IF(MT.EQ.1) TE(KOUNT)=TE(KOUNT-1)

IF(MT.EQ.2) TE(KOUNT)=TE(KOUNT-1)+DE

IF(MT.EQ.3) TE(KOUNT)=TE(KOUNT-1)+2.*DE

IF(J.GT.0.) GOTO 3
J=-J
K=ASIN(RC/R(J))

TX(KOUNT)=X(J)

3 IF(J.LT.FLOAT(JMAX)) GOTO 2

J=2.*FLOAT(JMAX)-J

K=PI-ASIN(RC/R(J))
TX(KOUNT)=X(J)
GOTO(6,7,8) MDB

6 TE(KOUNT)=TE(KOUNT)-2.*LOG(TAN(K/2.))

GOTO 2
7 TE(KOUNT)-TE(KOUNT)-2.*LOG(ABS(SIN((K-OM)/2.)/SIN((PI-K-OM)/2.)))

GOTO 2
B TE(KOUNT)=TE(KOUNT)-6.*LOG(TAN(K/2.))

2 CONTINUE
RETURN

C ***** Prediction for box scheme

1 T1=0.25*RC*RC
T2-1./(1.+T1)

T3=0.5*RC*T2
K=2.*AIAN( 0.5*RC/R(J))

DO 9 KOUNT=2,M
T(KOUNT)=FLOAT(KOUNT)

IF(J.GE.FLOAT(JMAX)) GOTO 10

R1=R(J)

DJ=(R1+T1/R1)*T2

DK-2. *DR(J) *T3/R1
R2=R(J+DJ)

J=J+0.5*(DJ+(R2+T1/R2)*T2)

K=K+0 .5*(DK+DR(J+DJ)*T3/R2)
TX(KOUNT)=X(J)
TE(KOUNT)=TE(KOUNT-1)-2.*T1*T2*DR(J+0.5*DJ)/(R1*R2)
GOTO 9
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10 TX(KOUNT)=1.

TE(KOUNT)=TE(KOUNT-1)

9 CONTINUE

RETURN

END

SUBROUTINE OUTPT1(XY,,NPLUS2,C1 ,C2,NT)

DIMENSION X(NPLUS2),Y(NPLUS2),XD(40)

N=NPLUS2-2
NPLUS1=N+1
XL=5.
YL=4.
CALL PLOTS(0,0,NT)

CALL SCALE(XXL,N,1)

CALL SCALE(YYLN,1)

DO 1 I=1,N/8
1 XD(I)=(X(8*I+1)-X(8*I-7))/X(NPLUS2)

IF(NT.EQ.0) GOTO 2
CALL FACTOR(1.8)

CALL PLOT(1.,1.,-3)

CALL AXIS(O.,0.,C1,-4,XL,0.,X(NPLUS1),X(NPLUS2))
CALL AXIS(0.,0.,C2,4,YL,90.,Y(NPLUS1),Y(NPLUS2))
CALL LINE(X,Y,N,1,1,3)

CALL GRID(0.,0.,1000+N/8,XD,-1,YL,-1)
GOTO 3

2 CALL YACTOR(1.4)

CALL PLOT(5.,1.,-3)

CALL AXIS(0s,0.,C1,-4,XL,90.,X(NPLUS1),X(NPLUS2))
CALL AXIS(0.,0.,C2,4,YL,180.,Y(NPLUS1),Y(NPLUS2))
Y(NPLUS2)=-Y(NPLUS2)
CALL NEWPEN(2)

CALL LINE(Y,X,N,1,1,3)

CALL NEWPEN(1)

CALL GRID(0.,0.,-1,-yL,1000+N/8,XD,-1)

3 CALL PLOT(0.,0.,-999)

RETURN
END
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SUBROUTINE OUTPT2(X,Y1,Y2,NPLUS2,C1,C2,NT)

DIMENSION X(NPLUS2),Y1(NPLUS2),Y2(NPLUS2),Y(4)

N=NPLUS2-2
NPLUS1=N+1
XL=5.
YL=4.

Y(1)=1.E1O

Y(2)=-1.E1O

DO 1 J=1,N
Y(1)=AMIN1(Y(1),Y1(J),Y2(J))

Y(2)=AMAX1(Y(2),Y1(J),Y2(J))

CALL PLOTS(0,0,NT)
CALL FACTOR(2.0)

CALL PLOT(1.,0.75,-3)
CALL NEWPEN(2)

CALL SCALE(XXLN,1)
CALL SCALE(Y,YL,2,1)

CALL AXIS(O.,O.,C1,-4,XLO.,X(NPLUS1),X(NPLUS2))
CALL AXIS(O.,0. ,C2,4,YL,90.,Y(3),Y(4))

Y1(NPLUS1)=Y(3)
Y1(NPLUS2)=Y(4)
Y2(NPLUS1)=Y(3)
Y2(NPLUS2)=Y(4)
CALL NEWPEN(3)

CALL LINE(X,Y1,N,1,25,1)

CALL LINE(XY2,N,1,,0)

CALL PLOT(O.,0.,-999)

RETUBN
END

SUBROUTINE OUTPT3(XY1,Y2,Z1,Z2,NPLUS2,CXCYCZNT)

DIMENSION X(NPLUS2),Y1(NPLUS2),Y2(NPLUS2),Y(4)

DIMENSION Z1(NPLUS2),Z2(NPLUS2),Z(4)

EQUIVALENCE (Y(1),z(1))

N=NPLUS2-2
NPLUS1=N+1
XL=4.
YL=2.
ZL=2.
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CALL PLOTS(0,0,NT)
CALL FACTOR(1.9)

CALL SCALE(XXL,N,1)

Y(1)=1.E10

Y(2)=-1.ElO

DO 1 J=1,N
Y( 1 )=AMIN1 (Y( 1) ,Y1 (J) ,Y2(J))

Y(2)=AMAX1(Y(2),Y1(J),Y2(J))

CALL PLOT(3.5,O.5,-3)'
CALL SCALE(YYL,2,1)

CALL NEWPEN(2)

CALL AXIS(0.,0.,CX,-4,XL,90.,X(NPLUS1),X(NPLUS2))
CALL AXIS(0.,0.,CY,4,YL, 180.,Y(3),Y(4))

Y1(NPLUS1)=Y(3)
Y1(NPLUS2)=-Y(4)
Y2(NPLUS1)=Y(3)
Y2(NPLUS2)=-Y(4)

CALL NEWPEN(3)

CALL LINE(Y1,XN,1,25,1)

CALL LINE(Y2,X,N,1,0,0)
CALL NEWPEN(1)

CALL GRID(Q.,0.,2,-1.,4,1.,-21846)

CALL NEWPEN(2)

CALL PLOT(-2.3,0.4,3)

CALL PLOT(-2.3,1.0,2)

CALL SYMBOL(-2.23,1.1,0.14,'WAVEPACKET THEORY',90

CALL PLOT(-2.6,0.4,3)

CALL SYMBOL(-2.6,0.5,0.08,1,0. ,-2)
CALL SYMBOL(-2.6,0.7,0.08,1,0.,-2)
CALL SYMBOL(-2.6,0.9,0.08,1,0.,-2)
CALL PLOT(-2.6,1.0,2)

CALL SYMBOL(-2.53,1.1,0.14,'NUMERICAL EXPERIMENT'

Z(1)=1.E1O
Z(2)=-1.E1O

DO 2 J=1,N

Z(1)=AMIN1(Z(1),Z1(J) ,Z2(J))
2 Z(2)=AMAX1(Z(2),Z1(J),Z2(J))

CALL PLOT(3.2,0.,-3)

CALL SCALE(ZZL,2,1)

CALL AXIS(0.,0.,CX,-4,XL,90.,X(NPLUS1),X(NPLUS2))
CALL AXIS(0.,0.,CZ,4,ZL,180.,Z(3),Z(4))

Z1(NPLUS1)=Z(3)
Z1(NPLUS2)=-Z(4)
Z2(NPLUS1)=Z(3)
Z2(NPLUS2)=-Z(4)
CALL NEWPEN(3)
CALL LINE(Z1,X,N,1,25,1)

.,17)

,90.,20)
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CALL LINE(Z2,X,N,1,0,0)

CALL NEWPEN (1)

CALL GRID(O.,0.,2,-1.,4,1.,-21846)

RETURN

END
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10. Conclusions

The validity of the asymptotic approach developed in

this paper is demonstrated by the numerical results in

chapter 9. The limitations of the wavepacket theory are due

to the asymptotic approximations involved in treating the

wavepacket as a particle. The stability analyses in

chapters 5 and 6 use fewer approximations and so the

asymptotic errors will be substantially smaller. In

particular when the coefficients are constant the analysis

in chapter 6 reduces to the P-stability analysis of Beam,

warming and Yee [5].

The calculation of the asymptotic amplitude equation

and asymptotic boundary conditions for a particular case is

no more difficult than a normal Von Neumann analysis. For

applicable cases the wavepacket theory and the stability

analysis of chapter 5 are straightforward. The general

stability analysis of chapter 6 will usually require

numerical computation. In the more complex cases the main

benefit from this theory will be the insight given by the

asymptotic amplitude equation and boundary conditions. The

amplitude equation gives the group velocities of the

different wavenumbers and the effect of varying

coefficients, which is of great interest since in 2-D

cascade geometries cell lengths can vary by factors of up to

100 in inviscid calculations and 1000 in viscous

calculations. The asymptotic boundary conditions give the

amplitude reflection coefficients which provide a practical

criterion for choosing the best numerical boundary

conditions.

There are various possibilities for future research
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in this area. Further applications to relatively simple

problems can be done to gain insight into understanding

harder problems and improving boundary conditions.

Numerical procedures, such as those suggested in

6.1.1-6.1.3 , can be developed to solve the equations given

by the stability analysis in chapter 6. Finally the

asymptotic amplitude equation and boundary conditions can be

extended to 2-D and 3-D.
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Appendix

A.1 Finite Difference Operator Notation

An operator notation for finite difference equations

simplifies the analysis of finite difference schemes and is

a necessity for making any general statements and proving

them.

The principal operators are 6 , central difference,

, central averaging E , shift operator, A , forward
xx x

difference and 7 , backward difference. Their definitions

are;

6 U. U.mx ) +m2
- J-m/2

1
4 U -(U + U

mx j 2 j+m/2 j-m/2

E U. i U.mx j +

A U . U. - U
mx j j+m j

(A. 1(a))

(A. 1(b))

(A. 1(c))

(A. 1(d))

S U. - U. - U. (A-1(e))
mx 3 3 3-M

Usually these definitions will be used with m=1.

The main exceptions are 62x which is a node-centered central

difference,

2x U J+j1 - U. 1 (A.2)

which can be used to define a general linear

operator,

M

L U = ajm U j+m (A. 3)

and E
mx
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M

so L. = 7 . E (A.4)Jm mx
m=1

When there are several independent variables the

subscript on the finite operator denotes the direction of

the shift, differencing or averaging. For example if,

Un = u(x.,t ) (A.5)
J J n

then 6 U n US - U n (A.6)
x J+L J+1 i

n+t n+1 n
and 6 U. U Un (A.7)

t tj =J~ -J

The general shift operator expression for a finite

operator in 2-D is

L. = 7' C (j) E E (A.8)
jmp mx pt
m,p

In applications however this expression can be very

complicated and it is usually simpler to express L as a

polynomial in the finite operators. As an example the

operator in 3.3.2 has the polynomial form

L. = ix 6 + r i 6 (A.9)
Sx t j t x

but in the shift operator form it is.,

1+r 1-r 1-r
L =- E E +-E E ----- E E

j 2 x/2 t/2 2 -x/2 t/2 2 x/2 -t/2

1+r- -- E- E (A.10)
2 -x/2 -t/2 .

Part of the advantage in using operator notation

when analysing finite difference schemes arises because all

of the finite operators have the same eigenfunction which in

2-D is exp(i(j$-n )].
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6

x

x

E

x

A

x

simi

exp(i

exp(i

exp(i

exp(i

expEi

larly,

(j -nil

(j$-nQ

(j O-nQ

(jo-nil

(j -nQ

exp (i( j-nQ)]

exp[i(j-nQ)]

exp~i(jo-na)]

exp[i(jeo-nQ)]

exp~i(jeo-na)]

n Q

A.

A.

)

1

1

]

1(a))

nQ))

1 (b))

= expti((j+J)*-ng )] - exp i((j-L)$

= 2i sin(W/2) exp(i(j$-nQ)(

= exp(i((j+j).-nQ)] + exp(i((j-1

= cos(0/2) exp[i(jo-nQ)(

= exp i((j+1)i-nQ)I

= exp(io) exp[i(j$-ng)(

inexp(i((j+1)o-ng)] - exp[i(jo-na)]

= { exp(i$) - 1 } exp[i(jo-nO)]

=exp(i(jo-na)] - exp(i((j-1)o-ng)]

= { 1 - exp(-io) } exp(i(j$-nQ)l(

-2i sin(9/2) exp(i(j0-nQ)]

- cos(U/2) exp(i(ji-nQ).]

- exp(-ig) exp[i(j0-nQ)J

{ exp(-ia) - 1 } exp(i(j -na)]

- { 1 - exp(ig) I expvi(jo-na)]

A.11

A.11

A.11

A.11

A.11

f))

g))

h))

i))

j) )

A. 11(c))

A.11(d))

A. 11(e))

and

6t

t

Et

t

t
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A.2 Principle of the Argument

Let f(z) be an analytic complex function with

simple poles in a region of the complex z-plane and let C

be a closed curve in the region. Then the number of zeros

of F minus the number of poles of f lying inside C is equal

to,-

1 f'(z)
21ri J f(z)

C

= -- C ln(f) 1
2iri C

1 arg(f) I (A-12)
2i C

[ ] denotes the change as z goes round C

anticlockwise.

arg(f) is defined by,

f(z) = R exp(iO) R,9 real R>O (A.13)

arg(f) = e (A-14)

with the restriction that 9 must vary continuously as z goes

round C.

The Lroof is given in many standard texts on complex

analysis., e.g. [6] . This provides a very simple test when

considering stability problems in which it is sufficient to

know whether there ara any zeros in a critical region

without knowing their exact position. This is the basis of

the Nyquist criterion in control theory stability analysis.

The test can also be performed numerically relatively

easily. The step size Az in going round C is decreased, if
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necessary, until IAarg(f)I < e. Since L arg(f) ] is2w C

an integer there is no rounding error. The only possible

error is if the magnitude of Aarg(f) over one step lies in

the range 2nw-e < Aarg(f) < 2nw+e for some integer n

other than zero. Decreasing e reduces the chance of an

error at the expense of increased computation. e=i/6 should

be adequate in most cases.
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A.3 Definitions of Norms and Stability -

The norms used in this paper are generalised L 2

norms. For a continuous function u(x,t) defined on 0<x<X

the norm I1u(t)1t is defined by,

X
|Iu(t)t2 =fu(x,t)t2 a(x) dx

0

(A. 15)

where a(x) is a positive non-zero function.

n
For a discrete function U. defined on 0<j<J the

norm IjUn|j which is a function of n is defined by,

I|IUn 112 .

0
(A. 16)IU'n2 a

) 3

where a. is a positive non-zero function.
J

The stability used in this paper is

Liapounov stability which is defined as,

asymptotic

Given 6>0 there exists e>O

u(0)|I < E => a)

and b)

such that

|H u(t)I I

IIu(t) II

a

0 as t+=

Condition a) is Liapounov stability which limits

how large an initially small disturbance can become.

Condition b) is asymptotic stability which specifies that a

sufficiently small initial disturbance must ultimate-ly tend

to zero.

For linear systems of equations an equivalent

definition is

a) There exists M>0 such that I|u(t)|I < M I|u(0)II
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and b) I u(t)I| + 0 as t+o

The corresponding definitions for a discrete

function are,

Given 6>0 there exists e>O such that

< ==> a) I|Un

and b) I|Un

<6

+ 0 as n.*

and for linear discrete systems,

a) There exists M>0 such that I Unjj

b) Unii -P+ 0 as n+w

0

IIU0

and




