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Abstract: Consider a semiclassical Hamiltonian

HV,h := h2� + V − E,

where h > 0 is a semiclassical parameter, � is the positive Laplacian on R
d , V is a

smooth, compactly supported central potential function and E > 0 is an energy level.
In this setting the scattering matrix Sh(E) is a unitary operator on L2(Sd−1), hence with
spectrum lying on the unit circle; moreover, the spectrum is discrete except at 1.

We show under certain additional assumptions on the potential that the eigenvalues
of Sh(E) can be divided into two classes: a finite number ∼ cd(R

√
E/h)d−1, as h → 0,

where B(0, R) is the convex hull of the support of the potential, that equidistribute
around the unit circle, and the remainder that are all very close to 1. Semiclassically,
these are related to the rays that meet the support of, and hence are scattered by, the
potential, and those that do not meet the support of the potential, respectively.

A similar property is shown for the obstacle problem in the case that the obstacle is
the ball of radius R.

1. Introduction

In this paper we consider the scattering matrix for a semiclassical potential scattering
problem with spherical symmetry on R

d , d ≥ 2. Let V be a smooth, compactly supported
potential function which is central, i.e. V (x) depends only on |x |. We consider the
Hamiltonian

HV,h := h2� + V − E, (1.1)

where � = −∑d
i=1 ∂2

i is the positive Laplacian on R
d , E > 0 is a positive constant

(energy) and h > 0 is a semiclassical parameter. At the end of the Introduction we will
reduce to the case E = 1.
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The scattering matrix Sh(E) for this Hamiltonian can be defined in terms of the
asymptotics of generalized eigenfunctions of HV,h as follows. For each function qin ∈
C∞(Sd−1), there is a unique solution to HV,hu = 0 of the form

u = r−(d−1)/2
(

e−i
√

Er/hqin(ω) + e+i
√

Er/hqout(−ω)
)

+ O(r−(d+1)/2), (1.2)

as r → ∞, see e.g. [17]. Here qout ∈ C∞(Sd−1). The map qin �→ eiπ(d−1)/2qout is
by definition the scattering matrix Sh(E). The factor eiπ(d−1)/2 is chosen so that this
‘stationary’ definition agrees with time-dependent definitions (see e.g. [21] or [25]), and
is such that the scattering matrix for the potential V ≡ 0 is the identity map. It is standard
that the scattering matrix Sh(E) is a unitary operator on L2(Sd−1) for every h > 0, and
that, for the potentials under consideration, Sh(E) − Id is compact. It follows that the
spectrum lies on the unit circle, consists only of eigenvalues, and is discrete except at
1. It is therefore possible to count the number of eigenvalues of Sh(E) in any closed
interval of the unit circle not containing 1. In fact, semiclassically (i.e. as h → 0) we
are able to separate the spectrum of Sh(E) into two parts. One is associated to the rays
that meet the support of the potential; to leading order in h there are cd(R

√
E/h)d−1 of

these eigenvalues, cd = 2/(d −1)!, and the other part is associated to the rays that do not
meet the support of the potential. Those eigenvalues corresponding to rays that do not
meet the support are close to 1, as one should expect, since the eigenvalues of the zero
potential are all 1—see Proposition 1.5 below. The other eigenvalues are affected by
the potential, and we can ask whether these ‘nontrivial’ eigenvalues are asymptotically
equidistributed on the unit circle. Indeed Steve Zelditch posed this question to one of
the authors several years ago.

Before stating the main result, we discuss further the scattering matrix in the case of
central potentials. In this case the eigenfunctions of the scattering matrix are spherical
harmonics and the generalized eigenfunctions then take the form u = r−(d−2)/2 f (r)Y m

l ,
where

(

−∂2
r − 1

r
∂r +

(l + (d − 2)/2)2

r2 +
V (r) − E

h2

)

f = 0. (1.3)

Here

f (r) = H (1)
l+(d−2)/2(r

√
E/h) + c(l)H (2)

l+(d−2)/2(r
√

E/h) for r > R, (1.4)

where the H (i)
ν are the standard Hankel functions, [1]. With our normalization, ShY m

l =
c(l)Y m

l with c(l) from (1.4). In particular, the eigenvalue of Y m
l is independent of m.

We write the eigenvalue corresponding to Y m
l in the form eiβl,h . The quantities βl,h/2

are called ‘phase shifts.’ See e.g. [21] for a review of these facts.
We now discuss conditions on the potentials in the main theorems. These conditions

are dynamical conditions, i.e. conditions on the Hamiltonian dynamical system deter-
mined by the symbol of HV,h . As usual in microlocal analysis we refer to the classical
trajectories of this system as bicharacteristics. We first define the interaction region

R := {x : V (|y|) < E for all |y| > |x |} . (1.5)

This is the region of x-space accessible by bicharacteristics coming from infinity. Notice
that for central potentials this region takes the form

R = {|x | ≥ r0} where r0 = inf
r≥0

{s > r ⇒ V (s) < E}. (1.6)
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The first condition is

V is nontrapping at energy E in the interaction region. (1.7)

That is, x tends to infinity along every bicharacteristic in R both forward and backward
in time.

The second condition concerns the scattering angle. Let R be such that B(0, R) is
the smallest ball containing the support of V , i.e.

B(0, R) = chsuppV, the convex hull of the support of V. (1.8)

We recall (see Sect. 2 for definitions and details) that for a central potential, the scattering
angle �(α) is a function only of the angular momentum α and measures the difference
between the incident and final directions of the trajectory (which are well-defined, since
the motion is free for |x | > R—see [21]. The scattering angle is zero for all trajectories
with α > R. Our second condition is that

the number of zeroes of �′(α) = d�

dα
(α) in [0, R) is finite. (1.9)

Then our main results are

Theorem 1.1. Let R be as in (1.8), and assume that V ∈ C∞
c (Rd) is central and satisfies

condition (1.7). Define the real-valued function G(α), α ∈ R, by

dG

dα
(α) = �(α), G(α) = 0 for α ≥ R, (1.10)

where � is the scattering angle function in (2.5). Then the following approximation on
each eigenvalue eiβl,h of Sh is valid:

(i) If the dimension d is even, then there exists C = C(d) such that, for all l ∈ N

satisfying lh ≤ R, we have an estimate
∣
∣
∣
∣e

iβl,h − exp

{
i

h

(

G
(
(l +

d − 2

2
)h

)
)} ∣

∣
∣
∣ ≤ Ch. (1.11)

(ii) If the dimension d > 2 is odd, then for any ε > 0 there exists C = C(ε, d) such that
(1.11) holds whenever α = lh ≥ ε is distance at least ε from the set

{
α : �(α) ∈ {πk}k∈Z

}
. (1.12)

Theorem 1.2. Let R be as in (1.8), and assume that V ∈ C∞
c (Rd) is central and satisfies

conditions (1.7) and (1.9). Then as h ↓ 0, we consider the eigenvalues eiβl,h for which
l ≤ R

√
E/h, counted with multiplicity pd(l) = dim ker

(
�Sd−1 − l(l + d − 2)

)
. There

are 2(R
√

E/h)d−1/(d − 1)! + O(h−(d−2)) of these, and they equidistribute around the
unit circle, meaning that

sup
0≤φ0<φ1≤2π

∣
∣
∣
∣

N (φ0, φ1)

2(R
√

E/h)d−1/(d − 1)! − φ1 − φ0

2π

∣
∣
∣
∣ → 0 as h ↓ 0, (1.13)

where N (φ0, φ1) is the number of βl,h with l ≤ R
√

E/h and φ0 ≤ βl,h ≤ φ1 (mod 2π ),
counted with multiplicity.
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Remark 1.3. The approximation (1.11) for the phase shifts can be found in physics text-
books; see for example [15, Sect. 126] or [19, Eq. (18.11), Sect. 18.2]; it can be derived
readily from the WKB approximation applied to (1.3). However, no error estimate is
claimed in either of these sources. We have not been able to find any rigorous bounds
on the WKB approximation of the phase shifts in any previous literature, so we believe
the bound (1.11) to be new.

Remark 1.4. Many potentials satisfy conditions (1.7) and (1.9)—see Sect. 5.

We also show

Proposition 1.5. Let V and R be as in Theorem 1.1, and let κ ∈ (0, 1). The eigenvalues
eiβl,h for l ≥ (R

√
E + hκ)/h satisfy

∣
∣
∣eiβl,h − 1

∣
∣
∣ = O(h∞), h → 0.

Here and below, O(h∞) denotes a quantity that is bounded by CN hN for all N and
some CN > 0.

Remark 1.6. The methods of [20, Sect. 4] show that for a ‘black box perturbation’ of the
Laplacian on R

d , at most O(h−(d−1)) eigenvalues of the scattering matrix are essentially
different from 1.

Note that the number of eigenvalues not covered by Theorem 1.1 and Proposition 1.5
is o(h1−d), and hence cannot affect the equidistribution properties. Hence we get the
following equidistribution result for the full sequence of eigenvalues of Sh .

Corollary 1.7. Suppose that V satisfies conditions (1.7) and (1.9). Then for each ε > 0,
we have

sup
ε≤φ0<φ1≤2π−ε

∣
∣
∣
∣
∣

Ñ (φ0, φ1)

2(R
√

E/h)d−1/(d − 1)! − φ1 − φ0

2π

∣
∣
∣
∣
∣
→ 0 as h ↓ 0, (1.14)

where Ñ (φ0, φ1) is the number of βl,h (with no condition on l), counted with multiplicity,
satisfying φ0 < βl,h < φ1 (mod 2π).

Results directly analogous to those for semiclassical potentials are also true in the
case of scattering by a disk of radius R centered at the origin. The scattering matrix in
this case can be defined similarly; given any function qin ∈ C∞(Sd−1), there is a unique
solution u to the equation

(
� − k2

)
u = 0 such that1

u = r−(d−1)/2
(

e−ikr qin(ω) + e+ikr qout(−ω)
)

+ O(r−(d+1)/2), r → ∞,

u||x |=R ≡ 0.
(1.15)

The scattering matrix Sk is again defined qin �→ eiπ(d−1)/2qout, and the standard facts
about the operator Sh also hold for Sk . As above, the spherical harmonics diagonalize
the scattering matrix. We write SkY m

l = eixl,k Y m
l . We will prove

1 Here we prefer to use non-semiclassical notation where the energy level is k2, as is traditional in obstacle
scattering literature. The variable k here corresponds to 1/h above, when the energy level E = 1.
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Theorem 1.8. As k → ∞, the eigenvalues eixl,k of Sk satisfy
∣
∣
∣
∣e

ixl,k − ei
(

kGb((l+(d−2)/2)/k)+π/2
)∣∣
∣
∣ ≤ Ck−1/2,

l

k
≤ R − k−1/3 (1.16)

for some uniform C = C(d), where �b(α) := −2 cos−1(α/R) is the scattering angle
for the ball and Gb is defined by

Gb(α) = −
∫ R

α

�b(α
′) dα′ = 2

√
R2 − α2 − 2α cos−1(α/R). (1.17)

The points eixl,k for which l ≤ Rk, counted with multiplicity

pd(l) = dim ker
(
�Sd−1 − l(l + d − 2)

)
,

equidistribute around S
1 in the sense of Theorem 1.2. In fact, we have the stronger

statement

sup
0≤φ0<φ1≤2π

∣
∣
∣
∣

N (φ0, φ1)

2(Rk)d−1/(d − 1)! − φ1 − φ0

2π

∣
∣
∣
∣ = O(k−1/3) as k → ∞. (1.18)

As far as we are aware, the present paper is the first in the mathematical literature to
deal with the question of the equidistribution of phase shifts over the unit circle. However,
there are a number of previous studies of high-energy or semiclassical asymptotics of
eigenvalues of the scattering matrix. The relation between the sojourn time and high-
frequency asymptotics of the scattering matrix was observed in classical papers by
Guillemin [9], Majda [16] and Robert-Tamura [22]. Melrose and Zworski [18] showed
that for fixed h > 0 the absolute scattering matrix for a Schrödinger operator on a
scattering, or asymptotically conic, manifold is an FIO associated to the geodesic flow
on the manifold at infinity for time π . Alexandrova [2] studied the scattering matrix for
a nontrapping semiclassical Schrödinger operator, and showed that localized to finite
frequency, it is a semiclassical FIO associated to the limiting Hamilton flow relation at
infinity, which includes the behavior of the Hamilton flow in compact sets. A more global
description was given in Hassell-Wunsch [10] where the semiclassical asymptotics of
the scattering matrix were unified with the singularities of the scattering matrix at fixed
frequency (i.e. the Melrose-Zworski result [18]). These results are explained in Sects. 2
and 3 below.

Asymptotics of phase shifts, i.e. the logarithms of the eigenvalues of the scattering
matrix, were analysed by Birman-Yafaev [3–6], Sobolev-Yafaev [24], Yafaev [26] and
more recently Bulger-Pushnitski [7]. In [24], an asymptotic form V ∼ cr−α, α > 2 was
assumed and asymptotics of the individual phase shifts as well as the scattering cross
section were obtained. In this paper, the strength of the potential and the energy were
allowed to vary independently, so that the result includes the semiclassical limit as in
the present paper. In the other papers listed above, the context was scattering theory for
a fixed potential. In this setting, the scattering matrix S(λ) tends in operator norm to
the identity as λ → ∞ so the phase shifts tend to zero uniformly. The asymptotics of
individual phase shifts for a fixed energy, and also the high-energy asymptotics, were
analyzed.

In the 1990s Doron and Smilansky studied the pair correlation for phase shifts, in
particular proposing that the pair correlations should behave statistically similarly to the
(conjectural) pair correlations for eigenfunctions of a closed quantum system: that is,
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the pair correlations for chaotic systems should be the same as for certain ensembles
of random matrices, while for completely integrable systems, they should be Poisson
distributed (the ‘Berry–Tabor conjecture’); see for example [8]. In [28], Zelditch and
Zworski analyzed the pair correlation function for eigenvalues of the scattering matrix
associated to a rotationally invariant surface with a conic singularity and a cylindrical
end. They showed that a full measure set of a 2-parameter family of such surfaces obeyed
Poisson statistics, agreeing with Smilansky’s conjecture.

In a different setting Zelditch [27] analyzed quantized contact transformations, which
are families of unitary maps on finite dimensional spaces with dimension N → ∞. He
proved under the assumption that the set of periodic points of the transformation has
measure zero, that the eigenvalues of these unitary operators becomes equidistributed as
N → ∞. After reading a draft of the current paper, Zelditch pointed out to the authors
that a similar strategy could be used in the context of semiclassical potential scattering
to prove equidistribution. In fact, this strategy is likely to be a more direct approach to
proving equidistribution than the one we employ here. On the other hand, our approach
has several advantages: it also gives approximations to the individual phase shifts, up
to an O(h) error (see Theorem 1.1), and in addition appears to be a better method for
obtaining a rate of equidistribution, as in Theorem 1.8 above.

In future work, we plan to treat non-central potentials (or perhaps, following the
suggestion of one of the referees, black box perturbations of the free Laplacian—see
[20,23]) as well as non-compactly supported potentials. In the latter case, [24] gives
some indication of what to expect; in particular, the scaling with h cannot be the same
as in the compactly supported case.

Reduction to E = 1. In light of (1.3) and (1.4),

Sh,V (E) = Sh̃,Ṽ (1), (1.19)

where h̃ = h/
√

E and Ṽ = V/E . Here Sh,V (E) denotes the scattering matrix of
h2� + V − E , and Sh̃,Ṽ (1) denotes the scattering matrix of h̃2� + Ṽ − 1. For the
remainder of the paper, we assume without loss of generality that E = 1.

2. Dynamics

We now review some standard material on Hamiltonian dynamics for central potentials.
Consider first the case of the dimension d = 2.

The classical Hamiltonian corresponding to our quantum system is

|ξ |2 + V (r) − 1

or in polar coordinates, using (r, ϕ) and dual coordinates (ρ, η),

H = ρ2 +
η2

r2 + V (r) − 1,

and the Hamilton equations of motion are

ṙ = 2ρ, ϕ̇ = 2
η

r2 ,

ρ̇ = −V ′(r) + 2r−3η2, η̇ = 0.

(2.1)
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The invariance of the Hamiltonian under rotations is reflected in the conservation of
angular momentum η = 2r2ϕ̇. For a given bicharacteristic, this is the minimum value
of r along the free (V ≡ 0) bicharacteristic that agrees with the given one as t → −∞
(we could just as well take t → +∞ since it is a conserved quantity).

Notice that in the case of general dimension d, each bicharacteristic lies entirely in
a two-dimensional subspace, so the above discussion in fact includes the general case.

The scattering matrix is related to the asymptotic properties of the bicharacteristic
flow. Geometrically this information is contained in a submanifold

L ⊂ T ∗
S

d−1 × T ∗
S

d−1 × R

that we define now. Returning to the case of general dimension d, we identify S
d−1

with the unit sphere in R
d and identify the cotangent space T ∗

ωS
d−1 with the orthogonal

hyperplane ω⊥ to ω. Given ω and η ∈ T ∗
ωS

d−1, take the unique bicharacteristic ray
whose projection xω,η(t) to R

d is given by η + tω for t << 0. Define (ω′, η′) by

ω′(ω, η) = lim
t→∞ x(t)/ |x(t)| ,

η′(ω, η) = lim
t→∞ x(t) − 〈x(t), ω′〉ω′,

(2.2)

and τ(ω, η) to be the sojourn time or time delay for γ ; this is by definition the limit

lim
a→∞ t1(a) − t2(a) − 2a = τ(ω, η), (2.3)

where t1(a) is the smallest time, t , for which r(t) = a and t2(a) is the largest. We then
define L to be the submanifold

L := {
(ω, η, ω′(ω, η),−η′(ω, η), τ )

}
. (2.4)

As shown in [10], L is a Legendrian submanifold of T ∗
S

d−1 ×T ∗
S

d−1 ×R with respect
to the contact form χ +χ ′−dτ , where χ is the standard contact form on T ∗

S
d−1, given in

any local coordinates x and dual coordinates ξ by ξ ·dx . Note that the projection of L to
T ∗

S
d−1 × T ∗

S
d−1 is Lagrangian with respect to the standard symplectic form. Indeed

it is the graph of a symplectic transformation (ω, η) �→ (ω′, η′), and the scattering
matrix is a semiclassical Fourier integral operator associated to this symplectic graph
[2,10]. The sojourn time, however, carries extra information and is directly related to
high-energy scattering asymptotics as observed in [9,10,16].

The previous paragraph applies to any potential, central or not. We return to the case
of a central potential V , for which, as observed above, the dynamics take place in a
two-dimensional subspace, so we can assume d = 2 without loss of generality. In that
case we use the angular variables ϕ, ϕ′ in dimension d = 2 instead of ω,ω′ above.
Consider a bicharacteristic γ with angular momentum η ∈ R, initial direction ϕ ∈ S

1

and final direction ϕ′ ∈ S
1. The scattering angle �(η) determined by V is, by definition,

the angle between the initial and final directions of γ , normalized so that � is continuous
and �(η) = 0 for η > R, i.e.

�(η) = ϕ′(ϕ, η) − ϕ, �(η) = 0 for η > R. (2.5)

See Fig. 1. Note that � is independent of ϕ by rotational invariance of V . In the central
case, there is a standard expression for �(η) in terms of the potential (see for example
[19, Sect. 5.1]), that we now derive. Indeed, if V is central and non-trapping at energy 1,
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Fig. 1. Here xω,η is the classical trajectory equal to η + tω for t << 0. The scattering angle �(η) is the
angle between the outgoing direction ω′ and the incoming direction ω. Note that |η| = ∣

∣η′∣∣ by conservation
of angular momentum since the potential V is central, V = V (r)

then along a bicharacteristic, the functions ρ and ρ̇ do not have simultaneous zeros. For
if there were such a time, and the value of r at this time were r0, then r(t) ≡ r0 would
be a bicharacteristic, contradicting the non-trapping assumption. Hence the zeros of the
function 1 − η2/r2 − V (r) are simple on the region of interaction (1.5). Given a fixed
bicharacteristic, let rm be the minimum value of r ; note that rm is a function only of the
angular momentum η. We denote the derivative of rm with respect to η by r ′

m(η). By
symmetry, rm is the unique value of r along the trajectory at which ρ = 0 and ρ̇ > 0, so
we can divide the bicharacteristic ‘in half,’ and consider only times when r > rm and
ρ ≥ 0. For such times r is a strictly monotone function of t , and we have

dϕ

dr
= dϕ

dt

dt

dr
= η

r2

1

ρ
= η

r2
√

1 − η2/r2 − V (r)
.

By the simplicity of the zeros in the denominator, we can integrate to obtain, for η > 0,

�(η) = π − 2
∫ ∞

rm

η

r2
√

1 − η2/r2 − V (r)
dr. (2.6)
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The sojourn time is also independent of ϕ, and we write

T (η) = τ(ϕ, η). (2.7)

Notice that both � and T depend only on η in the central case. The fact that L in (2.4)
is Legendrian then implies the following relation between these functions:

dτ = η · (dϕ − dϕ′) �⇒ d

dη
T (η) = −η

d

dη
�(η). (2.8)

Remark 2.1. Notice that the ambiguity of � modulo 2π is eliminated by our convention
that �(η) = 0 for η > R. We point out that by reflection symmetry, we have �(η) =
−�(−η) modulo 2π , but it might not be the case that �(η) = −�(−η) on the nose: this
will happen if and only if �(0) = 0, which will be the case if and only if the interaction
region is the whole of R

d . However, we always have �′(η) = �′(−η), which shows
that T ′(η) is an odd function, and hence T (η) is even in η.

3. Asymptotic for the Eigenvalues of Sh

In this section we prove Theorem 1.1, that is, the error bound (1.11) for the asymptotics of
the eigenvalues eiβl,h of Sh . To do this, we will use a Fourier integral approach. One could
also directly attack (1.3) using ODE methods; see Remark 3.3 for further discussion on
this point.

We use the fact, proven in [2,10], that the integral kernel of Sh is an oscillatory
integral associated (in a manner we describe directly) to the Legendre submanifold L in
(2.4). To be precise, the Schwartz kernel of Sh can be decomposed following [10, Prop.
15] (with minor changes in notation) as

Sh = K1 + K2 + K3,

with the Ki as follows.
Fix R2 > R1 > R. First, K2 is a pseudodifferential operator of order zero (both in

the sense of semiclassical order and differential order), microsupported in {|η| > R1},
hence taking the form in local coordinates z on S

d−1,

(2πh)−(d−1)

∫

ei(z−z′)·ζ/hb(z, ζ, h) dζ

for some smooth symbol b(z, ζ, h) equal to zero for |ζ |g(z) < R1, where | · |g(z) is
the standard norm on T ∗

z S
d−1. This reflects the fact that the Legendrian submanifold L

in (2.4) is the diagonal relation ω = ω′, η = −η′, τ = 0 for |η|, |η′| > R, to which
pseudodifferential operators are associated. Moreover, K2 is microlocally equal to the
identity for |η| > R2, i.e. b = 1 + O(h∞) for |ζ |g > R2. Indeed, the full symbol (up to
O(h∞)) of the scattering matrix is determined by transport equations along the rays with
|η| > R. Since these transport equations are identical to those for the zero potential, the
scattering matrix in this microlocal region is microlocally identical to that for the zero
potential, which is the identity operator.

Next, K1 is a semiclassical Fourier integral operator of semiclassical order 0 with
compact microsupport in {|η| < R2}. That is, K1 is given by a sum of terms taking the
form in local coordinates

K1(ω, ω′, h) = h−(d−1)/2−N/2
∫

RN
ei�(ω,ω′,v)/ha(ω, ω′, v, h)dv (3.1)
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with respect to a suitable phase function � and a smooth compactly supported function
a. Here the phase function parametrizes L locally, meaning

(1) On the set Crit � := {
(ω, ω′, v) : Dv�(ω, ω′, v) = 0

}
, Dω,ω′,v� has rank N . This

implies that

L(�) := (ω, Dω�(ω,ω′, v), ω′, Dω′�(ω,ω′, v),�(ω, ω′, v)) (3.2)

is a smooth submanifold.
(2) L(�) = L at points for which a �= O(h∞).

By K1 having compact microsupport in the set {|η| < R2}, we mean specifically that if
(ω, η, ω′, η′, τ ) ∈ L has |η| = |η|′ > R2 and (ω, ω′, v) ∈ Crit(�) with (Dω,ω′�(ω,ω′,
vi ),�) = (η, η′, τ ), then a(ω, ω′, v, h) = O(h∞) in a neighbourhood of (ω, ω′, v).

Finally, K3 is a kernel in Ċ∞(Sd−1 × S
d−1 × [0, h0)), i.e. smooth and vanishing to

all orders at h = 0.
For the proof of Theorem 1.1 we need to know the principal symbol of K1 as a

semiclassical FIO. By (3.2), the canonical relation of K1, C , is the projection of L off
the R factor, i.e. onto T ∗

S
d−1 × T ∗

S
d−1. Precisely, with notation as in (2.4),

C = {
(ω, η, ω′,−η′)

}
. (3.3)

Lemma 3.1. The Maslov bundle of the canonical relation C of the FIO K1 is canonically
trivial, and with respect to this canonical trivialization, the principal symbol of K1 is
equal to 1, as a multiple of the Liouville half-density on C coming from either the left
or right projection of C to T ∗

S
d−1. That is to say,

σ(K1)(ω, η, ω′,−η′) = |dω dη|1/2 = ∣
∣dω′ dη′∣∣1/2

, (3.4)

for (ω, η, ω′,−η′) ∈ C such that |η| ≤ R1. (The two half-densities in (3.4) are equal
on C since C is a Lagrangian submanifold.)

Proof. Consider first the Maslov bundle of C . Notice that C is almost the same as L; in
fact, it is given by

C = {(ω, η, ω′,−η′) | ∃ τ such that (ω, η, ω′, η′, τ ) ∈ L}.
Since C is a canonical graph (i.e. the graph of a symplectomorphism), associated to the
scattering relation as in (2.2), it projects diffeomorphically to T ∗

S
d−1 via both the left

and right projections, and the lift of Liouville measure on T ∗
S

d−1 via the left projection
agrees with the lift via the right projection (since C is a Lagrangian submanifold of
T ∗

S
d−1×T ∗

S
d−1 and the Liouville measure can be expressed in terms of the symplectic

form T ∗
S

d−1), providing a canonical half-density on C . We also note that the scattering
relation is the identity whenever |η| ≥ R since then the corresponding bicharacteristic
is not affected by the potential. Therefore, over this part of C there is a canonical
trivialization of the Maslov bundle. Since the Maslov bundle is flat, we can use parallel
transport to extend this to a global trivialization: in fact, in the case d = 2, the space
T ∗

S
1 retracts to S

d−1 × {η > R}, while for d ≥ 3, T ∗
S

d−1 is simply connected, hence
in either case parallel transport provides an unambiguous trivialization.

We now consider the principal symbol of the scattering matrix. The scattering matrix
may be viewed as a ‘boundary value’ (after removing a vanishing factor and an oscillatory
term) of the Poisson operator, as in [10, Sect. 7.7 and Sect. 15]. The principal symbol of
the scattering matrix is correspondingly derived from the principal symbol of the Poisson
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operator. The principal symbol of the Poisson operator is real: it solves a real transport
equation with initial condition 1. Therefore, the principal symbol of the scattering matrix
is real, up to Maslov factors, i.e. it is a real number times an eighth root of unity. On the
other hand, unitarity of the scattering matrix shows that the principal symbol lies on the
unit circle (as a multiple of the canonical half-density); hence it is an eighth root of unity.
Finally, the principal symbol of the scattering matrix is equal to 1 for |η| ≥ R, since here
the scattering matrix is microlocally equal to the scattering matrix for the zero potential,
which is certainly equal to 1. Since the principal symbol is smooth, is restricted to eighth
roots of unity, and is 1 for |η| ≥ R, it follows that the principal symbol is equal to 1
everywhere. ��
Proof of Theorem 1.1. First we reduce the problem to the cases d = 2 and d = 3 as
follows. Writing βl,h,d for the eigenvalue βl,h in dimension d, observe that by (1.3),

βl,h,d+2k = βl+k,h,d for d ≥ 2, k ≥ 0. (3.5)

It follows that for d ≥ 4 even, we have βl,h,d = βl+(d−2)/2,h,2 and for d ≥ 5 odd, we
have βl,h,d = βl+(d−3)/2,h,3.

Consider the case dimension d = 2. For any smooth function G : R −→ R, the
function

�(ϕ, ϕ′, v) = (ϕ − ϕ′)v + G(v), (3.6)

parametrizes the Legendrian (see (3.2))

L(�) := {
(ϕ, η, ϕ′, η′, τ ) | η=v=−η′, ϕ′ − ϕ = dG

dv
(v), τ = −v

dG

dv
(v) + G(v)

}
.

(3.7)

With G as in (1.10), this gives an explicit global parametrization of the Legendrian
submanifold L in (2.4) if we take ϕ ∈ [0, 2π ], ϕ′ ∈ R. In this case the relation between
τ and � given by the last equation in (3.7) is

τ = −η�(η) + G(η) �⇒ d

dη
τ = −η

d

dη
�(η),

in agreement with (2.8). Therefore, plugging (3.6) into (3.1), the operator K1 takes the
form

K1(ϕ, ϕ′, h)=(2πh)−1
∫

R

ei((ϕ−ϕ′)v+G(v))/ha(ϕ−ϕ′, v, h) dv, ϕ ∈ [0, 2π ], ϕ′ ∈ R,

where a is smooth and supported in |v| ≤ R2. Notice that we may assume that a depends
only on (ϕ − ϕ′, v, h) since the scattering matrix and the phase function both have this
property.

Now we obtain an expression for the eigenvalue eiβl,h of the scattering matrix Sh on
Yl = (2π)−1/2eilϕ using

eiβl ,h = 〈ShYl , Yl〉 = 〈K1Yl , Yl〉 + 〈K2Yl , Yl〉 + 〈K3Yl , Yl〉. (3.8)

Clearly 〈K3Yl , Yl〉 = O(h∞). Consider the K1 term. Writing l = α/h gives

〈K1Yl , Yl〉
= (2πh)−1(2π)−1

∫

R

∫ 2π

0

∫

R

ei((ϕ−ϕ′)v+G(v)−α(ϕ−ϕ′))/ha(ϕ−ϕ′, v, h) dv dϕ dϕ′.
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Changing integration variables to (ϕ, ϕ̃ = ϕ − ϕ′), the kernel is independent of the first
of these variables, so that integrating in it simply removes the factor 2π . We are left with

〈K1Yl , Yl〉 = (2πh)−1
∫

R

∫

R

ei(ϕ̃v+G(v)−αϕ̃)/ha(ϕ̃, v, h) dv dϕ̃.

The phase is stationary at the point v = α,−ϕ̃ = G ′(v) = �(v) and the stationary
phase lemma shows that the integral is equal to

〈K1Yl , Yl〉 = eiG(α)/ha(−�(α), α, 0) + O(h) (3.9)

(noting that the Hessian of the phase function has determinant 1 and signature 0).
Next we write

〈K2Yl , Yl〉 = (2πh)−1(2π)−1
∫

ei(ϕ−ϕ′)v/hb(ϕ, v, h)e−iα(ϕ−ϕ′)/h dv dϕ dϕ′.

Here, the phase is stationary when α = v. However, b is supported where |v| ≥ R1 > R
while α ≤ R by hypothesis, so there are no stationary points on the support of the
integrand. It follows that 〈K2Yl , Yl〉 = O(h∞). Thus by (3.8),

eiβl,h = eiG(α)/ha(−�(α), α, 0) + O(h). (3.10)

The principal symbol of K1 as an FIO is given as a multiple of the Liouville half-
density on T ∗

S
1, |dϕ dη|1/2, by [11, Sect. 3]

σ(K1)(ϕ, η, ϕ + �(η),−η) = a(−�(η), η, 0)|dϕ dη|1/2. (3.11)

Indeed, the density dC defined on p. 143 of that paper equals |dϕ dη|, where we used
coordinates (x, θ) = (ϕ, ϕ′, v). The principal symbol is the image of the map from C to
� defined immediately following the definition of dC , in the notation of that paper. In
the notation of the current paper, C = Crit(�) and � is the projection of the Legendrian
L onto the first four coordinates, i.e. it is C from (3.3). It follows from Eqs. (3.11) and
(3.4) that

a(−�(η), η, 0) = 1. (3.12)

Combining (3.12) and (3.9), we see that

eiβl,h = eiG(α)/h + O(h), (3.13)

establishing (1.11).
We proceed to the case d = 3. In this case, we will obtain the eigenvalue eiβl,h

by pairing the scattering matrix Sh with the highest weight spherical harmonics Y l
l .

These concentrate along a great circle γ , which we parametrize by arclength, ϕ ∈
[0, 2π ]. Choose Euclidean coordinates in R

3 so that the two-plane spanned by γ is the
plane x3 = 0. Then Y l

l = cl(x1 + i x2)
l , where cl is a normalization factor, equal to

(2π)−1/2(πl)1/4(1 + O(l−1)). Let θ be the spherical coordinate equal to the angle with
the positive x3 axis. Then we can write

Y l
l (ϕ, θ) = cle

ilϕ(sin θ)l = cle
ilϕe−lg(θ), (3.14)

where g(θ) = − log sin θ = (θ − π/2)2/2 + O((θ − π/2)4).
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In particular, expression (3.14) shows (and it is in any case well known) that
the Y l

l concentrate semiclassically at the set {θ = π/2, ζ = 0, σ = α}, where
l = α/h + O(1). Here we use coordinates (σ, ζ ) dual to (ϕ, θ). To compute the pairing
(3.8) with Y l

l replacing Yl , we first need to determine an oscillatory integral expres-
sion for K1 that is valid in this microlocal region. (Note that the K2 and K3 terms
give an O(h∞) contribution as before.) So choose α0 distance ≥ ε from the set (1.12).
As we will see, it suffices to find a local parametrization of L in a neighbourhood
of

{θ = θ ′ = π/2, ζ = ζ ′ = 0, σ = −σ ′ = α0, ϕ − ϕ′ = �(α0)};

this is the set of incoming and outgoing data of bicharacteristics with angular momentum
α0 (see Sect. 2) which remain in the x3 = 0 plane. To define this parametrization, we
consider first a parametrization in two dimensions locally near a bicharacteristic with
angular momentum η = α. As we have seen such a two dimensional parametrization is
(ϕ − ϕ′)v + G(v), for v close to α. We note that when v = α, ϕ′ − ϕ = �(α), and we
can write it in the form

ϕ′ − ϕ = ± dist(ϕ, ϕ′) + 2πk (3.15)

for some integer k (recalling that the distance dist(ϕ, ϕ′) lies strictly between 0 and π ).
We now claim that a suitable phase function is

�(ω,ω′, v) = (∓ dist(ω, ω′) − 2πk)v + G(v), (3.16)

where v ∈ R is localized near α0, G(v) is as in (1.10), and the sign ∓ and the value of
k agree with the two-dimensional case. Indeed, on each two-plane, if we use spherical
coordinates (ϕ, θ) adapted to that 2-plane then the form of the phase function agrees by
construction with the two-dimensional phase function and therefore parametrizes that
part of L associated to that 2-plane (since the dynamics on each 2-plane is identical
to the d = 2 dynamics), that is, the subset (in the coordinates adapted to that 2-plane,
indicated by a bar)

{θ = θ
′ = π/2, ζ = ζ

′ = 0, ϕ′ − ϕ = �(α), σ = −σ ′ = α, τ = T (α)}. (3.17)

We now observe that we can eliminate k by redefining G(v) locally to be G(v)+2πkv,
which only has the irrelevant effect of changing � by 2πk (notice also that this does
not affect the eigenvalue formula involving eiG(lh)/h in the statement of Theorem 1.1).
From here on we only work with the + sign in (3.15), i.e. the − sign in (3.16), and k = 0.
Notice that this means that 0 < ϕ′ − ϕ < π and 0 < �(α) < π , i.e. sin �(α) > 0.
Returning to our spherical coordinates associated to the 2-plane x3 = 0, we can use the
spherical cosine law applied to the spherical triangle with vertices (ϕ, θ), (ϕ′, θ ′), and
the pole x3 = 1:

cos dist((ϕ, θ), (ϕ′, θ ′)) = cos(ϕ − ϕ′) sin θ sin θ ′ + cos θ cos θ ′

to write

�(ϕ, y, ϕ′, y, v)=− cos−1 (
cos(ϕ − ϕ′) sin θ sin θ ′+cos θ cos θ ′) v+G(v). (3.18)
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We can then write in these coordinates

L =
{
(ϕ, θ, ϕ′, θ ′, σ, ζ, σ ′, ζ ′, τ ) |,

σ = ∂ϕ� = − v

sin dist(ω, ω′)
(
sin(ϕ − ϕ′) sin θ sin θ ′),

ζ = ∂θ� = v

sin dist(ω, ω′)
(
cos(ϕ − ϕ′) cos θ sin θ ′ − sin θ cos θ ′),

σ ′ = ∂ϕ′� = v

sin dist(ω, ω′)
(
sin(ϕ − ϕ′) sin θ sin θ ′),

ζ ′ = ∂θ ′� = v

sin dist(ω, ω′)
(
cos(ϕ − ϕ′) cos θ ′ sin θ − sin θ ′ cos θ

)
,

τ = dist(ω, ω′)v + G(v)
}

where dist(ω, ω′) = G ′(v). (3.19)

(Notice that by direct inspection we see that this agrees with (3.17) when θ = θ ′ = π/2,
since then cos θ = cos θ ′ = 0 and dist(ω, ω′) = ϕ′ − ϕ = �(α) and so σ = v = α.)

The scattering matrix, microlocalized to this region of phase space, will then take the
form

(2πh)−3/2
∫

ei�(ω,ω′,v)/ha(ω, ω′, v, h) dv. (3.20)

In terms of this parametrization the principal symbol of (3.20), say where both ω and
ω′ lie near the great circle γ and hence where we can use coordinates (ϕ, θ, ϕ′, θ ′; σ, ζ,

σ ′, ζ ′, τ ), is given at the point (ϕ, π/2, ϕ + �(α)h, π/2, α, 0,−α, 0, τ (α)) by [11]

a(ϕ, π/2, ϕ + �(α), π/2, α, 0)e−iπ/4
∣
∣ds dθ dσ dζ

∣
∣1/2

∣
∣
∣ det

∂(ϕ, θ, σ, ζ, dv�)

∂(ϕ, θ, ϕ′, θ ′, v)

∣
∣
∣
−1/2

,

(3.21)

where the e−iπ/4 is a Maslov factor; see Remark 3.2 for more discussion about this.
We need to compute the determinant above. We can disregard the repeated coordinates
(ϕ, θ) and compute, using (3.19),

det
∂(σ, ζ, dv�)

∂(ϕ′, θ ′, v)
= det

⎛

⎜
⎝

0 0 −1
0 −v

sin(ϕ′−ϕ)
0

−1 0 G ′′(v)

⎞

⎟
⎠

= v

sin(ϕ′ − ϕ)
= α

sin �(α)
at θ = θ ′ = π

2
. (3.22)

It follows that the principal symbol is

a(ϕ, π/2, ϕ + �(α), π/2, α, 0)e−iπ/4
( α

sin �(α)

)−1/2∣
∣ds dθ dσ dζ

∣
∣1/2

. (3.23)

Then by Eq. (3.4)

a(ϕ, π/2, ϕ + �(α), π/2, α, 0)e−iπ/4 =
( α

sin �(α)

)1/2
. (3.24)
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We next write the contribution of K1 to the expression (3.8) for the eigenvalue eiβl,h .
Writing l = α/h and using (3.14) we get

〈K1Y l
l , Y l

l 〉 = (2πh)−3/2
∫

ei�(ϕ,θ,ϕ′,θ ′,v)/he−iα(ϕ−ϕ′)/h
( α

πh

)1/2
(2π)−1

×e−αg(θ)/he−αg(θ ′)/ha(ϕ, θ, ϕ′, θ ′, v, h) ds dϕ′ dθ dθ ′ dv (1 + O(h)) .

(3.25)

Here the factors (α/πh)1/2(2π)−1 are to normalize the functions Y l
l in L2. We will

analyze this using the stationary phase lemma with complex phase function, see e.g.
[12, Thm. 7.7.5]. Here the phase is

�(ϕ, θ, ϕ′, θ ′, v) = � − α(ϕ − ϕ′) + iα(g(θ) + g(θ ′)). (3.26)

Notice that the integrand as a function of (ϕ, ϕ′) depends only on ϕ−ϕ′ by the rotational
invariance of the scattering matrix, and the form of the Y l

l which take the form eilϕ

times a function of θ . We change variable to (ϕ, ϕ̃), ϕ̃ = ϕ − ϕ′ and integrate out
the variable ϕ, giving us a factor of 2π . Then � has nondegenerate stationary points
in the remaining variables (ϕ̃, θ, θ ′, v). The imaginary part of the phase is stationary
only at θ = θ ′ = π/2, while stationarity of the real part requires that v = α and
−ϕ̃ = G ′(v) = �(α). The stationary phase lemma then gives us that (3.25) is equal to

2π

(

(2πh)−3/2
( α

πh

)1/2
(2π)−1

)

(2πh)2

×
(

eiG(α)/h 1

det(−i D2�)1/2 a(ϕ, π/2, ϕ + �(α), π/2, α, 0) + O(h)

)

. (3.27)

Here, to keep track of constants, we have written out all constants in (3.25); the first 2π

comes from the integral in ϕ and the (2πh)2 comes from the leading term in stationary
phase in the four variables (ϕ̃, θ, θ ′, v). Simplifying the constants and using (3.24) this
is equal to

(
2α2

sin �(α)

)1/2 (
eiG(α)/h

(det −i D2�)1/2 + O(h)

)

. (3.28)

We will show that, in the above expression

det −i D2�(ϕ, 0, ϕ + �(α), 0, α) = 2iα2

sin �(α)
e−i�(α). (3.29)

Accepting this for the moment, we obtain from (3.27),

eiβl,h = eiG(α)/hei�(α)/2 + O(h).

Since �(α) = G ′(α) and α = lh, this can be written

eiβl,h = eiG((l+1/2)h)/h + O(h), (3.30)

completing the proof of Theorem 1.1.
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It remains to prove the formula for the Hessian in (3.29). First we notice that when
θ = θ ′ = π/2 we have, using the formula in (3.18) for the distance function, in the
coordinates (ϕ̃, θ, θ ′),

D2 dist(ϕ, π/2, ϕ + �(α), π/2) =
⎛

⎝
0 0 0
0 cot �(α) − csc �(α)

0 − csc �(α) cot �(α)

⎞

⎠ . (3.31)

From this, (3.16), and (3.26), we conclude that in the (v, ϕ̃, y, y′) coordinates

D2� =

⎛

⎜
⎜
⎝

G ′′(v) 1 0 0
1 0 0 0
0 0 −α cot �(α) + iα α csc �(α)

0 0 α csc �(α) −α cot �(α) + iα

⎞

⎟
⎟
⎠ . (3.32)

Thus

det −i D2� = −α2
(

cot2 �(α) − 2i cot �(α) − 1 − csc2 �(α)
)

= 2iα2

sin �(α)
e−i�(α)

and (3.29) holds. ��
Remark 3.2. The Maslov factor in (3.21) and (3.24) arises as follows. First, Lemma 3.1
shows that the Maslov bundle over L is canonically trivial. However, unlike in the
case d = 2, there is a nontrivial Maslov factor from comparing our phase function
� above to one—let us call it �̃—that agrees with the canonical phase function, i.e.
the pseudodifferential phase function, for |η| ≥ R. By [11, Thm. 3.2.1], the principal
symbol written relative to � contains the Maslov factor eiπσ/4, where σ is the difference
of signatures,

σ = sgn D2
vv� − sgn D2

w̃w̃�̃,

where w̃ = (w̃1, w̃2) are the phase variables for �̃. A tedious computation shows that
σ = −1, leading to the Maslov factor in (3.21) and (3.24). (We remark that since �

depends on one phase variable and �̃ on two phase variables, by [11, Eq. (3.2.12)] σ

is odd, so the Maslov factor cannot vanish in this case.) Of course, the Maslov factors
are irrelevant to the question of equidistribution, but they are relevant to the question of
determining the eigenvalues modulo O(h).

Proof of Proposition 1.5. In view of the remarks in the proof of Theorem 1.1, specifically
Eq. (3.5), it is only necessary to do this in the cases d = 2 and d = 3. For definiteness,
we write down the proof for d = 3; it is similar, and in fact simpler, for d = 2. Consider
a spherical harmonic Y l

l with hl ≥ R + hκ , where κ < 1. The eigenvalue eiβl,h is given
by (3.8) with Y l

l replacing Yl .
First assume that hl ≥ R′ > R. Then the K1 term in (3.8) will be O(h∞) (for a

suitable decomposition of Sh = K1 + K2 + K3 as above, with R2 < R′), so we only have
to consider the K2 term. This is given by a pseudodifferential operator with symbol equal
to 1 + O(h∞), so the 〈Y l

l , K2Y l
l 〉 term is equal to 1 + O(h∞), proving the proposition in

this case.



Approximation and Equidistribution of Phase Shifts: Spherical Symmetry 225

Next assume that R + hκ ≤ hl ≤ R′
1. For R′ < R1, the K2 term in (3.8) will be

O(h∞) (for some other decomposition of Sh , with R1 > R′), so we only need to consider
the K1 term. That is, it remains to show that

〈(K1 − Id)Y l
l , Y l

l 〉 = O(h∞) for R + hκ ≤ hl.

Using as above polar coordinates (ϕ, θ) on S2 with dual coordinate (σ, ζ ), we find a
phase function � for K1 that parametrizes L microlocally in the region

{|(σ, ζ )|g ≥ R − δ}
for fixed small δ > 0. Indeed, since L is given by the diagonal relation

{
ϕ = ϕ′, θ = θ ′, σ = −σ ′, ζ = −ζ ′, τ = 0

}
for

{|(σ, ζ )|g ≥ R
}
, (3.33)

it follows that the functions (ϕ, θ, σ ′, ζ ′) furnish local coordinates on the Legendrian L
for {|(σ, ζ )|g ≥ R} and therefore, by continuity, for {|(σ, ζ )|g ≥ R − δ} for some small
δ > 0. It then follows from [13, Thm. 21.2.18] that L can be parametrized by a phase
function of the form

−ϕ′v − θ ′w + H(ϕ, θ, v,w).

Since K1 is pseudodifferential for |(σ ′, ζ ′)|2g = ζ ′2 + (sin θ ′)−2σ ′2 ≥ R2 (i.e. L satisfies
(3.33)), we have

v ≥ R sin θ ′ �⇒ H = ϕv + θw and b = 1 + O(h∞).

Thus

〈(K1 − Id)Y l
l , Y l

l 〉
=

∫ (

ei
(
−ϕ′v−θ ′w+H(ϕ,θ,v,w)

)
/hb(ϕ′, θ ′, v, w, h) − ei

(
(ϕ−ϕ′)v+(θ−θ ′)w

)
/h

)

× cle
iα(g(θ)+g(θ ′))/h dϕ dθ dϕ′ dθ ′ dv dw

(2πh)3 + O(h∞). (3.34)

As above we have written l = α/h; hence α > R + hκ .
We insert cutoff functions by writing

1 = χ

(
v − R sin θ ′

hκ

)

+ (1 − χ)

(
v − R sin θ ′

hκ

)

,

where χ(t) is supported in t ≤ 1/2, equal to 1 for t ≤ 1/4. With the cutoff χ inserted,
the phase function is nonstationary on the support of the integrand, since stationarity
requires that v = α. It follows that we can integrate by parts arbitrarily many times,
using the fact that the differential operator

1

v − α

h

i

∂

∂ϕ′

leaves both exponential factors invariant; doing this gains a factor of h1−κ each time
since α − v ≥ hκ/2 on the support of the integrand. Thus the χ term is O(h∞).
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With the cutoff 1 − χ inserted, we write the integral in (3.34) in the form
∫

ei
(
(ϕ−ϕ′)v+(θ−θ ′)w

)
/h

(

ei
(

H(ϕ,θ,v,w)−ϕv−θw
)
/hb(ϕ′, θ ′, v, w, h) − 1

)

× cl(1 − χ)

(
v − R sin θ ′

hκ

)

eiα(g(θ)+g(θ ′))/h dϕ dθ dϕ′ dθ ′ dv dw

(2πh)3 . (3.35)

We claim that the factor
(

ei
(

H(ϕ,θ,v,w)−ϕv−θw
)
/hb(ϕ′, θ ′, v, w, h) − 1

)

× (1 − χ)

(
v − R sin θ ′

hκ

)

is O(h∞). In fact, the term in the large brackets is O(h∞) for v ≥ R sin θ ′, while if
v ≤ R sin θ ′, then the 1 − χ term vanishes identically. It follows that the 1 − χ term is
also O(h∞), completing the proof of Proposition 1.5. ��
Remark 3.3. The reader may wonder whether a direct ODE attack on (1.3) might be
simpler and more straightforward than our FIO approach to this problem, given that
our approach relies on [10, Thm. 15.6], which in turn rests on a significant amount of
machinery. By contrast the WKB expansion for the solution yields the approximation
for the eigenvalues in Theorem 1.1 in a straightforward fashion. However, although it is
not hard to write down a WKB approximation to the solutions of (1.3), it seems (to the
authors) that proving rigorous error bounds for such WKB expansions is rather subtle.
The problem is that to prove such bounds, one must solve away the error term, that is, get
good estimates on the solution to the inhomogeneous ODE where the inhomogeneous
term (the error term when the WKB approximation is substituted into (1.3)) is O(hN ) for
some sufficiently large N . Notice that the ODE (1.3) might have several turning points,
and the desired solution is governed by a boundary condition f ′(0) = 0 at the origin, so
one needs to understand the behaviour of the solution passing through possibly several
turning points. Since the solutions may grow exponentially in the non-interaction region,
this does not seem to be easy or straightforward, and we are not aware of anywhere in
the literature where this has been written down. Carrying out this procedure would
certainly be a worthwhile enterprise, but we have chosen instead to build on the above-
mentioned theorem about the semiclassical scattering matrix which is already available
in the literature.

Other features recommend the FIO approach in this context. First, the relationship
between the scattering angle and the phase-shifts is made transparent here, or at least
it is ‘reduced’ to the fact that the integral kernel of Sh is a semi-classical FIO whose
canonical relation ‘contains’ the scattering angle, while on the other hand from the
formula produced by the WKB this relationship is not immediately apparent. More
importantly, FIO methods will be essential in treating the noncentral case, which we
intend to do in future work, and the symmetric case under consideration is a situation in
which Sh can be understood almost explicitly.

4. Equidistribution

If ω = {
e2π i x1 , . . . , e2π i xK

}
is any set of K points on S

1, then the discrepancy D(ω)

is defined by

D(ω) := sup
0≤φ0<φ1≤2π

∣
∣
∣
∣

N (φ0, φ1;ω)

K
− φ1 − φ0

2π

∣
∣
∣
∣ , (4.1)
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where N (φ0, φ1;ω) is the number of points in ω with argument in [φ0, φ1] (modulo 2π ),
counted with multiplicity. We state the following lemma in slightly more generality then
is necessary for semiclassical potentials so that we may apply it without significant
modification to the case of scattering by the disk.

Lemma 4.1. Let G : [0, R) −→ R be smooth and assume that
{
α : G ′′(α) = 0

}
is finite in [0, R). (4.2)

Consider the points xlk on the unit circle

Eh = {xlk := exp (iG(lh)/h) : 0 ≤ lh < R, k = 1, . . . , pd(l)} , (4.3)

included according to multiplicity. Here pd(l) = dim ker
(
�Sd−1 − l(l + d − 2)

)
.

Then the sets Eh equidistribute as h → 0. That is, the discrepancy satisfies

lim
h→0

D(Eh) = 0. (4.4)

To apply the lemma to the eigenvalues of the scattering matrix Sh , we must show
that they still equidistribute despite satisfying only the weaker asymptotic condition in
Theorem 1.1.

Proposition 4.2. Let S ⊂ [0, R] be a finite set and let

Ẽh = {̃xlk : 0 ≤ lh ≤ R, k = 1, . . . , pd(l)} (4.5)

be a collection of points on S
1 (included according to multiplicity), such that for any

ε > 0, if l satisfies dist(lh, S) ≥ ε then

x̃lk = exp i(G(lh)/h) + E(l, h)),

where |E(l, h)| < C(ε)h. Then, if G satisfies condition (4.2) in Lemma 4.1,

lim
h→0

D(Ẽh) = 0.

We will use the following notation. With any set S as above, let

Eh(ε) := Eh ∩ {xlk : dist(lh, S) ≥ ε} and Ẽh(ε) := Ẽh ∩ {̃xlk : dist(lh, S) ≥ ε},
(4.6)

always understood to include points according to multiplicity.

Proof of Proposition 4.2. assuming Lemma 4.1 The error bound |E(l, h)| < C(ε)h
shows that, for every ε > 0, there is a constant C = C(ε, S) > 0 so that

N (φ0 + Ch, φ1 − Ch; Eh(ε)) ≤ N (φ0, φ1; Ẽh(ε))

≤ N
(

max(φ0 − Ch, 0), min(φ1 + Ch, 2π); Eh(ε)
)
.

Dividing through by 2(R/h)d−1/(d −1)!, subtracting (φ1 −φ0)/2π , and taking h small
gives
∣
∣
∣
∣
∣

N (φ0, φ1; Ẽh(ε))

2(R/h)d−1/(d−1)! −
φ1−φ0

2π

∣
∣
∣
∣
∣
≤ max

{∣
∣
∣
∣

N (φ0 + Ch, φ1 − Ch; Eh(ε))

2(R/h)d−1/(d − 1)! − φ1−φ0

2π

∣
∣
∣
∣ ,

∣
∣
∣
∣

N (φ0−Ch, φ1+Ch; Eh(ε))

2(R/h)d−1/(d−1)! − φ1−φ0

2π

∣
∣
∣
∣

}

≤ D(Eh(ε)) + (1 + C(ε))O(h) + O(ε),
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uniformly in h and ε, where for the second inequality we used

|Eh(ε)| = 2Rd−1

hd−1(d − 1)! (1 + O(h) + O(ε)) , (4.7)

where |Eh(ε)| is the number of points in Eh(ε). Similarly, D(Eh) = D(Eh(ε)) + O(h) +
O(ε) for h, ε small, and the same is true for Ẽh . Thus

∣
∣
∣
∣
∣

N (φ0, φ1; Ẽh)

2(R/h)d−1/(d − 1)! − φ1 − φ0

2π

∣
∣
∣
∣
∣
≤ D(Eh) + (1 + C(ε))O(h) + O(ε). (4.8)

Thus

lim sup
h→0

D(Ẽh) = O(ε),

and as ε > 0 was arbitrary, we obtain the result. ��
Remark 4.3. Note that the proof gives no information about the exact vanishing rate of
D(Ẽh) as h → 0. For this, one must have information on the dependence of C(ε) on
ε, and then optimize in ε in (4.8) as h → 0. This is what we do in Sect. 6 to obtain
improved remainders in the case of scattering by the disk.

To prove Lemma 4.1, we use theorems from [14]. The following theorem follows
from [14, Ch. 2, Eq. 2.42]:

Theorem 4.4 (Erdös–Turán). There is a constant c > 0 such that if

ω =
{

e2π i x1 , . . . , e2π i xN
}

is a finite sequence of N points on S
1 and m is any positive integer, then

D(ω) ≤ c

⎛

⎝ 1

m
+

m∑

j=1

1

j

∣
∣
∣
∣
∣

1

N

N∑

l=1

e2π i j xl

∣
∣
∣
∣
∣

⎞

⎠ . (4.9)

To bound the exponential sums that appear on the right hand side of (4.9), we use
[14, Ch. 1, Thm. 2.7], namely

Theorem 4.5. Let a and b be integers with a < b, and let f be twice differentiable on
[a, b] with

∣
∣ f ′′(x)

∣
∣ ≥ ρ > 0 for x ∈ [a, b]. Then
∣
∣
∣
∣
∣

b∑

l=a

e2π i f (l)

∣
∣
∣
∣
∣
≤ (∣

∣ f ′(b) − f ′(a)
∣
∣ + 2

)
(

4√
ρ

+ 3

)

. (4.10)

We also need [14, Thm. 2.6] (with minor modifications in notation):

Theorem 4.6. For 1 ≤ i ≤ k, let ωi be a set of |ωi | points on S
1 with discrepancy D(ωi ).

Let ω be a concatenation of ω1, . . . , ωk , that is, a set obtained by listing in some order
the terms of the ωi . Then

D(ω) ≤
k∑

i=1

|ωi |
|ω| D(ωi ), (4.11)

where |ω| is the number of points in ω.
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Proof of Lemma 4.1. We begin by assuming that G ′′ has no zeroes in the open interval
(0, R).

We first analyze the subset Eh(ε) ⊂ Eh defined in (4.6). Define

ρ̃ = ρ̃(ε) = min
ε≤α≤R−ε

∣
∣G ′′(α)

∣
∣ ,

κ̃ = κ̃(ε) = 2 max
ε≤α≤R−ε

∣
∣G ′(α)

∣
∣ .

(4.12)

We will show that for each γ ∈ (0, 1) there is a constant c = c(γ ) > 0 so that for each
ε > 0,

D(Eh(ε)) < c
(

hγ + κ̃ ρ̃−1/2h1/2−γ /2 + ρ̃−1/2h1/2 + κ̃h1−γ
)

. (4.13)

Since Eh(ε) − Eh = h−d+1(O(ε) + O(h)), for some c = c(γ ) > 0 independent of ε we
have

D(Eh) = sup
0≤φ0<φ1≤2π

∣
∣
∣
∣

N (φ0, φ1; Eh)

|Eh | − φ1 − φ0

2π

∣
∣
∣
∣

≤ c(ε + h) + D(Eh(ε)), (4.14)

showing that

lim sup
h→0

D(Eh) ≤ cε.

Since ε > 0 is arbitrary, this gives (4.4). Thus it remains to prove (4.13).

Case 1. dimension d = 2 Note that when d = 2 the multiplicity of the eigenspaces is
p2(l) = 1 if l = 0 and 2 otherwise, so that

|Eh(ε)| = 2 (�(R − ε)/h� − �ε/h� + 1) .

We apply Theorem 4.4 with ω = Eh(ε), so that, in the notation of Theorem 4.4, xl =
G(lh)/(2πh). Thus

D(Eh(ε)) ≤ c

⎛

⎝ 1

m
+

m∑

j=1

1

j

∣
∣
∣
∣
∣
∣

1

�(R − ε)/h� − �ε/h� + 1

�(R−ε)/h�∑

l=�ε/h�
ei jG(lh)/h

∣
∣
∣
∣
∣
∣

⎞

⎠ .

Then we apply Theorem 4.5 with f (x) = ( j/2π)G(xh)/h, a = �ε/h�, and b =
�(R − ε)/h�. Thus, if xh ≤ R − ε then

∣
∣ f ′′(x)

∣
∣ = hj

∣
∣G ′′(xh)

∣
∣ /2π ≥ hj ρ̃/2π , which

equals ρ in the notation of Theorem 4.5. It follows that

D(Eh(ε)) ≤ c

⎛

⎝ 1

m
+

h

R − 2ε − h

m∑

j=1

1

j

(
j κ̃

π
+ 2

) ((
32π

hj ρ̃

)1/2

+ 3

)⎞

⎠ . (4.15)

By letting m = �h−γ � for any γ > 0, we obtain (4.13).
Finally, suppose there are a finite number of points 0 < a1 < · · · < an−1 < R

with G ′′(αi ) = 0, and let a0 = 0, an = R. Note that, if we define Eh(a, b) to be
the set of xl,k with a ≤ lh ≤ b, counted with multiplicity, then the above argu-
ments show that limh→0 D(Eh(a, b)) = 0; in fact if ρ̃(ε, h) (resp. κ̃) is defined to
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be mina+ε≤α≤b−ε

∣
∣G ′′(α)

∣
∣ (resp. max

∣
∣G ′(α)

∣
∣), then the proof is the same. The lemma

in the d = 2 case now follows from Theorem 4.6 since by (4.11),

D(Eh) ≤
n∑

i=1

D(Eh(ai−1, ai )).

The proof is now complete in the case d = 2.

Case 2. dimension d > 2 As in the d = 2 case, we begin by assuming that G ′′(α) has
zeroes only at 0 and R. We now have to deal with the increasing multiplicities pd(l).

We will apply Theorem 4.6 to D(Eh(ε)) decomposed as a superposition in the fol-
lowing way. It will be convenient to set

N := �(R − ε)/h�. (4.16)

Define

ω(n) :=
{

eiG(lh)/h : n ≤ l ≤ N�
}

with unit multiplicity. Note that ω(n) has N − n + 1 elements. Setting

ω1 = ω(0),

ω2 = · · · = ωpd (1) = ω(1),

ωpd (1)+1 = · · · = ωpd (2) = ω(2)

...

ωpd (N−1)+1 = · · · = ωpd (N ) = ω(N ),

we see that the set Eh(ε) is the superposition of the sets ω1, . . . ωpd (N ).

The discrepancy D(ω(n)) can be estimated using the method from the d = 2 case.
In particular, as in (4.15) we see that for any positive integer m,

D(ω(n)) ≤ c

⎛

⎝ 1

m
+

m∑

j=1

1

(N − n + 1) j

∣
∣
∣
∣
∣
(κ̃ j + 2)

((
32

jcρ̃h

)1/2

+ 3

)∣
∣
∣
∣
∣

⎞

⎠ . (4.17)

By Theorem 4.6, we have

D(Eh(ε)) ≤
pd (N )∑

i=0

|ωi |
|Eh(ε)| D(ωi )

≤ 1

|Eh(ε)|
N∑

n=0

|ω(n)| (pd(n) − pd(n − 1))D(ω(n))

≤ chd−1
N∑

n=1

(N − n + 1)(n + 1)d−3 D(ω(n)). (4.18)

Substituting the estimate (4.17) into (4.18), again with m = �h−γ � for some fixed
γ ∈ (0, 1), we end up with five terms to deal with corresponding to the five terms in the



Approximation and Equidistribution of Phase Shifts: Spherical Symmetry 231

right hand side of (4.17). For all of these we use standard bounds for sums of polynomials
and N ∼ c/h. The easiest is the 1/m term, since

hd−1
N∑

n=1

(N − n + 1)(n + 1)d−3hγ ≤ chγ . (4.19)

Next we do the terms involving ρ̃. There is

hd−1
N∑

n=1

(N − n + 1)(n + 1)d−3
�h−γ �∑

j=1

1

(N − n + 1) j
(κ̃ j)

(
32

jcρ̃h

)1/2

≤ chd−1κ̃

N∑

n=1

(n + 1)d−3
�h−γ �∑

j=1

(
32

j ρ̃h

)1/2

≤ chd−1κ̃

(
1

ρ̃h

)1/2 N∑

n=1

(n + 1)d−3
�h−γ �∑

j=1

j−1/2

≤ c

(
1

ρ̃

)1/2

κ̃h1/2−γ /2, (4.20)

and

hd−1
N∑

n=1

(N − n + 1)(n + 1)d−3
�h−γ �∑

j=1

2

(N − n + 1) j

(
32

jcρ̃h

)1/2

≤ hd−1c

(
1

ρ̃h

)1/2 N∑

n=1

(n + 1)d−3
�h−γ �∑

j=1

j−3/2

≤ c

(
1

ρ̃

)1/2

h−1/2. (4.21)

The other terms are

hd−1
N∑

n=1

(N − n + 1)(n + 1)d−3
�h−γ �∑

j=1

1

(N − n + 1) j
(κ̃ j) × 3

≤ cκ̃h1−γ ≤ cκ̃h1/2−γ /2, (4.22)

and

hd−1
N∑

n=1

(N − n + 1)(n + 1)d−3
�h−γ �∑

j=1

6

(N − n + 1) j
≤ ch log(1/h). (4.23)

Combining (4.19)–(4.23) with (4.18) gives (4.13).
We take care of the case of a non-trivial number of zeroes of G ′′ on [0, R] exactly as

in the d = 2 case. This completes the proof of Lemma 4.1. ��
We can now prove Theorem 1.2.
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Proof of Theorem 1.2. By Theorem 1.1, the eigenvalues of the scattering matrix for
0 ≤ l ≤ R/h are given by

exp

{
i

h

(

G
(
(l +

d − 2

2
)h

)
)}

+ O(h)

in the case of even dimension d, and the same in odd dimensions away from any ε

neighbourhood of the set S = {α | G ′(α)/π ∈ Z}, where α = l/h. Since by assumption
� = G ′ satisfies (1.9), G satisfies (4.2), so the conclusion of Lemma 4.1 holds for G.
Finally, (4.2) implies that S is a finite set, so we can apply Proposition 4.2, proving (1.13)
and hence Theorem 1.2. ��

5. Examples of Potentials that Satisfy Assumption 1.9

We use expression (2.6) for the scattering angle to prove

Proposition 5.1. Suppose that on the region of interaction R the potential V satisfies

V ′(r) ≤ 0 and (V ′)2 + (1 − V )(V ′ + r V ′′) > 0 for r < R. (5.1)

Then �′(α) < 0 for α ∈ [0, R).
The conditions in (5.1) hold in particular for V = cW , where c is sufficiently large

and where W (r) = 0 for r ≥ R, W (r) > 0 for 0 ≤ r < R and W ′′(r) is positive and
monotone decreasing in some nonempty interval [R − ε, R). An explicit example is

W (r) =
{

e1/(r2−R2), r < R
0, r ≥ R.

Proof. In (2.6), set s = r/rm , so

�(α) = π − 2
∫ ∞

rm

α

(srm)2
√

1 − α2/((srm)2 − V (srm)
d(srm)

= π − 2
∫ ∞

1

α

s2
√

r2
m − α2/s2 − r2

m V (srm)
ds.

Differentiating under the integral sign gives

−1

2
�′(α) =

∫ ∞

1

(
1

s2
√

r2
m − α2/s2 − r2

m V (srm)

−α

2

2rmr ′
m − 2α/s2 − 2rm V (srm)r ′

m − r2
msV ′(srm)r ′

m

s2
(
r2

m − α2/s2 − r2
m V (srm)

)3/2

)

ds

=
∫ ∞

1

(
r2

m(1 − V (srm)
) − αrmr ′

m(1 − V (srm) − 1
2rmsV ′(srm))

s2
(
r2

m − α2/s2 − r2
m V (srm)

)3/2 ds.

Differentiating

1 − α2/r2
m − V (rm) = 0 (5.2)
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shows αrmr ′
m = α2

(
1 − V (rm) − 1

2rm V ′(rm)
)−1

. Plugging this in gives

−1

2
�′(α) =

∫ ∞

1

(

r2
m(1 − V (srm)) − α2 1 − V (srm) − 1

2rmsV ′(srm)

1 − V (rm) − 1
2rm V ′(rm)

)

× 1

s2
(
r2

m − α2/s2 − r2
m V (srm)

)3/2 ds

and using (5.2) again shows that (1/2)�′(α) is equal to
∫ ∞

1

1 − V (srm) − 1
2 rmsV ′(srm)

s2
(
r2

m − α2/s2 − r2
m V (srm)

)3/2

×
(

1 − V (srm)

1 − V (srm) − 1
2 rmsV ′(srm)

− 1 − V (rm)

1 − V (rm) − 1
2 rm V ′(rm)

)

r2
mds

=
∫ ∞

rm

1 − V (r) − 1
2 r V ′(r)

r2
(
1 − α2/r2 − V (r)

)3/2

(
1−V (r)

1 − V (r) − 1
2 r V ′(r)

− 1 − V (rm)

1 − V (rm) − 1
2 rm V ′(rm)

)

dr.

Differentiating the expression (1 − V (r))/(1 − V (r) − 1
2r V ′(r)) with respect to r and

using V ′ ≤ 0, we see that the integrand is positive if for rm < r < R if

r(V ′)2 + (1 − V )(V ′ + r V ′′) > 0. (5.3)

These conditions are implied by (5.1) in the first paragraph of the proposition.
To check that the condition in the second paragraph is sufficient, observe the follow-

ing. If V (r) ≥ 0, V ′(r) < 0 and V ′′(r) > 0 on some open interval (R −ε, R), it follows
that for r sufficiently close to R, that V ′ + r V ′′ > 0. By picking large enough c > 0,
(5.3) will hold on the region of interaction R. ��
Remark 5.2. One can ask whether there exist potentials for which equidistribution fails.
It is clear from Theorem 1.1 that the scattering matrix for V will fail to be equidistributed
if the scattering angle �(α) associated to V is equal to a constant rational multiple of
2π on some interval with α < R. So we can ask whether there exists such a potential.
Let S be the map (2.6) taking V to its scattering angle �. Linearizing S at the zero
potential gives an integral operator which is an elliptic pseudodifferential operator of
order 1/2 (apart from an extra singularity at r = α = 0). This makes it seem likely to
the authors that the range of S is quite large, very likely including scattering angles such
as described above that would imply non-equidistribution.

6. Scattering by the Disk

In this section we will prove Theorem 1.8 from the Introduction. We restrict our attention
to the ball of radius 1, since the phase shifts for the ball of radius R can be obtained
from those for R = 1 by a scaling argument.

Here we use an ODE analogous to that in (1.3) to give a formula for the eigenvalues.
In fact, for any smooth solution fl to �Sd−1 fl = l(l + d − 2) fl , a straightforward
computation shows that

Sk( fl) = − H (1)
l+(d−2)/2(k)

H (2)
l+(d−2)/2(k)

fl , (6.1)
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where the H (i)
ν are Hankel functions of order ν [1]. It follows that

Sk( fl) = eixk,l fl , xk,l = 2 arg H (1)
l+(d−2)/2(k) + π. (6.2)

We now prove the first part of Theorem 1.8, which amounts to determining the
asymptotics of the argument of the Hankel function when l/k ≤ 1 − k−1/3. Let us
define in this section ν = l + (d −2)/2 and α = ν/k, and study the range α ≤ 1−k−1/3.

We first consider the range whereα is small, sayα ≤ 3/4. Then we use the expressions
[1, 9.1.22] for Jν and Yν to derive

H (1)
αk (k) = 1

π

∫ π

0
eik(sin θ−αθ) dθ −

(
integrals from 0 to ∞

)
.

It is easy to bound the integrals from 0 to ∞ by O(k−1) uniformly for α ≤ 3/4. On the
other hand, stationary phase applied to the θ integral gives

H (1)
αk (k) =

√
2

πk
(1 − α2)−1/4eik(

√
1−α2−α cos−1 α)e−iπ/4 + O(k−1),

from which it follows that

2 arg H (1)
αk (k) = 2k(

√
1 − α2 − α cos−1 α) − π/2 + O(k−1/2) (6.3)

in this range. In view of (6.2) and (1.17) this proves (1.16) in the range α ≤ 3/4.
In the range 1/2 ≤ α ≤ 1−k−1/3, we use the asymptotic formulae [1, 9.3.35, 9.3.36]

which shows that

H (1)
αk (k)=

( −4ζ

α−2 − 1

)1/4
ν−1/3

(
(Ai−i Bi)(ν2/3ζ )

)
(1 + O(k−2)) + O(k−3/2), ν =αk,

(6.4)

where ζ = ζ(α) is defined by

2

3
(−ζ )3/2 =

∫ α−1

1

√
t2 − 1

t
dt =

√
α−2 − 1 − cos−1(α); (6.5)

notice that ζ is real and negative for α < 1, and −ζ ∼ c(1 − α) for some positive c as
α → 1. To derive (6.4) from [1, 9.3.35, 9.3.36] we used the fact that ζ lies in a compact
set in this range of α, that the ak and bk are therefore uniformly bounded, that ν and k
are comparable when α ∈ [1/2, 1] and finally that we have bounds

| Ai′(ν2/3ζ )| + | Bi′(ν2/3ζ )| ≤ Cν1/6

uniformly for ζ in this range—see [1, 10.4.62, 10.4.67]. It follows that

2 arg H (1)
αk (k) = 2

(
(Ai −i Bi)

(
α2/3k2/3ζ

) )
+ O(k−7/6).

Finally using the asymptotics [1, 10.4.60, 10.4.64], we get

(Ai −i Bi)
(
α2/3k2/3ζ

)

=
(
αk(−ζ )3/2

)−1/6

π1/2

(

(−i)ei
(

2
3 αk(−ζ )3/2+π/4

)

+ O
(

k−1(−ζ )−3/2
) )

.
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It follows, using the explicit expression for ζ(α) in (6.5), that

2 arg H (1)
αk (k) = 2k

(√
1 − α2 − α cos−1(α)

) − π/2 + O(k−1(1 − α)−3/2).

Since we have taken 1 − α ≥ k−1/3, that gives us (1.16). (Pleasingly, we get the same
expression as in (6.3), a useful check on the computations.)

We now turn to the proof of equidistribution. We first note that, as in the proof of
Proposition 4.2 (with S = {1} and ε = k−1/3) the discrepancy of the exact eigenvalues
eixk,l is equal to that of the approximate eigenvalues eikGb(α)−π/2 up to an error O(k−1/3)

which is acceptable. So it suffices to prove (1.18) for the approximations eikGb(α)−π/2.
We apply (4.13), using

κ̃ ≤ max
0≤α≤1

|G ′| ≤ π,

ρ̃ ≥ min
0≤α≤1

G ′′(α) ≥ c > 0.
(6.6)

This means that in (4.13), ρ̃(ε, 1/k) ≥ c > 0 and κ̃(ε, 1/k) ≤ π for all ε, and thus for
any 0 < γ < 1,

D(E1/k(ε)) ≤ C
(

k−γ + k−1/2+γ /2
)

. (6.7)

Choosing γ = 1/3 completes the proof.
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