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Abstract In this paper, we construct a dumbbell domain for which the associated principal
∞-eigenvalue is not simple. This gives a negative answer to the outstanding problem posed
in Juutinen et al. (Arch Ration Mech Anal 148(2):89–105, 1999; The infinity Laplacian:
examples and observations, 2001). It remains a challenge to determine whether simplicity
holds for convex domains.

1 Introduction

Let � be a bounded open set in R
n . According to Juutinen–Lindqvist–Manfredi [2], a contin-

uous function u ∈ C(�̄) is said to be an infinity ground state in � if it is a positive viscosity
solution of the following equation:{

max
{
λ∞ − |Du|

u , �∞u
}

= 0 in �

u = 0 on ∂�.
(1.1)

Here

λ∞ = λ∞(�) = 1

max� d(x, ∂�)
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546 R. Hynd et al.

is the principal ∞-eigenvalue, and �∞ is the infinity Laplacian operator, i.e,

�∞u = uxi ux j uxi x j .

The above equation is the limit as p → +∞ of the equation{
−div(|Du|p−2 Du) = λ

p
p|u|p−2u in �

u = 0 on ∂�,
(1.2)

which is the Euler–Lagrange equation of minimizing the nonlinear Rayleigh quotient

inf
φ∈W 1,p

0 (�)

∫
�

|Dφ|p dx∫
�

|φ|p dx

and λp is the principal eigenvalue of p-Laplacian. Precisely speaking, let u p be a positive
solution of equation (1.2) satisfying ∫

�

u p
p dx = 1.

If u∞ is a limiting point of {u p}, i.e, there exists a subsequence p j → +∞ such that

u p j → u∞ uniformly in �̄,

it was proved in [2] that u∞ is a viscosity solution of the Eq. (1.1) and

lim
p→+∞ λp = λ∞.

We say that u is a variational infinity ground state if it is a limiting point of {u p}.
A natural problem regarding Eq. (1.1) is to deduce whether or not infinity ground states

in a given domain are unique up to a multiplicative factor; in this case, λ∞ is said to be
simple. The simplicity of λ∞ has only been established for those domains where the distance
function d(x, ∂�) is an infinity ground state ([7]). Such domains includes the ball, stadium,
and torus. It has been a significant outstanding open problem to verify if simplicity holds
in general domains or to exhibit an example for which simplicity fails. In this paper, we
resolve this problem by constructing a planar domain where simplicity fails to hold. It is not
clear to us whether variational infinity ground states are unique. Our result, however, shows
that variational infinity ground states in general are not continuous with respect to domain.
A somewhat similar nonuniqueness result has been proved very recently for the nonlocal
infinity eigenvalue problem ([5]). Surprisingly, the nonlocal version is much simpler. Its
ground states possess several interesting properties which are not true in the local case. In
particular, nonlocal infinity ground states even have explicit representation formulas.

For δ ∈ (0, 1), denote the dumbbell

D0 = B1(±5e1) ∪ R

for R = (−5, 5)×(−δ, δ) and e1 = (1, 0). Throughout this paper, Br (x) represents the open
ball centered at x with radius r . The following is our main result (Fig. 1)

Theorem 1 There exists δ0 > 0 such that when δ ≤ δ0, the dumbbell D0 possesses an
infinity ground state u∞ which satisfies u∞(5, 0) = 1 and u∞(−5, 0) ≤ 1

2 . In particular, u
is not a variational ground state and λ∞(D0) is not simple.
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Nonuniqueness of infinity 547

Fig. 1 The dumbbell domain D0

We remark that the infinity ground state described in the theorem is nonvariational simply
because it is not symmetric with respect to the x2-axis, which variational ground states can
be showed to be. This immediately follows from the fact that λp is simple, which implies
any solution u p of (1.2) on � = D0 must be symmetric with respect to the x2-axis. We also
remark that the number “ 1

2 ” in the above theorem is not special. By choosing a suitable δ0,
we can in fact make u∞(−5, 0) less than any positive number.

For the reader’s convenience, we sketch the idea of the proof. Consider the union of two
disjoint balls with distinct radius Uε = B1(5e1) ∪ B1−ε(−5e1) for ε ∈ (0, 1). If u is an
infinity ground state of Uε , the uniqueness of λ∞ ([2]) immediately implies that u ≡ 0 in
B1−ε(−5e1). A similar conclusion also holds for the principal eigenfunction of �p . It is
therefore natural to expect that such a degeneracy of u on the smaller ball may change very
little if we add a narrow tube connecting these two balls. The key is to get uniform control
of the width of the tube as ε → 0 for variational infinity ground states in an asymmetric
perturbation Dε of D0; this is proved in Lemma 3. Lemma 3 also implies the sensitivity of
principal eigenfunctions of �p when p gets large. An important step is to show that, within
the narrow tube, the W 1,p norm of principal eigenfunction of �p is uniformly controlled by
its maximum norm (Lemma 2). We would like to point out that such a procedure as described
above does not work for finite p.

2 Proof

We first prove several lemmas. Throughout this section, we write e1 = (1, 0) and e2 = (0, 1).
The following estimate follows easily from comparison with the fundamental solution of the

p-Laplacian, i.e. |x | p−2
p−1 .

Lemma 1 Let R = (−1, 1) × (−δ, δ) for δ ∈ (0, 1
2 ). Assume that λ ∈ (0, 2) and u ≤ 1 is a

positive solution of

{
−�pu = −div(|Du|p−2 Du) = λpu p−1 in R

u(t,±δ) = 0 for t ∈ [−1, 1]. (2.3)

Then for p ≥ 7

u(x) ≤ 6|x ± δe2|
p−2
p−1 . (2.4)

Proof Denote w(x) = 6|x − δe2|α − 1
2 |x − δe2|2α for α = p−2

p−1 . Note that if w = f (u),
then

�pw = | f ′|p−2 f ′�pu + (p − 1)| f ′|p−2 f ′′|Du|p.
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548 R. Hynd et al.

Since �p|x |α = 0 and |x − δe2| < 2, a direct computation using the above formula shows
that for p ≥ 7,

−�pw = (p − 1)|x − δe2|
−p
p−1 α p(6 − |x − δe2|α)p−2 >

4p−3

2
≥ 2p in R.

It is straightforward to check w > 0 in R and

w(±1, x2) ≥ 4 for |x2| ≤ δ.

Hence

u(x) ≤ w(x) on ∂ R.

Combining with −�pu ≤ 2p , (2.4) follows from the comparison principal.

The following estimate may not be optimal, but is sufficient for our purposes.

Lemma 2 Let R4 = (−4, 4) × (−δ, δ) for δ ∈ (0, 1
2 ). Assume that λ ≤ 2 and u ≤ 1 is a

positive solution of{
−�pu = −div(|Du|p−2 Du) = λpu p−1 in R4

u(t,±δ) = 0 for t ∈ [−4, 4]. (2.5)

Then, for p ≥ 7 and R1 = (−1, 1) × (−δ, δ),∫
R1

u|Du|p−1 dx +
∫
R1

|Du|p dx ≤ C p
0 . (2.6)

Here C0 > 1 is a universal constant (independent of p and δ).

Proof For i = 1, 2, 3, 4, we write Ri = (−i, i) × (−δ, δ). Throughout the proof, C > 1
represents various numbers which are independent of p and δ. We first prove an estimate
which is a slight modification of a well known result ([4],[6]).

Suppose that ξ ∈ C∞
0 (R4) and 0 ≤ ξ ≤ 1. Multiplying u1−pξ p on both sides of (2.5)

and using Hölder’s inequality, we get

S ≤ p

p − 1
S1− 1

p ||Dξ ||L p(R2) + 2p+1,

where S =
∫

R4

| Du

u
|pξ p dx . If S

2 ≥ 2p+1, then

S

2
≤ p

p − 1
S1− 1

p ||Dξ ||L p(R2).

Since (
p

p−1 )p ≤ 4, we have that

S =
∫
R4

∣∣∣∣ Du

u

∣∣∣∣
p

ξ p dx ≤ max

⎧⎪⎨
⎪⎩2p+2, 4 · 2p

∫
R4

|Dξ |p dx

⎫⎪⎬
⎪⎭ . (2.7)

Let g1(t) ∈ C∞
0 (−4, 4) satisfy 0 ≤ g1 ≤ 1, |g′

1| ≤ 2 and

g1(t) = 1 for t ∈ [−3, 3].
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Nonuniqueness of infinity 549

Also, for m ∈ N, denote δm = δ(1− 1
m ). Choose hm(t) ∈ C∞

0 (−δ, δ) such that 0 ≤ hm ≤ 1,

|h ′
m | ≤ 2m

δ
and

hm(t) = 1 for t ∈ [−δm, δm].

For x = (x1, x2), let ξm(x1, x2) = g1(x1)hm(x2). Then

|Dξm+1|p ≤ 2p(2p + |h ′
m+1|p)

and

4 · 2p ·
∫
R4

|Dξm+1|p dx ≤ 32 · 8p + 32 · 8p ·
(

m + 1

δ

)p−1

≤ C p
(m

δ

)p−1
.

Hence by (2.7) ∫
[−3,3]×[−δm+1,δm+1]

∣∣∣∣ Du

u

∣∣∣∣
p

dx ≤ C p
(m

δ

)p−1
.

Owing to Lemma 1 and translation, we have that for x = (x1, x2) ∈ [−3, 3] × (−δ, δ)

u(x1, x2) ≤ 6 min{(δ − x2)
p−2
p−1 , (δ + x2)

p−2
p−1 }.

In particular, we have

u(x1, x2) ≤ 6

(
δ

m

) p−2
p−1

in Am,

where Am = [−3, 3] × [δm, δm+1]. Hence

∫
Am

|Du|p dx ≤ C p ·
(m

δ

)p−1 (m

δ

) p(p−2)
p−1 ≤ C p ·

(m

δ

) 1
p−1 ;

again we emphasize C is independent of p and δ.
Accordingly,

∫
[−3,3]×[0,δ]

u2|Du|p dx =
∞∑

m=1

∫
Am

u2|Du|p dx ≤ 36 · C p
∞∑

m=1

1

m
3
2

≤ C p.

Similarly, we can prove that ∫
[−3,3]×[−δ,0]

u2|Du|p dx ≤ C p,

and therefore ∫
R3

u2|Du|p dx ≤ C p.
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550 R. Hynd et al.

Fig. 2 The asymetric dumbbell domain Dε

Using Hölder’s inequality and the assumption that u ≤ 1, we also have that

∫
R3

u2|Du|p−1 dx ≤ 6
1
p ·

⎛
⎜⎝∫

R3

u
2p

p−1 |Du|p dx

⎞
⎟⎠

p−1
p

≤ 2 ·
⎛
⎜⎝∫

R3

u2|Du|p dx

⎞
⎟⎠

p−1
p

≤ C p.

Choose g2(t) ∈ C∞
0 (−3, 3) such that 0 ≤ g2 ≤ 1, |g′

2| ≤ 2 and

g2(t) = 1 for t ∈ [−2, 2].
Multiplying w(x) = u2 · g2(x1) on both sides of (2.5) leads to∫

R2

u|Du|p dx ≤ C p.

Again, by Hölder’s inequality, we have that∫
R2

u|Du|p−1 dx ≤ C p.

Finally, select g3(t) ∈ C∞
0 (−2, 2) satisfying 0 ≤ g3 ≤ 1, |g′

3| ≤ 2 and

g3(t) = 1 for t ∈ [−1, 1].
Multiplying w(x) = u · g3(x1) on both sides of (2.5) leads to∫

R1

|Du|p dx ≤ C p.

Consequently, (2.6) holds, as desired. 
�

Remark 1 Combining Lemma 1 and 2, it is easy to see that we can refine (2.6) to be∫
R1

u|Du|p−1 dx +
∫
R1

|Du|p dx ≤ C̃ p
0 · δ

p(p−2)
p−1

for a universal positive constant C̃0 independent of p and δ.
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Nonuniqueness of infinity 551

Now let

δ0 = 1

16C0
<

1

16
.

Here C0 > 1 is the same number in Lemma 2. For ε ∈ (0, 1
2 ), write

Dε = B1−ε(−5e1) ∪ R ∪ B1(5e1)

and R = (−5, 5) × (−δ, δ). Note that Dε is not symmetric with respect to the x2 axis and
maxDε d(x, ∂ Dε) = 1 (Fig. 2).

The following lemma says that the principal eigenfunction of p-Laplacian, although unique
up to multiplicative factor, is actually very sensitive to the domain when p gets large. Espe-
cially, it implies that variational infinity ground states are not continuous with respect to
domain.

Lemma 3 Assume 0 < ε < 1
2 . If δ ≤ δ0 and u∞ is a variational infinity ground state of Dε

satisfying u∞(5, 0) = 1, then

u∞(−5, 0) <
1

2
.

Note that δ0 is independent of ε.

Proof We argue by contradiction and assume that u∞(−5, 0) ≥ 1
2 . Now fix δ and ε. It is

easy to see that ([3]) maxDε u∞ = u∞(5, 0) = 1 and

0 < u∞(x) ≤ d(x, ∂ Dε) for x ∈ Dε .

Hence

u∞ ≤ δ ≤ δ0 in [−4, 4] × [−δ, δ].
For p > 2, let u p be the principal eigenfunction of �p in Dε satisfying maxDε u p = 1 and

− �pu p = −div(|Du p|p−2 Du p) = λ
p
ε,pu p−1

p in Dε . (2.8)

Here λε,p is the principal eigenvalue of �p associated with Dε (Fig. 2).
Passing to a subsequence if necessary, we may assume that

lim
p→+∞ u p = u∞ uniformly in Dε .

Hence, when p is large enough,

u p ≤ 2δ0 in [−4, 4] × [−δ, δ]. (2.9)

Since lim p→+∞ λε,p = λε,∞ = 1, we may assume that λε,p ≤ 2.
Now, define g(t) by ⎧⎪⎨

⎪⎩
g(t) = 1 for t ≤ −1

g(t) = 1
2 (1 − t) for −1 ≤ t ≤ 1

g(t) = 0 for t ≥ 1.

Let

w(x) = u p · g(x1).
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Fig. 3 The domain �ε

and, for R̃ = (−5, 4) × (−δ, δ), let

�ε = B1−ε(−5e1) ∪ R̃.

Note that {w �= 0} ⊂ �ε and therefore

�
p
ε,p ≤

∫
�ε

|Dw|p dx∫
�ε

|w|p dx
=

∫
Dε

|Dw|p dx∫
Dε

|w|p dx
, (2.10)

where �ε,p is the principal eigenvalue of �p associated with �ε (Fig. 3).
Since u p is uniformly Hölder continuous and lim p→+∞ u p(−5e1) = u∞(−5e1), there

exists τ ∈ (0, 1) such that

u p(x) ≥ 1

3
in Bτ (−5e1), (2.11)

for sufficiently large p.
To simplify notation, we now drop the p dependence and write u p = u. Multiplying

ug p(x1) on both sides of (2.8), we have that∫
Dε

|Du|pg p dx∫
Dε

|w|p dx
≤ λ

p
ε,p +

p
∫

[−1,1]×[−δ,δ]
u|Du|p−1 dx∫

Dε

|w|p
.

Due to Lemma 2 and (2.9)∫
[−1,1]×[−δ,δ]

u|Du|p−1 dx ≤ (2δ0C0)
p <

1

4p
.

Therefore owing to (2.11),

p
∫

[−1,1]×[−δ,δ]
u|Du|p−1 dx∫

Dε

|w|p
≤

(
3

4

)p p

πτ 2 .

Since Dw = gDu + u Dg and (a + b)p ≤ 2p(a p + bp), we have that∫
Dε

|Dw|p dx ≤
∫
Dε

|Du|pg p dx + 2p
∫

[−1,1]×[−δ,δ]
(|Du|pg p + u p

2p
) dx

≤
∫
Dε

|Du|pg p dx + (δ04C0)
p + (2δ0)

p

≤
∫
Dε

|Du|pg p dx + 2 · 1

4p
.
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Nonuniqueness of infinity 553

The first inequality is also due to the fact that

Dw = gDu in Dε\[−1, 1] × [−δ, δ] .

Therefore by (2.11) when p is large enough∫
Dε

|Dw|p dx∫
Dε

|w|p dx
≤ λ

p
ε,p + 3 ·

(
3

4

)p p

πτ 2 ≤ λ
p
ε,p + 1. (2.12)

Since maxDε d(x, ∂ Dε) = 1 and max�ε d(x, ∂�ε) = 1 − ε, we have �ε,p → (1 − ε)−1

and λε,p → 1 as p → ∞.
Thus, for sufficiently large p, we have

�ε,p ≥ 1

1 − 1
2ε

and λε,p ≤ 1

1 − 1
4ε

.

Owing to (2.10) and (2.12), we have(
2

2 − ε

)p

≤
(

4

4 − ε

)p

+ 1,

for all large enough p. Since this is a contradiction, the lemma follows.

Proof of Theorem 1: For ε ∈ (0, 1
2 ), let uε,∞ be a variational infinity ground state of Dε

satisfying uε,∞(5, 0) = 1. Since �∞uε,∞ ≤ 0, according to [1], the sequence {uε,∞}ε>0

is uniformly Lipschitz continuous within any compact subset of D0 when ε is small. The
sequence is also controlled by 0 ≤ uε,∞ ≤ d(x, ∂ Dε) near the boundary. Upon a subsequence
if necessary, we may assume that

lim
ε→0

uε,∞ = u∞.

Then according to Lemma 3 and stability of viscosity solutions, u∞ is an infinity ground
state of D0 satisfying

u∞(−5, 0) ≤ 1

2
and u∞(5, 0) = 1.

As u∞ is not symmetric about the x2-axis, it cannot be a variational infinity ground state
associated to D0. As there exists at least one variational ground state [2], it follows that
λ∞(D0) is not simple.
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