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Abstract: We consider knot invariants in the context of large N transitions of topologi-
cal strings. In particular we consider aspects of Lagrangian cycles associated to knots in
the conifold geometry. We show how these can be explicitly constructed in the case of
algebraic knots. We use this explicit construction to explain a recent conjecture relating
study of stable pairs on algebraic curves with HOMFLY polynomials. Furthermore, for
torus knots, using the explicit construction of the Lagrangian cycle, we also give a direct
A-model computation and recover the HOMFLY polynomial for this case.
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1. Introduction

The idea that knot invariants can be captured by physical theories dates back to the
work of Witten [43] on the relation between Wilson loop observables of Chern-Simons
quantum field theory for U (N ) gauge theories and quantum U (N ) invariants. It was
later noted by Witten [44] that the Chern-Simons theory, in turn, describes the target
space physics of A-model topological strings, in the presence of D-branes. In particular,
if we have a stack of N D-branes wrapping a three manifold M3 ⊂ T ∗M viewing T ∗M
as a Calabi-Yau threefold, the large N perturbative Feynman diagrams, i.e. ‘t Hooft
diagrams (known in math literature as ‘ribbon graphs’) can be viewed as degenerate
versions of holomorphic maps from Riemann surfaces with boundaries to T ∗M , where
the boundary of the Riemann surface is restricted to lie on M . It was later conjectured
in [14] that in the special case where M = S3 at large N the geometry undergoes a
transition, where S3 shrinks and an S2 is blown up with size equal to Ngs , where gs
is the string (or Chern-Simons) coupling constant. This is the small resolution of the
conifold. Furthermore in this new geometry there are no more D-branes. In other words
the partition function of the Chern-Simons theory is equivalent to the closed topological
A-model involving Riemann surfaces without boundaries, on the resolved conifold. This
large N equivalence was checked by computing the partition function on both sides and
observing their equality.

One can also extend this equivalence to the computation of the Wilson loop observ-
ables for knots, by adding to both sides suitable ‘spectator D-branes’ [35]. Namely for
each knot K ⊂ S3, consider the canonical Lagrangian L K ⊂ T ∗S3 which intersects S3

along the knot K . Note that L K has the topology S1 × R2. A spectator brane is a D-brane
supported on L K in the topological A-model with target space T ∗S3. The insertion of the
spectator brane leads to the insertion of Wilson loop observables on the Chern-Simons
side. On the other side the original stack of N D-branes has disappeared but the spectator
D-branes L K , which have the imprint of the knot, survive. We thus end up with the open
topological A-model on the resolved conifold, in the presence of D-branes wrapping
L K . This equivalence was checked for the unknot in [35]. Moreover this equivalence
leads to integrality predictions for the coefficients of HOMFLY polynomials (and their
colored versions) [23,35], which has been proven to be true [27–29]. The integrality
structure follows from the fact that on the resolved side the computation of the ampli-
tudes captures the content of BPS particles represented by M2 branes ending on L K ,
and one is simply counting them. For example, for the unknot the partition function is
captured by the fact that there are two M2 branes ending on L K .

This leaves open the problem of directly computing the topological A-model for the
resolved conifold in the presence of branes wrapping L K . The difficulty in performing
this task is two-fold: first we have to identify the Lagrangian subspace L K , and second
set up a computation for the A-model amplitudes. The difficulty with the first task is
that before transition L K intersects S3, and thus as S3 shrinks L K becomes singular and
its continuation on the resolved side is delicate (though there has been progress along
these lines in [22,42]. However, it was further noted in [30] that to make this more well
defined, and also in order for the framing dependence to come out accurately we need
to lift the original Lagrangian L K , so that it no longer touches the S3, but is separated
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from it by a cylinder which ends on the one hand on the knot in S3 and on the other to
the non-trivial circle in L K . In this way the L K is non-singular as S3 shrinks and the
process of identifying it on the resolved side is more straightforward. We will clarify
this construction later in this paper.

The second task is to compute the A-model amplitudes. When there are enough sym-
metries this in principle can be done in two ways: Either by direct computation using
localization techniques, or by enumerating BPS particles ending on L K .

The enumeration of BPS particles correponding to M2 branes ending on L K is par-
ticularly simple for special knots, including the unknot. For example for the the unknot
there are two BPS particles. One corresponds to a disc which lives on the C2 fiber of
one point in P1. The disc intersects L K on a circle where it ends. The other particle is
made of the bound state of this disc with an M2 brane wrapping P1. This follows from
the fact that the binding process is local, and we already have the disc ending on L K and
the closed M2 brane on P1 each as BPS states, and they intersect transversally (relative
codimension 4). Thus they form a unique bound state. From this we can recover the
HOMFLY polynomial for the unknot. In some sense the unknot is ‘planar’ in that the
BPS structures are captured by objects living on the fiber or on the base independently,
and simply glued together.

The question remains as to which knots are ‘planar’ in this sense? The natural answer
ends up being the class of knots known as algebraic knots, which can be defined by
the holomorphic function of two variables. One considers in complex dimension 2 a
holomorphic function f (x, y) with a singularity structure at the origin. The intersection
of

f (x, y) = 0

with a large 3-sphere

|x |2 + |y|2 = r

for large r gives a knot K f on S3. It turns out that for these knots the corresponding
Lagrangian L K can be constructed explicitly. Moreover, just as in the case of the unknot
they are ‘planar’. In particular, the primitive holomorphic curve ending on it lives on a
fiber over a single point of P

1. Moreover, identifying the fiber with complex coordinates
(x, y) the basic holomorphic curve for the M2 brane is exactly f (x, y) = 0 and it inter-
sects L K on the large three sphere along an S1. The novelty, as compared to the case
of unknot, is that there could be more than one M2 brane bound state on f (x, y) = 0
curve. Enumeration of such bound states turns out to map to a mathematical problem
recently studied in [33]. However in the more general case, we have more possibilities
for forming bound states, not just the single disc as in the case of the unknot. Further-
more, just as in the case of the unknot, for each such disc we can form bound states of
this open M2 brane with a closed M2 brane wrapping P1. The number of bound states
depends on the intersection number of the P1 with the corresponding transverse bound
state. For each intersection point, we get a bound state. Considering all such BPS states
wrapping the fiber and base we get the enumeration of BPS states in this geometry which
leads to the evaluation of the HOMFLY polynomial for such knots. This turns out to
explain the conjecture of [33] relating the HOMFLY polynomial for algebraic knots with
computations done for stable pairs associated to the corresponding curve.

We explain in detail how these bound states can be evaluated for the case of the torus
knots where

f (x, y) = xr − ys .
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Furthermore, for these cases, using the explicit construction of the Lagrangian cycles
L K we are able to also directly compute the A-model amplitudes as well and rederive
the HOMFLY polynomials for torus knots.

Note that a general question one can ask in this context is whether the lagrangian
A-model amplitudes associated to a knot K are invariant under small deformations of
K preserving the isotopy class. In particular, for algebraic knots such deformations are
induced by deformations of the plane curve preserving the analytic type of the singular-
ity at the origin. As shown in detail in Sect. 3, each such deformation results in a small
deformation of the associated lagrangian cycle. Then the question of invariance under
small deformations translates into the invariance of lagrangian Gromov-Witten invari-
ants under deformations of the lagrangian cycle. A definite answer requires a rigorous
definition of such invariants, which is beyond the goal of the present work, hence this
question will be left open.

The organization of this paper is as follows. Section 2 is a review of large N duality
for the unknot, including the construction of toric lagrangian cycles on the resolved
conifold. The main goal of this discussion is to motivate the general idea of lifting co-
normal bundle lagrangian cycles in the deformed conifold. Section 3 presents an explicit
construction of such a lift for algebraic knots, as well as the corresponding lagrangian
cycles in the resolved conifold. Section 4 provides a physical explanation for the conjec-
ture of Oblomkov and Shende [33] relating HOMFLY polynomials of algebraic knots to
certain generating functions associated to Hilbert schemes of plane curve singularities.
In particular, the generating functions employed in [33] are identified with counting
functions for open M2-brane microstates with boundary on an M5-brane wrapping a
lagrangian cycle. Section 5 is a reprise of Sect. 4 in more mathematical dialect. Finally,
Sect. 6 consists of detailed computations of open topological A-model amplitudes for
lagrangian cycles corresponding to (s, r)-torus knots. The main result is a geometric
derivation of the Chern-Simons S-matrix formula found in [5,40] by manipulations of
open Gromov-Witten invariants.

2. Large N Duality and Lagrangian Cycles for the Unknot

The conifold transition is a topology changing process relating the smooth hypersurface
Xμ,

xz − yw = μ (2.1)

in C
4 with μ ∈ C\{0} to the small resolution Y of the singular threefold X0 obtained

at μ = 0. In fact there exist two such isomorphic resolutions related by a toric flop. For
concreteness, let Y be the resolution obtained by blowing-up the subspace y = z = 0
in C

4. Then Y is determined by the equations

xλ = wρ, zρ = yλ (2.2)

in C
4 × P

1 and there is a natural map σ : Y → X0 which contracts the rational curve
y = z = 0 on Y . It can be easily seen that Y is isomorphic to the total space of the rank
two bundle OP1(−1) ⊕ OP1(−1) and the curve y = z = 0 is identified with its zero
section, which is the only compact holomorphic curve on Y .

The deformed conifold Xμ,μ �= 0, equipped with the symplectic form

ωXμ = ωC4

∣
∣

Xμ
, ωC4 = i

2

(

dx ∧ dx + dy ∧ d y + dz ∧ dz + dw ∧ dw
)
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is symplectomorphic to the total space X of the cotangent bundle T ∗S3. For μ ∈ R>0,
this can be seen explicitly [38,39] observing that Eq. (2.1) becomes

4
∑

i=1

z2
i = μ

in the coordinates

x = z1 + i z2, z = z1 − i z2, y = −z3 − i z4, w = z3 − i z4.

Writing z j = x j + iy j j = 1, . . . , 4, with (x j , y j ) real coordinates on C
4, Eq. (2.1) is

further equivalent to

	x · 	y = 0, |	x |2 − |	y|2 = μ. (2.3)

Here · denotes the Euclidean inner product on R
4 and | | the Euclidean norm.

On the other hand, the total space X of the cotangent bundle T ∗S3 is identified with
the subspace {(	u, 	v)} ⊂ R

4 × R
4 satisfying

|	u| = 1, 	u · 	v = 0. (2.4)

The canonical symplectic form on X = T ∗S3 is then obtained by restriction from the
ambient space,

ωX = (
4

∑

j=1

dv j ∧ du j
)∣
∣

X . (2.5)

According to Eq. (2.3), 	x �= 0 on Xμ sinceμ ∈ R>0. Therefore there is a well defined
map

φμ : Xμ → X φμ(	x, 	y) =
(

x j

|	x | ,−|	x |y j

)

. (2.6)

It is straightforward to check that this map is a diffeomorphism, its inverse being given
by

φ−1
μ (	u, 	v) = ( fμ(	v)	u, − fμ(	v)−1	v), fμ(	v) =

√

μ +
√

μ2 + 4|	v|2
2

. (2.7)

It is also straightforward to check that

φ∗
μ(ωX ) = i

2
ωC4 |Xμ.

Therefore φμ is indeed a symplectomorphism.
A similar construction yields a symplectomorphism φ0 : X0\{0} → X\{	v = 0}

between the complement of the singular point in X0 and the complement of the zero
section in X = T ∗S3. Observing that 	x �= 0 on X0\{0}, φ0 is given exactly by the same
formula as φμ,μ > 0. The same computation shows that φ0 is a symplectomorphism if
X0\{0} is equipped with the symplectic structure obtained by restriction from C

4.
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Note also that there is an antiholomorphic involution

(x, y, z, w) 
→ (z,−w, x,−y) (2.8)

on C
4 which preserves Xμ with μ ∈ R≥0. Therefore there are induced antiholomorphic

involutions τμ : Xμ → Xμ,μ ∈ R≥0. Forμ > 0, the fixed locus Sμ of τμ is isomorphic
to the three-sphere |x |2 + |z|2 = μ in C

2. By construction, Sμ is a special lagrangian
cycle on Xμ and the image φμ(Sμ) is the zero section S = {	v = 0} of the cotangent
bundle T ∗S3.

2.1. Large N duality for the unknot. The primary example of large N duality for topolog-
ical strings [14] is an equivalence between the large N limit of the topological A-model
on Xμ with N lagrangian branes on Sμ and the topological A-model on Y . The partition
function of the latter is given by

ZY (q, Q) =
∏

n≥1

(1 − Q(−q)n)n,

where q and Q are related to the string coupling constant gs and the symplectic area t0
of C0 by q = eigs , Q = e−t0 .

According to [44] the topological A-model on Xμ with N lagrangian branes on the
sphere Sμ is equivalent to U (N ) Chern-Simons theory on Sμ. The level k of the Chern-
Simons theory is related to the string coupling constant. The partition function of the
Chern-Simons theory on Sμ is naturally expanded in terms of the large N variables,

gs = 2π

k + N
, λ = 2πN

k + N
.

Then large N duality [14] suggests that the theory on Sμ where there is brane, is equiv-
alent to the one after geometric transition where the branes have disappeared and been
replaced by a blown up 2-sphere. This duality thus identifies the analytic part of the
Chern-Simons large N expansion with the closed topological string amplitude ZY (q, Q)
on the resolved side1

ZC S(gs, λ) = ZY (q, Q)
∣
∣
q=eigs , Q=eiλ .

Large N duality has been extended to Chern-Simons theory with Wilson loops in
[35]. The main idea is that given a smooth knot K ⊂ S3 the total space of the conormal
bundle N∗

K to K in S3 is a lagrangian cycle in X = T ∗S3. Since φμ : Xμ → X is
a symplectomorphism, the inverse image Nμ = φ−1

μ (L) is a lagrangian cycle on Xμ.
According to [35], a configuration of N branes on Sμ and M branes on Nμ has a com-
plex bosonic open string mode localized on their intersection which transforms in the
bifundamental representation of U (N )×U (M). Integrating out this mode yields a series
of Wilson line corrections to Chern-Simons theory on Sμ of the form

∑

n≥1

1

n
Tr(U n)Tr(V −n). (2.9)

1 The non-analytic part of the Chern-Simons function can be identified by the same change of variables
with the polynomial part of the N = 2 prepotential of a IIA compactification on Y .
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Here U is the holonomy of the Chern-Simons gauge field A on K and V is the holonomy
on K of an arbitrary background flat gauge field on Nμ. This integrating out can also be
explained in terms of the annulus contributions to the amplitudes where one boundary of
the annulus ends on Sμ and the other ends on Nμ. These are ‘holomorphic’ annuli which
have zero width, corresponding to the fact that in the dual channel there are massless
bi-fundamental particles of U (N )× U (M) going in the loop.

Therefore in the presence of the M noncompact branes on Nμ, the (analytical part of
the) topological open string partition function becomes

ZC S(gs, λ)

〈

exp

(
∑

n≥1

1

n
Tr(U n)Tr(V −n)

)〉

, (2.10)

where 〈 〉 denote the expectation values of Wilson line operators in U (N )Chern-Simons
theory on S3. The main question is then to construct a dual topological string model on
the resolution Y , extending the results of [14].

This problem was solved in [35] for the case when K is the unknot. For concreteness
let K ⊂ S3 be determined by the equations

y = w = 0, |x | = |z| = √
μ (2.11)

on Xμ. Omitting the details, a straightforward computation shows that the inverse image
φ−1
μ (N∗

K ) is the lagrangian cycle Nμ in Xμ determined by the equations

y = w, |x | = |z|. (2.12)

Assuming K to be trivially framed, the large N expansion of the partition function (2.10)
is in this case

ZC S(gs, λ)exp

⎡

⎣−i
∑

n≥1

einλ/2 − e−inλ/2

2nsin(ngs/2)
Tr(V −n)

⎤

⎦ . (2.13)

In order to find a large N duality interpretation, note that the above partition function is
related by analytic continuation to

ZC S(gs, λ)exp

⎡

⎣−i
∑

n≥1

Tr(V n) + Tr(V −n)

2nsin(ngs/2)
einλ/2

⎤

⎦ . (2.14)

This expression is then identified with a series of open Gromov-Witten invariants of a
lagrangian cycle in Y determined by the equations

|λ| = |ρ|, xλ = yρ. (2.15)

By construction, this cycle intersects the zero section C0 along the circle |λ| =
|ρ|, dividing it into two discs D± with common boundary. The terms weighted by
Tr(V n),Tr(V −n) in the exponent of (2.14) represent open Gromov-Witten invariants
with positive, respectively negative, winding numbers along the circle |λ| = |ρ|. This
was confirmed by virtual localization computations in [19,24]. In particular, the terms
with positive winding numbers are obtained by summing over multicovers of D+ while
those with negative winding numbers are obtained from multicovers of D−.
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The main difficulty in extending the above results to more general knots in S3 resides
in the identification of the lagrangian cycle M in Y associated to a given knot K . Ideally
there should be a natural geometric relation between the cycle M ⊂ Y and the special-
ization N0 ⊂ X0 of Nμ ⊂ Xμ as μ → 0, exploiting the fact that the conifold transition
is a basic example of symplectic surgery [38,39]. In symplectic geometry the blow-up
of X0 as a symplectic manifold depends on a positive real parameter ε ∈ R>0 which
measures the symplectic area of the exceptional curve C0 ⊂ Y . More precisely let ω0
denote the symplectic form ωC4

∣
∣

X0\{0} on the complement of the conifold singularity in
X0. Then the blow-up of X0 is a family of symplectic Kähler manifolds Yε = (Y, ωY,ε)

such that the resulting family of symplectic Kähler formsωY,ε
∣
∣
Y\{C0} on the complement

of C0 degenerates to σ ∗ω0 at ε = 0. This yields a more symmetric picture of the conifold
transition, involving two families of symplectic manifolds Xμ,Yε satisfying a natural
compatibility condition at μ = 0, ε = 0 respectively. This process is schematically
summarized by the following diagram:

Y0

σ

��

Yε�� �� �� ��

Xμ �������� X0

(2.16)

where σ : Y0 → X0 is the blow-up map. Note that all Yε with ε ≥ 0 are identical as com-
plex manifolds, but not as symplectic manifolds. The symplectic structure is degenerate
at ε = 0 since C0 has zero symplectic area with respect to ω0.

In this framework, a natural formulation of large N duality for knots requires two
families of lagrangian cycles Nμ ⊂ Xμ,Mε ⊂ Yε such that the degenerations N0,M0
are related by σ(M0) = N0, at least on the complement of the exceptional curve C0. In
the case of the unknot reviewed above, the specialization of the cycle Nμ in Eq. (2.12)
at μ = 0 is the singular lagrangian cone N0 ⊂ X0 determined by

y = w, |x | = |z|. (2.17)

At the same time, the cycle M constructed in Eq. (2.15) is lagrangian with respect to
any symplectic Kähler form ωY,ε because it is the fixed point set of an antiholomorphic
involution. The image of M via the blow-up map σ is precisely the singular lagrangian
cycle N0 determined by the same Eqs. (2.17). Therefore the compatibility condition at
μ = 0, ε = 0 is satisfied. For illustration, the resulting geometric picture is represented
in Fig. 1.

Since the knot K is contracted in this process it is not clear how such a construction
can be extended to more general knots especially such that the resulting open string
Gromov-Witten theory on Y is tractable. A related problem is that the analytic continu-
ation required by a proper enumerative interpretation of the partition function does not
have a direct geometric interpretation.

Both these problems lead to the idea [2,30] that a better formulation of large N dual-
ity would be obtained using lagrangian cycles supported in the complement of the zero
section C0 ⊂ Y , respectively S3 ⊂ Xμ. Said differently, this means that the lagrangian
cycle N = N∗

K must be lifted to a lagrangian cycle disjoint from the zero section prior
to the transition. Accordingly, the corresponding lagrangian cycle in Y will be lifted to
a cycle disjoint from the zero section C0. Moreover, once properly lifted, these cycles
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Fig. 1. Conifold transition for unlifted lagrangian cycles

should form families naturally related by symplectic surgery as shown in the following
diagram:

Y0

σ

��

Yε�� �� �� ��

Xμ �������� X0 M0

σ

����
��

��
��

��

����������
Mε

�� �� �� �� ��

����������

Lμ ��������
��

��

L0.
��

��

(2.18)

That there is such a lift can be argued as follows: Assume that with the proper choice
of metric, the lagrangian cycle L is actually special lagrangian [41]. In this case it is
known that the dimension of moduli of L is equal to the dimension of H1. This is rigor-
ously the case for compact lagrangians, and we assume it to hold for non-compact ones as
well where we have imposed suitable finiteness conditions on the norm of deformations
of the lagrangian. Since the topology of L is R2 × S1, there is exactly 1 deformation.
This corresponds to moving the special lagrangian in the direction determined by the
1-form dual S1, by identifying the infinitesimal normal deformation to the lagrangian
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with its cotangent space. It is this deformation that lifts L off Sμ. Moreover it suggests
that there is a unique such canonical lift for special lagrangian cycles. Even though we
will mainly deal with just lagrangian ones, this suggests that the choice of the special
lagrangian ones make the constructions more ‘canonical’.

Accepting the idea of lifting lagrangian cycles, a legitimate question is how can one
then obtain the Wilson loop corrections (2.9), given that Lμ and Sμ do not intersect.
This is also natural. Lifting the lagrangian brane off of Sμ is simply giving the bi-fun-
damental particles a mass given by the amount of lifting. In other words, the annuli for
which the dual channel corresponded to bi-fundamental strings, now have a finite width
depending on the amount of lift. These corrections can now be interpreted as ‘honest’
intantons, i.e. holomorphic cylinders which on the one hand end on Sμ and on the other
hand on Lμ. Such corrections were predicted in [44] assuming that there are finitely

many rigid holomorphic Riemann surfaces C(α)μ in Xμ with boundary components on
Sμ, Lμ. Each such surface gives rise to a series of Wilson loop corrections by summing
over multicovers. In particular, a rigid holomorphic cylinder Cμ in Xμ with boundary
components in Sμ, Lμ yields a series of instanton corrections

∑

n≥1

e−tC

n
Tr(U n)Tr(V n), (2.19)

where tC is the symplectic area of the cylinder Cμ, and can be interpreted as the mass
of the bi-fundamental state (where we have changed the variables by V 
→ V −1). Note
that the factor e−tC can be absorbed by a redefinition of the holonomy variable V , hence
it will be omitted from now on. Figure 2 is a schematic representation of the surgery
process in terms of lifted lagrangian cycles.

To summarize, for a given knot K ∈ S3, large N duality requires a family of lagrang-
ian cycles Lμ ⊂ Xμ, disjoint from Sμ, such that there is a unique rigid holomorphic
cylinder Cμ in Xμ with boundary components in Sμ, Lμ. Moreover, the boundary com-
ponent in Sμ must be isotopic to the given knot K . Note that the rigidity assumption on
Cμ is not needed if there exists a torus action on Xμ preserving Lμ. In this case it suffices
to require Cμ to be the unique torus invariant holomorphic cylinder satisfying the above
boundary conditions. The latter is a weaker condition, much easier to check in practice.
Note however, that general sufficient uniqueness conditions are not known, even in the
presence of a torus action. Uniqueness has to be checked directly on a case by case basis,
using the explicit construction of the S1-invariant lagrangian cycle. Concrete examples
and more details are presented in Sect. 6.2. If Cμ is found to be the only S1-invariant
holomorphic cylinder, the series (2.19) follows by a virtual localization computation
analogous to [19], as shown for example in [11].

A concrete construction of such families of lagrangian cycles for algebraic knots is
presented in Sect. 3. By analogy with the unknot, the cycles Lμ will be obtained by
taking inverse images φ−1

μ (L) of a fixed lift L ⊂ X of N∗
K in T ∗S3. Uniqueness and

rigidity of the associated holomorphic cylinders will be proven only for torus knots in
Sect. 6 and conjectured to hold for all algebraic knots.

The family of lagrangian cycles Mε ⊂ Y related to Lμ by geometric transition
is expected to have a similar property. Namely there should exist a unique holomor-
phic disc Dε in Y with boundary ηε ⊂ Mε . Note that Dε may have isolated singular-
ities away from the boundary. Then large N duality predicts an identification between
the Chern-Simons partition function on S3, including the instanton corrections (2.19),
and the partition function of Gromov-Witten theory on Y with lagrangian boundary
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Fig. 2. Conifold transition for lifted lagrangian cycles

conditions on Mε . Again, if there is a torus action on Y preserving Mε , it suffices for Dε
to be the unique torus invariant disc with boundary on Mε .

As a first example, the above program will be carried out in detail in the next subsec-
tion for an unknot of the form (2.11). In this case the cycles Mε, Lμ will be explicitly
constructed employing toric methods [4]. It will be shown that both cycles are preserved
by a circle action determined by an action on C

4 of the form

(x, y, z, w) 
→ (

e−in1ϕx, e−in2ϕ y, ein1ϕz, ein2ϕw
)

. (2.20)

Note that the action on Y is uniquely determined by the condition that the blow-up
equations (2.2) be left invariant. In particular it yields the circle action

[λ, ρ] 
→ [λ, ei(n1+n2)ϕρ]
on P

1. Assuming the unknot trivially framed, the Chern-Simons expectation value of
the instanton corrections (2.19) is

exp

⎡

⎣i
∑

n≥1

(1 − einλ)

2nsin(ngs/2)
Tr(V −n)

⎤

⎦ . (2.21)

The open Gromov-Witten invariants with boundary condition on Mε can be com-
puted in close analogy with [19]. As explained in [19], the result depends on the choice
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of a torus action, reflecting the fact that the moduli space of stable maps with lagrangian
boundary conditions is non-compact. This dependence is related by large N duality to
the framing dependence of knot invariants in Chern-Simons theory [30]. Choosing the
torus action (n1, n2) = (1, 0), which corresponds to the trivial framing, the result takes
the simple form

exp

⎡

⎣i
∑

n≥1

(1 − Qn)

2nsin(ngs/2)
Tr(V −n)

⎤

⎦ . (2.22)

This is in agreement with Eq. (2.21) via the change of variable Q = eiλ. Note that the
term involving a single Tr(V −1) in the exponent has the form (up to an overall factor
of q1/2)

(1 − Q)/(1 − q) = 1

(1 − q)
− Q

(1 − q)
,

where q = exp(igs). Each of these two terms was interpreted in [35] as the contribution
of an M2 brane ending on the Lagrangian brane corresponding to the unknot. The two
terms differ by a factor of Q indicating that one of the two M2 branes is in addition
wrapped around the P1. The minus sign in front of the second term can be interpreted
as the fermion number associated with the M2 wrapped around P1. Moreover the term

1

(1 − q)
= 1 + q + q2 + · · ·

signifies the fact that an M2 brane particle has one mode for each positive integer n > 0.
Each such n corresponds to the spin of the M2 brane on a plane, in the presence of a
magnetic flux. Such configurations admit an alternative description in terms of D-branes
in type IIA string theory employing M-theory/IIA duality. This duality relates M-theory
compactified on a product threefold Y × S1

M , with Y a Calabi-Yau threefold, to Type
IIA string theory on Y . The extra circle S1

M present in M-theory is often referred to in
the physics literature as the ‘M-theory circle’ or the ‘eleventh circle’. In the type IIA
perspective since the rotations around the eleventh circle generate a subgroup of the
Lorentz group, n can also be identified with the D0 brane charge [3,7,12]. The fact that
there are two BPS states for the unknot will be explained in the next subsection.

2.2. Toric lagrangian cycles in the resolved conifold. The construction of the lifted
lagrangian cycles Mε, Lμ will be carried out in detail below for the unknot using toric
geometry as in [4]. The gauged linear sigma model which flows to Y is a two dimensional
U (1) gauge theory containing four chiral superfields Z1, . . . , Z4 with charges

Z1 Z2 Z3 Z4
U (1) 1 1 −1 −1.

and trivial superpotential. The D-term equation is

|Z1|2 + |Z2|2 − |Z3|2 − |Z4|2 = ε, (2.23)

where ε ∈ R>0 is an FI parameter. The symplectic quotient construction yields a fam-
ily of symplectic Kähler manifolds Yε = (Y, ωY,ε). The exceptional curve C0 is given
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by Z3 = Z4 = 0, and has symplectic area proportional to ε. The contraction map
σ : Y → X0 is determined by the U (1)-invariant monomials

x = Z3 Z1, y = Z4 Z1, z = Z4 Z2, w = Z3 Z2,

which satisfy the relation xz = yw.
Lagrangian cycles in Y are constructed by a gauged linear sigma model with bound-

ary, which is expected to flow to a boundary conformal field theory in the infrared limit.
In particular consider the cycles Mε defined by the boundary D-term equations,

|Z2|2 − |Z4| = 0, |Z3|2 − |Z4|2 = c, (2.24)

where c ∈ R>0 is a boundary FI parameter, and the phase condition

Z1 Z2 Z3 Z4 = |Z1 Z2 Z3 Z4|. (2.25)

On the open subset Zi �= 0, where all angular coordinates θi , i = 1, . . . , 4, are well
defined this condition is equivalent to θ1 + · · · + θ4 = 0. A detailed construction of the
boundary gauged linear sigma models has been carried out in [15–17,31]. The boundary
FI parameter c > 0 will be kept fixed throughout this discussion.

In order to understand the geometry of Mε , note that Eqs. (2.23), (2.24) imply

|Z1|2 − |Z3|2 = ε.

Since ξ, c > 0, it follows that Z1, Z3 cannot vanish on Mε . Then the phase θ1 can be
set to 0 by U (1) gauge transformations, and the phase relation (2.25) reduces to

Z2 Z3 Z4 = |Z2 Z3 Z4|.
As emphasized in the previous subsection, it is important to note that Mε is preserved
by any circle action S1 × Y → Y of the form

(Z1, Z2, Z3, Z4) 
→ (Z1, ei(n1+n2)ϕZ2, e−in1ϕZ3, e−in2ϕZ4) (2.26)

with n1, n2 ∈ Z. It is straightforward to check that this is in agreement with the action
(2.20) on the invariant monomials. It is also important to note that Mε intersects the
plane Z2 = 0 along a circle S1

c given by

|Z2| = |Z4| = 0, |Z3|2 = c, |Z1|2 = ε + c.

Since Z2, Z4 are set to 0, the intersection is indeed a circle parameterized by the angular
variable θ3. Moreover, there is a holomorphic disc Dε with boundary on Mε defined by

|Z2| = |Z4| = 0, |Z3|2 ≤ c, |Z1|2 = ε + c.

Reasoning by analogy with [10,11] it can be checked that Dε is the only Riemann surface
in Y with boundary on Mε preserved by a torus action of the form (2.26) with n1 �= 0.

Next note that setting ε = 0 in the above construction yields a lagrangian cycle M0 on
the singular conifold X0. In terms of the invariant monomials (x, y, z, w), the defining
equations of M0 in X0 are

y − w = 0, |x | − |z| = c. (2.27)
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Fig. 3. Conifold transition for toric lagrangian cycles

Since c > 0, x cannot vanish, hence M0 is contained in the complement of the singular
point x = y = z = w = 0. Moreover, it is easy to check that M0 is lagrangian with
respect to the symplectic form ω0 obtained by restricting the standard symplectic form
ωC4 to the complement of the singular point in X0. Note also that Eq. (2.27) yields
Eq. (2.15) at c = 0, confirming that the present construction is a lifted version of the
previous one.

The family of lagrangian cycles Lμ ⊂ Xμ,μ > 0 is defined by the same equations,
(2.27), now interpreted as equations on the deformation Xμ. It is straightforward to
check that Lμ is lagrangian with respect to the symplectic form ωC4 |Xμ and it is pre-
served by the torus action (2.20). The resulting transition between lagrangian cycles is
schematically represented in Fig. 3.

Again, comparison with Eq. (2.12) shows that the cycle Lμ is a lift of the (inverse
image of the) conormal bundle φ−1

μ (N∗
K ). Moreover there is a unique torus invariant

holomorphic cylinder Cμ in Xμ with one boundary component in Lμ and the second
contained in the vanishing cycle Sμ. This is obtained intersecting the two lagrangian
cycles, Lμ, Sμ with the holomorphic curve Cμ ⊂ Xμ given by

y = 0, xz = μ.

One then finds two circles determined by the equations

Cμ ∩ Lμ : y = w = 0, xz = μ, |x | = c +
√

c2 + 4μ2

2
,

Cμ ∩ Sμ : |x | = |z| = √
μ, y = w = 0.

The cylinder Cμ is given by

y = w = 0, xz = μ,
√
μ ≤ |x | ≤ c +

√

c2 + 4μ2

2
.

A different construction of lagrangian cycles for more general knots will be presented
in the next section.

3. Algebraic Knots, Lagrangian Cycles and Conifold Transitions

The goal of this section is to present a construction of lagrangian cycles in T ∗S3 lifting
the conormal bundle N∗

K of any knot K ⊂ S3. Note that such a construction was previ-
ously carried out in [22], where it was also proven that the resulting lagrangian cycles
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are related to totally real cycles on the resolved conifold via the conifold transition.
Moerover, there is a well defined Gromov-Witten theory with boundary conditions on
the totally real cycles, constructed in [22] via symplectic methods. As discussed in more
detail below, the construction employed in this paper is a generalization of [22] moti-
vated by the large N duality considerations explained in Sect. 2.1. In particular, in this
approach the lagrangian cycles associated to algebraic knots are naturally equipped with
holomorphic cylinders with one boundary component in the lifted conormal bundle, the
second boundary component being a knot in S3 in the isotopy class of K . It will also be
shown that these cycles are related by the conifold transition to lagrangian cycles in the
small resolution of the conifold. For K algebraic, the construction also yields a singu-
lar holomorphic disc Dε in the resolved conifold with boundary on the corresponding
lagrangian cycles. Furthermore, if K is a torus knot, the resulting Gromov-Witten theory
on the resolution with lagrangian boundary conditions turns out to be computable using
a virtual localization approach similar to [19] and [24].

The notation and geometric set-up is as in the previous section. The total space of
the cotangent bundle T ∗S3 is denoted by X and will be identified with the subspace of
R

4 × R
4 determined by Eqs. (2.4). In this presentation, the canonical symplectic form

ωX is given by Eq. (2.5). The natural projection map X → S3 is denoted by π and the
zero section is denoted by S.

3.1. Knots and lagrangian cycles in T ∗S3. Consider a smooth closed curve γ : S1 → X
such that the projection π ◦ γ : S1 → S3 is a smooth knot K in S3. In particular, γ
intersects each fiber of X → S3 at most once, otherwise its projection to S3 would have
self-intersection points. Suppose the map γ is given by

θ ∈ S1 → (	u, 	v) = ( 	f (θ), 	g(θ)),

where 	f (θ) = ( f j (θ)), 	g(θ) = (g j (θ)), j = 1, . . . , 4, are smooth periodic functions
of θ .

The total space of the conormal bundle N∗
K to K in S3 is defined by the equations

	u = 	f (θ), 	̇f (θ) · 	v = 0,

where 	̇f (θ) = d 	f (θ)/dθ . Then a straightforward computation yields

ωX |NK = (

d
4

∑

j=1

v j du j
)|NK = d

(
4

∑

j=1

v j ḟ j dθ
) = 0,

confirming that N∗
K is a lagrangian cycle in X .

Now consider the three-cycle Lγ ⊂ T ∗S3 determined by the equations

	u = 	f (θ), 	̇f (θ) · (	v − 	g(θ)) = 0. (3.1)

By construction Lγ is a cycle in the total space of the restriction T ∗S3|K . The restriction
of the canonical projection π : T ∗S3 → S3 yields a projection πLγ : Lγ → K . The
fiber of πLγ over a point p ∈ K is the two-plane in T ∗

p S3 determined by the second
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equation in (3.1), which is linear in v j . Basically, Lγ is obtained by a fiberwise transla-
tion of NK by a translation vector depending on the point p ∈ K . The restriction of the
canonical symplectic form to Lγ is given by

ωX |Lγ = (

d
4

∑

j=1

v j du j
)∣
∣
Lγ

= d
(

4
∑

j=1

v j ḟ j (θ)dθ
)

.

Using the second equation in (3.1),

4
∑

j=1

v j ḟ j (θ)dθ =
4

∑

j=1

g j (θ) ḟ j (θ)dθ

on Lγ . Therefore

ωX |Lγ = d
(

4
∑

j=1

g j (θ) ḟ j (θ)dθ
) = 0.

In conclusion, Lγ is a lagrangian cycle on T ∗S3. Note that the intersection of Lγ with
the zero section 	v = 0 is determined by the equations

	u = 	f (θ), 	̇f (θ) · 	g(θ) = 0.

For sufficiently generic 	f (θ), 	g(θ) this intersection will be empty, such that Lγ is a lift
of the conormal bundle N∗

K off the zero section.
Note also that the lift constructed in [22] is a special case of the above construction

obtained by setting 	g(θ) = 	̇f (θ). The main reason for the above generalization is that at
least for algebraic cycles it also yields specific holomorphic open string instantons inter-
polating between the lifted conormal bundle and the vanishing cycle S3 in the deformed
conifold. This will be explained next.

3.2. Lagrangian cycles for algebraic knots. So far this construction is fairly general
and can be applied to any knot in K ⊂ S3, for any lift γ : S1 → X satisfying the
above conditions. In the special case when K is an algebraic knot there is a preferred
construction of the lift γ motivated by AdS/CFT correspondence. The main idea is to
obtain a one-cycle γ as in Sect. 3.1 by intersecting an S2-bundle Pa ⊂ T ∗S3 of radius
a > 0 with the image φμ(Cμ) of a certain holomorphic curve Cμ ⊂ Xμ associated to K
as explained below. Here φμ : Xμ → X is the symplectomorphism given in Eq. (2.6).

Suppose K is the link of the plane curve singularity f (x, y) = 0 in C
2, where f (x, y)

is a polynomial with complex coefficients of the form

f (x, y) =
∑

k,l≥0

ak,l x
k yl .

For simplicity assume that the curve f (x, y) = 0 is irreducible and smooth away from
x = y = 0, and K is connected. Let

g(z, w) =
∑

k,l≥0

(−1)lak,l z
kwl ,
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and consider the complete intersection Zμ ⊂ Xμ determined by

f (x, y) = 0, g(z, w) = 0. (3.2)

Suppose f (x, y) is sufficiently generic such that Zμ is smooth for generic μ > 0.
Note that Zμ may have several distinct connected components even though the plane
curve f (x, y) = 0 is assumed irreducible. For example consider the case of torus knots,
f (x, y) = xr − ys with (r, s) coprime positive integers. Then Eqs. (3.2) imply

(xz)r − (−yw)s = 0,

and substitution in the deformed conifold equation, xz − yw = μ, yields

(xz)r − (μ− xz)s = 0.

Therefore xz = η, where η is a solution of the polynomial equation tr − (μ− t)s = 0.
Each such solution η determines a connected component of Zμ of the form

(x, y, z, w) = (t s, tr , ηt−s, (μ− η)t−r )

with t ∈ C\{0}.
By construction Zμ is preserved by the antiholomorphic involution τμ(x, y, z, w) =

(z,−w, x,−y) defined in (2.8). Then each connected component of the intersection of
Zμ with the fixed point locus Sμ = X

τμ
μ is isomorphic to the one-cycle

|x |2 + |y|2 = μ, f (x, y) = 0 (3.3)

in C
2. For sufficiently small μ > 0, this is the link of the plane curve singularity

f (x, y) = 0 in C
2.

Note that the symplectomorphism φμ maps Sμ to the zero section S = {	v = 0}
in X = T ∗S3. Now let Pa = {|	v| = a}, a > 0, be the sphere bundle of radius a in
X = T ∗S3, and Ba ⊂ X be the bounding disc bundle,

Ba = {(	u, 	v) | |	v| ≤ a}.
Suppose there is a connected component Cμ of Zμ with nontrivial intersection with the
vanishing cycle Sμ. As observed above each connected component of the intersection
must be isomorphic to the link (3.3) of the plane curve singularity. Since φμ(Cμ) has
nontrivial intersection with the zero section S ⊂ X , it will also intersect all sphere
bundles Pa ⊂ X for sufficiently small values of a ∈ R>0. In fact for sufficiently small
a > 0 the intersection φμ(Cμ) ∩ Ba will be foliated by disjoint connected one-cycles
γμ,a′ = φμ(Cμ) ∩ Pa′ , 0 ≤ a′ ≤ a. Then applying the construction in Sect. 3.1 to γμ,a
yields a lagrangian cycle Lγμ,a ⊂ X . The inverse image Lμ,a ⊂ Xμ = φ−1

μ (Lγμ,a ) is
a lagrangian cycle in Xμ intersecting Cμ along the one-cycle φ−1

μ (γμ,a). Moreover, by
construction there is a holomorphic cylinder in Cμ,a ⊂ Xμ contained in Cμ, with one
boundary component in Sμ and the second boundary component in Lμ,a . This is pre-
cisely the basic set-up of large N duality in terms of lifted lagrangian cycles described
in Sect. (2.1), above Eq. (2.19). In order to keep the notation simple Lμ,a,Cμ,a will be
simply denoted by Lμ,Cμ the a-dependence being implicitly understood.
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Several important questions must be addressed at this point:

(i) The first concerns a rigorous definition of Gromov-Witten invariants with bound-
ary conditions defined by the lagrangian cycles Lμ. This problem will not be
solved in this paper, although consistency of large N duality arguments pre-
dict that such a rigorous construction should exist. Supporting evidence for this
conjecture can be found in [22], where compact moduli spaces of stable holo-
morphic maps with lagrangian boundary conditions are constructed in a similar
context. Additional evidence will be presented in Sect. 6, where explicit virtual
localization computations will be carried out for polynomials f (x, y) = xr − ys

assuming foundational issues without proof. The results will be shown to be in
agreement with HOMFLY polynomials of torus knots.

(i i) The second question concerns deformation invariance under small complex
deformations of the curve C preserving the analytic type of the singularity at
the origin, hence also the isotopy class of K . Note that a small perturbation of
the polynomial f (x, y) results by the above construction in a small perturba-
tion of the lagrangian cycle Lμ. Therefore the question translates into deforma-
tion invariance of lagrangian Gromov-Witten invariants. A clear answer would
require a rigorous definition of the theory, which is not available. However, such
invariants are expected in general to exhibit a chamber structure under deforma-
tions of lagrangian cycles. Therefore it is reasonable to expect that invariance
will hold at least under sufficiently small perturbations.

(i i i) The third problem is whether one can construct a family of lagrangian cycles
Mε on Y completing the geometric transition picture represented in (2.18). This
will be shown to be the case for any algebraic knot in the next subsection, with
the caveat that the resulting Gromov-Witten theory with lagrangian boundary
conditions on Mε is tractable only for torus knots.

A first step towards completing the diagram (2.18) is to understand the specialization
of the above construction at μ = 0. The specialization of Zμ is a reducible curve Z0 in
the singular conifold X0 with at least two irreducible components C± given by

f (x, y) = 0, z = w = 0,

respectively

g(z, w) = 0, x = y = 0.

These components meet at the conifold singularity, which is also a singular point of Z0.
By construction, the antiholomorphic involution τ0 : X0 → X0 exchanges C±.

For concreteness, consider again the example of torus knots, f (x, y) = xr − ys .
In this case the defining equations of Z0 imply that t = xz must be a solution of the
polynomial equation tr −(−t)s = 0. Therefore xz = 0 or xz = ηwith ηr−s = (−1)s+1.
This implies that Z0 has r − s + 1 connected components. The connected component
corresponding to xz = 0 is the union of the two irreducible components C± defined
above, which intersect at the singular point x = y = z = w = 0. Each connected
component corresponding to xz = η is determined by the equations

xz = yw = η, xr = ys .

Since these equations are invariant under the C
×-action

(x, y, z, w) 
→ (αs x, αr y, α−s z, α−rw)

and x, y, z, w cannot vanish, each such component is isomorphic to C
×.
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Returning to the general case, let γ± be the one-cycles obtained by intersecting the
inverse images φ0(C± \ {0}) with the sphere bundle Pa . It is straightforward to check
that τ0 exchanges the image cycles φ0(γ

±). Applying the construction of Sect. 3.1 to the
cycle γ +, one obtains a lagrangian cycle Lγ + in X . The inverse image L0 = φ−1

0 (Lγ +)

is a lagrangian cycle in X0. For sufficiently small μ ∈ R>0 there exists an irreducible
component Cμ of Zμ such that the intersection φμ(Cμ)∩ Pa has a connected component
γμ which specializes to γ + at μ = 0. The resulting family of lifted lagrangian cycles
Lμ specializes to L0 at μ = 0. This completes the bottom part of diagram (2.18). The
remaining part will be constructed in the next subsection.

3.3. Lagrangian cycles in the resolved conifold. Recall the resolved conifold Y is deter-
mined by Eqs. (2.2) in C

4 × P
1 and σ : Y → X0 denotes the natural contraction map

to the singular conifold. The family of symplectic manifolds Yε in diagram (2.18) is
determined by the symplectic forms

ωY,ε = (

ωC4 + ε2ωP1
)|Y ,

where ωC4 is the standard symplectic form on C
4 and ωP1 is the Fubini-Study form

on P
1.

The family of lagrangian cycles Mε ⊂ Yε will be constructed using [32, Lem. 7.11],
which provides a geometric relation between the symplectic structures on Yε, X0. First
it will be helpful to recall the statement of [32, Lem. 7.11] for the blow-up η : C̃

2 → C
2

at the origin. Consider the following one parameter family of symplectic forms on the
blow-up

ω
C̃2,ε = (

ωC2 + ε2ωP1
)|

C̃2 .

For any ε ∈ R>0, let B(ε) ⊂ C
2 be the ball |z|2 + |y|2 ≤ ε2 and B̃(ε) = η−1(B(ε)) be

its inverse image in C̃
2. Note that there is a radial map ρε : C

2\{0} → C
2\B(ε),

ρε(y, z) =
√|z|2 + |y|2 + ε2

√|z|2 + |y|2 (y, z).

Then [32, Lem. 7.11] proves that the map ψε : C̃
2\E → C

2\B(ε),

ψε = ρε ◦ η|
C̃2\E

is a symplectomorphism for any ε ∈ R>0, where E ⊂ C̃
2 denotes the exceptional curve.

In order to apply [32, Lem. 7.11] to the present situation, note that Y can be regarded
as the quadric hypersurface xλ = wρ, in the fourfold Z determined by zρ = yλ in
C

4 × P
1. Obviously, Z � C

2 × C̃
2, where C̃

2 is the one point blow-up of C
2 at the

origin. Next note that the map �ε = 1C2 × ρε : C
2 × (C2\{0}) → C

2 × (C2\B(ε))
preserves the nodal threefold X0 ⊂ C

2 × C
2, mapping X0\{0} to the open subset

X0(ε) = X0\X0 ∩ (C2 × B(ε)). Note also that the exceptional (−1,−1) curve C0 ⊂ Y
coincides with the curve {0} × E ⊂ C

2 × C̃
2. This implies that the complement of the

zero section Y\C0 coincides with the open subset Y ∩ C
2 × (C̃2\E). Then the map

φε : Y\C0 → X0(ε), φε = (�ε ◦ σ)|Y\C0 (3.4)

is a symplectomorphism.
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Returning to the construction of the lagrangian cycle Mε ⊂ Yε , recall that the family
of complete intersection curves Cμ ⊂ Xμ given by

f (x, y) = 0, g(z, w) = 0

specializes to a reducible curve at μ = 0 with two components

C+ : f (x, y) = 0, z = w = 0,

C− : g(z, w) = 0, x = y = 0.

The intersection of φ0(C+) with the sphere bundle Pa yields a one-cycle γ +, the limit
of the cycles γ +

μ as μ → 0. The corresponding lagrangian cycle Lγ + is the limit of L+
μ

as μ → 0.
Now consider the one-cycle

γ +
ε = φ0 ◦ �ε ◦ φ−1

0 ◦ γ + : S1 → X

on X obtained by applying the radial map to the inverse image φ−1
0 ◦ γ + of the path γ +.

Then set

Mε = φ−1
ε (φ−1

0 (Lγ +
ε
)) = σ−1(�−1

ε (φ−1
0 (Lε))), (3.5)

where Lγ +
ε

⊂ X is the lagrangian cycle obtained by applying the construction of
Sect. 3.1 to γ +

ε . By construction Lγ +
ε

intersects the dilation �ε(φ0(C+))) of the curve

φ0(C+) along the cycle γ +
ε . Therefore the inverse image �−1

ε (φ−1
0 (Lγ +

ε
)) intersects the

plane curve C+ ⊂ X0 along the cycle φ−1
0 ◦ γ +

ε .
Now recall that the threefold Y is determined by the equations

xλ = wρ, zρ = yλ

in C
4 × P

1, where [λ, ρ] are homogeneous coordinates on P
1. The blow-up map σ :

Y → X0 is the restriction of the natural projection C
4 ×P

1 → P
1 to Y . Then the scheme

theoretic inverse image σ−1(C+) is determined by equations

z = 0, w = 0, f (x, y) = 0

in Y . Therefore it has two irreducible components, a component C determined by

f (x, y) = 0, λ = 0

and the exceptional curve C0 ⊂ Y given by

x = 0, y = 0.

The first component C will be called the strict transform of C+ in Y . Note that the curve
C+ does not undergo an embedded blow-up in this process, in contrast to the strict trans-
form of the plane curve { f (x, y) = 0} under the blow-up of plane at the origin. In the
latter case, the inverse image of the plane curve under the blow-up map is determined
by

f (x, y) = 0, xλ = yρ

in C
2 × P

1. Writing these equations in the affine coordinate charts λ �= 0, respectively
ρ �= 0, it can be easily shown that the inverse image has again two components, an
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irreducible plane curve C ′ and a divisor of the form m E , where m is the multiplicity of
the plane curve at the origin, and E the exceptional curve. The strict transform C ′ is not
isomorphic to the curve { f (x, y) = 0} in this case.

Since σ : Y\C0 → X0 \ {0} is an isomorphism of complex manifolds, it follows that
Mε intersects the strict transform C ⊂ Y of C+ along the cycle ηε = σ−1 ◦ φ−1

0 ◦ γ +
ε .

The strict transform C is the plane singular curve cut by the equations

f (x, y) = 0, λ = 0

on Y . Therefore it is a singular plane curve isomorphic to C+, contained in the fiber
λ = 0 of Y over P

1. The singular point p ∈ C is the unique point of intersection with the
zero section, x = y = 0, λ = 0. The cycle ηε divides C into two connected components,
the component containing p being a singular holomorphic disc Dε in Yε with boundary
ηε ⊂ Mε . This is precisely the geometric set-up outlined in diagram (2.18). In order to
obtain a complete large N duality picture, one should prove that the holomorphic disc
Dε is rigid, which is a difficult technical question for general algebraic knots. Section 6
will provide an affirmative answer for torus knots, leaving the general case for future
work.

Assuming that Dε is rigid, the next problem is the computation of its multicover
contributions to the Gromov-Witten theory with lagrangian boundary conditions on Mε .
One angle on this problem is to try to generalize the computations of [19] based on stable
maps with lagrangian boundary conditions to the present case. This approach requires
a torus action preserving Mε,Dε , which is the case only for torus knots. In this case,
the details of the virtual localization computation are presented in Sect. 6, the resulting
formulas being in agreement with large N duality predictions.

A second approach follows from string duality considerations as in [13,35], con-
verting the calculation of topological open A-model amplitudes to D-brane bound state
counting. In this framework, the topological amplitudes are expressed in terms of BPS
states as in Donaldson-Thomas type invariants, making a direct connection with the [33].
This will be discussed next.

4. D-brane Bound States and the Hilbert Scheme

The goal of this section is to provide a physical explanation for the work of Oblom-
kov and Shende [33] on plane curve singularities in the framework of large N dual-
ity. The geometric set-up will be the same as in Sect. 3.3, namely a lagrangian cycle
Mε ⊂ Yε intersecting a singular plane curve C ⊂ Y along a smooth connected one-cycle
η : S1 → Mε . The curve C is given by

f (x, y) = 0, λ = 0,

on Y and it will be assumed that it has only one singular point p, given by x = y =
0, λ = 0. The cycle ηε divides C into two connected components, the component con-
taining p being a holomorphic disc Dε with boundary on Mε . Note that Mε � R

2 × S1

and the cycle ηε is a generator of H1(Mε) � Z. It will be assumed that Dε is rigid, which
is in fact proven in Sect. 6 for curves of the form f (x, y) = xr − ys . The subscript ε will
be dropped in this section because all considerations below hold for any fixed arbitrary
value of ε > 0.

According to [23,30,35], string duality transformations show that open topologi-
cal string amplitudes with lagrangian boundary conditions on M are determined by
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counting supersymmetric M2-brane or D2-D0 bound states in different duality frames.
This is achieved by studying the low-energy effective action for type IIA D4-brane
wrapped on the lagrangian cycle M , resulting in a string-like object in the four trans-
verse dimensions. Open topological string amplitudes with boundary conditions on M
determine certain holomorphic couplings in the low energy effective action of this string.
Since H1(M) � Z is generated by η, open string instantons with fixed genus g ∈ Z≥0
and h = 1 boundary components are topologically classified by the wrapping number
d ∈ Z≥0 on the holomorphic curve C0 and the winding number k ∈ Z≥1 about the cycle
η. The corresponding Gromov-Witten invariants with lagrangian boundary conditions
will be denoted by GWg,1(d, k). Only topological open string amplitudes with winding
number k = 1 will be considered in the following, because we are interested in the
Wilson loop observables in the fundamental representation. Moreover we can assume,
with no loss of generality that we have only 1 spectator lagrangian A-brane and we
replace TrV with V . According to [35], these amplitudes determine terms of the form

∫

d4xd4θδ(2)(x)δ(2)(θ)Fg,1(t, V )(W 2)g

in the effective action of the string, where

Fg,1(t, V ) =
∑

d≥0

g2g−1
s e−dt GWg,1(d, 1)V .

Here Wαβ , where α, β are symmetric spinor indices, denotes the four dimensional gravi-
photon multiplet, and t denotes the vector multiplet whose top component is the Kähler
modulus of the zero section C0 ⊂ Y . As in Sect. 2.1, V is the holonomy of a back-
ground flat U (1) gauge field on the D4-brane. The four dimensional superspace integral
is restricted to the string world-sheet by the δ-functions δ(2)(x), δ(2)(θ).

The M-theory lift of this configuration is an M5-brane wrapping the same lagrangian
cycle M . Holomorphic IIA world-sheet instantons lift to open M2-branes with boundary
on M wrapping the disc D and the zero section C0. The low energy effective theory of
the M5-brane is now a three dimensional theory containing a spectrum of supersymmet-
ric particles corresponding to bound states of open M2-branes. The low energy degrees
of freedom include a three-dimensional N = 2 U (1) vector multiplet, the reduction of
the M5-brane self-dual tensor multiplet on a harmonic generator of H1(Mε) � Z. In
addition the space-time effective action includes a U (1) gauge field in the supergravity
multiplet. The three-dimensional BPS particles carry integer charges (k, d) ∈ Z with
respect to these gauge fields. Geometrically, k, d are the M2-brane multiplicity on the
disc D, respectively the zero section C0. The five dimensional SO(4) little group is
broken to U (1)× U (1) by the M5-brane, the first factor being the little group in the M5
three dimensional effective theory. The second factor is generated by rotations in the
two transverse dimensions. Therefore the BPS spectrum is graded by two spin quantum
numbers σ, j ∈ Z + 1/2. The degeneracies of BPS states will be denoted accordingly
by Nk,d,σ, j . By analogy with [13] a Schwinger computation shows that the couplings
Fg,1(t, V ) are given by

Fg,1(t, V ) =
∑

d≥0

∑

σ∈Z

Nd,σ

2 sin(gs/2)
e−dt+iσgs V, (4.1)

where Nd,σ is a BPS index given by

Nd,σ =
∑

j∈Z+1/2

(−1)2 j+1 N1,d,σ, j .
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In particular note that the coefficients Nd,σ have to be integral but not necessarily
positive.

The above expression is the restriction of [35, Eq. 4.4] to open string amplitudes of
winding number 1, therefore the sum over the integer n ≥ 1 corresponding to degree n
multicover contributions collapses to a single term, n = 1. A more convenient form of
Eq. (4.1) can be obtained by a change of variables q = eigs , Q = e−t , and a redefinition
of the spin quantum number, σ = s + 1/2, s ∈ Z. Then Eq. (4.1) becomes

Fg,1(t, V ) =
∑

d≥0

∑

σ∈Z

Nd,sqs Qd

1 − q
V . (4.2)

In order to compute the BPS numbers Nd,s , one has to count spin s + 1/2 bound states of
an open M2-brane wrapping the singular holomorphic disc D and d M2-branes wrapping
the zero section C0. Note that using the Large N duality this implies that the expectation
value of the Wilson loop in the fundamental representation of the knot, which is known
as the HOMFLY polynomial of the knot, is given by this expression (recalling that TrU
is paired up with TrV ):

〈T rU 〉 =
∑

d≥0

∑

σ∈Z

Nd,sqs Qd

1 − q
. (4.3)

It is known [13,14] that d M2-branes wrapping the compact curve C0 form supersym-
metric bound states only if d = 1, in which case there is a single spin 0 state. Therefore
the main problem is to understand bound state counting for open M2-branes wrapping
the singular disc D. This is most efficiently done reducing the problem to counting
D2-D0 bound states in a suitable weakly coupled Type IIA limit. More precisely, one
can choose the M-theory circle such that the M5-brane is mapped again to a D4-brane,
but the M2-branes yield open D2-branes with boundary on the D4-brane. Furthermore
the d = 0 truncation of the right-hand side of Eq. (4.2) is interpreted as a partition
function of the form

∑

n≥0

Cnqn (4.4)

counting supersymmetric states of open D2-branes wrapping D bound to an arbitrary
number n of D0-branes [13,20]. The coefficients Cn in Eq. (4.4) are BPS indices counting
states weighted by a sign determined by their spin. This index can be exactly computed
in the semiclassical limit, in which case Cn equals the Euler characteristic of the moduli
space of supersymmetric D-brane configurations. In order to understand the structure of
such moduli spaces, it is helpful to consider first configurations of n D0-brane bound to a
D2-brane wrapping a compact holomorphic curve Z in a smooth projective Calabi-Yau
threefold, which may be assumed arbitrary for the purposes of a general presentation.
Once the main ideas are clearly illustrated in a general context, the discussion will be
specialized to D2-branes wrapping the disc D in Y . According to [20,21,36], such con-
figurations are mathematically modeled by an abelian vortex configuration of degree n
on Z . The basics of this formalism will be reviewed in some detail below.
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4.1. D2-D0 bound states, vortices, and stable pairs. A degree n abelian vortex is a triple
pair (L, A, s), where L is a complex line bundle on Z with first Chern class c1(L) = n, A
is a U (1) connection on L and s is a section of L satisfying DAs = 0. This naturally
captures the data of the choice of the gauge field on the D2 brane, as well as the geome-
try of the D0 brane, which can be identified with s. It corresponds to the bifundamental
field charged under the D2-brane U (1) stretched between D0-brane and D2-brane. The
moduli space of triples (L, A, s) modulo unitary gauge transformations is isomorphic
to the moduli space of pairs (L, s) modulo complexified gauge transformations, where
L is a holomorphic line bundle on Z and s ∈ H0(Z ,L) is a nontrivial holomorphic sec-
tion. The relation between differential geometric and algebraic geometric data follows
as usual observing that any connection A on a C∞ complex line bundle L determines a
Dolbeault operator ∂ A.

In the algebraic formulation, note that the zero locus of s is a degree n effective
divisor (s) on Z , that is a formal linear combination of points

∑k
i=1 ni pi , where ni ≥ 1

and
∑k

i=1 ni = n. The points p1, . . . , pk represent the locations of the D0-branes and
the integers ni ≥ 1, i = 1, . . . , k, the D0-brane multiplicity at each point. Assigning
to each pair (L, s) the divisor (s) yields an isomorphism between the moduli space of
isomorphism classes of pairs (L, s) and the symmetric product Sn(Z) = Zn/Sn , where
Sn is the permutation group on n letters.

From the sheaf theoretic point of view, a pair (L, s) can be uniquely characterized
up to gauge transformations by specifying the germs of local holomorphic sections of
L near each point p of Z . The simplest case is the trivial vortex configuration, when L
is isomorphic to the trivial line bundle OZ on Z and s is constant. The germs of local
sections of OZ near each point p ∈ Z are simply germs of local holomorphic functions
with no restrictions on the vanishing order at p. For a configuration (L, s)with n > 0 the
same holds locally near any point p ∈ Z , p �= pi , i = 1, . . . , k. Near one of the points
pi , the germs of holomorphic sections of L are identified with germs of meromorphic
functions with at most a pole of order ni at pi . In this local picture the section s corre-
sponds to the natural inclusion of the local sections of OZ in the set of local sections
of L. Note that the complement is a finite dimensional vector space of dimension ni . In
terms of a local coordinate zi centered at pi , this vector space is generated by sections
of the form {z−l

i }, l = 1, . . . , ni . More abstractly, the local sections of L near pi form a
rank 1 module over the local ring of functions OZ generated by {z−ni

i }.
It may be also helpful to note that there is a dual mathematical model for D2-D0

configurations. In the dual model, ni D0-branes located at pi are described by the set of
local holomorphic functions which vanish at least to order ni at pi . This set is the ideal
generated by zni

i in the ring of local functions near pi . The geometric object character-
ized by this local behavior is the dual line bundle L−1, which is a sub-sheaf of the trivial
line bundle OZ . In more abstract language, L−1 ⊂ OZ is the defining ideal sheaf of the
effective divisor (s) = ∑k

i=1 ni pi .
Similar considerations apply [36,37] to a singular curve Z , abelian vortices being

generalized to stable pairs. This essentially means that one has to allow the gauge field
A to develop singularities at the singular points of the curve Z . While a complete ana-
lytic treatment of such singularities would be quite difficult, the sheaf theoretic point of
view discussed above leads to an efficient construction of the moduli space. A single
D0-brane supported at a smooth point p was previously identified with the module of
local meromorphic functions with at most a simple pole at p. If p is a singular point of
Z , a single D0-brane at p is still defined by a module of local meromorphic functions,
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but this module may have more than one generator. Conceptually, this may be easily
understood employing the dual model. Consider for example the plane curve singularity
x3 = y2. A D0-brane with multiplicity 1 located at the singular point x = y = 0 cannot
be described as the zero locus of a single local holomorphic function. If one simply sets
x = 0 or y = 0 the defining equation of the curve reduces to y2 = 0, respectively
x3 = 0. According to the previous paragraph this is in fact a D0-brane configuration
with multiplicity 2, respectively 3. A single D0-brane is the zero locus of two local
functions, (x, y)which generate an ideal in the ring of local holomorphic functions. The
dual stable pair is given by a local module over the ring of local functions generated by
two elements.

Informally, the main idea of this construction is that at a singular point p of Z the rank
of the Chan-Paton line bundle L on Z is allowed to jump in a controlled way, depending
on the analytic type of the singularity at p. Effectively, the single D2-brane on Z behaves
locally at p as a stack of D2-branes with higher multiplicity m ≥ 1. For a fixed num-
ber of D0-branes m may take finitely many values determined by n and the singularity
type. This point of view will be very useful in understanding bound state formation for
D2-branes wrapping different holomorphic curves with transverse intersection.

A consequence of the above discussion is that the moduli space of D2-D0-brane con-
figurations supported on Z is no longer isomorphic to the symmetric product Sn(Z). It
has been shown in [37] that the moduli space of D2-D0-brane configurations supported
on Z is in this case isomorphic to the Hilbert scheme Hn(Z) of n points on Z . The
rigorous definition of the Hilbert scheme is not needed for the purpose of the present
discussion, but it may be helpful to note that there is a natural map π : Hn(Z) → Sn(Z)
forgetting the extra algebraic structure associated to each singular point. From a phys-
ical point of view this means that the D0-branes are treated simply as non-interacting
particles ignoring interactions due to open string effects.

Analogous considerations hold for D2-branes wrapping a smooth holomorphic disc
D with boundary on a lagrangian cycle. The holomorphic line bundle L must now be
equipped with a trivialization on the boundary of the disc ∂D � S1, which is part
of the boundary conditions on the D2-brane fields. Complex line bundles on the disc
with boundary trivialization are topologically classified by the first Chern class, which
takes values in the relative homology group H2(D, ∂D) � Z. Moreover, since the sec-
tion s ∈ H0(L) must be compatible with the trivialization, the number of zeroes of s,
counted with multiplicity must equal the first Chern class n. Summing over all Chern
classes yields the partition function

∑

n≥0

Cnqn =
∑

n≥0

χ(Sn(D))qn = 1

1 − q
, (4.5)

since the symmetric power Sn(D) is contractible for any n ≥ 0. Note that this result is
the same as the winding number one partition function of a single lagrangian brane in
C

3 given [1] by the topological vertex C∅,∅,�(q). As observed in [18, Sect. 4], the above
formula can be alternatively interpreted as the Hilbert series of the ring C[t] of polyno-
mial functions on the complex line C. By definition, the Hilbert series of a polynomial
ring R is

HR(q) =
∑

n≥0

cn(R)q
n,

where cn(R) is the number of degree n monomials in R. Obviously, HC[t](q) is equal to
the above partition function. It was explained in [18, Sect. 4], that HC[t](q) can be also
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interpreted as a counting function of states in the Hilbert space H of a single quantum
harmonic oscillator.

Next suppose D has singular points away from the boundary. Without any loss of
essential information, one may assume that D has only one singular point p. Several
singular points may be treated analogously with no new conceptual issues.

In this case the Chern class of a singular vortex configuration admits a splitting, n + l,
where n ∈ Z is determined as above by the trivialization on the boundary, and l ∈ Z

is a contribution supported at the singular point. A rigorous account of this splitting is
provided at the end of Sect. 5, where it is also shown that l takes finitely many values.
In addition, one has to specify the multiplicity m ≥ 1 of the singular vortex at p, as
discussed above. Therefore the partition function will be in general of the form

∑

l≥0

∑

m≥1

fl,m(q), (4.6)

where only finitely many terms are nontrivial. Note that each term fl,m(q) is a power
series in q because for fixed values of (l,m) one has to sum over all possible boundary
trivializations, as in the smooth case. More detailed information on the terms fl,m(q)
requires a more involved technical analysis, as shown for specific examples in Sect. 4.3.
A more immediate task at this stage is however to explain how the above general reason-
ing can be applied to more general M2-brane configurations supported on intersecting
curves.

4.2. Intersecting M2-brane bound states. The relevant intersecting curve configurations
for large N duality consist of a singular holomorphic disc D as above meeting a smooth
(−1,−1) rational curve C0 at the singular point p. One then has to count bound states of
k = 1 open M2-branes wrapping D and d closed M2-branes wrapping the zero section
C0. As shown in [13,14], M2-branes wrapping a (−1,−1) curve C0 with multiplicity
d ≥ 1 form bound states only for d = 1, in which case the spectrum consists of one
BPS state of spin 0.

In addition, when an M2-brane wrapping D is added to the system one can form
new bound states binding a membrane wrapping C0 to the membrane wrapping D. If
D were smooth, the intersection between the two M2-branes would be modeled by a
curve with a simple nodal singularity xy = 0. This configuration can be viewed as a
limit of a single M2-brane wrapping the smooth curve xy = ε as ε → 0. Therefore two
intersecting M2-branes form in this case a single bound state.

However in the case of interest here D is a singular disk, which has local multiplicity
m ≥ 1 at the singular point p, even though its generic multiplicity 1. In other words m
counts the number of ‘points’ at p. What this means is that if we were to consider an
annulus which ends on one end on the D2-D0 brane bound state on one side, and on a
transverse D-brane intersecting the curve at p on the other, m counts the Witten index for
it. Therefore a membrane wrapping C0 may bind to the singular membrane in m distinct
ways, depending on which local branch it is attached to. This results in a spectrum of m
BPS states in the low energy effective action. More generally, d membranes wrapping
C0 can bind in

(m
d

)

distinct ways to the singular open membrane, resulting in as many
BPS particles. In particular, if d > m no irreducible bound state may be constructed.
Therefore the partition function for such configurations must take the general form

∑

l≥0

∑

m≥1

m
∑

d=0

(
m

d

)

(−Q)d fl,m(q) =
∑

m≥1

fm(q)(1 − Q)m, (4.7)
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where

fm(q) =
∑

l≥0

fl,m(q).

Here we used the fact, already seen for the unknot, that the fermion parity of the M2 brane
wrapping P1 is -1 leading to −Q for each such state in the above formula. Moreover,
Eq. (4.1) predicts that

fm(q) = gm(q)

1 − q

with gm(q) a polynomial with integral coefficients. These predictions will be confirmed
by explicit computations for plane curves of the form

xr − ys = 0

in the next section.
For completeness, it is worth noting that the combinatorial factors

(m
d

)

admit a geo-
metric interpretation in the weakly coupled IIA limit mapping M2-branes to D2-branes.
Then the massless spectrum of open string stretching between a D2-brane on D and d
D2-branes on C0 consists of an N = 2, d = 4 hypermultiplet reduced to one dimension.
The bosonic components are two complex scalar fields φ,ψ transforming in the bifun-
damental representation of the D-brane gauge fields and its dual. Again, the singular D2-
brane effectively has multiplicity m at the singular point even if it is generically of rank
one. Therefore φ,ψ may be identified with linear maps φ : C

m → C
n, ψ : C

n → C
m

respectively. Then the F-term equations are simply

ψ ◦ φ = 0, φ ◦ ψ = 0.

This implies that the moduli space of flat directions modulo gauge transformations is
isomorphic to a moduli space of representations of a quiver of the form

C
m

φ
��
C

n

ψ

		

subject to the F-term equations. The stability conditions are determined as usual by the
D-term equations,

|φ|2 − |ψ |2 = ξ.

The subtle aspect here is that even though the singular D2-brane has multiplicity m at
p, one should only mod out by U (1)× U (d) gauge transformations since the brane has
generic of rank 1. Moreover, since the diagonal U (1) subgroup acts trivially on φ,ψ , it
suffices to mod out by U (d) gauge transformations.

A straightforward analysis of the resulting stability condition shows that φ = 0 and
ψ must be surjective for ξ < 0 andψ = 0 and φ must be surjective for ξ > 0. Therefore
if ξ > 0, the moduli space of stable representations modulo U (d) gauge transformations
is isomorphic to the grassmannian G(m, d) of d-dimensional quotients of C

m if d ≤ m
and empty if d > m. If ξ < 0 the moduli space is just a point if d ≥ m and empty if
d < m.
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In string theory the FI term ξ is determined by the expectation value of the back-
ground fields on Y , such as the metric and B-field. The previous paragraph implies that
for any choice of background fields such that ξ > 0 the weakly coupled IIA analysis
agrees with M-theory considerations. Namely, the moduli space of expectation values of
open string modes is isomorphic to the grassmannian G(m, d)which has Euler character
(m

d

)

. This is precisely the number of bound states predicted by M-theory arguments.

4.3. Curves of type (r, s). Returning to the setup described at the beginning of this
section, consider a singular curve C of the form

xr − ys = 0, λ = 0

in a resolved conifold Y . Here (r, s) are coprime positive integers and it will be assumed
that r > s ≥ 1. Note that C has only one singular point p given by x = y = 0, λ = 0.
The construction of Sect. 3.3 produces a lagrangian cycle M ⊂ Y which intersects C
along a smooth connected one cycle η. Therefore C is divided into two connected com-
ponents, the holomorphic disc D being the component containing the singular point p.
Note that D is preserved by the circle action

(x, y, ζ ) 
→ (e−isϕx, e−irϕ y, ei(r+s)ϕζ )

which fixes only the singular point p. This action yields a natural action on the moduli
space of vortices, and Euler character computations localize to the fixed point set. As
shown at the end of Sect. 5, the fixed point set in the moduli space of vortices is discrete
and consists of vortex configurations centered at the singular point p. Since p is away
from the boundary of D, the localization computation of the partition function (4.6)
yields the same answer as the localization computation for vortices on the open curve C .
Therefore for computational purposes one may work with stable pairs on C . This yields
an explicit computational algorithm for the terms fl,m(q) in (4.6) which is summarized
below.

The first term f0,1(q) in (4.6) represents the contribution of topologically trivial gauge
field configurations. All terms f0,m(q),m ≥ 2 are obviously zero since the trivial line
bundle has multiplicity 1 at p. Just as in the smooth case, f0,1(q) is given by the Hilbert
series of the ring RC of regular functions on C . Since (r, s) are coprime, the curve C
may be given in parametric form as (x, y) = (t s, tr ). Therefore RC is isomorphic to
the subring C[tr , t s] ⊂ C[t] spanned polynomials of the form p(tr , tr ) with p(x, y) an
arbitrary polynomial of two variables. It will be convenient to identify the set of mono-
mials tn ∈ C[tr , t s] with the set of exponents n ∈ Z≥0, which will be denoted by�(r, s).
Note that the complement �(r, s) = Z≥0\�(r, s) is a finite set. Therefore f0,1(q) can
be identified with the germ turn generated by x, y with weights s, r respectively, modulo
a relation of degree sr :

f0,1(q) =
∑

n∈�(r,s)
qn = (1 − qrs)

(1 − qr )(1 − qs)
= 1

1 − q
−

∑

n∈�(r,s)
qn . (4.8)

By comparison with the formula (4.5) it follows that the effect of the singularity in the
topologically trivial sector is to remove the states in the Hilbert space of the harmonic
oscillator with quantum numbers n ∈ �(p, q). Note that Eq. (4.8) is a specialization of
a general result for the Alexander polynomial of torus knots proven in [6].
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For concreteness, suppose (r, s) = (4, 3). Then �(4, 3) is the set

0, 3, 4, 6, 7, · · ·
and the complement �(3, 4) is the finite set

1, 2, 5.

Therefore in this case

f0,1(q) = 1

1 − q
− (q + q2 + q5) = 1 − q + q3 − q5 + q6

1 − q
.

The terms fl,m(q) corresponding to topologically nontrivial sectors are constructed
in a similar manner in terms of partial fillings of �(r, s). A partial filling of �(r, s) is a
subset

�(r, s) ⊆ �′(r, s) ⊆ Z≥0

with the property that if �′(r, s) contains some n′ ∈ �(r, s), then it must contain all
its translates n′ + n by arbitrary elements n ∈ �(r, s). Each partial filling is obtained
by adding finitely many elements in �(r, s) to�(r, s) subject to this selection rule. For
example all possible partial fillings in the case (r, s) = (4, 3) are

�′(4, 3)(1) : 0, 1, 3, 4, 5, 6, 7, . . . ,

�′(4, 3)(2) : 0, 2, 3, 4, 5, 6, 7, . . . ,

�′(4, 3)(3) : 0, 3, 4, 5, 6, 7, . . . ,

�′(4, 3)(4) : 0, 1, 2, 3, 4, 5, 6, 7, . . . ,

the extra elements being underlined in each case. What this means is for example for
�′(4, 3)(1) the line bundle has one additional section s′ represented by 1, which does
not vanish at the origin as we put x = y = 0. The additional element in the ring given
by s′y given by 5, does vanish at the origin, as it vanishes as we set y = 0. Similar
considerations apply to the rest. A disallowed filling is for example

0, 1, 3, 4, , 6, 7, . . . ,

since the translation of 1 by 4 is 1 + 4 = 5, which is missing in the above sequence. This
is consistent with the fact that we can multiply a section by the holomorphic functions
of x, y and still get a section of the same bundle, and so 5 should also have been in the
sequence of the sections of the line bundle.

Note that any partial filling�′(r, s) contains a unique finite subset �(r, s) consisting
of all elements n′ which cannot be decomposed as

n′ = n′′ + n

with n′′ ∈ �′(r, s) and n ∈ �(r, s), n �= 0. Moreover it is easy to show that any element
n′ ∈ �′(r, s) can be written as n′ = n′′ + n with n′′ ∈ �(r, s) and n ∈ �(r, s). The
elements of �(r, s) will be called the generators of �′(r, s). In the above example the
generators are marked in each case with boldface characters.

The first Chern class l of the vortex corresponding to �′(r, s) is the number of ele-
ments in the complement�′(r, s)\�(r, s), which is the same as the number of additional
sections we have introduced while the multiplicity m is the number of generators, which
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is also the number of sections which do not vanish at p as we set x = y = 0. In the
above example,

l(1) = l(2) = 2, l(3) = 1, l(4) = 3,

and

m(1) = m(2) = m(3) = 2, m(4) = 3.

Note that 0 is always a generator, and never an extra element. The pair (l,m) assigned
to a partial filling �′(r, s) will be called below the type of the partial filling.

The terms f(l,m)(q) are then obtained by summing the Hilbert series of all modules
associated to partial fillings �′(r, s) of fixed type (l,m). That is

f(l,m)(q) = ql
∑

�′(r,s) of type (l,m)

∑

n∈�′(r,s)
qn . (4.9)

The factor ql reflects the fact that all such configurations have first Chern class l. For
(r, s) = (4, 3) the resulting contributions are

f1,2(q) = q
∑

n∈�′(4,3)(3)

qn = q

(
1

1 − q
− q − q2

)

,

f2,2(q) = q2
∑

n∈�′(4,3)(1)

qn + q2
∑

n∈�′(4,3)(2)

qn =
(

1

1 − q
− q2

)

+ q2
(

1

1 − q
− q

)

,

f3,3(q) = q3
∑

n∈�′(4,3)(4)

qn = q3

1 − q
,

all other terms being trivial. Then the coefficients fm(q) in Eq. (4.7) are

f1(q) = 1 − q + q3 − q5 + q6

1 − q
,

f2(q) = q + q2 − q3 + q4 + q5

1 − q
,

f3(q) = q3

1 − q
.

The HOMFLY polynomial of the (r, s) torus knot is given by

H(r,s)(q, Q) =
(

Q

q

)(r−1)(s−1)/2 1

1 − qr

r−1
∑

j=0

qs j+(r−1− j)(r− j)/2

[ j]![r − 1 − j]!
j

∏

i= j+1−r

(qi − Q),

(4.10)

where [0]! = 1 and [ j]! = (1 − q j )[ j − 1]! for all j ≥ 1. Then a straightforward
computation yields

3
∑

m=1

(1 − Q)m fm(q) =
(

q

Q

)6

H(4,3)(q, Q),
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confirming large N duality for the (4, 3) torus knot. Note that [33, Thm. 19] proves
the agreement between formula (4.10) and the stable pair localization computation for
all (r, s). The examples considered in this section are meant to explain the localization
computation in a physical context.

The next case treated explicitly here is (r, s) = (2, 2k +1), k ≥ 1. Then the HOMFLY
polynomial (4.10) reduces to

H(2,2k+1)(q, Q) =
(

Q

q

)k 1 − Q

1 − q

1 − q2k+2 − q Q(1 − q2k)

1 − q2

=
(

Q

q

)k 1 − Q

1 − q

[

1 + (q − Q)
k−1
∑

j=0

q2 j
]

. (4.11)

The subset �(2k + 1, 2) ⊂ Z≥0 consists of the following elements:

0, 2, · · · 2k, 2k + 1, 2k + 2, · · · ,
its complement �(2k + 1, 2) being

1, 3, · · · 2k − 1.

There are k + 1 partial fillings �′(2k + 1, 2)( j), 0 ≤ j ≤ k + 1 as follows:

�′(2k + 1, 2)(0) = �(2k + 1, 2),

�′(2k + 1, 2)(1) = �(2k + 1, 2) ∪ {1, . . . , 2k − 1},
...

�′(2k + 1, 2)( j) = �(2k + 1, 2) ∪ {2 j − 1, . . . , 2k − 1},
...

�′(2k + 1, 2)(k) = �(2k + 1, 2) ∪ {2k − 1}.
Each �′(2k + 1, 2)( j), 1 ≤ j ≤ k has two generators, 0, 2 j − 1 and the complement of
�(2k + 1, 2) contains k − j + 1 elements. Therefore

l( j) = k − j + 1, m( j) = 2

for all 1 ≤ j ≤ k. Obviously, l(0) = 0,m(0) = 1. Therefore

f1(q) =
∑

n∈�(2k+1,2)

qn = 1

1 − q
−

k
∑

j=1

q2 j−1 = 1 + q2k+1

1 − q2 ,

f2(q) =
k

∑

j=1

qk− j+1
(

1

1 − q
−

j−1
∑

i=1

q2i−1
)

,

=
k

∑

j=1

qk− j+1 1 + q2 j−1

1 − q2 = q(1 − q2k)

(1 − q)(1 − q2)
.
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Note that

f1(q) + f2(q) = 1 − q2k+2

(1 − q)(1 − q2)
.

Then a straightforward computation yields

2
∑

m=1

(1 − Q)m fm(q) =
(

q

Q

)k

H(2,2k+1)(q, Q).

5. A Summary for Mathematicians

This section recapitulates the previous, in language perhaps more amenable to math-
ematicians. As before, the goal is to explain how a conjecture of Oblomkov and the
second author [33] is related to a certain series of string dualities. On the one hand, this
provides a physics proof of the conjecture. On the other, the conjecture was proven (in
the mathematical sense) for torus knots in [33]. This may then be viewed as confirming
evidence for the string dualities which occur in the discussion below.

We recall the conjecture in question. Let C be a curve in C
2, say given by f (x, y) = 0.

Assume C passes through the origin. Then the intersection of C with the boundary of a
small ball around the origin gives a link in the 3-sphere. Note this link has a natural ori-
entation since it bounds a complex variety, and in fact a natural framing (though we will
not use this). Recall that the HOMFLY polynomial is an invariant of links which assigns
to a link L a certain rational function H(L) in the variables q±1/2, Q±1/2, characterized
by the following skein relation:

(5.1)

(5.2)

On C , we consider the moduli space C [n] parameterizing pairs (F, s), where F is a
torsion free sheaf, s is a section s : OC → F , and dim F/sOC = n. Note that in [33] the
same notation was used for the Hilbert scheme of n points on C ; as shown in [37] these
spaces are isomorphic for Gorenstein (and in particular planar) curves C . By C [n]

0 we

denote the space of such pairs in which the section vanishes only at the origin. By C [n];m
0

we denote the locus, where m = dimC F/(x, y)F . Let μ = dim C[[x, y]]/(∂x f, ∂y f )
be the Milnor number of the singular point. We can now state:

Conjecture 5.1 [33].

H(the link of C) =
(

Q

q

)μ−1∑

n,m

qn(1 − Q)mχ(C [n];m
0 ).

One contribution of the present article is to explain how a certain sequence of string
dualities connects the left of the conjecture to the right. The HOMFLY polynomial enters
physics through Witten’s observation [43] that it computes the expectation value of the
knot viewed as a Wilson line in the Chern-Simons gauge theory on the three sphere. Here
the gauge group is U (N ), and its holonomy around the knot is traced in the fundamental
representation. Witten later [44] explained that this theory was equivalent to the type
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IIA topological string theory on T ∗S3, with N lagrangian D-branes on S3. The Wilson
loop expectations (and hence the HOMFLY polynomial) are reproduced by introducing
[35] the conormal bundle of the knot as a lagrangian brane N∗K ⊂ T ∗S3 and counting
open strings with one end on N∗K and the other on S3.

As N grows large one may take the view [14] that the S3 shrinks and the space
X = T ∗S3 is ultimately replaced by the small resolution of the conifold, i.e., by the
total space Y of the bundle O(−1)⊕ O(−1) over P

1. The D-branes on S3 vanish along
with the S3. Attempting to follow N∗K through the conifold transition is problematic,
since it meets the collapsing S3. Instead, it is better to first deform it off the S3. In the
case that the knot K arose as an algebraic knot, we have explicitly constructed such a
deformation in Sect. 3.2, and followed it through the conifold transition. The essential
feature of the resulting L K ⊂ Y is that it intersects the fiber over infinity in a single
circle; the unique holomorphic curve passing through this circle is the singular curve
itself. Conjecturally this curve is in fact the only irreducible curve with boundary on Y ;
this is proven in the next section in the case where K arose from the curve xr = ys .

At this stage we see that the HOMFLY polynomial of K should be computed by
counting curves in Y with boundary on L K . The mathematical foundations of open
Gromov-Witten theory are not presently available, but nonetheless for torus knots it is
possible to describe the inevitable result of torus localization of the virtual class as in
[19]. This is done in the subsequent section, yielding agreement with known formulas
for the HOMFLY polynomial in these cases.

According to [13,23,30,35], we may lift to M-theory. Indeed, the topological string
computes certain supersymmetric quantities in the full type IIA string theory on Y ×R

3,1,
which in turn is viewed as a limit of M-theory on Y × R

4,1. The variables work out so
that the coefficient of qr Qs in (1 − q)H counts certain M2-branes. More precisely, one
considers an M5-brane L × R

2,1 for some R
2,1 ⊂ R

4,1. Note that this brane breaks
the symmetry group of the R

4,1 to Spin(2, 1) × Spin(2); we will only be interested
in the Spin(2) × Spin(2) action. This group acts on all spaces of BPS states of M2
branes with boundary on this M5 brane, so these acquire a bigrading by the characters
q, t of the group. (Here t is the character of the rotation transverse to the Lagrangian.)
The M2 brane states also carry two additional gradings, corresponding to the class of
the brane in H2(Y, L) = ZP

1 ⊕ ZD, where D is the class of the singular disc bounding
the lagrangian. Writing Nd ′,d,σ, j for the space of states of character qσ t j and homology
class dP

1 + d ′D, the prediction of the above dualities is that the HOMFLY polynomial
is (up to an appropriate q ·Q·) given by

H(q, Q) = 1

1 − q

∑

N1,d,σ, j Qdqσ (−1)2 j+1. (5.3)

The geometry of M2-branes is not well enough understood that the N1,d,σ, j may be
computed directly. However, according to [13,23,30,35] the above index may be com-
puted in a different type IIA limit of the M-theory, in which one of the dimensions of the
R

4 is compactified on a circle, and the different momenta modes around this circle are
converted into bound states of D0-branes to D2-branes. The D2-branes must of course
still have boundary along the Lagrangian. (The reason one is free to compute in any
limit one likes is that all the states in question are BPS.) In the large volume limit, the
space of D2-D0 branes is understood to be mathematically modelled by the space of
stable pairs [20,21,36], and the index above is just its (appropriately weighted) Euler
characteristic. These spaces are not identical to the spaces C [n];m

0 . In an upcoming paper
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of the first author, they will be shown to be related by wall crossing, and as a consequence
Conjecture 5.1 will be deduced from (5.3).

Here we argue instead at the level of M-theory. Since the coefficient of Qd is count-
ing bound states formed by one M2-brane wrapping D and d M2 branes wrapping P

1,
we must analyse how this configuration may occur. It is already known that M2 branes
wrapping the P

1 may not bind to each other; this for instance follows by running through
the above series of dualities for the partition function of Chern-Simons theory itself; the
consequence being that in the absence of Lagrangians there is a unique BPS state con-
sisting of a single M2 brane wrapping the P

1. Thus each of the M2 branes wrapping the
P

1 must bind to D.
Let gm(q) be the generating polynomial of which the coefficient of qn is the number

of spin n M2 branes wrapping D which can bind up to m M2 branes on P
1. Then, since

the M2 branes on P
1 are indistinguishable and have fermion number −1, the generating

polynomial of bound states of such a brane to some number of branes wrapping P
1 is

just (1 − Q)m gm(q). Thus (5.3) can be rewritten as

H(q, Q) = 1

1 − q

∑

m

gm(q)(1 − Q)m . (5.4)

To relate this to Conjecture 5.1, it remains only to explain why

gm(q)

1 − q
=

∑

n

qnχ(C [n];m
0 ), (5.5)

i.e., why the BPS M2-branes which can bind exactly m M2 branes on P
1 may be com-

puted by stable pairs s : OC → F , where dim F/(x, y)F = m. As mentioned above,
the relation to stable pairs and the appearance of the 1/(1−q) is standard: the M2 brane
has momentum modes around the circle which become D2-D0 bound states, and the
particular index being computed becomes the Euler number of the stable pairs space.
One might worry about the appropriate boundary conditions for the sheaf and the sec-
tion. But whatever boundary conditions are chosen we will surely want all zeroes of the
section s to lie in the connected component D of C\L containing the origin. Assuming
we choose L sufficiently near the origin that D is contractible, then the space of such
pairs contracts to C [n]

0 .
The essential thing to explain is what binding to m branes on P

1 has to do with the
number of generators dim F/(x, y)F = m. To count the number of ways an M2 brane
on P

1 may bind to a given M2 brane on D, we first pass to the IIA theory and compute
instead the number of ways the D2 brane on P

1 may bind to a D2 brane F . The heuristic
given in the previous section is that the virtual number of points on F at the origin which
are available for the branes on P

1 is just dim F/(x, y)F . To elaborate on this slightly,
the “open strings are Ext” philosophy here specializes to the statement that the space
of open strings from F to a brane OP1 is Ext1

Y (F,OP1). This immediately localizes to
the intersection of P

1 and D; since this is a point the local to global spectral sequence
collapses and we are reduced to computing Ext of modules in the complete local ring.
Let us give coordinate z to the P

1 direction; then we are computing

Ext1
C[[x,y,z]](F,C[[z]]) = HomC[[x,y]](F,C) = (F/(x, y)F)∨.

One can also compute open strings in the other direction, Ext1
Y (OP1 , F); the result is

that this canonically parameterizes the nontrivial syzygies of the completion of F as a
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module over C[x, y]. Because the curve is planar, this space has the same dimension as
that parameterizing the generators.

We make a quick note about the sample computations in the previous section of
the right-hand side of Conjecture 5.1. The main point is a certain invariant introduced
there did not in fact require the existence of a torus action. Let R be the complete local
ring of the singularity; then the Jacobian factor parameterizes R-modules M such that
C[[t]] ⊃ M ⊃ R. Note that given a stable pair (M, s) one has an abstract isomorphism
M ⊗R C((t)) = C((t)); requiring s 
→ 1 fixes the isomorphism. In other words a stable
pair with quotient supported at 0 is equivalent data to a rank one R-submodule of C((t)).
Let M be such a module, then MC[[t]] = t−k

C[[t]] for some k, and C[[t]] ⊂ tk M ⊂ R.
Thus there is a map from the space of stable pairs to the Jacobian factor. The fiber over
some module M is just the set of elements in M , up to constant multiple. It is straightfor-
ward to see that the space of elements with leading term ta is a vector space and hence
has Euler characteristic one. On the other hand dimC M/ta R = a + dimC M/R. Thus
the contribution of M to the Euler numbers of pairs spaces is qdimC M/RHM (q), where
HM (q) is the Hilbert function of M . Note that dimC M/R is the “l(M)” of the previous
section. Let us also write m(M) for the number of generators, and J l;m for the locus in
the Jacobian factor of modules with m generators. Then the fm of the previous section
are

fm(q) =
∑

n

qnχ(C [n];m
0 ) =

∫

J ;m
q�(M)HM (q)dχ(M).

The integral is with respect to Euler characteristic, and has the meaning that we sum
possible HM (q) weighted by the Euler characteristic of the locus of modules with this
Hilbert series. One may as desired further stratify by l, and introduce

fl;m =
∫

J l;m
HM (q)dχ(M)

in order to write
∑

m,n

qn(1 − Q)mχ(C [n];m
0 ) =

∑

l,m

ql(1 − Q)m fl,m(q).

6. Large N Duality and Topological Amplitudes for Torus Knots

The main goal of this section is to generalize the large N duality results for the unknot
reviewed in Sect. 2 to arbitrary (s, r) torus knots. The open topological A-model ampli-
tudes for lagrangian cycles associated to torus knots will be explicitly computed on both
sides of the transition employing an equivariant virtual localization approach analogous
to [19]. Note that the mirror topological B-model has been studied in [5], reproducing
the HOMFLY polynomials via a matrix model approach.

The first task, carried out in Sect. 6.1, is to write down an explicit analytic presen-
tation the lagrangian cycles Lμ ⊂ Xμ, constructed in Sect. 3 and show that they are
preserved by the circle action

(x, y, z, w) 
→ (eisϕx, eirϕ y, e−isϕz, e−irϕw). (6.1)

Then it shown in Sect. 6.2 that on the deformation side the open string instanton cor-
rections to Chern-Simons theory are encoded in a formula of the form (2.19). The next
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Sect. 6.3 contains the virtual localization computation of Gromov-Witten invariants on
the resolution Y with lagrangian boundary conditions on Mε . In particular it is shown that
Mε is preserved by the circle induced by (6.1) and the disc Dε obtained in Sect. 3.3 is the
only circle invariant Riemann surface in Y with boundary in Mε . The tangent-obstruc-
tion complex for circle invariant stable maps with lagrangian boundary conditions on
Mε is derived by linearizing the defining equations of Mε near the one-cycle ηε = ∂Dε .
The final details of the localization computation are given in Sect. 6.4. The main result
is that the winding number one A-model partition function of the lagrangian cycle Mε

is in agreement with the HOMFLY polynomial of the (s, r) torus knot up to an overall
sign depending on orientations. The proof is essentially an open A-model reflection of
the Chern-Simons S-matrix formula [5,40] relating the HOMFLY polynomial of a torus
knot to the colored invariants of the unknot [5,40].

6.1. Lagrangian cycles for torus knots. Lagrangian cycles for torus knots are obtained
as a special case of the construction explained in Sect. 3.2 for general algebraic knots.
Consider the family of the curves Zμ ⊂ Xμ,

Zμ : xr − αr ys = 0, zr − αr (−w)s = 0, (6.2)

where (r, s) are coprime integers with r > s ≥ 1 or r = s = 1, and α ∈ R\{0}
is a fixed nonzero real number. As explained in Sect. 3.2, the specialization of Zμ at
μ = 0 has r −s +1 connected components classified by the distinct roots of the equation
ηr −α2r (−η)s = 0. The component corresponding to η = 0 is a union of two irreducible
components C± given by

xr − αr ys = 0, z = w = 0,

respectively

zr − αr (−y)s = 0, x = y = 0.

The remaining r−s are disjoint smooth components isomorphic to C
×. Let γ + : S1 → X

be a parametric presentation of the intersection φ0(C+\{0}) ∩ Pa , where Pa ⊂ X is the
sphere bundle |	v| = a. Its inverse image φ−1

0 ◦ γ + : S1 → X0 has a parametric presen-
tation of the form

(x, y, z, w) = (αbs
1eisθ , br

1eirθ , 0, 0), (6.3)

where b1 must be a solution of the equation

b2r
1 + α2b2s

1 = 4a. (6.4)

Some elementary real analysis shows that this equation has a unique positive real solution
for any fixed α �= 0, a > 0. Then the construction of Sect. 3.1 then yields a lagrangian
cycle Lγ + ⊂ X . It will be checked below that Lγ + does not intersect the zero section,
hence its inverse image L0 = φ−1

0 (Lγ +) is a lagrangian cycle on X0 supported away
from the conifold singularity.

For μ > 0 the connected components of Zμ are in one-to-one correspondence with
distinct roots of the equation ηr − α2r (μ− η)s = 0. Each such component is given by

(x, y, z, w) = (t s, tr , ηt−s, (μ− η)t−r ).

In particular for sufficiently small μ > 0 there exists a continuous family η(μ) of roots
specializing to η = 0 at μ = 0. Let Cμ ⊂ Xμ be the corresponding components of
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Zμ. Each connected component of the intersection Cμ ∩ φ−1
μ (Pa) must be an orbit of

the circle action (6.1) since both Cμ, φ−1
μ (Pa) ⊂ Xμ are invariant cycles. Taking into

account the parametric presentation of Cμ, each intersection component must be of the
form

(x, y, z, w) = (αbs
1eisθ , br

1eirθ , αbs
2e−isθ ,−br

2e−irθ ) (6.5)

with θ an angular coordinate on S1 and b1, b2 ∈ R>0. The parameters b1, b2 must satisfy
the condition

α2(bs
1 + bs

2)
2 + (br

1 + br
2)

2 = 2(μ +
√

μ2 + 4a2), (6.6)

which follows from the defining equation of φ−1
μ (Pa) ⊂ Xμ, and

α2(b1b2)
s + (b1b2)

r = μ, (6.7)

which follows from xz − yw = μ. By continuity, for sufficiently small μ > 0 the
intersection of φμ(Cμ) with Pa consists of two connected one-cycles γ±

μ conjugate
under the antiholomorphic involution τμ defined in (2.8). Moreover γ +

μ specializes to
the cycle γ + constructed above, while γ−

μ specializes to its conjugate, which is the inter-
section of φ0(C−\{0})with Pa . In fact this picture can be confirmed by detailed analytic
computations which will be omitted in the interest of brevity.

Applying the construction of Sect. 3.2 to the one-cycles γ +
μ : S1 → X yields a family

of lagrangian cycles Lγ +
μ

⊂ X . The lagrangian cycles Lμ ⊂ Xμ are the inverse images,

Lμ = φ−1
μ (Lγ +

μ
), via the symplectomorphisms φμ : Xμ → X .

The next task is to check that the lagrangian cycles Lμ, L0 are invariant under the
circle action (6.1) and do not intersect the zero section. Since the arguments are very
similar, it suffices to present the details in one case only, say Lμ. The explicit form of
the circle action on X is

[

u1
u2

]


→ R(sϕ)

[

u1
u2

]

,

[

u3
u4

]


→ R(rϕ)

[

u3
u4

]

,

[

v1
v2

]


→ R(sϕ)

[

v1
v2

]

,

[

v3
v4

]


→ R(rϕ)

[

v3
v4

]

,

(6.8)

where

R(ϕ) =
[

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]

.

According to Eqs. (3.1), the defining equation of Lγ +
μ

is

	u = 	f (θ), 	̇f (θ) · (	v − 	g(θ)) = 0,

where the functions 	f (θ), 	g(θ) are determined by Eq. (6.5). One then finds

[

f1(θ)

f2(θ)

]

= α
bs

1 + bs
2

c
R(sθ)

[

1
0

] [

f3(θ)

f4(θ)

]

= −br
1 + br

2

c
R(rθ)

[

1
0

]

(6.9)



850 D.-E. Diaconescu, V. Shende, C. Vafa

and
[

g1(θ)

g2(θ)

]

= −α bs
1 − bs

2

4
cR(sθ)

[

0
1

] [

g3(θ)

g4(θ)

]

= br
1 − br

2

4
cR(rθ)

[

0
1

]

(6.10)

with c =
√

2(μ +
√

μ2 + 4a2). Then it is straightforward to check that Lγ +
μ

is preserved
by the torus action using the elementary identity R(ϕ)R(ϕ′) = R(ϕ + ϕ′). In fact Lγ +

μ

admits a parameterization of the form

	u = 	f (θ),
[

v1
v2

]

= R(sθ)

[

v10
v20

] [

v3
v4

]

= R(rθ)

[

v30
v40

]

,

where (v10, v20, v30, v40) are real parameters satisfying

α(bs
1 + bs

2)v10 − (br
1 + br

2)v30 = 0,

sα(bs
1 + bs

2)v20 − r(br
1 + br

2)v40 = − c

4

[

αs(b2s
1 − b2s

2 ) + r(b2r
1 − b2r

2 )
]

.
(6.11)

The first equation in (6.11) follows from the defining equation 	u · 	v = 0 of X , and the

second from the equation 	̇f (θ) · (	v − 	g(θ)) = 0. Note that Eqs. (6.11) define a real
2-plane in the fiber of T ∗S3 over the point 	u0 = 	f (0). The points in this plane are in
one-to-one correspondence with orbits of the circle action on the lagrangian cycle.

Note also that the intersection of Lγ +
μ

with the zero section 	v = 0 is determined by
the equation

	̇f (θ) · 	g(θ) = 0

which yields

sα2(b2s
1 − b2s

2 ) + r(b2r
1 − b2r

2 ) = 0. (6.12)

Since b1, b2 satisfy simultaneously Eqs. (6.6)–(6.7), Eq. (6.12) will have no solutions
for generic values of μ, a > 0. Therefore in the generic case, this intersection with the
zero section is empty.

6.2. Open string A-model on the deformation. Now consider an open A-model with
target space Xμ and lagrangian branes on the lagrangian cycles Lμ, Sμ, where Lμ is
defined in Eqs. (6.9), (6.10) and Sμ � S3 is the fixed point set of the antiholomorphic
involution (2.8) on Xμ. Note that both cycles are preserved by the circle action (6.1).
Moreover, Lμ intersects an irreducible component of the curve (6.2) along an orbit (6.5)
of the S1-action. Then it follows that the holomorphic cylinder Cμ given by

(x, y, z, w) = (αbs
1t s, br

1tr , αbs
2t−s,−br

2t−r ), (6.13)

with
√

b2

b1
≤ |t | ≤ 1,
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has boundary components on Sμ, Lμ respectively. Obviously, Cμ is preserved by the
circle action (6.1). Set α = 1 in the following.

Equation (6.13) describes a circle invariant genus zero stable map to Xμ with two
boundary components mapped to Sμ, Lμ. According to [44] such instantons are expected
to generate Wilson loop corrections to the Chern-Simons action. If Cμ is the only torus
invariant holomorphic cylinder in Xμ with boundary components on Lμ, Sμ, these cor-
rections can be easily evaluated by a virtual localization computation analogous to [19].
Such a computation has been carried out for example in [11] in a similar context. As
required in Sect. 2.1, the final formula for the instanton series is of the form

Zop−inst (gs,q) =
∑

n≥1

e−tC

n
Tr(U n)Tr(V n), (6.14)

where U, V are the holonomy of the gauge fields on Sμ, Lμ about the boundary com-
ponents of Cμ, and tC is the symplectic area of Cμ.

It remains to show that Cμ is indeed the unique torus invariant cylinder in Xμ with
boundary components in Sμ, Lμ respectively. The argument is analogous with [10],
although more technically involved since the present torus action allows continuous
families of invariant curves on Xμ. The main steps will be summarized below omitting
many computational details.

First note that any invariant map C
× → Xμ must be of the form

t 
→ (x, y, z, w) = (α1t s, α2tr , α3t−s,−α4t−r ), (6.15)

where α1, α2, α3α4 are constant parameters satisfying

α1α3 + α2α4 = μ. (6.16)

Let C	α ⊂ Xμ, 	α = (α1, α2, α3, α4) denote the image of this map. Since Lμ, Sμ are
preserved by the circle action, any connected Component of the intersection of C	α with
the lagrangian cycles must be an orbit of the form t = ρeiθ , with ρ ∈ R>0. Then
Eqs. (6.9)–(6.11) for Lμ imply the following conditions:

ρs
Lα1 + ρ−s

L α3 = A

c
(bs

1 + bs
2), ρr

Lα2 + ρ−r
L α4 = A

c
(br

1 + br
2), (6.17)

where ρL is the radius of a component of the intersection C	α ∩ Lμ and A =
√

(|α1ρ
s
L + α3ρ

−s
L |2 + |α2ρ

r
L + α4ρ

−r
L |2)/2. At the same time any connected component

of the intersection C	α ∩ Lμ must satisfy

α1ρ
2s
S = α3, α2ρ

2r
S = α4, (6.18)

where ρS denotes again the radius of the orbit. Equations (6.17), (6.18) imply that
αi , i = 1, . . . , 4 must be non-zero real numbers, if C	α intersects both Sμ, Lμ nontrivial-
ly. For example, if α1 = 0, it follows easily that all the remaining coefficients α2, α3, α4
must be also trivial, which contradicts relation (6.16). Then by a reparametrization of
the domain, the map (6.15) can be set in the form

t → (αβs
1t s, βr

2 tr , αβs
2t−s,−βr

2 t−r ) (6.19)
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with β1, β2 ∈ R>0, α ∈ R\{0}, the intersections with Sμ, Lμ being given by

|t | =
√

β2

β1
, |t | = 1

respectively. Using again Eqs. (6.9)-(6.11) for Lμ, one finds the following nonempty
intersection conditions:

α

c′ (β
s
1 + βs

2) = 1

c
(bs

1 + bs
2),

1

c′ (β
r
1 + βr

2) = 1

c
(br

1 + br
2), (6.20)

−αc′

4
(βs

1 − βs
2) = v20,

c′

4
(βr

1 − βr
2) = v40, (6.21)

s(bs
1 + bs

2)v20 − r(br
1 + br

2)v40 = − c

4

[

s(b2s
1 − b2s

2 ) + r(b2r
1 − b2r

2 )
]

,

v10 = v30 = 0, v2
20 + v2

40 = a′2,
(6.22)

where 	v0 is a vector in the plane (6.11) parametrizing a common circle orbit of Lμ and
C	α , and

a′ =
√

a2 + |	v0|2, c′ =
√

2(μ +
√

μ2 + 4a′2).

Recall that the coefficients b1, b2 are given functions of (μ, a) determined by Eqs. (6.6)–
(6.7), as explained in Sect. (6.1).

Next note that it suffices to show that the orbit parametrized by the vector 	v0 coin-
cides with the boundary of the built in cylinder Cμ, since then the two cylinders must
coincide by holomorphy. This follows by an elementary but fairly tedious computation
in real analysis. The strategy is to solve for (v20, v40) in Eqs. (6.22) and substitute the
solutions in Eqs. (6.20)–(6.21). Then one solves for (αβs

1, αβ
s
2) respectively (βr

1, β
r
2) in

the resulting equations imposing at the same time the positivity conditions β1, β2 > 0.
Note that this will yield a priori independent expressions of the form

βr
i = Fi (c

′, b1, b2), αβs
i = Gi (c

′, b1, b2), (6.23)

i = 1, 2, where Fi (c′, a, μ),Gi (c′, a, μ), i = 1, 2 are explicit functions of (c′, a, μ).
Moreover the expressions (6.23) must satisfy the obvious compatibility condition

F1(c
′, b1, b2)

s G2(c
′, b1, b2)

r = F2(c
′, b1, b2)

s G1(c
′, b1, b2)

r . (6.24)

A straightforward but fairly long computation shows that the matching condition (6.24)
is equivalent to

F+(η)
s G+(η)

r = F−(η)s G−(η)r ,

where η = c′2,

F±(η) =
(

1+
r2 D2

s2

)
Dη

2c
∓ r

s
B D ±

[(

1+
r2 D2

s2

)

(1 + D2)

(
η2

4c2 − μ̃η

)

− B2
]1/2

,

G±(η) =
(

1 +
r2 D2

s2

)
η

2c
±B ± r D

s

[(

1 +
r2 D2

s2

)

(1 + D2)

(
η2

4c2 −μ̃η
)

− B2
]1/2

,
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and

D = br
1 + br

2

bs
1 + bs

2
B = c

2

(
bs

1 − bs
2

bs
1 + bs

2
+

r

s
D

br
1 − br

2

bs
1 + bs

2

)

.

One then has to analyze the monotonicity properties of the functions F±(η),G±(η) on
the intervals where β1, β2 > 0. Suppressing the details, which are quite elementary, it
follows that for sufficiently small μ > 0, Eq. (6.24) admits only the solution c′ = c, if
a > 0 is in addition bounded above by a constant a0(r, s) depending only on r, s. Return-
ing to the expressions (6.23), this implies in turn that βi = bi for i = 1, 2. Therefore
the two orbits indeed coincide.

6.3. Open Gromov-Witten invariants on the resolution. The goal of this section is to
compute the Gromov-Witten invariants for stable maps f : � → Y with lagrangian
boundary conditions on the cycle Mε constructed in Sect. (3.3) for a polynomial f (x, y)
of the form

f (x, y) = xr − ys,

with r > s ≥ 1 coprime. These invariants will be computed assuming the existence of a
virtual fundamental cycle and a virtual localization result for the moduli space of such
maps, by analogy with [19].

Recall that the main steps in the construction of Mε ⊂ Y are as follows. Let C+ ⊂ X0
be the plane curve determined by

f (x, y) = 0, z = w = 0

in the singular conifold X0. Let γ + : S1 → X = T ∗S3 be the one-cycle obtained by
intersecting the sphere bundle Pa, a > 0 with the image φ0(C+), where φ0 : X0 → X
is the symplectomorphism constructed below Eq. (2.6). Let γ +

ε = φ0 ◦ �ε ◦φ−1
0 ◦ γ + be

the dilation of γ + via the radial map �ε : X0\{0} → X0(ε),

�ε(x, y, z, w) =
(

x,

√|z|2 + |y|2 + ε2
√|z|2 + |y|2 y,

√|z|2 + |y|2 + ε2
√|z|2 + |y|2 z, w

)

. (6.25)

Applying the construction in Sect. 3.1 to γ +
ε yields a lagrangian cycle Lε ⊂ X . As shown

in Eq. (3.5), Mε is the inverse image σ−1 ◦ �−1
ε ◦ φ−1

0 (Lε).
The cycle Lε ⊂ X admits an explicit parametric presentation analogous to the pre-

sentation of the cycles Lμ ⊂ Xμ in Sect. 6.1. Note that the one-cycle φ−1
0 (γ +

ε ) =
φ−1

0 (�ε ◦ γ +) is parametrically given by

(x, y, z, w) = (bs
1eisθ ,

√

b2r
1 + ε2 eirθ , 0, 0), (6.26)

where b1 = b+
1 (a) is the unique positive real solution of the equation

b2s
1 + b2r

1 = 4a.

Then Lε ⊂ X is given by equations of the form

	u = 	f (θ), 	̇f (θ) · (	v − 	g(θ)) = 0, (6.27)
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where

[

f1(θ)

f2(θ)

]

= bq
1

c
R(sθ)

[

1
0

]

,

[

f3(θ)

f4(θ)

]

= −
√

b2r
1 + ε2

c
R(rθ)

[

1
0

]

,

[

g1(θ)

g2(θ)

]

= bs
1

4
cR(sθ)

[

0
1

]

,

[

g3(θ)

g4(θ)

]

= −
√

b2r
1 + ε2

4
cR(pθ)

[

0
1

]

,

and c = √
4a + ε2. Using the above formulas, it is straightforward to show that Lε is

invariant under the circle action (6.8).
Now recall that the defining equations of Y in C

4 × P
1 are

xλ = wρ, yλ = zρ,

where [λ, ρ] are homogeneous coordinates on P
1. There are two affine coordinate patches

on Y,U given by ρ �= 0 with coordinates

x, y, ζ = λ

ρ
,

and U ′ ⊂ y given by λ �= 0, with coordinates

z, w, ζ ′ = ρ

λ
.

Obviously, the transition functions are

w = xζ, z = yζ, ζ ′ = 1

ζ
.

The strict transform C ⊂ Y of C+ is contained in the first patch and has defining equations

f (x, y) = 0, ζ = 0.

Moreover, note that Eq. (6.1) also defines a circle action on singular threefold X0
which preserves C+. This lifts to a circle action S1 × Y → Y ,

(x, y, z, w)× [λ, ρ] 
→ (eisϕx, eirϕ y, e−isαz, e−irαw)× [e−i(r+s)αλ, ρ], (6.28)

which preserves C . Since the blow-up map σ : Y → X0 and the dilation map (6.25) are
equivariant, it follows that the action (6.28) preserves Mε . Therefore it also preserves
the singular holomorphic disk Dε with boundary on Mε obtained by intersecting Mε and
C . Note that Dε is given in parametric form by

(x, y, ζ ) = (

t s, tr , 0
)

, |t | ≤ b1. (6.29)

Next one has to show that (6.29) is the unique torus invariant disk instanton f : � →
Y with lagrangian boundary conditions on Mε . Using Eqs. (6.27) it is straightforward to
check that the only coordinate hyperplane in Y intersecting Mε nontrivially is λ = 0, in
which case the intersection is the one-cycle ηε = Dε . All other coordinate hyperplanes,
x = 0, y = 0, ρ = 0 do not intersect Mε . In particular this implies the image f (�) of
such a map cannot be contained in the surface ρ = 0. Then torus invariance implies that
f (�) is either disjoint from the surface ρ = 0, or intersects it transversely at the torus
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fixed point z = w = 0, ρ = 0. In the first case the fixed point t = 0 in the domain must
be mapped to the fixed point x = y = 0, λ = 0 in the target. Moreover, in both cases,
the restriction of the map f to the punctured disk �\{0} must be of the form

(x, y, ζ ) = (α1t±s, α2t±r , α3t∓(r+s)) (6.30)

for some complex parameters (α1, α2, α3).
If the first case holds, the map f must be of the form

(x, y, ζ ) = (α1t s, α2tr , 0)

or

(x, y, ζ ) = (0, 0, α3t (r+s))

since f (0) = (0, 0, 0). The second subcase is ruled out because Mε does not intersect
the zero section x = y = 0. In the first subcase the image f (�) is contained in the
surface λ = 0 which intersects Mε along the boundary of Dε . Therefore f (�) and Dε
must have common boundary, which implies they must coincide.

The second case can hold only if α3 �= 0, which implies that the image f (�) cannot
be contained in the surface λ = 0. Then torus invariance implies that f (�) must be
disjoint from the surface λ = 0 since any common point would have to be a fixed point
of the torus action. At the same time the only fixed point in the domain is mapped to the
fixed point z = w = 0, ρ = 0. Therefore f (�) is contained in the coordinate chart U ′.
In terms of the coordinates (z, w, ζ ′), Eq. (6.30) reads

(z, w, ζ ′) = (α1α3t∓r , α2α3t∓s, α−1
3 t±(r+s)). (6.31)

Since α3 �= 0, the condition f (0) = (0, 0, 0) implies that α1 = α2 = 0. This is again
ruled out since Mε does not intersect the zero section.

In conclusion, Dε is indeed the unique torus invariant holomorphic disc on Y with
boundary in Mε . Then the computation of Gromov-Witten invariants reduces to the com-
putation of multicover contributions of Dε via a virtual localization theorem. One then
requires an explicit form of lagrangian boundary conditions for an S1-invariant stable
map f : � → Y which factors through the disc Dε ⊂ Y . Let Ann(Mε) ⊂ T ∗Y |Mε

be the subbundle of the cotangent bundle of Y which annihilates the tangent bundle
T Mε ⊂ T Y |Mε . The boundary conditions are determined by a framing of Ann(Mε)|ηε ,
that is three sections of T ∗Y |ηε which form a basis of Ann(Mε) at any point on ηε = ∂Dε .
This computation reduces basically to the linearization of the defining equations of Mε in
Y , which is standard differential geometry. Omitting the intermediate steps, the resulting
generators are, in local coordinates (x, y, ζ ),

α = bs
1

[

2AC + (s − r)(b2r
1 + ε2)B + (s − r)2b2s

1 (b
2r
1 + ε2)

]

(e−isθdx + eisθdx)

+ b2r
1

[

BC − (s − r)b2s
1 A + (s − r)2b2s

1 (b
2r
1 + ε2)

]

(e−irθdy + eirθd y), (6.32)

β = e−i(r+s)θdζ +
bs

1

√

b2r
1 + ε2

C

[
B

2c2bs
1

e−isθdx +
(s − r)bs

1

2c2 eisθdx

− 1

4c2br
1

(
2b2r

1 + ε2

b2r
1 + ε2

A + (s − r)ε2
)

e−irθdy

+
1

4c2br
1

(
ε2 A

b2r
1 + ε2

+ (s − r)(2b2r
1 + ε2)

)

eirθd y

]

, (6.33)
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where

A = 2sb2s
1 + (r + s)(b2r

1 + ε2), B = (r + s)b2s
1 + 2r(b2r

1 + ε2).

C = sb2s
1 + r(b2r

1 + ε2).

In particular, α is real and β is complex.

6.3.1. Deformation theory. Let� ⊂ C be the disk |t | ≤ b1. Let f : � → Y be the map

t 
→ (x, y, ζ ) = (t s, tr , 0). (6.34)

Obviously f factors through the disk C ⊂ Y mapping the boundary of the disk, |t | = b1
to the boundary ηε = ∂C ⊂ Mε . Let f∂ denote the restriction of f to the boundary. Let
T(�, f ) denote the sheaf of germs of holomorphic sections of the bundle f ∗TY satisfying
the boundary conditions

f ∗
∂ (α)

(

s|∂�
) = 0, f ∗

∂ (β)
(

s|∂�
) = 0, (6.35)

where α, β are the generators of the annihilator sub-bundle Ann(Mε)|ηε given in
Eqs. (6.32)–(6.33). Let T� be the sheaf of germs of holomorphic sections of the tangent
bundle T� satisfying the boundary condition

γ |∂�
(

s|∂�
) = 0, (6.36)

where γ = tdt + tdt .
The deformation complex of the stable map (�, f ) with lagrangian boundary con-

ditions along Mε is

0 → H0(�, T�) → H0(�, T(�, f )) → Def (�, f )

→ H1(�, T�) → H1(�, T(�, f )) → Obs(�, f ) → 0. (6.37)

The computation of the Čech cohomology groups Hk(�, T(�, f )), k = 0, 1 is straight-
forward but fairly tedious, hence details will be omitted. For sufficiently generic ε>0,
H0(�, T(�, f )) is isomorphic to the space of sections of the form

s =
2s

∑

n=0

antn∂x +
r+s
∑

n=r−s

bntn∂y, (6.38)

where

bn+r + br−n = 0 (6.39)

for all r − s ≤ n ≤ r + s, and the coefficients an are determined in terms of bn by certain
linear relations with ε-dependent coefficients. The group H1(�, T(�, f )) is identified
with the space of sections of the form

s =
−1
∑

n=1−s

γntn∂ζ (6.40)

on the punctured disc �\{0}. In particular, if s = 1, this space is trivial.
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For Hi (�, T�), i = 0, 1 one finds that H0(�, T�) is generated by sections of the
form

a−1∂t + a0t∂t + a1t2∂t

with

a−1 + a1 = 0, a0 + a0 = 0,

while H1(�, T�) is trivial.

6.3.2. Virtual localization. Now let Mg,1(Y,Mε; d, 1) be the moduli space of genus
g ≥ 0 stable maps with h = 1 boundary components mapped to Mε , in the relative
homology class d[C0] + [C] ∈ H2(Y,Mε), d ∈ Z≥0. The circle action

(x, y, ζ ) 
→ (e−isϕx, e−irϕ y, ei(r+s)ϕζ )

on Y preserves Mε , hence it induces an action on the moduli space of stable maps. Let
also Mg,1(Y, d) denote the moduli space of genus g stable maps to Y with one marked
point in the homology class d[C0] ∈ H2(Y ). This moduli space is equipped with a
natural evaluation map at the marked point, ev : Mg,1(Y, d) → Y .

A map f : � → Y determines a circle fixed point in the moduli space
Mg,1(Y,Mε; d, 1) if and only if there exists a circle action on the domain � such
that f is equivariant. This implies that the domain must be a union� = �0 ∪ν �, where
�0 is a closed nodal Riemann surface without boundary which intersects the disk� at a
single point ν, which is a simple node of �. Moreover the image of the restriction f |�
must coincide with the holomorphic disc D, which has been shown below (6.29) to be
the unique torus invariant disc in Y with boundary in Mε . In more detail, the following
conditions must hold:

• � admits a parameterization � = {|t | ≤ r1} such that ν is identified with the point
t = 0 and

f |�(t) = (t s, tr , 0).

The circle action on � is given by t 
→ e−iϕ t .
• Note that there is an algebraic torus action C

× × Y → Y which agrees with the
above real torus action by restriction to the unit circle. Then the data (�0, f0, ν),
with f0 = f |� must be a C

×-invariant stable map to Y such that f0(ν) = p, where
p ∈ Y is the point x = y = ζ = 0.

These conditions imply that the fixed locus Mg,1(Y,Mε; d, 1)S
1

is isomorphic to the
fixed subspace

ev−1
ν (p)C

× ⊂ Mg,1(Y, d)C
×
.

The deformation complex of a fixed stable map (�, f ) is

0 → Aut (�) → Def ( f ) → Def (�, f )

→ Def (�) → Obs( f ) → Obs(�, f ) → 0, (6.41)

where the notation is self-explanatory. All terms carry natural circle actions since (�, f )
is a circle invariant map. The fixed part of the deformation complex determines the vir-
tual fundamental cycle on the fixed locus, while the moving part determines the virtual
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normal bundle to the fixed locus. Each term will be analyzed below assuming that�0 is
nonempty. In the special case�0 = ∅ the deformation complex (6.41) reduces to (6.37)
analyzed in the previous subsection.

Given the structure of fixed maps explained above, there is an exact sequence

0 → Def ( f ) → H0(�, T(�, f |�))⊕ Def ( f0) → TpY

→ Obs( f ) → H1(�, T(�, f |�))⊕ Obs( f0) → 0. (6.42)

This yields the following relations in the representation ring of the circle:

Obs( f ) f − Def ( f ) f = H1(�, T(�, f |�)) f − H0(�, T(�, f |�)) f

+Obs( f0)
f − Def ( f0)

f ,

Obs( f )m − Def ( f )m = H1(�, T(�, f |�))m − H0(�, T(�, f |�))m

+Obs( f0)
m − Def ( f0)

m + TpY.

(6.43)

Moreover standard arguments imply

Aut (�) f,m = Aut (�0, ν)
f,m + Aut (�, 0) f,m,

Def (�) f = Def (�0, ν)
f , (6.44)

Def (�)m = Def (�0, ν)
m + Tν�0 ⊗ T0�,

while the cohomology groups H0(�, T(�, f |�)) have been determined in Eqs. (6.38),
(6.40). There is however a discrete ambiguity in reading off their equivariant content,
reflecting a choice of orientation on the moduli space of stable maps with lagrangian
boundary conditions [19]. As explained in [19], the difference between these choices is
encoded in an overall sign which cannot be fixed in the absence of a rigorous construction
of the moduli space equipped with a virtual cycle. Therefore the present computation
will be a test of large N duality up to sign. Given Eqs. (6.39), the deformation space
(6.38) is isomorphic to a vector space of the form

R〈∂y〉 ⊕
r−1
⊕

n=r−s

C〈tn∂y〉.

At the same time, the obstruction space (6.40) is naturally identified with the complex
vector space

−1
⊕

n=1−s

C〈tn∂ζ 〉.

This yields the following relations in the representation ring of S1:

H0(�, T(�, f |�))m =
s

∑

n=1

Rn, H1(�, T(�, f |�))m =
s−1
∑

n=1

R−(r+n), (6.45)

H0(�, T(�, f |�)) f = R, H1(�, T(�, f |�)) f = 0,
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where R is the canonical representation of S1 on C, and R denotes the trivial real rep-
resentation. Note also that Aut (�) is isomorphic to the space of sections of T� of the
form a∂t + bt∂t with a ∈ C, b ∈ iR. Therefore

Aut (�) f = R, Aut (�)m = R.

The subgroup of automorphisms preserving the origin, Aut (�, 0) is generated by t∂t
over R, therefore it has only a fixed part Aut (�, 0) f = R.

Collecting all the above results one obtains

Obs(�, f ) f − Def (�, f ) f = Obs( f0)
f −Def ( f0)

f + Aut (�0, ν)
f −Def (�0, ν)

f

= Obs(�0, f0)
f − Def (�0, f0)

f ,

Obs(�, f )m − Def (�, f )m = Obs( f0)
m − Def ( f0)

m + Aut (�0, ν)
m (6.46)

−Def (�0, ν)
m +

s−1
∑

n=1

R−(r+n) −
s

∑

n=1

Rn + TpY

−Tν�0 ⊗ T0�.

This implies that the virtual fundamental cycle of the fixed locus is the restriction of the
natural virtual cycle of the fixed locus [Mg,1(Y, d)C

×]vir with the subspace ev−1(p)C
×

.
The equivariant K-theory class of the virtual normal bundle is given by

N vir = N vir
Mg,1(Y,d)C

×
/Mg,1(Y,d)

− TpY + RL
−1

+
s−1
∑

n=1

R−(r+n) −
s

∑

n=1

Rn,

where L is the tautological line bundle on Mg,1(Y, d) associated to the marked point.
Then the residual formula for open Gromov-Witten invariants is

GWg,1(d, 1) = (−1)s−1
∏s−1

n=1(r + n)

s!
eC×(TpY )

α
∫

[Mg,1(Y,d)C
×

p ]vir

1

eC×
(

N vir
Mg,1(Y,d)C

×
/Mg,1(Y,d)

)−1
(α − ψ)

, (6.47)

where Mg,1(Y, d)C
×

p denotes the union of connected components of the fixed locus con-
tained in ev−1(p). Standard formal manipulations show that this formula is equivalent
to

GWg,1(d, 1) = (−1)s−1
∏s−1

n=1(r + n)

s!
∫

[Mg,1(Y,d)]vir
C×

ev∗φC×(p)

α(α − ψ)
, (6.48)

where [Mg,1(Y, d)]vir
C× denotes the equivariant virtual cycle of the moduli space,

φC×(p) ∈ H∗
C×(Y ) is the equivariant Thom class of p ∈ Y , and α = ch(R).
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6.4. Comparison with HOMFLY polynomial. The goal of this section is to compare the
generating function for the open Gromov-Witten invariants GWg,1(Y,Mε; d) with the
HOMFLY polynomial of (s, r)-torus knots. It will be shown that large N duality for (s, r)
torus knots follows from known results on large N duality for the unknot. The manipu-
lations of enumerative invariants justifying this statement parallel similar manipulations
in Chern-Simons theory relating invariants of (s, r) torus knots to colored invariants of
the unknot [5,40].

The main observation is that the Gromov-Witten invariants given in (6.48) for some
coprime (r, s) can be expressed in terms of analogous invariants determined by the curve

y = z = w = 0 (6.49)

in X0 and the associated lagrangian cycles. In order to emphasize the dependence on
(r, s), the lagrangian cycles used in the above construction will be denoted by M (s,r)

ε ,
and the corresponding invariants by GW (s,r)

g,1 (d, 1).
Consider the construction of lagrangian cycles carried out in Sects. 3.1–3.3 for a

curve C of the form (6.49). By analogy with Sect. 6.1 one can easily check that the
lagrangian cycle M (1,0)

ε obtained in this case is preserved by any circle action on Y of
the form

(x, y, ζ ) 
→ (e−isϕx, e−irϕ y, ei(r+s)ϕζ ) (6.50)

with r, s ∈ Z. Moreover, M (1,0)
ε intersects the strict transform of C along an orbit of

the torus action, obtaining a unique holomorphic circle invariant disk D0 on Y with
boundary on M (1,0)

ε . In this case D0 is smooth and Gromov-Witten invariants with
boundary conditions on M (1,0)

ε can be constructed using virtual localization in close
analogy with [19]. Let Mg,1(Y,Mε; d, k) be the moduli space of genus g ≥ 0 stable

maps with h = 1 boundary components mapped to M (1,0)
ε , in the relative homology

class d[C0] + k[D0] ∈ H2(Y,Mε), d ∈ Z≥0, k ∈ Z>0. In contrast with the previous
section, the winding number k will be allowed to take arbitrary values in the present
context. Then there is a residual formula of the form

GW (1,0)
g,1 (d, k; r, s) = (−1)k−1

∏k−1
n=1(rk + ns)

(k − 1)!
∫

[Mg,1(Y,d)]vir
C×

ev∗φC×(p)

kα(kα − sψ)
.

(6.51)

Note that the resulting invariants depend on the choice of torus action on Y preserving
M (1,0)
ε , which in this case is taken of the form (6.50). As a result the (1, 0)-invariants

are rational functions of (r, s).
Setting k = s in Eq. (6.51), it follows that

GW (s,r)
g,1 (d, 1) = sGW (1,0)

g,1 (d, s; r, s). (6.52)

Now define the generating functions with fixed winding numbers 1, respectively s,

F (s,r)1 (gs, Q, V ) =
∑

g≥0

∑

d≥0

g2g−1
s Qd GW (s,r)

g,1 (d, 1)Tr(V ),

F (1,0)s (gs, Q, V ) =
∑

g≥0

∑

d≥0

g2g−1
s Qd GW (1,0)

g,1 (d, s; r, s)Tr(V s),
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where the open string Gromov-Witten are defined by residual formulas (6.48), (6.51)
with respect to a circle action of the form (6.50).

Large N duality for the unknot yields the following identity [30, Eq. (5.6)]:

F (1,0)q (gs, Q, V ) = (−1)s−1

s

∑

R

χR(C(s))e
i(r/s)κR gs/2W (1,0)

R (q, Q)Tr(V s), (6.53)

the terms in the right-hand side being explained below.

• The sum in the right-hand side of (6.53) is over all Young diagrams R and χR(C(s))
denotes the character of the conjugacy class determined by the vector 	k = (k j ) j≥1,
with k j = 1 if j = sand k j = 0 otherwise in the representation determined by R.
See [30, Sect. 4.1] for more details.

• W (1,0)
R (q, Q) is the HOMFLY polynomial colored by the representation R of U (N ),

expressed as a function of the large N Chern-Simons theory on S3,

gs =
(

2π

k + N

)

, λ =
(

2πN

k + N

)

, q = eigs Q = eiλ.

Up to a normalization factor, W (1,0)
R (q, Q) is given by the quantum dimension of R,

W (1,0)
R (q, Q) = Q−|R|/2dimq(R),

where |R| is the total number of boxes in the Young diagram R.
• For any Young diagram R, the number κR is defined by

κR = |R| +
lR∑

i=1

(l2
i − 2ili ),

where lR is the number of rows of R and li is the length of the i th row, i = 1, . . . , lR .

As explained in [30, Sect. 3.2] the factor eimκR gs/2 encodes the framing dependence
of colored HOMFLY polynomials, m being the framing of the knot with respect to
the canonical framing. The expression ei(r/s)κR gs/2W (1,0)

R (q, Q) in the right-hand side
of Eq. (6.53) must therefore be interpreted as a a colored HOMFLY polynomial with
fractional framing. The relation between quantum knot invariants with fractional fram-
ing and residual open string Gromov-Witten invariants has been observed in a similar
context in [8,9].

Formula (6.53) was initially tested in specific examples for the free term in the
λ-expansion of W (1,0)

R (q, Q). The higher order terms were implicitly tested in [9] in the
process of finding an enumerative interpretation of the topological vertex [1]. In fact for-
mula (6.53) follows rigorously using more recent results in the mathematical literature
[25,26,34] on one and two-partition Hodge integrals. Details will be omitted because
this is a standard virtual localization computation.

The important fact for the present goal is to note that Eqs. (6.52), (6.53) yield an
identity of the form

F (s,r)1 (gs, q, Q) = (−1)s−1
∑

R

χR(C(s))e
i(r/s)κR gs/2W (1,0)

R (q, Q). (6.54)
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Now recall that according to [40, Sect. 3.3], [5, Eq. (2.43)], the HOMFLY polynomials of
(s, r) torus knots is expressed in terms of colored HOMFLY polynomials of the unknot
as follows:

W (s,r)
� (q, Q) =

∑

R

χR(C(s))e2π i(r/s)h R dimq(R). (6.55)

Next note that

h R = N |R|
2(k + N )

+
κR

2(k + N )
,

which implies

e2π i(r/s)h R = ei(r/s)λ|R|/2ei(r/s)κR gs .

Since only diagrams R with q boxes contribute to the right-hand side of (6.54), (6.55),
it follows that

F (s,r)1 (gs, q, Q) = q−r/2(−1)s−1W (s,r)
� (q, Q)Tr(V ).

This is the expected large N duality prediction for torus knots. The factor (−1)s−1

reflects a specific choice of orientation of the moduli space of stable maps with lagrang-
ian boundary conditions, as explained above.
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