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Abstract We define thematching measure of a lattice L as the spectral measure of the tree of
self-avoiding walks in L . We connect this invariant to the monomer–dimer partition function
of a sequence of finite graphs converging to L . This allows us to express the monomer–
dimer free energy of L in terms of the matching measure. Exploiting an analytic advantage
of the matching measure over the Mayer series then leads to new, rigorous bounds on the
monomer–dimer free energies of various Euclidean lattices. While our estimates use only the
computational data given in previous papers, they improve the known bounds significantly.

Keywords Monomer–dimer model · Matching polynomial · Benjamini–Schramm
convergence · Self-avoiding walks

1 Introduction

The aim of this paper is to define the matching measure of an infinite lattice L and show how
it can be used to analyze the behaviour of the monomer–dimer model on L . The notion of
matching measure has been recently introduced by the first and second authors, Frenkel and
Kun [1]. There are essentially two ways to define it: in this paper we take the path of giving a
direct, spectral definition for infinite vertex transitive lattices, using self-avoiding walks and
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then connect it to the monomer–dimer model via graph convergence. Recall that a graph L
is vertex transitive if for any two vertices of L there exists an automorphism of L that brings
one vertex to the other.

Let v be a fixed vertex of the graph L . A walk in L is self-avoiding, if it touches every
vertex at most once. There is a natural graph structure on the set of finite self-avoiding walks
starting at v: we connect two walks if one is a one step extension of the other. The resulting
graph is an infinite rooted tree, called the tree of self-avoiding walks of L starting at v.

Definition 1.1 Let L be an infinite vertex transitive lattice. The matching measure ρL is the
spectral measure of the tree of self-avoiding walks of L starting at v, where v is a vertex of
L .

By vertex transitivity, the definition is independent of v. For a more general definition,
also covering lattices that are not vertex transitive, see Sect. 2.

Tomake sense ofwhywe call this thematchingmeasure,we need the notion ofBenjamini–
Schramm convergence. Let Gn be a sequence of finite graphs. We say that Gn Benjamini–
Schramm converges to L , if for every R > 0, the probability that the R-ball centered at
a uniform random vertex of Gn is isomorphic to the R-ball in L tends to 1 as n tends to
infinity. That is, if by randomly sampling Gn and looking at a bounded distance, we can not
distinguish it from L in probability.

All Euclidean lattices L can be approximated this way by taking sequences of boxes with
side lengths tending to infinity, by bigger and bigger balls in L in its graph metric, or by
suitable tori. When L is a Bethe lattice (a d-regular tree), finite subgraphs never converge to
L and the usual way is to set Gn to be d-regular finite graphs where the minimal cycle length
tends to infinity.

For a finite graphG and k > 0 letmk(G) be the number of monomer–dimer arrangements
with k dimers (matchings of G using k edges). Letm0(G) = 1. Let thematching polynomial
be

μ(G, x) =
∑

k

(−1)kmk(G)x |G|−2k

and let ρG , the matching measure of G, be the uniform distribution on the roots of μ(G, x).
Note that μ(G, x) is just a reparametrization of the monomer–dimer partition function. The
matching polynomial has the advantage over the partition function that its roots are bounded
in terms of the maximal degree of G.

Using previous work of Godsil [16] we show that ρL can be obtained as the thermody-
namical limit of the ρGn .

Theorem 1.2 Let L be an infinite vertex transitive lattice and let Gn Benjamini–Schramm
converge to L. Then ρGn weakly converges to ρL and limn→∞ ρGn ({x}) = ρL({x}) for all
x ∈ R.

So in this sense, the matching measure can be thought of as the ‘root distribution of the
partition function for the infinite monomer–dimer model’, transformed by a fixed reparame-
trization.

It turns out that the matching measure can be effectively used as a substitute for the Mayer
series. An important advantage over it is that certain natural functions can be integrated
along this measure even in those cases when the corresponding series do not converge. We
demonstrate this advantage by giving new, strong estimates on the free energies of monomer–
dimermodels for Euclidean lattices, by expressing themdirectly from thematchingmeasures.
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18 M. Abért et al.

The computation of monomer–dimer and dimer free energies has a long history. The
precise value is known only in very special cases. Such an exceptional case is the Fisher–
Kasteleyn–Temperley formula [12,24,28] for the dimer model on Z

2. There is no such exact
result for monomer–dimer models. The first approach for getting estimates was the use of
the transfer matrix method. Hammersley [19,20], Hammersley and Menon [21] and Bax-
ter [5] obtained the first (non-rigorous) estimates for the free energy. Then Friedland and
Peled [14] proved the rigorous estimates 0.6627989727 ± 10−10 for d = 2 and the range
[0.7653, 0.7863] for d = 3. Here the upper bounds were obtained by the transfer matrix
method, while the lower bounds relied on the Friedland–Tverberg inequality. The lower
bound in the Friedland–Peled paper was subsequently improved by newer and newer results
(see e.g. [13]) on Friedland’s asymptotic matching conjecture which was finally proved by
Gurvits [17]. Meanwhile, a non-rigorous estimate [0.7833, 0.7861] was obtained via matrix
permanents [23]. Concerning rigorous results, themost significant improvementwas obtained
recently by Gamarnik and Katz [15] via their newmethod which they called sequential cavity
method. They obtained the range [0.78595, 0.78599]. More precise, but non-rigorous esti-
mates can be found in the paper [7]. This paper uses Mayer-series with many coefficients
computed in the expansion. The related paper [6] may lead to further development through
the so-called Positivity conjecture of the authors.

Here we only highlight one computational result. More data can be found in Sect. 3, in
particular, in Table 1. Let λ̃(L) denote the monomer–dimer free energy of the lattice L , and
let Zd denote the d-dimensional hyper-simple cubic lattice.

Theorem 1.3 We have

λ̃(Z3) = 0.7859659243 ± 9.88 · 10−7,

λ̃(Z4) = 0.8807178880 ± 5.92 · 10−6.

λ̃(Z5) = 0.9581235802 ± 4.02 · 10−5.

The bounds on the error terms are rigorous.

Ourmethod allows to get efficient estimates on arbitrary lattices. The computational bottle-
neck is the tree of self-avoidingwalks, which is famous to withstand theoretical interrogation.

It is natural to ask what are the actual matching measures for the various lattices. In the
case of a Bethe lattice Td , the tree of self-avoiding walks again equals Td , so the matching
measure of Td coincides with its spectral measure. This explicit measure, called Kesten–
McKay measure [27] has density

d

2π

√
4(d − 1) − t2

d2 − t2
χ{|t |≤2

√
d−1}.

Wewere not able to find such explicit formulae for any of the Euclidean lattices. However,
using Theorem 1.2 one can show that the matching measures of hypersimple cubic lattices
admit no atoms.

Theorem 1.4 The matching measures ρ
Zd have no atoms.

In Sect. 4 we prove a more general result which also shows that for instance, the matching
measure of the hexagonal lattice has no atoms. For some images on the matching measures
of Z2 and Z

3 see Sect. 4. We expect that the matching measures of all hypersimple cubic
lattices are absolutely continuous with respect to the Lebesque measure. We also expect that
the radius of support of the matching measure (that is, the spectral radius of the tree of self-
avoiding walks) carries further interesting information about the lattice. Note that the growth
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of this tree for Zd and other lattices has been under intense investigation [4,10,18], under the
name connective constant.

The paper is organized as follows. In Sect. 2, we define the basic notions and prove The-
orem 1.2. In Sect. 3 we introduce the entropy function λG(p) for finite graphs G and related
functions, and we gather their most important properties. We also extend this concept to lat-
tices. In this section we provide the computational data too. In Sect. 4, we prove Theorem 1.4.

2 Matching Measure

2.1 Notations

This section is about the basic notions and lemmas needed later. Since the same objects have
different names in graph theory and statistical mechanics, for the convenience of the reader,
we start with a short dictionary.

Graph theory Statistical mechanics

Vertex Site
Edge Bond
k-Matching Monomer–dimer arrangement with k dimers
Perfect matching Dimer arrangement
Degree Coordination number
d-Dimensional grid (Zd ) Hyper-simple cubic lattice
Infinite d-regular tree (Td ) Bethe lattice
Path Self-avoiding walk

Throughout the paper, G denotes a finite graph with vertex set V (G) and edge set E(G).
The number of vertices is denoted by |G|. For an infinite graph L , we will use the word
lattice. The degree of a vertex is the number of its neighbors. A graph is called d-regular if
every vertex has degree exactly d . The graph G − v denotes the graph obtained from G by
erasing the vertex v together with all edges incident to v.

For a finite or infinite graph T , let l2(T ) denote the Hilbert space of square summable real
functions on V (T ). The adjacency operator AT : l2(T ) → l2(T ) is defined by

(AT f )(x) =
∑

(x,y)∈E(T )

f (y) ( f ∈ l2(T )).

when T is finite, in the standard base of vertices, AT is a square matrix, where au,v = 1 if
the vertices u and v are adjacent, otherwise au,v = 0. For a finite graph T , the characteristic
polynomial of AT is denoted by φ(T, x) = det(x I − AT ).

Amatching is set of edges having pairwise distinct endpoints. A k-matching is a matching
consisting of k edges. A graph is called vertex-transitive if for every vertex pair u and v, there
exists an automorphism ϕ of the graph for which ϕ(u) = v.

2.2 Matching Measure and Tree of Self-avoiding Walks

The matching polynomial of a finite graph G is defined as

μ(G, x) =
∑

k

(−1)kmk(G)x |G|−2k,
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20 M. Abért et al.

1

2

3

4

5 1

2
5

4

3

3

4

5

3
2

5 4

4
5 24

3

2

5

5

2

3

5
4

32

2
34

2

3
451

1
5

1
4

5
5

4

1

3
4

5

4
3

5
5

4

3

5

1

3

4

4

3

4
1

3

31

Fig. 1 The pyramid graph and its trees of self-avoiding walks starting from 1© and 2© respectively

where mk(G) denotes the number of k-matchings in G.

Definition 2.1 The matching measure of a finite graph is defined as

ρG = 1

v(G)

∑

zi : μ(G,zi )=0

δ(zi ),

where δ(s) is the Dirac-delta measure on s, and we take every zi into account with its
multiplicity.

In other words, it is the probability measure of uniform distribution on the zeros of the
matching polynomial of G.

The fundamental theorem for the matching polynomial is the following.

Theorem 2.2 (Heilmann and Lieb [22]) The roots of the matching polynomial μ(G, x)
are real, and if the largest degree D is greater than 1, then all roots lie in the interval
[−2

√
D − 1, 2

√
D − 1].

A walk in a graph is self-avoiding if it touches every vertex at most once. For a finite
graph G and a root vertex v, one can construct Tv(G), the tree of self-avoiding walks at v as
follows: its vertices correspond to the finite self-avoiding walks in G starting at v, and we
connect two walks if one of them is a one-step extension of the other (Fig. 1). The following
figure illustrates that in general, Tv(G) very much depends on the choice of v.

Recall that the spectral measure of a (possibly infinite) rooted graph (T, v) is defined as
follows. Assume that T has bounded degree. Then the adjacency operator AT : l2(T ) →
l2(T ) is bounded and self-adjoint, hence it admits a spectral measure PT (X) (X ⊆ R Borel).
This is a projection-valued measure on R such that for any polynomial F(x) we have

F(A) =
∫

F(x)dPx (Sp)

where Px = P((−∞, x)). We define δ(T,v), the spectral measure of T at v by

δ(T,v)(X) = 〈PT (X)χv, PT (X)χv〉 = 〈PT (X)χv, χv〉 (X ⊆ R Borel)

whereχv is the characteristic vector of v. It is easy to check that δ(T,v) is a probabilitymeasure
supported on the spectrum of the operator AT . Also, by (Sp), for all k ≥ 0, the k-th moment
of δ(T,v) equals
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Matching Measure, Benjamini–Schramm Convergence and the... 21

∫
xkdδ(T,v) =

〈
Akχv, χv

〉
= ak(T, v)

where ak(T, v) is the number of returning walks of length k starting at v.
It turns out that the matching measure of a finite graph equals the average spectral mea-

sure over its trees of self-avoiding walks. The following theorem is just a reformulation of
Corollary 2.2 of Chapter 6 in [16].

Theorem 2.3 Let G be a finite graph and let v be a vertex of G chosen uniformly at random.
Then

ρG = Evδ(Tv(G),v).

Equivalently, for all k ≥ 0, the k-th moment of ρG equals the expected number of returning
walks of length k in Tv(G) starting at v.

In particular, Theorem 2.3 gives one of the several known proofs for the Heilmann-Lieb
theorem. Indeed, spectral measures are real and the spectral radius of a tree with degree
bound D is at most 2

√
D − 1, see for instance [22].

To prove Theorem 2.3 we need the following result of Godsil [16] which connects the
matching polynomial of the original graph G and the tree of self-avoiding walks:

Theorem 2.4 (Theorem1.1 ofChapter 6 in [16])Let G be a finite graph and v be an arbitrary
vertex of G. Then

μ(G − v, x)

μ(G, x)
= μ(Tv(G) − v, x)

μ(Tv(G), x)
.

We will also use two well-known facts which we gather in the following proposition:

Proposition 2.5 (a) (Exercise 5 of Chapter 2 in [16].) For any tree or forest T , the matching
polynomial μ(T, x) coincides with the characteristic polynomial φ(T, x) of the adja-
cency matrix of the tree T :

μ(T, x) = φ(T, x).

(b) (Theorem 1.1 (d) of Chapter 1 in [16].) For any graph G, we have

μ′(G, x) =
∑

v∈V
μ(G − v, x).

Proof of Theorem 2.3 First, let us use part (a) of Proposition 2.5 for the tree Tv(G) and the
forest Tv(G) − v:

μ(Tv(G) − v, x)

μ(Tv(G), x)
= φ(Tv(G) − v, x)

φ(Tv(G), x)
.

On the other hand, for any graph H and vertex u, we have

φ(H − u, x)

φ(H, x)
= x−1

∞∑

k=0

ck(u)x−k,

where ck(u) counts the number of walks of length k starting and ending at u. So this is exactly
the moment generating function of the spectral measure with respect to the vertex u. Putting
together these with Theorem 2.4 we see that

μ(G − v, x)

μ(G, x)
= μ(Tv(G) − v, x)

μ(Tv(G), x)
= x−1

∞∑

k=0

ak(v)x−k
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22 M. Abért et al.

is the moment generating function of the spectral measure of the tree of self-avoiding walks
with respect to the vertex v.

Now let us consider the left hand side ofTheorem2.4. Let us use part (b) of Proposition 2.5:

μ′(G, x) =
∑

u∈V
μ(G − u, x).

This implies that

Ev

μ(G − v, x)

μ(G, x)
= 1

|G|
μ′(G, x)

μ(G, x)
= x−1

∞∑

k=0

μk x
−k,

where

μk = 1

|G|
∑

λk,

where the summation goes through the zeros of the matching polynomial. In other words,
μk is k-th moment of the matching measure defined by the uniform distribution on the zeros
of the matching polynomial. Putting everything together we see that

μk = Evak(v).

Since both ρG and Evρ(v) are supported on {|x | ≤ ‖AG‖}, we get that the two measures are
equal. ��

Now we define Benjamini–Schramm convergence.

Definition 2.6 For a finite graph G, a finite rooted graph α and a positive integer r , let
P(G, α, r) be the probability that the r -ball centered at a uniform random vertex of G is
isomorphic to α. We say that a graph sequence (Gn) of bounded degree is Benjamini–
Schramm convergent if for all finite rooted graphs α and r > 0, the probabilities P(Gn, α, r)
converge. Let L be a vertex transitive lattice.We say that (Gn)Benjamini-Schrammconverges
to L , if for all positive integers r , P(Gn, αr , r) → 1 where αr is the r -ball in L .

Example 2.7 Let us consider a sequence of boxes in Z
d where all sides converge to infinity.

This will be Benjamini–Schramm convergent graph sequence since for every fixed r , we
will pick a vertex which at least r -far from the boundary with probability converging to
1. For all these vertices we will see the same neighborhood. This also shows that we can
impose arbitrary boundary condition, for instance periodic boundary condition means that
we consider the sequence of toroidal boxes. Boxes and toroidal boxes will be Benjamini–
Schramm convergent even together.

We prove the following generalization of Theorem 1.2.

Theorem 2.8 Let (Gn) be a Benjamini–Schramm convergent bounded degree graph
sequence. Then the sequence of matching measures ρGn is weakly convergent. If (Gn)

Benjamini–Schramm converges to the vertex transitive lattice L, then ρGn weakly converges
to ρL and limn→∞ ρGn ({x}) = ρL({x}) for all x ∈ R.

Remark 2.9 The first part of the theorem was first proved in [1]. The proof given there relied
on a general result on graph polynomials given in [8]. For completeness, we give an alternate
self-contained proof here.
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We will use the following theorem of Thom [29]. See also [3] where this is used for
Benjamini–Schramm convergent graph sequences.

Theorem 2.10 (Thom) Let (qn(z)) be a sequence of monic polynomials with integer coef-
ficients. Assume that all zeros of all qn(z) are at most R in absolute value. Let ρn be the
probability measure of uniform distribution on the roots of qn(z). Assume that ρn weakly
converges to some measure ρ. Then for all θ ∈ C we have

lim
n→∞ ρn({θ}) = ρ({θ}).

Proof of Theorem 1.2 and 2.8 For k ≥ 0 let

μk(G) =
∫

zk dρG(z)

be the k-th moment of ρG . By Theorem 2.3 we have

μk(G) = Evak(G, v)

where ak(G, v) denotes the number of closed walks of length k of the tree Tv(G) starting
and ending at the vertex v.

Clearly, the value of ak(G, v) only depends on the k-ball centered at the vertex v. Let
TW (α) = ak(G, v) where the k-ball centered at v is isomorphic to α. Note that the value of
TW (α) depends only on the rooted graph α and does not depend on G.

Let Nk denote the set of possible k-balls in G. The size of Nk and TW (α) are bounded
by a function of k and the largest degree of G. By the above, we have

μk(G) = Evak(G, v) =
∑

α∈Nk

P(G, α, k) · TW (α).

Since (Gn) is Benjamini–Schramm convergent, we get that for every fixed k, the sequence of
k-th moments μk(Gn) converges. The same holds for

∫
q(z) dρGn (z)where q is any polyno-

mial. By the Heilmann–Lieb theorem, ρGn is supported on [−2
√
D − 1, 2

√
D − 1] where

D is the absolute degree bound for Gn . Since every continuous function can be uniformly
approximated by a polynomial on [−2

√
D − 1, 2

√
D − 1], we get that the sequence (ρGn )

is weakly convergent.
Assume that (Gn) Benjamini–Schramm converges to L . Then for all k ≥ 0 we have

P(Gn, αk, k) → 1 where αk is the k-ball in L , which implies

lim
n→∞ μk(Gn) = lim

n→∞
∑

α∈Nk

P(Gn, α, k) · TW (α) = TW (αk) = ak(L , v)

where v is any vertex in L . This means that all the moments of ρL and lim ρGn are equal, so
lim ρGn = ρL .

Since the matching polynomial is monic with integer coefficients, Theorem 2.10 gives
limn→∞ ρGn ({x}) = ρL({x}) for all x ∈ R. ��

3 The Function λG( p)

Let G be a finite graph, and recall that |G| denotes the number of vertices of G, and mk(G)

denotes the number of k-matchings (m0(G) = 1). Let t be the activity, a non-negative real
number, and
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24 M. Abért et al.

M(G, t) =
�|G|/2�∑

k=0

mk(G)tk,

We call M(G, t) the matching generating function or the partition function of the monomer–
dimer model. Clearly, it encodes the same information as the matching polynomial. Let

p(G, t) = 2t · M ′(G, t)

|G| · M(G, t)
,

and

F(G, t) = lnM(G, t)

|G| − 1

2
p(G, t) ln(t).

Note that

λ̃(G) = F(G, 1)

is called the monomer–dimer free energy.
The function p = p(G, t) is a strictlymonotone increasing functionwhichmaps [0,∞) to

[0, p∗), where p∗ = 2ν(G)
|G| , where ν(G) denotes the number of edges in the largest matching.

If G contains a perfect matching, then p∗ = 1. Therefore, its inverse function t = t (G, p)
maps [0, p∗) to [0,∞). (IfG is clear from the context, then we will simply write t (p) instead
of t (G, p).) Let

λG(p) = F(G, t (p))

if p < p∗, and λG(p) = 0 if p > p∗. Note that we have not defined λG(p∗) yet. We simply
define it as a limit:

λG(p∗) = lim
p↗p∗ λG(p).

We will show that this limit exists, see part (d) of Proposition 3.2. Later we will extend the
definition of p(G, t), F(G, t) and λG(p) to infinite lattices L .

The intuitivemeaning of λG(p) is the following. Assume that wewant to count the number
of matchings covering p fraction of the vertices. Let us assume that it makes sense: p = 2k

|G| ,
and so we wish to count mk(G). Then

λG(p) ≈ lnmk(G)

|G| .

The more precise formulation of this statement will be given in Proposition 3.2. To prove
this proposition we need some preparation.

We will use the following theorem of Darroch.

Lemma 3.1 (Darroch’s rule [9]) Let P(x) = ∑n
k=0 akx

k be a polynomial with only positive
coefficients and real zeros. If

k − 1

n − k + 2
<

P ′(1)
P(1)

< k + 1

k + 2
,

then k is the unique number for which ak = max(a1, a2, . . . , an). If, on the other hand,

k + 1

k + 2
<

P ′(1)
P(1)

< k + 1 − 1

n − k + 1
,

then either ak or ak+1 is the maximal element of a1, a2, . . . , an.
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Proposition 3.2 Let G be a finite graph.

(a) Let nG be n disjoint copies of G. Then

λG(p) = λnG(p).

(b) If p < p∗, then
d

dp
λG(p) = −1

2
ln t (p).

(c) The limit

λG(p∗) = lim
p↗p∗ λG(p)

exists.
(d) Let k ≤ ν(G) and p = 2k

|G| . Then
∣∣∣∣λG(p) − lnmk(G)

|G|
∣∣∣∣ ≤ ln |G|

|G| .

(e) Let k = ν(G), then for p∗ = 2k
|G| we have

λG(p∗) = lnmk(G)

|G| .

(f) If for some function f (p) we have

λG(p) ≥ f (p) + o|G|(1)

then

λG(p) ≥ f (p).

Proof (a) Let nG be the disjoint union of n copies of G. Note that

M(nG, t) = M(G, t)n

implying that p(nG, t) = p(G, t) and λnG(p) = λG(p).
(b) Since

λG(p) = lnM(G, t)

|G| − 1

2
p(G, t) ln(t)

we have

dλG(p)

dp
=

(
1

|G| · M
′(G, t)

M(G, t)
· dt

dp
− 1

2

(
ln(t) + p · 1

t
· dt

dp

))
= −1

2
ln(t),

since

1

|G| · M
′(G, t)

M(G, t)
= p

2t

by definition.
(c) From d

dpλG(p) = − 1
2 ln t (p) we see that if p > p(G, 1), the function λG(p) is

monotone decreasing. (Note that we also see that λG(p) is a concave-down function.)
Hence

lim
p↗p∗ λG(p) = inf

p>p(G,1)
λG(p).
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26 M. Abért et al.

(d) First, let us assume that k < ν(G). In case of k = ν(G), we will slightly modify our
argument. Let t = t (p) be the value for which p = p(G, t). The polynomial

P(G, x) = M(G, t x) =
n∑

j=0

m j (G)t j x j

considered as a polynomial in variable x , has only real zeros by Theorem 2.2. Note that

k = p|G|
2

= P ′(G, 1)

P(G, 1)
.

Darroch’s rule says that in this case mk(G)tk is the unique maximal element of the
coefficient sequence of P(G, x). In particular

M(G, t)

|G| ≤ mk(G)tk ≤ M(G, t).

Hence

λG(p) − ln |G|
|G| ≤ lnmk(G)

|G| ≤ λG(p).

Hence in case of k < ν(G), we are done.
If k = ν(G), then let p be arbitrary such that

k − 1

2
<

p|G|
2

< k.

Again we can argue by Darroch’s rule as before that

λG(p) − ln |G|
|G| ≤ lnmk(G)

|G| ≤ λG(p).

Since this is true for all p sufficiently close to p∗ = 2ν(G)
|G| and

λG(p∗) = lim
p↗p∗ λG(p),

we have
∣∣∣∣
lnmk(G)

|G| − λG(p∗)
∣∣∣∣ ≤ ln |G|

|G|
in this case too.

(e) By part (a) we have λnG(p) = λG(p). Note also that if k = ν(G), then mnk(nG) =
mk(G)n . Applying the bound from part (d) to the graph nG, we obtain that

∣∣∣∣
lnmk(G)

|G| − λG(p∗)
∣∣∣∣ ≤ ln |nG|

|nG| .

Since

ln |nG|
|nG| → 0

as n → ∞, we get that

λG(p∗) = lnmk(G)

|G| .
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(f) This is again a trivial consequence of λnG(p) = λG(p).
��

Our next aim is to extend the definition of the function λG(p) for infinite lattices L . We
also show an efficient way of computing its values if p is sufficiently separated from p∗.

The following theorem was known in many cases for thermodynamic limit.

Theorem 3.3 Let (Gn) be a Benjamini–Schramm convergent sequence of bounded degree
graphs. Then the sequences of functions

(a)

p(Gn, t),

(b)

lnM(Gn, t)

|Gn |
converge to strictly monotone increasing continuous functions on the interval [0,∞).
If, in addition, every Gn has a perfect matching then the sequences of functions

(c)

t (Gn, p),

(d)

λGn (p)

are convergent for all 0 ≤ p < 1.

Remark 3.4 In part (c), we used the extra condition to ensure that p∗ = 1 for all these graphs.
We mention that Nguyen and Onak [26], and independently Elek and Lippner [11] proved
that for a Benjamini–Schramm convergent graph sequence (Gn), the following limit exits:

lim
n→∞

2ν(Gn)

|Gn | = lim
n→∞ p∗(Gn).

In particular, one can extend part (c) to graph sequences without perfect matchings. Since
we are primarily interested in lattices with perfect matchings, we leave it to the Reader.

To prove Theorem 3.3, we essentially repeat an argument of the paper [1].

Proof of Theorem 1.2 and 2.8 First we prove part (a) and (b). For a graph G let S(G) denote
the set of zeros of the matching polynomial μ(G, x), then

M(G, t) =
∏

λ∈S(G)
λ>0

(1 + λ2t) =
∏

λ∈S(G)

(1 + λ2t)1/2.

Then

lnM(G, t) =
∑

λ∈S(G)

1

2
ln

(
1 + λ2t

)
.

By differentiating both sides we get that

M ′(G, t)

M(G, t)
=

∑

λ∈S(G)

1

2

λ2

1 + λ2t
.
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Hence

p(G, t) = 2t · M ′(G, t)

|G| · M(G, t)
= 1

|G|
∑

λ∈S(G)

λ2t

1 + λ2t
=

∫
t z2

1 + t z2
dρG(z).

Similarly,

lnM(G, t)

|G| = 1

|G|
∑

λ∈S(G)

1

2
ln

(
1 + λ2t

) =
∫

1

2
ln

(
1 + t z2

)
dρG(z).

Since (Gn) is a Benjamini–Schramm convergent sequence of bounded degree graphs, the
sequence (ρGn ) weakly converges to some ρ∗ by Theorem 2.8. Since both functions

t z2

1 + t z2
and

1

2
ln

(
1 + t z2

)

are continuous, we immediately obtain that

lim
n→∞ p(Gn, t) =

∫
t z2

1 + t z2
dρ∗(z),

and

lim
n→∞

lnM(Gn, t)

|Gn | =
∫

1

2
ln

(
1 + t z2

)
dρ∗(z).

Note that both functions

t z2

1 + t z2
and

1

2
ln

(
1 + t z2

)

are strictly monotone increasing continuous functions in the variable t . Thus their integrals
are also strictly monotone increasing continuous functions.

To prove part (c), let us introduce the function

p(L , t) =
∫

t z2

1 + t z2
dρ∗(z).

We have seen that p(L , t) is a strictly monotone increasing continuous function, and equals
limn→∞ p(Gn, t). Since for all Gn , p∗(Gn) = 1, we have limt→∞ p(Gn, t) = 1 for all n.
This means that limt→∞ p(L , t) = 1. Hence we can consider inverse function t (L , p)which
maps [0, 1) to [0,∞). We show that

lim
n→∞ t (Gn, p) = t (L , p)

pointwise. Assume by contradiction that this is not the case. This means that for some p1,
there exists an ε and an infinite sequence ni for which

∣∣t (L , p1) − t (Gni , p1)
∣∣ ≥ ε.

We distinguish two cases according to

(i) there exists an infinite sequence (ni ) for which

t (Gni , p1) ≥ t (L , p1) + ε,

or
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(ii) there exists an infinite sequence (ni ) for which

t (Gni , p1) ≤ t (L , p1) − ε.

In the first case, let t1 = t (L , p1), t2 = t1 + ε and p2 = p(L , t2). Clearly, p2 > p1.
Note that

t (Gni , p1) ≥ t (L , p1) + ε = t2

and p(Gni , t) are monotone increasing functions, thus

p(Gni , t2) ≤ p(Gni , t (Gni , p1)) = p1 = p2 − (p2 − p1) = p(L , t2) − (p2 − p1).

This contradicts the fact that

lim
n→∞ p(Gni , t2) = p(L , t2).

In the second case, let t1 = t (L , p1), t2 = t1 − ε and p2 = p(L , t2). Clearly, p2 < p1.
Note that

t (Gni , p1) ≤ t (L , p1) − ε = t2

and p(Gni , t) are monotone increasing functions, thus

p(Gni , t2) ≥ p(Gni , t (Gni , p1)) = p1 = p2 + (p1 − p2) = p(L , t2) + (p1 − p2).

This again contradicts the fact that

lim
n→∞ p(Gni , t2) = p(L , t2).

Hence limn→∞ t (Gn, p) = t (L , p).
Finally, we show that λGn (p) converges for all p. Let t = t (L , p), and

λL(p) = lim
n→∞

lnM(Gn, t)

|Gn | − 1

2
p ln(t).

Note that

λGn (p) = lnM(Gn, tn)

|Gn | − 1

2
p ln(tn),

where tn = t (Gn, p). We have seen that limn→∞ tn = t . Hence it is enough to prove
that the functions

lnM(Gn, u)

|Gn |
are equicontinuous. Let us fix some u0 and let

H(u0, u) = max
z∈[−2

√
D−1,2

√
D−1]

∣∣∣∣
1

2
ln

(
1 + u0z

2) − 1

2
ln

(
1 + uz2

)∣∣∣∣ .

Clearly, if |u − u0| ≤ δ for some sufficiently small δ, then H(u0, u) ≤ ε, and
∣∣∣∣
lnM(Gn, u)

|Gn | − lnM(Gn, u0)

v(Gn)

∣∣∣∣ =
∣∣∣∣
∫

1

2
ln

(
1 + u0z

2) dρGn (z)

−
∫

1

2
ln

(
1 + uz2

)
dρGn (z)

∣∣∣∣ ≤
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∫ ∣∣∣∣
1

2
ln

(
1 + u0z

2) − 1

2
ln

(
1 + uz2

)∣∣∣∣ dρGn (z) ≤
∫

H(u, u0) dρGn (z) ≤ ε.

This completes the proof of the convergence of λGn (p). ��
Definition 3.5 Let L be an infinite lattice and (Gn) be a sequence of finite graphs which is
Benjamini–Schramm convergent to L . For instance, Gn can be chosen to be an exhaustion
of L . Then the sequence of measures (ρGn ) weakly converges to some measure which we
will call ρL , the matching measure of the lattice L . For t > 0, we can introduce

p(L , t) =
∫

t z2

1 + t z2
dρL(z)

and

F(L , t) =
∫

1

2
ln

(
1 + t z2

)
dρL(z) − 1

2
p(L , t) ln(t).

If the lattice L contains a perfect matching, then we can choose Gn such that all Gn contain
a perfect matching. Then p(L , t) maps [0,∞) to [0, 1) in a monotone increasing way, and
we can consider its inverse function t (L , p). Finally, we can introduce

λL(p) = F(L , t (L , p))

for all p ∈ [0, 1). We will define λL(1) as

λL(1) = lim
p↗1

λL(p).

Remark 3.6 In the literature, the so-called Mayer series are computed for various lattices L:

p(L , t) =
∞∑

n=1

bnt
n

for small enough t . Let us compare it with

p(L , t) =
∫

t z2

1 + t z2
dρL(z) =

∫ ( ∞∑

n=1

(−1)n+1z2ntn
)

dρL(z)

=
∞∑

n=1

(−1)n+1
(∫

z2ndρL(z)

)
tn .

Hence if we introduce the moment sequence

μk =
∫

zkdρL(z),

we see that

μ2n =
∫

z2ndρL(z) = (−1)n+1bn .

Note that μ0 = 1 and μ2n−1 = 0 since the matching measures are symmetric to 0. Since the
support of the measure ρL lie in the interval [−2

√
D − 1, 2

√
D − 1], we see that the Mayer

series converges whenever |t | < 1
4(D−1) . We also would like to point out that the integral is

valid for all t > 0, while the Mayer series does not converge if t is ’large’.
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3.1 Computation of the Monomer–Dimer Free Energy

The monomer–dimer free energy of a lattice L is λ̃(L) = F(L , 1). Its computation can be
carried out exactly the same way as we proved its existence: we use that

λ̃(L) = F(L , 1) =
∫

1

2
ln

(
1 + z2

)
dρL(z).

Assume that we know themoment sequence (μk) for k ≤ N . Then let us choose a polynomial
of degree at most N , which uniformly approximates the function

1

2
ln

(
1 + z2

)

on the interval [−2
√
D − 1, 2

√
D − 1], where D is the coordination number of L . A good

polynomial approximation can be found by Remez’s algorithm. Assume that we have a
polynomial

q(z) =
N∑

k=0

ckz
k

for which
∣∣∣∣
1

2
ln

(
1 + z2

) − q(z)

∣∣∣∣ ≤ ε

for all z ∈ [−2
√
D − 1, 2

√
D − 1]. Then

∣∣∣∣λ̃(L) −
∫

q(z) dρL(z)

∣∣∣∣ ≤
∫ ∣∣∣∣

1

2
ln

(
1 + z2

) − q(z)

∣∣∣∣ dρL(z) ≤ ε,

and
∫

q(z) dρL(z) =
N∑

k=0

ckμk .

Hence
∣∣∣∣∣λ̃(L) −

N∑

k=0

ckμk

∣∣∣∣∣ ≤ ε.

How can we compute the moment sequence (μk)? One way is to use its connection with
the Mayer series (see Remark 3.6). A good source of Mayer series coefficients is the paper
of Butera and Pernici [7], where they computed bn for 1 ≤ n ≤ 24 for various lattices.
(More precisely, they computed dn = bn/2 with the notation of the paper [7] since they
expanded the function ρ(t) = p(t)/2.) This means that we know μk for k ≤ 49 for
these lattices. For instance, for the square lattice Z

2, the sequence μ0, μ1, μ2, . . . starts
as 1, 0, 4, 0, 28, 0, 232, 0, 2084, . . . (see Table 1 of [7].)

The other strategy to compute the moment sequence is to use its connection with the
number of closed walks in the self-avoiding walk tree.

Since the moment sequence is missing for the honeycomb lattice (hexagonal lattice), we
computed the first few elements of the moment sequence for this lattice:

1, 0, 3, 0, 15, 0, 87, 0, 543, 0, 3543, 0, 23817, 0, 163551, 0, 1141119, 0, 8060343, 0,
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Table 1 Monomer-dimer free energy estimates for hyper-simple cubic lattices and the honeycomb lattice

Lattice λ̃(L) Bound on error p (L , 1) Bound on error

2d 0.6627989725 3.72 × 10−8 0.638123105 5.34 × 10−7

3d 0.7859659243 9.89 × 10−7 0.684380278 1.14 × 10−5

4d 0.8807178880 5.92 × 10−6 0.715846906 5.86 × 10−5

5d 0.9581235802 4.02 × 10−5 0.739160383 3.29 × 10−4

6d 1.0237319240 1.24 × 10−4 0.757362382 8.91 × 10−4

7d 1.0807591953 3.04 × 10−4 0.772099489 1.95 × 10−3

Hex 0.58170036638 1.56 × 10−9 0.600508638 2.65 × 10−8

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

Fig. 2 An approximation for the matching measure of Z2, obtained by smoothing the matching measure of
the finite grid C10 × P100 by convolution with a triweight kernel.

57494385, 0, 413383875, 0, 2991896721, 0, 21774730539, 0, 159227948055, 0,

1169137211487, 0, 8615182401087, 0, 63683991513351, 0, 472072258519041, 0,

3508080146139867, 0, 26127841824131313, 0, 194991952493587371, 0,

1457901080870060919, 0, 10918612274039599755, 0, 81898043907874542705

The following table contains some numerical results. The bound on the error terms are
rigorous. The paper [7] contains very similar non-rigorous results.

4 Density Function of Matching Measures

It is natural problem to investigate the matching measure. One particular question is whether
it is atomless or not. In general, ρL can contain atoms. For instance, if G is a finite graph
then clearly ρG consists of atoms. On the other hand, it can be shown that for all lattices in
Table 1, the measure ρL is atomless. We use the following lemmas (Fig. 2).

We will only need part (a) of the following lemma, we only give part (b) for the sake of
completeness.

Lemma 4.1 [16,22]

(a) The maximum multiplicity of a zero of μ(G, x) is at most the number of vertex-disjoint
paths required to cover G.

(b) The number of distinct zeros of μ(G, x) is at least the length of the longest path in G.

The following lemma is a deep result of Ku and Chen [25].
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−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

Fig. 3 An approximation for the matching measure of Z3. Working with reasonably sized finite grids would
have been computationally too expensive, so this time we took the L2 projection of the infinite measure to the
space of degree 48 polynomials which can be calculated from the sequence of moments.

Lemma 4.2 [25] If G is a finite connected vertex transitive graph, then all zeros of the
matching polynomial are distinct.

Now we are ready to give a generalization of Theorem 1.4.

Theorem 4.3 Let L be a lattice satisfying one of the following conditions.

(a) The lattice L can be obtained as a Benjamini–Schramm limit of a finite graph sequence
Gn such that Gn can be covered by o(|Gn |) disjoint paths.

(b) The lattice L can be obtained as a Benjamini–Schramm limit of connected vertex tran-
sitive finite graphs.
Then the matching measure ρL is atomless.

Proof of Theorem 3.3 We prove the two statements together. Let mult(Gn, θ) denote the
multiplicity of θ as a zero of μ(Gn, x). Then by Theorem 2.10 we have

ρL({θ}) = lim
n→∞

mult(Gn, θ)

|Gn | .

Note that by Lemma 4.1 we havemult(Gn, θ) is at most the number of paths required to cover
the graph Gn . In case of connected vertex transitive graphs Gn , we have mult(Gn, θ) = 1
by Lemma 4.2. This means that in both cases ρL({θ}) = 0. ��
Proof of Theorem 1.4 (Proof of Theorem 1.4) Note that Zd satisfies both conditions of The-
orem 4.3 by taking boxes or using part (b), taking toroidal boxes (Fig. 3).
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