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ABSTRACT

Drilled shafts socketed into rock are widely used to transfer heavy structural loads
through weak overburden soil to underlying rock. In current design practice, empirical relations
derived from load tests are often used to predict ultimate loads. To predict the load deformation
response at working loads, theoretical solutions have been developed.

This thesis contains a literature review of current design methods, which shows: (a)
Available empirical relations for estimating the ultimate side shear resistance give a wide range of
values. This is because the relations are derived from different databases. (b) Available relations
for estimating the end bearing resistance assume a linear relationship between the end bearing
resistance and the unconfined compressive strength. However, the linear relations do not predict
the field tests reasonably. And (c) Current design methods just model the rock mass as a single
half space or at best, as a two-layer medium (i.e., the rock adjacent to and beneath the shaft) for
the prediction of load-displacement response. This is a very crude approximation to the multi-
layered rock mass in reality.

Because of the limitations of the current design methods, a new design model is
proposed. The new design method can reasonably predict the ultimate side shear resistance and
the end bearing resistance. It also considers the multi-layer nature of the rock mass for the
prediction of load-displacement response. For the ultimate side shear resistance, a new relation is
recommended by analyzing the available power-curve relations. For the end bearing resistance, a
database of 35 loading tests is developed. By analyzing the database, a new relation between the
end bearing resistance and the unconfined compressive strength is derived. A theoretical analysis
is conducted using the Hoek-Brown strength criterion. The theoretical results basicaliy support
the new relation. For the prediction of the displacement of drilled shafts at working load, a model
which can consider the multi-layer nature of rock masses is developed. Governing differential
equations and boundary conditions are derived for a shaft socketed in a rock mass with any
number of layers. Closed-form solutions for a shaft socketed in a three-layer rock mass is
presented. The model is validated by comparing it with the available theoretical solutions. Two
examples including three test shafts are given to show the use of the design method. The results
show that the proposed method can satisfactorily predict the ultimate loads and the displacements
at working loads.

Thesis Supervisor: Herbert H. Einstein
Title: Professor of Civil and Environmental Engineering
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CHAPTER 1

INTRODUCTION

1.1 General

Large diameter drilled shaft foundations are often used to transfer heavy structural
loads through weak overburden soil to more competent underlying bedrock. The diameter
of a shaft usually varies from 0.5 m to 6.0 m and the depth may exceed 70 m, depending
on the required capacity and available equipment. In the United States, the typical
diameter of the shaft ranges from 0.6 m to 1.8 m, the depth ranges from 7.0 m to 30 m,
and the strength of the shaft concrete ranges from 20 MPa to 45 MPa (Baker 1994).

Drilled shaft foundations have the following major advantages:

1. High load capacity and relatively low cost.

2. Simple length adjustment in the field.

3. Low noise and vibration during construction.

12



4. Quick and easy excavation. In areas with deep soft soil underlain by rock,

drilled shafts are the most efficient deep foundation system.

Because of the above advantages, drilled shaft foundations have become an appropriate
and economical foundation system for heavily loaded structures.

Drilled shafts are sometimes called bored piles, drilled piers, caissons, or cast-in-
place concrete piles. When drilled in rock, the portion of the shaft drilled into rock is

referred to as a rock socket. As in other deep foundations, the rock socket derives its load

capacity from two components (Figure 1.1):

1) shearing resistance at the shaft-rock interface around the vertical cylindrical
surface of the socket, and

2) end bearing resistance at the base of the shaft.

In addition to the basic geomateriél strength and deformation characteristics, other
factors such as the degree of roughness of the interface between the concrete and the rock
mass play important roles in the behavior of rock sockets (Kodikara et al. 1992; Hassan
and O’Neill 1997).

During the past two decades, great advances have been made in understanding the
behavior of drilled shaft foundations. Numerous studies have been carried out to

investigate the influence of various factors on tiie design, construction and performance

13
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Figure 1.1 A drilled shaft sockted into rock.
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of drilled shafts. These investigations have focused on the following three methods:

1. Load tests on full scale instrumented drilled shafts. This method is considered
the most reliable and dependable technique to determine the bearing capacity and develop
new design methods.

2. Laboratory model tests. Tests are conducted in a laboratory using reduced
scale drilled shaft models as well as idealized soil/rock profiles and load conditions to
study the load transfer mechanisms and stress/strain variation behavior of drilled shaft
foundations.

3. Numerical analysis. This is a useful method to study the general behavior of
drilled shaft foundations under different loading and subgrade conditions and perform

parametric studies for design applications.

The full scale load test is believed to be the most useful and dependable method to
determine the bearing capacity of drilled shaft foundations, and it can yield useful
information on load transfer mechanisms. However, field load tests are very expensive
and very often tests have to be terminated well before failure as the actual ultimate loads
are significantly higher than the anticipated values. In recent years, centrifuge testing has
been used as an alternative to study the behavior of rock socketed shafts as a small

applied load in a scaled model subjected to high g-level in the centrifuge is equivalent to

15



a much higher prototype applied load (e.g., Leung and Ko 1993; Dykeman and
Valsangkar 1996).

Rational design methods for drilled shafts socketed into rock require
determination of both the ultimate load capacity and the expected displacement at the
working load. To determine the ultimate load capacity, it is necessary to predict both the
ultimate side shear resistance and the end bearing resistance. Based on field load tests,
several researchers have proposed relations between rock properties and the ultimate side
shear resistance. However, these relations give a wide range of values, which makes it
difficult for a designer to choose an appropriate one. As for the end bearing resistance,
although some empirical relations are available, they do not give reasonable values in
most cases. This may be the reason why current design methods consider the end bearing
resistance very crudely. The load-displacement response is usually predicted using charts
developed from finite element solutions. Available finite element solutions just model the
rock mass as a single half space or, at best, as a two-layer medium (i.e., the rock adjacent
to and beneath th= socketed shaft). In practice, however, the rock mass is often multi-
layered and distinct differences in material properties exist from layer to layer. To
reasonably consider the multi-layer nature of rock mass, new solutions need to be
developed.

Because of the limitations discussed above, new design methods need to be
developed. The new design methods should not only reasonably predict the ultimate side
shear resistance and the end bearing resistance, but also consider the multi-layered nature

of rock mass.

16



1.2 Scope and Objectives of Research

The research reported in this thesis is concerned with analysis and design of
drilled shafts socketed into rock. The scope of investigations concentrates on the

following:

1. Behavior of drilled shafts socketed irto rock and subjected to axial
compressive loading, i.e., the ultimate load capacity and the displacement at
working load.

2. Short-term loading conditions, i.e., no creep effect.

The objectives of this research are the following:

1. To derive a reasonable relation between rock properties and the ultimate side
shear resistance of rock-socketed shafts by comparing the available relations.

2. To derive a reasonable relation between rock properties and the end bearing
resistance of rock-socketed shafts by developing and analyzing a database of
field load tests which include data on end bearing resistance.

3. To develop a model to predict the displacement of rock-socketed shafts at
working load. The model has to reasonably consider the multi-layered nature

of rock mass.

17



4. To use the above results to develop a simple design method for rock-socketed

shafts.

1.3 Organization

This introduction is followed by Chapter 2 which is a literature review. In the
literature review, the mechanism of load transfer of drilled shafts socketed into rock is
discussed. Special attention is paid to the methods for estimating the ultimate side shear
resistance and the end bearing resistance. The theoretical solutions for estimating load-
displacement response are also reviewed.

Chapter 3 presents a general description of an approximate design model for
axially loaded drilled shafts socketed into rock. It includes the determination of the
ultimate load capacity and the displacement at working load.

In Chapter 4, the methods for estimating the ultimate side shear resistance and the
end bearing resistance of drilled shafts socketed into rock are recommended. The relation
for predicting the ultimate side shear resistance is derived by analyzing the available
relations. A database of 35 loading tests is developed to investigate the end bearing
capacity of drilled shafts in rock. Based on this database, a new relation is developed to
predict the end bearing capacity of drilled shafts from unconfined compressive strength.
Hoek-Brown strength criterion is used to theoretically analyze the end bearing resistance
of rock sockets. The results show that the agreement between the new relation and the

theoretical solution is reasonable.

18



Chapter 5 presents the development of a new model to predict the settlement of
drilled shafts at working load. Closed-form solutions are derived for a drilled shaft in a
three-layer medium. The validation of the proposed model is demonstrated by comparing
its results with available theoretical solutions.

Chapter 6 summarizes the recommended design method for axially loaded drilled
shafts socketed into rock. Two design examples including three test shafts are provided as
a means of verifying and illustrating the use of the design method.

Chapter 7 provides summary, conclusions and recommendations for further

research.

19



CHAPTER 2

LITERATURE REVIEW

2.1 General

Rational design methods for drilled shafts socketed into rock require
determination of both the ultimate load capacity and the expected displacement at
working load. In most of the current design methods, the ultimate side shear resistance
and the end bearing resistance are predicted using empirical relations derived from field
load tests. The load-displacement response is predicted using rules developed from finite
element solutions or analytical solutions. In the following, a literature review regarding
axially loaded drilled shafts socketed into rock is presented. The review concentrates on

the following issues:

1) Load transfer mechanism of drilled shafts socketed into rock.
2) Available methods for estimating the ultimate side shear resistance and the end

bearing resistance.

20



3) Available theoretical solutions for predicting load-displacement response of
drilled shafts.

4) Current design methods for axially loaded drilled shafts socketed into rock.

2.2 Mechanism of Load Transfer

Axially loaded drilled shafts socketed into rock are designed to transfer structural

loads in one of the following three ways (CGS 1992):

1. Through side shear only;
2. Through end bearing only;

3. Through the combination of both side shear and end bearing.

Situations where support is provided s:lely by side shear resistance are those where the
base of the drilled hole cannot be cleaned so that it is uncertain if any end bearing
resistance will be developed. Alternatively, where sound bedrock underlies low strength
overburden material, it may be possible to achieve the required support in end bearing
only, and assume that no side shear support is developed in the overburden. However,
where the shaft is drilled some depth into sound rock, a combination of side shear

resistance and end bearing resistance can be assumed (Kulhawy and Goodman 1980).

21



The relative magnitude of the support developed in the side shear and end bearing

depends on the following factors:

1. The moduli of the materials in which the shaft is socketed and that of the shaft
itself.
2. The magnitude of loading in relation to the ultimate side shear resistance.

3. The method of construction.

The mechanism of load transfer and displacement of a socketed shaft, and the distribution
of support between the side shear and end bearing are illustrated in Figure 2.1. In this
model all the side shear resistance is replaced by a spring with stiffness ks, and all the end
bearing is replaced with a second spring of stiffness k,. The support provided in side
shear Qs and end bearing Oy are each equal to the product of the spring stiffness and the
displacement, i.e., Qs = ksws and O = kywp, (Winterkorn and Fang 1975).

In the first case, much of the support is developed in the upper part of the shaft,
that is, the side shear resistance per unit displacement is greater than the end bearing
resistance developed for the same displacement. Thus the spring constant k; is greater
than the spring constant at the base, ky, (i.e., ks > kb). The displacement of the shaft is a
combination of elastic shortening of the shaft and the displacement of the base. Because
most of the displacement occurs in the upper part of the shaft, that is, w is greater than wy,
(i.e., ws > wp), the portion of support developed in side shear is much greater than that

developed in end bearing (i.e., Qs >> Oy).
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w;s = displacement of the shaft side; w} = displacement of the shaft base;
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Figure 2.1 Simplified load transfer mechanism for socketed shafts

(Winterkorn and Fang 1975)
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In the second case, material with very low bearing capacity occurs at the base of
the shaft (e.g., side shear sockets) such that the spring constant k;, is much smaller than
the spring constant & (i.e., ks >> kp). Provided that the applied load does not exceed the
ultimate side shear resistance, most of the displacement will occur in the upper part of the
shaft (i.e., ws >> wp) and the major portion of the load will be carried in side shear (i.e.,
Qs >>> ).

In the third case, the shaft has been drilled through material with a low modulus to
end bearing on a much higher modulus material, so the spring constant &, is much greater
than the spring constant k; (i.e., ky >>> k;). However, much of the displacement will occur
due to elastic shortening of the shaft, and a relatively small amount due to displacement
of the high modulus material below the base of the shaft (i.e., ws > wy). Under these

conditions, most of the load is carried in end bearing (i.e., Qp, >> Q).

2.3 Acxial Bearing Capacity

As stated above, when designing a drilled shaft socketed into rock, it is necessary
to determine both the ultimate side shear resistance and the end bearing resistance. The
ultimate side shear resistance and the end bearing resistance are usually predicted using
empirical relations derived from field load tests. There are two basic types of field load
tests: tension or pull-out tests which measure only side shear resistance, and compression
tests which measure either side shear resistance, end bearing resistance, or both

simultaneously.
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Tension tests can be used to measure side shear resistance directly. In
compression test programs, the test drilled shafts are instrumented (e.g., strain gages and
load cells) in order to determine both the load carried in side shear, Qs, and the load
carried in end bearing, Q. Alternatively, end bearing may be eliminated by creating a gap
beneath the base of the shafts or by using a collapsible base. Such drilled shafts are
referred to as side shear shafts, and the portions socketed into rock are termed side shear
sockets. Similarly, side shear resistance may be eliminated to produce an end bearing
socket. When a test is conducted to failure, under such conditions, it is possible to

determine the ultimate unit side shear resistance, Tmax, and the maximum unit end bearing

resistance, gmax, as follows:

Q
== 2.1
Tmax As (2.1a)
9
= 2.1b
9max Ab ( )

where

As =71 LB is the perimeter area of the shaft;
Ap=7m B?/4 is the base area of the shaft;

L is the socket length and

B is the socket diameter.
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The ultimate side shear resistance Tmax and the end bearing resistance gmax are
usually correlated to the unconfined compressive strength of the rock, o.. For example,

Tmax 1S Often related to G, by the adhesion factor, o,

— (2.2)

2.3.1 Ultimate Side Shear Resistance

Up until approximately the mid 1970’s, prediction of the ultimate side shear
resistance of rock sockets was based on crude extrapolation from empirical relations that
were originally developed from drilled shafts in clay (Johnston 1992). The adhesion
factor of drilled shafts in clay is known to decrease as the clay shear strength increases as
suggested, for example, by Tomlinson (1971). As a result, very low adhesion factors were
commonly assigned to stronger geomaterials such as rock. Field testing research
programs conducted in various parts of the world (e.g., Rosenberg and Journeaux 1976;
Horvath 1978 and Williams 1980) showed, however, that the adhesion factors for rock
sockets could be significantly higher than those of drilled shafts in clay. They generally
agreed that high adhesion factors in rock sockets are due to the interface roughness.

Because of the high adhesion factors in rock sockets, a series of new relations for rock
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sockets was developed. Some of the more commonly used relations are reviewed in the

following.
(a) Empirical relations for ultimate side shear resistance

Using the format of Eq. (2.2), many relations between the ultimate side shear
resistance and the unconfined compressive strength have been suggested, based on field

test data. Three of them are listed below:

Reynolds and Kaderabek (1980): Tmax =030, (2.3)
Gupton and Logan (1984): Trmax = 026, 24
Reese and O’Neill (1987): T = 0150, 2.5

In the above relations, the ultimate side shear resistance is just a simple constant

times O.. Based on field test results, many power-curve relationships were also

developed, some of which will be presented in the following.
Rosenberg and Journeaux (1976) suggest the following relation between the

ultimate side shear resistance and the unconfined compressive strength

T = 0375(c, )" (2.6)
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where Tnax and o, are in MPa.

Meigh and Wolshi (1979) propose the following relation:

Toax = 022(,)%° 2.7

where Tnax and . are in MPa.
Based on analysis of 202 data points from laboratory and field load tests, Horvath

(1982) suggests the following relation:

T = 02 10 03(5,)> (2.8)

where Tpmax and o, are in MPa.

The roughness of the socket wall is an important factor controlling the
development of side shear resistance. Depending on the type of drilling technique and the
hardness of the rock, a drilled socket will have a certain degree of roughness. Research
has shown that the benefits gained from increasing the roughness of a socket wall can be
quite significant, both in terms of peak and residual shear capacity. Studies by Williams
et al. (1980) and others have shown that smooth-sided sockets exhibit a brittle type of
failure, while sockets having an adequate roughness exhibit ductile failure. Williams and
Pells (1981) suggest that rough sockets generate a locked-in normal stress such that there

is practically no distinguishing difference between residual and peak side resistance.
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As a result of these observations, classifications have been developed so that
roughness can be quantified. One such classification proposed by Pells et al. (1980) is
based on the size and frequency of grooves in a socket wall (Table 2.1). Based on this
classification, Rowe and Armitage (1987b) have proposed the following relation for

sockets with different roughness:

Tmax =045(5,)%°  for sockets with roughness R1, R2orR3  (2.9a)

Toax = 0.6(c,)%° for sockets with roughness R4 (2.9b)

where Tmax and O are in MPa.

Horvath et al. (1980) also developed a relation from model socket behavior using
various roughness profiles. They found that as socket profiles go from smooth to rough,
the roughness factor increases significantly, as does the peak side shear resistance. These
findings were confirmed in a later study by Horvath et al. (1983), and the following

equation was proposed for the roughness factor (RF):

RF =21 (2.10)

where
hn is the average height of grooves in the socket (see Figure 2.2);

L, is the total travel length along the socket wall profile (see Figure 2.2);
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h,, = average of groove heights;

L: = total travel length along the socket wall profile;
R = norminal radius of the socket;

L = norminal length of the socket.

Figure 2.2 Parameters for defining roughness factor RF

30



Table 2.1. Roughness classes after Pells et al. (1980)

Roughness Class Description

R1 Straight, smooth-sided socket, grooves or

indentation less than 1.00 mm deep

R2 Grooves of depth 1-4 mm, width greater than

2 mm, at spacing 50 to 200 mm.

R3 Grooves of depth 4-10 mm, width greater than

5 mm, at spacing 50 to 200 mm.

R4 Grooves or undulations of depth greater than 10 mm,

width greater than 10 mm, at spacing 50 to 200 mm.

R is the nominal radius of the socket; and

L is the nominal length of the socket.

Using Eq. (2.10), the following relation was developed between the ultimate side shear

resistance and RF:

T, =080 (RF)*® (2.11)
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Williams et al. (1980) and Williams and Pells (1981) propose a design method
that considers both the ultimate load capacity and settlement criteria for rock sockets. For
ultimate side shear resistance, a data base of 71 load tests on shafts in mudstones, shales,
and sandstones, conducted mostly in Australia, is analyzed and the following relation is

developed:

Toax = 2,.B,0. (2.12)

where ., is a reduction factor reflecting the strength of the rock, as shown in Figure 2.3;
and B, is the ratio of side resistance of jointed rock mass to side resistance of intact rock
(which will be discussed in detail in next section). When the rock mass is such that the
joints are tightly closed and seams are infrequent, B, is essentially equal to 1.0.
Comparing Eq. (2.12) with Eq. (2.2), it can be found that 0.,y is just the adhesion factor,
o. Since o is derived from field test data, the effect of joints is already included in c,. If
o, is multiplied by By, which is obtained from laboratory tests (Williams et al. 1980), the
effect of joints will be considered twice. So Eq. (2.12) is not appropriate.

Kodikara et al. (1992) develop a rational model for predicting the relationship of
Tmax tO O¢ based on a specific definition of interface roughness, initial normal stress on the
interface and the stiffness of the rock during interface dilation. Figure 2.4 shows the
various parameters needed to define interface roughness in that model, which is

confirmed through constant normal stiffness interface shearing tests of reconstituted
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Borehole

i, = Mean asperity angle;

isd = standard deviation of asperity angles;
h,, = mean asperity height;

hsd = standard deviation of asperity heights.

Figure 2.4 Borehole roughness (after Kodikara et al. 1992)
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Table 2.2. Definition of borehole roughness and range of parameters

for Melbourne Mudstone (after Kodikara et al. 1992)

Range of values for sockets in Melbourne Mudstone
Parameter Smooth Medium Rough
im (degrees) 10-12 12-17 17-30
isq (degrees) 2-4 4-6 6-8
hp (mm) 1-4 4-20 20-80
hsa/hp, 0.35
B (m) 0.5-2.0
6. (MPa) 05-100
G, (MPa) 50 - 500
E,, (MPa) 50 - 500

Melbourne Mudstone (Johnston and Lam 1989). It accounts for variability in asperity
height and angularity, assuming clean, triangular interface joints. Figure 2.5 shows the

predicted adhesion factor, o, for Melbourne Mudstone with the range of parameters and
roughness as given in Table 2.2. The adhesion factor, «, is presented as a function of
En/o., 6/0, and the degree of roughness, where Ey, is the elastic modulus of the rock

mass and G, is the initial normal stress on the shaft-rock interface. It can be seen that the
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adhesion factor is affected not only by degree of the interface roughness, but also by
En/o. and 6./Cp.

Kulhawy and Phoon (1993) develop a relatively extensive load test data base for
drilled shafts in soil and rock and present their data both for individual shaft load tests
and as site-averaged data. The results are shown in Figures 2.6 and 2.7, in terms of
adhesion factor, o, vs. normalized shear strength, 6./2p,, where p, is atmospheric
pressure (= 0.1MPa). Understandably, the results of individual load tests show
considerably greater scatter than the site-averaged data. On the basis of the site-averaged
data, Kulhawy and Phoon (1993) propose the following relations for drilled shafts

socketed into rock:

Mean Behavior: a=20[c,/2p, T (2.13a)
Upper bound (very rough): a=20[c,/2p, 1> (2.13b)
Lower bound: a=20[c,/2p, 1 (2.13c)

Eq. (2.13) can be rewritten in a general form as

a=Y¥o,/2p, 1 (2.14)

This leads to a general expression for ultimate side shear resistance
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T = P12p,6,.1%° (2.15)

It is very important to note that the empirical relationships given in Egs. (2.13b) and
(2.13c) are bounds to site-averaged data, and do not necessarily represent bounds to
individual shaft behavior. The coefficient of determination (%) is approximately 0.71 for
the averaged data, but is only 0.46 for the individual data, reflecting the much greater

variability of the individual test results.

(b) Factors affecting the ultimate side shear resistance

As stated above, the roughness of the socket wall, which is an important factor
controlling the development of side shear resistance, has been studied extensively. Other
factors such as the joints in the rock mass and the socket geometry have also been studied
by some researchers. Williams et al. (1980) suggest that the existence of joints in the rock
mass reduces the side shear resistance by reducing the normal stiffness of the rock mass.
They develop an empirical relation between the side shear resistance of the jointed rock

and the modulus reduction factor, j, as shown in Figure 2.8, in which

b,=f(j), Jj=E,IE (2.16)

where
E., is the elastic modulus of the rock mass;
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E, is the elastic modulus of the intact rock;

B. is the side shear resistance reduction factor as in Eq. (2.12).

Pabon and Nelson (1993) study the effect of soft horizontal seams on the behavior
of laboratory model sockets. The study includes four instrumented model sockets in
manufactured rock, three of which have soft seams. They conclude that a soft seam
significantly reduces the normal interface stresses generated in the rock layer overlying it.
Consequently the side shear resistance of rock sockets with soft seams is much lower than
that of the intact rock socket.

The effect of socket geometry on side shear resistance is studied by Williams and
Pells (1981). They test 15 rock sockets in Melbourne Mudstone, with diameters ranging
from 335 mm to 1580 mm, and 27 rock sockets in Hawkesbury Sandstone, with
diameters ranging from 64 mm to 710 mm. The results of these tests indicate that the
socket length, L, does not have a discernible effect on side shear resistance. They argue
that the interface dilation creates a locked-in normal stress with the result that the shear
displacement behavior exhibits virtually no peak or residual behavior. They also report
that the socket diameter has a negligible effect on side shear resistance. On the other
hand, tests by Horvath et al. (1983) indicate that the unit side shear resistance decreases
as the sock diameter increases. Williams and Pells (1981) explain this phenomenon by
referring to the theory of expansion of infinite cylindrical cavity, which suggests that

cylinders with smaller diameters develop higher normal stresses for a given absolute
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value of dilation. However, they offer no physical explanation why the socket diameter

does not affect their own test results.

2.3.2 End Bearing Resistance

The optimum design of drilled shafts should consider both side shear resistance
and end bearing resistance. Unlike the ultimate side shear resistance, numerous theories
have been proposed for estimating the end bearing resistance. According to Pells and

Turner (1980), the theoretical approaches fall into three categories:

1) Methods which assume rock failure to be plastic.

2) Methods which idealize the zone of failure beneath the base in a form which
allows either the brittleness strength ratio or the brittleness modulus ratio to be taken into
account (Ladanyi 1966; Davis and Booker 1974).

3) Methods based on limiting the maximum stress beneath the loaded area to a

value less than required to initiate fracture.

There is a significant variation in the predicted end bearing resistance from
different theories. For example, the predicted bearing resistance of rock with an internal
friction angle ¢ = 35° ranges from 8c. to 25 6. depending on which theory is used.

Because of the wide variation of theoretical results, empirical and semi-empirical
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relations have been developed. Since they are more commonly used than theoretical

results, the empirical and semi-empirical relations will be discussed in the following.
Similar to ultimate side shear resistance, many researchers have attempted to

correlate end bearing resistance, gmax, to the unconfined compressive strength of rock.

Some of the suggested relations are as follows:

Coates (1967): Gmax = 30, (2.17)
Teng (1962): Imax = (5—8)0, (2.18)
Rowe and Armitage (1987b): Gmax = 270, (2.19)

The bearing capacity of foundations on rock is largely dependent on the strength
of the rock mass. Discontinuities can have a significant influence on the strength of the
rock mass depending on their orientation and the nature of material within discontinuities
(Pells and Turner 1980). As a result, relations have been developed to account for the size
and frequency of discontinuities within a rock mass. The Canadian Foundation
Engineering Manual (CGS 1992) proposes that the ultimate bearing pressure be

calculated using the following equation:

Gmax = 30K, D (2.20)

where



K, =[3+s/B][10(1+300g / 5)*°] is an empirical factor;

s is the spacing of the discontinuities;

B is the socket width or diameter;

g is the aperture of the discontinuities;

D =1+ 0.4(L/B) < 3.4 is the depth factor;

L is the socket length.
It is recommended in the Canadian Foundation Engineering Manual that the above
formula for Kp is valid for s/B ratios between 0.05 to 2.0 and for values of g between 0
and 0.02 m.

Kulhawy and Goodman (1980) present an approach that accounts for the presence
of discontinuities using either the discontinuity spacing or the rock quality designation
(RQD). The authors present the following relationship originally proposed by Bishnoi

(1968):

=JcN,, (2.21)

Imax

where
J is a correction factor depending on joint spacing (see Figure 2.9);
c is cohesion; and
N, is amodified bearing capacity factor, which is a function of the friction angle

¢ and discontinuity spacing (see Figure 2.10).
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Correction factor of J considers the effect of horizontal joints. The variation of J with the
discontinuity spacing is shown in Figure 2.9, where H is the spacing of horizontal joints.
For the value of N the authors consider the joints being either open or closed. According
to Goodman (1980), the presence of open joints would allow failure to occur by splitting
(Because the joints are open, there is no confining pressure and failure is likely to occur
by uniaxial compression of the rock columns) and this mode of failure needs to be
included in the calculation of the end bearing resistance. Several charts are given by
Kulhawy and Goodman (1980), following the method of Bishnoi (1968), to determine N,
for both open and closed joints. Figure 2.10 shows N, for open joints. Design charts are
also presented by the same authors to reduce values of Young’s modulus, compressive

strength, and cohesion due to presence of discontinuities.

2.4 Axial Load-Displacement Behavior of Drilled Shafts

2.4.1 General Load-Displacement Behavior of Drilled Shafts

The general load-displacement curve for a drilled shaft under axial loading is as

shown in Figure 2.11 (Kulhawy 1991). The whole curve can be described in three stages:

1. As load is first applied to the head of the shaft, a small amount of displacement
occurs which induces the mobilization of side shear resistance from head to base. During

this initial period, the shaft behaves essentially in a linear manner, and the displacement
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Figure 2.11 Generalized load-displacement for drilled shafts
under compressive loading (after Kulhawy 1991)
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can be computed accurately using the theory of elasticity. This linear behavior is
illustrated in Figure 2.11 as the line OA. The side shear along the shaft is smaller than the
ultimate side shear resistance (see Figure 2.12a).

2. As load is increased to point A in Figure 2.11, the shear stress at some point
along the interface will reach the ultimate side shear resistance (see Figure 2.12b), and the
shaft-rock ‘bound’ will begin to rupture and relative displacement (slip) will occur
between the shaft and the surrounding rock. As the loading is increased further (beyond
point A), this process will continue along the shaft, more of the shaft will slip, and a
greater proportion of the applied load will be transferred to the end of the shaft. If loading
is continued, eventually the side shear everywhere will reach the ultimate side shear
resistance (see Figure 2.12c) and the entire shaft will slip (point B).

3. Beyond point B, a greater proportion of the total axial load will be transmitted
directly to the end. When both side shear resistance and end bearing resistance are fully
mobilized (point C), any increase of load may produce significant displacement. This

indicates that the ultimate bearing capacity of the drilled shaft has been reached.

2.4.2 Theoretical Analysis of Load-Displacement Behavior of Drilled Shafts

Predicting the load-displacement response of drilled shafts is in some cases as
important as, or possibly more critical than, predicting the ultimate bearing capacity.
Many theoretical methods have been proposed for calculating the displacement of drilled

shafts socketed into rock. Mattes and Poulos (1969) are among the first to investigate the
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load-displacement behavior of rock-socketed shafts by integration of Mindlin’s equations.
Carter and Kulhawy (1988) provide a set of approximate analytical solutions to predict
the load-displacement response of rock sockets by modifying the solutions of Randolph
and Wroth (1978) for piles in soil. The majority of the theoretical solutions for predicting
the displacement of drilled shafts socketed into rock, however, have been developed
using finite element analyses (e.g., Osterberg and Gill 1973; Pells and Turner 1979;
Donald et al. 1980; Rowe and Armitage 1987a). Most of the techniques proposed for the
calculation of the vertical displacements of drilled shafts socketed into rock are based on
the theory of elasticity. It has been usual to assume that the drilled shaft is essentially an
elastic inclusion within the surrounding rock mass and that no slip occurs at the interface
between the shaft and the rock mass, although the solutions of Rowe and Armitage
(1987a) and Carter and Kulhawy (1988) can consider the possibility of slip. In the
following, some of the more commonly used theoretical and numerical solutions are

briefly reviewed.

(a) Finite element solutions considering no slip

Osterberg and Gill (1973) present an elastic finite element analysis for shafts
socketed into strong rock. Pells and Turner (1979) extend this work to cover a more
representative range of rock stiffness and socket geometry. Their analyses model the rock
mass as a single half space and do not consider slip along the socket interface.

Donald et al. (1980) investigate the behavior of shafts socketed into Mohr-

Coulomb rock. They assume full bound, i.e., no slip, along the shaft-rock interface. The
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plastic analysis, however, is limited to a few separately analyzed cases and the general
solution is presented only for elastic rock. Two layers of rock are considered in the
analyses, i.e., the rock adjacent to and beneath the socketed shaft (see Figure 2.13).

The solutions from different researchers are quite similar. For simplicity, only the
solutions of Pells and Turner (1979) are presented, as shown in Figure 2.14 (for a single
half space, i.e., E; = E, and v, = vy, in Figure 2.13), in which I, is the nondimensional

displacement influence factor defined by

I, =—"— (2.22)

where
E, is the Young’s modulus of the rock mass;
R is the radius of the rock-socketed shaft (R = B/2);
O, is the applied load at the top of the rock-socketed shaft;

w, is the displacement at the top of the rock-socketed shaft.

(b) Finite element solutions considering slip

Rowe and Armitage (1987) perform an elastic-plastic finite element analysis that
accounts for slip along the interface according to the technique developed by Rowe and
Pells (1980). Two layers of rock are considered in the analyses (see also Figure 2.13). The

interface behavior is established in terms of the Coulomb failure criterion. The roughness
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Figure 2.13 A socketed shaft in two layers of rock.
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2.0 p— —

L, =ERw/Q; R = shaft diameter; w, = displacement at shaft head;
Q. = total applied load at shaft head; L = length of the shaft;
E, = Young’s modulus of rock mass; E, = Young’s modulus of the shaft;

Figure 2.14 Elastic displacement of a socketed shaft
(after Pells and Turner 1979)
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of the interface is modeled implicitly through the use of an angle of interface dilatancy
that produces additional normal stress on the interface as the shaft deflects vertically due
to the applied load. The contribution of the interface dilatancy commences once slip
occurs at the interface. The results of this study are presented in three sets of design charts
respectively for Ey/E;, = 0.5, 1.0 and 2.0. Figure 2.15 shows the set for Ey/E; = 2.0.
Although the analysis is carried out considering the behavior of a cohesive-frictional-
dilative interface, the design charts are developed only for nondilative-cohesive
interfaces. These charts will be further discussed in Section 2.5.2. It should be noted that

the nondimensional displacement influence factor, 7, in Figure 2.15, is defined by

I=—"—+- (2.22a)

where
E. is the Young’s modulus of the rock mass adjacent to the shaft;
B is the diameter of the rock-socketed shaft;
O, is the applied load at the top of the rock-socketed shaft;

wy is the displacement at the top of the rock-socketed shaft.

The value of I defined by Eq. (2.22a) is twice that of I, determine by Eq. (2.22) for the

same value of E;, O, and w.
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I=EBw/Q,; B =shaft diameter;
Q. = total applied load at shaft head;
E, = Young’s modulus of rock mass;
Tavg = average side shear resistance;
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w, = displacement at shaft head;

Qs = bearing load at shaft base;

E, = Young’s modulus of the shaft;

T = Tmax = Ultimate side shear resistance.

Figure 2.15 Design charts for a socketed shaft (E,/E, = 2.0)

(after Rowe and Armitage 1987a)



(c) Analytical solutions of Carter and Kulhawy (1988)
Carter and Kulhawy (1988) provide a set of approximate analytical solutions to
predict the load-settlement response of rock sockets. Two layers of rock are considered in

the solutions (see Figure 2.13). The solutions are for a shaft without slip or with full slip.

Solutions considering no slip

Under an applied axial load, the displacements in the rock mass are predominantly
vertical, and the load is transferred from the shaft to the rock mass by vertical shear
stresses acting on the cylindrical interface, with little change in vertical normal stress in
the rock mass (except near the base of the shaft). The pattern of deformation around the
shaft may be visualized as an infinite number of concentric cylinders sliding inside each
other (Randolph and Wroth 1978) (see Figure 2.16). Randolph and Wroth (1978) have
shown that, for this type of behavior, the displacement of the shaft w may be described
adequately in terms of hyperbolic sine and cosine functions of depth z below the surface,

as given below:

w(z) = A, sinh(iz) + A, cosh(}1z) (2.23)

in which, A; and A; are constants which can be determined from the boundary conditions

of the problem. The constant [t is given by
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Figure 2.16 Mode of deformation around the shaft

(after Randolph and Wroth 1978).
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(L) = (—g%)(%)z (2.24)

where
€ =1n[2.5(1 - v,)L/R};
R = B/2 is the radius of the shaft;
A =EyJ/G;
G.=EJ/[2(]1 + ;)] is the elastic shear modulus of the rock mass surrounding the
shaft;
E, is the Young’s modulus of the shaft;
E. is the Young’s modulus of the rock mass surrounding the shaft;

V; is the Poisson’s ratio of the rock mass surrounding the shaft.

Using the standard solutions for the displacement of a rigid punch resting on an
elastic half-space (Poulos and Davis 1974) as the boundary condition at the base of the
shaft, the elastic settlement at the head of the shaft is given by (Randolph and Wroth

1978):

G, Rw, _ ”(1 4 b)(nxé) 2
© R
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where

€ = Gy/G:;

Gy = E/[2(1 + vp)] is the elastic shear modulus of the rock mass below the shaft

base.

Ey, is the Young’s modulus of the rock mass below the shaft base;

V}, 1s the Poisson’s ratio of the rock mass below the shaft base.
The solution given by Eq. (2.25) is plotted in Figure 2.17 for cases where v; = vy = 0.25
and E; = E,. Also plotted are finite element solutions by Pells and Turner (1979). The

general agreement between the two solutions is reasonable.

Solutions considering full slip
The case of slip along the entire length of the shaft (beyond point B in Figure
2.11) also has been considered in detail by Carter and Kulhawy (1988). For this case, the

shear strength of the interface is given by the Coulomb criterion:

T=c+0,tand (2.26)

where
c is the interface cohesion;

¢ is the interface friction angle;

O, is the radial stress acting on the interface.
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— — EQquation (2.25)
—— FEM (Pells &
Turner, 1979)

|.° = Vr=Vp=o.25
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L = length of the shaft; R = shaft diameter; B = diameter of the shaft;
Q: = total applied load at shaft head; w, = displacement at shaft head;

E,, v; = Young’s modulus and Poisson’s ratio of rock mass;

E,, v, = Young’s modulus and Poisson’s ratio of the shaft.

Figure 2.17 Elastic displacement of a socketed shaft
(after Carter and Kulhawy 1988)
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As relative displacement (slip) occurs, the interface may dilate, and it is assumed

that the displacement components follow the dilation law:

A% tany ‘ 2.27)

where

Au and Aw are the relative normal and shear displacements of the shaft-rock

interface (see Figure 2.18);

y is the angle of dilation defined by Davis (1968).

To determine the radial displacements at the interface, the procedure suggested by
Goodman (1980) and Kulhawy and Goodman (1987) is followed, in which conditions of
plane strain are assumed, as an approximation, independently in the rock mass and in the
slipping shaft. The rock mass is considered to be linear elastic, even after full slip has
taken place, and the shaft is considered to be an elastic column, These assumptions,
together with the dilatancy law, allow one to derive an expression for the variation of
vertical stress in the compressible shaft. The distribution of the shear stress acting on the
shaft then can be calculated from equilibrium conditions, and the vertical displacement
can be determined as function of depth z by treating the shaft as a simple elastic column.

The ‘full slip’ solution for the displacement of the shaft head is derived as
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Uc Au u,
a) Before Shearing b) After Shearing

=Ou _ uc-vy,

Aw  we-w,

u; and w, = radial and vertical displacement of the shaft;
ur and w; = radial and vertical displacement of rock mass;
y = angle of dialation.

Figure 2.18 Schematic illustration of dilatancy at the shaft-rock
mass interface (after Carter and Kulhawy 1988)
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All other parameters in Egs. (2.28) to (2.38) are as defined before. The adequacy of the
closed-form expressions is demonstrated by comparing them with the finite element
solution by Rowe and Armitage (1987a, b). The results are shown in Figure 2.19. The
overall agreement between the closed-form solutions and the finite element results is

good.

Comments

It must be noted that the closed-form solutions just consider “no slip” and “full
slip” conditions. They cannot predict the load-displacement response between the
occurrence of first slip and full slip of the shaft (i.e., curve AB in Figure 2.11). However,
the finite element results indicate that the progression of slip along the socket takes place
over a relatively small interval of displacement (Finite element predictions of first slip
and full slip have been indicted in Figure 2.19). Therefore it seems reasonable, at least for
most practical cases, to ignore the small region of the curves corresponding to progressive
slip and to assume that the load-displacement relationship is bilinear, with the slope of the

initial portion given by Eq. (2.25) and the slip portion by Eq. (2.28).
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Equation (2.25)
(elastic)

Equation (2.28)
(full slip)

O FEM (Rowe &
Armitage, 1987b)

E/E, =10, E/E, =1
vi=vw=03,v,=0.15
L/B=10,¢=y=0

0] 1 ! 1 ] ]

o . 0.5 1.0 1.5 2.0 2.5
E.w,
nLc

L = length of the shaft; B = diameter of the shaft;

Q, = total applied load at shaft head; w, = displacement at shaft head;

E,, v = Young’s modulus and Poisson’s ratio of the rock mass adjacent to the shaft;
Es, vy = Young’s modulus and Poisson’s ratio of the rock mass below the shaft;

E,, Vp = Young’s modulus and Poisson’s ratio of the shaft;

¢ = interface cohesion; V = angle of dilation.

Figure 2.19 Displacement of a socketed shaft considering full slip
(after Carter and Kulhawy 1988)
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2.5 Current Design Methods

Currently, several methods are available for the design of drilled shafts socketed
into rock. In general, a design method uses one of the empirical relations discussed in
section 2.3 to estimate the ultimate side shear resistance and the end bearing resistance.
The load-displacement response is then predicted using charts obtained with finite
element solutions discussed in section 2.4. In this section, two typical design methods
will be described to show how the empirical relations and the finite element results are

used in design practice.

2.5.1 Williams et al. Design Method

Williams et al. (1980) introduce the concept of normalized elastic and inelastic
side shear and enc' bearing resistance to predict the load-displacement response of rock
sockets. Their design method concentrates on satisfying a displacement criterion and

involves the following general procedure:

1. Determine a maximum allowable displacement w,.
2. Select trial shaft dimensions. Generally the shaft diameter will be suggested by
construction requirements or allowable concrete stresses and it is necessary only o select

a trial shaft length.
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3. Assume that the shaft behaves elastically and use the elastic solution of Donald

et al. (1980) for a shaft in a semi-infinite half space (see Figure 2.20) to predict the total

elastic load, Q., at displacement w,, i.e.,

7 (2.39)

where

En is the Young’s modulus of the rock mass;
B is the diameter of the shaft;
I'is the nodimensional displacement influence factor which can be obtained from
Figure 2.20.
4. Determine the distribution of the elastic load, Q., between the side and the base
(Qsc and Que) according to elastic load distribution curves (e.g., Figure 2.21 developed by

Donald et al. 1980). The elastic unit side shear, 7., and the elastic end bearing, q., are then

determined as

— Qse
T, = --——-ZRLR (2.40)
9. = ;QR% (2.41)
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SETTLEMENT INFLUENCE FACTOR I

0 2 4 6 8 10 12
EMBEDMENT RATIO L/B

I=E.Bw/Q,; L = length of the shaft; B = diameter of the shaft;

Q. = total load at shaft head corresponding to elastic displacement w, at shaft head;
En = Young’s modulus of the rock mass;

E; = Youag’s modulus the shaft.

Figure 2.20 Elastic displacement influence factor as a function of

embedment ratio and Modular ratio (after Donald et al. 1980)
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The elastic side shear ratio, Te/Tmax, is then calculated, where Tpax is calculated using Eq.

(2.12), ie.,

Trmax = &,B, 0. (2.12)

5. The solutions in steps 3 and 4 are for the case that the shaft behaves elastically.
If the shaft behaves non-elastically, Qs. and Q. have to be adjusted to get the corrected
(actual) side resistance, Qs, and the corrected (actual) base load, Qp. The deviation from
elastic behavior is quantified by using the graph shown in Figure 2.22, which is derived
from empirical evidence from full-scale load tests on rough sockets in Melbourne
Mudstone (Williams 1980) (For shafts in rock masses with different properties, new
relations should be derived). Figure 2.22 shows the relationship between To/Tmax, and
another ratio, Ty/Tmax, termed by Williams et al. (1980) the ‘plastic stress ratio’, where Tp
is the stress equal to the difference between the elastic side shear stress and the mobilized

side shear stress, i.e.,

1,=1,-1, (2.42)

where 7; is the mobilized side shear stress, i.e., the actual side shear stress at displacement

wi. Therefore, the corrected (actual) side resistance, Oy, is
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L = length of the shaft; B = diameter of the shaft;

Q. = total load at shaft head corresponding to elastic displacement w, at shaft head;
Que = load at shaft base corresponding to elastic displacement w, at shaft head;

Em = Young’s modulus of the rock mass;

E, = Young’s modulus the shaft.

Figure 2.21 Elastic load distribution as a function of embedment

ratio and Modular ratio (after Donald et al. 1980)
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IDEAL ELASTO-PLASTIC
LOAD- SETTLEMENT
CURVE

DESIGN CURVE

ELASTIC STRESS RATIO Te/Tmax

UPPER AND LOWER BOUNDS -
TO FIELD DATA

| | 1 1 1 1 1
0 . 1 2
PLASTIC STRESS RATIO Tp/Tmax

Figure 2.22 Normalized design curves for side resistance

(after Williams et al. 1980)
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Q, =(t,—7T,)nlB (2.43)

The unit base resistance corresponding to a displacement of 1% of the shaft

diameter, q;, is defined as the ultimate base resistance and is estimated by

a,=N,o, (2.44)

5

where N is an empirical factor determined from Figure 2.23. The elastic bearing
resistance ratio, q¢/qy, is then calculated. The deviation, qp, from the elastic behavior, i.e.,

the difference between the elastic end bearing and the mobilized end bearing is

9,=9.—4, (2.45)

where qp is the mobilized end bearing, i.e., the actual end bearing at displacement w.

Thus the corrected (actual) base load, Qy, is

0, =(g. —g,)mR’ (2.46)

where g, can be determined the empirical graph given in Figure 2.24.
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Figure 2.23 Bearing capacity factor N; vs. L/B
(after Williams et al. 1980)
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Plastic stress ratio q,/q;

Figure 2.24 Normalized design curves for base resistance

(after Williams et al. 1980)
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6. Determine the actual total load Q; corresponding to displacement w,, as Q; +
Q.
7. Check if the load Q, is close to the design load. If not, select a new trial design

and repeat the above procedures.

2.5.2 Rowe and Armitage Design Method

A typical design chart developed from finite element analyses by Rowe and
Armitage (1987a, b) is shown in Figure 2.25, in which the lower dashed line represents
the elastic solution (no slip) and the upper dashed line represents full slip conditions

(Tavg/Tmax = 1). The following is a brief outline of the design procedure:

1. Determine the following design parameters:
(i) allowable design displacement, w;
(i1) diameter of the shaft, B;
(iii) applied axial load, Qy;
(iv) unconfined compressive strength of the rock o;

(v) modulus of the shaft, E,.
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I=EBw/Q; B =shaft diameter; w, = displacement at shaft head;
Q. = total applied load at shaft head; Q, = bearing load at shaft base;

E; = Young’s modulus of rock mass adjacent to the shaft;

E, = Young’s modulus of rock mass below the shaft base;

E, = Young’s modulus of the shaft; L = shaft length;

Tavg = average side shear resistance; Tmax = Ultimate side shear resistance.
Figure 2.25 Design of a socketed shaft allowing for slip

(after Rowe and Armitage 1987b)
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2. Estimate the maximum unit side shear resistance, Tmax, according to Eq. (2.9),

ie.,

Toax = 045(6,)*®  for sockets with roughness R1, R2 or R3 (2.9a)

T = 06(c,)% for sockets with roughness R4 (2.9b)

where Ty and o, are in MPa.

3. Estimate the Young’s modulus of the intact rock, E;, as follows

E, =215,c, (2.47)

where E; and o are in Mpa.

4. Apply reduction factors to Tmax and E; to obtain the design parameters for the

side shear resistance and the rock mass modulus, i.e.,

Ta = [rTmax (2.48)

E; = fgE, (2.49)

where f_ and fg are reduction factors (or partial factors). According to Rowe and Armitage

(1987b), a value of at least 0.7 should used for both f_and fg. The partial factors of 0.7 are
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chosen to meet a serviceability limit state such that the probability of exceeding the
design settlement is less than 30% (Rowe and Armitage 1987b).
5. Calculate (I/B)max that will be required if the total load, Q,, were to be carried

in side shear only

L/B = 2.50
(L1 B)pax 7B, (2.50)

6. Calculate the settlement influence factor, I,

=L 2.51)

Q,

7. This step involves selecting the length of the shaft required to give the ‘design’
displacement influence factor Iy, while allowing for possible slip at the shaft-rock
interface. This is achieved by selecting an appropriate design chart for given values of
Ey/E; = Ep/E, and Ey/E; from those produced by Rowe and Armitage (1987b) (e.g., see
Figure 2.25) and proceeding as follows:

(a) Draw a straight line between the coordinates (L/B = 0, Qy/Q; = 100%) and
(L/B = Lnax/B, Qu/Q; = 0, where O, is the base load) (see Figure 2.25).

(b) Locate the intersection between the straight line and the design curve

corresponding to the settlement influence factor /y calculated in Step 6 (see Figure 2.25).
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The coordinate of this intersection point represents the ‘design’ length-to-diameter ratio
(L/B)4 and the corresponding (Op/O1)d-

If an intersection can be found, then a shaft of length L4 will satisfy the design
displacement criterion and it simply remains to check that there is an adequate ‘factor of
safety’ against over-stressing the rock beneath the shaft base. Proceed to step 8.

(¢) If no intersection point can be established on the design chart, it is necessary to
check whether the shaft can be designed for the given conditions. Select the appropriate
chart from another solution set that represents the elastic solution (no slip conditions)
(e.g., see Figure 2.26) and draw a horizontal line for I = I. Find the intersection of this
line with the curve for the appropriate value of Ep/E; = Ep/Eq:

(1) If there is an intersection point on this curve then the shaft can be designed elastically
(i.e., negligible slip should occur under design conditions). The required L/B can be
obtained as shown in Figure 2.26. The corresponding proportion of load transferred to the
base Ow/Q: may be determined from curves as given in Figure 2.27. The shaft of length
L/B satisfies the design displacement criterion. Proceed to step 8 to check bearing
pressures below the shaft base.

(i) If still no intersection point can established to find L/B, then no shaft of diameter B
will satisty the design requirements for the specified conditions. Go back to step 1 and
either increase the design displacement or increase the diameter B and repeat the design

procedure.
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I=EBw/Q,; w, = displacement at shaft head;

Q. = total applied load at shaft head; E; = Young’s modulus of the rock mass;
B = shaft diameter; L = shaft length;

E, = Young’s modulus of "he shaft.

Figure 2.26 Design of a socketed shaft for no slip conditions
(after Rowe and Armitage 1987b)
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B = shaft diameter; L = shaft length;
Q: = total applied load at shaft head; Qo = bearing load at shaft base;
E: = Young's modulus of rock mass; E, = Young’s modulus of the shaft.

Figure 2.27 Design of a sscketed shaft for no slip conditions
(after Rowe and Armitage 1987h)

83



8. Once the design values of L/B and Qy/Q, are established, check that the end

bearing pressure g, = Qb/n'.BZ, does not exceed the maximum recommended value of
gp q

2.50..

In the case of rock with soil seams, Rowe and Armitage (1987b) suggest that Tpax

and E; used above be modified as follows:

Trax = ST, + (1= 8T, (2.52)

E] = SE, +(1-S)E, (2.53)

where

§ is the proportion of seams to total socket length (i.e., S = £(seam thickness)/L);
‘c*,m and E*i are the modified side shear resistance and the modulus of the intact

rock, respectively.

Ts and E; are the side shear resistance along the seams and the modulus of the

seams, respectively.
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2.5.3 Comments on Current Design Methods

Several comments can be made about the papers referenced in the preceding

section describing design methods for drilled shafts socketed into rock:

1. Current design methods can just model the rock mass as a single half space or,
at best, as a two layer medium (i.e., the rock adjacent to and beneath the socketed shaft).
In practice, however, the rock mass is often multi-layered and distinct differences in
material properties exist from layer to layer. To use the available design methods for
shafts in multi-layered rock mass, the common practice is to use weighted average values
of material propert'ies\ This is a very crude approximation. To reasonably consider the
multi-layer nature of rock mass, new design methods need to be developed.

2. Current design methods consider the end bearing resistance very crudely. To
reasonably design a rock-socketed shaft, it is necessary to predict not only the ultimate

side shear resistance but also the end bearing resistance.
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CHAPTER 3

- DESIGN MODEL FOR
DRILLED SHAFTS SOCKETED INTO ROCK

3.1 General

As shown in the literature review of Chapter 2, current design methods just model
the rock mass as a single half space or, at best, as a two layer medium (i.e., the rock
adjacent to and beneath the rock socketed shaft). This is a very crude approximation to
the multi-layered rock mass occurring in reality. The literature review also showed that
the current design methods consider the end bearing resistance very crudely. To
reasonably design a rock socketed shaft, it is necessary to consider the multi-layer nature
of the rock mass and predict not only the ultimate side shear resistance but also the end
bearing resistance. This chapter provides a general description of the main points of a

proposed design model which can reduce the above limitations of the current design

methods.
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3.2 Aliowable Load Capacity

The allowable load capacity, Q,, of a drilled shaft socketed into rock can be

obtained from the ultimate load capacity, Q,, by

=2
0. =+ 3.1

where FS is the factor of safety. According the current design practice of pile
foundations, FS of at least 2 to 3 should be used.
For a drilled shaft socketed into a multi-layered rock mass (see Figure 3.1), Q, can

be obtained as follows:

m TCBZ
Qu = RBZ Li(‘tmax )i +—4—qmax (32)

i=1

where
B is the diameter of the socket;
L; is the length of the socket in layer i;

(7 max)i is the ultimate side shear resistance of the socket in layer i;

gmax 1S the end bearing resistance.
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Figure 3.1 A drilled shaft sockted into a multi-layered rock mass.
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(Tmx)i and ¢gmax can be determined from the corresponding unconfined

compressive strength, o.. The detailed procedure will be described in Chapter 4.

For a drilled shaft socketed into rock, the working load, Q,, should not exceed the
allowable load capacity, Q,, obtained from Eq. (3.1). So if a drilled shaft with working
load, Q,, is to be designed, the required minimum ultimate load capacity, (Qu)min, Should

be
(@) min = FS -0, (3.3)

From Egs. (3.2) and (3.3),

m nB?
nBY, Li(T o ); +—4 9uax 2 FS -0, (3.4
i=1

With Eq. (3.4), shaft dimensions can be selected. Generally the shaft diameter is
controlled by construction requirements or allowable concrete stresses. After a diameter is

selected, the shaft length can be evaluated from Eq. (3.4).
3.3 Displacement of the Shaft at Working Load

A rational desigr method for drilled shafts socketed into rock should consider not

Only the allowable load capacity but also the displacement at the working load.
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After the shaft dimensions have been determined using the method described in
the last section, the displacement of the shaft at the working load can be calculated using
a yet to be determined method. If the calculated displacement values exceed the allowable
displacement, the diameter and/or length of the shaft should be adjusted. For the proposed
design method, a model is developed to predict the displacement of a shaft socketed into
a multi-layered rock mass, at working load. The details of this model are presented in
Chapter 5. The proposed model assumes that the shaft behaves linearly elastically up to
the working load.

As described in Chapter 2, the general load-displacement curve for a drilled shaft
under axial loading consists of three stages (see Figure 2.9). In the first stage (line OA in
Figure 2.9), the shaft behaves essentially in a linear manner, and the displacement can be
computed accurately using the theory of elasticity. Field scale and model tests show that
the first stage can go up to 50% of the ultimate load (see, e.g., Goeke and Hustad 1979;
Radhakrishana and Leung 1989; Leung and Ko 1993; Dykeman and Valsangkar 1996).
Numerical and analytical results also show that the shaft behaves essentially in a linear
manner up to 50% of the ultimate load (see Figure 2.14).

Since the shaft behaves essentially in a linear manner up to 50% of the ultimate
load capacity, the displacement at working load (which is less than 50% of the ultimate
load capacity if FS of 2 to 3 is used) can be computed accurately using the theory of

elasticity.
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3.4 Effect of Discontinuities

Soft seams, joints and faults frequently exist in rock formations. Occurrence of
these discontinuities will reduce the load capacity and increase the displacement. The
core recovery ratio, P, and rock quality designation, RQD, are commonly used to
describe the quality of rock masses. Both P; and RQD are related to the soundness and
continuity of the rock. The relationship between the numerical value of RQD and rock
engineering qualities are shown in Table 3.1 (Deere 1964). For the purpose of foundation
design on a rock mass, Kulhawy and Goodman (1987) suggest that the design value of the
rock mass strength be determined from the intact rock strength value based on the
corresponding ROD values of the rock mass as shown in Table 3.2. Several methods are
available for estimating the Young’s modulus of rock masses (see, e.g., Bieniawski 1984,
CGS 1992). Here only the empirical relations are presented. Figure 3.2 shows the relation
between RQOD and the modulus ratio E/E; (Bieniawski 1984), where E,, and E; are the
moduli of the rock mass and intact rock, respectively. The empirical relationship between
the rock mass rating (RMR) value and an in situ rock mass modulus is shown in Figure
3.3. Bieniawski (1978) studied seven projects and suggested the following equation to

predict rock mass modulus from RMR:

E,=2RMR-100 (GPa) (3.5)
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Table 3.1 Relationship of RQD to rock engineering quality (after Deere 1964)

RQOD (%) Rock Quality
<25 Very poor

25-50 Poor

50-75 Fair

75-90 Good

90 - 100 Very good

Table 3.2 Suggested design values of rock strength parameters

(after Kulhawy and Goodman 1987)

Rock mass properties

ROD Unconfined Angle of

(%) compressive strength Cohesion friction (°)

0-70 0.330. 0.1c, 30
70- 100 (0.33 - 0.8)c 0.1c. 30-60

6. = unconfined compressive strength of intact rock core.




I.ZF

¥

Modulus ratio E/E;

'Rock Quality Designation (RQD) (%)

Figure 3.2 Correlation between RQD and modulus ratio E,,/E;
(after Bieniawski 1984)
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Figure 3.3 Relationship between in situ modulus and RMR

(after Bieniawski 1978; Serafim and Pereira 1983)
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The obvious deficiency of this equation is that it does not give modulus values for RMR
values less than 50. Additional studies carried out on rock masses with qualities ranging
from poor to very good indicated that the modulus could be related to RMR by (Serafim

and Pereira 1983)

E, = 10\RMR-OVR (Gpa) (3.6)

More recently Barton et al. (1980), Barton et al. (1992) and Grimstad and Barton (1993)
have found good agreement between measured displacements and predictions from

numerical analyses using in situ deformation modulus values estimated from

E, =25log, O (GPa) 3.7

where Q is the rock quality index (Bartow et al. 1974).
It should be noted that all the above empirical relations suffer from the limitations
mentioned, e.g., by Einstein et al. (1979).

There exist other empirical reduction factors which can then be used to calculate
the ultimate lcad capacity. For example, according to Williams et al. (1980), the side
shear resistance reduction factor, By, can be related to the rock mass modulus and intact
rock modulus ratio, E/E;, as shown in Figure 2.6. Hassan and O’Neill (1997) suggest

that the friction along the interface at the soft seams be excluded. This can be done by
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multiplying Tmax of a certain rock layer by the core recovery ratio, P;, of this layer. The
reduced end bearing resistance can be determined using the reduced unconfined

compressive strength value (e.g., in Table 3.2).

It should be recalled, also, that the modulus used to predict the displacement is the

rock mass modulus, Ep,, not the intact rock modulus, E;.
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CHAPTER 4

ULTIMATE LOAD CAPACITY OF
DRILLED SHAFTS SOCKETED INTO ROCK

4.1 General

As discussed in chapter 3, to predict the ultimate load capacity of a drilled shaft
socketed into rock, it is necessary to predict the ultimate side shear resistance and the end
bearing resistance. In this chapter, methods for predicting the ultimate side shear
resistance and the end bearing resistance are developed. By analyzing the available
methods for estimating the ultimate side shear resistance, relations are recommended
respectively for smooth and rough sockets. In this chapter, the terms “smooth socket” and
rough socket” are used to represent the extreme interface conditions as defined, for
example, by Kodikara et al. (1992) (Table 2.2). As for the end bearing resistance, a data
base of 35 load tests is developed and, based on this data base, a new relation is
developed to predict the end bearing resistance from unconfined compressive strength.

The Hoek-Brown strength criterion is used to analyze the end bearing resistance of rock
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sockets. The results show that the agreement between the new relation and the theoretical

solution is reasonable.

4.2 Ultimate Side Shear Resistance

As shown in Chapter 2, the available relations for estimating the ultimate side

shear resistance can be divided in the following two major groups:

1) The ultimate side shear resistance is a simple constant times o..
2) The relationship between the ultimate side shear resistance and o, is a power-

curve.

Considering that the probable origin of these relations is by plotting the available data and
noting trends, the relations can be simply explained. If the rock strength can be expressed

as a Coulomb material (c and ¢), with the interface skin friction approximating the rock’s

cohesion (see Figure 4.1), then (McVay et al. 1992)

sin ¢ = — 00 @.1)
(x+0,+0506,)
Tox = (Xx+0,)tan ¢ “4.2)
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Figure 4.1 Strength envelope by McVay et al. (1992)
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where o is tensile strength of the intact rock. Combining Eq. (4.1) and (4.2) results in

_ o, (1—-sin¢)

4.
max 2coso (43)
or
o = P _ (I-sing) @.4)
o, 2cos¢

So for a fixed strength envelope (constant ¢), a constant relationship will exist between
cohesion (skin friction) and o.. Alternatively, the relation using a power function suggests
a rock with a variable ¢. For example, as ¢ increases, the o, strength increases likewise,

which in turn would lower the adhesion factor, o (see Eq. 4.4).

A study of extensive load test data (Williams and Pells 1981; Kulhawy and Phoon
1993) indicates that the power curve relationship is closer to the real cases. So only the
power curve relations will be considered for the proposed design model.

The relations of Kulhawy and Phoon (1993) (Eq. 2.13) can be rewritten as

Mean Behavior: Tmax = 090(0, )93 (4.5a)

Upper bound (very rough): T = 135(6,)%° (4.5b)
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Lower bound: Tax = 045(5,)%° (4.5¢)

It can be seen that the lower bound relation of Kulhawy and Phoon (1993) (Eq. 4.5c) is
the same as the relation of Rowe and Armitage (1997b) for sockets with roughness R1,
R2 or R3 (Eq. 2.9a). However, the upper bound value from Kulhawy and Phoon (1993)
(Eq. 4.5b) will be much higher than the value from Rowe and Armitage (1997b) for
sockets with roughness R4 (Eq. 2.9b). Figure 4.2 is a plot of the ultimate side shear
resistance, Tmax, versus the unconfined compressive strength, o.. Also plotted in this
figure are the relations by Rosenberg and Gourneaux (1976) (Eq. 2.6), Meigh and Wolshi
(1979) (Eq. 2.7) and Horvath (1982) (Eq. 2.8). Considering the fact that the relation of
Kulhawy and Phoon (1993) is derived from a relatively extensive data base and that their
upper bound value is much higher than the values from all other relations, the following

relation is recommended for the proposed design method:

Smooth socket (R1, R2 or R3): T = 040(c,)% (4.62)

Rough socket (R4): 1. =080(c, )% (4.6b)
max c
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Figure 4.2 Ultimate side shear resistance vs. unconfined compressive strength

(There are two curves respectively for Kulhawy and Phoon 1993, Rowe and Armitage 1987b, Horvath
1982 and those recommended. In these thesis, for each shaft, the upper one is for rough interface and

the lower one for smooth interface)
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4.3 End Bearing Resistance

There has been considerable debate concerning the bearing capacity of circular
foundations on rock. Numerous theories have been proposed and there is a significant
variation in the predicted bearing capacity. The scatter in predicted results from various
empirical relations is also quite high (see, for example, Eqs. 2.17 - 2.19). This may
account for the fact that current design methods consider the end bearing resistance very
crudely. Here a data base of 35 loading tests is developed and by analyzing the test data, a
new relation is derived to predict the end bearing resistance of rock socketed shafts. The
new relation is basically supported by the theoretical results derived from Hoek-Brown

strength criterion (Hoek and Brown 1980, 1988; Hoek et al. 1992).

4.3.1 New Relation between End Bearing Resistance and Unconfined

Compressive Strength

A data base of 35 loading tests is developed to study the variation of end bearing
resistance with unconfined compressive strength. Data are obtained from the literature.
Information for each load test is collected as comprehensively as possible. Table 4.1 is a

summary of the data base.
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All the load test data are plotted in Figure 4.3. It can be seen that the relation of
gmax and O is strong. Using linear regression, the relationship between gmax and G, can be

obtained as follows:

Grnax = 45(5,)%7 @.7

The end bearing capacity factor, N, defined by

N, = dms 4.8)

is often used in the literature. From Egs. (4.7) and (4.8),

N, =45(c,)*® (4.9)

It can be seen that N, decreases with increasing o, (see Figure 4.4). So the available
relations such as Egs. (2.17) — (2.19) assuming constant N, values (i.e., Qmax INCreases
linearly with ©.) are not accurate in predicting the end bearing resistance of rock socketed

shafts. The theoretical solution presented in next section will also support the derived

relations.
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Table 4.1 Summary of the data base of load tests.

Dia- | Depth
meter | to base o, Grmax
No. | Rock type (mm) (m) (MPa) | (MPa) NV Reference
1 | Mudstone 670 6 4.2 6.88 1.64 | Wilson (1976)
2 | Shale 762 8.8 0.81 469 | 5.79 | Goeke & Hustad (1979)
3 | Shale 457 13.7 3.82 10.8 2.83 | Hummert & Cooling (1988)
4 | Shale 305 *x 1.08 3.66 3.39 | Jubenville & Hepworth (1981)
5 | Gypsum® | 1064 | 5.32 2.1 6.51 | 3.1 | Leung & Ko (1993)
6 | Gypsum® | 1064 | ** 4.2 109 | 26 | Leung& Ko (1993)
7 | Gypsum? 1064 ** 54 15.7 29 Leung & Ko (1993)
8 | Gypsum® | 1064 | 5.71 6.7 16.1 24 | Leung & Ko (1993)
9 | Gypsum® [ 1064 | ** 85 |23 2.7 | Leung & Ko (1993)
10 | Gypsum® 1064 | 5.71 11.3 27.7 25 Leung & Ko (1993)
11 | Till 762 ** 0.7 4 5.71 | Orpwood et al. (1989)
12 | Till 762 *ok 0.81 4.15 5.12 | Orpwood et al. (1989)
13 | Till 762 *x 1 55 55 Orpwood et al. (1989)
14 | Diabase 615 122 052 | 2.65 5.1 Webb (1976)
15 | Hardpan 1281 | 18.3 1.38 | 5.84 | 423 | Baker (1985)
16 | Till 1920 | 20.7 057 | 229 | 4.04 | Baker (1985)
17 | Hardpan 762 18.3 1.11 4.79 | 433 | Baker (1985)
18 | Sandstone 610 ok 8.36 10.1 1.21 | Glos & Briggs (1983)
19 | Sandstone 610 *k 926 | 13.1 141 | Glos & Briggs (1983)
20 | Mudstone 300 2.01 065 | 64 9.8 Williams (1980)
21 | Mudstone 300 1 067 | 7 10.5 | Williams (1980)
22 | Mudstone | 1000 | 15.5 268 | 59 22 Williams (1980)
23 | Mudstone 1000 | 15.5 2.45 6.6 2.7 Williams (1980)
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Table 4.1 Continued

Dia- | Depth
meter | to base O. Grnax
No. | Rock type | (mm) (m) (MPa) | (MPa) | N Reference
24 | Mudstone | 1000 | 15.5 2.45 7 29 Williams (1980)
25 | Mudstone | 1000 | 15.5 2.68 6.7 2.5 Williams (1980)
26 | Mudstone 600 1.8 1.93 9.2 438 Williams (1980)
27 | Mudstone | 1000 | 3 1.4 7.1 5 Williams (1980)
28 | Shale *ox *x 34 28 0.82 | Thorne (1980)
29 | Sandstone ok *k 12.5 14 1.12 | Thorne (1980)
30 | Sandstone *x *k 27.5 50 1.82 | Thorne (1980)
31 | Shale *k *x 55 27.8 0.51 | Thorne (1980)
32 | Shale 740 7.24 1.42 5.68 4 Aurora & Reese (1977)
33 | Shale 790 7.29 1.42 5.11 3.6 Aurora & Reese (1977)
34 | Shale 750 7.31 1.42 6.11 43 Aurora & Reese (1977)
35 | Shale 890 7.63 0.62 2.64 | 4.25 | Aurora & Reese (1977)

b N.= Gmax/Oc.
2 Gypsum mixed with cement is used as pseudo-rock in centrifuge test. The diameters
and depths are the equivalent prototype dimensions corresponding to 40 g in the

centrifuge tests.
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Figure 4.3 End bearing resistance vs. unconfined compressive strength
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End bearing capacity factor, N,
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Figure 4.4 End bearing capacity factor vs. unconfined compressive strength
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4.3.2 Theoretical consideration

A strength criterion for rock masses has been developed by Hoek and Brown
(1980 and 1988) which is used in rock engineering. This is an empirical criterion that has
been developed by trial and error and is based on the observed behavior of rock masses,
model studies to simulate the failure mechanism of jointed rock, and triaxial compression
tests of fractured rock. For intact rock, the Hoek-Brown criterion may be expressed in the

following form

, 05
o] =c§+cc[m,-g—3-+1) (4.10)

[

where
O. is uniaxial compressive strength of the intact rock material;
0’; and ¢’3 are the major and minor effective principal stresses respectively;
m; is the material constant for the intact rock. m; depends only upon the rock type
(texture and mineralogy) as tabulated in Table 4.2.

For jointed rock masses, the Hoek-Brown criterion is given by the equation

, N0
o';=cg+cc(mb % +sj 4.11)

c
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Table 4.2. Values of parameter n; for a range of rock types (after Hoek et al. 1995)

Rock Class Group Texture
tvpe Course | Medium | Fine | Very fine
Conglomerate ~ Sandstone Siltstone Claystone
. (22 19 9 4
Clastic
<—— Greywacke ——>
(18)
> €—— Chalk ——>
e 7
= Organic
z €«—— Coal ——y
'E' (8-21)
5 . Breccia Sparitic Micritic
@ Non-Clastic Carbonate 20) Limestone Limestone
(10) 8
Chemical Gyvpstone Anhydrire
16 13
O . Marble Homfels Quartzite
= Non Foliated 9 (19) 24
% ) . Migmatite Amphibolite Mylonites
= Slightly foliated (30) 31 6)
<
2 Foliated* Gneiss Schists Phyllites Slate
= 33 (10) (10) 9
Granite Rhyolite Obsidian
33 16 19
Light (16) (19)
Granodiorite Dacite
(30) amn
z Diorite Andesite
2 (28) 19
Z
S Dark Ga.l'37br0 Dolerite Basalt
- (19) )
Norite
22
Extrusive pyroclastic type Agglomerate Breccia Tuff
(20 (18) (15)

*These values are for intact rock specimens tested normal to foliation. The value of m, will be significantly different
if failure occurs along a foliation plane (Hoek, 1983).
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where

my, is the value of the constant m for the rock mass;

s is a constant that depends on the characteristics of the rock mass.

Eq. (4.11) is of no practical value unless the values of the material constants m, and
s can be estimated in some way. Hoek and Brown (1988) proposed a set of relations
between the 1976 version of Bieniawski’s Rock Mass Rating (RMR) and the parameters my,
and s, as follows:

(1) disturbed rock masses

my, = exp(w)mi (4.12a)
14
s= exp[&l—@;&) (4.12b)

(i1) undisturbed or interlocking rock masses

RMR-100
my, = exP(iji (4.13a)
s= exp(%g—_l—oq) (4.13b)

Consider the failure pattern shown in Figure 4.5, which is similar to that in soil

mechanics, i.e., active and passive wedges are developed in the rock below the shaft base.
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Figure 4.5 Assumed failure mode of rock below the shaft base.
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The major principal stress in zone A is equal to the foundation pressure g. Zone B is like
a triaxial loading extension test with the major principal stress acting horizontally. The
minor principal stress on zone B is the average vertical stress g; produced by the
overburden soil and rock. At foundation failure both zones shear simultaneously and the

minor principal 6'34 in zone A is equal to the major principal stress 6"} in zone B. For

zone B, using the Hoek-Brown criterion with 6”35 equal to g

05
olp =4, +0‘C(mbg—’+s) (4.14)

[4

For zone A, using the Hoek-Brown criterion with 0”34 equal to ¢’;g, the ultimate end

bearing resistance can be obtained as:

05
6’
Troax =G{A=G;B+Gc(mb%+s) (4.15)

c

So with known values of rock properties (Gc, my and s), the end bearing resistance of a

rock socketed shaft at a given depth (so g can be obtained) can be calculated from Eq.
(4.20) and (4.21).
Consider the data base shown in Table 4.1. Since the depths to shaft base range

from 1 to 20.7 m, an average value of about 10 m is selected. This depth gives a g5 value
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of about 0.2 MPa. Based on the rock types in the data base, m; of 10 is selected according
to Table 4.2. Consider a rock mass of good quality with RMR equal to 80. my, and s can be

calculated from Eq. (4.13) as:

my,=25; s=0.11

With known values of my, and s, the variation of can gn. With &  can be determined
from Eqgs (4.14) and (4.15). The results are shown in Figure 4.6. It can be seen that there a
reasonable agreement between the new relation and the theoretical solution.

However, one should be cautious in applying the theoretical solution described
above. The reasons are as follows:

1. The Hoek-Brown strength criterion was originally developed for intact rock and
then extended to rock masses. The process used by Hoek and Brown in deriving their
strength criterion for intact rock (Eq. 10) was one of pure trial and error. Apart from the
conceptual starting point provided by the Griffith theory (Griffith 1921 and 1924), there is
no fundamental relationship between the empirical constants included in the criterion and
any physical characteristics of the rock. The justification for choosing this particular
criterion (Eqg. 10) over the numerous alternatives lies in the adequacy of its predictions of
observed rock fracture behavior, and the convenience of its application to a range of
typical engineering problems (Hoek 1983). The material constant m; in Table 4.2 is
derived based upon analyses of published triaxial test results on intact rock (Hoek 1983;

Doruk 1991; Hoek et al. 1992). The strength criterion for rock masses (Eq. 4. 11) is just
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Figure 4.6 End bearing resistance vs. unconfined compressive strength
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an empirical extension of the criterion for intact rock (Eq. 4.10). Since it is practically
impossible to determine the material constants my, and s using triaxial tests on rock
masses, Hoek and Brown (1988) suggested empirical relations (Egs. 4.12 and 4.13) to
estimate constants from Bieniawski’s rock mass rating (RMR). Bieniawski’s rock mass
rating (RMR) system is also empirical. Because of the empirical nature of the Hoek-
Brown strength criterion for rock masses (Eq. 4.11) discussed above, it is uncertain if it
will predict the real behavior of rock masses.

2. The failure pattern shown in Figure 4.5, which is similar to that in soil
mechanics, implicitly assumes that the rock mass is isotropic and the rock failure is
plastic. In reality, however, the rock mass may be anisotropic and the rock failure may be

brittle.
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CHAPTER S

DISPLACEMENT OF
DRILLED SHAFTS AT WORKING LOAD

5.1 General

Prediction of the displacement of drilled shafts at working load is in some cases as
important as, or possibly more critical than, predicting the ultimate load capacity. The
available theoretical solutions just model the rock mass as a single half space or, at best,
as a two-layer medium (i.e., the rock adjacent to and beneath the rock-socketed shaft).
Since, in practice, rock masses are usually multi-layered, a method which can reasonably
consider the multi-layer nature of rock masses needs to be developed. In this chapter, a
variational model for the analysis of axially loaded drilled shafts socketed in a multi-layer
rock mass is presented. Governing differential equations and boundary conditions are
derived for a shaft socketed in a rock mass with any number of layers. Theoretically,
these differential equations can be solved to get a closed-form solution, no matter how
many layers of rock is presented. For simplicity, however, only the closed-form solution

for a shaft socketed in a three-layer rock mass is presented. The validation of the
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proposed method is demonstrated by comparing with solutions of Pells and Turner (1979)

Pells et al. (1980) and Carter and Kulhawy (1988).

5.2 Formulation of the Model

Figure 5.1 shows a typical concrete drilled shaft of length L and radius R,
embedded within a multi-layered rock mass. Only the final equilibrium displacement
(neglecting creep) at the head of the shaft is considered. The inherent assumptions in the

proposed model are:

1. The shaft is an isotropic, homogeneous and elastic solid with a Young’s modulus E,
and Poisson’s ratio vp,.

2. The shaft is perfectly connected to the rock. There is no slippage at the interface of
the shaft and the surrounding rock.

3. The rock is considered to be isotropic and elastic. There are n layers of rock adjacent
to the shaft and the rock beneath the shaft base is homogeneous. The Young’s modulus

and Poisson’s ratio of each layer are as shown in Figure 5.1.

The problem is axisymmetric and therefore cylindrical coordinates (r, € , z) are

used. Based on practical considerations, the radial displacement, u.(r, z), in the rock mass

is consicered negligible, compared to the vertical displacement, w,(r, z), in the rock mass.
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Figure 5.1 (a) Shaft-rock system; (b) Coordinate system and displacement components.

119



Furthermore, it is assumed that the vertical displacement, w(r, z), in the rock mass around

the shaft and the rock column (see figure 5.1) can be represented by

w,(r,2) = w(2)¢(r) (5.1

where

w(z) is the axial displacement of the shaft and the rock column below the shaft
base;

¢(r) is a dimensionless function representing the variation of the rock
displacement in the r-direction.

Based on the assumed displacements, there are two non-zero internal strains in the

rock mass, namely

aw

E,=—0
Z (5.2a)

=L, 0

2 dr (5.2b)

The corresponding non-zero stress components are
o, =% (5.3a)
dz
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d
Gop =X, ‘(7‘:'4’ (5.3b)

o, =(A, +ZG,-)ﬂ¢
dz (5.3c)

r (5.3d)

where A; and G; (i =1, 2, ..., n, b) are the Lamé parameters of the rock of layer i, which

can be obtained by

V,E;

T aEv)d-2v,) ((=12,...nb) (5.42)

E.
G, = ——i i=1,2,..mb 5.4b
V) (i n.b) (5-4b)

The total potential energy function of the shaft and rock system can be obtained as

1% dw 1% dw
M=—|E A (—)%dz+—|E, A, (=5)d
z£ P () 2! oA () %
o ) j (5.5)
+xf ([ +263(E) 202 + G 249y drdz —
H[(, )0+ Gt (S rdrdz ~ O] g

where

A, is the cross-sectional area of the shaft (= TR?);
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Ay is the cross-sectional area of the rock column below the shaft base (= TR?);

O, is the axial load applied at the shaft head.

Minimizing the function IT with respect to w and using principles of variational calculus,

the governing equations for the shaft and rock column can be obtained as

L—kw, =0 (i=12,..,n,b)

ti 2 i

with boundary conditions

tld—u’-l-'{"Q,:O (Z=0)
dz
W, =w, (at the interface of layer i and i+1)
i D i+l Dt (at the interface of layer i and i+1)
dz dz

(5.6)

(5.7a)

(5.7b)

(5.7¢)

(5.7d)

where w; (i =1, 2, ..., n, b) are displacements of the shaft or the rock column in layer i.

Parameters ¢ and k; (i =1, 2, ..., n, b) are

t; = R*(E, +2(A; +2G,)m|] (i=1,2,..,n)

k; = 21G,m, (i=1,2,..,n)

122

(5.83)

(5.8b)



t, = R [E, +2(A,, +2G,)m,] (5.8¢)

kb = 21thrr12 (58d)

in which the nondimensional parameters m; and m, are

m = — | ro%dr (5.9)
R
= Tr 20y
m, = J;r( dr) dr (5.9b)

Consider the differential equation for the rock column (see Figure 5.1a), i.e.,

d*w,
t,——-kw, =0 5.10
b2 W } (5.10)
with boundary conditions
Wy =W, (z=L) (5.11a)
w, =0 (z = =) (5.11b)

The solution of Eq. (5.10) with boundary conditions of Eq, (5.11) can be derived as
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w,(2) = w, (L)e™*bD (5.12)

where
o, = [— (5.13)

Using Eq. (5.7¢), the boundary condition at the shaft base can be derived as
dw,
t, - kot w, (z=1L) (5.14)
Z

This shows that the boundary condition at the shaft base (z = L) is equivalent to a spring

with a spring constant equal to

The boundary condition at z = 0 (see Eqs. 5.7a and 5.8a) means that the applied
load is shared by the shaft and the rock. Considering the fact that the applied load is

carried only by the shaft at z = 0, Eq. (5.7a) is modified as
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—L+0, =0 (z=0) (5.16)

Similarly, minimizing the function IT with respect to ¢ for R < r < oo, the

following differential equation can be obtained

d*¢  dd v
2 Y Y (A2, =0 5.17
4 dr? rdr (R) e ( )

with boundary conditions at r =R, ¢ =1, and at r = e, ¢ = O (i.e., the displacement of the
rock mass at r = R is equal to the displacement of the shaft or the rock column, i.e.,
wi(r = R, z) = w(z), and the displacement of the rock mass at r = e is equal to zero). yis

a nondimensional parameter that can be expressed as

dw; 201
2 (A +2G), (i")zdz +(A, +2(;b)Mn_(_l

2
L)
G.[ widz + G, Pl
IJ.L,- i 4 b 7

(i=1,2,..,n) (5.18)

~~
S |2
N’

oy

Equation (5.17) is the modified Bessel’s equation of order zero, and has the solution

o(r)= CIy(yr/ R)+ C,Ky(yr/ R) (5.19)
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where Io('yr/R) and Ko(yr/R) are the modified Bessel function of the first and second kind

of order zero, respectively. Constants C, and C; can be determined using the boundary

conditions in Eq. (5.17). The final solution is

K,(yr/R)
=R (yr/ %) 5.20

After ¢(r) is obtained, the dimensionless parameters m, and m- can be derived as

1

= K, (V)P = [K. (V)] 2
m 2[Ko(y)]2 {[K,(V)] - [Ky(7)]'} (5.21a)
1 2 2 2
=—7{[K K - DIK 5.21b
m, Z[Ko(’Y)]z{[ 1N+ YK, (NI = (Y + DK ()T} ( )

where X is the modified Bessel function of the second kind of order one.
Summarizing the above derivations, the governing differential equations of the

shaft socketed in a multi-layered rock mass are

2
fd—’—"i— kw =0 (i=1,2,..,n) (5.22)

with boundary conditions
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dw,
EPAP—‘E-'FQ, =0

W =Wy

dwi — dwx+l
tl = ti+l

dz dz

z=0)

(at the interface of layer i and i+1)

(at the interface of layer i and i+1)

(z=1)

(5.23a)

(5.23b)

(5.23¢)

(5.23d)

In principle, Eq. (5.22) can be solved analytically to get closed-form solutions for any

number of layers. For simplicity, however, only the closed-form solutions for a shaft

socketed in a three-layer rock mass are presented in next section.

5.3 Displacement of a Shaft socketed in a Three Layer Rock Mass

Consider a shaft socketed in a three-layer rock mass (see Figure 5.2), using the

results from last section, the governing equations for the shaft can be written as (from Eq.

5.6)

2

.4 e —k,w, =0
dz
2

t Y -0

(0<z<Ly)

(Ls<z<L)
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Figure 5.2 A shaft socketed in a three layer rock mass.
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with boundary conditions (from Eq. 5.23)

020 =0 (5.250)
dz
w,=w, (z=Ly) (5.25b)
dw dw
Ly L=0 = 5.25
4 (z=Ly) (5.25¢)
dw,
t, ——dz +4/t,k,w, =0 (z=L) (5.25d)

where ws and w; are displacements of the shaft at 0 < z < L; and L, < z < L, respectively.

Parameters ¢, and k; (i = s, r, b) are

t, =mR*[E, +2(A, +2G,)m,] (5.26a)
k, =2aG m, (5.26b)
t, = R*E, +2(4, +2G,)m,] (5.26¢)
k, =22G,m, (5.26d)
t, =7R*[E, +2(4, +2G,)m,] (5.26¢)
k, =2aG,m, (5.26f)

Solving Eq. (5.24)
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w,(2) = a,e”™ +a,e™" 0<z<Ly
w,(2) =be™™ +b5,e™* (Ls<z< )
where
k
o, = _[—
tS
a —3 Er_
r tr

(5.27a)

(5.27b)

(5.28a)

(5.28b)

The coefficients a;, a; and b;, b in Eq. (5.27) can be obtained by applying boundary

conditions in Eq. (5.25) as

Q0,(K,A, —K A,)e* %"

a, =
Yo E A KA (€25 —1)— K, A, (™" +1)]

sTpP

O,(KA +K,A))

“TREA KA, (€™ —1)—K,A, (%" +1)]

spp

5 2Q, Ks (K,. + Kb )eZG,L,+2a,L
! o, E,A[K A (e 1)~ K A, (e +1)]

20K (K, - K,)e*™ "

b, =
tO0E,A KA (€5 —1) =K, A, (e +1))]
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where

A =(K, +K,)e bl L (K —K,)e®r b
A, =—(K +K, Je @2l +(K, ‘Kb)e(a’m')l"
KS = tSkS

K, =4tk

The displacement at the head of the shaft is

O,[K A (%" +1)~ K, A, (e*™ ~1)]
o E, A [K A (" —1)-K,A,(e™" +1)]

w,=w(z=0)=

The nondimensional parameter y can be rewritten as

Zyr = K *+2G)OM, + (A, +2G,)M, + (4, +2G,)M,
R G,N,+G,N, +G,N,

where M;, M, My, N;, N; and N, are parameters given by

1"1j = as[af (l —e—Za,L; ) —4a1a2asLs +azz (eth,L, _ 1)]

Mr =a,[b|2 (e-ZG’,L; _e-Za',L)_4blb2ar (L_Lx)+b22(e2a',l. _e2a,L, )]
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(5.30a)

(5.30b)

(5.30a)

(5.30b)

(5.31)

(5.32)

(5.33a)

(5.33b)



M, =a,(be™*" +be™")’ (5.33¢c)

N, = i[af (1-e?*b)+4aa,a,L, +al(e*™ -1)] (5.33d)
as

N, = ;[1_.[17,2 (e7% —e* Y+ 4bb,a, (L— L) +b? (2% — 2%1)) (5.33¢)

N, = al(b,e‘“rL +b,ety? (5.33)

b

To evaluate the solution w, the coefficients a;, a; and b;, b, should be obtained (see
Eq. 5.27). As can be seen from Egs. (5.21), (5.26), (5.28), (5.29) and (5.30), the
parameter Y is needed to get ai, az and by, b>. Note that y defined by Eq. (5.32) depends
on ay, a; and by, by. Since we do not know the value of ya priori, an iteration procedure is

required to obtain its correct value. The procedure is composed of the following steps:

1. Assume Y= 1.0;

2. Calculate m, and m; from Eq. (5.21);

3. Calculate parameters #, ki, o; and K; (i = s, r, b) using Egs. (5.13), (5.15),
(5.26), (5.28) and (5.30);

4. Calculate the displacement w along the shaft from Egs. (5.27) and (5.29);

5. Calculate the new value of y by using Egs. (5.32) and (5.33);

6. Use the average of the old and new values of y and repeat steps 2 - 5. Iteration

is continued until the difference between the ith and (i + 1)th value of y
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I'Yi+| - 'Yil e (5.39)

where € is a prescribed convergence tolerance.
After vy is determined, the displacement of the shaft and the load in the shaft can be

obtained.

A computer program has been written to execute the above iteration procedure.

5.4 Validation of the Proposed Method

To validate the proposed method, a set of resulis for the shaft head displacement
has been obtained. To compare with the available theoretical solutions by Pells and
Turner (1979), Pells et al. (1980) and Carter and Kulhawy (1988) (see chapter 2), two
cases are considered: a single layer rock mass (i.e., E; = E; = E,) and a two layer rock

mass (i.e., E; = E; # E). The solutions obtained for the shaft head displacement are

expressed in terms of an influence factor I, defined as

(5.35)
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where w, is the shaft head displacement.

The results are plotted in Figure 5.3 and 5.4 respectively for the single layer and
the two layer rock mass. Poisson’s ratios of 0.25 for the former case and 0.3 for the latter
case (for both layers) are used in the calculations. Also plotted are finite element solutions
by Pells and Turner (1979) and Pells et al. (1980) and approximate analytical solutions by
Carter and Kulhawy (1988). The general agreement between the three solutions is

reasonable and could be considered satisfactory for design purposes.
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Figure 5.3 Elastic displacement of a driiled shaft in a homogeneous rock mass

135



0.32
0.30
0.28
0.26
0.24
0.22
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

— — Kulhawy & Carter (1988)
Pells et al. (1980)
—— Present solution

20

Figure 5.4(a) Elastic displacement of a drilled shaft in a two-layer rock mass

(E,/E, = 10)
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Figure 5.4(b) Elastic displacement of a drilled shaft in a two-layer rock mass
(E,/E, = 100)
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CHAPTER 6

SUMMARY AND APPLICATIONS OF
THE RECOMMENDED DESIGN METHOD

6.1 General

This chapter provides a summary of the recommended design method for axially
loaded drilled shafts socketed into rock. The summary is followed by two examples

including three test shafts to show the use of the design method.

6.2 Summary of the Design Method

The proposed design method considers both the allowable load capacity and the

displacement at working load. The following is an outline of the design procedure:

1. Determine the following design parameters:

(1) allowable design displacement, w,;
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(i) diameter of the shaft, B;

(iii) applied axial load (i.e., the working load), O;

(iv) unconfined compressive strength, o, for each rock layer;
(v) modulus of the shaft, E,.

2. Estimate the maximum unit side shear resistance, Tmax, for each rock layer, as

follows:
Smooth socket (R1, R2 or R3): Tax = 040(5,)% (4.6a)
Rough socket (R4): Tax = 080(c,)%3 (4.6b)

3. Estimate the end bearing resistance, gmax, as follows:

= 45(c,)° 4.7)

Dmax

4. Determine the socket length L (=L, + Ly + ... + L;) using
n 7Z.BZ
7B L(Ta); e 2 FS-Q, (3.4)

i=l

where F¥§ is the factor of safety. A value of at least 2 to 3 should be used.
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5. Estimate the Young’s modulus of the rock mass, Ey, for each layer, using the
empirical relations presented in Chapter 3. The Young’s modulus of the intact rock, E;,

can be obtained as follows (Rowe and Armitage 1987b)

E, =215,[o, (2.45)

where E; and o, are in MPa.

6. Predict the displacement of the shaft head using the method presented in
Chapter 5. This can be done easily and quickly using the computer program.

7. Check if the predicted displacement, w,, is smaller than the allowable
displacement, w,. If not, increase the socket length and/or diameter and repeat procedure
6. It should be noted that, in some cases, a factor of safety greater than 1 is also used for

the displacement criterion.
6.3 Application of the Design Method
The design method for axially loaded drilled shafts socketed in rock, described

above, is verified by applying it to field load tests. The following are two examples

including three test shafts to illustrate the use of the design method.
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6.3.1 Example 1

Aurora and Reese (1977) report four field tests of instrumented drilled shafts
socketed into clay-shale. The shafts are constructed by three different construction
procedures. Since the properties of the overburden soil are not reported, only the shaft
with steel casing penetrating into clay-shale (shaft MT3) is analyzed here. Details of shaft

MT3 are sihiown in Figure 6.1. Some of the properties for the rock socket are as follows:

Unconfined compressive strength of clay-shale 6, = 1.42 MPa;
Total length of the shaft = 8.22 m;

Socket length L = 1.52 m;

Socket diameter B = 750 mm;

Measured ultimate load at the top of the shaft (Qy)m =5 MN.

Prediction of the ultimate load
Since there is no information about the interface roughness, both ‘rough’ and
‘smooth’ conditions are considered. Using Eq. (4.6), the ultimate side shear resistance can

be obtained as

Smooth socket:

Toax = 0.40(0,)% = 0.40(1.42)*° =0.48 MPa
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Figure 6.1 Details of shaft MT3 (after Aurora and Reese 1977)
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Rough socket:

7,.. =0.80(c,)"° =0.80(1.42)°° = 0.96 MPa

The end bearing resistance, gmax, can be estimated using Eq. (4.7) as:

G = 4.5(0,)" =4.51.42)°" = 5.50 MPa

So the ultimate load capacity can be predicted as:

Smooth socket:
2

: 7B
0, =mBY L(T,..); = T

i=l

2
3.14%0.75%

=3.14*0.75*1.52*0.48 + 5.5

=4.15MN

Rough socket:

2

u B
0, = ﬁZLi (Trnax )i +'4_qmax
i=1

3.14%0.757

=3.14*0.75*1.52*0.96 + 5.5

=5.80 MN
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It can be seen that the measured value of (Qu)m = 5 MN is in the range of the predicted
values. The average of the predicted values is 5.02 MN which is almost the same as the
measured value. Using the average of 5.02 MN for the predicted ultimate load and

selecting a value of 2 for the factor of safety, the working load can be predicted as

9, 5.0
FS 2

Q‘ = =251MN

Displacement at working load

The elastic modulus of the shaft is not reported in the original paper. Since, in
general, the elastic modulus of the shaft concrete is in the range of 25 to 35 MPa, an
average value of E;, = 30 MPa is selected. The elastic modulus of the clay-shale is

estimated from the unconfined compressive strength, i.e.,

E, =215\/c, =215J1.42 =256 MPa

With the known values of the moduli of the shaft and the clay-shale, the displacement of
the top of the rock socket can be predicted using the method presented in Chapter 5. The
total top displacement can be obtained by adding the elastic shortening of the portion of
the shaft in the overburden to the corresponding displacement of the top of the rock

socket. Figure 6.2 shows the predicted and observed load-top displacement curves. It can
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Figure 6.2 Predicted and observed load-displacement curves for example 1.

(Displacements measured and predicted at top of the shaft)
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be seen that, at the predicted working load of 2.51 MN, the predicted and observed

displacements are in a good agreement.

6.3.2 Example 2

Two field tests of instrumented drilled shafts socketed into a layered rock mass
are reported by Goeke and Hustad (1979). The subsurface profile and shaft embedments
are shown in Figure 6.3. Since the clay-shale at a depth between 3.4 m and 5.8 m is soft
and highly weathered and the measured load transfer curves show that little load is
transferred in this zone, the side shear resistance in this zone is assumed to be zero in the

following analyses.

(a) Shaft 1
Shaft 1 can be treated as a shaft socketed in a two layer rock mass (see Figure

6.4). The corresponding properties for the rock socket are as follows:

Unconfined compressive strength: (), = 0.70 MPa;
(O =0.81 MPa;

Total length of the shaft = 8.8 m;
Socket length L = 3.0 m;

Socket diameter B = 762 mm;
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Figure 6.3 Subsurface profile and shaft embedments for example 2.
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Figure 6.4 Idealization of shaft 1 as a socket in a two layer rock mass.

148



Measured ultimate load at th- top of the shaft (Q,)m = 4.98 MN.
Prediction of the ultimate load

Since no information about the interface roughness is given in the original paper,
both ‘rough’ and ‘smooth’ conditions are considered. Using Eq. (4.6), the ultimate side

shear resistance can be obtained as

Smooth socket:

T = 0.40(0,)%° = 0.40(0.70)** =0.33MPa

Rough socket:

T = 0.80(5,)%° =0.80(0.70)** = 0.67 MPa

The end bearing resistance, gmax, can be estimated using Eq. (4.7) as:

G =4.5(0,)% =4.5(0.81)*" = 3.99 MPa

So the ultimate load capacity can be predicted as:

Smooth socket:
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2

©)n =X L,(F) + 2,
i=1

* 2
=3.14*0.762*3.0*0.33 +§M—4(?'762~* 3.99

=4.19MN

Rough socket:
2

(Qu)m =7[Bil‘i(rmax)i +%qmax

i=1

% 2
=3.14*%0.762*3.0*0.67 +ﬂ%76i*3.99

=6.63MN

It can be seen that the measured value of (Qu)m = 4.98 MN is in the range of the predicted

values. The average of the predicted values is 5.41 MN which is close to the measured

value. Using the average of 5.41 MN for the predicted ultimate load and selecting a value

of 2 for the factor of safety, the working load can be predicted as
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Displacement at working load
The elastic modulus of the shaft is not reported in the original paper. As in
Example 1, a value of E, = 30 MPa is selected. The elastic moduli of the rock masses are

estimated from the unconfined compressive strengths, i.e.,

(E,), =215,/o, = 2151070 =180 MPa

(E,), =215o, =215:0.81 =194MPa

With the known values of the moduli of the shaft and the rock masses, the displacement
of the top of the rock socket can be predicted using the method presented in Chapter 5.
The total top displacement can be obtained by adding the elastic shortening of the portion
of the shaft in the overburden to the corresponding displacement of the top of the rock
socket. Figure 6.5 shows the predicted and observed load-top displacement curves. It can
be seen that, at the predicted working load of 2.7 MN, the predicted and observed

displacements are in a good agreement.

(b) Shaft 2
Shaft 2 can be treated as a shaft socketed in a three layer rock mass (see Figure

6.6). The corresponding properties for the rock socket are as follows:

Unconfined compressive strength: (6.)s = 0.70 MPa;
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Figure 6.5 Predicted and observed load-displacement curves for example 2.

(Displacements measured and predicted at top of the shaft)
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Figure 6.6 Idealization of shaft 2 as a socket in a three layer rock mass.
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(0c):=0.81 MPa;
(G = 1.69 MPa;
Total length of the shaft = 11 m;
Total socket length L = 5.2 m;
Length of the socket in layer ‘s’ Ly=3 m
Socket diameter B = 762 mm;

Measured ultimate load of the shaft (Qy,)m = 10 MN.

Prediction of the ultimate load
Since there is no information about the interface roughness, both ‘rough’ and
‘smooth’ conditions are considered. Using Eq. (4.6), the ultimate side shear resistance can

be obtained as

Smooth socket:

(Taax)s = 0.40(0,)? = 0.40(0.70)*° =0.33MPa
(Tax)» = 0.40(0,)? = 0.40(0.81)°° =0.36 MPa

Rough socket:

(Tuax ) =0.80(c,)? = 0.80(0.70)** =0.67 MPa

(Toax ), = 0.80(c,)? = 0.80(0.81)°* =0.72 MPa
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The end bearing resistance, gmax, can be estimated using Eq. (4.7) as:
Goax =4.5(0,))" =4.5(1.69)*" = 6.07 MPa

So the ultimate load capacity can be predicted as:

Smooth socket:

2

@) =Y L), + 2,0,

* 2
=3.14*%0.762*(3*0.33+2.2*0.36) +§£-£—'l§-2— *6.07

=7.03MN

Rough socket:

n 2
(@) = BY L (Fp ) + g,
i=l

* 2
=3.14*0.762*(3*0.67 +2.2*0.72) +ﬁ‘?'—-762— *6.07

=11.38MN
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The measured value of (Qu)m = 10 MN is in the range of the predicted values. The
average of the predicted values is 9.21 MN which is close to the measured value. Using
the average of 9.21 MN for the predicted ultimate load and selecting a value of 2 for the

factor of safety, the working load can be predicted as

Displacement at working load
The elastic modulus of the shaft is not reported in the original paper. As for shaft
1, a value of E, = 30 MPa is selected. The elastic moduli of the rock masses are estimated

from the unconfined compressive strengths, i.e.,

(E,), =215,/c, =215/0.70 = 180 MPa
(E,), =215,Jc, =215J0.81 =194 MPa

(E,), =215,[c, =215/1.69 = 280 MPa

With the known values of the moduli of the shaft and the rock masses, the displacement
of the top of the rock socket can be predicted using the method presented in Chapter 5.

The total top displacement can be obtained by adding the elastic shortening of the portion
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of the shaft in the overburden to the corresponding displacement at the top of the rock
socket. The predicted and observed load-top displacement curves are also shown in
Figure 6.5. At the predicted working load of 4.61 MN, the predicted and observed

displacements are in a reasonable agreement.
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CHAPTER 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary and Conclusions

The preferred method to design drilled shafts socketed into rock would be on the
basis of size specific large field tests. However, because field tests are very expensive,
full-scale testing is seldom performed. As an alternative, empirical relations proposed by
several authors are often used to predict ultimate loads (e.g., Williams and Pells 1981;
Rowe and Armitage 1987b; Kulhawy and Phoon 1993). To predict the load deformation
response at working loads, theoretical solutions have been developed by, for example,
Pells and Turner (1979) and Rowe and Armitage (1987a). The literature review presented

in Chapter 2 shows that

1. The available empirical relations for estimating the ultimate side shear
resistance can be divided in two major groups: a) The ultimate side shear
resistance is a simple constant times the unconfined compressive strength; and

b) The relationship between the ultimate side shear resistance and the
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unconfined compressive strength is a power-curve. The relations suggested by
different authors give a wide range of values. This is because the relations are
derived from different data bases.

2. The available relations for estimating the end bearing resistance assume a
linear relationship between the end bearing resistance and the unconfined
compressive strength. However, the linear relations produce results which
deviate significantly from the field tests.

3. Current design methods just model the rock mass as a single half space or at
best, as two-layer medium (i.e., the rock adjacent to and beneath the shaft).

This is a very crude approximation to the multi-layered rock mass in reality.

Because of the limitations of the current design methods, a new design model was
proposed. The new design method can reasonably predict the ultimate side shear
resistance and the end bearing resistance. It also considers the multi-layer nature of the

rock mass. The following are some of the main points about the new design method:

1. For the ultimate side shear resistance, a study of the results of many load tests
indicated that a power-curve relationship between the ultimate side shear
resistance and the unconfined compressive strength is closer to the real cases.
By analyzing the available power-curve relations, a new relation (Eq. 4.6) was

recommended.
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2. For the end bearing resistance, a data base of 35 loading tests was developed.
By analyzing the collected data, a new relation between the end bearing
resistance and the unconfined compressive strength was derived (Eq. 4.7).

3. For the prediction of the displacement of drilled shafts at working load, a
model was developed for the analysis of axially loaded drilled shafts socketed
in a multi-layered rock mass. Governing differential equations and boundary
conditions were derived for a shaft socketed in a rock mass with any number
of layers. A closed-form solution for a shaft socketed in a three-layer rock
mass was presented. The proposed model was validated by comparing it with
available theoretical solutions.

4. The detailed procedure of the proposed design method is summarized in
Chapter 6. Two examples including three test shafts are given to show the use
of the design method. The results indicate that the proposed method can
satisfactorily predict the ultimate loads and the displacements at working

loads.

7.2 Recommendations for Future Research

The following are recommendations for future research:

1. The socket interface conditions significantly affect the performance of drilled

shafts. Therefore, the load transfer mechanisms of “smooth sockets” and
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“rough sockets” should be studied. This can be done theoretically and
experimentally.

. To reasonably design rock sockets, it is desirable to predict the borehole
conditions, i.e., smooth, rough or smeared, during the design phase. It is
believed that these conditions are related to the characteristics of the rock and
the type of drilling techniques.

. More field load test data should be collected to verify the derived relation for
predicting the end bearing resistance. The physical experimentation should
actually be expanded by controlled tests not only in the field but also in the
laboratory. The finite element method or the boundary element method can be
used to investigate the end bearing failure mechanism. Also, the fracture
mechanisms that may develop at the base of the socket should be taken into
account.

. The long-term behavior of drilled shafts socketed into rock should be

investigated.
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