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Abstract Transportation of patients is a key hospital
operational activity. During a large construction project,
our patient admission and prep area will relocate from
immediately adjacent to the operating room suite to
another floor of a different building. Transportation will
require extra distance and elevator trips to deliver
patients and recycle transporters (specifically: personnel
who transport patients). Management intuition suggested

that starting all 52 first cases simultaneously would
require many of the 18 available elevators. To test this,
we developed a data-driven simulation tool to allow
decision makers to simultaneously address planning
and evaluation questions about patient transportation.
We coded a stochastic simulation tool for a generalized
model treating all factors contributing to the process as
JAVA objects. The model includes elevator steps, ex-
plicitly accounting for transporter speed and distance to
be covered. We used the model for sensitivity analyses
of the number of dedicated elevators, dedicated trans-
porters, transporter speed and the planned process start
time on lateness of OR starts and the number of cases
with serious delays (i.e., more than 15 min). Allocating
two of the 18 elevators and 7 transporters reduced
lateness and the number of cases with serious delays.
Additional elevators and/or transporters yielded little
additional benefit. If the admission process produced
ready-for-transport patients 20 min earlier, almost all
delays would be eliminated. Modeling results contra-
dicted clinical managers’ intuition that starting all first
cases on time requires many dedicated elevators. This is
explained by the principle of decreasing marginal
returns for increasing capacity when there are other
limiting constraints in the system.

Keywords Hospital transportation . Logistics . Operating
room . Elevators . First case on time starts . Perioperative
systems design

1 Introduction

Large hospitals with on-site clinics, operating rooms
(ORs), intensive care units, diagnostic and procedure
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units, and inpatient beds routinely handle thousands of
patient transports per day in multiple complex care
environments. This makes physical patient flow a fun-
damental challenge. Efficient, timely and safe transport
of patients throughout the hospital is critical to accom-
plish the hospital’s medical and financial goals. For
many patients – especially those having procedures –
the surgical admission center is the first station in the
patient flow. Movement of patients within and out of
the surgical admission center is felt throughout the
perioperative care processes: Patients are admitted, pre-
pared for surgery, and then transported to the ORs. Any
delays in this stage immediately translate into a signif-
icant (negative) cumulative effect on the ability to move
patients smoothly throughout the perioperative care
environments and to perform surgical operations accord-
ing to schedule.

Through ongoing and incremental efforts, well-run
admission centers establish processes that ensure a
smooth, timely flow of patients into their downstream
areas. New construction or relocation can fundamentally
disrupt admission center function by obliterating the
established systems. Perhaps the impact of such disrup-
tion can be minimized and addressed in advance by
careful planning and modeling of the constraints and
potentials of the new patient flow pathways and capacities.

Our hospital plans to expand its OR capacity (through
construction of a new building) to 70 ORs, and to
renovate its admission center to accommodate more
patients. The current (and future) admission center is on
the 3rd floor of the hospital immediately adjacent to the
OR suite, which in its current form is entirely on the
third floor and inter-connected. As part of the construc-
tion plan the surgical admission center will temporarily
be moved to the 12th floor of a different building for a
period of 18-24 months. There is no possibility to per-
manently (or even temporarily) close the existing ORs
and to erect a completely new building that will accom-
modate all surgical facilities in a single location. There-
fore, facilities must be moved around within the existing
structure, while at the same time maintaining full patient
flow through all 52 currently used ORs.

Planning for changed patterns of patient transport
(including multiple changes over the course of the
project) was expected to be a significant challenge.
The new admission center location is distant from the
ORs, and will require transporting patients through
elevators. Eventually the admission center will be
returned to its adjacent location on the 3rd floor. How-
ever, some of the new ORs will be on the floor above
or below. Thus, elevators and loss of co-location will
to some extent always exist in our transportation sys-
tem going forward.

Patient flows involving elevators have been viewed
as a significant source of complexity in our perioper-
ative systems in the past, and this impression has been
borne out in empirical studies [1]. There are 18 eleva-
tors that serve the 12th floor of the three connected
buildings (named Ellison, Blake and Gray) that could
potentially serve the admission center. However, these
elevators currently serve patients, visitors and hospital
staff in various functions located in these buildings.
Thus, it is clear that only very few elevators could be
solely dedicated to the use of the admission center.
Data from the Hospital Physical Plant Department in-
dicate that these elevators have very long waiting times
during peak hours, so it has been decided to allocate
only a small number, if any, for exclusive use by OR
transporters. Hence, there have been serious concerns
regarding the impact of the new location on the ability
to start surgical operations on time, which is one of the
central performance measures of the perioperative care
system.

The proposed admission center relocation thus leads to
several planning and evaluation questions:

1. What are the right number, type, and location of
dedicated elevators? How many transporters are re-
quired? Also, for a predetermined configuration of
elevators and transporters, what are the practical
effects of limited coordination between personnel?
These questions are interrelated, and must be addressed
in a holistic way. Moreover, to answer the latter ques-
tions, one has to define a clear set of desired perfor-
mance measures by which the system performance is
evaluated. (This is discussed in detail in the Methods
Section.)

2. Given the current limitations on the availability of phys-
ical and human resources, is it possible to design effi-
cient and timely transportation of patients based only on
dedicated elevators and transporters? Otherwise, what
additional changes in the current plan are possible, and
how will they affect the performance of the system? For
example, is it beneficial to simply start the admission
process sooner?

3. What are the expected effects of potential variability
in some parameters of the underlying environment
(e.g., traveling times and volume of patients)? In
other words, how robust is a given configuration
to reasonable deviations from the present system
characteristics?

We sought to address these questions by developing a
generalized transport modeling tool that begins with actual
operational data from the current setting, and then allows
decision makers to dynamically and simultaneously address
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all of the planning and evaluation questions enumerated
above. More generally, this tool can be used to model
similar situations involving various types of patient and
equipment transportation systems.

The rest of the paper is structured as follows: In the
next section we briefly review the literature on patient
transportation in hospitals, so as to put our work in
context. In Section 3, we describe the setting in which
the modeling tool was developed, our simulation ap-
proach, our methods of collecting input data for the
model, and we define the terms used to assess perfor-
mance. In Section 4, we describe our results. In Section
5, we discuss the results in terms of the managerial
insights the modeling tool provided and with respect
to other available techniques.

2 Literature review

Operations research disciplines and analytical methods,
such as queuing models and traditional discrete event and
Monte Carlo simulation approaches, have been extensively
used to study healthcare management problems. Patient
appointment scheduling, patient flow, manpower staffing
and resource allocation are just some representative exam-
ples. We refer the reader to several surveys and books [2–6],
and to the references therein, for a comprehensive review of
the literature.

Many optimization techniques do not have the capacity
to handle the complexities of medical systems, therefore
requiring too many unrealistic assumptions, which may
render solutions invalid. Such assumptions can be logical
(i.e., over-simplifying the way a given system behaves in
reality), structural (e.g., ignoring certain physical char-
acteristics that cannot be sensibly handled by existing
mathematical models), and quantitative (e.g., probabilis-
tic assumptions such as sticking to particular distribu-
tions, independence, etc.). There has been some work
on more complex environments and systems, in which
multiple factors interact and give rise to more involved
and hard-to-model dynamics [7].

To our knowledge, there are relatively few studies of
hospital transportation systems[8–12]; these approaches
seem to be rather limited to the specific applications in
question [12]. The focus of most operations research litera-
ture in healthcare is investigating systems with relatively
simple structure, such as appointments in an outpatient
practice [13], desired level of staffing in a medical depart-
ment [14–16], or surgery scheduling [17, 18]. In these
examples, one can employ rather elementary modeling and
optimization methods (e.g., queuing theory and linear
programming).

Previous work on hospital transportation systems has
focused on generalized transportation systems of the
entire hospital [7, 19, 20]. In one study, transportation
was optimized by creation of a centralized dispatch
system [20]. The problem being addressed was one of
organization. Elevators and modes of transport were not
specifically considered. There are many instances, such
as transport of patients, instruments or materiel from
one location to another, as is common in operating
room or procedure suites, where the organizational task
is simple, but the timing and reliability are important.
Moreover, little of the prior work considers transporta-
tion modeling as a planning tool to guide process
changes in the setting of new construction.

Simulation of perioperative function, capacity and staff-
ing has focused on the recovery room or staffing to cover
emergency cases. There have been very few effective appli-
cations of these methods to large academic hospitals and to
transportation systems of the kind addressed in our project.
We consider all of the features of the intake transport pro-
cess all at once, including transporters, mode of transport,
elevators and the timing of process steps. Additionally, our
contribution has value as a case study because of the man-
agerial insight it provided, as will be elucidated in the
Discussion. Similar to what other researchers inferred [21,
22], we find simulation methodology to be particularly
suitable for modeling the complexities of health care
facilities.

3 Methods

The use of retrospective OR process data to inform this
simulation study was reviewed and approved by the Human
Research Committee of Partners Healthcare, Boston, MA.

3.1 Setting description

This study was performed at Massachusetts General Hos-
pital, where 52 operating rooms receive approximately
150 patients per day (mixed same-day-admission and day
surgery patients) from an admission center with approx-
imately 30 beds. The surgical admission center and all
ORs are currently co-located on the third floor of several
interconnected buildings, making the task of transporting
patients rather straightforward. Specifically, transporta-
tion distances are short, and there is no need to use
elevators. OR managers are also able to “manually”
coordinate clinical staff and transportation services with
ease by telephone or overhead paging. Intuitively, greater
distances between units imply significantly less coordi-
nation between most parties involved.
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The proposed new transportation process is schematically
drawn in Fig. 1. We did not attempt to model the preoper-
ative preparation process itself,1 but rather treated the
admission center as a black box that generates a sequence
of ready-for-transport patients. In other words, the starting
point of the process under consideration is not the time
when a patient arrives to the hospital. Instead, it is the
moment in time where all preoperative procedures have
been completed and the patient can be transported to the
corresponding OR. We refer to this time as Patient Ready for
Transport (PRT) time. [23],2

As soon as a patient is ready, (s)he is assigned a transporter,
whose only purpose from that point on is to complete the
transportation task without any unnecessary delays. In the
event of all transporters being momentarily unavailable (due
to transporting prior patients), subsequent patients are placed
in a queue; the rules for picking the next patient to be trans-
ported from this queue will be described below. Our funda-
mental assumption, which matches the present and future
status of this system, is that there is a transportation team of
limited size, dedicated solely to patient transportation, without
engaging in any other activity. Due to financial constraints,
this team is not planned to be augmented beyond the current
10 full-time transporters, although additional members could
be considered if the number of transporters appears to be a
significant constraint on process flow.

Once a transporter becomes available,3 the next patient
can be taken to one of an unspecified (but small – no more
than 2 or 3 due to constraints imposed by the physical plant
management) number of dedicated elevators. There are a
total of 18 possible elevators, arranged in groups of 6, one
group in each of three buildings (the Ellison, Blake or Gray
buildings; see Fig. 1). All elevators have the same capacity:
two stretchers (or gurneys) plus two transporters, or four
wheelchairs, each with a transporter. Upon arrival to the
chosen elevator group, the transporter may have to wait,
due to current use of the elevator or due to a line of
additional transporters that have already arrived and are
currently waiting as well. Once the transporter enters the
elevator (possibly with one or more other transporters,
depending on elevator packing), they are all dispatched to
the third floor, and from there to the corresponding OR.
Transporters recycle back to the 12th floor on elevators.

3.2 Simulation approach

Rather than feeding the circumstantial environment of the
proposed transport process into a high-level simulation soft-
ware (such as Arena), we decided to create a JAVA-based
transportation-oriented application from scratch, thereby gain-
ing greater control and flexibility over all object character-
istics, parameter setting, decision-making, and information
extraction. To clarify the latter point, it is worth mentioning
that the flexibility of general-purpose programming languages
such as JAVA allows us to more accurately code the structural
and logical properties of the studied process. Admittedly, we
could have alternatively decided to make use of the SIMAN
simulation language (in Arena), for instance, but the use of
JAVA allowed us to develop a computer application that could
be maintained and further developed by other researchers with
general skills. We were especially concerned with making our
implementation adaptable to additional transportation pro-
cesses, putting a particular emphasis on providing a modular
and extendable software, trying to anticipate patient flows of
various natures, to incorporate environmental randomness,
and to allow future users to integrate clinical and administra-
tive preferences. The resulting simulation tool is easily acces-
sible to non-experts, allowing essentially anyone to make
interactive use of it for the workflow and spatial configuration
described in this manuscript. Extending or changing the work-
flow and/or spatial configuration to be modeled would require
basic JAVA skills. By this, we mean that the person has
programming skills, and has basic working knowledge of
JAVA. At present time, all source code is available online,
along with extensive documentation, at: http://retsef.scripts.
mit.edu/MGHTransport.zip

1 This decision is reasonable because the first step in the process – the
preadmission activities – is unchanged in the new configuration.
2 Nonetheless, our analysis (to be discussed later) reveals interesting
and fundamental relationships between the transportation component
and the admission preoperative process. Specifically, it reveals delays
that are inevitable unless one improves and expedites the admission
process.

Fig. 1 A schematic description of the proposed transportation system,
including newly added elevator step. In the baseline condition, patients
were transported from an adjacent holding area directly to one of 51
operating rooms. In the new system, patient admission and preopera-
tive preparation would occur on a different floor, after which patients
would be transported via elevator to the operating rooms. Elevators and
transporters were potentially limited resources

3 To start 52 cases with 10 transporters, it is likely that all transporters
are sometimes simultaneously occupied.
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3.3 Data collection and interpretation

We eschewed evaluating the performance of various poten-
tial transport system configurations based on simulation
with artificially created data, or based on standard probabi-
listic assumptions or on fitting some fixed distribution to
already-observed data and sampling from that distribution.
Instead, our approach is more data-driven, based on exam-
ining the patient transport process using real data collected
from the current electronic OR information system, hos-
pital Buildings and Grounds Department databases, trans-
port services, and – on top of these sources – manually
collected data from direct observation of travel times
between locations.

Our data set is comprised of the entire population of
patients who checked in for any surgical procedure at the
surgical admission center during 2008, and comprises
17682 different cases. Each case record consists of:

1. Medical record number, age, date of service and time-
stamps of process steps: These properties were kept
confidential for the purpose of our study. We used these
identifiers to assure that each case was unique and then
assigned new, unique identifiers to each case, removing
the medical record number from the primary data.

2. Patient Ready for Transport time: In principle, this time
stamp should indicate the exact moment at which all
preoperative procedures have been completed and the
patient can be transported to the corresponding OR. How-
ever, repeated independent observations by our research
assistants indicate that nurses mark a patient record as
being ready about 5 min prior to the actual occurrence of
this event due to workflow considerations (i.e., when it is
convenient to log on to the computer for purposes of
documentation). Consequently, we have shifted Patient
Ready for Transport times forward accordingly.

3. Arrival Deadline: Theoretically, this time stamp should
indicate the exact point in time by which the transport
process is planned to be completed, meaning that the
patient should arrive or already be present at their
assigned OR. To estimate Arrival Deadlines, we
obtained the Start Time4 of each surgery, and set the
Arrival Deadline by subtracting 30 min from the sched-
uled start. At our institution, the Start Time is the time
the patient is expected to enter the OR. Our institution
does not have a large holding area for preoperative

patient preparation. Instead, each OR has a small patient
holding area adjacent to it. This is where the patient is
greeted by OR nursing and anesthesia personnel. Final
documentation checks, day-of-surgery anesthesia con-
sent, IVaccess and regional anesthesia are all performed
in this holding area. The Arrival Deadline is the time a
patient should be present in this holding area to begin
these activities. The “correct” shifting from the Start
Time to create the Arrival Deadline is very much case-
dependent, and due to the obvious inability to electron-
ically infer it in retrospect, 30 min was suggested by the
medical staff as a conservative estimate. In the modeling
software we developed, this parameter is a variable that
can be set by the user. For first cases, the scheduled Start
Time should equal the actual Start Time, since there are
no prior cases in the OR to potentially delay subsequent
starts.

4. Destination: OR to which the patient should be trans-
ported. This OR matches the one that was actually used
in the dataset.

5. Transportation mode: In our current process, all
patients are transported from the pre-surgical admis-
sion center to their corresponding ORs on a hospital
stretcher. However, as elevator capacity may be a
major limiting factor, we designed the software so
that we could examine other means of transporta-
tion, such as wheelchairs.

We consulted the Buildings and Grounds Department to
obtain accurate descriptive data about the elevators, such as
dimensions, weight capacity, and speed. We used these data
to decide how waiting patients can be packed into a single
elevator ride (depending on transportation modes), and to
estimate one-way and round-trip times for each elevator.
These properties were also measured independently by re-
search assistants who timed multiple transport/elevator trips
by pushing stretchers along the proposed routes throughout
the day. The research assistants also directly measured the
extra time incurred by loading actual patients onto the
elevators. We conducted measurements of actual traveling
times using research assistants following transporters mov-
ing patients between different locations. Finally, we evalu-
ated the following: Walking time with a stretcher from the
location proposed for the temporary admission center (12th
floor) to every prospective elevator (i.e., can be allocated as
a dedicated one), and from each of these elevators to every
OR. There is minimal variability in observed traveling
times, so these were initially treated in our simulation as
being deterministic. However, travel times are intuitively
expected to vary. Therefore, we set up the simulation so that
travel average times can be adjusted, and we used the
software to examine the effects of deviations from the actual
values observed.

4 Here it is particularly important to mention that by “scheduled start
time” we mean the actual point in time where the surgery took place
(when looking at historical data). For instance, if a given surgery
should have started at 11:00, but due to various delays actually started
at 14:00, then the right number (i.e., 14:00) was used. This way, we
simulate and test exactly what happens in reality, instead of what was
supposed to happen.
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3.4 Simulation construction

To create the simulation, we duplicated the patient trans-
port environment, including all human and physical enti-
ties previously discussed in this section, as JAVA objects.
The properties of each such object are dictated by those
observed in real-life. For instance, patient properties con-
sist of an unique identification number, destination, trans-
portation method, Patient Ready for Transport time,
Arrival Deadline, and various other time stamps obtained
throughout their transport process; elevators have charac-
teristic patient-dependent capacity, round-trip time, and
loading time; corridors have their corresponding travel
times; so on and so forth, noting that these lists are by no
means exhaustive.

Our simulation was created to allow managers to assess
the likely effect of interventions intended to minimize
lateness in arrival to the OR. In other words, we seek to
assure that as many patients as possible are at the OR by
the Arrival Deadline. It remains to be explained how mo-
mentary patient lateness is estimated, noting that (as the
name indicates) our computation is not an exact one, but
rather an educated approximation. For this purpose, given
a patient that currently resides in the admission center, we
break the transportation time, going through a specific
elevator, into five non-overlapping parts: (1) The time a
ready-for-transport patient waits in the admission center to
be picked up by a transporter; (2) Travel time from admis-
sion to the elevator; (3) waiting time prior to entering the
elevator; (4) one-way elevator travel time; and (5) travel
time from elevator to destination. As previously men-
tioned, each of these parameters (except the dynamic time
periods, which are those of waiting for a transporter (item 1
above) and waiting for the elevator (item 3)) has been
deterministically fixed in advance based on simple meas-
urements of current performance. As a side note, it is worth
mentioning that the way to evaluate item 3 will be
explained later on, while item 1 will be easy to evaluate,
since we will compute momentary lateness only when a
patient could be transported right away (so there is no
further waiting time for a transporter). Lateness is esti-
mated as the degree to which the sum of the 5 intervals
above, when added to the Patient Ready for Transport
timestamp, exceeds the Arrival Deadline. In other
words, Lateness(minutes)0{Patient Ready for Transport
Time +(sum of 5 transport intervals)} – Arrival Dead-
line; negative values are set to zero.

Having characterized all objects in a precise way, the
remaining issue to consider is how these entities interact
with each other. We proceed by describing the type of
decisions that need to be made, coupled with two solution
approaches, one that requires very little coordination
(henceforth called the simple algorithm), and one that

involves more coordination (improved algorithm). The
decisions are:

1. Next patient to transport: At any point in time, it is quite
possible that multiple patients have already completed
their preoperative preparation, and are ready to be trans-
ported to the appropriate ORs. The question arises: Who
is the next patient to be transported? In the simple
algorithm, we pick the patient whose preparation has
been completed the earliest, i.e., with earliest Ready-for-
Transport time. This is basically a first-in-first-out
queue. In the improved algorithm, for each patient wait-
ing, we estimate the individual lateness incurred, assum-
ing that: (a) his transport starts right away, and (b) we
pick an elevator based on the selection rule stated in
item 3 below. We pick the patient with maximal esti-
mated lateness as the next patient to transport, so as to
minimize lateness.

2. Transporter assignment: Once the next patient identity
has been determined, we move on to pick a transporter
from the pool of currently available ones (i.e., not in the
midst of an ongoing patient delivery or return trip). Due
to lack of other policies that may be considered in
practice, both algorithms make a completely random
assignment, meaning that any available transporter is
equally likely to be picked. (The underlying assumption
is that all transporters are “identical”, although this can
be easily relaxed in the simulation to create a population
of transporters with different speeds, for example.)

3. Elevator dispatching: As soon as a transporter is
assigned to the next patient, the next immediate ques-
tion is which route to pick, or equivalently, which
elevator should be used? In the simple algorithm, we
pick an elevator at random, where different elevators
have identical chances to be chosen. In the improved
algorithm, we pick the elevator that minimizes the esti-
mated individual lateness, assuming that the current
transport begins right away, going through the elevator
in question.5

4. Packing patients: It might be the case that, at some point
in time, multiple transporters have been dispatched to the
same elevator, which is currently in use by previously
arriving transporters. Once the elevator door “opens”, i.e.,
arrives back to the admission floor, which transporters
should be let in first, given a limited elevator capacity?
Both algorithms use a first-in-first-out policy for the

5 Elevator dispatching in the improved model: For this purpose, since
all traveling times from one location to the other are known (i.e.,
estimated in advance), the only dynamic ingredient of this estimate is
resolving the question: “how many transporters are currently waiting in
line for some given elevator?”. This could be easily answered by
asking the last transporter that was dispatched to that elevator – via
mobile phone, or video monitoring of the elevator lobbies.
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queue waiting for the elevator. In other words, transport-
ers and their patients are packed into the elevator one after
the other, in order of arrival, until the residual elevator
capacity is insufficient to pack the next transporter-patient
in line. Practically speaking, this means two patients and
two transporters, as patients are customarily transported
on stretchers, and our elevators can accommodate two
stretchers with transporters.

3.5 Performance measures – individual performance

Individual patients can be transported to their respective
destinations as soon as all preoperative procedures have
been completed, which is indicated by each patient’s
ready-for-transport time. However, due to transporter avail-
ability, elevator congestion, large traveling distances, delays
due to problems with the preoperative process, and numer-
ous other reasons, he may or may not be delivered on time
(that is, prior to his OR Arrival Deadline). Consequently,
individual lateness is defined as the difference (in minutes)
between the actual arrival time and the corresponding dead-
line, when this quantity is positive (i.e., when the patient is
late); otherwise, lateness is defined as 0. For instance, for a
patient who arrives to the OR at 9:13, but whose Arrival
Deadline is 9:00, lateness will be defined as 13 min; how-
ever, if the Arrival Deadline is 9:20, lateness is 0 min.

3.6 System-level performance

The system performance was evaluated on a daily basis, per
each day of the week. For a given day, we are interested in
several performance measures:

1. Average Lateness: Lateness taken over all cases in that day.
2. First Case Lateness: Similar to 1 above, but limited to first

cases of the day (i.e., the first case in each of the ORs).
3. Serious Delays: The percentage of cases seriously delayed

with respect to the Arrival Deadline among all the cases in
the day. For this report, any arrival delay longer than
15 min was considered serious by the clinical leaders of
the perioperative system. The definition of serious delay
is a user definable variable in the simulation.

4. First Case Serious Delays: Similar to 3 above but lim-
ited to first cases.

From the overall operational perspective, identifying and
developing systems that routinely function well is the most
important objective. For our overall system, clinical leaders
decided that minimizing serious delays (i.e., cases that
missed the Arrival Deadline by more than 15 min) was the
most important objective. Thus, we focused on serious
delays by day of the week (both for first cases and for the
overall day), and divided model-predicted performance into
‘good days’ and ‘bad days’. A day is considered “bad” if the

percentage of seriously-delayed cases exceeds 10%. We
then focus on each day of the week and consider various
statistics of the distribution of the average daily delay and
percentage of seriously-delayed surgical operations. (For
example, consider all Mondays). In addition, we consider
the percentage of bad days predicted by a given set of model
constraints.

As a validation step, we tested the simulation software on
current operations. Specifically, we used current travel
times, transporter numbers, arrival deadlines and definitions
of lateness to simulate the current process. We used the
simulation to assess the fraction of bad days for each day
of the week, and compared these results to current actual
performance using the same definitions. In all cases, the
simulation was run at least 3 times.

4 Results

4.1 Simulation of current state

In the simulation of the current state, we assessed the frac-
tion of bad days for each day of the week using the mea-
sured values for the model inputs. We compared the
simulation results (using the improved algorithm) to actual
results for first cases. These results are shown in Table 1,
and demonstrate reasonable agreement between the ob-
served and predicted fractions of lateness by day of week.
OR managers agreed that the simulation provided sufficient
precision to monitor the effects of process improvement
efforts. In other words, process improvement schemes that
would be judged successful would tend to yield changes in
performance that were larger than the observed variations
between simulation and actual performance in Table 1, and
so the model was sufficiently sensitive.

4.2 Tested scenarios

The data-driven simulation tool that we developed was used
to test several scenarios in light of the managerial and

Table 1 Comparison of actual performance with simulations of per-
formance of the current system

WEEKDAY Fraction of Days with≥10% of Cases Delayed>15 min (%)

ACTUAL SIMULATION

Monday 31.9 44.7

Tuesday 32.7 32.7

Wednesday 43.4 37.7

Thursday 24.0 14.0

Friday 41.2 43.1
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operational challenges described above. In particular, we
tried to identify how many elevators should be dedicated
to the new location of the admission center, and how the
system would perform under various scenarios of elevators,
transporters, and transport time. We used the improved
algorithm throughout.

As a benchmark, we first simulated an ideal scenario, in
which one assumes that there are infinitely many elevators
and transporters available. This is not a realistic or even a
feasible scenario, but it provides a good benchmark to
evaluate more realistic scenarios. Moreover, this scenario
reveals “built-in” delays that are not due to the elevators or
transporters, and in some sense provides a lower bound on
delays (or, conversely, an upper bound on how well the
system can work) when elevators and transporters are the
only variables. These results are given in Table 2. Table 2
indicates that moving the admission center to a more distant
location incurs a significant fraction of ‘bad days’, both for
first cases and all cases, even with an infinite number of
available elevators and transporters.

Table 2 follows the format of all of the subsequent tables
in the manuscript, and so a detailed description of these
tables is given below. For each day of the week, the tables
specify the total number of simulated days (second column);
the average, standard deviation and 80, 90, and 95 quantiles
of the average daily lateness in minutes (columns 3-7); the
average, standard deviation and quantiles of the daily per-
centage of seriously delayed cases (columns 7-11) and the
percentage of ‘bad days’ – the days in which the fraction of
seriously delayed cases exceeds 10%. For example, for the
ideal scenario – First Cases, there were 47 Mondays that
were simulated; the average (over all the Mondays) of the
average delay was 3.8 min, the standard deviation was
2.7 min and the 80th, 90th, and 95th quantiles were 5.2,

6.5 and 8.6 min, respectively. On 80% of the Mondays the
average delay was below 5.2 min. The average percentage
of seriously delayed cases was 10.4% and the 80th, 90th,
and 95th quantiles were 15.1, 20.2 and 27.9%, respectively.
In particular, 80% of the Mondays had percentage of seri-
ously delayed cases lower than 15.1%. Finally, 44.7% of the
Mondays were ‘bad’, (i.e., the fraction of seriously delayed
cases exceeded 10%).

If this is the best possible performance that can be
obtained without changing something else in the system
(see below), then what practical allocation of elevator and
transporter resources comes close to this ideal scenario? To
answer this question we carried out simulations for all days
of the week. Of the 17,682 cases in the data set, 7,283 were
first cases. These were evenly distributed across the week-
days, and there were 1,404 Monday first cases. In the results
that follow, we focused – for ease of presentation – on first
case Mondays (where the proportion of Mondays predicted
to be ‘bad’ with respect to first case arrivals from Table 2 is
44.7%). Thus, for Monday first cases, we used the simula-
tion tool to vary the number of transporters and elevators
between 1 (unrealistically parsimonious) to infinity. The
results are shown in Figs. 2 and 3.

Figures 2 and 3 demonstrate that seven transporters and
two elevators nearly match the performance of infinite
resources, with no benefit gained by increasing the number
of transporters beyond the 10 already employed. Therefore,
we fixed the number of transporters at 10 (the existing
number) and tested scenarios in detail with limited but
dedicated elevators. Specifically, we tested one or two ele-
vators (Tables 3 and 4), simulating the elevator resources
likely available in reality. We stopped increasing the number
of elevators once we observed that the performance is very
close to the ideal scenario (i.e., 2 elevators).

Table 2 Ideal scenario with no limitation on number of elevators or transporters

Day of
Week

Number
of Days

Mean Daily
Lateness (min)

SD (min) Quantiles (min) Fraction Seriously
Delayed (%)

SD (%) Quantiles (%) Fraction of Days with≥10%
of Cases Seriously
Delayed (%)0.80 0.90 0.95 0.8 0.9 0.95

First Cases

Monday 47 3.84 2.69 5.23 6.46 8.57 10.4 9.7 15.1 20.2 27.9 44.7

Tuesday 52 3.04 2.10 3.89 5.16 6.50 7.7 6.4 12.5 15.1 18.0 28.9

Wednesday 53 3.11 1.75 4.88 5.40 5.93 8.3 6.1 14.4 17.6 18.4 37.7

Thursday 50 1.49 1.74 2.32 3.49 4.01 4.1 4.9 6.3 10.5 14.2 14.0

Friday 51 3.35 1.62 4.93 5.70 6.03 9.5 6.0 15.6 17.2 18.6 43.1

All Cases

Monday 47 2.78 1.50 3.70 4.08 5.01 6.9 5.0 11.1 12.4 15.6 25.5

Tuesday 52 2.24 1.17 3.31 3.71 4.15 5.5 3.3 8.2 10.1 10.7 13.5

Wednesday 53 2.33 1.08 3.10 3.92 4.33 5.8 3.0 8.7 9.9 10.9 9.4

Thursday 50 1.40 0.88 2.02 2.24 2.97 3.3 2.2 5.1 5.9 7.5 0.0

Friday 51 2.52 1.23 3.26 3.93 4.18 6.6 3.3 9.2 10.5 11.9 15.7
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We then sought the impact of making changes elsewhere
in the system to improve performance. Specifically, we
started with ample (10) transporters and plateau (2) eleva-
tors, and modeled the impact of progressively rolling back
the time that patients would be made ready for transport,
shown in Fig. 4 using the percentage of cases with serious
delays for Mondays. For modeling purposes, the admission
center process (assumed to be a black box that functions
independently of the rest of the hospital) was started pro-
gressively earlier. Performance as assessed by the Monday
first-case bad day criterion improves as the start time and
ready for transport time is rolled back, and approaches zero
(2.1%) ‘bad days’ if the process is started 20 min earlier. We
then tested the performance of the system under the assump-
tion that the ready-to-transport times of all patients are
shifted 20 min earlier over all days (Table 5 below); in this
scenario we assumed the use of 2 dedicated elevators and 10
transporters.

If rolling the admission center start time back by
20 min (using 2 dedicated elevators and 10 transporters)
could virtually eliminate bad days, then it might be
possible to revisit the question of whether two dedicated
elevators are required. Thus, we performed a nested
simulation analysis to see whether the transport system
could function with only one dedicated elevator, or how
well it could function with one or two elevators and
decreasing numbers of transporters. Figure 5 shows the
results of these simulations, again focused on first cases,
Monday mornings. With only one elevator (Fig. 5a), all
days are bad with only one or two transporters. Addition
of a fourth transporter yields a large performance im-
provement but the fraction of bad days only drops to 6%
when 10 transporters are used. Thus, we conclude that
one dedicated elevator would be sufficient if 6% of days
being bad is acceptable. Referring back to Table 1 indi-
cates that under current conditions, 24% to 41% of days
are bad, so perhaps a single dedicated elevator, an early
start, and ample transporters is a reasonable tradeoff. On
the other hand, with 2 dedicated elevators and an early
start, the process could be run with as few as four
transporters, though optimum performance requires at
least six. In practice, given the low cost of transport
personnel, maintaining a buffer would be cost effective.

Finally, we tested the robustness of the system to
variability and inaccurate estimations of the travel times.
In other words, we were interested in the impact of
slower than expected transport times. In Fig. 6, we
progressively increased the average travel time, again
using the Monday first-case bad day proportion as the
test case. We then assumed that the actual travel times
are 50% higher than the original estimations for all days
and cases (Table 6 below); again we assumed 2

Fig. 2 Modeled effect of changing the number of transporters (in the
setting of infinite available elevators) on first case on time start per-
formance. The bars represent the percentage of bad days for first case
starts on Mondays. A ‘bad day’ is defined as one in which more than
10% of first cases start more than 15 min late

Fig. 3 Modeled effect of changing the number of elevators (in the
setting of infinite available transporters) on first case on time start
performance. The bars represent the percentage of bad days for first
case starts on Mondays. A ‘bad day’ is defined as one in which more
than 10% of first cases start more than 15 min late

Fig. 4 Modeled effect of changing the start time for the pre-operative
process (i.e., beginning patient preparation in the admission center earlier)
on first case on time start performance. Modeling is conducted with two
elevators and 10 transporters. The bars represent the percentage of bad
days for first case starts on Mondays. A ‘bad day’ is defined as one in
which more than 10% of first cases start more than 15 min late
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dedicated elevators and 10 transporters. Inspection of
the figure and of Table 6 (relative to Table 4) indicates
a modest but potentially meaningful decline in on-time
performance if the travel by the transporters was in-
creased by 50%.

5 Discussion

5.1 Solution approach

The main methodology used in this paper is based on data-
driven simulation modeling. Our primary objective was to
develop a comprehensive data-driven simulation tool in
order to illuminate the relationship between key system

parameters, such as number of dedicated elevators and staff,
transportation means (beds, stretchers, wheelchairs, etc.),
and coordination methods on the one hand, and the magni-
tude of patient lateness and significantly delayed surgical
operations on the other. The resulting simulation tool differs
from standard discrete event Monte Carlo simulations, in
that it originates from the actual performance data of the
hospital. We have examined and evaluated various system
configurations and policies simulated with real data
(obtained from clinical and administrative information sys-
tems at MGH), as well as with manually collected data to
model added process steps. This feature allowed us to ac-
curately simulate the system being studied. However, the
model software design allows it to be tailored to any pro-
posed change in patient transportation system in any setting

Table 3 One elevator and 10 transporters

Day of
Week

Number
of Days

Mean Daily
Lateness (min)

SD (min) Quantiles (min) Fraction
Seriously
Delayed (%)

SD (%) Quantiles (%) Fraction of Days with≥10%
of Cases Seriously
Delayed (%)0.80 0.90 0.95 0.8 0.9 0.95

First Cases

Monday 47 6.68 3.25 9.06 10.50 11.22 19.5 9.2 26.4 29.2 30.7 89.4

Tuesday 52 6.39 2.82 8.08 9.00 11.22 19.4 8.5 25.0 29.7 32.8 88.5

Wednesday 53 6.58 2.75 9.04 10.14 10.37 19.6 8.7 27.7 29.7 31.3 81.1

Thursday 50 1.58 1.79 2.60 3.49 4.01 4.5 5.1 9.5 10.6 14.8 18.0

Friday 51 6.31 3.00 8.59 9.87 11.23 4.5 9.1 25.0 30.6 32.4 82.4

All Cases

Monday 47 4.29 1.85 5.58 6.18 7.20 11.7 4.9 15.5 17.2 17.9 66.0

Tuesday 52 3.96 1.56 5.41 5.69 6.30 11.3 4.4 14.5 15.6 17.6 63.5

Wednesday 53 4.25 1.70 5.29 5.61 7.13 11.8 5.0 15.6 17.2 18.6 64.2

Thursday 50 1.79 1.02 2.47 3.25 3.38 4.4 2.8 6.6 7.9 9.0 2.0

Friday 51 4.07 1.60 5.27 6.24 6.81 11.3 4.2 14.5 17.1 19.5 58.8

Table 4 Two elevators and 10 transporters

Day of
Week

Number
of Days

Mean Daily
Lateness (min)

SD (min) Quantiles (min) Fraction Seriously
Delayed (%)

SD (%) Quantiles (%) Fraction of Days with≥10%
of Cases Seriously
Delayed (%)0.80 0.90 0.95 0.8 0.9 0.95

First Cases

Monday 47 4.35 2.94 5.87 7.08 9.21 11.5 9.6 16.6 22.9 27.9 48.9

Tuesday 52 3.51 2.19 4.61 5.58 7.16 9.3 6.8 14.0 18.1 20.2 42.3

Wednesday 53 3.59 1.98 5.62 6.18 6.70 9.7 6.3 15.5 18.1 19.8 39.6

Thursday 50 1.55 1.77 2.41 3.49 4.01 4.5 5.1 9.5 10.6 14.8 18.0

Friday 51 3.82 1.81 5.31 6.41 6.58 11.1 6.1 16.2 18.8 20.9 56.9

All Cases

Monday 47 3.04 1.62 4.00 4.42 5.41 7.4 5.1 11.2 12.7 16.1 27.7

Tuesday 52 2.49 1.23 3.75 4.13 4.48 6.4 3.4 8.4 11.3 12.4 17.3

Wednesday 53 2.59 1.17 3.58 4.27 4.62 6.5 3.3 9.4 11.0 12.7 17.0

Thursday 50 1.48 0.90 2.14 2.44 3.07 3.5 2.3 5.2 6.5 8.0 0.0

Friday 51 2.77 1.29 3.75 4.11 4.43 7.4 3.2 10.1 11.7 12.1 23.5
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(i.e., any hospital). In our specific example, this flexibility
allowed us to “see” how the system would have worked today
if the new setting of distant admission center would be imple-
mented. In addition, it enables us to answer “what will happen
if…” questions. Specifically, we can now address the following
issues:

1. Understand the interactions between resource availabil-
ity, coordination mechanisms (policies), and different
means of patient transportation.

2. Search the space of practical policies and system con-
figurations, and to sensibly compare between them from
clinical, physical, and financial perspectives.

3. Examine how potential changes in the environment, and
in particular unpredictable variability, will affect the
system dynamics.

The main findings of this simulation study can now be
interpreted in terms of basic questions raised in the introduction.

Question 1. Configuration of elevators and transporters,
including coordination There is a significant difference in
the performance of the system comparing the use of one
versus two dedicated elevators (see Tables 3, 4, 5 and 6).
When only one elevator is allocated, the percentage of ‘bad
days’, either throughout the day or for first cases is very
high. For most days of the week, 60% of days are bad, and
more than 80% of the mornings are expected to be bad.
However, when a second elevator is allocated the percentage
of bad days decreases by at least 50%.

On the other hand, the scenario of 2 elevators seems to
perform almost as well as the ‘best case’ scenario (unlimited
elevators) with maximum differences of 2-7% in the per-
centage of bad days comparing 2 elevators to infinite ele-
vators. Consequently, there is no real reason to increase the

number of elevators beyond two. Similar analysis yields
minimal benefit to increasing the number of transporters
beyond 7. Because there is little further performance im-
provement with two elevators, there is little motivation to
use other means to carry patients (e.g., wheel chairs instead
of stretchers). Specifically, 4 patients in wheel chairs could
be packed into a single elevator, and two such elevators
could carry 8 patients. However, this is equivalent to 4
elevators with two patients each on stretchers, and 4 such
elevators yields no better performance than 2 elevators with
2 patients each. These results are consistent with the funda-
mental phenomenon of decreasing marginal returns of addi-
tional capacity in systems with capacity constraints
elsewhere in the system. [24] The other insight is that add-
ing capacity to a component of the system (elevators and
transporters in this example) might not be as effective in
improving the overall throughput or wait times if there exist
other bottlenecks.

Question 2. Feasibility of the current plan The results of the
simulation study suggest that the transportation aspects are not
likely to become a bottleneck provided that two dedicated
elevators will be used. That said, the distances between the
new location of the admission center and the ORs will lead to
relatively high percentage of seriously delayed patient arrivals
at the ORs, particularly during the mornings. These delays
cannot be eliminated by adding additional transportation
resources. Even in the ideal scenario with infinitely many
elevators and transporters these delays persist, so the current
plan of simply moving the admission center and adding trans-
port resources is infeasible. Thus, the initial hypothesis shared
by decisionmakers (that transportation resources would be the
limiting factor) turns out to be incorrect as judged by the
simulation results. Instead, the bottleneck is the ability tomake

Table 5 Start 20 min earlier, with 2 elevators and 10 transporters

Day of
Week

Number
of Days

Mean Daily
Lateness (min)

SD (min) Quantiles (min) Fraction Seriously
Delayed (%)

SD (%) Quantiles (%) Fraction of Days with≥10%
of Cases Seriously
Delayed (%)0.80 0.90 0.95 0.8 0.9 0.95

First Cases

Monday 47 1.05 1.25 1.69 2.24 2.80 2.8 3.9 5.4 6.2 6.8 2.1

Tuesday 52 0.70 1.04 1.08 1.48 2.78 1.3 2.2 3.0 3.8 6.1 0.0

Wednesday 53 0.90 0.96 1.52 2.34 2.82 2.0 2.3 3.7 5.4 6.7 0.0

Thursday 50 0.34 0.93 0.41 1.05 1.55 0.7 1.6 0.0 3.8 4.7 0.0

Friday 51 0.81 0.89 1.36 1.79 2.48 1.8 2.7 3.7 5.3 6.3 2.0

All Cases

Monday 47 1.02 0.78 1.60 1.71 2.28 2.4 2.2 3.9 4.7 5.6 2.1

Tuesday 52 0.71 0.67 1.31 1.52 1.82 1.5 1.5 3.1 3.6 3.8 0.0

Wednesday 53 0.84 0.67 1.39 1.64 2.26 1.9 1.2 2.9 3.7 4.3 0.0

Thursday 50 0.56 0.53 0.95 1.09 1.39 1.3 1.2 2.5 2.8 3.3 0.0

Friday 51 0.87 0.81 1.39 1.75 2.17 2.0 2.2 2.9 3.2 5.8 2.0

Perioperative transportation modeling 165



patients ready soon enough to be transported to the ORs. In this
light, an initial plan to make the temporary admission center
slightly smaller than the original is likely to exacerbate delays.
However, Fig. 4 and Table 5 suggest that if all ready-for-
transport times are made 20 min earlier, almost all the delays
are eliminated. Moreover, when the start of the process is rolled
back by 20minutes for all patients, the system appears to require
relatively few transporters and two elevators is ample (Fig. 5).
However, moving all of the ready-for-transport times back by
20 min is not necessarily equivalent to scheduling all patients to
arrive at the admission center 20 min earlier than today. This is
because other linked processes in the hospital that are required to
complete the patient readiness process may not necessarily have
been pushed back, and so the patient may not become ready for
transport earlier, despite arriving to the hospital earlier. For
example, suppose the patients all arrive 20 min earlier, but the
surgeons continue to arrive at their usual time to perform

required site marking. In such a case, the effect of the patient’s
earlier arrival is negated by the interaction with other parts of the
system whose function has not changed (and is potentially
difficult to change). Our work sets up concrete goals for perfor-
mance improvement in the admission process, and reveals the
fundamental interactions between the admission aspects and the
transportation aspects of the process.

Question 3. Expected effects of potential variability in envi-
ronment parameters Up until now, it may appear as if our
conclusions could become invalid, should reasonable (or
even predictable) deviations from the present system char-
acteristics cause the overall configuration to behave badly.
For example, a slow transporter might slow down the entire
process. However, on the one hand, based on repeated
measurements taken by research assistants, actual travel
times exhibit small variability, and the use of dedicated
elevators suggests that their related travel time can be pre-
dicted to a large degree of accuracy. This supports our
modeling assumption that the traveling times are determin-
istic. On the other hand, to test the robustness of our tool to
variability in transporter performance, we performed addi-
tional tests to study the impact of changes and fluctuations
in the travel times compared to the initial estimates (see
Fig. 6 and Table 6). The system performance is only weakly
sensitive to these changes.

There are several underlying assumptions in our study. In
particular, the following assumptions were used in the de-
sign of the model:

& During the transition, the volume of surgical operations
will be similar to the volume in 2008. The data of our
department indicate that the volume of surgical opera-
tions in the last couple of years is stable, and expected to
stay stable in the next couple of years. That said, the tool
that we developed can be used to test other assumptions.

Fig. 5 Modeled effect of starting the pre-operative process 20 min
earlier (i.e., beginning patient preparation in the admission center
earlier) and then systematically varying the number of elevators.
Panel a: One elevator and varying the number of transporters from

one to ten. Panel b: Two elevators and varying the number of trans-
porters from one to ten. The bars represent the percentage of bad days
for first case starts on Mondays. A ‘bad day’ is defined as one in
which more than 10% of first cases start more than 15 min late

Fig. 6 Modeled effect of changing the time each transporter takes to
complete their circuit on first case on time start performance. Modeling is
conducted with two elevators and 10 transporters. The bars represent the
percentage of bad days for first case starts onMondays.A ‘bad day’ is defined
as one in which more than 10% of first cases start more than 15 min late
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& The admission process and its capacity will stay the
same as in the current location. Our experiments indicate
that even with the same admission capacity, one should
expect frequent serious delays in the start of time of
surgical operations, especially at the beginning of the
day. In fact, one of the important conclusions from
simulation is that the admission process in the new
location should be changed to produce patients ready
for transport earlier than the current process, so as to
compensate for the longer distance between the admis-
sion center and the ORs (see the discussion below).

& The admission center will be served by a few dedicated
elevators that will solely serve the admission center, and
dedicated transporters. We ignore the possibility to use,
in parallel, the other elevators that will serve the func-
tions within the 3 buildings, Ellison, Blake and Gray.
The justification for that decision is that these elevators
serve staff and patients in many other units in these
building, so it is not practical or even medically safe to
use them as a primary mean of transportation.

& Patients are transported on stretchers as they are today.
Other assumptions – such as patients in wheel chairs -
can be easily tested. Our analysis of current practices
and future plans indicates there is no real motivation to
change the way patients are transported.

5.2 Limitations of our approach

Despite the advantages of simulation tools, there are
limitations to consider. In what follows, we attempt to
highlight the main drawbacks of our methodologies, in
addition to the assumptions above so that potential users
would be able to apply or adapt this approach in a
sensible way.

& Data-driven simulation. As previously mentioned, the
patient-related input to our simulation model corresponds
to the actual data that was observed and recorded, rather
than being based on probabilistic assumptions or on dis-
tribution fitting, which is referred to in the literature as
data-driven (or trace-driven) simulation. It is worth point-
ing out that this approach has its advantages, as well as its
downsides [25]. On the one hand, trace-driven simulations
are credible (i.e., easier to “market” to medical end-users
than random inputs), preserve the correlation of events,
and their input is deterministic (so there is less overall
randomness). However, on the other hand, at least in the
context of our model, such simulations require rather
complex implementations, could be limited due to space
considerations (when the input sequence is extremely
long), and may be difficult to modify (for instance, in-
creasing or decreasing the rate of arrivals).

& Intensive computations. What may be viewed as the main
downside of our specific implementation is the rather mas-
sive computations required for processing data sets that
accumulate over long period of times. These lengthy delays
can be attributed to the large number of objects being
simulated, as well as to the complicated interaction between
them. As a consequence, in order that our original imple-
mentation would terminate within a reasonable amount of
time, executing it on specialized hardware was a necessity.
However, in the latest version we developed, this problem
seems to be no longer a concern; in particular, realistic
arrival sequences (consisting of thousands of patients) can
be processed on inexpensive desktop computers within a
time frame of several minutes.

& Simplifying assumptions. Clearly, the most frequent way
of copingwith the inherent complexity of real-life systems is
that of introducing simplifying assumptions. This, in turn,

Table 6 Increase travel time by 50%, original start time, with 2 elevators and 10 transporters

Day of
Week

Number
of Days

Mean Daily
Lateness (min)

SD (min) Quantiles (min) Fraction
Seriously
Delayed (%)

SD (%) Quantiles (%) Fraction of Days with≥10%
of Cases Seriously
Delayed (%)0.80 0.90 0.95 0.8 0.9 0.95

First Cases

Monday 47 4.88 3.14 6.53 7.93 10.00 13.1 9.5 19.9 22.3 27.9 59.6

Tuesday 52 4.08 2.33 5.18 6.39 7.98 11.3 7.0 15.6 17.9 23.3 55.8

Wednesday 53 4.13 2.09 6.13 6.99 7.22 11.0 7.0 16.5 20.0 22.4 49.1

Thursday 50 1.75 1.86 2.89 3.85 4.41 4.9 5.2 10.1 11.2 14.8 22.0

Friday 51 4.38 1.97 5.88 6.97 7.38 13.0 6.4 17.6 20.6 24.1 68.6

All Cases

Monday 47 3.35 1.72 4.44 4.80 5.94 8.5 5.2 12.1 13.7 15.6 38.3

Tuesday 52 2.84 1.32 4.24 4.72 4.88 7.4 3.6 10.1 11.6 15.0 25.0

Wednesday 53 2.95 1.31 3.90 4.77 5.08 7.6 4.3 11.7 13.7 14.4 22.6

Thursday 50 1.63 0.95 2.33 2.77 3.29 4.0 2.4 5.7 7.3 8.0 2.0

Friday 51 3.1 1.4 4.13 4.48 4.88 8.4 3.5 11.3 13.2 14.0 35.3
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may create a false sense of security regarding the results
obtained and their accuracy. It is worth noting that even the
detailed system description in the materials and methods
section cannot capture each and every influencing factor;
some ingredients that have a concrete representation in
reality could not have been implemented, mainly for sake
of simplicity. Having that said, we believe that, as previously
demonstrated in the sensitivity analysis, our model is robust
enough, in the sense that small deviations have nothing but
negligible effects on the performance guarantees.

& No animation. Another disadvantage of our simulation is
the lack of corresponding animation, as the main focus has
been on “crunching numbers”. The ability to actually see
the inner-workings of a given system configuration, albeit
this happening on a computer screen, could potentially be
a very useful media of presentation for a non-scientific
audience, and serve as an additional mean of verification.
We note that it would be relatively straightforward, albeit
time consuming, to add these capabilities to the tool that
we have developed.

5.3 Comparison and improvements over other prospective
approaches

On top of the specific questions that were motivated by the
anticipated patient transport setting at MGH, what may very
well be the most important outcome of this project is a unique
simulation tool for studying transportation systems within
large academic hospitals. The JAVA code for the modeling
program has been made freely available at the link given
above in the manuscript, with sufficient documentation to
allow it to be used by others. An important feature of our
simulation is the ability to examine and evaluate an assortment
of system configurations, not only on artificially-created data
(such as that obtained by fitting a separate distribution for
components like patient arrival sequences, destinations, dead-
lines, etc.), but also on real-life data collected from clinical and
administrative information systems. Consequently, one is able
to capture intricate dependencies and complexities that may be
well-hidden within the actual process being considered, rather
than implicitly ignoring these issues by gluing together com-
ponents such as arrivals, destinations, and deadlines from
independent distributions. In particular, we believe that the
tool that has been developed in this work will be used in
several other settings within the hospital, for example, the
analysis of the transportation of surgical equipment. Further-
more, there is the previously mentioned new OR building
under construction. After the building is functional, the ORs
will be split into two distant locations (the old and the new
buildings.) This will raise a new set of fundamental planning
issues regarding the transportation of patients and equipment,
which we believe could be addressed effectively, using the
tool developed in this work.
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