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Abstract In our previous paper (J. Comb. Theory Ser. A 120(1):28–38, 2013), we
determined a unified combinatorial framework to look at a large number of colored
partition identities, and studied the five identities corresponding to the exceptional
modular equations of prime degree of the Schröter, Russell, and Ramanujan type.
The goal of this paper is to use the master bijection of Sandon and Zanello (J. Comb.
Theory Ser. A 120(1):28–38, 2013) to show combinatorially several new and highly
nontrivial colored partition identities. We conclude by listing a number of further
interesting identities of the same type as conjectures.

Keywords Partition identity · Colored partition · Farkas–Kra identity ·
Bijective proof · Warnaar’s bijection

Mathematics Subject Classification (2010) Primary 05A17 · Secondary 05A19 ·
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1 Introduction

This paper is the second of a series of two, begun with [12], in which we study
colored partition identities. Our project is motivated by the recent paper [5], where
B.C. Berndt determined and proved analytically the colored partition identities cor-
responding to five exceptional modular equations of prime degree that he defined “of
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the Schröter, Russell, and Ramanujan type”, after the work of these three mathemati-
cians (see [4, 9–11, 13]). We refer to the introduction to [12] and, of course, to [5],
for more details.

In [12], responding to Berndt’s call, we determined a general and unified com-
binatorial framework in which to look at a number of colored partition identities,
including the five of the Schröter, Russell, and Ramanujan type. In fact, extending
S. Kim’s idea from [7], in Theorem 2.3 in [12] we proved that a large family of col-
ored partition identities are equivalent to suitable equations in (ν1, . . . , νt ;d1, . . . , dt ),
where the νi are partitions and the di are integers whose sum is odd. This allowed
us to show bijectively two more identities of the Schröter, Russell, and Ramanujan
type (namely, those whose corresponding modular equations have degrees 5 and 11).
Thus, also thanks to the work of Kim [7], who gave the first bijective proofs of the
identities modulo 3 and 7 (this latter also known as the “Farkas–Kra identity” [6]),
now only the identity modulo 23 is open combinatorially.

In this paper, we focus specifically on the case t = 12 of the equivalent equations
given by [12], Theorem 2.3, and deduce bijective proofs for a number of new, highly
nontrivial colored partition identities. We believe that even more interesting identi-
ties of the same type hold, and we provide a large sample of these at the end, as
conjectures.

2 Preliminary results

We begin by stating the main general result of [12], which will be the key to bijec-
tively show a number of new and challenging partition identities in the next section.
Its proof greatly generalized that of Kim [7], and used as a crucial ingredient a bi-
jection of S.O. Warnaar from [14]. We state our theorem here in the particular case
t = 12 and C1 = · · · = C12 = C, which will suffice for our purposes.

For the main definitions of partition theory, as well as three different introductions
to this field, we refer the reader to [1, 2, 8].

Theorem 2.1 Consider the equation

C

12∑

i=1

|μi |+C

12∑

i=1

(
di

2

)
+

12∑

i=1

Aidi = C

12∑

i=1

|αi |+C

12∑

i=1

(
ei

2

)
+

12∑

i=1

Biei +m, (1)

for given integers C ≥ 1, 0 ≤ Ai ≤ C/2 and 0 ≤ Bi ≤ C/2 for all i, and m ≥ 0. Let S

be the set containing one copy of all positive integers congruent to ±Ai modulo C for
each i, and T the set containing one copy of all positive integers congruent to ±Bi

modulo C for each i. Let DS(N) (respectively, DT (N)) be the number of partitions
of N into distinct elements of S (respectively, T ), where we require such partitions to
have an odd number of parts if no Ai (respectively, no Bi ) is equal to zero. Set

p = ∣∣{Bi = 0}∣∣ − ∣∣{Ai = 0}∣∣,
adopting the convention that |X| = 1 if X = ∅. Also, let P be the set of all partitions
into positive integers.
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Then the following are equivalent:

(i) For any N ≥ N0 ≥ 1, the number of tuples (μ1, . . . ,μ12;d1, . . . , d12) such that
the left-hand side of (1) equals N , μi ∈ P and di ∈ Z for all i, and

∑12
i=1 di

is odd, is equal to the number of tuples (α1, . . . , α12; e1, . . . , e12) such that the
right-hand side of (1) equals N , αi ∈ P and ei ∈ Z for all i, and

∑12
i=1 ei is odd;

(ii) For any N ≥ N0 ≥ 1,

DS(N) = 2p · DT (N − m).

Proof See [12], Theorem 2.3. �

The first of our preliminary lemmas was proved in [12]. We recall its statement in
the t = 12, C1 = · · · = C12 = C case for completeness.

Lemma 2.2 Fix arbitrary C,A1, . . . ,A12,B1, . . . ,B12, such that 0 ≤ Ai ≤ C/2 and
0 ≤ Bi ≤ C/2, for all i = 1, . . . ,12. Let SN be the set of all tuples of 12 partitions

and 12 integers (μ1, . . . ,μ12;d1, . . . , d12) such that
∑12

i=1 di is odd and

C

12∑

i=1

|μi | + C

12∑

i=1

(
di

2

)
+

12∑

i=1

Aidi = N.

Similarly, let TN be the set of all tuples of 12 partitions and 12 integers (α1, . . . , α12;
e1, . . . , e12) such that

∑12
i=1 ei is odd and

C

12∑

i=1

|αi | + C

12∑

i=1

(
ei

2

)
+

12∑

i=1

Biei + m = N,

where m is an integer chosen so that the smallest value of N for which TN �= ∅ is also
the second smallest value of N for which SN �= ∅. Define k to be the smallest value
such that Sk �= ∅. Further, let UN be the union of the set of all tuples of 12 integers
(d1, . . . , d12) such that

∑12
i=1 di is odd and

C

12∑

i=1

(
di

2

)
+

12∑

i=1

Aidi = N,

with |Sk| copies of the set of all tuples of 12 integers (f1, . . . , f12) such that
∑12

i=1 fi

is odd and

C

12∑

i=1

fi(3fi − 1)

2
+ k = N.

Finally, let VN be the union of the set of all tuples of 12 integers (e1, . . . , e12) such
that

∑12
i=1 ei is odd and

C

12∑

i=1

(
ei

2

)
+

12∑

i=1

Biei + m = N,
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with |Sk| copies of the set of all tuples of 12 integers (f1, . . . , f12) such that
∑12

i=1 fi

is even and

C

12∑

i=1

fi(3fi − 1)

2
+ k = N.

Then |SN | = |TN | for all N > k if and only if |UN | = |VN | for all N .

Proof See [12], Lemma 3.8. �

Lemma 2.3 Fix arbitrary C,A1, . . . ,A12,B1, . . . ,B12 and A′
1, . . . ,A

′
12,B

′
1, . . . ,B

′
12,

such that 0 ≤ Ai ≤ C/2, 0 ≤ Bi ≤ C/2, 0 ≤ A′
i ≤ C/2 and 0 ≤ B ′

i ≤ C/2, for all i.
Define SN , TN , S′

N , T ′
N , k, and k′ as in Lemma 2.2, and let QN , RN , Q′

N , and R′
N

be, respectively, the subsets of SN , TN , S′
N , and T ′

N in which the partitions are all
equal to ∅. Then, if |SN | = |TN | for all N > k, the following are equivalent:

(i) For all N > k′, |S′
N | = |T ′

N |;
(ii) For all N ,

|Sk| · |Q′
N+k′ | + |S′

k′ | · |RN+k| = |Sk| · |R′
N+k′ | + |S′

k′ | · |QN+k|.

Proof By Lemma 2.2, |S′
N | = |T ′

N | for all N > k′ if and only if |U ′
N+k′ | = |V ′

N+k′ |
for all N . But by subtracting |S′

k′ | times |UN+k| = |VN+k| from |Sk| times |U ′
N+k′ | =

|V ′
N+k′ |, and canceling out the elements of the form (f1, . . . , f12), this is easily seen

to be equivalent to

|Sk| · |Q′
N+k′ | − |S′

k′ | · |QN+k| = |Sk| · |R′
N+k′ | − |S′

k′ | · |RN+k|
for all N , which is obviously equivalent to (ii). �

Lemma 2.4 Fix C,A1, . . . ,A12,B1, . . . ,B12 such that Ai + B13−i = C/2 for all
i = 1, . . . ,12, and set m = ∑12

i=1 Ai/2 − 3C/2. Then, for any integers e1, . . . , e12,
we have:

C

12∑

i=1

( 1
2 − e13−i

2

)
+

12∑

i=1

Ai

(
1

2
− e13−i

)
= C

12∑

i=1

(
ei

2

)
+

12∑

i=1

Biei + m.

Proof This can easily be verified algebraically. �

Notice that the previous lemma implies that we can, in a sense, view d-tuples and
e-tuples as both being in the same set, namely

D =
{

d ∈ Z
12 ∪

(
Z + 1

2

)12

:
12∑

i=1

di ∈ 2Z + 1

}
.

Every tuple (d1, . . . , d12) ∈ D has a value of C
∑12

i=1

(
di

2

) + ∑12
i=1 Aidi , and will

in some sense be considered “of negative type” if the di are half-integers, since it will
come from the opposite side of the bijection as the tuples in which the di are integers.
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Finally, the last preliminary lemma is the following:

Lemma 2.5 Fix integers C∗,A∗
1, . . . ,A

∗
4,B

∗
1 , . . . ,B∗

4 and m∗, such that A∗
i +B∗

5−i =
C∗/2 and 0 ≤ A∗

i ≤ C∗/2 for each i, A∗
1 + A∗

4 = A∗
2 + A∗

3 = C∗/2 + m∗, and the
second-smallest possible values of the left-hand sides of the versions of Eq. (1) of
Theorem 2.1 with the coefficients below are equal to the smallest possible values of
their respective right-hand sides.

Then condition (i) of Theorem 2.1 holds for N0 = minB∗
i + 3m∗, C = C∗, m =

3m∗, and

(A1, . . . ,A12) = (
A∗

1,A
∗
2,A

∗
3,A

∗
4,A

∗
1,A

∗
2,A

∗
3,A

∗
4,A

∗
1,A

∗
2,A

∗
3,A

∗
4

)
,

(B1, . . . ,B12) = (
B∗

1 ,B∗
2 ,B∗

3 ,B∗
4 ,B∗

1 ,B∗
2 ,B∗

3 ,B∗
4 ,B∗

1 ,B∗
2 ,B∗

3 ,B∗
4

)
,

if and only if condition (i) of Theorem 2.1 holds for N0 = minA∗
i , C′ = C∗, m = m∗,

and

(
A′

1, . . . ,A
′
12

) = (
B∗

1 ,B∗
2 ,B∗

3 ,B∗
4 ,A∗

1,A
∗
2,A

∗
3,A

∗
4,A

∗
1,A

∗
2,A

∗
3,A

∗
4

)
,

(
B ′

1, . . . ,B
′
12

) = (
B∗

1 ,B∗
2 ,B∗

3 ,B∗
4 ,B∗

1 ,B∗
2 ,B∗

3 ,B∗
4 ,A∗

1,A
∗
2,A

∗
3,A

∗
4

)
.

Proof Using the terminology introduced in Lemma 2.2, for the first equation we have
k = min(A1, . . . ,A4), and for the second equation,

k′ = min(B1, . . . ,B4) = C/2 − max(A1, . . . ,A4)

= C/2 − (
C/2 + m − min(A1, . . . ,A4)

) = k − m.

Unless min(B1, . . . ,B4) = 0, the left-hand side of each equation takes on its small-
est value only when a variable with the smallest coefficient is 1 and the rest are 0. If
two or fewer of the Bi are 0 this still holds. Also, it is clearly impossible for exactly
three of them to be 0. Finally, if they are all 0, then the Ai all equal C/2 and it is easy
to check that the two left-hand sides take on their smallest values for 2 · 12 = 24 and
23 = 8 values of the variables, respectively.

In all of these cases, there are three times as many ways for the left-hand side of
the first expression to take on its smallest value as there are for the left-hand side of
the second one to.

Thus, it easily follows from Lemma 2.3 that proving the statement is tantamount to
proving that condition (ii) of Lemma 2.3 holds for the values of C, Ai , Bi , A′

i , and B ′
i

given above. Since |Sk| = 3|S′
k′ |, this is equivalent to the statement that 3|Q′

N+k′ | +
|RN+k| = 3|R′

N+k′ | + |QN+k|, so it suffices to show that for each (d1, . . . , d12) ∈
QN+k or (e′

1, . . . , e
′
12) ∈ 3R′

N+k′ there is a corresponding (e1, . . . , e12) ∈ RN+k or
(d ′

1, . . . , d
′
12) ∈ 3Q′

N+k′ and vice-versa.
By Lemma 2.4, we can view all d-tuples and e-tuples as being in the set D = {d ∈

Z
12 ∪ (Z + 1/2)12 : ∑12

i=1 di ∈ 2Z + 1} and all d ′-tuples and e′-tuples as being in the
set D′ = {d ′ ∈ Z

12 ∪ (Z + 1/2)12 : ∑12
i=1 d ′

i ∈ 2Z + 1}. Note that while D and D′
contain the same tuples, they have different value functions.
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Furthermore, for arbitrary integers d ′
1, . . . , d

′
4, we have the identity

C

4∑

i=1

(
di

′

2

)
+

4∑

i=1

Bid
′
i + m = C

4∑

i=1

( 1
2 − d ′

5−i

2

)
+

4∑

i=1

Ai

(
1

2
− d ′

5−i

)
.

Now, consider a map φ which sends an element (d ′
1, . . . , d

′
12) ∈ D′ to a tuple

(d1, . . . , d12) as follows:

di =
(

1

2
− d ′

5−i

)
for 0 < i ≤ 4; di = d ′

i otherwise.

The image of the tuple (d ′
1, . . . , d

′
12) has a value of

C

12∑

i=1

(
di

2

)
+ A1(d1 + d5 + d9) + A2(d2 + d6 + d10)

+ A3(d3 + d7 + d11) + A4(d4 + d8 + d12),

just like the elements of D. Therefore, if we apply φ to one copy of D′, and φ,
combined with the map

di → di+4 (mod 12) or di → di−4 (mod 12),

to the other two copies of D′, then the union of D with the three copies of D′ can be
bijectively mapped into the following set:

W =
{

d ∈ (
Z

4 ∪ (Z + 1/2)4) × (
Z

4 ∪ (Z + 1/2)4) × (
Z

4 ∪ (Z + 1/2)4) :
12∑

i=1

di ∈ 2Z + 1

}
.

For any (d1, . . . , d12) ∈ W , this element has a value of

C

12∑

i=1

(
di

2

)
+ A1(d1 + d5 + d9) + A2(d2 + d6 + d10)

+ A3(d3 + d7 + d11) + A4(d4 + d8 + d12),

and it belongs on the left-hand side of the desired bijection if and only if the number
of di that are half-integers is 0 or 8.

For any such element, let x = d1 + d2 + d3 + d4, y = d5 + d6 + d7 + d8, and
z = d9 + d10 + d11 + d12. Then the map

d∗
i =

(
x

2
− d5−i

)
for 0 < i ≤ 4; d∗

i =
(

y

2
− d13−i

)
for 4 < i ≤ 8;

d∗
i =

(
z

2
− d21−i

)
for 8 < i ≤ 12
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will always send an element of W to an element of W with the same value. Clearly, it
is also an involution. Furthermore, x + y + z = ∑12

i=1 di is odd, so either one or three
quadruples of elements are being changed from an integer to a half-integer or vice-
versa. Therefore, this map always converts an element to an element of the opposite
type, and is the desired bijection. �

3 The new colored partition identities

The goal of the rest of the paper is to show bijectively a number of new interesting
partition identities, thanks to their equivalent formulation provided by Theorem 2.1.
Like the two identities of the Schröter, Russell, and Ramanujan type that we proved
in [12], most of these identities will turn out to have highly nontrivial proofs.

Lemma 3.1 Condition (i) of Theorem 2.1 holds for N0 = 3, C = 2, m = 3, and

(A1, . . . ,A12) = (1, . . . ,1), (B1, . . . ,B12) = (0, . . . ,0).

Proof We proceed in a similar way to the proof of [12], Lemma 3.10 (the equation
equivalent to the partition identity of the Schröter, Russell, and Ramanujan type cor-
responding to the modular equation of degree 5). By Lemma 2.2, one can easily check
that the statement is equivalent to the existence of a bijection between the set of tuples
(d1, . . . , d12) and 24 copies of every tuple with odd sum (f1, . . . , f12), and the set of
tuples (e1, . . . , e12) and 24 copies of every tuple with even sum (f ′

1, . . . , f
′
12), such

that, for every corresponding pair,

2
12∑

i=1

(
di

2

)
+

12∑

i=1

di or 2
12∑

i=1

fi(3fi − 1)

2
+ 1 =

2
12∑

i=1

(
ei

2

)
+

12∑

i=1

0ei + 3 or 2
12∑

i=1

f ′
i (3f ′

i − 1)

2
+ 1.

By Lemma 2.4, we can consider the d-tuples and e-tuples as both being in the
set D = {d ∈ Z

12 ∪ (Z + 1/2)12 : ∑12
i=1 di ∈ 2Z + 1}. An arbitrary element of D,

(d1, . . . , d12), has a value of 2
∑12

i=1

(
di

2

) + ∑12
i=1 di = ∑12

i=1 d2
i .

Now, let

V1 = (−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1),

V2 = (1,1,1,1,1,1,−1,−1,−1,−1,−1,−1),

V3 = (1,1,1,−1,−1,−1,1,1,1,−1,−1,−1),

V4 = (1,−1,−1,1,1,−1,1,1,−1,1,−1,−1),

V5 = (−1,1,−1,1,−1,1,1,−1,1,1,−1,−1),

V6 = (−1,−1,1,−1,1,1,−1,1,1,1,−1,−1),
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V7 = (−1,−1,1,1,−1,1,1,1,−1,−1,1,−1),

V8 = (1,−1,−1,−1,1,1,1,−1,1,−1,1,−1),

V9 = (−1,1,−1,1,1,−1,−1,1,1,−1,1,−1),

V10 = (−1,1,1,−1,1,−1,1,−1,−1,1,1,−1),

V11 = (1,1,−1,−1,−1,1,−1,1,−1,1,1,−1),

V12 = (1,−1,1,1,−1,−1,−1,−1,1,1,1,−1).

Notice that these vectors are pairwise orthogonal. Also, for arbitrary d ∈ D and
1 ≤ i ≤ 12, d · Vi is an odd integer. Let

ri(d) = d − d · Vi

6
Vi.

Notice that ‖ri(d)‖ = ‖d‖, for any i and d . If d · Vi ≡ 0 (mod 3), then d·Vi

6 is a
half-integer, so ri(d) is an element of D that corresponds to an e-tuple if d corre-
sponds to a d-tuple, and vice-versa. So, we can map every point in D that has a dot
product with any of the Vi that is divisible by 3 to a point of the opposite type and the
same value by sending it to ri(d), where i is the smallest integer such that d · Vi ≡ 0
(mod 3).

Note that ri(d) · Vj = d · Vj for all j �= i because of the orthogonality of the
vectors, and ri(d) ·Vi = −d ·Vi . It is easy to check that ri(ri(d)) = d . Therefore, this
map is an involution.

That just leaves the points in D whose dot products with Vi are not divisible by
3 for any i. Let d ∈ D be any such point. For each i, let xi be the nearest integer to
d·Vi

6 , yi = d · Vi − 6xi , and z = d − ∑12
i=1

xi

2 Vi . For any i, d · Vi ≡ ±1 (mod 6), so
yi = ±1.

By the Pythagorean Theorem, we have

‖d‖2 =
12∑

i=1

(d · Vi)
2

12
=

12∑

i=1

(6xi + yi)
2

12
=

12∑

i=1

xi(3xi + yi) + 1.

Now, z must be either a tuple of integers or a tuple of half-integers, and z · Vi =
yi = ±1 for each i. It is easy to check that the only tuples that fit these criteria
are the 24 in which one element equals ±1 and the rest are 0. Therefore, we can
choose a bijection between the 24 possible values of z and the 24 copies of each tuple
(f1, . . . , f12), and then map d to the copy of (−x1y1, . . . ,−x12y12) corresponding to
z. It follows that

2
12∑

i=1

fi(3fi − 1)

2
+ 1 = ‖d‖2.

Also, the yi are determined by z, and for any given choice of z, the only d that
maps to a given tuple (f1, . . . , f12) is z − ∑12

i=1
yi ·fi

2 Vi . Furthermore, the entries of

this d are all half-integers if
∑12

i=1 fi is odd and integers if it is even. So, this map
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always takes elements of D corresponding to tuples of d’s to tuples of f ’s with an
even sum, and elements of D corresponding to tuples of e’s to tuples of f ’s with an
odd sum, as desired. �

Theorem 3.2 Let S be the set containing 24 copies of the odd positive integers, and
T the set containing 24 copies of the even positive integers. Then, for any N ≥ 3,

DS(N) = 2048DT (N − 3).

Proof Straightforward from Theorem 2.1 and Lemma 3.1. �

Lemma 3.3 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 2, m = 1, and

(A1, . . . ,A12) = (0,0,0,0,1,1,1,1,1,1,1,1),

(B1, . . . ,B12) = (0,0,0,0,0,0,0,0,1,1,1,1).

Proof Straightforward from Lemmas 3.1 and 2.5. �

Theorem 3.4 Let S be the set containing 8 copies of the even positive integers and
16 copies of the odd positive integers, and T the set containing 16 copies of the even
positive integers and 8 copies of the odd positive integers. Then, for any N ≥ 1,

DS(N) = 16DT (N − 1).

Proof Straightforward from Theorem 2.1 and Lemma 3.3. �

Lemma 3.5 Condition (i) of Theorem 2.1 holds for N0 = 4, C = 6, m = 3, and

(A1, . . . ,A12) = (2, . . . ,2), (B1, . . . ,B12) = (1, . . . ,1).

Proof By Lemmas 3.1 and 2.3, this statement is equivalent to condition (ii) of
Lemma 2.3 holding for

(
A′

1, . . . ,A
′
12

) = (3, . . . ,3),
(
B ′

1, . . . ,B
′
12

) = (0, . . . ,0).

One can see that m′ = 9, and |S′
k′ | = 2|Sk| = 24. So, this is equivalent to the state-

ment that |Q′
N+k′ | + 2|RN+k| = |R′

N+k′ | + 2|QN+k|. Thus, it suffices to show that
for each (d1, . . . , d12) ∈ 2QN+k or (e′

1, . . . , e
′
12) ∈ R′

N+k′ there is a corresponding
(e1, . . . , e12) ∈ 2RN+k or (d ′

1, . . . , d
′
12) ∈ Q′

N+k′ and vice-versa.
By Lemma 2.4, we can consider all d-tuples and e-tuples as being in the set D =

{d ∈ Z
12 ∪ (Z + 1/2)12 : ∑12

i=1 di ∈ 2Z + 1} and all d ′-tuples and e′-tuples as being
in the set D′ = {d ∈ Z

12 ∪ (Z + 1/2)12 : ∑12
i=1 di ∈ 2Z + 1}. Note that D and D′ are

not really the same because they have different value functions. For arbitrary d ∈ D,
there are three cases.

If
∑12

i=1 di ≡ 5 (mod 6), we map d to another element of D with an equal value
but the opposite type, using the map d∗

i = di − (
∑12

j=1 dj −2)/6, for each i. This map
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always results in d∗ such that
∑12

i=1 d∗
i − 2 = −(

∑12
i=1 di − 2) ≡ 3 (mod 6), and it is

an involution, so it cancels out all such d .
If

∑12
i=1 di ≡ 3 (mod 6), we map d to another element of D with an equal value

but the opposite type, using the map d∗
i = ∑12

j=1 dj/6 − di , for each i. This map al-

ways results in d∗ such that
∑12

i=1 d∗
i = ∑12

i=1 di ≡ 3 (mod 6), and it is an involution,
so it cancels out all such d .

Finally, if
∑12

i=1 di ≡ 1 (mod 6), we map both copies of d to elements of D′ with
the same value and type, using the maps d ′

i = di − (
∑12

j=1 dj − 1)/6 and d ′
i = −di +

(
∑12

j=1 dj −1)/6, for all i. These maps are injective, and always result in d ′ such that
∑12

i=1 d ′
i ≡ 1 (mod 6) and

∑12
i=1 d ′

i ≡ −1 (mod 6), respectively. Therefore, they are

bijections from the subset of D for which
∑12

i=1 di ≡ 1 (mod 6) to the subsets of D′
for which

∑12
i=1 d ′

i ≡ ±1 (mod 6).

That just leaves the subset of D′ for which
∑12

i=1 d ′
i ≡ 3 (mod 6). We map any d ′

in this subset to another element of the subset with the same value but the opposite
type, using the map d ′′

i = d ′
i − (

∑12
j=1 d ′

j )/6. This map is an involution, thus it cancels
out all d ′ in this subset. This completes the bijection and the proof of the lemma. �

Theorem 3.6 Let S be the set containing 12 copies of the even positive integers that
are not multiples of 3, and T the set containing 12 copies of the odd positive integers
that are not multiples of 3. Then, for any N ≥ 4,

DS(N) = DT (N − 3).

Proof Straightforward from Theorem 2.1 and Lemma 3.5. �

Lemma 3.7 Condition (i) of Theorem 2.1 holds for N0 = 3, C = 6, m = 3, and

(A1, . . . ,A12) = (1,1,1,1,1,1,3,3,3,3,3,3),

(B1, . . . ,B12) = (0,0,0,0,0,0,2,2,2,2,2,2).

Proof By Lemmas 3.5 and 2.3, this statement is equivalent to condition (ii) of Lemma
2.3 holding for

(
A′

1, . . . ,A
′
12

) = (2, . . . ,2),
(
B ′

1, . . . ,B
′
12

) = (1, . . . ,1).

One can see that m′ = 3 and |S′
k′ | = 2|Sk| = 12, so this is equivalent to the state-

ment that |Q′
N+k′ | + 2|RN+k| = |R′

N+k′ | + 2|QN+k|. Thus, it suffices to show that

for each (d1, . . . , d12) ∈ 2QN+k or (e′
1, . . . , e

′
12) ∈ R′

N+k′ there is a corresponding
(e1, . . . , e12) ∈ 2RN+k or (d ′

1, . . . , d
′
12) ∈ Q′

N+k′ and vice-versa.”
By Lemma 2.4, we can consider all d-tuples and e-tuples as being in the set D =

{d ∈ Z
12 ∪ (Z + 1/2)12 : ∑12

i=1 di ∈ 2Z + 1}, and all d ′-tuples and e′-tuples as being
in the set D′ = {d ∈ Z

12 ∪ (Z + 1/2)12 : ∑12
i=1 di ∈ 2Z + 1}. For arbitrary d ∈ D, let

x = d1 + d2 + d3 + d4 + d5 + d6 − d7 − d8 − d9 − d10 − d11 − d12.
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If x ≡ 5 (mod 6), we map d to another element of D with an equal value but the
opposite type, using the map

d∗
i =

(
di − x − 2

6

)
for 0 < i ≤ 6; d∗

i =
(

di + x − 2

6

)
for 6 < i ≤ 12.

This map always results in d∗ such that x∗ − 2 = −(x − 2) ≡ 3 (mod 6), and it is
an involution, so it cancels out all such d .

If x ≡ 3 (mod 6), we map d to another element of D with an equal value but the
opposite type, using the map

d∗
i =

(
di+6 + x

6

)
for 0 < i ≤ 6; d∗

i =
(

di−6 − x

6

)
for 6 < i ≤ 12.

This map always results in d∗ such that x∗ = x ≡ 3 (mod 6), and it is an involu-
tion, so it cancels out all such d .

Finally, if x ≡ 1 (mod 6), we map both copies of d to elements of D′ with the
same value and type, using the two maps:

d ′
i =

(
di − x − 1

6

)
for 0 < i ≤ 6; d ′

i =
(

di + x − 1

6

)
for 6 < i ≤ 12,

and

d ′
i =

(
di+6 + x − 1

6

)
for 0 < i ≤ 6; d ′

i =
(

di−6 − x − 1

6

)
for 6 < i ≤ 12.

These maps are involutions (provided one modifies the second one by replacing
x − 1 with x + 1 every time it occurs), and always result in d ′ such that x′ = x −
2(x − 1) ≡ 1 (mod 6) and x′ = −x + 2(x − 1) ≡ −1 (mod 6), respectively. Hence,
they are bijections from the subset of D for which x ≡ 1 (mod 6) to the subsets of
D′ for which x ≡ ±1 (mod 6).

That just leaves the subset of D′ for which x ≡ 3 (mod 6). We map any d ′ in this
subset to another element of the subset with the same value but the opposite type,
using the map

d ′′
i =

(
d ′
i − x

6

)
for 0 < i ≤ 6; d ′′

i =
(

d ′
i + x

6

)
for 6 < i ≤ 12.

This map is an involution, so it cancels out all d ′ in this subset. This completes the
bijection. �

Theorem 3.8 Let S be the set containing 6 copies of the odd positive integers and 6
more copies of the odd positive multiples of 3, and T the set containing 6 copies of
the even positive integers and 6 more copies of the positive multiples of 6. Then, for
any N ≥ 3,

DS(N) = 32DT (N − 3).
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Proof Straightforward from Theorem 2.1 and Lemma 3.7. �

Lemma 3.9 Condition (i) of Theorem 2.1 holds for N0 = 2, C = 4, m = 2, and

(A1, . . . ,A12) = (1,1,1,1,1,1,1,1,2,2,2,2),

(B1, . . . ,B12) = (0,0,0,0,1,1,1,1,1,1,1,1).

Proof By Lemmas 3.3 and 2.3, and a renumbering of the variables, this statement is
equivalent to condition (ii) of 2.3 holding for C = 4,

(A1, . . . ,A12) = (2,2,2,2,1,1,1,1,1,1,1,1),

(B1, . . . ,B12) = (0,0,0,0,1,1,1,1,1,1,1,1),
(
A′

1, . . . ,A
′
12

) = (2,2,2,2,0,0,0,0,2,2,2,2),
(
B ′

1, . . . ,B
′
12

) = (0,0,0,0,0,0,0,0,2,2,2,2).

Note that m′ = 2, and |S′
k′ | = |Sk| = 8. So, this is equivalent to the statement

that |Q′
N+k′ | + |RN+k| = |R′

N+k′ | + |QN+k|. Thus, it suffices to show that for
each (d1, . . . , d12) ∈ QN+k or (e′

1, . . . , e
′
12) ∈ R′

N+k′ there is a corresponding
(e1, . . . , e12) ∈ RN+k or (d ′

1, . . . , d
′
12) ∈ Q′

N+k′ and vice-versa.
It is easy to check that the following map is a value-preserving bijection between

d-tuples such that x = d1 +d2 +d3 +d4 is odd, and e-tuples such that e1 +e2 +e3 +e4
is odd:

ei =
(

di − x − 1

2

)
for 0 < i ≤ 4; ei = di otherwise.

Furthermore, the same map is also a value-preserving bijection between d ′-tuples
such that x = d ′

1 + d ′
2 + d ′

3 + d ′
4 is odd, and e′-tuples such that e′

1 + e′
2 + e′

3 + e′
4 is

odd.
Given any d-tuple such that d1 + d2 + d3 + d4 is not odd,

y = d5 + d6 + d7 + d8 − d9 − d10 − d11 − d12

≡ d5 + d6 + d7 + d8 + d9 + d10 + d11 + d12 (mod 2)

must be odd. If y ≡ 1 (mod 4), we can map this tuple to a d ′-tuple with the same
value, using the map

d ′
i = di for 0 < i ≤ 4; d ′

i =
(

di − y − 1

4

)
for 5 < i ≤ 8;

d ′
i =

(
di + y − 1

4

)
for 9 < i ≤ 12.

This map is a value-preserving bijection between the set of d-tuples for which
y ≡ 1 (mod 4) and the set of d ′-tuples for which d ′

5 + d ′
6 + d ′

7 + d ′
8 − d ′

9 − d ′
10 −

d ′
11 − d ′

12 ≡ 1 (mod 4).
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If y ≡ 3 (mod 4), we can map this tuple to a d ′-tuple with the same value, using
the map

d ′
i = di for 0 < i ≤ 4; d ′

i = 1 −
(

di+4 + y + 1

4

)
for 5 < i ≤ 8;

d ′
i =

(
−di−4 + y + 1

4

)
for 9 < i ≤ 12.

This map is a value-preserving bijection between the set of d-tuples for which
y ≡ 3 (mod 4) and the set of d ′-tuples for which d ′

5 + d ′
6 + d ′

7 + d ′
8 − d ′

9 − d ′
10 −

d ′
11 − d ′

12 ≡ 3 (mod 4). So, together they form a value-preserving bijection between
the set of d-tuples for which d5 + d6 + d7 + d8 + d9 + d10 + d11 + d12 is odd and the
set of d ′-tuples for which d ′

5 + d ′
6 + d ′

7 + d ′
8 + d ′

9 + d ′
10 + d ′

11 + d ′
12 is odd.

Furthermore, the exact same pair of maps forms a value-preserving bijection be-
tween the set of all e-tuples for which e5 + e6 + e7 + e8 + e9 + e10 + e11 + e12 is odd
and the set of e′-tuples for which e′

5 + e′
6 + e′

7 + e′
8 + e′

9 + e′
10 + e′

11 + e′
12 is odd.

These partial bijections combine to give the desired bijection. �

Theorem 3.10 Let S be the set containing 8 copies of the positive integers that are
not multiples of 4, and T the set containing 8 copies of the positive integers that are
not congruent to 2 modulo 4. Then, for any N ≥ 2,

DS(N) = 8DT (N − 2).

Proof Straightforward from Theorem 2.1 and Lemma 3.9. �

Lemma 3.11 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 4, m = 1, and

(A1, . . . ,A12) = (0,0,0,1,1,1,1,2,2,2,2,2),

(B1, . . . ,B12) = (0,0,0,0,0,1,1,1,1,2,2,2).

Proof By Lemmas 3.3 and 2.3, this statement is equivalent to condition (ii) of Lemma
2.3 holding for

(
A′

1, . . . ,A
′
12

) = (0,0,0,0,2,2,2,2,2,2,2,2),
(
B ′

1, . . . ,B
′
12

) = (0,0,0,0,0,0,0,0,2,2,2,2).

Note that m′ = 2, and |S′
k′ | = 2|Sk| = 8. So, this is equivalent to the statement

that |Q′
N+k′ | + 2|RN+k| = |R′

N+k′ | + 2|QN+k|. Thus, it suffices to show that for
each (d1, . . . , d12) ∈ 2QN+k or (e′

1, . . . , e
′
12) ∈ R′

N+k′ there is a corresponding
(e1, . . . , e12) ∈ 2RN+k or (d ′

1, . . . , d
′
12) ∈ Q′

N+k′ and vice-versa.
Note that d∗

1 = 1 − d1, d ′′
1 = 1 − d ′

1, e∗
1 = 1 − e1, and e′′

1 = 1 − e′
1 are value-

preserving bijections from the sets of all d-, d ′-, e-, and e′-tuples with an odd sum,
to the sets of all d-, d ′-, e-, and e′-tuples with an even sum, respectively. So, the
requirement that the tuples have an odd sum is irrelevant here and we can ignore it.
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Also, the coefficients of the first 3 elements of each type of tuple are the same, and
the coefficients of the last 3 elements of each type of tuple are also the same. Thus,
we can extend to the desired bijection any value-preserving bijection between the set
containing 2 copies of each tuple (d4, . . . , d9) and a copy of each tuple (e′

4, . . . , e
′
9),

and the set containing 2 copies of each tuple (e4, . . . , e9) and a copy of each tuple
(d ′

4, . . . , d
′
9), by having all maps leave the first three and last three elements of all

tuples unchanged.
Now, let X = {(x1, x2, x3, x4, x5, x6) ∈ Z

6}, and for each x ∈ X, assign x a value
of

4
6∑

i=1

(
xi

2

)
+ 0x1 + 0x2 + 0x3 + 2x4 + 2x5 + 2x6 + 1.

The map

x1 = ±(d4 + d5 − d6 − d7) + 1

2
, x2 = d4 − d5 + d6 − d7 + 1

2
,

x3 = d4 − d5 − d6 + d7 + 1

2
, x4 = d4 + d5 + d6 + d7 − 1

2
,

x5 = d8, x6 = d9

is a value-preserving bijection between the set of all copies of tuples (d4, . . . , d9) for
which d4 + d5 + d6 + d7 is odd, and X. Similarly, the map

x1 = e4, x2 = e5, x3 = 1 ± (e6 + e7 + e8 + e9 − 1)

2
,

x4 = e6 + e7 − e8 − e9

2
, x5 = e6 − e7 + e8 − e9

2
, x6 = e6 − e7 − e8 + e9

2

is a value-preserving bijection between the set of all copies of tuples (e4, . . . , e9) for
which e6 + e7 + e8 + e9 is even, and X. Obviously, combining the two yields a value-
preserving bijection between the set of all copies of tuples (d4, . . . , d9) for which
d4 + d5 + d6 + d7 is odd and the set of all copies of tuples (e4, . . . , e9) for which
e6 + e7 + e8 + e9 is even.

Also, the map

d ′
4 = 1 ± (d4 + d5 + d6 + d7 − 1)

2
, d ′

5 = d4 + d5 − d6 − d7

2
,

d ′
6 = d4 − d5 + d6 − d7

2
, d ′

7 = d4 − d5 − d6 + d7

2
,

d ′
8 = d8, d ′

9 = d9

is a value-preserving bijection between the set of all copies of tuples (d4, . . . , d9) for
which d4 + d5 + d6 + d7 is even and the set of all tuples (d ′

4, . . . , d
′
9). Similarly, the
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map

e′
4 = e4, e′

5 = e5, e′
6 = 1 ± (e6 + e7 − e8 − e9)

2
,

e′
7 = e6 − e7 + e8 − e9 + 1

2
, e′

8 = e6 − e7 − e8 + e9 + 1

2
,

e′
9 = e6 + e7 + e8 + e9 − 1

2

is a value-preserving bijection between the set of all copies of tuples (e4, . . . , e9) for
which e6 + e7 + e8 + e9 is odd and the set of tuples (e′

4, . . . , e
′
9).

Combining these bijections and then extending them to Z
12 yields the desired

bijection. �

Theorem 3.12 Let S be the set containing 4 copies of the odd positive integers,
6 copies of the positive multiples of 4, and 10 copies of the positive integers that are
congruent to 2 modulo 4; let T the set containing 4 copies of the odd positive integers,
10 copies of the positive multiples of 4, and 6 copies of the positive integers that are
congruent to 2 modulo 4. Then, for any N ≥ 1,

DS(N) = 4DT (N − 1).

Proof Straightforward from Theorem 2.1 and Lemma 3.11. �

Lemma 3.13 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 4, m = 1, and

(A1, . . . ,A12) = (0,0,1,1,1,1,1,1,1,1,2,2),

(B1, . . . ,B12) = (0,0,0,0,0,1,1,1,1,2,2,2).

Proof By Lemmas 3.11 and 2.3, this statement is equivalent to condition (ii) of
Lemma 2.3 holding for

(
A′

1, . . . ,A
′
12

) = (0,0,0,1,1,1,1,2,2,2,2,2),
(
B ′

1, . . . ,B
′
12

) = (0,0,0,0,0,1,1,1,1,2,2,2).

Note that m′ = 1, and |S′
k′ | = 2|Sk| = 4. So, this is equivalent to the statement

that |Q′
N+k′ | + 2|RN+k| = |R′

N+k′ | + 2|QN+k|. Thus, it suffices to show that for
each (d1, . . . , d12) ∈ 2QN+k or (e′

1, . . . , e
′
12) ∈ R′

N+k′ there is a corresponding
(e1, . . . , e12) ∈ 2RN+k or (d ′

1, . . . , d
′
12) ∈ Q′

N+k′ and vice-versa.
Obviously, the identity map is a value-preserving bijection between the set of

e′-tuples and the set containing one copy of each e-tuple. The maps d∗
1 = 1 − d1,

d ′′
1 = 1 − d ′

1, and e∗
1 = 1 − e1 are value-preserving bijections from the sets of all d-,

d ′-, and e-tuples with an odd sum, to the sets of all d-, d ′-, and e-tuples with an even
sum, respectively. So, the requirement that the tuples have an odd sum is irrelevant
and we can ignore it.
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The following is a value-preserving bijection between the set of all copies of
d-tuples such that d3 + d4 + d5 + d10 is odd, and the set containing the other copy of
each e-tuple:

ei =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1±(d3+d4−d5−d10)
2 for i = 3,

d3−d4+d5−d10+1
2 for i = 4,

d3−d4−d5+d10+1
2 for i = 5,

d3+d4+d5+d10−1
2 for i = 10,

di otherwise.

Similarly, the following map is a value-preserving bijection between the set of all
copies of d-tuples such that d3 + d4 + d5 + d10 is even and the set of all d ′-tuples:

d ′
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1±(d3+d4+d5+d10−1)
2 for i = 3,

d3+d4−d5−d10
2 for i = 8,

d3−d4+d5−d10
2 for i = 9,

d3−d4−d5+d10
2 for i = 10,

di+2 for 4 ≤ i ≤ 7,

di otherwise.

Combining these maps yields the desired bijection. �

Theorem 3.14 Let S be the set containing 8 copies of the odd positive integers and
4 copies of the even positive integers, and T the set containing 4 copies of the odd
positive integers, 10 copies of the positive multiples of 4, and 6 copies of the positive
integers that are congruent to 2 modulo 4. Then, for any N ≥ 1,

DS(N) = 8DT (N − 1).

Proof Straightforward from Theorem 2.1 and Lemma 3.13. �

Combining the last two partition identities, we immediately have:

Theorem 3.15 Let S be the set containing 8 copies of the odd positive integers and
4 copies of the even positive integers, and T the set containing 4 copies of the odd
positive integers, 6 copies of the positive multiples of 4, and 10 copies of the positive
integers that are congruent to 2 modulo 4. Then, for any N ≥ 1,

DS(N) = 2DT (N).

Proof Straightforward from Theorems 3.12 and 3.14. �
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Lemma 3.16 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 6, m = 1, and

(A1, . . . ,A12) = (0,0,1,1,1,1,2,2,3,3,3,3),

(B1, . . . ,B12) = (0,0,0,0,1,1,2,2,2,2,3,3).

Proof Straightforward from Lemmas 3.7 and 2.5. �

Theorem 3.17 Let S be the set containing 4 copies of the positive integers that are
congruent to either 0 or ±1 modulo 6, 2 copies of the even positive integers that
are not multiples of 3, and 8 copies of the odd positive multiples of 3; let T be the
set containing 4 copies of the positive integers that are congruent to either 3 or ±2
modulo 6, 2 copies of the positive integers that are congruent to ±1 modulo 6, and 8
copies of the positive multiples of 6. Then, for any N ≥ 1,

DS(N) = 4DT (N − 1).

Proof Straightforward from Theorem 2.1 and Lemma 3.16. �

Lemma 3.18 Condition (i) of Theorem 2.1 holds for N0 = 2, C = 6, m = 1, and

(A1, . . . ,A12) = (1,1,1,1,2,2,2,2,2,2,2,2),

(B1, . . . ,B12) = (1,1,1,1,1,1,1,1,2,2,2,2).

Proof Straightforward from Lemmas 3.5 and 2.5. �

Theorem 3.19 Let S be the set containing 4 copies of the positive integers that are
congruent to ±1 modulo 6, and 8 copies of the positive integers that are congruent
to ±2 modulo 6; let T be the set containing 8 copies of the positive integers that are
congruent to ±1 modulo 6, and 4 copies of the positive integers that are congruent to
±2 modulo 6. Then, for any N ≥ 2,

DS(N) = DT (N − 1).

Proof Straightforward from Theorem 2.1 and Lemma 3.18. �

Lemma 3.20 Condition (i) of Theorem 2.1 holds for N0 = 4, C = 10, m = 3, and

(A1, . . . ,A12) = (2,2,2,2,2,2,4,4,4,4,4,4),

(B1, . . . ,B12) = (1,1,1,1,1,1,3,3,3,3,3,3).

Proof By Lemmas 3.7 and 2.3, this statement is equivalent to condition (ii) of
Lemma 2.3 holding for C = 30,

(A1, . . . ,A12) = (6,6,6,6,6,6,12,12,12,12,12,12),

(B1, . . . ,B12) = (3,3,3,3,3,3,9,9,9,9,9,9),
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(
A′

1, . . . ,A
′
12

) = (5,5,5,5,5,5,15,15,15,15,15,15),
(
B ′

1, . . . ,B
′
12

) = (0,0,0,0,0,0,10,10,10,10,10,10).

Note that m = 9, m′ = 15, and |S′
k′ | = |Sk| = 6. So, this is equivalent to the state-

ment that |Q′
N+k′ | + |RN+k| = |R′

N+k′ | + |QN+k|. Thus, it suffices to show that
for each (d1, . . . , d12) ∈ QN+k or (e′

1, . . . , e
′
12) ∈ R′

N+k′ there is a corresponding
(e1, . . . , e12) ∈ RN+k or (d ′

1, . . . , d
′
12) ∈ Q′

N+k′ and vice-versa.

For an arbitrary d-tuple, let wi = di + di+6 for each i. Clearly,
∑6

i=1 wi is odd, so
either 1, 3, or 5 of them are odd. If wi1 , wi2 , and wi3 are odd and wj1 , wj2 , and wj3

are even, then the map

eix = dix + 1 − wix − wjx

2
, eix+6 = dix+6 + 1 − wix − wjx

2
,

ejx = djx + 1 − wix − wjx

2
, ejx+6 = djx+6 + 1 − wix − wjx

2
,

for x ∈ {1,2,3}, yields an e-tuple of equal value. This map gives a bijection between
the set of d-tuples for which three of the w’s are odd, and the set of e-tuples for which
three of the ei + ei+6 are odd. That leaves the cases where one or all but one of them
are odd.

There is an obvious value-preserving bijection from the set of d-tuples for which
wi has the opposite parity as the rest, to the set of d-tuples for which w1 has the
opposite parity as the rest, and there is an obvious bijection from the set of e-tuples
for which ei + ei+6 has the opposite parity as the rest, to the set of e-tuples for which
e1 + e7 has the opposite parity as the rest, for each i. So, we can focus on the cases
where the first one has a different parity than all of the others.

If w1 is odd and the rest are even, then there exist integers (f1, . . . , f12) for
which (d1, d7) = (1,0)−f1(1,1)+f2(−1,1), and (di, di+6) = (0,0)+f2i−1(1,1)+
f2i (1,−1), for each 2 ≤ i ≤ 6. If each f -tuple is considered to have a value of

60
12∑

i=1

(
fi

2

)
+ 12f1 + 6f2 +

6∑

i=2

(18f2i−1 + 24f2i ) + 6,

then it is easy to check that this map is a value-preserving bijection. If w1 is even and
the rest are odd, then there exist integers (g1, . . . , g12) for which (d1, d7) = (0,0) +
g1(1,1)+g2(1,−1), and (di, di+6) = (1,0)−g2i−1(1,1)+g2i (−1,1), for each 2 ≤
i ≤ 6. If each g-tuple is considered to have a value of

60
12∑

i=1

(
gi

2

)
+ 18g1 + 24g2 +

6∑

i=2

(12g2i−1 + 6g2i ) + 30,

then this map is a value-preserving bijection.
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If e1 + e7 is odd and the rest are even, there exist integers (h1, . . . , h12) for
which (e1, e7) = (1,0)−h1(1,1)+h2(−1,1), and (ei, ei+6) = (0,0)+h2i−1(1,1)+
h2i (1,−1), for each 2 ≤ i ≤ 6. If each h-tuple is considered to have a value of

60
12∑

i=1

(
hi

2

)
+ 18h1 + 6h2 +

6∑

i=2

(12h2i−1 + 24h2i ) + 12,

then this map is a value-preserving bijection. If e1 + e7 is even and the rest are odd,
there exist integers (k1, . . . , k12) for which (e1, e7) = (0,0) + k1(1,1) + k2(1,−1),
and (ei, ei+6) = (1,0) − k2i−1(1,1) + k2i (−1,1), for each 2 ≤ i ≤ 6.

If each k-tuple is considered to have a value of

60
12∑

i=1

(
ki

2

)
+ 12k1 + 24k2 +

6∑

i=2

(18k2i−1 + 6k2i ) + 24,

this map is a value-preserving bijection.
So, tuples of these types have values of:

60
12∑

i=1

(
fi

2

)
+ 6f2 + 12f1 + 18f3 + 24f4 + 18f5 + 18f7

+ 18f9 + 18f11 + 24f6 + 24f8 + 24f10 + 24f12 + 6,

60
12∑

i=1

(
gi

2

)
+ 6g4 + 12g3 + 18g1 + 24g2 + 12g5 + 12g7

+ 12g9 + 12g11 + 6g6 + 6g8 + 6g10 + 6g12 + 30,

60
12∑

i=1

(
hi

2

)
+ 6h2 + 12h3 + 18h1 + 24h4 + 12h5 + 12h7

+ 12h9 + 12h11 + 24h6 + 24h8 + 24h10 + 24h12 + 12,

60
12∑

i=1

(
ki

2

)
+ 6k4 + 12k1 + 18k3 + 24k2 + 18k5 + 18k7

+ 18k9 + 18k11 + 6k6 + 6k8 + 6k10 + 6k12 + 24.

Now, let S be the set of all tuples (s1, s2, s3, s4), and let an arbitrary element of S

have a value of

60
4∑

i=1

(
si

2

)
+ 6s1 + 12s2 + 18s3 + 24s4 + 6.
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Also let Q be the set of all tuples (q1, q2, q3, q4) or (q5, q6, q7, q8), and let an
arbitrary element of Q have a value of

60
4∑

i=1

(
qi

2

)
+ 18q1 + 18q2 + 18q3 + 18q4, or

60
8∑

i=5

(
qi

2

)
+ 12q5 + 12q6 + 12q7 + 12q8 + 6.

Further, regard the second group of tuples as being of the opposite type as the first.
Then let R be the set of all tuples (r1, r2, r3, r4) or (r5, r6, r7, r8), and let an arbitrary
element of R have a value of

60
4∑

i=1

(
ri

2

)
+ 24r1 + 24r2 + 24r3 + 24r4, or

60
8∑

i=5

(
ri

2

)
+ 6r5 + 6r6 + 6r7 + 6r8 + 18.

Again, regard the second group of tuples as being of the opposite type as the first.
Finally, let T be the set of all ordered triples of an element of Q, an element of R,
and an element of S, and let each element of T have a value equal to the sum of
its elements’ values. An element of T should be considered to be of one type if its
elements of Q and R are both of their first types or both of their second types, and of
the opposite type if one of them is of its first type and the other is of its second type.

There is an obvious bijection from the union of the sets of f -, g-, h-, and k-tuples
to T that preserves both value and type. So, there is a bijection from the set of all d-
and e-tuples that we have not already canceled out to 6 copies of T that preserves
value and type.

Similarly, for an arbitrary d ′-tuple, let w′
i = d ′

i + d ′
i+6, for each i. The same maps

we used before form a value-preserving bijection between the set of all d ′-tuples such
that exactly 3 of the w′

i are odd and the set of all e′-tuples such that exactly 3 of the
e′
i + e′

i+6 are odd. With those cases eliminated, we can focus on the case where w′
1

or e′
1 + e′

7 is the one having the opposite parity as the others, for the same reasons as
before.

For each i, define f ′
i , g

′
i , h

′
i , k

′
i analogously to the way we defined fi, gi, hi, ki .

The map (d ′
1, d

′
7) = (1,0)−f ′

1(1,1)+f ′
2(−1,1), (d ′

i , d
′
i+6) = (0,0)+f ′

2i−1(1,1)+
f ′

2i (1,−1) is a value-preserving bijection if (f ′
1, . . . , f

′
12) is considered to have a

value of

60
12∑

i=1

(
f ′

i

2

)
+ 10f ′

1 + 10f ′
2 +

6∑

i=2

(
20f ′

2i−1 + 20f ′
2i

) + 6.

The map (d ′
1, d

′
7)=(0,0)+g′

1(1,1)+g′
2(1,−1), (d ′

i , d
′
i+6)=(1,0)−g′

2i−1(1,1)+
g′

2i (−1,1) is a value-preserving bijection if (g′
1, . . . , g

′
12) is considered to have a
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value of

60
12∑

i=1

(
g′

i

2

)
+ 20g′

1 + 20g′
2 +

6∑

i=2

(
10g′

2i−1 + 10g′
2i

) + 26.

The map (e′
1, e

′
7)=(1,0)−h′

1(1,1)+h′
2(−1,1), (e′

i , e
′
i+6)=(0,0)+h′

2i−1(1,1)+
h′

2i (1,−1) is a value-preserving bijection if (h′
1, . . . , h

′
12) is considered to have a

value of

60
12∑

i=1

(
h′

i

2

)
+ 20h′

1 + 10h′
2 +

6∑

i=2

(
10h′

2i−1 + 20h′
2i

) + 16.

Finally, the map (e′
1, e

′
7) = (0,0) + k′

1(1,1) + k′
2(1,−1), (e′

i , e
′
i+6) = (1,0) −

k′
2i−1(1,1) + k′

2i (−1,1) is a value-preserving bijection if (k′
1, . . . , k

′
12) is considered

to have a value of

60
12∑

i=1

(
k′
i

2

)
+ 10k′

1 + 20k′
2 +

6∑

i=2

(
20k′

2i−1 + 10k′
2i

) + 16.

Now, let S′ be the set of all tuples (s′
1, s

′
2, s

′
3, s

′
4), and let an arbitrary element of S′

have a value of

60
4∑

i=1

(
s′
i

2

)
+ 10s′

1 + 10s′
2 + 20s′

3 + 20s′
4 + 6.

Also let Q′ be the set of all tuples (q ′
1, q

′
2, q

′
3, q

′
4) or (q ′

5, q
′
6, q

′
7, q

′
8), and let an

arbitrary element of Q′ have a value of

60
4∑

i=1

(
q ′
i

2

)
+ 20q ′

1 + 20q ′
2 + 20q ′

3 + 20q ′
4, or

60
8∑

i=5

(
q ′
i

2

)
+ 10q ′

5 + 10q ′
6 + 10q ′

7 + 10q ′
8 + 10.

Regard the second group of tuples as being of the opposite type as the first. Then
let R′ be the set of all tuples (r ′

1, r
′
2, r

′
3, r

′
4) or (r ′

5, r
′
6, r

′
7, r

′
8), and let an arbitrary

element of R′ have a value of

60
4∑

i=1

(
r ′
i

2

)
+ 20r ′

1 + 20r ′
2 + 20r ′

3 + 20r ′
4, or

60
8∑

i=5

(
r ′
i

2

)
+ 10r ′

5 + 10r ′
6 + 10r ′

7 + 10r ′
8 + 10.

Again, regard the second group of tuples as being of the opposite type as the first.
Finally, let T ′ be the set of all ordered triples of an element of Q′, an element of R′
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and an element of S′, and let each element of T ′ have a value equal to the sum of
its elements’ values. An element of T ′ should be considered to be of one type if its
elements of Q′ and R′ are both of their first types or both of their second types, and
of the opposite type if one of them is of its first type and the other is of its second
type.

There is an obvious bijection from the union of the sets of f ′-, g′-, h′-, and
k′-tuples to T ′ that preserves both value and type. So, there exists a bijection from
the set of all d ′- and e′-tuples that we have not already canceled out to 6 copies of T ′,
which preserves value and type. Therefore, in order to show the lemma it now suffices
to prove that there is a value-preserving bijection from the set of elements of T ∪ T ′
of one type, to the set of elements of T ∪ T ′ of the opposite type.

Now, consider the following map in Q: qi = qi+4 − q5+q6+q7+q8−1
2 .

This map is a value-preserving bijection from the set of tuples (q5, q6, q7, q8) with
odd sums to the set of tuples (q1, q2, q3, q4) with odd sums. Furthermore, it maps all
tuples (q5, q6, q7, q8) with even sums to tuples of half-integers (q1, q2, q3, q4) with
even sums and equal values. At this point, the map

a1 = q1 + q2 + q3 + q4

2
, a2 = q1 + q2 − q3 − q4

2
,

a3 = q1 − q2 + q3 − q4

2
, a4 = q1 − q2 − q3 + q4

2

is a value-preserving bijection from the set of tuples (q1, q2, q3, q4) that results from
the last map to the set of tuples (a1, a2, a3, a4), if (a1, a2, a3, a4) is considered to
have a value of

60
4∑

i=1

(
ai

2

)
+ 6a1 + 30a2 + 30a3 + 30a4.

It also preserves the type if these tuples are considered to have a type based on the
parity of

∑4
i=1 ai .

The same pair of maps cancels all tuples in R with odd sums and maps the rest to
tuples (b1, b2, b3, b4) with the same value and type, if (b1, b2, b3, b4) is considered
to have a value of

60
4∑

i=1

(
bi

2

)
+ 18b1 + 30b2 + 30b3 + 30b4,

and a type dependent on the parity of
∑4

i=1 bi .
They also cancel all tuples in Q′ with odd sums and map the rest to tuples

(a′
1, a

′
2, a

′
3, a

′
4) with the same value and type, if (a′

1, a
′
2, a

′
3, a

′
4) is considered to have

a value of

60
4∑

i=1

(
a′
i

2

)
+ 10a′

1 + 30a′
2 + 30a′

3 + 30a′
4,

and a type dependent on the parity of
∑4

i=1 a′
i .
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Finally, they cancel all tuples in R′ with odd sums and map the rest to tuples
(b′

1, b
′
2, b

′
3, b

′
4) with the same value and type, if (b′

1, b
′
2, b

′
3, b

′
4) is considered to have

a value of

60
4∑

i=1

(
b′
i

2

)
+ 10b′

1 + 30b′
2 + 30b′

3 + 30b′
4,

and a type dependent on the parity of
∑4

i=1 b′
i .

Therefore, to prove the result it suffices to find a bijection from the union of
the set of all tuples (a1, a2, a3, a4, b1, b2, b3, b4, s1, s2, s3, s4) for which

∑4
i=1(ai +

bi) ≡ 0 (mod 2) and the set of all tuples (a′
1, a

′
2, a

′
3, a

′
4, b

′
1, b

′
2, b

′
3, b

′
4, s

′
1, s

′
2, s

′
3, s

′
4)

for which
∑4

i=1(a
′
i + b′

i ) ≡ 1 (mod 2), to the union of the set of all tuples

(a1, a2, a3, a4, b1, b2, b3, b4, s1, s2, s3, s4) for which
∑4

i=1(ai +bi) ≡ 1 (mod 2) and
the set of all tuples (a′

1, a
′
2, a

′
3, a

′
4, b

′
1, b

′
2, b

′
3, b

′
4, s

′
1, s

′
2, s

′
3, s

′
4) for which

∑4
i=1(a

′
i +

b′
i ) ≡ 0 (mod 2), which preserves the value of

60
4∑

i=1

((
ai

2

)
+

(
bi

2

)
+

(
si

2

))
+ 6a1 + 30a2 + 30a3 + 30a4

+ 18b1 + 30b2 + 30b3 + 30b4 + 6s1 + 12s2 + 18s3 + 24s4,

or

60
4∑

i=1

((
a′
i

2

)
+

(
b′
i

2

)
+

(
s′
i

2

))
+ 10a′

1 + 30a′
2 + 30a′

3 + 30a′
4

+ 10b′
1 + 30b′

2 + 30b′
3 + 30b′

4 + 10s′
1 + 10s′

2 + 20s′
3 + 20s′

4.

Furthermore, notice that (a′
2, a

′
3, a

′
4, b

′
2, b

′
3, b

′
4) has exactly the same effect on the

value and type of its tuple as (a2, a3, a4, b2, b3, b4) does. Hence, if we can find a
bijection from the union of the set of all tuples (a1, b1, s1, s2, s3, s4) for which a1 +
b1 ≡ 0 (mod 2) and the set of all tuples (a′

1, b
′
1, s

′
1, s

′
2, s

′
3, s

′
4) for which a′

1 + b′
1 ≡ 1

(mod 2), to the union of the set of all tuples (a1, b1, s1, s2, s3, s4) for which a1 +
b1 ≡ 1 (mod 2) and the set of all tuples (a′

1, b
′
1, s

′
1, s

′
2, s

′
3, s

′
4) for which a′

1 + b′
1 ≡ 0

(mod 2), which preserves the value of

60
4∑

i=1

(
si

2

)
+ 60

(
a1

2

)
+ 60

(
b1

2

)
+ 6a1 + 18b1 + 6s1 + 12s2 + 18s3 + 24s4, or

60
4∑

i=1

(
s′
i

2

)
+ 60

(
a′

1

2

)
+ 60

(
b′

1

2

)
+ 10a′

1 + 10b′
1 + 10s′

1 + 10s′
2 + 20s′

3 + 20s′
4,

then we can extend that bijection to the desired bijection by having it act as the
identity on (a2, a3, a4, b2, b3, b4) or (a′

2, a
′
3, a

′
4, b

′
2, b

′
3, b

′
4).
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Now, observe that if a1 and s1, b1 and s3, a′
1 and s′

1, or b′
1 and s′

2 have different
parities, then we can switch them to get a tuple with the same value but the opposite
type. This allows us to cancel all such tuples. Given (a1, b1, s1, s2, s3, s4) such that
a1 and s1 have the same parity and b1 and s3 have the same parity, there must exist
z1, z2, z3, z4 ∈ Z such that (a1, s1) = z1(1,1) + z2(1,−1) and (b1, s3) = z3(1,1) +
z4(1,−1).

Also, the value of this tuple is equal to

120
4∑

i=1

(
zi

2

)
+ 60

(
s2

2

)
+ 60

(
s4

2

)
+ 12z1 + 60z2 + 36z3 + 60z4 + 12s2 + 24s4,

and its type depends on whether
∑4

i=1 zi is even or odd.
Similarly, given (a′

1, b
′
1, s

′
1, s

′
2, s

′
3, s

′
4) such that a′

1 and s′
1 have the same parity and

b′
1 and s′

2 have the same parity, there must exist z′
1, z

′
2, z

′
3, z

′
4 ∈ Z such that (a′

1, s
′
1) =

z′
1(1,1) + z′

2(1,−1) and (b′
1, s

′
2) = z′

3(1,1) + z′
4(1,−1). The value of this tuple is

120
4∑

i=1

(
z′
i

2

)
+ 60

(
s′

3

2

)
+ 60

(
s′

4

2

)
+ 20z′

1 + 60z′
2 + 20z′

3 + 60z′
4 + 20s′

3 + 20s′
4,

and its type depends on whether
∑4

i=1 z′
i is even or odd.

It is easy to see that, for arbitrary (s2, z1), there exists exactly one of the fol-
lowing: x1, x2 ∈ Z such that (s2, z1) = x1(−1,1) + x2(2,1); x3, x4 ∈ Z such that
(s2, z1) = (−1,0) − x3(−1,1) + (1 − x4)(2,1); or x5, x6 ∈ Z such that (s2, z1) =
(1,0) + x5(−1,1) + x6(2,1).

Also,

120

(
z1

2

)
+ 60

(
s2

2

)
+ 12z1 + 12s2 = 180

(
x1

2

)
+ 360

(
x2

2

)
+ 60x1 + 96x2, or

180

(
x3

2

)
+ 360

(
x4

2

)
+ 60x3 + 24x4 + 24, or

180

(
x5

2

)
+ 360

(
x6

2

)
+ 0x5 + 216x6 + 12.

We have z1 ≡ x1 + x2, x3 + x4 + 1, or x5 + x6 (mod 2). Note that no matter what
the other variables are, replacing x5 with 1 − x5 will always invert the tuple’s type
without affecting its value, so that map cancels out all tuples resulting from that case.

Similarly, for arbitrary (s4, z3), there exists exactly one of the following: y1, y2 ∈
Z such that (−s4, z3) = y1(−1,1) + y2(2,1); y3, y4 ∈ Z such that (−s4, z3) =
(−1,0) − y3(−1,1) + y4(2,1); or y5, y6 ∈ Z such that (−s4, z3) = (1,0) +
y5(−1,1) + y6(2,1).

Also,

120

(
z3

2

)
+ 60

(
s4

2

)
+ 36z3 + 24s4 = 180

(
y1

2

)
+ 360

(
y2

2

)
+ 60y1 + 168y2, or
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180

(
y3

2

)
+ 360

(
y4

2

)
+ 60y3 + 48y4 + 24, or

180

(
y5

2

)
+ 360

(
y6

2

)
+ 0y5 + 288y6 + 36.

We have z3 ≡ y1 + y2, y3 + y4, or y5 + y6 (mod 2). In the third case, replacing y5

with 1 − y5 will always invert the tuple’s type without affecting its value, so this map
cancels out all tuples resulting from that case.

Likewise, for arbitrary (s′
3, z

′
1) there exists exactly one of the following: x′

1, x
′
2 ∈ Z

such that (s′
3, z

′
1) = x′

1(−1,1) + x′
2(2,1); x′

3, x
′
4 ∈ Z such that (s′

3, z
′
1) = (−1,0) +

x′
3(−1,1) + x′

4(2,1); or x′
5, x

′
6 ∈ Z such that (s′

3, z
′
1) = (1,0) + x′

5(−1,1) + x′
6(2,1).

Also,

120

(
z′

1

2

)
+ 60

(
s′

3

2

)
+ 20z′

1 + 20s′
3 = 180

(
x′

1

2

)
+ 360

(
x′

2

2

)
+ 60x′

1 + 120x′
2, or

180

(
x′

3

2

)
+ 360

(
x′

4

2

)
+ 120x′

3 + 0x′
4 + 40, or

180

(
x′

5

2

)
+ 360

(
x′

6

2

)
+ 0x′

5 + 240x′
6 + 20.

We have z′
1 ≡ x′

1 + x′
2, x′

3 + x′
4, or x′

5 + x′
6 (mod 2). In the third case, replacing

x′
5 with 1 − x′

5 will always invert the tuple’s type without affecting its value, while
in the second case, replacing x′

4 by 1 − x′
4 will always invert the tuple’s type without

affecting its value. So, the only case that does not cancel itself out is the first.
Notice that (s′

4, z
′
3) has exactly the same effect on the value and type of the tuple

as (s′
3, z

′
1), so (s′

4, z
′
3) can also be expressed in exactly one of the forms: y′

1(−1,1) +
y′

2(2,1), (−1,0) + y′
3(−1,1) + y′

4(2,1), or (1,0) + y′
5(−1,1) + y′

6(2,1). The maps
y′′

4 = 1 − y′
4 and y′′

5 = 1 − y′
5 still cancel out all tuples covered by the second and

third cases, and in the first case, we have

120

(
z′

3

2

)
+ 60

(
s′

4

2

)
+ 20z′

3 + 20s′
4 = 180

(
y′

1

2

)
+ 360

(
y′

2

2

)
+ 60y′

1 + 120y′
2

and z′
3 ≡ y′

1 + y′
2 (mod 2).

So, any tuple that has not been canceled out by now has a value of whichever of
the following is defined:

120

(
z2

2

)
+ 120

(
z4

2

)
+ 180

(
x1

2

)
+ 360

(
x2

2

)
+ 180

(
y1

2

)
+ 360

(
y2

2

)

+ 60z2 + 60z4 + 60x1 + 96x2 + 60y1 + 168y2,

120

(
z2

2

)
+ 120

(
z4

2

)
+ 180

(
x3

2

)
+ 360

(
x4

2

)
+ 180

(
y1

2

)
+ 360

(
y2

2

)

+ 60z2 + 60z4 + 60x3 + 24x4 + 60y1 + 168y2 + 24,
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120

(
z2

2

)
+ 120

(
z4

2

)
+ 180

(
x1

2

)
+ 360

(
x2

2

)
+ 180

(
y3

2

)
+ 360

(
y4

2

)

+ 60z2 + 60z4 + 60x1 + 96x2 + 60y3 + 48y4 + 24,

120

(
z2

2

)
+ 120

(
z4

2

)
+ 180

(
x3

2

)
+ 360

(
x4

2

)
+ 180

(
y3

2

)
+ 360

(
y4

2

)

+ 60z2 + 60z4 + 60x3 + 24x4 + 60y3 + 48y4 + 48,

120

(
z′

2

2

)
+ 120

(
z′

4

2

)
+ 180

(
x′

1

2

)
+ 360

(
x′

2

2

)
+ 180

(
y′

1

2

)
+ 360

(
y′

2

2

)

+ 60z′
2 + 60z′

4 + 60x′
1 + 120x′

2 + 60y′
1 + 120y′

2.

The tuple’s type depends on whether z2 + z4 + x1 + x2 + y1 + y2, z2 + z4 + x3 +
x4 + y1 + y2 + 1, z2 + z4 + x1 + x2 + y3 + y4, z2 + z4 + x3 + x4 + y3 + y4 + 1, or
z′

2 + z′
4 + x′

1 + x′
2 + y′

1 + y′
2 + 1 is even.

Notice that whichever of (z2, z4, x1, y1), (z2, z4, x3, y1), (z2, z4, x1, y3), (z2, z4,

x3, y3), or (z′
2, z

′
4, x

′
1, y

′
1) is defined has the same effect on the value and type of

the tuple in every case. So, if we can find a bijection between the set of all tuples
(x2, y2), (x4, y2), (x2, y4), (x4, y4), or (x′

2, y
′
2) for which x2 +y2, x4 +y2 +1, x2 +y4,

x4 + y4 + 1, or x′
2 + y′

2 + 1 is even to the set of tuples of any of these types for which
it is odd, which preserves

360

(
x2

2

)
+ 360

(
y2

2

)
+ 96x2 + 168y2,

360

(
x4

2

)
+ 360

(
y2

2

)
+ 24x4 + 168y2 + 24,

360

(
x2

2

)
+ 360

(
y4

2

)
+ 96x2 + 48y4 + 24,

360

(
x4

2

)
+ 360

(
y4

2

)
+ 24x4 + 48y4 + 48, or

360

(
x′

2

2

)
+ 360

(
y′

2

2

)
+ 120x′

2 + 120y′
2,

then we can extend it to a value-preserving bijection from the set of all remaining
tuples of one type to the set of all remaining tuples of the other type, by having it
leave (z2, z4, x1, y1) or its equivalent unchanged.

It is easy to see that any pair of integers can be expressed in exactly one of the
forms u(1,2) + v(2,−1), (−1,0) + u(1,2) + v(2,−1), (1,0) + u(1,2) + v(2,−1),
(0,−1) + u(1,2) + v(2,−1), or (0,1) + u(1,2) + v(2,−1), with u and v integers.

For arbitrary integers u and v, each of the following pairs of tuples has the same
value and opposite types:
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(x2, y2) = u(2,1) + v(−1,2),
(
x′

2, y
′
2

) = u(1,2) + v(−2,1),

(x2, y2) = (1,0) + u(2,1) + v(−1,2),

(x4, y4) = (0,1) + u(−2,1) + v(−1,−2),

(x2, y2) = (0,−1) + u(2,1) + v(−1,2),

(x4, y2) = (0,1) + u(−1,−2) + v(2,−1),

(x2, y2) = (−1,0) + u(2,1) + v(−1,2),

(x2, y2) = (1,1) + u(−2,−1) + v(−1,2),

(x2, y2) = (0,1) + u(2,1) + v(−1,2),

(x2, y4) = (1,1) + u(−1,2) + v(2,1),

(x2, y4) = u(2,1) + v(−1,2),

(x4, y2) = u(2,−1) + v(1,2),

(x2, y4) = (1,0) + u(2,1) + v(−1,2),
(
x′

2, y
′
2

) = (0,1) + u(−2,1) + v(−1,−2),

(x2, y4) = (0,−1) + u(2,1) + v(−1,2),

(x2, y4) = (−1,1) + u(2,1) + v(1,−2),

(x2, y4) = (0,1) + u(2,1) + v(−1,2),

(x4, y4) = (1,0) + u(−1,−2) + v(2,−1),

(x4, y2) = (1,0) + u(1,2) + v(2,−1),

(x4, y4) = u(−2,1) + v(−1,−2),

(x4, y2) = (1,−1) + u(1,2) + v(2,−1),
(
x′

2, y
′
2

) = (−1,0) + u(1,2) + v(−2,1),

(x4, y2) = (0,−1) + u(1,2) + v(2,−1),

(x4, y2) = (1,1) + u(−1,−2) + v(2,−1),

(x4, y4) = (−1,0) + u(1,2) + v(2,−1),

(x4, y4) = (1,−1) + u(1,2) + v(−2,1),

(x4, y4) = (1,1) + u(1,2) + v(2,−1),
(
x′

2, y
′
2

) = (1,0) + u(2,−1) + v(1,2),

(
x′

2, y
′
2

) = (0,−1) + u(1,2) + v(2,−1),
(
x′

2, y
′
2

) = (1,1) + u(−1,−2) + v(2,−1).
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Each tuple of the form (x2, y2), (x2, y4), (x4, y2), (x4, y4), or (x′
2, y

′
2) is stated to

have the same value as another tuple by exactly one of these. The only time a tuple
shows up more than once on the same line is if it can be expressed in the forms on
each side, and all such lines are involutions. Therefore, these equalities combine to
yield a value-preserving bijection from the tuples of one type to the tuples of the other
type. We have already shown that this is sufficient to prove the lemma. �

Theorem 3.21 Let S be the set containing 6 copies of the even positive integers that
are not multiples of 5, and T the set containing 6 copies of the odd positive integers
that are not multiples of 5. Then, for any N ≥ 4,

DS(N) = DT (N − 3).

Proof Straightforward from Theorem 2.1 and Lemma 3.20. �

Lemma 3.22 Condition (i) of Theorem 2.1 holds for N0 = 2, C = 10, m = 1, and

(A1, . . . ,A12) = (1,1,2,2,2,2,3,3,4,4,4,4),

(B1, . . . ,B12) = (1,1,1,1,2,2,3,3,3,3,4,4).

Proof Straightforward from Lemmas 3.20 and 2.5. �

Theorem 3.23 Let S be the set containing 2 copies of the odd positive integers that
are not multiples of 5, and 4 copies of the even positive integers that are not multiples
of 5; let T be the set containing 2 copies of the even positive integers that are not
multiples of 5, and 4 copies of the odd positive integers that are not multiples of 5.
Then, for any N ≥ 2,

DS(N) = DT (N − 1).

Proof Straightforward from Theorem 2.1 and Lemma 3.22. �

Finally, we present a large sample of further interesting colored partition identities
that we conjecture to be true. We list as conjectures the equations corresponding
bijectively to these partition identities via Theorem 2.1. We have verified them for N

up to 2000, by means of a computer program.

Conjecture 3.24 Condition (i) of Theorem 2.1 holds for N0 = 4, C = 50, m = 3,
and

(A1, . . . ,A12) = (2,4,6,8,10,12,14,16,18,20,22,24),

(B1, . . . ,B12) = (1,3,5,7,9,11,13,15,17,19,21,23).

Corollary to Conjecture 3.24 Let S be the set containing one copy of the even
positive integers that are not multiples of 25, and T the set containing one copy of
the odd positive integers that are not multiples of 25. Then, for any N ≥ 4,

DS(N) = DT (N − 3).
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Conjecture 3.25 Condition (i) of Theorem 2.1 holds for N0 = 4, C = 26, m = 3, and

(A1, . . . ,A12) = (2,2,4,4,6,6,8,8,10,10,12,12),

(B1, . . . ,B12) = (1,1,3,3,5,5,7,7,9,9,11,11).

Corollary to Conjecture 3.25 Let S be the set containing 2 copies of the even
positive integers that are not multiples of 13, and T the set containing 2 copies of the
odd positive integers that are not multiples of 13. Then, for any N ≥ 4,

DS(N) = DT (N − 3).

Conjecture 3.26 Condition (i) of Theorem 2.1 holds for N0 = 3, C = 14, m = 3, and

(A1, . . . ,A12) = (1,1,1,3,3,3,5,5,5,7,7,7),

(B1, . . . ,B12) = (0,0,0,2,2,2,4,4,4,6,6,6).

Corollary to Conjecture 3.26 Let S be the set containing 3 copies of the odd positive
integers and 3 more copies of the odd positive multiples of 7, and T the set containing
3 copies of the even positive integers and 3 more copies of the positive multiples of
14. Then, for any N ≥ 3,

DS(N) = 4DT (N − 3).

Conjecture 3.27 Condition (i) of Theorem 2.1 holds for N0 = 4, C = 14, m = 3, and

(A1, . . . ,A12) = (2,2,2,2,4,4,4,4,6,6,6,6),

(B1, . . . ,B12) = (1,1,1,1,3,3,3,3,5,5,5,5).

Corollary to Conjecture 3.27 Let S be the set containing 4 copies of the even
positive integers that are not multiples of 7, and T the set containing 4 copies of the
odd positive integers that are not multiples of 7. Then, for any N ≥ 4,

DS(N) = DT (N − 3).

Conjecture 3.28 Condition (i) of Theorem 2.1 holds for N0 = 4, C = 18, m = 3, and

(A1, . . . ,A12) = (2,2,2,4,4,4,6,6,6,8,8,8),

(B1, . . . ,B12) = (1,1,1,3,3,3,5,5,5,7,7,7).

Corollary to Conjecture 3.28 Let S be the set containing 3 copies of the even
positive integers that are not multiples of 9, and T the set containing 3 copies of the
odd positive integers that are not multiples of 9. Then, for any N ≥ 4,

DS(N) = DT (N − 3).
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Conjecture 3.29 Condition (i) of Theorem 2.1 holds for N0 = 3, C = 12, m = 2, and

(A1, . . . ,A12) = (1,1,1,1,4,4,4,4,5,5,5,5),

(B1, . . . ,B12) = (1,1,1,1,2,2,2,2,5,5,5,5).

Corollary to Conjecture 3.29 Let S be the set containing 4 copies of the positive
integers that are either congruent to ±1 modulo 6 or to ±4 modulo 12, and T the set
containing 4 copies of the positive integers that are either congruent to ±1 modulo 6
or to ±2 modulo 12. Then, for any N ≥ 3,

DS(N) = DT (N − 2).

Conjecture 3.30 Condition (i) of Theorem 2.1 holds for N0 = 2, C = 18, m = 1, and

(A1, . . . ,A12) = (1,2,2,3,4,4,5,6,6,7,8,8),

(B1, . . . ,B12) = (1,1,2,3,3,4,5,5,6,7,7,8).

Corollary to Conjecture 3.30 Let S be the set containing one copy of the odd posi-
tive integers that are not multiples of 9 and 2 copies of the even positive integers that
are not multiples of 9, and T the set containing 2 copies of the odd positive integers
that are not multiples of 9 and one copy of the even positive integers that are not
multiples of 9. Then, for any N ≥ 2,

DS(N) = DT (N − 1).

Conjecture 3.31 Condition (i) of Theorem 2.1 holds for N0 = 2, C = 8, m = 2, and

(A1, . . . ,A12) = (1,1,1,1,2,2,3,3,3,3,4,4),

(B1, . . . ,B12) = (0,0,1,1,1,1,2,2,3,3,3,3).

Corollary to Conjecture 3.31 Let S be the set containing 4 copies of the positive
integers that are either odd or congruent to 4 modulo 8, and 2 copies of the positive
integers that are congruent to 2 modulo 4; let T be the set containing 4 copies of the
positive integers that are either odd or multiples of 8, and 2 copies of the positive
integers that are congruent to 2 modulo 4. Then, for any N ≥ 2,

DS(N) = 2DT (N − 2).

Conjecture 3.32 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 8, m = 1, and

(A1, . . . ,A12) = (0,1,1,2,2,2,2,2,2,2,3,3),

(B1, . . . ,B12) = (0,0,1,1,1,1,2,2,3,3,3,3).

Corollary to Conjecture 3.32 Let S be the set containing 2 copies of the positive
integers that are either odd or multiples of 8, and 7 copies of the positive integers



Warnaar’s bijection and colored partition identities, II 113

that are congruent to 2 modulo 4; let T be the set containing 4 copies of the positive
integers that are either odd or multiples of 8, and 2 copies of the positive integers
that are congruent to 2 modulo 4. Then, for any N ≥ 1,

DS(N) = 2DT (N − 1).

Conjecture 3.33 Condition (i) of Theorem 2.1 holds for N0 = 2, C = 8, m = 1, and

(A1, . . . ,A12) = (1,1,1,1,2,2,3,3,3,3,4,4),

(B1, . . . ,B12) = (0,1,1,2,2,2,2,2,2,2,3,3).

Corollary to Conjecture 3.33 Let S be the set containing 4 copies of the positive
integers that are either odd or congruent to 4 modulo 8, and 2 copies of the positive
integers that are congruent to 2 modulo 4; let T be the set containing 2 copies of the
positive integers that are either odd or multiples of 8, and 7 copies of the positive
integers that are congruent to 2 modulo 4. Then, for any N ≥ 2,

DS(N) = DT (N − 1).

Conjecture 3.34 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 6, m = 1, and

(A1, . . . ,A12) = (0,0,0,1,2,2,2,2,2,3,3,3),

(B1, . . . ,B12) = (0,0,0,1,1,1,1,1,2,3,3,3).

Corollary to Conjecture 3.34 Let S be the set containing one copy of the positive
integers congruent to ±1 modulo 6, 5 copies of the positive integers congruent to ±2
modulo 6, and 6 copies of the positive multiples of 3; let T be the set containing 5
copies of the positive integers congruent to ±1 modulo 6, one copy of the positive
integers congruent to ±2 modulo 6, and 6 copies of the positive multiples of 3. Then,
for any N ≥ 1,

DS(N) = DT (N − 1).

Conjecture 3.35 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 8, m = 1, and

(A1, . . . ,A12) = (0,0,1,1,2,2,2,3,3,4,4,4),

(B1, . . . ,B12) = (0,0,0,1,1,2,2,2,3,3,4,4).

Corollary to Conjecture 3.35 Let S be the set containing 2 copies of the odd pos-
itive integers, 3 copies of the positive integers that are congruent to 2 modulo 4, 6
copies of the positive integers that are congruent to 4 modulo 8, and 4 copies of the
positive multiples of 8; let T be the set containing 2 copies of the odd positive inte-
gers, 3 copies of the positive integers that are congruent to 2 modulo 4, 4 copies of
the positive integers that are congruent to 4 modulo 8, and 6 copies of the positive
multiples of 8. Then, for any N ≥ 1,

DS(N) = 2DT (N − 1).
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Conjecture 3.36 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 8, m = 1, and

(A1, . . . ,A12) = (0,1,1,1,1,2,2,3,3,3,3,4),

(B1, . . . ,B12) = (0,0,0,1,1,2,2,2,3,3,4,4).

Corollary to Conjecture 3.36 Let S be the set containing 2 copies of the positive
integers and 2 more copies of the odd positive integers; let T be the set containing 2
copies of the odd positive integers, 3 copies of the positive integers that are congruent
to 2 modulo 4, 4 copies of the positive integers that are congruent to 4 modulo 8, and
6 copies of the positive multiples of 8. Then, for any N ≥ 1,

DS(N) = 4DT (N − 1).

Conjecture 3.37 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 8, m = 0, and

(A1, . . . ,A12) = (0,0,1,1,2,2,2,3,3,4,4,4),

(B1, . . . ,B12) = (0,1,1,1,1,2,2,3,3,3,3,4).

Corollary to Conjecture 3.37 Let S be the set containing 2 copies of the odd positive
integers, 3 copies of the positive integers that are congruent to 2 modulo 4, 6 copies
of the positive integers that are congruent to 4 modulo 8, and 4 copies of the positive
multiples of 8; let T be the set containing 2 copies of the positive integers and 2 more
copies of the odd positive integers. Then, for any N ≥ 1,

DS(N) = 1

2
DT (N).

Conjecture 3.38 Condition (i) of Theorem 2.1 holds for N0 = 3, C = 18, m = 3, and

(A1, . . . ,A12) = (1,1,1,3,5,5,5,7,7,7,9,9),

(B1, . . . ,B12) = (0,0,2,2,2,4,4,4,6,8,8,8).

Corollary to Conjecture 3.38 Let S be the set containing 3 copies of the odd positive
integers that are not multiples of 3, one copy of the odd positive multiples of 3 that
are not multiples of 9, and 4 copies of the odd positive multiples of 9; let T be the
set containing 3 copies of the even positive integers that are not multiples of 3, one
copy of the positive multiples of 6 that are not multiples of 18, and 4 copies of the
positive multiples of 18. Then, for any N ≥ 3,

DS(N) = 2DT (N − 3).

Conjecture 3.39 Condition (i) of Theorem 2.1 holds for N0 = 2, C = 10, m = 2, and

(A1, . . . ,A12) = (1,1,1,2,2,3,3,3,4,4,5,5),

(B1, . . . ,B12) = (0,0,1,1,2,2,2,3,3,4,4,4).



Warnaar’s bijection and colored partition identities, II 115

Corollary to Conjecture 3.39 Let S be the set containing 2 copies of the positive
integers that are not multiples of 10, one more copy of the odd positive integers, and
one more copy of the odd positive multiples of 5; let T be the set containing 2 copies
of the positive integers that are not odd multiples of 5, one more copy of the even
positive integers, and one more copy of the positive multiples of 10. Then, for any
N ≥ 2,

DS(N) = 2DT (N − 2).

Conjecture 3.40 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 10, m = 1, and

(A1, . . . ,A12) = (0,0,1,2,2,2,3,4,4,4,5,5),

(B1, . . . ,B12) = (0,0,1,1,1,2,3,3,3,4,5,5).

Corollary to Conjecture 3.40 Let S be the set containing 3 copies of the even
positive integers, one copy of the odd positive integers, 3 more copies of the odd
positive multiples of 5, and one more copy of the positive multiples of 10; let T be
the set containing 3 copies of the odd positive integers, one copy of the even positive
integers, one more copy of the odd positive multiples of 5, and 3 more copies of the
positive multiples of 10. Then, for any N ≥ 1,

DS(N) = DT (N − 1).

Conjecture 3.41 Condition (i) of Theorem 2.1 holds for N0 = 2, C = 12, m = 2, and

(A1, . . . ,A12) = (0,2,2,2,2,3,3,3,3,4,4,6),

(B1, . . . ,B12) = (0,0,0,1,2,2,3,3,4,4,5,6).

Corollary to Conjecture 3.41 Let S be the set containing 2 copies of the even
positive integers, 2 more copies of the positive integers congruent to ±2 modulo 12,
and 4 copies of the odd multiples of 3; let T be the set containing 2 copies of the even
positive integers, 4 more copies of the positive multiples of 12, one copy of the odd
positive integers, and one more copy of the odd multiples of 3. Then, for any N ≥ 2,

DS(N) = 4DT (N − 2).

Conjecture 3.42 Condition (i) of Theorem 2.1 holds for N0 = 2, C = 12, m = 2, and

(A1, . . . ,A12) = (1,1,2,2,3,3,3,3,5,5,6,6),

(B1, . . . ,B12) = (0,0,1,1,3,3,3,3,4,4,5,5).

Corollary to Conjecture 3.42 Let S be the set containing 2 copies of the positive
integers that are not multiples of 4, and 2 more copies of the positive multiples of 3
that are not multiples of 4; let T be the set containing 2 copies of the positive integers
that are not congruent to 2 modulo 4, and 2 more copies of the positive multiples of
3 that are not congruent to 2 modulo 4. Then, for any N ≥ 2,

DS(N) = 2DT (N − 2).
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Conjecture 3.43 Condition (i) of Theorem 2.1 holds for N0 = 2, C = 12, m = 2, and

(A1, . . . ,A12) = (1,1,1,2,3,3,4,4,5,5,5,6),

(B1, . . . ,B12) = (0,1,1,1,2,2,3,3,4,5,5,5).

Corollary to Conjecture 3.43 Let S be the set containing 2 copies of the positive
integers that are not congruent to 0 or ±2 modulo 12, one copy of the positive integers
that are congruent to ±2 modulo 12, and one more copy of the positive integers that
are congruent to ±1 modulo 6; let T be the set containing 2 copies of the positive
integers that are not congruent to 6 or ±4 modulo 12, one copy of the positive integers
that are congruent to ±4 modulo 12, and one more copy of the positive integers that
are congruent to ±1 modulo 6. Then, for any N ≥ 2,

DS(N) = DT (N − 2).

Conjecture 3.44 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 12, m = 1, and

(A1, . . . ,A12) = (0,1,2,2,2,3,3,4,4,4,4,5),

(B1, . . . ,B12) = (0,1,1,1,2,2,3,3,4,5,5,5).

Corollary to Conjecture 3.44 Let S be the set containing one copy of the positive
integers that are not odd multiples of 6, one more copy of the positive multiples of 3
that are not odd multiples of 6, 2 more copies of the positive integers that are congru-
ent to ±2 modulo 12, and 3 more copies of the positive integers that are congruent to
±4 modulo 12; let T be the set containing 2 copies of the positive integers that are not
congruent to 6 or ±4 modulo 12, one copy of the positive integers that are congruent
to ±4 modulo 12, and one more copy of the positive integers that are congruent to
±1 modulo 6. Then, for any N ≥ 1,

DS(N) = DT (N − 1).

Conjecture 3.45 Condition (i) of Theorem 2.1 holds for N0 = 2, C = 12, m = 1, and

(A1, . . . ,A12) = (1,1,1,2,3,3,4,4,5,5,5,6),

(B1, . . . ,B12) = (0,1,2,2,2,3,3,4,4,4,4,5).

Corollary to Conjecture 3.45 Let S be the set containing 2 copies of the positive in-
tegers that are not congruent to 0 or ±2 modulo 12, one copy of the positive integers
that are congruent to ±2 modulo 12, and one more copy of the positive integers that
are congruent to ±1 modulo 6; let T be the set containing one copy of the positive
integers that are not odd multiples of 6, one more copy of the positive multiples of 3
that are not odd multiples of 6, 2 more copies of the positive integers that are congru-
ent to ±2 modulo 12, and 3 more copies of the positive integers that are congruent to
±4 modulo 12. Then, for any N ≥ 2,

DS(N) = DT (N − 1).
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Conjecture 3.46 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 12, m = 1, and

(A1, . . . ,A12) = (0,1,1,2,2,2,4,4,5,5,6,6),

(B1, . . . ,B12) = (0,0,1,1,2,2,4,4,4,5,5,6).

Corollary to Conjecture 3.46 Let S be the set containing 2 copies of the positive
integers that are not odd multiples of 3, one more copy of the positive integers that
are congruent to ±2 modulo 12, and 2 more copies of the positive odd multiples of 6;
let T be the set containing 2 copies of the positive integers that are not odd multiples
of 3, one more copy of the positive integers that are congruent to ±4 modulo 12, and
2 more copies of the positive multiples of 12. Then, for any N ≥ 1,

DS(N) = 2DT (N − 1).

Conjecture 3.47 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 12, m = 0, and

(A1, . . . ,A12) = (0,1,1,1,3,3,4,4,4,5,5,5),

(B1, . . . ,B12) = (1,1,1,2,2,2,3,3,5,5,5,6).

Corollary to Conjecture 3.47 Let S be the set containing 2 copies of the positive
integers that are not congruent to 2 modulo 4, one more copy of the positive integers
that are congruent to ±1 modulo 6, and one more copy of the positive integers that
are congruent to ±4 modulo 12; let T be the set containing 2 copies of the posi-
tive integers that are not multiples of 4, one more copy of the positive integers that
are congruent to ±1 modulo 6, and one more copy of the positive integers that are
congruent to ±2 modulo 12. Then, for any N ≥ 1,

DS(N) = DT (N).

Conjecture 3.48 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 12, m = 1, and

(A1, . . . ,A12) = (0,0,1,2,3,3,4,4,4,5,6,6),

(B1, . . . ,B12) = (0,0,1,2,2,2,3,3,4,5,6,6).

Corollary to Conjecture 3.48 Let S be the set containing 4 copies of the positive
multiples of 6, one copy of the positive integers that are congruent to ±1 modulo 6,
one copy of the positive integers that are congruent to ±2 modulo 6, 2 more copies
of the positive integers that are congruent to ±4 modulo 12, and 2 copies of the odd
positive multiples of 3; let T be the set containing 4 copies of the positive multiples
of 6, one copy of the positive integers that are congruent to ±1 modulo 6, one copy of
the positive integers that are congruent to ±4 modulo 12, 2 copies of the odd positive
multiples of 3, and 3 copies of the positive integers that are congruent to ±2 modulo
12. Then, for any N ≥ 1,

DS(N) = DT (N − 1).
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Conjecture 3.49 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 12, m = 1, and

(A1, . . . ,A12) = (0,1,1,2,3,3,3,3,4,5,5,6),

(B1, . . . ,B12) = (0,0,1,2,2,2,3,3,4,5,6,6).

Corollary to Conjecture 3.49 Let S be the set containing 2 copies of the positive
multiples of 6, 2 copies of the positive integers that are congruent to ±1 modulo 6,
one copy of the positive integers that are congruent to ±2 modulo 6, and 4 copies of
the odd positive multiples of 3; let T be the set containing 4 copies of the positive
multiples of 6, one copy of the positive integers that are congruent to ±1 modulo 6,
one copy of the positive integers that are congruent to ±2 modulo 6, 2 more copies
of the positive integers that are congruent to ±2 modulo 12, and 2 copies of the odd
positive multiples of 3. Then, for any N ≥ 1,

DS(N) = 2DT (N − 1).

Conjecture 3.50 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 12, m = 0, and

(A1, . . . ,A12) = (0,0,1,2,3,3,4,4,4,5,6,6),

(B1, . . . ,B12) = (0,1,1,2,3,3,3,3,4,5,5,6).

Corollary to Conjecture 3.50 Let S be the set containing 4 copies of the positive
multiples of 6, one copy of the positive integers that are congruent to ±1 modulo 6,
one copy of the positive integers that are congruent to ±2 modulo 6, 2 more copies
of the positive integers that are congruent to ±4 modulo 12, and 2 copies of the odd
positive multiples of 3; let T be the set containing 2 copies of the positive multiples
of 6, 2 copies of the positive integers that are congruent to ±1 modulo 6, one copy
of the positive integers that are congruent to ±2 modulo 6, and 4 copies of the odd
positive multiples of 3. Then, for any N ≥ 1,

DS(N) = 1

2
DT (N).

Conjecture 3.51 Condition (i) of Theorem 2.1 holds for N0 = 1, C = 14, m = 1, and

(A1, . . . ,A12) = (0,1,1,2,3,3,4,5,5,6,7,7),

(B1, . . . ,B12) = (0,0,1,2,2,3,4,4,5,6,6,7).

Corollary to Conjecture 3.51 Let S be the set containing one copy of the even
positive integers, 2 copies of the odd positive integers, one more copy of the positive
multiples of 14, and 2 more copies of the odd positive multiples of 7; let T be the
set containing 2 copies of the even positive integers, one copy of the odd positive
integers, 2 more copies of the positive multiples of 14, and one more copy of the odd
positive multiples of 7. Then, for any N ≥ 1,

DS(N) = 2DT (N − 1).
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Conjecture 3.52 Condition (i) of Theorem 2.1 holds for N0 = 2, C = 16, m = 2, and

(A1, . . . ,A12) = (1,1,2,3,3,4,5,5,6,7,7,8),

(B1, . . . ,B12) = (0,1,1,2,3,3,4,5,5,6,7,7).

Corollary to Conjecture 3.52 Let S be the set containing 2 copies of the odd positive
integers, one copy of the even positive integers that are not multiples of 16, and one
more copy of the positive odd multiples of 8; let T be the set containing 2 copies of the
odd positive integers, one copy of the even positive integers that are not odd multiples
of 8, and one more copy of the positive multiples of 16. Then, for any N ≥ 2,

DS(N) = DT (N − 2).

Conjecture 3.53 Condition (i) of Theorem 2.1 holds for N0 = 3, C = 30, m = 3, and

(A1, . . . ,A12) = (1,3,3,5,5,7,9,9,11,13,15,15),

(B1, . . . ,B12) = (0,0,2,4,6,6,8,10,10,12,12,14).

Corollary to Conjecture 3.53 Let S be the set containing one copy of the odd pos-
itive integers, one more copy of the odd positive multiples of 3, one more of the odd
positive multiples of 5, and one more of the odd positive multiples of 15; let T be the
set containing one copy of the even positive integers, one more copy of the positive
multiples of 6, one more of the positive multiples of 10, and one more of the positive
multiples of 30. Then, for any N ≥ 3,

DS(N) = 2DT (N − 3).

Remark 3.54 Notice that the last conjecture is already known to be true analytically,
thanks to a result of N.D. Baruah and B.C. Berndt (see [3], Theorem 8.1). In fact, as
the authors of [3] remarked in the introduction to their paper, the partition identity of
Corollary to Conjecture 3.53 is particularly interesting, since it arises from another
exceptional modular equation discovered by Ramanujan. However, unlike the five
equations of the Schröter, Russell, and Ramanujan type, the degree of the modular
equation corresponding to Corollary to Conjecture 3.53 is 15, hence not a prime.
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