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sensitively smaller than the dimensions of the hydrody-
namic trap, due to the dipole–dipole interaction, the cell 
can be organized in 3D structures. The trapping method can 
be used for conducting genetic, biochemical or physiologi-
cal studies on cells.

Keywords Dielectrophoresis · Cell patterning · 
Microfluidic device · Dielectrophoretic–hydrodynamic trap

1 Introduction

The use of microfluidic systems as an analytical tool 
in chemistry, biochemistry and life science is now well 
known. Microfluidic systems present significant advantages 

Abstract The paper presents a dielectrophoretic method 
for cell patterning using dielectrophoretic–hydrodynamic 
trap. A distinctive characteristic of the device is that the 
dielectrophoretic (DEP) force is generated using a struc-
ture that combines conventional electrode-based DEP 
(eDEP) with insulator-based DEP method (iDEP). The con-
ventional eDEP force is generated across the microfluidic 
channel between a top plate indium tin oxide electrode and 
a thin CrAu electrode. Meantime, an isolating cage built 
from SU8 photoresist around the thin electrode modifies 
the electric field generating an iDEP force. The cells that 
are flowing through a microfluidic channel are trapped in 
the SU8 cage by the total DEP force. As a result, according 
to the cell dimension and the thickness of the SU8 layer, 
different cell patterns can be achieved. If the cell’s size is 
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compared to bulk analytical techniques such as high 
throughput and efficiency; moreover, a small amount of 
sample can be processed (Arora et al. 2010). Microfluidic 
devices start to play an important role in cell and tissue 
engineering (Choudhury et al. 2011; Ni et al. 2009; Yeo 
et al. 2011) creating an “in vivo-like” environment for cel-
lular behavior studies (Bhadriraju and Chen 2002; Huang 
et al. 2012) or for in vitro models for drug testing (Dittrich 
and Manz 2006; Haeberle and Zengerle 2007; Neužil et al. 
2012). The necessity of conducting genetic, biochemical or 
physiological cell studies requires, firstly, a microsystem 
capable of trapping single cell (Rosenthal and Voldman 
2005; Sun and Morgan 2010), 2D (Wu et al. 2011; Zhang 
et al. 2011) or 3D cell structures (Di Carlo et al. 2006; 
Morimoto and Takeuchi 2013) and, secondly, a configura-
tion of the microsystem that assures the environmental con-
ditions for maintaining the cell functionalities. According 
to Johann (2006) and Nilsson et al. (2009), the methods 
used for cell trapping can be divided into two major groups: 
chemical and physical. A detailed analysis of the methods 
used for cell trapping in tissue engineering is presented by 
Choudhury et al. (2011). Chemical trapping is based on 
chemical modification of the surface (Wong and Ho 2009), 
gel-based system (Khademhosseini et al. 2004) or cell 
aggregation mediated by transient intercellular linker (Mo 
et al. 2010). Physical trapping methods are hydrodynamic 
(Yang et al. 2002), dielectrophoretic (Iliescu et al. 2005), 
magnetic (Ino et al. 2008), acoustic (Manneberg et al. 2008) 
and laser based/optical (Birkbeck et al. 2003). Microfluidic 
chips having obstacles/barriers with dimensions compa-
rable with the cell’s size had been used for hydrodynamic 
trapping. Few methods of hydrodynamic trapping were 
studied: front trapping (Skelley et al. 2009), side trapping 
(Tan and Takeuchi 2007), gravity trapping (Khademhos-
seini et al. 2005). Hydrodynamic trapping methods are tar-
geting mainly single cell trapping. Meanwhile, the process 
is simple, the main issue being related to the uniformity of 
the trapping process. Magnetic fields can be used for cell 
trapping/manipulation in microfluidic devices. In this case, 
the manipulation of the cells is performed using a magnetic 
force in the range of 2–1000 pN (Choudhury et al. 2011). 
The method requires paramagnetic properties of cells to be 
trapped (Iliescu et al. 2009a) or surface chemistry for cell 
attachment to magnetic beads (Ito et al. 2007). Mechani-
cal force for cell trapping can be generated using ultrasonic 
waves. The generated force depends on the cell volume 
and wave frequency, the cells being concentrated either in 
the nodes or in the antinodes of the periodic wave pattern 
(Yeo et al. 2006). Optical trapping of cell or particles uses 
a focused laser beam to trap and handle particles. Opti-
cal tweezers can manipulate objects ranging from 10 Å to 
10 µm and employ forces up to few hundreds of pN (Piggee 
2009). Such forces are suitable for single cell handling, and 

as a result, optical trapping is a low-throughput method for 
tissue engineering applications.

Among all the other techniques, cell patterning using 
dielectrophoresis (DEP) has the advantage of being a rel-
atively fast process, precise, easy in operation and with a 
low degree of cell damage (Lin et al. 2006). Different DEP 
methods for cell trapping have been developed (Čemažar 
et al. 2013; Li et al. 2014; Martinez-Duarte 2012; Pethig 
2010). The DEP techniques can be classified according 
to the method used to generate a gradient of electric field 
(key role in achieving an effective DEP force) as follows: 
travel wave, optical, conductivity gradient, insulating and 
electrode-based DEP. In the traveling wave DEP technique 
(Higginbotham and Sweatman 2008; Pethig et al. 2003), 
the gradient of electric field is induced by the phase change 
of the applied voltage. Optical DEP (Hwang et al. 2009) 
is a method where the gradient of electric field is gener-
ated using an optical image on a photodiode surface. Spa-
tial/temporal conductivity gradient of media (Markx et al. 
1997) can be used to generate a gradient of electric field. 
For insulating DEP (iDEP) (Iliescu et al. 2007; Jen et al. 
2010; Lewpiriyawong and Yang 2014), the gradient is gen-
erated using a non-homogenous dielectric medium in a 
capacitor-like structure. In electrode-based DEP (eDEP), 
dissimilar size or shape of the electrodes is used to gener-
ate gradients of the electric field. These electrodes can be 
2D (Masuda et al. 1989), 3D (Iliescu et al. 2006a; Li et al. 
2013; Nasabi et al. 2013; Wang et al. 2009; Xing et al. 
2013), combination of thin and bulk electrodes (Iliescu 
et al. 2009b), as well as 3D gates generated by placing the 
electrodes on top and bottom of the microfluidic channel 
(Choi et al. 2010). According to the response of the cells 
to the electric field, the DEP phenomenon can be described 
as either positive (pDEP)—cells are moving toward high 
electric field strengths—or negative (nDEP)—the cells are 
moving to the lower values of the electric field.

Dielectrophoresis was previously used for single cell 
patterning (Mittal et al. 2007; Taff et al. 2009). Early work 
in DEP cell patterning for tissue engineering applications—
reported in (Albrecht et al. 2005)—proves that DEP elec-
tropatterning provides high resolution in cell localization 
in order to enhance cell–cell interaction. This study was 
further developed in (Albrecht et al. 2006), reporting 3D 
micropatterning of chondrocytes within hydrogels using 
DEP and in (Albrecht et al. 2007) where cells packaged 
in hydrogel microcapsules were trapped using pDEP gen-
erating a “tissue-like” structure. A uniform patterning of 
HepG2 cells in a 2D structure using a planar interdigitated 
ring electrode array is presented by Hsiung et al. (2008). 
Ho et al. (2006) demonstrate a 2D arrangement of cells in 
a structure that mimics the morphology of the liver tissue. 
Also, 2D cell structure patterned using nDEP is presented 
by Suzuki et al. (2008). One of the problems of the existing 
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cell patterning techniques is the low uniformity of the pat-
terning process with possible consequences in undesirable 
cellular responses (Bhatia et al. 1999; Iwasa et al. 2003). 
For in vitro cellular studies, uniform and dense patterning 
techniques that assure cell–cell interactions are desired.

Here, we report a device architecture and a method for 
the precise and uniform cell patterning of single cell, 2D or 
3D cell sheets. The method involves a DEP–hydrodynamic 
trap placed in a microfluidic structure. A unique charac-
teristic of the DEP device is the merging of the iDEP and 
eDEP techniques. The gradient of electric field, generated 
in the cross section of the microfluidic structure, between 
thin electrodes (with a desired shape) placed on the bot-
tom of the microchannel and a top plate (eDEP effect), is 
enhanced by positioning, on top of the thin electrode, an 
insulating layer (iDEP effect) with openings that follow the 
thin electrode shape. These openings in the insulating lay-
ers define, at the same time, hydrodynamic traps where the 
velocity of the fluid is sensitively reduced. The cells that 
are flown through a microfluidic channel are trapped in a 
hydrodynamic cage using cumulative iDEP–eDEP force. 
2D and 3D structures were achieved using C3A cell line 
and red blood cells (RBC).

2  DEP device, materials and methods

2.1  DEP microfluidic device

The architecture of the dielectrophoretic trap is illustrated 
in Fig. 1a, while a detailed picture with the structure of the 
device is presented in Fig. 1b. The top electrode consists of 
a thin indium tin oxide (ITO) electrode plate deposited on 
glass. The bottom electrode is a thin CrAu layer patterned 
on an insulated substrate. On the surface of this electrode, 
a SU8 layer is placed with a pattern that follows the elec-
trode shape. A PDMS spacer, adhesive bonded on the top 
of the ITO electrode, defines the depth and the shape of the 
microfluidic channel. The difference in electrode dimen-
sions assures a gradient of electric field across the micro-
fluidic channel, generating a DEP force (eDEP effect). This 
DEP force is enhanced by the presence of the insulating 
structure—SU8 layer—(iDEP effect). These “double DEP” 
configurations assure an effective cell trapping with a low 
applied voltage, and as a consequence, a low Joule heating 
effect (Tay et al. 2007).

The cell patterning method is shown in Fig. 1c. The 
cells suspended in the DEP buffer are flown through the 

Fig. 1  Device structure and cell patterning method using eDEP and 
iDEP: a configuration of the microfluidic channel with electrodes and 
dielectric layer; b cross section with the cell patterning device; c cell 

patterning method: The cells are trapped using a strong DEP force, 
and the hydrodynamic force removed the excess cells
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microfluidic channel. Due to the strong DEP force, the cells 
are moving to the thin electrode placed in the hydrody-
namic trap (positive DEP). It results in a 2D or 3D aggrega-
tion of the cells in the trap (according to the cell size and 
trap dimension). By increasing the flow rate, the hydrody-
namic force removes the cells placed on the top of the trap 
or on the top of the SU8 layer. The role of this insulating 
layer is not only to enhance the gradient of electric field, 
but also to act as a hydrodynamic cell trap, generating a 
“dead volume” where the velocity of the fluid is reduced.

2.2  Device fabrication

The device consists of two dies that are assembled together:

•	 a silicon die with the thin electrode and the SU8 hydro-
dynamic trap;

•	 a glass die having embedded the large ITO electrode.

The fabrication of the silicon die starts with a 4″ double-
polish wafer, <100> crystallographic orientation, with a 
resistivity of 1–100 Ω/cm. The wafer was cleaned in pira-
nha (H2SO4/H2O2 in ratio 2/1) at 120 °C for 20 min, then 
washed in DI (deionized) water and spun-rinsed dried. 
A dry 150-nm-thick SiO2 layer was grown in a Tystar 
furnace at 1050 °C, for 3 h (Fig. 2a). A metal layer (Cr/
Au 30/400 nm) was deposited with an e-beam evapora-
tor (CHA). A 2-µm-thick positive photoresist (AZ7218 
from Clarian) was deposited with a EVG 101 spin coater 
at 3000 rpm for 30 s. The film was exposed on a EVG 
620 mask aligner and further developed. The metal layer 
was etched through the photoresist mask using com-
mercially available Au and Cr etchants. In the next step, 

the photoresist mask was removed in a NMP photoresist 
remover using ultrasonic agitation (Fig. 2b). In order to 
improve the adhesion of the SU8 layer to the substrate, a 
50-nm-thick Teflon layer was deposited on the wafer in an 
ICP reactor (Alcatel) using C4F8. A 20-µm-thick SU8 2025 
negative photoresist (for the definition of the hydrodynamic 
traps) was spin-coated on top of the Teflon layer at a speed 
of 4000 rpm and followed by a soft bake on a hot plate at 
65 °C for 3 min and 95 °C for 6 min. Then, the SU8 was 
exposed on the EVG 620 mask aligner with constant expo-
sure energy of 150 mJ/cm2. After that, a postexposure bake 
at 65 °C for 1 min and 95 °C for 6 min was conducted, and 
the patterned SU8 was developed in SU8 developer and 
rinsed with isopropanol IPA. A short cleaning process of 
1 min in O2 plasma on a RIE (SPTS) was used for remov-
ing the Teflon layer and also to assure the clean surface of 
the electrode (Fig. 2c). The thickness of the SU8 layer was 
20 µm. For the protection of the SU8 layer, the wafer was 
covered with a thick photoresist layer AZ4620 (~20 µm) 
before dicing of the individual chips on a DISCO 3350 
equipment. Inlet and outlet holes were performed using a 
drilling machine with diamond beads.

For the second die, a glass wafer cover with ITO layer 
was diced on the same DISCO 3350 equipment (Fig. 2d). 
PDMS spacer was prepared by cutting the shape of the 
spacer from 75-µm-thick PDMS sheet (AAA ACME 
Rubber Co.). Curable PDMS elastomer kit: Sylgard 184 
(Dow Corning) prepared in the ratio of 10/1 was spun on 
a dummy silicon wafer at 1000 rpm. A thin layer of cur-
able PDMS was imprinted on the PDMS spacer (Fig. 2e) 
for the adhesive bonding between the ITO glass die and 
PDMS spacer (Fig. 2f). The curing of the soft PDMS was 
performed at 110 °C for 30 min.

Fig. 2  Main steps of the fabri-
cation process of the microflu-
idic chip with dielectrophoretic–
hydrodynamic traps: a growth 
of dry SiO2 (150 nm thick) on a 
silicon wafer, b deposition and 
patterning of the CrAu layer; c 
deposition and patterning of the 
SU8 layer and dicing of the Si 
wafer; d dicing of the ITO glass 
wafer; e cutting of the PDMS 
spacer and deposition of a thin 
PDMS adhesive layer on one 
surface; f adhesive bonding of 
the PDMS spacer on ITO glass; 
g contact imprinting of a PDMS 
layer on the PDMS spacer; h 
adhesive bonding between the 
ITO glass die (with the PDMS 
spacer) and silicon die; i photo-
graph of the chip
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The final bonding between the silicon and the glass dies 
was performed also using curable PDMS as adhesion layer. 
Similar to the method presented before, the curable PDMS 
was spun on a dummy wafer, and from this dummy wafer, 
a thin PDMS layer was imprinted on a Teflon cylinder 
and further transferred to the glass die (Fig. 2g). A simi-
lar method used for SU8 adhesive bonding was described 
in details by (Yu et al. 2006). The glass and the silicon 
dies were placed in contact and bonded in the same con-
ditions as the bonding of the PDMS spacer on ITO glass 
die (Fig. 2h). Nanoport microfluidic connectors (Upchurch) 
were attached on the chip using UV curable glue (NOA63 
form Norland Products). An image with the fabricated chip 
is presented in Fig. 2i.

2.3  Cell culture and DEP buffer

C3A cells (ATCC, USA) were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM) supplemented with 
10 % FCS, 1.5 g/L sodium bicarbonate, 1 mM sodium 
pyruvate, 100 units/mL penicillin and 100 g/mL strepto-
mycin. Red blood cells were isolated from whole blood by 
centrifugation and were resuspended in DEP buffer prior to 
experiment.

The dielectrophoretic buffer plays an important role in 
achieving the desired dielectrophoretic force. The DEP 
buffer was prepared by diluting 10 × TBE buffer (Promega 
Singapore) in deionized water and by adding 8.6 % (w/w) 
sucrose and 0.3 % (w/w) dextrose. The conductivity of the 
solution was 550 µS/m (measured with Oakton meter), 
while the pH was 7.

C3A cells were cultured in a 24-well plate until conflu-
ence. On the experiment day, the cells were removed from 
the incubator and culture medium was changed once prior 
to the start of the experiment in order to remove dead cells. 
After trypsinization and centrifugation, the culture medium 
was replaced by the DEP buffer at their corresponding time 
point, so that the cells were incubated in the DEP buffer at 
room temperature for 6, 4, 3, 2, 1 and 0.5 h, respectively. At 
the end of the experiment, the cell viability was measured 
using MTS assay and compared against C3A cells cultured 
in medium at room temperature (i.e., 0 h of incubation in 
DEP buffer).

2.4  Testing setup

A digital microscope (Keyence VHX 500) was used to 
monitor the cell trapping inside the DEP device. The flow 
of the cells suspended in the DEP buffer was performed 
using a syringe pump (New Era Pump Systems Inc.). A 
function generator (TG210 from TTi) and a linear ampli-
fier (A-303 from A.A Lab Systems Ltd) were used to gen-
erate the drive signal applied to the DEP device. In order 

to prevent the generation of bubbles inside the channel by 
electrolysis, prior flowing of the cell suspension into the 
microfluidic structure, the function generator and ampli-
fier were powered on, but their outputs were set to the 
minimum.

3  Simulations and analytical model

3.1  Simulation of the electric field

A simulation of the electric field is presented in Fig. 3 
(using QuickField form Tera Analysis Ltd). For compari-
son, variation of the applied voltage (10 V), the electric 
field and the gradient of the electric field were presented for 
the proposed structure (Fig. 3a, c) and also in the absence 
of SU8 layer (Fig. 3b, d). As it can be noticed from Fig. 3c, 
a very strong variation of the electric field is displayed 
around the SU8 corners, which proves the enhancement of 
the DEP force due to the insulating structure. The presence 
of the SU8 layer makes possible the trapping of the cells 
that are flowing at a certain distance from the thin electrode 
plane.

3.2  Simulation of the flow

For the flow inside the microfluidic channel, 2D simula-
tions using the FLUENT™ CFD commercial package were 
performed in order to compute the isothermal flow of the 
Newtonian viscous fluids through the analyzed microgeom-
etry. All the simulations considered steady laminar flows, 
double precision with convergence criteria of 10−10 for the 
unknown functions and the continuity equation being used.

The FLUENT™ code solves the Cauchy equation of 
motion in which the extra-stress tensor is expressed as a 
generalized Newtonian model:

where ρ is the fluid density (assumed constant), b the spe-
cific mass force, D is the stretching, t is the time, u is the 
velocity vector, p is the pressure, and η(γ̇ ) is the viscosity 
function, dependent on the shear rate γ̇. For a Newtonian 
fluid, η(γ̇ ) = η0 and Eq. (1) becomes the Navier–Stokes 
equation, as the viscous term has the simplified expression 
η0�u.

The numerical code complements the equation of 
motion with the mass conservation equation, which, for 
incompressible fluids, is reduced to ∇ · u = 0. The compu-
tational mesh has a total number of cells (NC) of 91,200. 
The validity of fluid homogeneity and the no-slip boundary 
condition were assumed for the tested fluid. The govern-
ing equations above are solved numerically using a finite 

(1)ρ

[

∂u

∂t
+ (u · ∇)u

]

= ρb−∇ρ + 2∇(η(γ̇ )D)
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volume method. In this methodology, the resulting alge-
braic equations relate the dependent variables (p, u), which 
are calculated at the center of the cells forming the compu-
tational mesh, to the values in the nearby surrounding cells. 
Because the interest in this work is for steady-state calcu-
lations, the time derivative is discretized with an implicit 
first-order Euler scheme. The physical properties of the 
fluid used in the numerical calculations were selected to 
match water (η0 = 10−3 Pa s). The initial conditions to be 
imposed were as follows: (1) no-slip conditions at the solid 
walls, (2) at the inlet boundary, located far upstream of the 
interest regions, a uniform velocity profile and a null stress 
components were imposed and (3) the imposed outflow 
boundary conditions involved vanishing stress components, 
respectively, a constant of gradient pressure (atmospheric 
pressure) was imposed at the channel outlet.

The numerical results for two different flow regimes 
(Q = 1 µL/min and Q = 10 µL/min) are presented in Fig. 4. 
For this range of velocity of the fluid, no difference in flow 
behavior and vortex structures can be observed.

3.3  Analytical model

The DEP buffer plays an important role in achieving the 
desired patterning using electric fields. The DEP force can 
be defined according to Jones (2005) as:

where Re[K] is the real part of the Clausius–Mossotti (CM) 
factor (also called “polarization factor”):

(2)FDEP = 2πa3Re[k]∇E2

(3)K =
ε∗p − ε∗m

ε∗p + 2ε∗m
, ε∗ = ε − j

σ

ω

where ε∗p and ε∗p are the complex permittivity of the parti-
cle and medium, respectively. The complex permittivity is 
a function of permittivity (particle or medium) ε, electri-
cal conductivity σ and the angle frequency ω of the applied 
electrical field E. Depending on the sign of Re(K) (Albre-
cht et al. 2005), the particles can be attracted to the regions 
with high electric field (so-called positive DEP–pDEP) or 
repelled—negative DEP (nDEP). In our case, the device 
structure requires the handling of pDEP effect.

Figure 5 gives a schematic of the microfluidic channel 
with a trapped cell. For low Mach numbers, the fluid can 
be considered as incompressible and its density is there-
fore constant. Within the channel, and considering a no-slip 
boundary condition at the wall, the fluid velocity exhibits a 
parabolic profile that follows the Poiseuille equation:

with v(z) the fluid velocity across the channel and oriented 
along the x-axis, vmax its maximal value taken on the chan-
nel axis and H the height of the channel. The effect of the 
width of the channel is neglected. vmax is given by the vis-
cosity η0 and the pressure gradient dp/dx—assumed con-
stant along the channel—as vmax = (H2/8η0)dp/dx. The 
effect of the traps at the bottom of the channel is difficult 
to take rigorously into account, especially because of the 
formation of vortices. Numerical simulations reveal that 
the laminar flow penetrates into the trap down to a depth δ. 
Below this penetration depth, the fluid is rotational, but the 
velocities are small compared to those in the channel. In the 
lower half of the channel above a trap, we consider that the 
Poiseuille flow still holds but extends up to z = H/2 + δ. As 

(4)v(z) = vmax

(

1−
4z2

H2

)
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d

Fig. 3  Variation of the applied voltage (a, b) electric field (c, d) across the vertical cross section of the microfluidic channel for the structure 
with the isolating trap (a, c) and for a eDEP structure (b, d)
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a result, using the general Eq. (4), the flow velocity at the 
top of the trap reads

If the cells are not deeply buried into the trap, which 
is the case because we need an access to their surface for 
practical applications, they can feel the effect of the lam-
inar flow in the channel. In particular, if δ is comparable 

(5)vtrap = vmax

(

1−
H2

(H + 2δ)2

)

≈ 4vmax

δ

H

or greater than h − 2a, the difference of pressure between 
the interior of the trap and the laminar flow may untrap the 
cells yet maintained by the dielectrophoretic force. Accord-
ing to Bernoulli’s principle, a heuristic upper limit for the 
lift force FL exerted on the cells is:

after replacing vtrap by its expression in (4). As we can see, 
the lift force scales as v2

max which means that the untrapping 
rate increases rapidly with the flow velocity in the channel. 
Equilibrating the lift force (6) with the expression of the 
dielectrophoretic force FDEP yields a condition on vmax—
and consequently on the flow rate—to keep the cells in the 
traps:

With a typical dielectrophoretic force FDEP of 1 nN 
for a cell radius of 7.5 µm, a fluid density ρ = 1000 kg/
m3, a channel height H = 60 µm and a penetration depth 
δ = 5 µm, the maximal fluid velocity should not exceed 
0.16 m/s1, which corresponds to a flow rate of 15.3 µL/
min by integrating (4) over the cross section of the channel. 
Above this flow rate, the cells start to get untrapped.

(6)FL = 2πρa2v2trap ≈ 32πρa2
(

δ

H

)2

v2max

(7)vmax <
H

4δ

√

a

ρ
Re[K]∇E2

Fig. 4  Velocity in the microfluidic channel for flow rates of 1 and 10 µL/min

Fig. 5  Schematic of the microfluidic channel with a spherical cell 
placed in a trap. v(z) is the fluid velocity, H the height of the channel, 
h the height of the trap, a the cell radius and δ the flow penetration 
depth
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4  Results and discussion

4.1  DEP buffer

As previously mentioned, due to thermic considerations 
(Iliescu et al. 2006b), a low electrical conductivity of the 
DEP buffer is required, the incremental temperature rise 
(ΔT) being approximated with the formula (Ramos et al. 
1998):

where V is the applied voltage, and k is the thermal con-
ductivity of the solution. It is well known that the tempera-
ture modification can induce changes in the cell physiol-
ogy (Cima et al. 2013; Lindquist 1986), and even if is not 
clear what is the range of temperature that induces a cell 
response, Joule heating effect must be minimized.

As it can be noticed from Eq. (3), the CM factor is a func-
tion of frequency. The polarizability of the cell is a cumu-
lative effect of its internal structure (Voldman 2006). As a 
result, each type of cell presents a “dielectrophoretic signa-
ture” (Flanagan et al. 2008), signature that can be character-
ized using the method proposed by (Voldman et al. 2003). 
Overall, as a general trend, at low-frequency range (up to 
100 kHz), the cells are less polarizable and experience 
mainly negative DEP (nDEP)—the cells move toward the 
regions with lower field strength. For high-frequency range 
(1–100 MHz), the CM factor is given by the difference 
between cell cytoplasm and media conductivities, result-
ing in nDEP for highly conductive solutions and positive 
(pDEP) in low conductive media (Voldman 2006). For the 
pDEP effect, the cells are moving to the regions with high 
field strength. In our case, for the trapping of the cells in 
the designed cage, we need a pDEP effect. As a result, low 
conductivity of the DEP buffer and an applied voltage in the 
MHz range are required in our application. In our case, the 
effect of frequency variation on C3A cells and RBC (sus-
pended in the DEP buffer) is summarized in Table 1.

A second condition related to the buffer is its compatibil-
ity in regard to the cells. For this reason, we used the proto-
col previously described to verify the viability of the C3A 
cells in the DEP buffer up to 6 h. This duration is sensitively 
longer than the time frame required for DEP experiment 
(usually 1 h). The results presented in Fig. 6 shows that at 
least for the first 3 h, the viability of C3A cells due to the 
prolonged incubation in the DEP buffer will not be affected 
considerably. The testing method was described in Sect. 2.2.

4.2  Cell patterning

For the 3D cell patterning, RBCs and the previously 
mentioned DEP buffer were used. The average diameter 

(8)�T ≈
σV2

k

of RBCs is around 6 µm that allowed a 3D organiza-
tion in the hydrodynamic trap (with a cross section of 
20 µm × 20 µm). In order to see the DEP effect, the 
cells were introduced in the microfluidic device, and at 
a flow rate of 7 µL/min, the cells were trapped using an 
applied voltage of 20 V at 1 MHz. The results are illus-
trated in Fig. 7a. As it can be observed, the cells tend to 
attach also to the edge of the dielectric layer (where the 
gradient of electric field is strong). Increasing the flow 
rate in the microfluidic channel (at 30 µL/min) reduces 
sensitively the efficiency of trapping (Fig. 7b), only 
the cell in the vicinity of the SU8 layer is trapped. It is 
interesting to notice that the cells try to align near the 
walls of the hydrodynamic trap. This can be explained 
through the increasing gradient of the electric field on 
the corner of the CrAu electrode inside the hydrody-
namic trap (Fig. 3e) and also due to the adhesion force 
(Mittal et al. 2007) between cell and SU8. It seems that 
the cell–substrate (SU8) adhesion force makes difficult 
a perfect removing of the cells from the SU8 surface 
by hydrodynamic force (Fig. 7a). Figure 7c shows the 
trapping of the RBC in a static regime. It can be noticed 
that in this case, the dipole–dipole interaction can play 
an important role. The polarization of the cells in the 
presence of the electric field induces an alignment of 
the cells in a row. Practically, in the absence of the flow, 
there is no “packaging” of the cells in the hydrodynamic 
trap. Figure 7d illustrates the evolution of RBC’s trap-
ping in time, suggesting the organization of cells in a 
3D structure. This “packaging” of cells can be explained 

Table 1  Cell response to the frequency of applied electric field

Cell type DEP effect Cutting frequency DEP effect

C3A nDEP 7.6–8.2 kHz pDEP

RBC nDEP 170–180 kHz pDEP

Fig. 6  Viability of the C3A cells in a DEP buffer
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through the dipole–dipole interaction. A dielectric par-
ticle immersed in a medium and exposed to an electric 
field acquires a dipole moment. If a number of polarized 
particles come close enough to each other, they exhibit 
an attractive dipole–dipole interaction. This phenom-
enon gives rise to a “pearl chain” alignment of the par-
ticles and was previously used for aligning of different 
waterborne pathogen (Chow and Du 2011) or for elec-
trofusion of lipid containers (Tresset and Iliescu 2007). 
In our case, confining the RBC’s (having a diameter of 
6 µm) in a trap having a cross section of 20 × 20 µm 

will enhance the dipole–dipole interaction between cells 
contributing to their “packaging” in a 3D structure. It is 
interesting to observe that initially the RBCs are align-
ing along the edges (where high gradient of the electric 
field is expressed) and the walls of the trap. 

Figure 8 illustrates cell patterning using C3A cell line. 
In this case, the diameter of the cell is almost identical with 
the width of the microfluidic trap. For the trapping of C3A 
cells, similar conditions were used. A very nice organiza-
tion of the cells in the hydrodynamic trap can be observed 
(Fig. 8a). For comparison, conventional eDEP method was 

Fig. 7  Cell patterning (RBC’s) under different flow conditions (a, b) and in a static regime (c). Evolution of RBC trapping in time (d). The 
width of the hydrodynamic trapped fabricated in the SU8 layer was 20 µm

Fig. 8  Cell patterning using C3A cell line: a chip with the hydrodynamic trap; b trapping in the absence of the hydrodynamic trap (conventional 
DEP)
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used for trapping C3A cells in Fig. 8b. Although the cells 
align mainly along the electrode, there is a significant num-
ber of untrapped cells. Moreover, clustering of the cells due 
to dipole–dipole interaction is possible (and can be easily 
noted at the lower electrode). The removal of the untrapped 
cells and those attached on the bottom surface, using an 
increased flow rate, becomes more difficult, and the Stokes 
force also acts on the cells trapped using DEP. In this case, 
the adhesion force of the cell on the surface, estimated to 
be between 0.25 and 20 pN depending on the cell type and 
size (Mittal et al. 2007), is a strong competitor for the DEP 
force.

5  Conclusions

The paper proposes a DEP method for 2D–3D cell pat-
terning. The architecture of the device consists of DEP–
hydrodynamic traps placed in a microfluidic channel. A 
distinctive feature of the DEP structure is the combination 
between iDEP and eDEP effects for the generation of the 
dielectrophoretic force. The cells that are flown through a 
microfluidic channel are trapped in a hydrodynamic cage 
using cumulative iDEP–eDEP force, generating 2D or 3D 
cell patterns according to the ratio between cell dimension 
and the size of the cage. The trapping method was validated 
using C3A and red blood cells.
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