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Recent nuclear magnetic resonance and specific heat measurements have provided concurring evidence of
spontaneously broken rotational symmetry in the superconducting state of the doped topological insulator
CuxBi2Se3. This suggests that the pairing symmetry corresponds to a two-dimensional representation of the D3d

crystal point group, and that CuxBi2Se3 is a nematic superconductor. In this paper, we present a comprehensive
study of the upper critical field Hc2 of nematic superconductors within Ginzburg-Landau (GL) theory. Contrary
to typical GL theories which have an emergent U(1) rotational symmetry obscuring the discrete symmetry
of the crystal, the theory of two-component superconductors in trigonal D3d crystals reflects the true crystal
rotation symmetry. This has direct implications for the upper critical field. First, Hc2 of trigonal superconductors
with D3d symmetry exhibits a sixfold anisotropy in the basal plane. Second, when the degeneracy of the two
components is lifted by, e.g., uniaxial strain, Hc2 exhibits a twofold anisotropy with characteristic angle and
temperature dependence. Our thorough study shows that measurement of the upper critical field is a direct
method of detecting nematic superconductivity, which is directly applicable to recently-discovered trigonal
superconductors CuxBi2Se3, SrxBi2Se3, NbxBi2Se3, and TlxBi2Te3.

DOI: 10.1103/PhysRevB.94.094522

I. INTRODUCTION

Unconventional superconductors can be defined by su-
perconducting order parameters that transform nontrivially
under crystal symmetries. For a given superconductor, possible
unconventional order parameters are classified by nonidentity
representations of the crystal point group. Such representations
are either one dimensional or multidimensional, and this
distinction defines two classes of unconventional supercon-
ductivity [1,2]. The first class is exemplified by d-wave
superconductors in cuprates [3,4], while the second class
is exemplified by the p-wave superconductivity in Sr2RuO4

[5], with two degenerate components (px,py) at the super-
conducting transition temperature. Superconducting states in
the second class spontaneously break lattice or time-reversal
symmetry [6], in addition to the U(1) gauge symmetry, leading
to thermodynamic and transport properties not seen in single-
component superconductors. The search for superconductors
with multicomponent order parameters is therefore of great
interest.

The doped topological insulator CuxBi2Se3, a supercon-
ductor with Tc ∼ 3.8 K [7,8], has recently attracted a lot of
attention as a promising candidate for unconventional super-
conductivity [9–19]. Fu and Berg proposed that it may have
an odd-parity pairing symmetry resulting from interorbital
pairing in a strongly spin-orbit-coupled normal state [9]. While
previous surface-sensitive experiments [20,21] drew disparate
conclusions regarding the nature of superconductivity in this
material, direct tests of the pairing symmetry in the bulk
of CuxBi2Se3 have been carried out only very recently. A
nuclear magnetic resonance (NMR) measurement [22] found
that despite the threefold rotational symmetry of the crystal,
the Knight shift displays a twofold anisotropy below Tc as the
field is rotated in the basal plane. The twofold anisotropy is
also found in the specific heat of the superconducting state
under magnetic fields down to H = 0.03 T corresponding to
H/Hc2 ∼ 0.015 [23]. Both experiments found that the twofold
anisotropy vanishes in the normal state, establishing that the

superconducting state of CuxBi2Se3 spontaneously breaks the
threefold rotational symmetry. This is only possible when the
order parameter belongs to the two-dimensional Eu or Eg

representation of the D3d point group. The Eg pairing has
been ruled out by comparing the theoretically expected gap
structure [24] with specific heat data [8,23]. These results
taken together strongly suggest that the pairing symmetry of
CuxBi2Se3 is Eu, an odd-parity pairing with two-component
order parameters [9].

Spontaneous rotational symmetry breaking due to super-
conductivity is a rare and remarkable phenomenon. Super-
conductors exhibiting rotational symmetry breaking from
multicomponent order parameters can be called nematic
superconductors [24], in analogy with the nematic liquid
crystals and nematic electronic states in nonsuperconducting
metals [25,26]. Nematic and chiral superconductivity, the
latter breaking time-reversal symmetry, are the two distinct
and competing states of multicomponent superconductors,
corresponding to real and complex order parameters, respec-
tively [1,6]. Broken rotational symmetry has previously been
reported in the heavy-fermion superconductor UPt3 [27] under
a magnetic field [28]. In addition, the A phase in a narrow
temperature range at zero field is likely rotational symmetry
breaking, which, however, may be due to antiferromagnetic
order already present in the normal state [29,30]. Thus the
recent discovery of broken rotational symmetry in CuxBi2Se3,
without broken time-reversal symmetry, may potentially open
a fruitful research direction.

Motivated by the recent experimental progress, in this work
we study the upper critical field Hc2 of trigonal nematic
superconductors within the framework of Ginzburg-Landau
(GL) theory. Such GL theory admits a trigonal gradient term
which is not allowed in hexagonal crystals [31]. We relate the
gradient terms to Fermi surface and gap function anisotropies
by a microscopic calculation of the GL coefficients. Building
on and generalizing the previous work [31], we show that the
upper critical field generically displays a sixfold anisotropy
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within the basal plane of trigonal crystals. We further show that
a uniaxial strain acts as a symmetry-breaking field in nematic
superconductors, which directly couples to the bilinear of
the two-component superconducting order parameter. As a
result, Hc2 in the basal plane exhibits a twofold anisotropy
with a distinctive angle and temperature dependence, similar
to theoretically expected results for UPt3 in the presence of
antiferromagnetic order [32,33]. Our findings suggest that
measurement of the upper critical field is a direct method of
detecting nematic superconductivity. In particular, this method
may shed light on the pairing symmetries of other super-
conducting doped topological insulators SrxBi2Se3 [34,35],
NbxBi2Se3 [36], and TlxBi2Te3 [37], which have yet to be
determined.

II. GINZBURG-LANDAU THEORY

We start by constructing the GL theory of odd-parity
two-component superconductivity in crystals with D3d point
group and strong spin-orbit coupling. The pairing potential
�̂(�k), which is a �k-dependent matrix in spin space, takes the
following form

�̂(�k) = η1�̂1(�k) + η2�̂2(�k). (1)

The pairing potential is a linear superposition of two de-
generate components �̂1,2(�k), the basis functions of the
two-dimensional pairing channel Eu (specific gap functions
are given in the Supplemental Material, Sec. III [47]). For
odd-parity superconductors the pairing components satisfy
�̂1,2(−�k) = −�̂1,2(�k). As basis functions of Eu, the two
partners �̂1,2(�k) transform differently under the mirror sym-
metry x → −x, i.e., �̂1(�k) is even whereas �̂2(�k) is odd. A
key property of (doped) Bi2Se3 materials is strong spin-orbit
coupling that locks the electron spin to the lattice. The
two complex fields η1,2 define the superconducting order
parameters η = (η1,η2)T . In contrast, in the case of triplet
superconductors in spin-rotation invariant materials the order
parameter components are vectors in spin space.

The GL theory of two-component superconductivity is
formulated in terms of the order parameters η, and the GL free
energy Ftot = ∫

d3 �x ftot is the sum of a homogeneous term and
a gradient term given by ftot = fhom + fD , where fhom and
fD are the corresponding free energy densities. In addition,
the free energy contains a Maxwell term fEM = (�∂ × �A)2/8π ,
which for our purposes can be taken as a constant. The free
energy densities fhom and fD are polynomial expansions in
the order parameter fields and their gradients and consist of all
terms invariant under the symmetry group of the crystal. For
two-component trigonal superconductors the homogeneous
contribution is the same as the corresponding expression for
hexagonal symmetry [1,6],

fhom = Aη†η + B1(η†η)2 + B2|η∗
1η2 − η∗

2η1|2, (2)

to fourth order in η, and we have defined η† = (η∗
1,η

∗
2).

The coefficients A ∝ T − Tc and B1,2 are phenomenological
constants of the GL theory. The sign of GL coefficient B2

determines the nature of the superconducting state, selecting
either chiral or nematic order [24,38].

Spatial variation of the superconducting order parameter is
captured by the gauge-invariant gradient Di = −i∂i − qAi ,
with �A the electromagnetic vector potential and q = −2e.
In case of multicomponent order parameters, there generally
exist multiple independent gradient terms which are allowed
by crystal symmetry. It is insightful to present all gradient
terms in order of “emergent symmetry.” For crystals with
a principal rotation axis along the z direction, such as the
three- and sixfold rotations of trigonal and hexagonal crystals,
four gradient terms with full continuous in-plane rotational
symmetry are present and given by [1,39,40]

fD = J1(Diηa)∗Diηa + J2εij εab(Diηa)∗Djηb

+ J3(Dzηa)∗Dzηa + J4[|Dxη1|2 + |Dyη2|2

− |Dxη2|2 − |Dyη1|2 + (Dxη1)∗Dyη2 + (Dyη1)∗Dxη2

+ (Dxη2)∗Dyη1 + (Dyη2)∗Dxη1] (3)

(summation understood, i = x,y, a = 1,2), and J1,2,3,4 are
the phenomenological GL coefficients. The first three terms
are invariant under independent U(1) rotation of coordinates
and order parameters, and thus have an emergent U(1) × U(1)
symmetry, whereas the gradient term with coefficient J4 is
invariant under arbitrary joint rotations of coordinates and
order parameters, i.e., an emergent U(1) symmetry. Therefore,
fD does not reflect the discrete rotational symmetry of the
crystal. However, a gradient term fD,trig, which we call trigonal
gradient term, is uniquely present in crystals with trigonal
symmetry, but not allowed in hexagonal crystals [31]. It is
given by the expression

fD,trig = J5[(Dzη1)∗Dxη2 + (Dzη2)∗Dxη1

+ (Dzη1)∗Dyη1 − (Dzη2)∗Dyη2 + c.c.]. (4)

The appearance of this gradient term, which has D3d sym-
metry, can be understood from angular momentum, since in
trigonal symmetry L = 3 is equivalent to L = 0. Indeed, in
momentum space (Di → qi) the trigonal gradient term can be
expressed as iqz(q−η∗

+η− − q+η∗
−η+), where q± = qx ± iqy

and similarly for η1,2. The relative phases between η+ (q+) and
η− (q−) are determined by mirror symmetry: η1 (η2) is even
(odd) under x → −x. It follows from the structure of fD,trig

that the spatial variation of the order parameter in the basal
plane is coupled to spatial variation in the z -direction, which
is in sharp contrast to hexagonal and tetragonal crystals. In
the rest of this paper we map out the consequences of trigonal
crystal anisotropy in the GL theory for the upper critical field.

III. UPPER CRITICAL FIELD IN THE BASAL PLANE

The angular dependence of Hc2 was first proposed as a
method to establish the multicomponent nature of uncon-
ventional superconductors in the context of heavy-fermion
superconductors [41–43]. The key idea is as follows. For the
class of single-component (e.g., s-wave) superconductors with
trigonal, tetragonal, and hexagonal symmetry, Hc2 is always
isotropic within the GL theory, due to the emergence of U (1)
rotational symmetry to second order in the gradients. In case of
multicomponent superconductors, effects of crystal anisotropy
can appear in the GL theory, removing the emergent U(1)
symmetry, but this crucially depends on crystal symmetry.
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For instance, hexagonal systems with multicomponent order
parameters do not show in-plane Hc2 anisotropy due to the
emergent rotational symmetry of Eq. (3), whereas tetragonal
symmetry can give rise to an angular dependence of Hc2 with
fourfold symmetry [42]. In trigonal crystals, Hc2 can exhibit a
sixfold anisotropy in the basal plane [31] as of Eq. (4). Here
we map out the basal plane upper critical field of trigonal
superconductors for general GL gradient coefficients.

Within GL theory, the upper critical field is calculated
by solving the GL equations obtained from Ftot, keeping
only terms linear in η since the order parameter is small
at Hc2. Therefore, the calculation also applies to chiral
superconductors. The resulting system of GL equations, which
is given by

−Aηa = J1(D2
x + D2

y)ηa + J3D
2
z ηa + J2εab[Dx,Dy]ηb

+ J4
[(

D2
x − D2

y

)
τ z
ab + {Dx,Dy}τ x

ab

]
ηb

+ J5
[{Dz,Dx}τ x

ab + {Dz,Dy}τ z
ab

]
ηb, (5)

can be solved as a two-component harmonic oscillator
problem, leading to a Landau-level spectrum from which
Hc2 is determined as the lowest Landau-level solution. The
coupling of the two harmonic oscillators is determined by the
structure of the GL equations and is in general complicated
by the presence of multiple gradient terms. In hexagonal and
tetragonal systems, straightforward or even exact analytical
expressions for Hc2 can be found [42]. In contrast, the trigonal
gradient term of Eq. (4) couples basal plane gradients to
gradients in the orthogonal direction, giving rise to a different
set of harmonic oscillator equations to which previous methods
do not apply. A special limiting case was considered in
Ref. [31]. We generalize this result by solving the GL equations
in the presence of an in-plane magnetic field for general
gradient coefficients. In deriving the general solution we
adopt an operator based approach and exploit that harmonic
oscillator mode operators corresponding to different cyclotron
frequencies can be related by squeezing operators. Here we
present and discuss the main results, and give a detailed
account of the lengthy calculations in the Supplemental
Material (SM) [47]. For convenience, below we will refer to
the appropriate section of the SM.

To demonstrate the key features of Hc2 in trigonal crystals,
we will focus the discussion on the most physical case, where
trigonal anisotropy effects may be considered weak and J5

can be treated as perturbation. We take the magnetic field �H in
the basal plane to be given by �H = H (cos θ, sin θ,0)T , which
corresponds to a vector potential �A = Hz(sin θ,− cos θ,0)T .
It is convenient to rotate the basal plane GL gradients Dx,y =
−i∂x,y + 2eAx,y according to the transformation

(
D‖
D⊥

)
=

(
cos θ sin θ

sin θ − cos θ

)(
Dx

Dy

)
, (6)

such that D‖ is along the field and D⊥ is perpendicular to the
field. These operators satisfy [D‖,D⊥] = [D‖,Dz] = 0, and
D⊥ and Dz define the magnetic algebra [Dz,D⊥] = −2ieH .
Writing Eq. (5) in terms of D⊥ and Dz, and setting D‖ηa = 0

(i.e., no modulation along the field), one obtains

−Aηa = (
J1D

2
⊥ + J3D

2
z

)
ηa

− J4D
2
⊥
(

cos 2θτ z
ab + sin 2θτ x

ab

)
ηb

+ J5{Dz,D⊥}(− cos θτ z
ab + sin θτ x

ab

)
ηb. (7)

Next, it is convenient to diagonalize the term proportional
to J4. This is achieved by a rotation of the order parameters
given by (

η1

η2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
f1

f2

)
. (8)

In terms of the rotated order parameters (f1,f2)T the GL
equations read

−A

(
f1

f2

)

=
(

J3D
2
z + (J1 − J4)D2

⊥ 0

0 J3D
2
z + (J1 + J4)D2

⊥

)(
f1

f2

)

+J5{Dz,D⊥}
(− cos 3θ sin 3θ

sin 3θ cos 3θ

)(
f1

f2

)
. (9)

Note that only the term proportional to J5 depends on the
angle θ . We now describe solutions to Eq. (9) obtained by
treating J5 as a perturbation.

To start, let us consider taking both J4 = J5 = 0. Solving
the GL equations then yields two degenerate series of Landau
levels with cyclotron frequency ω = √

J1J3, with the upper
critical field given by Hc2 = −A/2eω = −A/2e

√
J1J3 (more

details are provided in Sec. II B of the SM [47]). Includ-
ing the gradient contribution in Eq. (3) proportional to J4

simply makes the cyclotron frequencies inequivalent, ω1,2 =
ω

√
1 ∓ |J4|J3/ω2 = ω

√
1 ∓ |J4|/J1, and increases the upper

critical field to Hc2 = −A/2eω1. This defines the exactly
solvable unperturbed system. Then, introducing trigonal per-
turbation parametrized by J5 couples the two series of Landau
levels with different frequencies in a nontrivial way: The
coupling of in-plane and out-of-plane gradients implies a
coupling of canonically conjugate operators of the form
{Dz,D⊥} ∼ {−i∂z,z}. To solve the system of GL equations
we assume that crystal anisotropy effects are weak and use
second order perturbation theory to obtain the correction to
the cyclotron frequency −δω1. (The calculations are lengthy
and described in detail in Sec. II B 3 of the SM [47].) The
upper critical field then becomes Hc2 = H̃c2(1 + δω1/ω1) with
H̃c2 ≡ −A/2eω1. We find Hc2 to lowest order in J5 as

Hc2(θ )

H̃c2
= 1 + J 2

5

2ω2+

⎡⎣ cos2 3θ(
1 − ω−

ω+

)2 + sin2 3θ

1 − ω−
ω+

F
(

ω−
ω+

)⎤⎦, (10)

where the frequencies ω± are defined as ω± = (ω2 ± ω1)/2.
In the limit of small J4/J1 these frequencies become
ω+ ∼ ω and ω− ∼ ω|J4|/2J1. The function F (x) arises due
to the coupling of two series of Landau levels with different
cyclotron frequencies and oscillator eigenfunctions. It takes
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Hx

Hy

0.15
0.30
0.45
0.60

J5/ω =

(a) J4/J1 = 0.2 (b) J4/J1 = 0.4

Hy

0.15
0.30
0.45
0.60

J5/ω =

FIG. 1. Upper critical field (Hc2) anisotropy of two-component
pairing in trigonal crystals with D3d point group symmetry, originat-
ing from the trigonal GL anisotropy term (4). (a) Polar plot of the
angular dependence of Hc2 with sixfold symmetry given by Eq. (10)
(normalized by H̃c2) for J4/J1 = 0.2. Different curves correspond
to J5/ω = J5/

√
J1J3 = (0.15,0.30,0.45,0.60) (inward to outward).

(b) Same as (a) but for J4/J1 = 0.4.

the form

F (x) = (1 − x2)
5
2

x2

∞∑
m�0

(2m)!

(m!)24m

x2m
(
2m − x2

1−x2

)2

2m + x(2m + 1)

= 1 − x

x

[√
1 + x

1 − x
2F1

(
1
2 , a

2 ; 1 + a
2 ; x2

) − 1

]
, (11)

where a = x/(1 + x) and 2F1[α,β; δ; γ ] is a hypergeometric
function. The function F (x) has the property F (0) = 1, which
implies that for J4 = 0 (corresponding to ω−/ω+ = 0) no
angular dependence of Hc2 exists. The latter is a consequence
of an emergent rotational symmetry of fD,trig in Eq. (4): It is
invariant under in-plane rotations of the order parameters and
coordinates according to q+ → q+e2iϕ , η+ → η+e−iϕ . (Note
that this is not a physical symmetry.)

In general, however, considering all regimes of gra-
dient coefficients that satisfy the stability constraints of
the free energy, Hc2 exhibits a sixfold anisotropy in the basal
plane of the crystal. For instance, the sixfold Hc2 anisotropy
can be obtained starting from a solution of the GL equations
derived from Eqs. (3) and (4) for J5 = 0 and J4 = 0, and
treating J4 as a small perturbation. This case was considered
in Ref. [31] and is described in Sec. II B 2 of the SM [47].

Figure 1 shows the angular dependence of the upper critical
field for small to moderate J5/ω = J5/

√
J1J3 and J4/J1

as obtained from Eq. (10). Note that in general, for materials
with weak to moderate (crystal) anisotropy effects, one expects
J1 ∼ J3. To make the interplay between J4 and J5 explicit, we
expand Eq. (10) for small J4/J1 and find

Hc2(θ )

Hc2(π
4 )

= 1 + h cos 6θ, (12)

where h = 3|J4|J 2
5 /16J 2

1 J3. This expression serves to high-
light an important feature of the angular dependence of
Hc2: Hc2(θ = π/2)/Hc2(θ = 0) < 1, which is independent of
system specific parameters. Here θ = 0 is defined by an axis
orthogonal to a mirror plane.

Within weak coupling, the GL coefficients Ji can be
obtained in terms of Fermi surface and gap function properties
using a microscopic mean-field Hamiltonian with pairing
potential �̂(�k) given by Eq. (1). The gradient coefficients J1,
J3, J4, and J5 are proportional to N (εF )v2

F /T 2
c ∼ N (εF )ξ 2

0 ,
where εF , vF , and ξ0 are the Fermi energy, Fermi velocity, and
correlation length, respectively, and N (εF ) is the density of
states. (The calculations are presented in detail in Sec. III of
the SM [47].) We find that their relative strength depends on the
crystal anisotropy of the Fermi surface and of the gap functions
�̂1,2(�k). In particular, J5 is nonzero only when trigonal Fermi
surface anisotropy is present, or when the gap function is
composed of trigonal crystal spherical harmonics of the Eu

pairing channel (see Sec. III A of the SM [47]), and is generally
expected to be weak.

The general sixfold basal plane anisotropy of Hc2 is a
direct consequence of trigonal symmetry and a discriminating
characteristic of two-component pairing symmetry. Indeed,
single-component superconductivity corresponding to one-
dimensional pairing channels of point group D3d cannot
exhibit sixfold Hc2 anisotropy: The in-plane gradient term
is given by J̃1|Diψ |2 and has emergent U(1) rotational
symmetry. As a result, the sixfold anisotropy provides a clear
experimental evidence for two-component pairing.

IV. NEMATIC SUPERCONDUCTIVITY
AND UPPER CRITICAL FIELD

Within our GL theory, the rotational symmetry breaking
superconducting state reported in Refs. [22,23] corresponds
to a real order parameter, i.e., η = η0(cos φ, sin φ)T . Up to
fourth order [see Eq. (2)], the angle φ represents a continuous
degeneracy. This degeneracy is lifted at sixth order by a crystal
anisotropy term and leads to a discrete set of degenerate ground
states [24,38]. In materials, such as CuxBi2Se3, the remaining
degeneracy may be further lifted by a symmetry-breaking
pinning field, selecting a unique ground state. The origin of
such pinning can be strain-induced distortions of the crystal
[44], but in principle, any order with the same symmetry,
electronic or structural, can pin the order parameter. In case
of two-component superconductors, the symmetry-breaking
(SB) pinning field couples linearly to order parameter η in the
following way

fSB = g[(uxx − uyy)(|η1|2 − |η2|2) + 2uxy(η∗
1η2 + η∗

2η1)],

(13)

with coupling constant g. The order parameter bilinears
(|η1|2 − |η2|2,η∗

1η2 + η∗
2η1) constitute a two-component sub-

sidiary nematic order parameter [24] with the same symmetry
as the symmetry-breaking field (uxx − uyy,2uxy). For com-
parison, uniaxial strain in single-component superconductors
couples to the gradient of the order parameter ψ , taking
the form J̃1,x |Dxψ |2 + J̃2,y |Dyψ |2 different from Eq. (13).
It is worth noting that the coupling considered here differs
from the candidate theories proposed for the hexagonal
superconductor UPt3, in which case magnetic order couples
quadratically, instead of linearly, to order parameter bilinears
[27,30,39,40,45,46].
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From a microscopic perspective, the origin of the order
parameter pinning in Eq. (13) can be understood as a
(strain-induced) Fermi surface distortion, leading to different
Fermi velocities vF,x = vF,y . A uniaxial distortion of this
form couples to |η1|2 − |η2|2 and has the effect of selecting
either η = (1,0) or η = (0,1) by raising Tc, resulting in a
split transition. A quantitative calculation of the coupling
constant g, relating the order parameter bilinear to such
Fermi surface distortion can be obtained within weak coupling
(see Ref. [47]). This effect of a Fermi surface distortion
should be compared to uniaxial gradient anisotropies such as
∼|Dxηa|2 − |Dyηa|2 and ∼|Diη1|2 − |Diη2|2, with the effect
of the former being enhanced by a factor of ln(ωD/Tc)(ξ/ξ0)2

[47], where ξ is the coherence length, ln ωD/Tc ∼ 1/V N (εF ),
ωD is a cutoff frequency, and V is an effective interaction
energy scale associated with the pairing. In addition, the effect
of a uniaxial Fermi surface distortion ∼vF,x/vF,y on the shift
of Tc is enhanced by ln ωD/Tc.

To address the effect of the SB field on Hc2 in case of the
trigonal nematic superconductors, we solve the linearized GL
equations for small J4,5 gradient coefficients in the presence of
a uniaxial symmetry breaking term defined as δ(|η1|2 − |η2|2),
taking δ as a measure of the uniaxial anisotropy. Here we focus
the discussion on the most salient features, for which we take
J5 = 0, and relegate a more detailed account to the SM [47]. A
similar problem of upper critical field anisotropy was studied
for split transitions in UPt3 [32,33].

Setting J5 = 0 in Eq. (7) and adding the contribution from
the symmetry breaking field, the GL equations take the form

−Aηa = (
J1D

2
⊥ + J3D

2
z

)
ηa + δτ z

abηb

− J4D
2
⊥
(

cos 2θτ z
ab + sin 2θτ x

ab

)
ηb. (14)

The upper critical field is obtained by using the magnetic
algebra of Dz and D⊥, and projecting into the lowest Landau
level. The upper critical field is then determined from the
following implicit equation (see Sec. II D of the SM [47])

−A

ω
= 1

l2
b

−
√

J 2
4 J 2

3

4ω4l4
b

+ δ2

ω2
− J4J3δ

ω3l2
b

cos 2θ, (15)

(recall ω = √
J1J3) where the magnetic length lb is defined

as 2eH = 1/l2
b . For δ = 0 we recover the result for J5 = 0 in

Eq. (10), to first order in J4/J1 (i.e., ω1 expanded to first
order in J4/J1). For J4 = 0 we simply find Hc2 = Hc2,0 [see
Eq. (12)], but with critical temperature T ∗

c = Tc + �Tc with
�Tc ∼ |δ|. This follows from comparing δ to A ∼ (T − Tc),
i.e., δ shifts the transition temperature and can be taken as a
measure of T . We define a dimensionless temperature t by
T = T ∗

c − t�Tc.
For general J4/J1 and nonzero δ we solve Eq. (15) for

Hc2 and show the representative results for J4/J1 = 0.1 and
J4/J1 = 0.6 in Figs. 2(a) and 2(b). Two key characteristics of
Hc2 in the presence of a pinning field are evident in Figs. 2(a)
and 2(b). First, the angular dependence of Hc2 exhibits a dis-
tinct two-fold anisotropy, with a typical “peanut”-shape close
to T ∗

c . This twofold anisotropy becomes more pronounced with
increasing J4/J1, as shown Fig. 2(b). Expanding the square
root in Eq. (15) under the assumption of very small fields, i.e.,
l2
b � J4J3/2ωδ, one finds Hc2 ∝ (1 − J4sgn(δ) cos 2θ/2J1)

(a) (b)

J4/J1 = 0.1

J4/J1 = 0.2

J4/J1 = 0.3

J4/J1 = 0.4

J4/J1 = 0.5JJ

//

==

00

444/J1J 0.1J4JJ4

/J1J = 0 2J4J //

= 0 3J4J /J1J ==

0 4J4J /J1JJ = 00

5J4J /J1J = 0JJ(c)

Hc2(π
2 )

Hc2(0)

T

|δ| |δ| |δ| |δ|
T ∗

c − T

Hc2(θ)

FIG. 2. (a) Polar plot of the angular dependence of Hc2 in the
presence of a symmetry-breaking field δ for J4/J1 = 0.1, calculated
using Eq. (15) (in arbitrary units of H ). Different curves represent dif-
ferent temperatures: T = T ∗

c − t�Tc (recall that �Tc ∼ |δ|), where
t = 1, . . . ,8 and the outermost curve corresponds to t = 8. (b) Same
as in (a) but for relatively large J4/J1 = 0.6. Figure (b) clearly shows
the twofold “peanut”-shape anisotropy expected for two-component
superconductors in the presence of a symmetry breaking field. (c)
Plot of the Hc2-anisotropy coefficient Hc2( π

2 )/Hc2(0) as function of
effective temperature t for various values of J4/J1. The horizontal
grid lines correspond to the values (1 + J4/2J1)/(1 − J4/2J1).

(see Sec. II D of the SM [47]). This “peanut’ shape of the
Hc2 profile should be contrasted with the Hc2 profile of single-
component superconductor where uniaxial gradient anisotropy
leads to a weak elliptical angular dependence of Hc2, an effect
which is parametrically smaller than the twofold anisotropy in
the two-component case. Consequently, the twofold anisotropy
of Hc2 shown in Fig. 2, in particular the “peanut” shape, is a
discriminating property of two-component pairing.

Second, the angular dependence of Hc2 is a function of
temperature and has a different shape in the vicinity of
T ∗

c (i.e., small fields) as compared to far below Tc (and
high fields). This is in sharp contrast to the usual case, for
instance Eq. (10), where only the overall magnitude of Hc2 is
temperature dependent. The unusual temperature dependence
of Hc2 can be more precisely captured by considering the upper
critical field anisotropy ratio Hc2(π

2 )/Hc2(0) as a function
of temperature. In the vicinity of T ∗

c , the anisotropy ratio
should exhibit temperature independent behavior given by
∼(1 + J4sgn(δ)/2J1)/(1 − J4sgn(δ)/2J1) (see Sec. II D of the
SM [47]). This is shown in Fig. 2(c), where the Hc2-anisotropy
ratio is plotted for various values of J4/J1. In contrast, using
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Eq. (15) we find that the Hc2-anisotropy ratio approaches unity
for large temperature t according to ∼2/(t − 1), which is
independent of GL parameters. Within the model of Eq. (15),
the temperature at which the transition between two behaviors
occurs is given by t = 2J1/|J4|. This “kink” feature was also
found and discussed in the context of a hexagonal applicable
to UPt3 [32,33,48]. The distinctive temperature dependence
of Hc2 anisotropy is uniquely associated with two-component
pairing since single-component pairing with uniaxial gradient
anisotropy leads to temperature independent Hc2 anisotropy.

V. DISCUSSION AND CONCLUSION

To summarize, in this paper we have addressed the magnetic
properties of two-component superconductors in trigonal crys-
tals with point group D3d symmetry. Starting from a general
GL theory of trigonal two-component superconductors, we
find that the upper critical field exhibits a sixfold anisotropy
in the basal plane, which is a discriminating property of
two-component pairing. The sixfold anisotropy is a rare
manifestation of discrete crystal symmetry, since effects of
crystal anisotropy are typically obscured in GL theory by an
emergent U(1) rotational symmetry. In addition, in this paper
we show that when a symmetry breaking field originating from,

e.g., structural distortions selects a real order parameter, Hc2

exhibits a twofold anisotropy with characteristic angular and
temperature dependence.

The recent NMR and specific heat measurements on
CuxBi2Se3, which reported spontaneously broken rotational
symmetry, indicate that this material belongs to the class
of superconductors with two-component pairing symmetry.
Prominent other examples of materials with trigonal sym-
metry, which have attracted increasing attention recently, are
the doped Bi2Se3 superconductors SrxBi2Se3, NbxBi2Se3, and
TlxBi2Te3. Our theory of in-plane anisotropy of upper critical
field stands to contribute to uncovering the pairing symmetry
of these superconductors, which remains to be determined.
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