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Abstract: We develop a new approach to the Lenard–Magri scheme of integrability
of bi-Hamiltonian PDEs, when one of the Poisson structures is a strongly skew-adjoint
differential operator.

1. Introduction

There have been a number of papers on classification and study of integrable PDEs in
the past few decades. As a result, the 1-component integrable PDEs have been to a large
extent classified. In the 2-component case there have been only partial results, see the
survey [MNW09] and references there.

In the present paper we prove integrability of the 2-component PDEs (6.1), (6.2),
(6.4), (6.7). All these equations enter in the same bi-Hamiltonian hierarchy of PDEs.
The corresponding two compatible Poisson structures given by (4.2) and (4.3) are local
and have order 3 and 5. Equation (6.4) appeared in [MNW07], however the proof of
integrability of this equation in [MNW07] uses a non-local recursion operator and it is
therefore not rigorous, as such argument may lead to wrong conclusions (see [DSK13a,
page 338]).

The proof of integrability (i.e., existence of integrals of motion in involution with
the associated Hamiltonian vector fields of arbitrarily high order) uses the Lenard–
Magri scheme. Unfortunately (or fortunately) the existing methods, developed in [Dor93,
BDSK09,Wan09], do not quite work here. We therefore develop a new method based
on the notion of strongly skew-adjoint differential operators, using the Lie superalgebra
of variational polyvector fields.

We show that the Lenard–Magri scheme “almost” always works provided that one of
the Poisson structures H0 is a non-degenerate strongly skew-adjoint operator. Namely,
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we are able to show, by a general argument, that the Poisson brackets of conserved
densities are Casimir elements for H0, but then we need to check by simple differential
order considerations that these brackets are actually zero.

Throughout the paper, unless otherwise specified, all vector spaces are considered
over a field F of characteristic zero.

2. A Lemma on Z-Graded Lie Superalgebras

Let W = W−1 ⊕ W0 ⊕ W1 ⊕ . . . be a Z-graded Lie superalgebra such that elements in
W j , j ≥ −1, have parity j mod 2 ∈ Z/2Z. Given H ∈ W1, we define the following
skew-symmetric bracket {· , ·}H on W−1 considered as an even space:

{ f, g}H = [[H, f ], g], f, g ∈ W−1. (2.1)

Recall that if [H, H ] = 0, then {· , ·}H is actually a Lie bracket on W−1, considered as
an even space (see e.g. [DSK13]). We also define the space of Casimirs for H as

C−1(H) := {
f ∈ W−1

∣
∣ [H, f ] = 0

} ⊂ W−1. (2.2)

Our method is based on the following lemma. Some parts of it are well known (see e.g.
[Mag78,Dor93,Olv93]).

Lemma 2.1. (a) Let H0, H1 ∈ W1. Denote by {· , ·}0 and {· , ·}1 the corresponding
brackets on W−1 given by (2.1). Let f0, f1, . . . , fN+1 ∈ W−1 satisfy the equations

[H1, fn] = [H0, fn+1] for all n = 0, . . . , N . (2.3)

Then we have

{ fm, fn}0 = { fm, fn}1 = 0 for all m, n = 0, . . . , N + 1.

(b) Let H0, H1 ∈ W1. Let f0, f1, . . . , fN+1 ∈ W−1, with f0 ∈ C−1(H0), satisfy
Eq. (2.3), and let {gn}n∈Z+ ⊂ W−1 satisfy [H1, gn] = [H0, gn+1] for all n ∈ Z+.
Then we have

{ fm, gn}0 = { fm, gn}1 = 0 for all m = 0, . . . , N + 1, n ∈ Z+.

(c) If H ∈ W1 is such that [H, H ] = 0, then ad H defines a Lie algebra homomor-
phisms (W−1, {· , ·}H ) → (W0, [· , ·]), i.e.

[H, { f, g}H ] = [[H, f ], [H, g]] for all f, g ∈ W−1.

(d) Let H0, H1 ∈ W1 be such that [H0, H1] = 0. Then C−1(H0) ⊂ V is a closed with
respect to the bracket {· , ·}1.

(e) Let H0, H1 ∈ W1 be such that [H0, H1] = [H1, H1] = 0. Suppose that
f0, f1, . . . , fN+1 ∈ W−1 satisfy Eq. (2.3). Then { fn+1, g}1 ∈ C−1(H0) for all
n = 0, . . . , N and g ∈ C−1(H0).

Proof. First, we prove part (a). By skew-symmetry, we have { fn, fn}0 = { fn, fn}1 = 0
for every n. Assuming that n > m, we prove, by induction on n − m that { fm, fn}0 =
{ fm, fn}1 = 0. We have

{ fm, fn}1 = [[H1, fm], fn] = [[H0, fm+1], fn] = { fm+1, fn}0,
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which is zero by inductive assumption. Similarly,

{ fm, fn}0 = −{ fn, fm}0 = −[[H0, fn], fm]
= −[[H1, fn−1], fm] = −{ fn−1, fm}1 = { fm, fn−1}1,

which again is zero by induction.
Next, we prove part (b). Since, by assumption, f0 ∈ C−1(H0), we have { f0, gn}0 =

[[H0, f0], gn] = 0 for all n. Furthermore,

{ f0, gn}1 = −{gn, f0}1 = −[[H1, gn], f0] = −[[H0, gn+1], f0] = { f0, gn+1}0,

which is zero by the previous case. We next prove, by induction on m ≥ 1, that
{ fm, gn}0 = { fm, gn}1 = 0 for every n ∈ Z+. We have

{ fm, gn}0 = [[H0, fm], gn] = [[H1, fm−1], gn] = { fm−1, gn}1,

which is zero by inductive assumption, and

{ fm, gn}1 = −{gn, fm}1 = −[[H1, gn], fm] = −[[H0, gn+1], fm]
= [[H0, fm], gn+1] = { fm, gn+1}0,

which is zero by the previous case, completing the proof of part (b).
For H ∈ W1 and f, g ∈ W−1, we have, by the Jacobi identity,

[H, { f, g}H ] = [H, [[H, f ], g]] = [[H, [H, f ]], g] + [[H, f ], [H, g]].
If [H, H ] = 0, we have [H, [H, f ]] = 0, since H is odd, proving part (c).

Next, we prove part (d). If f, g ∈ C−1(H0), we have

[H0, { f, g}1] = [H0, [[H1, f ], g]],
and this is zero since, by assumption, H0 commutes with all elements H1, f and g.

Finally, we prove part (e). Since, by assumption, H0 commutes with both H1 and g,
we have, by the Jacobi identity,

[H0, { fn+1, g}1] = [H0, [[H1, fn+1], g]] = [[H0, [H1, fn+1]], g]
= −[[H1, [H0, fn+1]], g] = −[[H1, [H1, fn]], g],

and this is zero since (ad H1)
2 = 0. ��

3. Application to the Theory of Hamiltonian PDEs

In the present paper we will use Lemma 2.1 in the special case when W is the Lie
superalgebra of variational polyvector fields over an algebra of differential functions V .

Recall from [BDSK09] that an algebra of differential function V in the variables
ui , i ∈ I = {1, . . . , �}, is a differential algebra extension of the algebra of differential
polynomials R� = F[u(n)

i | i ∈ I, n ∈ Z+], with the “total derivative” ∂ defined on

generators by ∂u(n)
i = u(n+1)

i , and endowed with commuting derivations ∂

∂u(n)
i

: V → V
extending the usual partial derivatives on R�, such that for every f ∈ V we have

∂ f

∂u(n)
i

= 0 for all but finitely many values of i and n, and satisfying the commutation
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relation [ ∂

∂u(n)
i

, ∂] = ∂

∂u(n−1)
i

for every i ∈ I, n ∈ Z+ (the RHS is considered to be 0 for

n = 0).
Recall from [DSK13] some properties of the Lie superalgebra W of variational

polyvector fields over V that we will need. It is a Z-graded Lie superalgebra W = W−1⊕
W0 ⊕ W1 ⊕ . . . , with the parity compatible with the Z-grading. Furthermore, W−1 =
V/∂V is the space of local functionals, W0 = V� is the Lie algebra of evolutionary
vector fields, i.e. derivations of V commuting with ∂ , which have the form X P =∑

i∈I,n∈Z+
(∂n Pi )

∂

∂u(n)
i

, P ∈ V�. The bracket of two evolutionary vector fields is given

by the formula [X P , X Q] = X[P,Q], where

[P, Q] = DQ(∂)P − DP (∂)Q,

and DP (∂) ∈ Mat�×� V[∂] is the Frechet derivative of P:

DP (∂)i j =
∑

n∈Z+

∂ Pi

∂u(n)
j

∂n . (3.1)

The Lie bracket between elements P ∈ W0 and
∫

f ∈ W−1 is given by

[P,
∫

f ] = ∫
X P ( f ) = ∫

P · δ f, (3.2)

where δ f = ( δ f
δui

)
i∈I ∈ V� denotes the vector of variational derivatives of

∫
f ∈ V/∂V:

δ f

δui
=

∑

n∈Z+

(−∂)n ∂ f

∂u(n)
i

. (3.3)

Finally, W1 is the space of skew-adjoint � × � matrix differential operators over V , the
Lie bracket between H ∈ W1 and

∫
f ∈ V/∂V = W−1 is given by

[H,
∫

f ] = H(∂)δ f, (3.4)

and a Poisson structure on V is an element H ∈ W1 such that [H, H ] = 0.
For H ∈ W1, the corresponding skew-symmetric bracket (2.1) on W−1 = V/∂V is

given by the usual formula

{∫ f,
∫

g}H = ∫
δg · H(∂)δ f, (3.5)

and this bracket defines a Lie algebra structure on V/∂V if and only if H is a Poisson
structure on V . In this context, the space (2.2) of Casimir elements for H is

C−1(H) =
{∫

f ∈ V/∂V
∣
∣
∣ H(∂)δ f = 0

}
. (3.6)

Recall that the Hamiltonian partial differential equation for the Poisson structure
H ∈ W1 and the Hamiltonian functional

∫
h ∈ V/∂V is the following evolution equation

in the variables u1, . . . , u�:

dui

dt
=

�∑

j=1

Hi j (∂)
δh

δu j
. (3.7)
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An integral of motion for the Hamiltonian equation (3.7) is a local functional
∫

f ∈
V/∂V such that {∫ h,

∫
f }H = 0. Equation (3.7) is said to be integrable if there is an

infinite sequence of linearly independent integrals of motion
∫

h0 = ∫
h,

∫
h1,

∫
h2, . . .

in involution: {∫ hm,
∫

hn}H = 0 for all m, n ∈ Z+.
One of the main techniques for proving integrability of a Hamiltonian equation is

based on the so called Lenard–Magri scheme of integrability. This applies when a given
evolution equation has a bi-Hamiltonian form, i.e., it can be written in Hamiltonian form
in two ways:

du

dt
= H1(∂)δh0 = H0(∂)δh1, (3.8)

where H0, H1 are compatible Poisson structures on V , namely they satisfy [H0, H0] =
[H0, H1] = [H1, H1] = 0. In this situation, the Lenard–Magri scheme consists in finding
a sequence of local functionals

∫
h0,

∫
h1,

∫
h2, . . . satisfying the recursive conditions

H1(∂)δhn = H0(∂)δhn+1, (3.9)

for all n ∈ Z+. Lemma 2.1(a) and (c) guarantees that, in this situation, all local functionals∫
hn, n ∈ Z+ are integrals of motion in involution with respect to both Poisson brackets

{· , ·}0 and {· , ·}1, and the higher symmetries Pn = H0(∂)δhn commute. Indeed, we
have the following immediate consequences of Lemma 2.1.

Corollary 3.1. Let H0, H1 be Poisson structures on V , and let {· , ·}0 and {· , ·}1 be the
corresponding brackets on V/∂V given by (3.5). Let {∫ hn}n∈Z+ ⊂ V/∂V be a sequence
of local functionals satisfying the Lenard–Magri recursive equations (3.9). Then all
elements

∫
hn are integrals of motion for the bi-Hamiltonian equation (3.8) in involution

with respect to both Poisson brackets for H0 and H1: {∫ hm,
∫

hn}0 = {∫ hm,
∫

hn}1 = 0,
and all Hamiltonian vector fields Pn = H1(∂)δhn commute: [Pm, Pn] = 0, for all
m, n ∈ Z+.

Proof. The first statement is a special case of Lemma 2.1(a), and the second statement
follows by Lemma 2.1(c). ��

The main problem in applying the Lenard–Magri scheme of integrability is to show
that at each step n the recursive equation (3.9) can be solved for

∫
hn+1 ∈ V/∂V . This

problem is split in three parts. First, under the assumption that V is a domain and the
Poisson structure H0 is non-degenerate (cf. Definition 3.2 below), Theorem 3.3 below
guarantees that, if an element F ∈ V� exists such that H1(∂)δhn = H0(∂)F , then F
is closed, i.e. it has self-adjoint Frechet derivative: DF (∂)∗ = DF (∂). Next, Theorem
3.5 below shows that, if F ∈ V� is closed, then it is exact in a normal extension Ṽ
of the algebra of differential algebra function V: F = δ

∫
h for some h ∈ Ṽ . Hence,

we reduced our problem to proving that H1(∂)δhn ∈ H0(∂)V�. There is no universal
technique to solve this problem, but there are various approaches which work in specific
examples (see e.g. [BDSK09,DSK13,DSK12,Dor93,Olv93,Wan09]). In Proposition
3.8 below we propose an ansatz for solving this problem, under the assumption that
the Poisson structure H0 is strongly skew-adjoint (cf. Definition 3.6 below), and that the
given finite Lenard–Magri sequence

∫
h0, . . . ,

∫
hn starts with a Casimir element for H0:

H0(∂)δ(
∫

h0) = 0. In the following sections we will be able to apply successfully this
ansatz to prove integrability of the compatible bi-Hamiltonian PDE’s in two variables
(6.1), (6.2), (6.4) and (6.7).
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Definition 3.2. Assume that V is a domain. A matrix differential operator H ∈
Mat�×� V[∂] is non-degenerate if it is not a left (or right) zero divisor in Mat�×� V[∂]
(equivalently, if its Dieudonné determinant in non-zero).

Theorem 3.3 (see e.g. [BDSK09, Thm. 2.7]). Let H0, H1 ∈ Mat�×� V[∂] be compatible
Poisson structures on the algebra of differential functions V , which is assumed to be a
domain, and suppose that H0 is non-degenerate. If

∫
h0,

∫
h1 ∈ V/∂V and F ∈ V�

are such that H1(∂)δh0 = H0(∂)δh1 and H1(∂)δh1 = H0(∂)F, then F is closed:
DF (∂) = DF (∂)∗.

Consider the following filtration of the algebra of differential functions V:

Vm,i =
{

f ∈ V
∣
∣
∣

∂ f

∂u(n)
j

= 0 for all (n, j) > (m, i)

}

,

where > denotes lexicographic order. By definition, ∂

∂u(n)
j

(Vm,i ) is zero for (n, j) >

(m, i), and it is contained in Vm,i for (n, j) ≤ (m, i).

Definition 3.4. The algebra of differential functions V is called normal if ∂

∂u(m)
i

(Vm,i ) =
Vm,i for all i ∈ I, m ∈ Z+.

Note that any algebra of differential function can be extended to a normal one (see
[DSK13a]).

Theorem 3.5 ([BDSK09, Prop. 1.9]) If F ∈ V� is exact, i.e. F = δ f for some
∫

f ∈
V/∂V , then it is closed, i.e. DF (∂) = DF (∂)∗. Conversely, if V is a normal algebra of
differential functions and F ∈ V� is closed, then it is exact.

Note that if H ∈ Mat�×� V[∂] is a skew-adjoint operator, then H(∂)V� ⊥ Ker H(∂),
where the orthogonal complement is with respect to the pairing V� ×V� → V/∂V given
by (F, P) �→ ∫

F · P .

Definition 3.6. A skew-adjoint operator H ∈ Mat�×� V[∂] is called strongly skew-
adjoint if the following conditions hold:

(i) Ker H(∂) ⊂ δ(V/∂V),
(ii)

(
Ker H(∂)

)⊥ = H(∂)V�.

Let
∫

h0 ∈ C−1(H0), and let
∫

h0, . . . ,
∫

hN ∈ V/∂V be a finite sequence satisfying
the Lenard–Magri recursive equations (3.9). Lemma 2.1(d) and (e), in this context, imply
the following result:

Corollary 3.7. If H0 and H1 are compatible Poisson structures on V , then
H0(∂)δ{∫ hn,

∫
g}1 = 0 for all n = 0, . . . , N and for all

∫
g ∈ C−1(H0).

If H0 is non-degenerate, its kernel in V� is finite-dimensional. Therefore it is reason-
able to hope that, by computing explicitly Ker H0 and C−1(H0), and carefully looking
at the recursive equations (3.9) one can prove that, in fact, {∫ hn,

∫
g}1 = 0 for all∫

g ∈ C−1(H0). In this case, assuming that H0 is strongly skew-adjoint, the following
proposition guarantees that we can successfully apply the Lenard–Magri scheme.
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Proposition 3.8. Suppose that H0 is a strongly skew-adjoint operator and that
{∫ h,

∫
g}1 = 0 for all

∫
g ∈ C−1(H0), Then H1(∂)δh ∈ H0(∂)V�.

Proof. By assumption, we have
∫
δg · H1(∂)δh = 0 for all

∫
g ∈ C−1(H0), i.e.

H1(∂)δh ⊥ δC−1(H0). By condition (i) of the strong skew-adjointness assumption
on H0 this implies that H1(∂)δh ⊥ Ker H0(∂), and therefore, by the condition (ii), we
conclude that H1(∂)δh ∈ H0(∂)V�, proving the claim. ��

To conclude the section, we state the following result, which will be used in the
following sections.

Corollary 3.9. Let H0, H1 be Poisson structures on V . Let {∫ fn}N
n=0 ⊂ V/∂V be a finite

sequence satisfying the Lenard–Magri recursive equations (3.9), with
∫

f0 ∈ C−1(H0),
and let {∫ gn}∞n=0 ⊂ V/∂V be an infinite sequence also satisfying the Lenard–Magri
recursive equations (3.9). Then the two Lenard–Magri sequences are compatible, in the
sense that {∫ fm,

∫
gn}0 = {∫ fm,

∫
gn}1 = 0 for all m = 0, . . . , N , n ∈ Z+.

Proof. It is a special case of Lemma 2.1(b). ��

4. The Bi-Poisson Structure (H0, H1)

Consider the following algebra of differential functions in two variables u, v:

V = F[u, v±1, u′, v′, u′′, v′′, . . . ]. (4.1)

It is contained in the normal extension Ṽ = V[log v], see [DSK13a, Ex. 4.5].

Theorem 4.1. The following is a compatible pair of Poisson structures (H0, H1) ∈
Mat2×2 V[∂]:

H0(∂) =
(

∂3 + ∂ ◦ u + u∂ v∂

∂ ◦ v 0

)
, (4.2)

and

H1(∂) =
(

0 ∂ ◦ 1
v2

1
v2 ∂ − 1

v2 Q(∂) ◦ 1
v2

)

, (4.3)

where

Q(∂) = ∂5 + 3∂ ◦ (∂ ◦ u + u∂)∂ + 2(∂3 ◦ u + u∂3) + 8(∂ ◦ u2 + u2∂).

Proof. H0 is a well known Poisson structure, see e.g. [Ito82,Dor93]. A simple proof of
this fact can be found in [BDSK09]. H1 is obviously skew-adjoint. The proof that H1
satisfies Jacobi identity and is compatible with H0 is a rather lengthy computation (one
has to verify equation (1.49) from [BDSK09]). This has been checked with the use of
the computer. ��

5. Casimirs for H0 and H1

In this paper we will apply the Lenard–Magri scheme for the bi-Poisson structure
(H0, H1) to find integrable hierarchies of bi-Hamiltonian equations. As explained in
Sect. 1, in order to do so, it is convenient to find the Casimir elements for H0 and H1.
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Proposition 5.1. (a) The kernel of H0(∂) is spanned by

ξ0,0 =
(

0
1

)
, ξ0,1 =

(
1
v

− u
v2 − 3

2
(v′)2

v4 + v′′
v3

)

. (5.1)

(b) We have ξ0,0 = δ(
∫

h0,0) and ξ0,1 = δ(
∫

h0,1), where

∫
h0,0 = ∫

v and
∫

h0,1 = ∫ (u

v
− 1

2

(v′)2

v3

)
.

(c) The matrix differential operator H0(∂) is strongly skew-adjoint.
(d) The kernel of H1(∂) is spanned by

ξ1,0 =
(

1
0

)
, ξ1,1 =

(
u′′ + 4u2

v2

2

)
. (5.2)

(e) We have ξ1,0 = δ(
∫

h1,0) and ξ1,1 = δ(
∫

h1,1), where

∫
h1,0 = ∫

u and
∫

h1,1 = ∫ (1

2
uu′′ +

4

3
u3 +

1

6
v3

)
.

(f) The matrix differential operator H1(∂) is strongly skew-adjoint.

Proof. Recall that the dimension (over the field of constants) of the kernel of a non-
degenerate matrix differential operator is at most the degree of its Dieudonné determi-
nant, see e.g. [DSK13]. Clearly, the Dieudonné determinants of both H0 and H1 have
degree 2, therefore their kernels have dimensions (over F) at most 2. On the other hand,
obviously ξ0,0 ∈ Ker H0(∂), and ξ1,0 ∈ Ker H1(∂). Moreover, the following straight-
forward identities

(∂3+∂ ◦ u + u∂)
1

v
+ v∂

( − u

v2 − 3

2

(v′)2

v4 +
v′′

v3

) = 0,

1

v2 ∂(u′′ + 4u2) − 1

v2 Q(∂)
1

2
= 0,

(5.3)

imply respectively that ξ0,1 ∈ Ker H0(∂), and ξ1,1 ∈ Ker H1(∂), proving parts (a) and
(d). Parts (b) and (e) follow by straightforward computations. Note that parts (b) and (e)
exactly say, respectively, that the operators H0 and H1 satisfy condition (i) of Definition
3.6 of strong skew-adjointness. We are left to prove condition (ii) for both H0 and H1.

Take P0 =
( p0

q0

)
⊥ Ker H0. Since

∫
P0 · ξ0,0 = 0 (and since v is invertible in V), we

have that q0 = (vα0)
′, for some α0 ∈ V . Denote r0 = 1

v
(p0 −α′′′

0 − (uα0)
′ − uα′

0) ∈ V ,
so that p0 = (∂3 + ∂ ◦ u + u∂)α0 + vr0. The condition

∫
P0 · ξ0,1 = 0 then reads

∫ (
r0 +

1

v
(∂3 + ∂ ◦ u + u∂)α0 +

( − u

v2 − 3

2

(v′)2

v4 +
v′′

v3

)
(vα0)

′) = 0.

After integration by parts, the last two terms under integration cancel by the first identity
in (5.3), hence the above equation implies that r0 = β ′

0 ∈ ∂V . In conclusion, P0 =
H0(∂)

(
α0
β0

)
, proving condition (ii) for H0. Similarly, take P1 =

( p1
q1

)
⊥ Ker H1.



A New Approach to the Lenard–Magri Scheme of Integrability 115

Since
∫

P1 · ξ1,0 = 0 (and since v is invertible in V), we have that p1 = (β1
v2

)′, for some

β1 ∈ V . Denote r1 = v2q1 + Q(∂)
β1
v2 ∈ V , so that q1 = r1

v2 − 1
v2 Q(∂)

β1
v2 . The condition∫

P1 · ξ1,1 = 0 then reads

∫ (( β

v2

)′
(u′′ + 4u2) − 1

2
Q(∂)

β1

v2 +
r1

2

)
= 0.

After integration by parts, the first two terms under integration cancel by the second
identity in (5.3), hence the above equation implies that r1 = α′

1 ∈ ∂V . In conclusion,

P1 = H1(∂)
(

α1
β1

)
, proving condition (ii) for H1. ��

By Proposition 5.1(b)–(e), the space of Casimir elements for H0 and H1 are respec-
tively

C−1(H0) = Span F

{∫
h0,0,

∫
h0,1} and C−1(H1) = Span F

{∫
h1,0,

∫
h1,1}.

Let, as before, {· , ·}0 and {· , ·}1 be the Poisson brackets (3.5) associated to the Poisson
structures H0 and H1 respectively.

Proposition 5.2. The spaces C−1(H0) and C−1(H1) are abelian subalgebras with
respect to both Poisson brackets {· , ·}0 and {· , ·}1.

Proof. By definition of Casimir elements, the space C−1(H0) is in the kernel of the
bracket {· , ·}0, and C−1(H1) is in the kernel of the bracket {· , ·}1. Hence, we only
need to prove that C−1(H0) is an abelian subalgebra w.r.t. {· , ·}1, namely, by (3.5) and
Proposition (5.1)(b), that

∫
ξ0,0 · H1(∂)ξ0,1 = 0, (5.4)

and that C−1(H1) is an abelian subalgebra w.r.t. {· , ·}0, namely
∫
ξ1,0 · H0(∂)ξ1,1 = 0. (5.5)

We have

ξ1,0 · H0(∂)ξ1,1 = (∂3 + ∂ ◦ u + u∂)(u′′ + 4u2) +
1

2
v∂v2

= (u′′ + 4u2)′′′ +
(

2uu′′ − 1

2
(u′)2 +

20

3
u3

)′
+

1

3
(v3)′,

hence (5.5) holds. A similar, but longer computation, shows that (5.4) holds as
well. ��

6. The Four Integrable Bi-Hamiltonian Equations of Lowest Order

Let us start computing the first Hamiltonian equations associated to each element in the
kernel of H0 and H1. Starting with ξ0,0 ∈ Ker(H0) we get the Hamiltonian vector field
P0,0 = H1(∂)ξ0,0, and the corresponding Hamiltonian equation (of order 5):

du
dt =

(
1
v2

)′

dv
dt = − 1

v2

(
1
v2

)(5)

+ 3 1
v2

(
u
(

1
v2

)′)′′
+ 3 1

v2

(
u
(

1
v2

)′′)′

+2 1
v2

(
u
v2

)′′′
+ 2 u

v2

(
1
v2

)′′′
+ 8 1

v2

(
u2

v2

)′
+ 8 u2

v2

(
1
v2

)′
.

(6.1)
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Starting with ξ0,1 ∈ Ker(H0) we get the Hamiltonian vector field P0,1 = H1(∂)ξ0,1,
and the corresponding Hamiltonian equation (of order 7):

du
dt =

(
− u

v4 + v′′
v5 − 3

2
(v′)2

v6

)′

dv
dt = − v′

v4 − 1
v2

(
∂5 + 3∂2 ◦ u∂ + 3∂ ◦ u∂2 + 2∂3 ◦ u + 2u∂3

+8∂ ◦ u2 + 8u2∂
)( − u

v4 + v′′
v5 − 3

2
(v′)2

v6

)
.

(6.2)

Starting with ξ1,0 ∈ Ker(H1) we get the Hamiltonian vector field P1,0 = H0(∂)ξ1,0,
and the corresponding Hamiltonian equation:

du
dt = u′

dv
dt = v′.

(6.3)

Finally, starting with ξ1,1 ∈ Ker(H0) we get the Hamiltonian vector field P1,1 =
H0(∂)ξ1,1, and the corresponding Hamiltonian equation (of order 5):

du
dt = u(5) + 10uu′′′ + 25u′u′′ + 20u2u′ + v2v′

dv
dt = u′′′v + u′′v′ + 8uu′v + 4u2v′.

(6.4)

We want to prove that, for ε = 0, 1, each element ξε,α, α = 0, 1 in the kernel of Hε

produces an infinite Lenard–Magri scheme starting with ξ
ε,α
0 = ξε,α:

0 ��

Hε

��
��

��
��

� Pε,α
0��

H1−ε

��
��

��
��

��
Hε

��
��

��
��

Pε,α
1��

H1−ε

��
��

��
��

��
Hε

��
��

��
��

�
. . . ∈ V2

ξ
ε,α
0 ξ

ε,α
1

. . . ∈ V2

∫
hε,α

0

δ

��

∫
hε,α

1

δ

��

. . . ∈ Ṽ/∂Ṽ
(6.5)

This will easily imply that all by-Hamiltonian equations (6.1), (6.2), (6.4) and (6.7) are
integrable, and they are compatible with each other. Namely, we will prove the following
result.

Theorem 6.1. (a) For ε, α ∈ {0, 1} there is a sequence {∫ hε,α
n }n∈Z+ ⊂ Ṽ/∂Ṽ , such

that δ(
∫

hε,α
0 ) = ξε,α and δ(

∫
hε,α

n ) ∈ V2 for every n ∈ Z+, satisfying the Lenard–
Magri recurrence relations (6.5), i.e.

H1−ε(∂)δ(
∫

hε,α
n ) = Hε(∂)δ(

∫
hε,α

n+1) =: Pε,α
n . (6.6)

(b) The four Lenard–Magri schemes are compatible, in the sense that
{∫

hε,α
m ,

∫
hδ,β

n

}
ζ

= 0 for all ε, δ, ζ, α, β = 0, 1, m, n ∈ Z+,

[Pε,α
m , Pδ,β

n ] = 0 for all ε, δ, α, β = 0, 1, m, n ∈ Z+.
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(c) The differential orders of the higher symmetries Pε,α
n = Hε(∂)δ(

∫
hε,α

n ) tend to
infinity as n → ∞.

Remark 6.2. Proposition 5.1 gives the integrals of motion
∫

hε,α
n for n = 0 and arbitrary

ε, α = 0, 1. One can use the Lenard–Magri relations (6.6) to find recursively all other
integrals of motions

∫
hε,α

n for arbitrary n ∈ Z. For example, we have

∫
h1,0

1 = ∫ (1

3
uv3 +

8

3
u4 +

1

2
uu(4) − 6u(u′)2

)
.

The next higher symmetry is P1,0
1 = H0(∂)δ(

∫
h1,0

1 ), and the corresponding Hamiltonian
equation (of order 7) is:

du
dt = (∂3 + 2u∂ + u′)(u(4) + 12uu′′ + 6(u′)2 + 32

3 u3 + 1
3v3) + v∂(uv2)

dv
dt = ∂(vu(4) + 12vuu′′ + 6v(u′)2 + 32

3 vu3 + 1
3v4).

(6.7)

7. Proof of Theorem 6.1

Let ε, α ∈ {0, 1} and let
{
ξε,α

n =
( f ε,α

n
gε,α

n

)}N

n=0
⊂ V2 (7.1)

be a finite sequence satisfying the Lenard–Magri recursive relations

H1−ε(∂)ξ
ε,α
n−1 = Hε(∂)ξε,α

n (7.2)

for every n = 0, . . . , N , where ξ
ε,α
−1 = 0 and ξ

ε,α
0 = ξε,α . The main task in the proof of

Theorem 6.1 is to show that, when α = 1, this sequence can be extended by one step.
This is the content of Corollary 7.6 below, which is a consequence of the following five
lemmas.

Lemma 7.1. (a) For ε = 0, the Lenard–Magri recursive relations (7.2) translate in
the following identities for the entries of ξ

0,α
n for 1 ≤ n ≤ N:

(v f 0,α
n )′ = 1

v2 ( f 0,α
n−1)

′ − 1

v2 Q(∂)
g0,α

n−1

v2 ,

v(g0,α
n )′ =

(g0,α
n−1

v2

)′ − ( f 0,α
n )′′′ − (u f 0,α

n )′ − u( f 0,α
n )′.

(7.3)

(b) For ε = 1, Eq. (7.2) translate in the following identities for the entries of ξ
1,α
n for

1 ≤ n ≤ N:

(g1,α
n

v2

)′ = ( f 1,α
n−1)

′′′ + (u f 1,α
n−1)

′ + u( f 1,α
n−1)

′ + v(g1,α
n−1)

′,

( f 1,α
n )′ = v2(v f 1,α

n−1)
′ + Q(∂)

(g1,α
n

v2

)
.

(7.4)

Proof. It follows immediately from the definitions (4.2)–(4.3) of the operators H0
and H1. ��

The algebra of differential functions V , defined by (4.1), admits the following two
differential subalgebras:
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V+ = R2 = F[u, v, u′, v′, u′′, v′′, . . . ], V− = F
[
u,

1

v
, u′, v′, u′′, v′′, . . .

]
, (7.5)

whose intersection is the differential subalgebra

V0 = F[u, u′, v′, u′′, v′′, . . . ]. (7.6)

Lemma 7.2. (a) We have ∂V ∩ V+ = ∂V+.
(b) We have ∂V ∩ V− = ∂(Fv ⊕ V−),
(c) For every k ≥ 1, we have ∂V ∩ (

F ⊕ 1
vk V−) = ∂

(
F

1
vk−1 ⊕ 1

vk V−)
.

Proof. Any element f ∈ V admits a unique decomposition f = ∑N
j=M v j c j , where

M ≤ N ∈ Z, c j ∈ V0 for all j and cM , cN �= 0. Its derivative is then

f ′ =
N−1∑

j=M−1

( j + 1)v j c j+1v
′ +

N∑

j=M

v j c′
j .

If f ′ ∈ V+, then M must be non-negative, i.e. f ∈ V+, proving part (a). Suppose next
that f ′ ∈ V−. If N ≥ 2, then c′

N = 0, c′
N−1 + NcN v′ = 0, namely 0 �= cN ∈ F and

cN−1 + NcN v ∈ F, which is impossible since, by assumption, cN−1 ∈ V0. If N = 1,
then c′

1 = 0, namely c1 ∈ F, and therefore f ∈ Fv ⊕ V−. Finally, if N ≤ 0, then
f ∈ V−. This completes the proof of part (b). A similar argument can be used to prove
part (c). Indeed, let k ≥ 1 and assume that f ′ ∈ F⊕ 1

vk V−. If N ≥ −k + 2, then c′
N = 0,

c′
N−1 + NcN v′ = 0 (when N = 0 or 1 we are using the fact that F ∩ ∂V = 0), namely

0 �= cN ∈ F and cN−1+ NcN v ∈ F. This is impossible since, by assumption, cN−1 ∈ V0.
If N = −k + 1, then c′−k+1 = 0, namely c−k+1 ∈ F, and therefore f ∈ F

1
vk−1 ⊕ 1

vk V−.

Finally, if N ≤ k, then f ∈ 1
vk V−. ��

Lemma 7.3. (a) If ε = 0, we have f 0,α
n ∈ 1

v
V− and g0,α

n ∈ F ⊕ 1
v
V− for every

n = 0, . . . , N.
(b) If ε = 1, we have f 1,α

n ∈ V+ and g1,α
n ∈ v2V+ for every n = 0, . . . , N.

Proof. First, let us prove part (a) by induction on n ≥ 0. The claim clearly holds for
n = 0 by (5.1). The inductive assumption, together with the first equation in (7.3),
implies that (v f 0,α

n )′ ∈ 1
v
V−. Therefore f 0,α

n ∈ 1
v
V− thanks to Lemma 7.2(c) for k = 1.

Furthermore, the second equation in (7.3) implies that (g0,α
n )′ ∈ 1

v
V−, so that, by Lemma

7.2(c) with k = 1, we get that g0,α
n ∈ F ⊕ 1

v
V−. Similarly, we prove part (b) again by

induction on n ≥ 0. For n = 0 the claim holds by (5.2). The first equation in (7.4) and
Lemma 7.2(a) imply that g1,α

n ∈ v2V+, while the second equation in (7.4) and Lemma
7.2(a) imply that f 1,α

n ∈ V+. ��
Lemma 7.4. For every n = 0, . . . , N we have

∫
ξε,1−α · H1−ε(∂)ξε,α

n ∈ C−1(Hε). (7.7)

Proof. By Proposition 5.1(b) and (e) and by Theorem 3.3, all elements ξ
ε,α
n are closed,

and therefore, by Theorem 3.5, they are exact in Ṽ , i.e. there exist
∫

hε,α
n ∈ Ṽ/∂Ṽ such

that ξ
ε,α
n = δ(

∫
hε,α

n ) for all n = 0, . . . , N . In the Lie superalgebra W of variational
polyvector fields we have (cf. Eqs. (3.2) and (3.4)):
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∫
ξε,1−α · H1−ε(∂)ξε,α

n = [[H1−ε,
∫

hε,α
n ], ∫ hε,1−α],

and the assumption (7.2) reads [Hε,
∫

hε,α
n−1] = [H1−ε,

∫
hε,α

n ], for all n = 0, . . . , N
(where we let

∫
hε,α

−1 = 0). Condition (7.7) then holds by Lemma 2.1(e). ��
Lemma 7.5. If ε ∈ {0, 1} and α = 1, we have, for every n = 0, . . . , N,

∫
ξε,0 · H1−ε(∂)ξε,1

n = 0. (7.8)

Proof. For n = 0 the claim holds by Proposition 5.2. For arbitrary n ≥ 1 we will prove
that Eq. (7.8) holds separately for ε = 0 and ε = 1.

Let us consider first the case ε = 0. By Lemma 7.4, we have that

δ
∫
ξ0,0 · H1(∂)ξ0,1

n ∈ Ker(H0(∂)). (7.9)

Recalling Proposition 5.1(a), condition (7.9) says that there exist α, β ∈ F such that:

δ
∫
ξ0,0 · H1(∂)ξ0,1

n = αξ0,0 + βξ0,1. (7.10)

In other words, recalling the definition (4.3) of H1, we have

δ

δu

( 1

v2 ( f 0,1
n )′ − 1

v2 Q(∂)
g0,1

n

v2

)
= β

1

v
,

δ

δv

( 1

v2 ( f 0,1
n )′ − 1

v2 Q(∂)
g0,1

n

v2

)
= α + β

(
− u

v2 +
v′′

v3 − 3

2

(v′)2

v4

)
.

(7.11)

By Lemma 7.3(a) both elements f 0,1
n and g0,1

n lie in the differential subalgebra V−. Note
that the space 1

v2 V− is preserved by both δ
δu and δ

δv
. It follows that the LHS’s of both

Eqs. (7.11) lie in 1
v2 V−. It immediately follows that, necessarily, β = 0 (looking at the

first equation), and α = 0 (looking at the second equation). We thus have so far, by
Eq. (7.10), that

δ
∫
ξ0,0 · H1(∂)ξ0,1

n = 0.

Recalling that Ker δ = ∫
F, this means that

∫
ξ0,0 · H1(∂)ξ0,1

n = ∫
γ, (7.12)

for some γ ∈ F, and we need to prove that γ = 0. By writing explicitly Eq. (7.12), we
have that

1

v2 ( f 0,1
n )′ − 1

v2 Q(∂)
g0,1

n

v2 − γ ∈ ∂V. (7.13)

Lemma 7.2(c) with k = 2 then implies that the LHS of (7.13) lies in ∂(F 1
v

⊕ 1
v2 V−) ⊂

1
v2 V−, and therefore γ = 0.

For the case ε = 1 we will use a similar argument. By Lemma 7.4, we have

δ
∫
ξ1,0 · H0(∂)ξ1,1

n ∈ Ker(H1(∂)). (7.14)

Recalling Proposition 5.1(d), condition (7.14) is saying that there exist α, β ∈ F such
that:

δ
∫
ξ1,0 · H0(∂)ξ1,1

n = αξ1,0 + βξ1,1. (7.15)
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In other words, recalling the definition (4.2) of H0, we have

δ

δu

(
u( f 1,1

n )′ + v(g1,1
n )′

) = α + β(u′′ + 4u2),

δ

δv

(
u( f 1,1

n )′ + v(g1,1
n )′

) = 1

2
βv2.

(7.16)

For h ∈ V , denote by Dh,1(∂) = ∑
n∈Z+

∂h
∂u(n) ∂

n , Dh,2(∂) = ∑
n∈Z+

∂h
∂v(n) ∂

n , its Frechet
derivatives, and by Dh,1(∂)∗ and Dh,2(∂)∗ the corresponding adjoint operators. Recalling
the definition of the variational derivatives, Eq. (7.16) can be equivalently rewritten as
follows:

( f 1,1
n )′ − D∗

f 1,1
n ,1

(∂)u′ − D∗
g1,1

n ,1
(∂)v′ = α + β(u′′ + 4u2)

(g1,1
n )′ − D∗

f 1,1
n ,2

(∂)u′ − D∗
g1,1

n ,2
(∂)v′ = 1

2
βv2.

(7.17)

Note that ξ
1,1
n is a closed element of V2, namely it has self-adjoint Frechet derivative.

This means that D∗
f 1,1
n ,1

(∂) = D f 1,1
n ,1(∂), D∗

g1,1
n ,2

(∂) = Dg1,1
n ,2(∂), and D∗

f 1,1
n ,2

(∂) =
Dg1,1

n ,1(∂). Hence, Eq. (7.17) give

( f 1,1
n )′ − D f 1,1

n ,1(∂)u′ − D f 1,1
n ,2(∂)v′ = α + β(u′′ + 4u2),

(g1,1
n )′ − Dg1,1

n ,1(∂)u′ − Dg1,1
n ,2(∂)v′ = 1

2
βv2.

(7.18)

The polynomial ring V+ = F[u, v, u′, v′, u′′, v′′, . . . ] admits the polynomial degree
decomposition V+ = ⊕V+[k], where V+ consists of homogeneous polynomials of
degree k. For h ∈ V+, denote by h = ∑

k∈Z+
h[k] its decomposition in homogeneous

components. Note that V+[0] = F and ∂V ∩ F = 0. It follows, by looking at the
homogenous components of degree 0 in both sides of the first equation of (7.18), that
α = 0. Furthermore, by looking at the homogenous components of degree 2 in both
sides of the second equation of (7.18), we get

(g1,1
n [2])′ − Dg1,1

n [2],1(∂)u′ − Dg1,1
n [2],2(∂)v′ = 1

2
βv2. (7.19)

On the other hand, by looking at the homogenous components of degree 0 in both sides
of the first equation of (7.4), we get that g1,α

n [2] ∈ Fv2. But then the LHS of Eq. (7.19)
is equal to zero, and therefore β = 0. We thus have so far, by Eq. (7.15), that

∫
ξ1,0 · H0(∂)ξ1,1

n = ∫
γ, (7.20)

for some γ ∈ F, and we need to prove that γ = 0. By writing explicitly Eq. (7.20), we
get

γ = u( f 1,1
n )′ + v(g1,1

n )′ + r ′, (7.21)

for some r ∈ V . By Lemma 7.3 we have that u( f 1,1
n )′ + v(g1,1

n )′ ∈ ⊕
k≥1 V+[k].

Moreover, by Lemma 7.2(a) we can assume r ∈ V+, and therefore r ′ ∈ ⊕
k≥1 V+[k]. It

follows by Eq. (7.21) that γ = 0. ��
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Corollary 7.6. If α = 1, there exists ξ
ε,1
N+1 ∈ V2 solving the equation

H1−ε(∂)ξ
ε,1
N = Hε(∂)ξ

ε,1
N+1.

Proof. By the usual inductive argument, based on the recursive relations (7.2) and the
fact that H0 and H1 are skew-adjoint (as in the proof of Lemma 2.1(a)), we know that
H1−ε(∂)ξ

ε,1
N ⊥ ξ

ε,1
0 . Moreover, Lemma 7.5 says that H1−ε(∂)ξ

ε,1
N ⊥ ξ

ε,0
0 . Therefore,

H1−ε(∂)ξ
ε,1
N ⊥ Ker(Hε), which, by the strong skew-adjointness property of Hε (cf.

Proposition 5.1(c) and (f)), implies that H1−ε(∂)ξ
ε,1
N lies in the image of Hε(∂), proving

the claim. ��
Proof of Theorem 6.1. For ε ∈ {0, 1}, by Corollary 7.6 there exists an infinite sequence
{ξε,1

n }n∈Z+ starting with ξ
ε,1
0 = ξε,1 and satisfying the Lenard–Magri recursive relations

H1−ε(∂)ξ
ε,1
n−1 = Hε(∂)ξ

ε,1
n for all n ∈ Z+ (where ξ

ε,1
−1 = 0). Next, we want to prove

that the statement of Corollary 7.6 also holds for α = 0. Let {ξε,0
n }N

n=0 be a finite

sequence starting with ξ
ε,0
0 = ξε,0 and satisfying the Lenard–Magri recursive relations

H1−ε(∂)ξ
ε,0
n−1 = Hε(∂)ξ

ε,0
n for all n = 0, . . . , N (where ξ

ε,α
−1 = 0). By the usual

inductive argument we know that H1−ε(∂)ξ
ε,0
N ⊥ ξ

ε,0
0 . Moreover, we have, by the

Lenard–Magri relations and skew-adjointness of H0 and H1,
∫
ξ

ε,1
0 · H1−ε(∂)ξ

ε,0
N = −∫

ξ
ε,0
N · H1−ε(∂)ξ

ε,1
0 = −∫

ξ
ε,0
N · Hε(∂)ξ

ε,1
1

= ∫
ξ

ε,1
1 ·Hε(∂)ξ

ε,0
N = ∫

ξ
ε,1
1 ·H1−ε(∂)ξ

ε,0
N−1 = . . . = ∫

ξ
ε,1
N+1 ·H1−ε(∂)ξ

ε,0
−1 = 0.

Hence, H1−ε(∂)ξ
ε,0
n−1 ⊥ Ker(Hε), and therefore, by the same argument as in the proof of

Corollary 7.6, there exists ξ
ε,0
N+1 ∈ V2 solving the equation H1−ε(∂)ξ

ε,0
N = Hε(∂)ξ

ε,0
N+1.

Therefore, the given finite sequence can be extended to an infinite sequence {ξε,0
n }n∈Z+

satisfying the Lenard–Magri recursive relations.
So far, for each ε, α ∈ {0, 1}, we have an infinite sequence {ξε,α

n }n∈Z+ satisfying the
Lenard–Magri recursive relations (7.2). By Theorems 3.3 and 3.5 we know that all the
elements of these sequences are exact in Ṽ , i.e. there are elements

∫
hε,α

n ∈ Ṽ/∂Ṽ such
that δhε,α

n = ξ
ε,α
n for all ε, α ∈ {0, 1}, n ∈ Z+. and the relations (7.2) on the elements

ξ
ε,α
n ’s translate to the Eq. (6.6) on the elements

∫
hε,α

n ’s. Part (a) of the theorem is then
proved, and part (b) is an immediate consequence of Lemma 2.1(a), (b) and (c).

We are left to prove part (c). By looking at the recursive equations (7.3) it is not hard
to compute the differential orders | f ε,α

n | and |gε,α
n | of all the entries of each element of

the four sequences. We have for every n ≥ 1:

| f 0,0
n | = 6n − 2, |g0,0

n | = 6n, | f 0,1
n | = 6n, |g0,1

n | = 6n + 2,

| f 1,0
n | = 6n − 2, |g1,0

n | = 6(n − 1), | f 1,1
n | = 6n + 2, |g1,1

n | = 6n − 2.

Hence, the differential orders of the higher symmetries are |P0,0
n | = 6n + 5, |P0,1

n | =
6n + 7, |P1,0

n | = 6n + 1, |P1,1
n | = 6n + 5. Claim (c) follows. ��

Remark 7.7. Since the algebra of differential polynomials V+ is normal, it follows from
Lemma 7.3(b) that all integrals of motion

∫
h1,α

n lie in V+/∂V+.

Remark 7.8. From Eq. (7.3) and Lemma 7.2(c) it is easy to see that, for every α ∈ {0, 1}
and n ≥ 0, we have f 0,α

n ∈ F
1
v

⊕ 1
v2 V−, g0,α

n ∈ 1
v2 V−. It follows from the arguments in

the proof of [BDSK09, Thm.3.2] that all integrals of motion
∫

h0,α
n lie in V−/∂V−.
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