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Abstract. Actions of semisimple Hopf algebras H over an algebraically closed field of
characteristic zero on commutative domains were classified recently by the authors in
[18]. The answer turns out to be very simple— if the action is inner faithful, then H

has to be a group algebra. The present article contributes to the non-semisimple case,
which is much more complicated. Namely, we study actions of finite dimensional (not
necessarily semisimple) Hopf algebras on commutative domains, particularly when H is
pointed of finite Cartan type.

The work begins by reducing to the case where H acts inner faithfully on a field; such
a Hopf algebra is referred to as Galois-theoretical. We present examples of such Hopf
algebras, which include the Taft algebras, uq(sl2), and some Drinfeld twists of other
small quantum groups. We also give many examples of finite dimensional Hopf alge-
bras which are not Galois-theoretical. Classification results on finite dimensional pointed
Galois-theoretical Hopf algebras of finite Cartan type will be provided in the sequel, Part
II, of this study.

Introduction

Let k be an algebraically closed field of characteristic zero, and let an unadorned
⊗ denote ⊗k. This work contributes to the field of noncommutative invariant
theory in the sense of studying quantum analogues of group actions on commuta-
tive k-algebras. Here, we restrict our attention to the actions of finite quantum
groups, i.e., finite dimensional Hopf algebras, as these objects and their actions on
(quantum) k-algebras have been the subject of recent research in noncommutative
invariant theory, including [8], [10], [16], [18], [27], [29], [34], [35], [37]. The two im-
portant classes of finite dimensional Hopf algebrasH are those that are semisimple
(as a k-algebra) and those that are pointed (namely, all simple H-comodules are
1-dimensional). Moreover, we have many choices of what one could consider to
be a quantum k-algebra, but from the viewpoint of classical invariant theory and
algebraic geometry, the examination of Hopf actions on commutative domains over
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k is of interest. Since the classification of semisimple Hopf actions on commuta-
tive domains over k is understood by the work of the authors [18], the focus of
this article is to classify finite dimensional non-semisimple Hopf (H-) actions on
commutative domains over k, particularly when H is pointed.

It was announced in the latest survey article of Nicolás Andruskiewitsch [1]
that the classification of finite dimensional pointed Hopf algebras H , in the case
when H has an abelian group G of grouplike elements, is expected to be completed
soon. In this case, H is a lifting of the bosonization of a Nichols algebra B(V ) of
diagonal type by the group algebra kG, that is to say, gr(H) ∼= B(V )#kG. The
most extensively studied class of Nichols algebras are those of finite Cartan type;
their bosonizations are variations of Lusztig’s small quantum groups. Prompted
by the main classification result of finite dimensional pointed Hopf algebras of
finite Cartan type, provided by Andruschiewitsch–Schneider in [6], we restrict our
attention to the actions of such Hopf algebras on commutative domains.

All Hopf algebra actions in this work, unless otherwise specified, are assumed
inner faithful in the sense that the action does not factor through a ‘smaller’ Hopf
algebra (Definition 6).

We begin our study of Hopf actions on commutative domains by reducing to the
case where Hopf algebras act inner faithfully on fields (Lemma 9, Remark 3); such
Hopf algebras are referred as Galois-theoretical (Definition 9). A general result on
Galois-theoretical Hopf algebras is as follows.

Proposition 1 (Propositions 10 and 39). The Galois-theoretical property is pre-
served under taking a Hopf subalgebra, and preserved under tensor product, but is
not preserved under Hopf dual, 2-cocycle deformation (that alters multiplication),
nor Drinfeld twist (that alters comultiplication).

Examples of Galois-theoretical Hopf algebras include all finite group algebras,
and moreover, any semisimple Galois-theoretical Hopf algebra is a group algebra
(Proposition 10(2)). In contrast to this, we will see below that there are many
examples of non-semisimple finite dimensional pointed Galois-theoretical Hopf al-
gebras, particularly of finite Cartan type.

Theorem 2. Let q 6= ±1 be a root of unity unless stated otherwise, and let g be a
finite dimensional simple Lie algebra.

(1) The following are examples of Galois-theoretical finite dimensional pointed
Hopf algebras of finite Cartan type:

Galois-theoretical Hopf algebra Finite Cartan type Reference
Taft algebras T (n) A1 Prop. 17
Nichols Hopf algebras E(n) A×n

1 Prop. 19
The book algebra h(ζ, 1) A1×A1 Prop. 22
The Hopf algebra H81 of dimension 81 A2 Prop. 23
uq(sl2) A1×A1 Prop. 25
uq(gl2) A1×A1 Prop. 27

Twists uq(gln)
J+

, uq(gln)
J−

for n ≥ 2 An−1×An−1 Prop. 29

Twists uq(sln)
J+

, uq(sln)
J−

for n ≥ 2 An−1×An−1 Cor. 31

Twists u≥0
q (g)J for 2rank(g)−1 of such J same type as g Prop. 37
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For the last three cases, q is a root of unity of odd order m ≥ 3, with m > 3 for type
G2. Further, n is relatively prime to m for the result on uq(sln)

J+

and uq(sln)
J−

.

(2) The following are non-examples of Galois-theoretical finite dimensional po-
inted Hopf algebras of finite Cartan type.

Non-Galois-theoretical Hopf algebra Finite Cartan type Reference
Generalized Taft algebras which A1 Prop. 21
are not Taft algebras
The book algebra h(ζ, p) for p 6= 1 A1×A1 Prop. 22
gr(uq(sl2)) A1×A1 Prop. 25

This theorem will be used in Part II of this work on the classification of Galois-
theoretical Hopf algebras of finite Cartan type. See Remarks 4 and 5 for a preview
of these results for uq(gln), uq(sln), u

≥0
q (g), and their twists.

For each of the Galois-theoretical Hopf algebras H in the theorem above, the
module fields L are analyzed in terms of their invariant subfields LH . For instance,
we have the following result.

Theorem 3 (Theorem 11). Let H be a finite dimensional pointed Galois-theo-
retical Hopf algebra with H-module field L. Then, for the group G = G(H) of
grouplike elements of H, we have the following statements:

(1) LH = LG; and
(2) the extension LH ⊂ L is Galois with Galois group G.

A generalization of this result is provided for finite dimensional Hopf actions on
commutative domains (Theorem 14) and on Azumaya algebras (Theorem 15).

Further, we point out that finite dimensional Galois-theoretical Hopf algebras
are not necessarily pointed nor semisimple (Example 1).

Remark 1. It is interesting to consider the quasiclassical analogue of our study of
finite dimensional Hopf actions on commutative domains (that are faithful in some
sense). To do so, let G be a Poisson algebraic group and let X be an irreducible
algebraic variety with zero Poisson bracket. Then the corresponding problem is to
(1) determine which of such G can have a faithful Poisson action on a variety X
as above, and (2) classify such actions. In particular, for G′ a closed subgroup of
G, this includes the problem of classifying Poisson homogeneous spaces X = G/G′

which have zero Poisson bracket. Here, the Poisson bracket on the group G is not
necessarily zero. See [15], [26], and [38] for further reading.

This paper is organized as follows. Background material on pointed Hopf alge-
bras and Hopf algebra actions is provided in Section 1. This includes a discussion
of Hopf algebras of finite Cartan type, of quantum groups at roots of unity, and
of twists of Hopf algebras and Hopf module algebras. We define and provide
preliminary results on the Galois-theoretical property in Section 2. The proof of
Theorem 2 is established in Section 3 via Propositions 17, 19, 21–23, 25, 27, 29,
37, and Corollary 31.

Acknowledgments. We thank the anonymous referees for making several sug-
gestions that improved the quality of this manuscript, which include a shorter
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proof of Proposition 35. We are grateful to Susan Montgomery for pointing out
references [34] and [35]. We thank Nicolás Andruskiewitsch and Iván Angiono for
useful discussions and insightful suggestions. We also thank Cesar Galindo for his
contribution to Section 3.11, and thank Milen Yakimov for supplying Remark 6.

1. Background material

In this section, we provide a background discussion of pointed Hopf algebras,
especially those of finite Cartan type (Section 1.1) and quantum groups at roots
of unity (Section 1.2). We also discuss Hopf algebra actions on k-algebras (Sec-
tion 1.3) and Drinfeld twists of these actions (Section 1.4). Consider the notation
below, which will be explained in the following discussion. Unless specified other-
wise:

k = an algebraically closed base field of characteristic zero.
ζ, q, ω = a primitive root of unity in k of order n, m, and 3, respectively.
H = a finite dimensional Hopf algebra with coproduct ∆, counit ε, antipode S.
G = the group of grouplike elements G(H) of H .

Ĝ = character group of G = {α : G → k
×}.

A = an H-module algebra over k.
L = an H-module field containing k.
F = the subfield of invariants LH .

1.1. Grouplike and skew primitive elements, and pointed Hopf algebras

Consider the following notation and terminology. A nonzero element g ∈ H is
grouplike if ∆(g) = g ⊗ g, and the group of grouplike elements of H is denoted by
G = G(H). An element x ∈ H is (g, g′)-skew primitive, if for grouplike elements
g, g′ of G(H), we have that ∆(x) = g ⊗ x+ x⊗ g′. The space of such elements is
denoted by Pg,g′ (H).

The coradical H0 of a Hopf algebra H is the sum of all simple subcoalgebras of
H . The coradical filtration {Hn}n≥0 of H is defined inductively by

Hn = ∆−1(H ⊗Hn−1 +H0 ⊗H),

where H =
⋃

n≥0 Hn.
We say that a Hopf algebra H is pointed if all of its simple H-comodules (or

equivalently, if all of its simple H-subcoalgebras) are 1-dimensional. When H is
pointed, we have that H0 = kG and H1 = kG +

(∑
g,g′∈G Pg,g′(H)

)
. Although

this sum is not direct, one has H1/H0 =
⊕

g,g′∈G P g,g′ (H), where P g,g′(H) is the
image of Pg,g′ (H) in H1/H0. One can verify easily the following result.

Lemma 4.

(a) The coradical H0 of a Hopf algebra H is the group algebra kG(H) if and
only if H is pointed.

(b) If a Hopf algebra H is generated by grouplike and skew primitive elements,
then H is pointed. �

The converse of part (b) is expected in the finite dimensional case.
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Conjecture 5 ([4, Conj. 1.4]). A finite dimensional pointed Hopf algebra over an
algebraically closed field of characteristic zero is generated by grouplike and skew
primitive elements.

In fact, the conjecture holds in the setting of our work.

Theorem 6 ([7, Thm. 4.15]). Conjecture 5 holds when G is abelian. �

As a consequence, a finite dimensional pointed Hopf algebra H over k is a
lifting of a bosonization of a Nichols algebra B(V ) by the group G. In other
words, gr(H) ∼= B(V )#kG in this case. Moreover, we consider a special subclass
of pointed Hopf algebras, that of finite Cartan type. Refer to [5] and [6] for further
details.

Definition 1. Let (V, c) be a finite dimensional braided vector space.

• (V, c) is of diagonal type if there exists a basis x1, . . . , xθ of V and scalars
qij ∈ k

× so that
c(xi ⊗ xj) = qij(xj ⊗ xi)

for all 1 ≤ i, j ≤ θ. The matrix (qij) is called the braiding matrix.
• (V, c) is of finite Cartan type if it is of diagonal type and

qii 6= 1 and qijqji = q
aij

ii (1)

where (aij)1≤i,j≤θ is a Cartan matrix associated to a semisimple Lie algebra.
• The same terminology applies to a Hopf algebraH when gr(H) ∼= B(V )#kG.

Many examples of finite dimensional pointed algebras of finite Cartan type are
provided throughout Section 3; refer to the tables in Theorem 2 for a summary.

1.2. Quantum groups at roots of unity

Let us recall facts about quantum groups at roots of unity, which are examples of
pointed Hopf algebras of finite Cartan type. Consider the following notation. Let
g be a finite dimensional simple Lie algebra over k of rank r with Cartan matrix
(aij) for i, j = 1, . . . , r. Let di, for i = 1, . . . , r, be relatively prime integers so that
the matrix (diaij) is symmetric and positive definite. Let q be an indeterminate.

Now consider the following Hopf algebra.

Definition 2 ([13], [14], [25]). The Hopf algebra Uq(g), referred to as the Drin-
feld–Jimbo quantum group attached to g, is generated over k[q, q−1] by grouplike
elements ki, (ki, 1)-skew primitive elements ei, and (1, k−1

i )-skew primitive ele-
ments fi, for i = 1, . . . , r, with defining relations:

kiejk
−1
i = qdiaij ej , kifjk

−1
i = q−diaijfj , eifj − fjei = δij

ki − k−1
i

qdi − q−di
,

kikj = kjki, kik
−1
i = k−1

i ki = 1,
1−aij∑

p=0

(−1)p
[ 1− aij

p

]
qdi

e
1−aij−p
i eje

p
i = 0 for i 6= j,

1−aij∑

p=0

(−1)p
[ 1− aij

p

]
qdi

f
1−aij−p
i fjf

p
i = 0 for i 6= j.
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Here,
[
n

i

]
q
=

[n]q !

[i]q![n− i]q!
, where [n]q =

qn − q−n

q − q−1
.

At roots of unity, the Hopf algebra Uq(g) has a finite dimensional quotient, which
is defined below in Definition 4. To proceed, we must define root vectors, which was
done by Lusztig using the braid group action on Uq(g) [31, Thms. 3.2, 6.6(ii) and
Sect. 4.1]. Fix a reduced decomposition S of the maximal element w0 of the Weyl
group of W : w0 = si` . . . si1 . To this decomposition, there corresponds a normal

ordering of positive roots: α
(1)
S = αi1 , α

(2)
S = si1(αi2), . . . , α

(i`)
S = si1 · · · si`−1

(αi`)
[39]. It is known that every positive root occurs in this sequence exactly once,
and a root α + β always occurs between α and β. So, given a positive root α, let

N be the unique number such that α = α
(N)
S , and let wS

α = siN−1
· · · si1 so that

α = wS
α(αiN ). Define the root vectors by the formula

eSα := TwS
α
(eiN ) and fS

α := TwS
α
(fiN ),

where, for a Weyl group element w, Tw is the corresponding element of the braid
group. Here, if α = αi is a simple root, then eα = ei and fα = fi.

Now we specialize to a root of unity.

Let q ∈ k be a root of unity of odd order m ≥ 3, with m > 3 for type G2. (2)

Definition 3 ([11, Sect. 1.5]). The Hopf algebra Uq(g) specialized to a root of
unity q as in Equation 2 is known as the Kac–De Concini quantum group of g.

The desired finite dimensional quotient of Uq(g) is now given as follows.

Definition 4 ([30, Sect. 5.7]). Take q ∈ k satisfying Equation 2. There exists
a finite dimensional Hopf quotient of Uq(g) called the small quantum group (or
the Frobenius–Lusztig kernel) attached to g, denoted by uq(g): namely, uq(g) =
Uq(g)/I , where the Hopf ideal I is generated by

• kmi = 1, for i = 1, . . . , r, and
• (nilpotency relations) (eSα)

m = (fS
α )

m = 0, for all positive roots α.

Even though the elements eSα, f
S
α depend on S, the ideal I is independent of the

choice of S [31, Thm. 3.2]. It is also known that the elements (eSα)
m and (fS

α )
m,

along with kmi , are central in Uq(g) [11, Cor. 3.1(a)]. The Hopf algebra uq(g) is a
finite dimensional pointed Hopf algebra of dimension mdimg.

The Hopf algebra uq(g) has Hopf subalgebras u
≥0
q (g), u≤0

q (g), generated by the
ki, ei and the ki, fi, respectively, and subalgebras u+

q (g), u
−
q (g), generated by the

ei and by the fi, respectively. They are quotients of the corresponding subalgebras
U≥0
q (g), U≤0

q (g), U+
q (g), U−

q (g) of Uq(g), respectively.

Remark 2 ([31]). It is known that uq(g) is the finite dimensional Hopf subalgebra
generated by ei, fi, ki inside Lusztig’s “big” quantum enveloping algebra with di-
vided powers, Uq(g), specialized to the root of unity. In fact, one has an exact
sequence of Hopf algebras uq(g) → Uq(g) → U(g), where the second map is the
quantum Frobenius map [31, Sect. 8]. This is why uq(g) is also referred to as the
Frobenius–Lusztig kernel.
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1.3. Hopf algebra actions

We recall basic facts about Hopf algebra actions; refer to [33] for further details. A
left H-module M has a left H-action structure map denoted by · : H ⊗M → M .

Definition 5. Given a Hopf algebraH and an algebra A, we say that H acts on A
(from the left) if A is a left H-module, h·(ab) =

∑
(h1 ·a)(h2 ·b), and h·1A = ε(h)1A

for all h ∈ H , a, b ∈ A. Here, ∆(h) =
∑

h1 ⊗ h2 (Sweedler notation). In this case,
we also say that A is a left H-module algebra.

In the case that H acts on a field L, we refer to L as an H-module field.

We restrict ourselves to H-actions that do not factor through “smaller” Hopf
algebras.

Definition 6. Given a left H-module M , we say that M is an inner faithful H-
module if IM 6= 0 for every nonzero Hopf ideal I of H . Given an action of a Hopf
algebra H on an algebra A, we say that this action is inner faithful if the left
H-module algebra A is inner faithful.

When given an H-action on A, one can always pass uniquely to an inner faithful
H̄-action on A, where H̄ is some quotient Hopf algebra of H .

We also consider elements of A invariant under the H-action on A.

Definition 7. Let H be a Hopf algebra that acts on a k-algebra A from the left.
The subalgebra of invariants for this action is given by

AH = {a ∈ A | h · a = ε(h)a for all h ∈ H}.

1.4. Twists of Hopf algebras and of H-module algebras

Let J =
∑

J1 ⊗J2 be an invertible element in H ⊗H . Then, J is a Drinfeld twist
for H if

• [(∆⊗ id)(J)](J ⊗ 1) = [(id⊗∆)(J)](1⊗ J), and
• (id⊗ ε)(J) = (ε⊗ id)(J) = 1.

Definition 8.
(1) The Hopf algebra HJ is a Drinfeld twist of H with respect to J if HJ = H

as an algebra and HJ has the same counit as H and coproduct and antipode given
by

∆J (h) = J−1∆(h)J and SJ(h) = Q−1S(h)Q,

where Q = m(S ⊗ id)J , for all h ∈ H .
(2) Let A be a left H-module algebra. Then, the twisted algebra AJ has the

same underlying vector space as A, and for a, b ∈ A, the multiplication of AJ is
given by

a ∗J b =
∑

(J1 · a)(J2 · b).

Note that J−1 is a twist forHJ , and (HJ)J
−1 ∼= H . Also, if A is an inner faithful

leftH-module algebra, then AJ is an inner faithful leftHJ -module algebra by using
the same action of H on the underlying vector space of A, and (AJ )J−1

∼= A as
H-module algebras.
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As discussed in [20, p. 799], Drinfeld twists J have a special form when H = kG

forG finite abelian. For any χ ∈ Ĝ, let 1χ be the idempotent (1/|G|)
∑

g∈G χ(g−1)g

in kG. Then, J =
∑

χ,ψ∈Ĝ σJ(χ, ψ)1χ⊗1ψ, for σJ a two-cocycle on Ĝ with values

in k
×.

We also get an alternating bicharacter bJ : Ĝ × Ĝ → k
× arising from J given

by bJ(χ, ψ) = σJ (ψ, χ)/σJ (χ, ψ) for all χ, ψ ∈ Ĝ.

Proposition 7 ([20, pp. 798–799]). The assignment J 7→ bJ is a bijection be-
tween gauge equivalence classes of Drinfeld twists and alternating bicharacters.
�

Now we have the following result for twisted polynomial rings.

Theorem 8 ([20, Thm. 3.8] ). Let G be an abelian group and let A = k[z1, . . . zn]
be a polynomial ring with a G-action such that zi are common eigenvectors of G.
Let χi be the character of G corresponding to the G-action on the eigenvector zi,
that is to say, g · zi = χi(g)zi. Then, the twisted algebra AJ has generators zi with
defining relations:

zi ∗J zj = bJ(χj , χi)zj ∗J zi. �

2. Galois-theoretical Hopf algebras

We begin by motivating the notion of a Galois theoretical Hopf algebra, or a
Hopf algebra H that acts inner faithfully on a field L. To this end, recall that our
goal is to classify inner faithful actions of certain Hopf algebras on commutative
domains.

Lemma 9. Let A be a commutative domain and QA be its quotient field. Namely,
QA = AS−1, for the set S of nonzero elements of A. If a finite dimensional Hopf
algebra H acts on A inner faithfully, then the action of H on A extends to an
inner faithful action of H on QA.

Proof. By [37, Lem. 1.1], an inner faithful H-action on a commutative domain A

extends to an inner faithful H-action on the localization AS̃−1 = A⊗AH AH S̃−1,
for S̃ a multiplicatively closed subset of AH . Since A is a commutative domain,
we have by [37, Thm. 2.5 and Prop. 2.7] that A is integral over AH . (Here, A is
H-reduced, as A is a domain.) Now, take S to be the set of nonzero elements of A,
and we get that the H-action on A extends naturally to an inner faithful H-action
on the field of quotients QA := AS−1 ∼= A⊗AH AH S̃−1. �

Remark 3. Conversely, any inner faithful H-action on a field L yields an inner
faithful H-action on a finitely generated commutative domain A. To see this,
pick a finite dimensional H-submodule V of L which generates RepH as a tensor
category, which exists due to inner faithfulness. Take A to be generated by V
inside L. Then, H acts on A. This shows that there is always a finitely generated
domain A ⊂ L that is H-stable and has an inner faithful action of H .

Thus, we consider Hopf algebra actions on fields for the remainder of this work.
Let us introduce the following terminology.
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POINTED HOPF ACTIONS ON FIELDS, I

Definition 9. A Hopf algebra H over k is said to be Galois-theoretical if it acts
inner faithfully and k-linearly on a field containing k.

Note that if a Galois-theoretical Hopf algebra H , say with H-module field L,
yields an H∗-Galois extension LH ⊂ L, then H is a group algebra. However,
the Hopf actions in this work do not yield Hopf-Galois extensions in general as
H is noncocommutative. Basic results about Galois-theoretical Hopf algebras are
collected in the proposition below.

Proposition 10. We have the following statements.

(1) Any finite group algebra is Galois-theoretical.
(2) Any semisimple Galois-theoretical Hopf algebra is a group algebra.
(3) The restriction of an inner faithful action of a Hopf algebra to a Hopf

subalgebra is inner faithful. In particular, a Hopf subalgebra of a Galois-
theoretical Hopf algebra is Galois-theoretical.

(4) Any finite dimensional Galois-theoretical Hopf algebra whose coradical is a
Hopf subalgebra is pointed.

(5) If H and H ′ are Galois-theoretical Hopf algebras, then so is H ⊗H ′.
(6) If H is Galois-theoretical, then kSnnH⊗n is Galois-theoretical for all n ≥ 1.

Proof. (1) It is well known that any finite group can be realized as a Galois group
of a field extension.

(2) This follows from [18, Thm. 1.3].
(3) Let H act inner faithfully on a module M and let H ′ ⊂ H be a Hopf

subalgebra. Let I be a Hopf ideal of H ′ annihilating M . Let J = HIH . Then, J
is a Hopf ideal in H annihilating M , so J = 0 and hence, I = 0.

(4) The coradical H0 of H is cosemisimple, and thus, semisimple by [28]. So,
H0 = kG(H) by (2) and (3). Hence, H is pointed by Lemma 4(a).

(5) IfH acts on a field L inner faithfully andH ′ acts on a field L′ inner faithfully,
then H ⊗H ′ acts on the quotient field of L⊗ L′ inner faithfully.

(6) First, we need the result below.

Lemma. We have the following statements.

(i) Let B be an associative algebra over k, and V be a B-module containing
vectors v1, . . . , vn linearly independent over B (that is to say, V contains
Bn as a submodule). Then, V ⊗n is a faithful module over kSn n B⊗n

(where Sn acts on B⊗n by permutation of components).
(ii) Take B to be a finite dimensional associative algebra over k. If W is

a faithful B-module and V = W ⊗ X, with X an infinite dimensional
k-vector space, then kSn nB⊗n acts faithfully on V ⊗n for any n.

(iii) If a finite dimensional Hopf algebra H acts inner faithfully on an algebra
A, then H acts faithfully on A⊗s for some s.

Proof of Lemma. (i) Consider the map f : kSn n B⊗n → V ⊗n given by f(x) =
x · (v1 ⊗ · · · ⊗ vn). Since the map b 7→ bvi defines an isomorphism B → Bvi, and
the sum Bv1 + · · ·+Bvn is direct, we see that f is injective, which implies (i).

(ii) Since Wm contains a copy of B for some m, we have that V contains Bn

for any n. Now statement (ii) follows from (i).
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(iii) Let Ks ⊂ H be the kernel of the action of H on A⊗s. Observe that
Ks ⊃ Ks+1 because A⊗s = A⊗s⊗1 ⊂ A⊗s+1. Let K =

⋂
s Ks. There is an integer

s0 such that K = Ks for all s ≥ s0. Given h ∈ K, consider the action of ∆(h) on
A⊗s ⊗A⊗t for s, t ≥ s0. Since A⊗s ⊗A⊗t is a faithful module over H/K ⊗H/K,
we find that ∆(h) ∈ K ⊗H +H ⊗K. Thus, K is a bialgebra ideal of H , hence
a Hopf ideal as H is finite dimensional. Since H acts on A inner faithfully, this
implies that K = 0, as claimed. �

Now we verify part (6) of the proposition above. Fix a commutative domain A
over k that admits an inner faithful action of H . Then, H acts faithfully on the
space W := A⊗s for some s by part (iii) of the Lemma. So applying part (ii) of
the Lemma to X = k[x1, . . . , xs], we conclude that Sn nH⊗n acts faithfully on

(A⊗s[x1, . . . , xs])
⊗n = (A[x]⊗s)⊗n = (A[x]⊗n)⊗s.

This means that Sn n H⊗n acts inner faithfully on the commutative domain
A[x]⊗n, where H acts trivially on x. Thus, Sn nH⊗n is Galois-theoretical. �

Question 1.
(a) If a finite group Γ acts on a Galois-theoretical Hopf algebra H , then is

ΓnH Galois-theoretical? If true, then this would be a generalization of Proposi-
tion 10(6).

(b) Is a Hopf algebra quotient of a Galois-theoretical Hopf algebraH also Galois-
theoretical? For example, if c is a central grouplike element of H , is then H/(c−1)
Galois-theoretical? In particular, if L is an inner faithful H-module field, is then
Lc always an inner faithful H/(c− 1)-module field?

Along with Proposition 10(6), special cases of Question 1(a) have been addressed
in Propositions 20 and 24.

Now we provide a general result about invariants of pointed Hopf algebra actions
on commutative domains.

Theorem 11.

(i) Let H be a finite dimensional pointed Hopf algebra over k with G(H) = G,
and assume that H acts on a commutative domain A. Then, AH = AG.

(ii) If in the situation of (i), A = L is a field, and H acts inner faithfully on
L, then the field extension LH = LG ⊂ L is a finite Galois extension with
Galois group G.

Proof. (i) We prove by induction in n that if x ∈ Hn, and ε(x) = 0, then x acts by
zero on AG, which implies the required statement. For n = 0, this is tautological,
as H0 = kG. So let us assume that n > 0 and that the statement is known for
n−1. By the Taft-Wilson theorem (see [33, Thm. 5.4.1]), we may assume without
loss of generality that

∆(x) = g ⊗ x+ x⊗ g′ + w,

where g, g′ ∈ G, w ∈ Hn−1⊗Hn−1 and (ε⊗ ε)(w) = 0 (as Hn/Hn−1 is spanned by
such elements x). Let f1, f2 ∈ AG. Using the induction assumption, we have that

x · (f1f2) = (g · f1)(x · f2) + (x · f1)(g
′ · f2) + w · (f1f2) = f1(x · f2) + (x · f1)f2.
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Thus, x : AG → A is a derivation.

On the other hand, since H is finite dimensional, by Skryabin’s theorem ([37],
Theorem 6.2(iii)), A is integral over the subalgebra of invariants AH . Thus, so is
AG. Hence, the equality x|AG = 0 follows from the following well-known lemma
from commutative algebra.

Lemma 12. Let B ⊂ C be an integral extension of commutative domains, and M
be a torsion-free C-module; and suppose that x : C → M is a derivation such that
x|B = 0. Then, x = 0.

Proof of Lemma 12. For c ∈ C, consider the minimal monic polynomial of c over
B,

p(c) = cn + bn−1c
n−1 + · · ·+ b1c+ b0,

with bi ∈ B, which exists since C is integral over B. Letting x act on the equation
p(c) = 0, we have that

[ncn−1 + (n− 1)bn−1c
n−2 + · · ·+ b1](x · c) = 0.

The first factor of the left-hand side (the derivative p′(c)) is not equal to zero due
to the minimality of p(c) and the fact that n 6= 0 (as we are in characteristic zero).
Thus, since M is a torsion-free C-module, we have x·c = 0 for all c ∈ C, as desired.
�

Returning to the proof of Theorem 11, we see that the proof of (i) is completed
by applying Lemma 12 to B = AH , C = AG, M = A.

(ii) This follows from (i), as clearly the group G must act faithfully on L. �

Corollary 13. Let H be a Hopf algebra (not necessarily finite dimensional) gen-
erated by a finite group of grouplike elements G = G(H) and a set of (gi, 1)-skew
primitive elements xi for some gi ∈ G. Assume that for each i, the Hopf subalgebra
generated by {gi, xi} is finite dimensional. Then:

(i) We have that AH = AG for any commutative domain A that arises as an
H-module algebra.

(ii) If H acts inner faithfully on a field L, then the field extension LH = LG ⊂ L
is Galois with Galois group G.

Proof. By Theorem 11, xi acts by zero on Agi , hence on AG. This implies both
statements. �

Thus, when H is Galois-theoretical and generated by grouplike and skew primi-
tive elements, the field extensions that arise asH-module fields may be understood
in terms of classical Galois theory. This phenomenon is illustrated in several ex-
amples in the next section, particularly when G(H) is a cyclic group and LH ⊂ L
is a cyclic extension.

We also have the following generalization of Theorem 11.

Theorem 14. Let H be a finite dimensional Hopf algebra over k. If H acts on a
commutative domain A, then AH = AH0 (even if H0 is not a subalgebra).
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Proof. As before, we show by induction in n that x ∈ Hn with ε(x) = 0 acts by
zero on AH0 . It is shown similarly to the Taft-Wilson theorem that Hn/Hn−1 is
spanned by elements xii′ ,C,C′ , where C,C ′ are simple subcoalgebras of H , and

∆(xii′ ,C,C′) =
∑

j

tij ⊗ xji′ ,C,C′ +
∑

j′

xij′ ,C,C′ ⊗ t′j′i′ + w,

where tij is a basis of C such that ∆(tij) =
∑

k tik ⊗ tkj and t′i′j′ is a similar basis
of C ′. Moreover, w ∈ Hn−1⊗Hn−1 is such that (ε⊗ ε)(w) = 0. So without loss of
generality we may assume that x = xii′ ,C,C′ . Then by the induction assumption, x
is a derivation of AH0 into A. The rest of the proof is the same as that of Theorem
11(i). �

Even though this paper is about actions of Hopf algebras on commutative al-
gebras, let us give a generalization of Theorems 11 and 14 to the noncommutative
case. Namely, we provide a result for Hopf actions on Azumaya algebras. Re-
call that examples of Azumaya algebras include matrix algebras over commutative
algebras and central simple algebras.

Theorem 15. Let H be a finite dimensional Hopf algebra over k.

(i) Assume that H acts on an Azumaya algebra A with center Z, where Z is an
integral domain. Let ZH = Z∩AH and ZH0 = Z∩AH0 . Then, ZH = ZH0 .

(ii) If, in addition to the hypotheses of (i), H is pointed, then ZH = ZG for
G = G(H).

Proof. (i) As in the proof of Theorem 14, we get that x defines a derivation from
ZH0 to A. By [16, Thm. 3.1(ii)], A is integral over ZH . Hence, ZH0 is also integral
over ZH (i.e., ZH0 is an algebraic field extension of ZH). So the statement follows
from Lemma 12, specialized to B = ZH , C = ZH0 , and M = A.

(ii) This follows immediately from part (i) and Lemma 4(a). �

3. Examples and non-examples of Galois-theoretical Hopf algebras

In this section, we study examples and non-examples of finite dimensional
pointed Galois-theoretical Hopf algebras, including

• Taft algebras T (n) [type A1] (Sect. 3.1),
• Nichols Hopf algebras E(n) [type A×n

1 ] (Sect. 3.2),
• generalized Taft algebras T (n,m, α) [type A1] (Sect. 3.3),
• book algebras h(ζ, p) [type A1×A1] (Sect. 3.4),
• the 81-dimensional Hopf algebra H81 [type A2] (Sect. 3.5),
• uq(sl2) and gr(uq(sl2)) [type A1×A1] (Sect. 3.6),
• uq(gl2) [type A1×A1] (Sect. 3.7),
• some Drinfeld twists of uq(gln), uq(sln) [type An−1×An−1] (Sect. 3.7),
• some Drinfeld twists of u≥0

q (g) [same type as g] (Sect. 3.9).

Altogether, the propositions in these sections yield a proof of Theorem 2. An ex-
ample of a Galois-theoretical Drinfeld twist of uq1/2(gl2) is provided in Section 3.8.
We also present a finite dimensional non-pointed Galois-theoretical Hopf algebra
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in Section 3.10. We end with a discussion of the Galois-theoretical property of
duals and twists of Hopf algebras in Section 3.11.

To begin, consider the notation and the preliminary result provided below.

Notation. Let L be a kZn-module field, for Zn = 〈g | gn = 1〉. Let ζ be a primitive
nth root of unity. We set L(i) := {r ∈ L | g · r = ζ−ir} for i = 0, . . . , n− 1.

Lemma 16. Given an inner faithful kZn-module field L as above, we have that:

(1) L is Zn-graded and decomposes as a direct sum of g-eigenspaces L(i) with

eigenvalue ζ−i, where L(0) = LZn and L(1) 6= 0.

(2) For u ∈ L(1), we have that L is an extension of LZn , so that

L = LZn [u]/(un − v).

Here, v is a non-n′-th power in (LZn)× for any n′ > 1 dividing n.

Proof. Part (1) is clear. In particular, L(1) 6= 0 due to inner faithfulness. Part (2)
follows since tn − v is the minimal polynomial of the element u. �

3.1. The Taft algebras T (n) are Galois-theoretical

Take n ≥ 2 and let ζ be a primitive nth root of unity. Let T (n) be the Taft algebra
of dimension n2, which is generated by a grouplike element g and a (g, 1)-skew
primitive element x, subject to relations

gn = 1, xn = 0, gx = ζxg.

We have that T (n) acts inner faithfully on the commutative domain k[z] by

g · z = ζ−1z, x · z = 1.

So, T (n) is Galois-theoretical by Lemma 9. More explicitly, we can extend the
action of T (n) on k[z] to an action of T (n) on k(z) since T (n) acts trivially on
k[zn] and k(z) = k[z] ⊗k[zn] k(z

n). Further, we classify all inner faithful T (n)-
module fields below, which recovers [34, Thm. 2.5].

Proposition 17. The Taft algebras T (n) are Galois-theoretical, and the fields L
that admit an inner faithful T (n)-action are precisely of the form

L = F [u]/(un − v)

for F = LT (n), u ∈ L(1), and v a non-n′-th power in F×, for any n′ > 1 dividing
n. So, L is a cyclic degree n Galois extension of its subfield of invariants F with
Galois group Zn. We also have that g ·u = ζ−1u, x ·u = 1 and g ·r0 = r0, x ·r0 = 0
for all r0 ∈ F . �

Proof. Let us determine the T (n)-module fields L. Since G(T (n)) ∼= Zn, we can
employ Lemma 16. Observe that LZn = LT (n) by Theorem 11(i); let us denote this
field by F . Take a nonzero element u ∈ L(1). Since g · (x ·u) = ζx · (g ·u) = x ·u,
we have that x · u = w ∈ F . Moreover, we can replace u with w−1u to get that
x · u = 1. Also, x · r0 = ε(x)r0 = 0 for all r0 ∈ F . Finally, the Galois group of the
extension LT (n) ⊂ L is G(T (n)) = Zn by Theorem 11(ii). �

One can reformulate Proposition 17 as follows.
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Proposition 18. Fields L ⊃ k with an inner faithful T (n)-action are in one-to-
one correspondence with fields F ⊃ k together with a non-n′-th power v ∈ F×, for
any n′ > 1 dividing n.

Proof. Retain the notation in Lemma 16 and Proposition 17. So, we have a field
L ⊃ k with an inner faithful T (n)-action if and only if L = F [u]/(un − v), where
tn − v ∈ F [t] is the minimal polynomial of u ∈ L(1) over F = LZn . For L to
be a field, this polynomial must be irreducible. So it remains to show that the
polynomial tn− v is irreducible if and only if v is a non-n′-th power in F×, for any
n′ > 1 dividing n; see, for instance, [9, Chap. 5, Sect. 11.8, Example 4].

The forward direction of this claim is clear. Conversely, suppose that v ∈ F×

and an irreducible polynomial p(t) = ts+q(t) divides tn−v, with deg q(t) < s < n.
The group Zn of roots of unity of order n acts on such divisors by p(t) 7→ ζ−sp(ζt),
where ζ is any nth root of unity. Clearly, the stabilizer of p(t) is contained in Zs

(as the constant term of q(t) is nonzero). So, it must be exactly Zs. Else, there
will be more than n/s distinct monic irreducible divisors of tn − v of degree s,
and their product must divide tn − v, which is a contradiction. This means that
p(t) cannot contain any terms other than ts and the constant term, that is to say,
p(t) = ts − f for f ∈ F . Hence, n/s is an integer, and fn/s = v. Thus, the reverse
direction of the claim holds. �

3.2. The Nichols Hopf algebras E(n) are Galois-theoretical

Take n ≥ 1. Let E(n) be the Nichols Hopf algebra of dimension 2n+1, generated
by a grouplike element g and (g, 1)-skew primitive elements x1, . . . , xn, subject to
relations

g2 = 1, x2
i = 0, gxi = −xig, xixj = −xjxi.

We have that E(n) acts inner faithfully on the commutative domain k[z] and field
k(z) by

g · z = −z, xi · z = z2(i−1).

One sees this as xi ·z
r = 0 for all i and r even. Thus, E(n) is Galois-theoretical by

Lemma 9. By a similar argument to that in Section 3.1, k(z) is an inner faithful
E(n)-module field.

To determine all inner faithful E(n)-module fields L, observe thatG(E(n)) = Z2

and use an argument similar to that in Section 3.1 to get the following result.

Proposition 19. The Hopf algebras E(n) are Galois-theoretical and the fields L
that admit an inner faithful E(n)-action are precisely of the form

L = F [u]/(u2 − v)

for F = LE(n), u ∈ L(1), and v a nonsquare element of F×. So, L is a quadratic
Galois extension of its subfield of invariants F with Galois group Z2. We have
that g · u = −u, xi · u = wi ∈ F for {wi}i=1,...n linearly independent over k, and
g · r0 = r0, x · r0 = 0 for all r0 ∈ F .

Proof. It suffices to establish inner faithfulness. Note that any nonzero Hopf ideal
of E(n) has nonzero intersection with spank(x1, . . . , xn) [33, Cor. 5.4.7]. So if
{wi}i=1,...n are linearly independent, then {xi}i=1,...n act by linearly independent
linear transformations of L. Thus, the action is inner faithful. �
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Note that while E(n) can act inner faithfully on a field, it follows from the result
above that E(n) cannot act faithfully on a field (and hence, on a commutative
domain). Indeed, the elements gxi − xi act necessarily by zero for all i.

We also have the following generalization of the proposition above.

Proposition 20. Retain the notation above. Let G be a finite subgroup of GLn(k).
Then, one can form the semi-direct product Hopf algebra kGnE(n), where GLn(k)
acts on E(n) by linear transformations of the skew primitive elements xi for i =
1, . . . , n. Moreover, the Hopf algebra kGnE(n) is Galois theoretical.

Proof. For the first statement, note that one can check directly that the ideal of
relations of E(n) is stable under the action of GLn(k). For the last statement, pro-
ceed as follows. Let F = k(w1, . . . , wn), where {wi} are algebraically independent,
which has an action of G via the embedding of G into GLn(k). Pick a non-square
element v ∈ (FG)×. Consider the E(n)-module field L = F [u]/(u2−v). Then, the
actions of G and of E(n) on L combine into an inner faithful action of kGnE(n)
on L. �

3.3. On the generalized Taft algebras T (n,m,α) being
Galois-theoretical

Let α ∈ k and let n,m be positive integers so that m divides n. Let q be a primitive
mth root of unity. Consider the generalized Taft algebra T (n,m, α), which is a Hopf
algebra generated by a grouplike element g and (g, 1)-skew primitive element x,
subject to the relations

gn = 1, xm = α(gm − 1), gx = qxg.

So, T (n, n, 0) = T (n) is a Taft algebra; see Section 3.1. The Galois-theoretical
property of T (n,m, α) is given as follows.

Proposition 21. A generalized Taft algebra T (n,m, α) is Galois-theoretical if and
only if m = n, that is to say, if and only if T (n,m, α) is a Taft algebra T (n).

Proof. If m = n, then T (n,m, α) = T (n), and is Galois-theoretical by Proposi-
tion 17.

On the other hand, suppose T (n,m, α) is Galois-theoretical with inner faithful
module field L. Since T (n,m, α) is generated by grouplike and skew primitive
elements, LT (n,m,α) = LG(T (n,m,α)) = LZn by Theorem 11; let us denote this field
by F . Then, Zn = 〈g〉 acts faithfully on L. By Lemma 16, L =

⊕n−1
i=0 L(i), where

we can take g · r = ζir for all r ∈ L(i), with ζ a primitive nth root of unity such

that q = ζn/m. We also have by Lemma 16 that L(0) = F and L = F [u]/(un − v)
for u ∈ L(1) and v a non-n′-th power in F×, for any n′ > 1 dividing n.

By way of contradiction, suppose that n/m = s > 1, so that T (n,m, α) is not
a Taft algebra. Since

g · (x · u) = qx · (g · u) = qζx · u = ζs+1x · u,
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we get that x · u ∈ L(s+1). Now x · u = r0u
s+1 for some r0 ∈ F×. Let [d] denote

1−ζd

1−ζ . Then, x · ud = [d]r0u
s+d. Therefore,

xm · u = xm−1 · r0u
s+1

= xm−2 ·
(
r0(x · us+1)) = xm−2 · ([s+ 1]r20u

2s+1
)

= xm−3 ·
(
[s+ 1][2s+ 1]r30u

3s+1
)

. . .

= [s+ 1][2s+ 1] · · · [(m− 1)s+ 1]rm0 uv,

with [`s+1] 6= 0 for ` = 1, . . . ,m−1. On the other hand, α(gm−1)·u = α(ζm−1)u.
Using the relation xm = α(gm − 1), we get that

v =
α(ζm − 1)

[s+ 1][2s+ 1] · · · [(m− 1)s+ 1]
r−m
0 .

This yields a contradiction as v is a non-m-th power in F×. Thus, m = n as
required. �

3.4. On the book algebras h(ζ, p) being Galois-theoretical

Let p < n be coprime positive integers with n ≥ 2 and let ζ be a primitive nth
root of unity. The book algebra h(ζ, p) is a Hopf algebra generated by a grouplike
element g, a (1, g)-skew primitive element x1, and a (gp, 1)-skew primitive element
x2, subject to relations:

gn = 1, xn
1 = xn

2 = 0, gx1 = ζx1g, gx2 = ζpx2g, x1x2 = x2x1;

see [2, Intr.]. The Galois-theoretical property of h(ζ, p) is given as follows.

Proposition 22. A book algebra h(ζ, p) is Galois-theoretical if and only if p = 1.
In this case, any h(ζ, 1)-module field L is a cyclic degree n Galois extension of its
subfield of invariants Lh(ζ,1) as in Lemma 16.

Proof. If p = 1, then h(ζ, p) is Galois-theoretical since it acts inner faithfully on
the commutative domain k[z] and field k(z) by

g · z = ζ−1z, x1 · z = 1, x2 · z = 1.

To see inner faithfulness, note that any nonzero Hopf ideal of h(ζ, 1) contains
either x1 or x2 [33, Cor. 5.4.7].

Suppose h(ζ, p) is Galois-theoretical with module field L. Since h(ζ, p) is gen-
erated by grouplike and skew primitive elements, Lh(ζ,p) = LG(h(ζ,p)) = LZn by
Theorem 11; let us denote this field by F . Then, Zn acts faithfully on L. By
Lemma 16, L =

⊕n−1
i=0 L(i), where g · r = ζ−ir for all r ∈ L(i). We also have by

Lemma 16 that L(0) = F and L = F [u]/(un − v) for u ∈ L(1) and v a non-n′-th
power in F×, for any n′ > 1 dividing n.

Since g · (x1 · u) = ζx1 · (g · u) = x1 · u, we get that x1 · u ∈ F and we can
renormalize to assume that x1 · u = 1. We also get that

x1 · u
d = (1 + ζ−1 + · · ·+ ζ−(d−1))ud−1,
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for all d ≥ 1. Moreover, g · (x2 · u) = ζpx2 · (g · u) = ζp−1(x2 · u), so we get that
x2 · u ∈ L(1−p). Hence, x2 · u = r0u

1−p for r0 ∈ F×. Now,

0 = (x1x2 − x2x1) · u = x1 · (r0u
1−p)− x2 · 1

= r0(x1 · u
1−p) = r0v

−1(x1 · u
n+1−p)

= r0
(
1 + ζ−1 + · · ·+ ζ−(n−p)

)
un−p.

So, 1 + ζ−1 + · · ·+ ζ−(n−p) = 0, which implies that p = 1.
For any h(ζ, 1)-module field L, we have that the structure of L is as described

in Lemma 16. �

3.5. The Hopf algebra H81 is Galois-theoretical

Let ω be a primitive cube root of unity. Let H81 denote the 81-dimensional Hopf
algebra from [36, p. 1544]; see also [3, Thms. 3.6 and 3.7]. It is generated by a
grouplike element g and (g, 1)-skew primitive elements x, y, subject to relations:

g3 = 1, gx = ωxg, gy = ωyg, x3 = 0, y3 = 0,

x2y + xyx+ yx2 = 0, y2x+ yxy + xy2 = 0, (xy − ωyx)3 = 0.

Note that the relation (xy − ωyx)3 = 0 is accidentally omitted in [36, p. 1544].

Proposition 23. The Hopf algebra H81 is Galois-theoretical and the fields L that
admit an inner faithful H81-action are precisely of the form

L = F [u]/(u3 − v)

for F = LH81 , u ∈ L(1), and v a non-cube element of F×. So, L is a cyclic,
degree 3 Galois extension of its subfield of invariants F with Galois group Z3. We
have that g · u = ω−1u, x · u = w1, y · u = w2 ∈ F for w1, w2 ∈ F linearly
independent over k. Here, g · r0 = r0, x · r0 = y · r0 = 0 for all r0 ∈ F .

Proof. Applying Lemma 9, we have that H81 is Galois-theoretical as it acts on k[z]
inner faithfully by

g · z = ω−1z, x · z = 1, y · z = z3.

(One also gets that H81 acts inner faithfully on k(z) by the same action.) Indeed,
it is clear that g3 − 1, gx− ωxg, and gy− ωyg act on k[z] by zero. For the rest of
the relations, note that any monomial in x, y of degree ≥ 3 acts by zero in k[z]. To
determine H81-module fields L, first observe that G(H81) = Z3. By an argument
similar to that in Section 3.2, the result holds. �

We also have the following generalization of Proposition 23.

Proposition 24. Retain the notation above. Let G be a finite subgroup of GL2(k).
Then one can form the semi-direct product kGnH81 where GL2(k) acts on H81 by
linear transformations of the skew primitive elements x and y. Moreover, kGnH81

is Galois theoretical.
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Proof. For the first statement, one can check that the ideal of relations of H81 is
stable under the action of GL2(k). To get the last statement, adapt the proof of
Proposition 20. �

3.6. The Hopf algebra uq(sl2) is Galois-theoretical, but
gr(uq(sl2)) is not

Let m ≥ 2 and let q be a root of unity in k with ord(q2)=m. Consider the
m3-dimensional Hopf algebra Hλ, generated by a grouplike element k, a (k, 1)-
skew primitive element e, and a (1, k−1)-skew primitive element f . Let Hλ have
relations:

ef − fe = λ
k − k−1

q − q−1
, ke = q2ek, kf = q−2fk, em = fm = 0, km = 1.

Note that if λ 6= 0, then Hλ
∼= uq(sl2), and without loss of generality we can

take λ = 1 in this case. Otherwise, Hλ=0 is isomorphic to the associated graded
Hopf algebra gr(uq(sl2)). Part (2) of the result below recovers [34, Cor. 3.7].

Proposition 25. We have the following statements.

(1) The associated graded Hopf algebra gr(uq(sl2)) is not Galois-theoretical.
(2) The Hopf algebra uq(sl2) is Galois-theoretical and the fields L that admit

an inner faithful uq(sl2)-action are precisely of the form L = F [u]/(um− v)
for F = Luq(sl2), u ∈ L(1), and v is a non-m′-th root in F×, for any m′ > 1
dividing m. In other words, L is a cyclic degree m Galois extension of its
subfield of invariants F with Galois group Zm. Moreover, we have that

e · u = 1, f · u = −qu2, k · u = q−2u,

and e · r0 = f · r0 = 0, k · r0 = r0 for all r0 ∈ F .

Proof. (1) Suppose that Hλ is Galois-theoretical with module field L; we will show
that λ 6= 0. The subalgebra generated by {k, e}, which is isomorphic to the Taft
algebra T (m), acts inner faithfully on L by Proposition 10(3). By Lemma 16 and

Proposition 17, L =
⊕m−1

i=0 L(i) = F [u]/(um − v) where L(i) = {r ∈ L | k · r =

q−2ir}, so L(0) = LT (m) =: F and u ∈ L(1). So for u ∈ L(1) and r0 ∈ F , we have
that

k · u = q−2u, e · u = 1, k · r0 = r0, e · r0 = 0.

Since k · (f · u) = q−2f · (k · u) = q−4(f · u), we get that f · u = r0u
2 for some

r0 ∈ F×.
Now we use the relation ef − fe = λ(k − k−1)/(q − q−1) to verify part (1). On

the one hand, we have that

(ef − fe) · u = e · (r0u
2)− f · 1 = r0(e · u

2)

= r0
(
(k · u)(e · u) + (e · u)u

)
= r0(q

−2 + 1)u.

On the other hand, we get that

(
λ
k − k−1

q − q−1

)
· u =

λ

q − q−1
(q−2 − q2)u.
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Thus,

r0 = λ
(q−2 − q2)

(q − q−1)(q−2 + 1)
= − λq.

Since r0 ∈ F×, we must have that λ 6= 0, as required.
(2) Here, we show that uq(sl2) is Galois-theoretical, then we use the work in

part (1) to determine the structure of its module fields. First, uq(sl2) acts on the
polynomial ring k[z] and the field k(z) by

e · z = 1, f · z = −qz2, k · z = q−2z.

The action is inner faithful as the skew primitive elements do not act by zero; see
[33, Cor. 5.4.7]. Hence, uq(sl2) is Galois-theoretical. Now for any uq(sl2)-module
field L, we have that Luq(sl2) = LG(uq(sl2)) = LZm =: F where Zm acts faithfully
on L by Theorem 11. By Lemma 16, the structure of L is as claimed and part (2)
holds. �

We also have a slight reformulation of Proposition 25(2), which will be used in
the sequel of this article. Let q be a primitive mth root of unity. Let Kq be the
m3-dimensional Hopf algebra generated by the grouplike element g and (g, 1)-skew
primitive elements x and y, subject to relations:

gm = 1, xm = ym = 0, gx = qxg, gy = q−1yg, yx− qxy = 1− g2.

Proposition 26. The Hopf algebra Kq is Galois-theoretical.

Proof. We see that Kq2 is isomorphic to uq(sl2), where we identify g, x, y with k,
e, (q − q−1)kf , respectively. �

3.7. Galois-theoretical twists of uq(gln) and of uq(sln)

In this section, let q ∈ k be a root of unity of odd order m ≥ 3 as in Equation 2,
and let n ≥ 2. Recall the definition of the Kac–De Concini quantum group Uq(sln)
and the small quantum group uq(sln) from Section 1.2. In this subsection, we need
extensions of these quantum groups associated to gln.

To define these extensions, we first define commuting automorphisms gi of
Uq(sln), for i = 1, . . . , n, by the formulas

gi(kj) = kj , gi(ej) = qδij−δi,j+1ej , gi(fj) = q−δij+δi,j+1fj .

It is easy to see we get that gig
−1
i+1 coincides with the inner automorphism defined

by the grouplike element ki for each i = 1, . . . , n−1. Moreover, the automorphisms
gi clearly descend to the quotient Hopf algebra uq(sln), where they satisfy the
relations gmi = 1. This prompts the following definition.

Definition 10. The Hopf algebra Uq(gln) is the smash product of Uq(sln) with
the group Z

n generated by the gi, modulo the relations gig
−1
i+1 = ki.

The finite dimensional Hopf algebra uq(gln) is the smash product of uq(sln)
with the group (Z/mZ)n generated by the gi, modulo the relations gig

−1
i+1 = ki.

More explicitly, uq(gln) is the Hopf algebra generated by grouplike elements gi
for i = 1, . . . , n, (kj , 1)-skew primitive elements ej , and (1, k−1

j )-skew primitive
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elements fj , for kj := gjg
−1
j+1, with j = 1, . . . , n− 1, subject to relations:

giejg
−1
i = qδij−δi,j+1ej , gifjg

−1
i = q−δij+δi,j+1fj ,

eiej = ejei, fifj = fjfi, (|i− j| ≥ 2),

e2i ej − (q + q−1)eiejei + eje
2
i = 0, (|i− j| = 1),

f2
i fj − (q + q−1)fifjfi + fjf

2
i = 0, (|i− j| = 1),

gigj = gjgi, eifj − fjei = δij(ki − k−1
i )/(q − q−1),

gmi = 1, (eSα)
m = (fS

α )
m = 0, α > 0,

where eSα and fS
α are the quantum root elements attached to a reduced decompo-

sition S of the maximal element w0 of the symmetric group, as in Section 1.2. It
is easy to see that uq(gln) has dimension mn2

.
In our first result of this section, we show that uq(gl2) is Galois-theoretical.

Proposition 27. The Hopf algebra uq(gl2) is Galois-theoretical and the fields L
that admit an inner faithful uq(gl2)-action are precisely of the form

L = F [u, u′]/(um − v, u′m − v′)

for F = Luq(gl2), u ∈ L(1), for some v, v′ ∈ F× so that L is a field. In other words,
L is a Galois extension of its subfield of invariants F with Galois group Zm ×Zm.

Proof. We have that uq(gl2) acts on the field k(z) by extending the action of uq(sl2)
on k(z) from Proposition 25(2) as follows:

g1 · z = q−1z, g2 · z = qz, e · z = 1, f · z = −qz2.

The action is inner faithful as the skew primitive elements do not act by zero;
see [33, Cor. 5.4.7]. Hence, uq(gl2) is Galois-theoretical. Also by Theorem 11,
Luq(gl2) = LZm×Zm , which implies the second statement. �

To study the Galois-theoretical property of twists of uq(gln) and of uq(sln),
consider the quantum polynomial algebra

Aq = k〈z1, . . . , zn〉/(zizj − qzjzi)i<j .

By [23, Thm. 4.1], we have that Aq is a left Uq(gln)-module algebra with the
following action:

ei · zi+1 = zi, fi · zi = zi+1, gi · zj = qδij zj ,

ei · zj = 0, fi · zj′ = 0,

for j 6= i+ 1, j′ 6= i. Thus, we have the following result.

Lemma 28. The action of Uq(gln) on Aq above descends to an inner faithful
action of uq(gln) on Aq.
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Proof. We have that gmi − 1, (eSα)
m, (fS

α )
m generate a Hopf ideal of Uq(gln). So,

to check that this Hopf ideal acts by zero on Aq , it suffices to check that it acts
by zero on the generators of Aq , in this case, zi. It is obvious that g

m
i acts as the

identity on Aq . Moreover, (eSα)
m (resp., (fS

α )
m) act by zero on the generators zj ,

as (eSα)
m (resp., (fS

α )
m) contains more than one copy of some ei (resp. some fi).

Since uq(gln) is of finite Cartan type, and thus generated by the degree one
part of its coradical filtration, the only skew primitive elements of uq(gln) modulo
the trivial ones, up to multiplication by grouplike elements and up to scaling, are
ei and fi. One sees this as follows. Let H = gr(uq(gln)). Then, it is known that
H∗ is a Hopf subalgebra in u≥0

q (gln) ⊗ u≤0
q (gln), so it is generated in degree 1,

i.e., by the grouplike elements and ei, fi. (This is also a special case of Theorem 6,
as H∗ is pointed with an abelian group of grouplike elements.) This implies that
any homogeneous skew-primitive element x of H of degree ≥ 2 is zero. Indeed,
〈x, ab〉 = 〈∆(x), a ⊗ b〉 = 0 if a, b ∈ H∗ are of positive degree, but any element
of degree ≥ 2 in H∗ is a linear combination of elements of the form ab with
deg(a), deg(b) ≥ 1. Thus, any skew-primitive element in H modulo trivial ones is
a product of a grouplike element with ei or fi up to scaling. Hence, the same is
true for uq(gln).

Hence, the action of uq(gln) on Aq is inner faithful since any nonzero Hopf ideal
of uq(gln) has a nonzero intersection with the span of skew primitive elements of
uq(gln) [33, Cor. 5.4.7]. �

Recall the discussion in Section 1.4. Let G = (Z/mZ)n be the Cartan subgroup

of uq(gln) and let χi ∈ Ĝ be defined as χi(p1, . . . , pn) = qpi . Let J+ and J− be
Drinfeld twists of kG so that

σJ+(χi, χj) =

{
q for i > j,
1 for i ≤ j

and σJ−(χi, χj) =

{
q for i < j,
1 for i ≥ j.

Note that the twist (J±)−1 is gauge equivalent to J∓.
Let us identify G with G(H) via (p1, . . . , pn) 7→ gp1

1 . . . gpn
n . Then, we have the

following result.

Proposition 29. The twists uq(gln)
J+

and uq(gln)
J−

are Galois-theoretical.

Proof. Since Aq is an inner faithful left uq(gln)-module algebra, (Aq)J+ is an inner

faithful left uq(gln)
J+

-module algebra. Now by Lemma 9, it suffices to show that
(Aq)J+ is a commutative domain. By Theorem 8, we get that k[z1, . . . , zn](J+)−1

∼=
Aq . Thus, k[z1, . . . , zn] = (k[z1, . . . , zn](J+)−1)J+ = (Aq)J+ .

By using the map Φ that relabels indices by i 7→ n+ 1− i, we get that Aq−1 =
Φ(Aq) is a left uq(gln) = Φ(uq(gln))-module algebra. Following the argument

above, we get that uq(gln)
J−

is also Galois-theoretical. �

Proposition 29 allows us to show that some quotients of uq(gln)
J±

are also
Galois-theoretical. Namely, let C be the subgroup of central grouplike elements
in G = G(H). It is clear that an element g = gp1

1 · · · gpn
n is central if and only if

pi = pi+1 for all i, that is to say, g := (g1 · · · gn)
t for some integer t ≥ 1. So the

group C is isomorphic to Z/mZ and is generated by c := g1 · · · gn. Now, consider
the Hopf algebra uq(gln)

[s] := uq(gln)/(c
s − 1).
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Proposition 30. We have that (uq(gln)
[s])J

±

is Galois-theoretical.

Proof. Let L be the uq(gln)
J±

-module field obtained from Proposition 29. Let

Q = {z ∈ L | cs · z = z}. Then, Q is a (uq(gln)
[s])J

±

-module field, and it is easy

to check directly that the action of (uq(gln)
[s])J

±

on this field is inner faithful.
�

The algebra uq(sln) has a subgroup Z/nZ consisting of central grouplike ele-
ments, and its intersection with the group Z/mZ generated by c is Z/gcd(m,n)Z.
So the intersection of these subgroups is trivial if and only if gcd(m,n)= 1. Thus,
uq(gln)/(c− 1) = uq(sln) for m and n relatively prime, and we have the following
result.

Corollary 31. If m and n are relatively prime, then we have that uq(sln)
J±

are
Galois-theoretical (where we abuse notation and denote by J± the images of the
twists J± in the quotient). �

In general, we get that (uq(sln)/(c
s − 1))J

±

is Galois-theoretical for
s = m/gcd(m,n).

Remark 4. We will show in Part II of this work that, in contrast with the above
result, untwisted uq(sln) is not Galois-theoretical for n ≥ 3. We will also show that
the twists J+ and J− are the only twists J coming from the Cartan subgroup that
make uq(sln)

J Galois-theoretical. For uq(gln), the situation is similar.

3.8. A modification of u
q1/2(gl2) that is Galois-theoretical

Let m ≥ 2 and let q be a primitive mth root of unity in k. We consider a
modification u′

q(gl2) of the Hopf algebra uq1/2(gl2) that is of finite Cartan type. We

will see that this is a special case of the Galois-theoretical Hopf algebra uq1/2(gl2)
J+

considered above. The computations below follow similarly to those in previous
sections, so some details are omitted.

Definition 11. The m4-dimensional Hopf algebra u′
q(gl2) is generated by group-

like elements γ1, γ2, a (γ1, 1)-skew primitive element x1, and a (γ2, 1)-skew primi-
tive element x2, subject to relations:

γm
1 = γm

2 = 1, γ1γ2 = γ2γ1, xm
1 = xm

2 = 0, x2x1 − qx1x2 = 1− γ1γ2,

γ1x1 = qx1γ1, γ1x2 = q−1x2γ1, γ2x1 = qx1γ2, γ2x2 = q−1x2γ2.

We have the following two results.

Proposition 32. Let q be a primitive mth root of unity in k as in Equation 2.
Then, we have an isomorphism of Hopf algebras φ : u′

q2(gl2) → uq(gl2)
(J+)−1

given
by the formulas

φ(γ1) = g21 , φ(γ2) = g−2
2 , φ(x1) = eg1, φ(x2) = (q − q−1)g−1

2 f,

where the twist J+ is defined in Section 3.7 for n = 2.
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Proof. One can check this by direct computation. Here, G = (Z/mZ)2 is the group
of grouplike elements of uq(gl2) and we have that J+ =

∑
χ,ψ∈Ĝ σJ+(χ, ψ)1χ⊗1ψ,

where 1χe = e1χ−χ1+χ2
and 1χf = f1χ+χ1−χ2

. �

Proposition 33. The Hopf algebra u′
q(gl2) is Galois-theoretical, and the fields L

that admit an inner faithful u′
q(gl2)-action are of the form

L = F [u, u′]/(um − v, u′m − v′)

for F = Lu′
q(gl2), for some v, v′ ∈ F× so that L is a field. In other words, L is a

Galois extension of its subfield of invariants Lu′
q(gl2) with Galois group Zm × Zm.

Proof. We have that u′
q(gl2) acts inner faithfully on the field k(z1, z2) by

γ1 · z1 = qz1, γ1 · z2 = z2, γ2 · z1 = z1, γ2 · z2 = qz2,

x1 · z1 = (1− q)z21z2, x1 · z2 = 0, x2 · z1 = 0, x2 · z2 = 1/z1.

Hence, u′
q(gl2) is Galois-theoretical. Also by Theorem 11, Lu′

q(gl2) = LZm×Zm ,
which implies the second statement. �

3.9. Galois-theoretical twists of u≥0

q
(g)

Keep the notation of Section 1.2. First, let q be a variable (i.e., we work over
k[q, q−1]). Fix an orientation of edges on the Dynkin diagram of g, and denote the
corresponding oriented diagram by Q.

To examine the Galois-theoretical property of twists of u≥0
q (g), we consider the

quantum polynomial algebra

Aq,Q := k〈z1, . . . , zr〉/(zizj − q±diaijzjzi)i<j ,

i = 1, . . . , r, where {zi} correspond to the vertices of the Dynkin diagram Q. Here,
the power of q is diaij if the edge i−j is oriented as i → j, and is −diaij otherwise.

We have the following well-known proposition, which can be proved directly.

Proposition 34 ([24], [17, Prop. 3.1]). The algebra Aq,Q is a quotient of the sub-
algebra U+

q (g) of Uq(g) generated by the {ei}, with the quotient map sending ei to

zi. Namely, Aq,Q
∼= U+

q (g)/IQ, where IQ = 〈eiej − q±diaij ejei〉i<j . �

The next proposition claims that the adjoint action of U≥0
q (g) on U+

q (g) descends
to an action on Aq,Q.

Proposition 35. We have that Aq,Q is a left U≥0
q (g)-module algebra, where the

action is induced by the (left ) adjoint action of U≥0
q (g) on itself. In other words,

h · a =
∑

h1aS(h2) for h, a ∈ U≥0
q (g), so

ki · ej = qdiaijej and ei · ej = −qdiaij ejei + eiej .
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Proof. To verify the claim, it suffices to show that the ideal IQ is U+
q (g)-stable

under the adjoint action. Indeed, it is clear that the action of k` stabilizes IQ.
Note that

e` · u = e`u− k`uk
−1
` e`,

for any u ∈ U+
q (g). So, any two-sided ideal of U+

q (g) stable under the adjoint
actions of {k`} is also stable under the action of {e`}, and we are done. �

Now let us specialize q to a root of unity of order m as in Equation 2 of Section
1.2. Moreover, let C be the subgroup of central grouplike elements of u≥0

q (g); it

consists of elements
∏

i k
`i
i , such that

∑
i `idiaij is divisible by m for all j. Then

we have the following proposition.

Proposition 36. Assume Equation 2. The action of U≥0
q (g) on Aq,Q descends to

an action of u≥0
q (g)/(c− 1)c∈C. Moreover, this action is inner faithful.

Proof. Let J be the kernel of the projection U≥0
q (g) → u≥0

q (g), which is a Hopf

ideal. We need to show that J acts by zero in Aq,Q, i.e., that k
m
i −1 and (eSα)

m act

by zero. Let Z≥0
0 ⊂ U≥0

q (g) be the subalgebra generated by these elements. By [12,

Prop. 5.6(d)] and [11, Cor. 3.1], we have that Z≥0
0 is a Hopf subalgebra of U≥0

q (g)

generated by central elements. Hence, if h ∈ Z≥0
0 , then h · a =

∑
h1aS(h2) =∑

ah1S(h2) = ε(h)a, as desired. The inner faithfulness is clear, as the kernel for
the action of the grouplike elements is exactly C, and all skew primitive elements
ei of u

≥0
q (g) act nontrivially by the definition of the U≥0

q (g)-action on Aq,Q from
Proposition 35. �

Recall the discussion in Section 1.4. Let G = (Z/mZ)r = G(u≥0
q (g)), and let

αi ∈ Ĝ be the simple root characters defined by αi(kj) = qdiaij . Assume that

m=ord(q) of Equation 2 is relatively prime to det(aij), and to 3 in type G2. (3)

In this case, C = {1}, and αi are independent generators of Ĝ. Thus, there is
a unique, up to gauge transformations, Drinfeld twist JQ of kG such that

bJQ(αi, αj) =





qdiaij for i → j in Q,
q−diaij for i ← j in Q,
1 for i not connected to j in Q.

(4)

To see this, recall Proposition 7. For example, one may take the twist JQ defined by

σJQ(αj , αi) =




qdiaij for i → j in Q,
1 for i ← j in Q,
1 for i not connected to j in Q.

(5)

So we have 2r−1 such twists, up to gauge transformations. Namely, they are
parametrized by orientations of the Dynkin diagram, which has r−1 edges, where
r = rank(g). Then, we have the following result.
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Proposition 37. Assume Equation 3. Then, the twists u≥0
q (g)J are Galois-theo-

retical for each J = JQ as in (4).

Proof. By Proposition 36 and under the assumption of Equation 3, we have that
Aq,Q is a left u≥0

q (g)-module algebra. Hence, (Aq,Q)J is a left u≥0
q (g)J -module

algebra. Now by Lemma 9, it suffices to show that (Aq,Q)J is a commutative
domain. By Theorem 8, we get that k[z1, . . . , zn]J−1 = Aq,Q. Thus, k[z1, . . . , zn] =
(k[z1, . . . , zn]J−1)J = (Aq,Q)J . �

Remark 5. We will show in Part II of this work that the twists JQ above are the
only ones coming from the Cartan subgroup of u≥0

q (g) so that u≥0
q (g)JQ is Galois-

theoretical. In particular, the Hopf algebra u≥0
q (g) is not Galois-theoretical, unless

g = sl2. We will also see in Part II that the full small quantum group uq(g) does not
become Galois-theoretical under twists coming from the Cartan subgroup, unless
g = sln.

If we are not in the setting of Equation 3, that is to say, if m is not relatively
prime to the determinant of the Cartan matrix (or to 3 for type G2), then the
twists JQ as above do not exist in general. Indeed, consider the case of type An−1.

Then det(aij) = n and di = 1. Let ωi ∈ Ĝ be such that ωi(kj) = qδij , so that
αi =

∏
k ω

aik

k . Let bJ(ωk, αj) = ckj . Then from (4), we get that:
∏

k

caik

kj = qaij if i → j,
∏

k

caik

kj = q−aij if i ← j,

∏

k

caik

kj = 1 if i not connected to j.

Recall that ckj are mth roots of 1; so let cij = qbij , bij ∈ Z/mZ. Then, we get
that: ∑

k

aikbkj = aij if i → j,
∑

k

aikbkj = −aij if i ← j,

∑

k

aikbkj = 0 if i not connected to j

in Z/mZ.
Assume that gcd(m,n) = d. The equations above yield

n−1∑

k=1

aikbkj = sijaij modm, (6)

where sij equals 1 if i → j, equals −1 if i ← j, and equals 0 if i is not connected to

j. We also have that
∑n−1

i=1 iaik = 0 modn. Hence,
∑n−1

i=1 (im/d)aik = 0 modm.
(Indeed, if ` is divisible by n, then m`/d is divisible by mn/d, and hence by m.)

Therefore,
∑n−1

k=1

∑n−1
i=1 (im/d)aikbkj = 0 modm. Now by Equation 6, we get that

∑

i

im

d
sijaij = 0 modm.

In particular, taking j = 1, we get that 2m/d = 0 modm. So, d divides 2. Hence,
we must have d = 1, since d divides m which is odd by Equation 2. Therefore,
such a twist JQ does not exist.

However, this issue can be remedied by considering the following Hopf algebra.
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Definition 12. The small quantum group of adjoint type, denoted by ũq(g), is
generated by uq(g)/(c − 1)c∈C and commuting grouplike elements gi, subject to
relations

giejg
−1
i = qδij ej , gifjg

−1
i = q−δijfj , gmi = 1, ki =

∏

j

g
diaij

j .

It has dimension mdim(g), and is related to the adjoint group of g.

Now ũq(g) has a Hopf subalgebra ũ≥0
q (g), which acts inner faithfully on Aq,Q

(namely, the action is extended via gi·zj = qδijzj). LetG
′ be the group of grouplike

elements of ũ≥0
q (g), and let αi be the generators of Ĝ′ defined by αi(gj) = qδij .

Hence, Equation 5 for σJQ has a unique solution and we obtain the result below.

Proposition 38. The twists ũ≥0
q (g)JQ are Galois-theoretical. �

This provides 2rank(g)−1 Galois-theoretical Hopf algebras, without assuming the
condition Equation 3 on m.

Remark 6. We thank Milen Yakimov for the following remark that, in fact, there is
a different way to construct the u≥0

q (g)-module algebras Aq,Q. Namely, Aq,Q arises

as a coideal subalgebra of U≥0
q (g), and since u≥0

q (g) is self-dual, Aq,Q also arises

as a u≥0
q (g)-module algebra. We see this as follows.

There are general classification results for coideal subalgebras in U≥0
q (g) by

Heckenberger–Schneider [22] and by Heckenberger–Kolb [21]. The results are that
under certain natural conditions all (one-sided) coideal subalgebras are tensor
products of the Cartan part of U≥0

q (g) with U+[w] for w ∈ W (the Weyl group).
The second factor is a q-analog of U(n+ ∩ w(n−)).

All U+[w] are iterated Ore extensions, which are q-polynomial rings if and
only if w has no repeating simple reflections in one (hence, in every) reduced
decomposition, that is to say, if and only if the w is a subexpression of a Coxeter
element. Also, it is not hard to show that at roots of unity, the coaction of the
quantum group on its coideal subalgebra descends to the small quantum group,
and is inner faithful if and only if w is a Coxeter element.

Therefore, the U+[w] that (1) admit an inner faithful action of u≥0
q (g) and

(2) are isomorphic to a q-polynomial algebras, are exactly those coming from the
Coxeter elements of W .

To relate this construction to our construction of an inner faithful u≥0
q (g)-

module algebra, we need to define a bijection between orientations of the Dynkin
diagram and Coxeter elements in W . Namely, an orientation of the Dynkin dia-
gram defines a partial order on vertices, and we can extend it to a total order
and write the corresponding word si1 · · · sir , which is a Coxeter element of W .
Then, one can show that any two such total orderings give the same element of W .
Conversely, given a Coxeter element, we can say that i → j if si appears before
sj in the word, and this defines an orientation on the Dynkin diagram. See [19,
Exercise 3.2].

3.10. Non-pointed Galois-theoretical Hopf algebras

Consider the following example from [16].
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Example 1 ([16, Example 3.16]). Let n,m be positive integers and let q be a
primitivemth root of unity. Consider the generalized Taft algebraK=T (nm,m, 1)
(from Section 3.3) generated by a grouplike element g and a (1, g)-skew primitive
element x, subject to relations gnm = 1, xm = gm − 1, and gx = qxg. We get that
K coacts inner-faithfully on k(z) by the formula ρ(z) = z ⊗ g + 1 ⊗ x. We also
have that K is not basic. Thus, H = K∗ is a non-pointed Galois-theoretical Hopf
algebra by Lemma 9.

3.11. On duals and twistings of Galois-theoretical Hopf algebras

We now discuss the preservation of the Galois-theoretical property under taking
Hopf duals and twists. The results about twists (parts (2) and (3) below) were
observed by Cesar Galindo; we thank him for allowing us to use this result.

Proposition 39. The Galois-theoretical property is preserved neither under

(1) Hopf dual,
(2) 2-cocycle deformation (that alters multiplication), nor
(3) Drinfeld twist (that alters comultiplication).

Proof. (1) Consider Example 1: the Hopf dual of a generalized Taft algebra
T (nm,m, 1) is Galois-theoretical. However, T (nm,m, 1) is not Galois-theoretical
by Proposition 21. More simply, one could also use a group algebra of a finite
non-abelian group as a counterexample by Proposition 10(1,2).

(2) Consider Proposition 25: uq(sl2) is Galois-theoretical, yet its associated
graded Hopf algebra gr(uq(sl2)) is not. Moreover, gr(uq(sl2)) is a 2-cocycle defor-
mation of uq(sl2) by [32, Thm. 7.8].

(3) Consider a Galois-theoretical group algebra kG and take a nontrivial Drin-
feld twist J of kG so that (kG)J is noncocommutative. Note that (kG)J is a
semisimple Hopf algebra. So if (kG)J is Galois-theoretical, then by Proposition
10(2), (kG)J is a group algebra, which yields a contradiction. �
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