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Electron Transfer in Solution: Nonadiabatic Dynamics and Applications to

Catalysis

by

Michael G. Mavros

Submitted to the Department of Chemistry
on April 28, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
A mechanistic understanding of electron transfer in solution will advance our understanding of many
chemical processes, including heterogeneous redox catalysis and photochemistry–processes which are fun-
damental in energy storage and solar energy conversion, among other applications. In this thesis, we first
apply density functional theory (DFT) to study the mechanistic intermediates of the oxygen evolution
reaction (OER) on metal-oxide redox catalysts. From these thermodynamic calculations, we are able
to gain insight into catalytic design principles. Afterwards, we study nonadiabatic electron transfer in
solution. After benchmarking various resummations of a fourth-order perturbation theory expansion of
a generalized master equation memory kernel for the spin-boson model, we apply our theoretical un-
derstanding to study the short-time dynamics of electron transfer beyond the Condon approximation in
aqueous iron(II) / iron(III) electron self-exchange. We discuss the application of this method to iden-
tify conical intersections in condensed-phase photochemistry. Finally, we examine the range of validity
of electron couplings predicted by constrained density functional theory with configuration interaction
(CDFT-CI). The nonadiabatic electron transfer methods developed and applied in this work will con-
tribute to a relatively sparse computational toolkit for studying challenging problems in photochemical
electron transfer, such as the prediction of nonradiative decay rates from first principle; these, in turn,
will contribute to the design of catalytic materials for solar energy conversion.

Thesis Supervisor: Troy Van Voorhis
Title: Haslam and Dewey Professor of Chemistry
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Chapter 1

Introduction

Energy drives the global economy in the 21st century. As the world population increases but our fossil

fuel reserves remain constant, the energy needs of the world outstrip the supply of traditional energy

sources. Many alternative technologies have been proposes based extracting energy from the sun, the

wind, volcanic activity inside earth, and nuclear forces, among others; none is yet as efficient and cost-

effective as extracting and burning oil, coal, and natural gas. A cheap and efficient technology for the

production of useful fuel from sustainable energy sources like the sun is the object of much contemporary

scientific research across many disciplines.

The first step in most solar energy conversion technologies is the absorption of sunlight by a chro-

mophore [1, 2, 3]; however, electronic excitations are very short-lived, necessitating a mechanism for

longer-term energy storage. One quite popular proposal is to store the solar energy in chemical bonds,

using sunlight to split water and produce hydrogen gas as a fuel. This reaction can then be reversed, oxi-

dizing hydrogen gas in a fuel cell to produce water [4]. Artificial water splitting has received considerable

attention recently, and several reviews discuss its significance and summarize challenges [5, 6]. Effective

catalyst designs range from small molecule transition metal complexes [7, 8] to amorphous cobalt oxides

[9] and perovskite materials [10, 11, 12], operating under several different mechanisms. The structures

rely on catalytic intermediates with thermodynamics and kinetics that are interesting in their own right.

The problem in solar energy storage thus relies on two central questions: (1) How can energy storage

mechanisms like the water splitting reaction be carried out with minimal loss mechanisms? And (2)

How can energy from the sun be efficiently turned into charge transfer to mediate the redox activity

of these catalysts? The photochemical charge transfer question (2) is of great interest in other areas of

energy storage and device manufacturing, as well: upon excitation, nonradiative charge transfer is in

competition with radiative decay, which is a loss mechanism in photovoltaic devices [13, 1, 14] and the

desired outcome in light-emiting diodes (LEDs) [15]. These processes are of particular interest in organic

devices, where photochemical charge-transfer is a common occurrence [16, 17].

17



Theoretical and computational modeling is today ubiquitous and essential in understanding many

aspects of solar energy conversion. Computation has been used to great success in mechanistic studies

in catalytic oxygen evolution [18, 19] and carbon dioxide reduction [20], allowing us to understand and

improve upon the conversion of solar energy to fuel. It has also been used to model the structure

[21, 22, 23] and energy transfer dynamics [24, 25] of photosynthetic complexes, allowing us to understand

the inner workings of the best solar energy conversion device in existence.

Computation additionally allows us to screen materials computationally before making them exper-

imentally. Computational high throughput screening for materials design is increasingly a reality, since

computing power and memory have increased to the point where materials can be treated with sufficient

accuracy in reasonable amounts of time [26]. Industrial applications of such techniques are rapidly becom-

ing routine, with substantial progress being made in the design of lithium batteries [27]; polymerization

catalysts [28]; carbon sequestration [29]; and photovoltaic cells [30, 31, 32]. The route to success in each

case relies upon the identification of certain descriptors that are indicative of efficiency or catalytic ac-

tivity whilst being straightforwardly calculable: excitation, emission, and nonradiative decay properties

of photovoltaics; electron transfer barrier heights; catalyst-substrate bond strengths; and more. Den-

sity functional theory calculations for these applications are now widespread, and stability analyses via

thermodynamic quantities are often sufficient to discover reaction mechanisms [33, 34].

Prominent successes have, therefore, been made in designing redox catalysts for a wide variety of

reactions. For instance, catalyst selectivity in hydrogenation reactions was enhanced by using the far-

cheaper Zn-Ni alloy in place of the Ag-Pt catalyst; this result was screened for computationally and

then verified experimentally [35]. Another success screened hydrogen evolution catalysts using hydrogen

adsorbtion energies as the descriptor, and following screening showed that Bi, which can poison Pt

catalysts, could be alloyed with the Pt to produce a catalyst with a modestly improved rate [36]. A

wide variety of dopants can be added to TiO2 to produce new catalysts for oxygen evolution reactions,

in particular Cr/Mo/Mn/Ir [37]. This is in contrast to the far more expensive RuO2 or IrO2 catalysts.

In similar work on oxygen reducing reactions (ORR), a volcano plot analysis was used to predict that

Pt3Y and Pt3Sc would be superior catalysts to bare Pt [38]. This claim was then verified experimentally

and up to a 10-fold rate enhancement was seen. Finally, it was also found that CO oxidation was

enhanced by doping TiO2 [39, 40]. In general, therefore, computational tools can be used to predict the

thermodynamics and kinetics of electron transfer, which can be used to screen materials implicated in

energy conversion for efficiency based on their mechanisms.

In this thesis, we look at quantum mechanical modeling of the two central questions in energy storage

raised above. Many of the observations regarding catalytic mechanisms can be transferred to other

processes, such as oxygen reduction [38] and carbon dioxide reduction [41, 29]. Additionally, many

of the theoretical tools developed to study photochemical charge transfer can be transferred to model
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other problems in chemistry involving diabatic states. Such problems include: the modeling of proton

transfer dynamics and the prediction of pKa values from first principle [42]; keto-enol tautomerization

of biochemical molecules like DNA bases [43, 44]; characterization of charge and energy transfer in

photosynthetic complexes [45]; and the ab initio prediction of quantum yields, important in the design

of organic photovoltaics and LEDs [46].

In this introductory chapter, we review the theoretical framework underlying condensed phase elec-

tron transfer, starting with Marcus theory and moving on to more contemporary system-bath model

approaches. In particular we examine conical intersections, which are implicated in many photochemical

decay processes. We then examine some of the computational tools used, largely based on DFT, and

various ways to computationally model solvent. Finally, we outline the structure of the remainder of this

thesis.

1.1 Theoretical models for electron transfer in solution

1.1.1 The diabatic picture

Typically, we tend to think of electronic states in chemistry as adiabatic states—the states that diagonalize

the molecular Hamiltonian. In the language of photochemistry, closed-shell molecules live in the ground

state S0, and are excited to higher singlet excited states such as S1 and S2 upon absorption of a photon.

The molecule can then decay radiatively back to the ground state or nonradiatively through several

pathways such as internal conversion (from a higher singlet state to a lower singlet state) and intersystem

crossing (through a triplet state).

The adiabatic picture is useful for describing much of chemistry; however, it is not intuitive for

describing charge-transfer excitations. Adiabats inherently delocalize electron density. The simplest

example of this is the case of the adiabats of H2—its σ and σ∗ molecular orbitals. The ground state of

H2 is symmetrically delocalized over both hydrogen atoms, whereas the excited state is antisymmetrically

delocalized over both atoms. When considering charge transfer, we are often interested in the question:

How much charge comes from one spatially-localized region in a molecular system and ends up on another

spatially-localized region, and how long does this process take? In order to consider states which are

localized—or, more precisely, states that do not change in chemical character along a generalized reaction

coordinate—we will abandon the concept of adiabatic states in favor of an alternative picture: the diabatic

picture.

In the diabatic picture, electronic states by definition do not change change character moving from left

to right along a reaction coordinate [47]. One diabat may, for example, correspond to charge localization

on the left molecule in a dimer; the other diabat, charge localization on the right molecule. In the diabatic

picture, the Hamiltonian describing the electronic system is not diagonal; the off-diagonal matrix elements
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Figure 1-1: (a) In the diabatic picture, the Hamiltonian is not diagonal. Each electronic state has the
same chemical character across the entire potential energy surface; in the case pictured, the left state
corresponds to electron on the left atom, and the right state the electron on the right atom. (b) In
the adiabatic picture, the Hamiltonian is diagonal. As one moves along an electron state, the chemical
character of the state changes. In the case pictured, the ground state changes character from “electron
on the left” to “electron on the right” moving from left to right along the pictured reaction coordinate.

are known as diabatic couplings or electron couplings; they determine how population transfers from one

state to another. A summary of the diabatic basis and adiabatic basis is presented in Figure 1-1.

Due to the nature of charge-transfer, the diabatic basis is a natural one: in the gas phase, one must

only know the intrinsic energy difference between the states and the diabatic coupling between the states

to fully describe charge-transfer. In the condensed phase, however, things become more complicated,

as we also require some information about how the solvent influences charge transfer. In the following

sections, we take into account the role of solvent and discuss various theoretical models based on diabatic

states that are used to describe condensed-phase charge transfer.

1.1.2 Marcus Theory

Since its proposal [48, 49] and Nobel Prize citation [50], the electron transfer theory of Marcus has become

the canonical theory for describing condensed-phase electron transfer kinetics. The insight provided by

Marcus is that the electron transfer rate in solution is caused by solvent fluctuations. When the solvent is

in its equilibrium configuration (i.e. its nuclear dipoles and electron polarization are aligned to stabilize

excess charges; Figure 1-2(a), top-left panel), the energetic cost of electron transfer is too high. The

timescale of electron transfer is much faster than the timescale of nuclear solvent rearrangement due to

the difference in mass between electrons and nuclei; as such, instantaneously moving an electron from

one molecule to another would require large solvent reorganization (Figure 1-2(b), top-left panel).
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Figure 1-2: Marcus theory dictates charge-transfer rates in the diabatic, slow-bath limit. (a) In the Marcus
model, charge cannot transfer when the solvent is in its equilibrium configuration; the energetic cost for
solvent reorganization is too high. Instead, the charge-transfer rate is governed by solvent fluctuations:
when the solvent fluctuates to a configuration such that charge on either donor or acceptor is isoenergetic,
charge can transfer and the solvent can relax. (b) Pictured are two diabatic energy surfaces as a function
of a collective coordinate describing solvent polarization. Solvent fluctuations correspond to fluctuations
in the energy gap ∆E—the difference in energy between the two diabats at a given solvent configuration.
As the solvent explores various configurations around the minimum of each parabolic potential energy
surface, the energy gap shrinks and grows accordingly. The two thermodynamics parameters associated
with the Marcus rate (Equation 1.1; the bias ε and the reorganization energy λ) are labeled.

Instead of an instantaneous transfer at equilibrium, Marcus proposal that electron transfer in solution

follows the path outlined in Figure 1-2: due to temperature, the solvent dipoles and electron polariza-

tions fluctuate until the two diabats have the same energy. Then, and only then, is electron transfer

energetically feasible. The electron may then quickly switch diabats (before the solvent has a chance to

move, again due to the timescale difference), at which point the solvent can relax into a new equilibrium

configuration.

Based on geometric arguments as well as an application of Fermi’s Golden Rule [51], Marcus showed

that the electron transfer rate is given as

kET =
2π

~
|V |2√

4πλkBT
exp

[
− (λ+ ε)

2

4λkBT

]
(1.1)

where V is the diabatic coupling between the states, T is the temperature, ~ is Planck’s constant, kB

is the Boltzmann constant, and ε and λ are two thermodynamics parameters of the electron transfer,

called the electronic bias and the reorganization energy, respectively. The electronic bias is defined as the

energetic different between the minima of the two diabats involved in electron transfer; the reorganization

energy, the energy required to move the solvent from the equilibrium configuration of one diabat to the

equilibrium configuration of the other diabat. Both quantities are labeled in Figure 1-2(b).

Marcus theory predicts three distinct electron transfer regimes: −ε > λ, or the normal regime,

−ε < λ, or the inverted regime, and −ε = λ, where the activation energy disappears and electron transfer
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is fastest. Traditional intuition based on linear free-energy relationships [52] suggests that as the energetic

bias between two states increases, the rate should also increase; while this is true in the normal regime,

the opposite is true in the inverted regime. Nevertheless, the existence of the inverted regime—where

increasing the bias between the states decreases the electron transfer rate—as first predicted by Marcus

has been verified experimentally innumerable times [53, 54, 55, 56, 57, 58, 59, 60, 61].

As the Marcus rate is a Fermi Golden Rule rate, it is only valid when second-order perturbation

theory in V is valid: when the electronic coupling is small. Additionally, the Marcus rate makes several

assumptions about the solvent: (1) that electron transfer is instantaneously fast compared to the timescale

of solvent reorganization (i.e., solvent reorganization is slow); (2) that electron transfer is a rate process

(i.e. there are no long-lived quantum coherences between the electronic states); and (3) that both diabats

interact with the same set of solvent modes. We will explore how we can generalize the first two of these

three approximations in the following section.

1.1.3 System-Bath Models

Marcus’s key insight was that solvent plays the central role in condensed-phase electron transfer. Unfor-

tunately, an exact dynamical description of this process from first principles is difficult if not impossible

due to the multitude of degrees of freedom involved in solvent reorganization, which are necessary to de-

scribe electron transfer dynamics and kinetics. Because exact quantum methods cannot describe systems

with thousands of degrees of freedom without running into exponential scaling, approximate models are

often invoked to describe electron transfer dynamics.

System-bath models are one class of these approximate models which are particularly well-suited to

studying electron transfer. In a system-bath model, the chemistry being studied is partitioned into a

“system”—the interesting part—and a “bath”—a part that is uninteresting on its own, but paramount

for describing the system accurately. System-bath models are useful for studying short-term chemical

dynamics due to their inherent simplicity; in this thesis, we will use system-bath models extensively to

relax two of the assumptions that Marcus theory makes about solvent relaxation (as discussed in Section

1.1.2).

One important system-bath model for describing chemical dynamics is the spin-boson model, a system-

bath model that describes a two-level system coupled linearly to a large number of harmonic bath modes

[62] (Figure 1-3). The spin-boson Hamiltonian (also known as the Caldeira-Leggett model) [62] can be

written as
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Figure 1-3: Schematic representation of a system-bath model. A chemical system can be mapped on
to something much simpler; in the case pictured, it is mapped on to the spin-boson model, a two-level
system interacting linearly with only harmonic bath modes. Such systems can be a useful way to describe
electron transfer in solvent without explicitly considering tens of thousands of degrees of freedom.

Ĥ = ĤS + ĤB + ĤSB

=

 ε
2 V̂

V̂ − ε
2

+
∑
j

 p2j
2mj

+ 1
2mjω

2
jx

2
j 0

0
p2j

2mj
+ 1

2mjω
2
jx

2
j

+
∑
j

 cjxj 0

0 −cjxj

(1.2)

where the pj and xj describe normal mode harmonic bath coordinates and momenta described by mass

mj and frequency ωj , and the cj are coefficients determining the strength that each harmonic bath mode

couples to the system.

In practice, knowing the minute details of the bath modes is irrelevant: by invoking system-bath

models, we are implicitly only interested in the detailed dynamics of the system, so we only need to know

about the bath insomuch as it affects system dynamics. For a harmonic bath, population dynamics are

completely characterized by the bath spectral density, [63, 64, 51]

J(ω) =
π

2

∑
j

c2j
mjωj

δ (ω − ωj) (1.3)

In principle, a particular spectral density can generally be obtained by Fourier transforming a correspond-

ing bath time correlation function [51]; these time correlation functions can, in turn, be obtained from

experiment or from molecular dynamics simulations. Many times, an analytical form is usually assumed

for the spectral density.
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The spin-boson Hamiltonian is used widely in elementary studies of chemical dynamics because of

its moderate assumptions and overall simplicity. While simpler than an atomistic model, the spin-boson

model still cannot be solved exactly: the exact density matrix and the propagator must each be expanded

in the basis of a many-dimensional collection of harmonic oscillators, again leading to exponential scaling.

Nevertheless, many approximate methods [63, 65, 66, 67, 68, 69, 70] (and exact methods for certain

assumptions about the bath [71, 72]) for solving the Schrödinger equation for this Hamiltonian exist.

The spin-boson model is particularly well-suited to studying the condensed phase electron transfer

problem: Its harmonic approximation implied parabolic potential energy surfaces in appropriate limits,

like those used in Marcus theory. It can be shown analytically that the dynamics generated by the

spin-boson Hamiltonian reduce to Marcus kinetics in the long-time, slow-bath, diabatic limit—exactly

the limit that the Marcus rate is valid. The spin-boson model can be thought of as a many-dimensional

extension of Marcus theory that can be used beyond some of the limits where Marcus theory breaks

down. We will thus be using this model as a starting point for nonadiabatic electron transfer dynamics

studies.

1.1.4 Conical Intersections

Photochemically-excited molecules can relax back to the ground state either through radiative processes

or nonradiative processes. When relaxation is fast, it is thought that molecules relax from excited state

to ground state through conical intersections—points where the excited state adiabatic potential energy

surface cross the ground state adiabatic potential energy surface [73]. Conical intersections have been

studied extensively in the gas phase both theoretically [74, 75, 76, 77, 78, 17] and experimentally [79, 80,

81]. Condensed-phase photochemistry is often much more complicated, as a continuum of bath modes now

must be considered (especially at low frequencies, accounting for very slow solvent motion). Condensed-

phase conical intersections are much less-studied [82, 83, 84, 85]. Nevertheless, conical intersections in

condensed phases are thought to be important for such processes as internal conversion and intersystem

crossing [86], the understanding of which is essential for the prediction of quantum yields in devices such

as photovoltaics and light-emiting diodes [14] and the understanding of DNA/RNA isomerization [79, 87].

A condensed-phase model capable of describing conical intersections is thus of great scientific importance.

Unfortunately, many existing condensed-phase models predict the nonexistence of conical intersec-

tions. In order for a conical intersection to exist, two conditions must be upheld: (1) the excited state

and ground state have the same energy; and (2) the electronic coupling between the two states must be

zero [73]. Under the Condon approximation, the electronic coupling is not a function of the nuclear coordi-

nates and can never be zero; thus, any model utilizing the Condon approximation, including the canonical

spin-boson Hamiltonian, cannot describe conical intersections—phenomena which are paramount to the

accurate description of photochemical processes. The qualitative difference between the adiabatic sur-
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(a) (b)

Figure 1-4: Conical intersections in N dimensions manifest themselves as surfaces intersecting along N-2
dimensions; thus, the smallest dimension along which two adiabats can intersect is two, and in 2D that
intersection is a point. (a) Under the Condon approximation, the coupling can never be zero for any
value of the two nuclear coordinates, and the two adiabats will never intersect; the closest they get to
each other is an avoided crossing, with magnitude 2V . (b) If the coupling is allowed a linear dependence
on each coordinate, the adiabats can intersect at a single point—a conical intersection.

faces predicted by two-dimensional two-state Hamiltonians (a) under the Condon approximation, and (b)

beyond the Condon approximation is shown in Figure 1-4.

Because the spin-boson model does not predict the existence of conical intersections, we must use

a slightly different model when we wish to accurately study photochemical dynamics. We use a gener-

alization of the spin-boson Hamiltonian known in the literature as the linear vibronic coupling (LVC)

model:

ĤLV C = ĤSBM +
∑
j

 0 Vj x̂j

Vj x̂j 0

 (1.4)

We choose this model because all of the tools we can use to study the spin-boson model can also be

used to study the LVC model. We make use of this model in Chapter 4 in particular, where we develop

and study the theoretical framework which can be used to computationally model conical intersection

dynamics.

1.2 Computational models for electron transfer in solution

Regardless whether we are studying electron transfer thermodynamics, kinetics, or dynamics, we need

to compute (1) the thermodynamic stabilities the chemical moities involved with electron, and (2) the

interaction of the electron transfer system with solvent. When we are looking at catalyst intermediate

stability for catalytic screens, the thermodynamic stability of the solvated intermediates is of the utmost

important [88, 34]; for kinetics, we need not only the thermodynamic driving force of electron transfer ε but

also an accurate description of the reorganization energy λ [58]. To describe electron transfer dynamics,

an even more detailed description of the solvent is required: We must compute spectral densities from

sampled bath correlation functions. Additionally, through all of this, we wish to use the diabatic picture
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to describe electron transfer as it is a natural basis for the description of this phenomenon; because

of this choice, we must additionally compute or model the diabatic coupling V . Things are especially

complicated for the modeling of conical intersections, as we need time correlation functions of V .

In this section, we describe the computational approaches used to describe electron transfer in solvent.

We treat all nuclei electrons quantum-mechanically and all nuclei classically. We first discuss density

functional theory, which we use for all thermodynamic quantities associated with the “system” piece of a

system-bath model Hamiltonian as described in Section 1.1.3; the formalism of density functional theory

is reviewed in Section 1.2.1. Of particular note is a DFT-based method to compute diabatic states and

diabatic coupled: constrained density functional theory with configuration interaction.

We then move our discussion to approximate computational descriptions of the bath—solvent. We

review implicit solvent models, which can often be useful for computing thermodynamic quantities such

as redox potentials but lack the detail necessary to compute more complicated bath phenomina such

as reorganization energies or spectral densities. For these, we must use explicit solvent sampled with

molecular dynamics. Implicit and explicit solvent are discussed and compared in Section 1.2.2.

1.2.1 Density Functional Theory

Kohn-Sham Density Function Theory

Within the Born-Oppenheimer approximation, a molecule is a collection of N electrons interacting with a

classical external potential generated by the masses and charges of fixed nuclei. Quantum-mechanically,

molecules are described by a many body wavefunction ψ(r1, ..., rN ) obtained by solving the Schrödinger

equation for the molecular Hamiltonian—the Hamiltonian describing the kinetic energy of a molecule’s

electrons, their interactions with each other, and their interactions with a particular configuration of

nuclei that keep them bound. Approximate methods to obtain ψ(r1, ..., rN ) have been around since near

the dawn of quantum mechanics in the form of Hartree-Fock theory [89], but the energies associated with

these Hartree-Fock wavefunctions are often not acceptably accurate for chemical problems. Hartree-Fock

theory is also difficult improve upon due to the theoretical complexity of working with a function of 3N

coordinates.

Density functional theory (DFT) is an attempt to compute quantities associated with the quantum-

mechanical many-body wavefunction ψ(r1, ..., rN ) without referencing the many-body nature of the wave-

function at all. Instead, DFT posits that a classical quantity, the electron density—a function of 3 vari-

ables, not 3N—contains all of the information needed to describe the chemistry of a molecule. In terms

of the wavefunction, the density ρ(r) can be represented as

ρ(r) =

ˆ
ψ∗(r, r2, ..., rN )ψ(r, r2, ..., rN )dr2...drN (1.5)
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The advent of modern DFT occurred when Hohenberg and Kohn proved their eponymous theorem [90]:

There exists a universal functional of the electron density, z [ρ(r)], that determines the energy of that

density interacting with an external potential vext,

E [ρ(r)] =

ˆ
vext(r)ρ(r)dr + z [ρ(r)] (1.6)

Additionally, the Hohenberg-Kohn theorem states that the energy functional in Equation 1.6 is minimized

for the density associated with the ground state wavefunction of the system. While the Hohenberg-Kohn

theorem was a theoretical landmark in the field of electronic structure, practically, it has little use: The

universal functional of the density z [ρ(r)] is unknown, and in practice must be approximated.

Most practical implementations of DFT calculations today use the Kohn-Sham formalism [91]. In

Kohn-Sham DFT the electron density is expanded in a basis of fictional, one-electron, non-interacting

orbitals (φKSi (r), the Kohn-Sham orbitals), such that

ρ(r) =
∑
i

|φKSi (r)|2

The energy functional in the Kohn-Sham formalism becomes

E [ρ(r)] = Ts [ρ(r)] +

ˆ
vext(r)ρ(r)dr + EH [ρ(r)] + Exc [ρ(r)] (1.7)

where Ts is a functional which determines the non-interacting kinetic energy (since the Kohn-Sham

orbitals do not interact with one another), EH is the Coulomb energy (determined from the density via

classical electrostatics [92]), and Exc is the exchange-correlation functional—an energy functional that

contains everything else that contributes to the energy of a molecular system. Effects included in the

exchange-correlation functional include the interacting piece of the kinetics energy, electron exchange,

and electron correlation.

The advantage of the Kohn-Sham picture over an orbital-free picture is that because the density can

be partitioned into many non-interacting one-electron orbitals, certain components of the exact functional

can be computed exactly. Perhaps most importantly, it circumvents the problem of defining a kinetic

energy functional T [ρ(r)] by introducing a non-interacting kinetic-energy functional Ts [ρ(r)], which con-

tains the major component of the kinetic energy. All non-well-defined electron-electron interactions are

wrapped up in the exchange-correlation functional. The disadvantage of the Kohn-Sham picture is that

the exchange-correlation functional, while it has certain properties it must obey, is not known and must

be approximated. Further, each approximation is uncontrolled, meaning the accuracy of Kohn-Sham

DFT calculations is not systematically improvable.

Nevertheless, certain classes of exchange-correlation functionals which share properties have devel-

oped, and a hierarchy known as Jacob’s Ladder exists among these classes of functionals [93]. Classes
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higher up on the hierarchy are demonstrably better than classes lower on the hierarchy. The lowest rung

of the ladder includes local density approximation (LDA) functionals [94, 95], where Exc is a functional

only of the electron density. Higher are generalized gradient approximation (GGA) functionals such as

PBE [96], in which Exc depends on both the density and its gradient at every point—allowing for descrip-

tion of regions of non-uniform densities in molecules. Hybrid functionals like B3LYP [97] and PBE0 [98]

take GGA functionals and add in exact exchange from Hartree-Fock theory, improving energies further.

Finally, nonlocal van der Waals functionals such as VV10 [99] are functionals that connect the density at

a point r to another point r’. In this thesis, we primarily use hybrid functionals, as the tradeoff between

accuracy and speed is the greatest for the classes of problems considered.

Constrained Density Functional Theory

Density functional theory exceeds at approximating the energy of molecular adiabats; electron transfer

theories, however, require knowing the approximate energies of diabats, and their couplings. It is rig-

orously impossible to create strict diabatic states from a given set of adiabats [47, 100, 101]; however,

these diabats can be approximately constructed using a DFT-based tool known as constrained density

functional theory (CDFT).

In a CDFT calculation, one can compute the lowest energy electronic state of a molecule subject to

a set of constraints on the electron density. In general, the constraint can be written as

ˆ
wC(r)ρ(r)dr−NC = 0 (1.8)

where ρ is the electron density, NC is the value of the constraint, and wC is a weighting function which

allows different spatial regions of the density to have different values of the constraint. Imposing the

constraint in equation 1.8 is equivalent to solving a Kohn-Sham equation with an effective Kohn-Sham

potential

V effKS = VKS + VCwC(r) (1.9)

where VC is a Lagrange multiplier imposing the constraint wC . We have developed a method to solve

the Kohn-Sham equations using the potential in equation 1.9 efficiently [102]. Appropriate choice of the

constraint functions wC can result in the formation of approximate diabats, as well as charge transfer

excited states; CDFT can thus be used as a tool to extract diabat energies and charge-transfer excitation

energies to sufficient accuracy [103, 104, 105].

One is often interested not only in the electronic structure of a diabat but also its interaction with

other states. Such electronic couplings are important for hopping probabilities between states and thus

rates. By using a few constrained states of interest in order to form a configuration-interaction basis, we

have shown [106, 107] that one can estimate the coupling with CDFT-CI using matrix elements of the
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(a) (b)

Figure 1-5: (a) In an implicit solvent model, a cavity is carved out of space based on the van der Waals
radii of all of the atoms in the solute. The remainder of space is then filled with a polarizable material of a
given dielectric, which is allowed to self-consistently polarize to account for the electronic structure of the
solute. The dielectric continuum, in turn, polarizes the solute’s electrons. Implicit solvents are useful for
quick, accurate calculations of solvation thermodynamics. (b) In an explicit solvent model, each solvent
molecule is explicitly represented in the simulation. From the motions of the solvent, bath correlation
functions can be extracted, which can then be Fourier transformed into spectral densities—the central
quantity needed to compute the dynamics of system-bath model Hamiltonians.

CDFT constraint operators. For two CDFT states |D〉 and |A〉 with energies ED and EA (respectively),

the coupling V can be estimated as

V =

[
ED + EA

2
+
VCDwCD + VCAwCA

2

]
〈D|A〉

−VCD〈D|wCD|A〉 − VCA〈D|wCA|A〉 (1.10)

These couplings can then be used directly in a Marcusian rate expression like Equation 1.1, or to pa-

rameterize a system-bath Hamiltonian like the spin-boson model (Equation 1.2). There are limitations

to the accuracy of CDFT-CI couplings which will be addressed in Chapter 5; despite these limitations,

CDFT-CI couplings are often good approximations for diabatic couplings [105, 106, 47].

1.2.2 Solvent models

We now turn our attention to computational descriptions of solvent. We discuss two approaches to

modeling solvent: implicit approaches, which are computationally cheap and often accurate for thermo-

dynamics applications; and explicit approaches, which are computationally costly but necessary for very

accurate descriptions of the solvent needed in dynamics applications. These two different approaches to

solvation are summarized in Figure 1-5.
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Implicit solvation

In implicit solvation, the solute density responds self-consistently to a surrounding dielectric continuum

parameterized according to the identity of the solvent [108]. This is a mean-field treatment of solvation

in which solute flexibility can be described in principle through conformational sampling, but is often

only accounted for within the harmonic approximation. A very popular class of implicit solvent models

are the polarizable continuum models (PCMs), including conductor-like screening models like COSMO

[109] and CPCM [110].

The underlying approximation of these methods is that the solvent can be easily described by a single

dielectric constant ε describing the low-frequency polarization of the solvent. Implicit solvent models thus

work very well for neutral species near equilibrium [111], as here only infinitely slow motions of the solvent

contribute to the solvation energy. Because implicit models are fast, they are often the method of choice for

computing accurate solvation free energies [112, 113]. Far from equilibrium, however, a simple dielectric

response picture cannot hope to capture detailed solvent dynamics. Instantaneous electron polarization,

high-frequency solvent reorganization, and hydrogen bonding—all important features of dipolar solvents,

and essential to capture the properties of water—are not modeled in dielectric continuum models. For

properties requiring a description of these, such as reorganization energies and bath correlation functions,

explicit solvent models are required.

Explicit solvation

In an explicit solvent model, each molecule of solvent is represented explicitly in the simulation. Atomistic

treatment of the solvent removes most of the approximations associated with the use of implicit solvent,

allowing us to capture effects such as hydrogen bonding and heterogeneities in solvent polarization.

Unfortunately, modeling explicit solvent also requires extensive configurational sampling to incorporate

all solute and solvent degrees of freedom.

As a consequence, modeling with explicit solvent is much more computationally demanding, and one

must often tolerate a limited sampling of solvent configurations or a more approximate description of the

solvent electronic structure. The most approximate way to describe the electronic structure of the solvent

is also the way to allow for extensive configurational sampling: describing the solvent with a molecular

mechanics (MM) force field. In MM, each solvent molecule is described by its own internal bond energy,

Coulomb interactions among its atoms and the rest of the atomics in the simulation, and a van der

Waals radius interacting with the rest of the simulation via a Lennard-Jones interaction. Altogether,

these interactions are defined by a set of parameters called a ’force field.’ MM force fields parameters are

chosen to replicate collections of experimental observables and/or ab initio data [114, 115].

A more accurate description of a single individual configuration (at the cost of being able to sample

fewer total configurations) can be obtained by adding electron polarization to an MM force field. The
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most common way to add polarization is by using Drude particles—fictional charges tethered to a site

on each solvent molecule by a harmonic restoring force [116]. Polarizable MM is able to capture both

timescales associated with solvent reorganization upon electron transfer: fast electron polarization, and

slow nuclear polarization; polarizable MM is essential for accurately computing reorganization energies

[117, 118].

Even more accurate still is to allow the electronic structure of the solute—the electron transfer system

described by the system Hamiltonian in a system-bath model—to relax self-consistently with each sampled

solvent configuration. Such quantum mechanics - molecular mechanics (QMMM) simulations [119] allow

for extremely accurate descriptions of solvent, allowing for quantitative prediction of thermodynamic

redox potentials [118] and thus Marcus kinetics; however, they come at an additional cost, as every

sampled configuration requires an electronic structure calculation.

In order to study electron-transfer dynamics using system-bath models, configurational sampling

of the solvent is of paramount importance. As discussed in Section 1.1.3, so long as the harmonic

bath approximation holds, all effects of solvent on an electron transfer system can be distilled into

a single function of the frequency of bath modes: the spectral density. As depicted in Figure 1-2,

solvent fluctuations cause fluctuations in the energy gap between diabatic states, and these fluctuations

in the energy gap drive electron transfer. It should thus come as no surprise that the spectral density is

intimately related to energy gap fluctuations; for the spin-boson model, this relationship can be expressed

mathematically as

J(ω) =
β~ω

4

ˆ ∞
0

〈δ∆E(t)δ∆E(0)〉 cos (ωt) dt (1.11)

where β = 1/kBT is the inverse temperature, ∆E(t) = E|2〉 − E|1〉 is the energy gap between states |2〉

and |1〉 at time t, and δ∆E(t) = ∆E(t) − 〈∆E〉 describes the fluctuations of the energy gap away from

its average value. We see, then, that the spectral density is related to the Fourier transform of the time

correlation function of the energy gap, which can be sampled from molecular dynamics [51, 120].

Other methods

We mention in passing other solvent methods, though they will not be used in this thesis. It is possible

to combine the strengths of both methods through three-layer models such as a quantum mechanics

/ molecular mechanics / polarizable continuum model (QM/MM/PCM) strategy.[121] Semi-empirical

and polarizable molecular mechanics (MMpol) models, which lie between the quantum and classical

approaches in complexity, offer additional flexibility in constructing multi-level strategies.[122, 116] There

are also approaches which do not easily fit into the implicit versus explicit solvation paradigm, such as

the RISM approach.[123, 124]
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1.3 Structure of this thesis

This thesis comprises two major topics: the prediction of redox potentials to guide the design of artificial

redox catalysts, and the development of computational methodologies to study the short-time dynamics

of photochemical redox processes. We discuss the first of these topics in Chapter 2; the second is discussed

in great detail in Chapters 3, 4, and 5.

In Chapter 2, we examine the essential role of theoretical calculations in understanding the water

splitting reaction on heterogeneous catalysts. First, we present an overview of DFT thermochemical

calculations on water splitting catalysts, addressing how these calculations are adapted to condensed

phases and room temperature. We show how DFT-derived chemical descriptors of reactivity can be

surprisingly good estimators for reactive trends in water splitting catalysts. Using this concept, we

recover trends for bulk catalysts using simple model complexes for at least the first-row transition metal

oxides. We also look at mixtures of these first-row metal oxides, developing design principles based on

examining how different combinations of metals affect the redox potentials of key mechanistic steps along

with changing the rate-determining step of the overall reaction. We conclude by looking at the kinetics

of redox on these catalysts using CoPi as a test case, with particular focus on solvation. Our discussion

is intended to provide an overview of the current strengths and weaknesses of the state-of-the-art DFT

methodologies for condensed phase molecular simulation involving transition metals and also to guide

future experiments and computations toward the understanding and development of novel water splitting

catalysts.

Chapter 3 changes focus from the thermodynamics of electron transfer in solvent to the short-time

dynamics. We examine the dynamics of spin-boson models to fourth-order in time-dependent perturba-

tion theory in the diabatic coupling. In order to prevent divergences, perturbation expansions must be

resummed. Here we present a comparison of different resummation techniques for the memory kernels of

generalized master equations up to fourth order. For a variety of different spin-boson parameter regimes,

we find that resumming the kernels through fourth order using a Padé approximant results in divergent

populations in the strong electronic coupling regime due to a singularity introduced by the nature of

the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener

resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed ker-

nel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler

prescriptions like the non-interacting blip approximation (NIBA), showing a relatively quick convergence

on the exact answer. The results suggest that including higher-order contributions to the memory kernel

of a generalized master equation and performing an appropriate resummation can provide a numerically-

exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of

methods for treating system-bath dynamics.

In Chapter 4, we extend our analysis from Chapter 3 to develop a formalism to treat condensed-
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phase dynamics beyond the Condon approximation. We show that even for an extremely simple test

system, hexaaquairon(II) / hexaquairon(III) self-exchange in water, the electronic coupling is expected

to fluctuate rapidly and non-Condon effects must be considered to obtain quantitatively accurate short-

time photochemical dynamics. As diabatic couplings are expected to fluctuate substantially in many

condensed-phase electron transfer systems, we assert that non-Condon effects are essential to quantita-

tively capture accurate short-time dynamics.

The study in Chapter 4 prompted an investigation into the reliability of CDFT-CI couplings, which

we present in Chapter 5. Unfortunately, CDFT-CI occasionally fails significantly, predicting couplings

that do not decay exponentially with distance and/or overestimating the expected coupling by an order

of magnitude or more. In this chapter, we show that the eigenvalues of the difference density matrix

between the two constrained states can be used as an a priori metric to determine when CDFT-CI are

likely to be reliable: when the eigenvalues are near 0 or ±1, transfer of a whole electron is occurring, and

CDFT-CI can be trusted. We demonstrate the utility of this metric with several illustrative examples.

Finally, we conclude by summarizing key findings in Chapter 6 and presenting them in the broader

context of solar energy transfer and energy storage. Future avenues of research in the field are also

discussed.
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Chapter 2

Exploring Catalytic Design of

Metal-Oxide Oxygen Evolution

Catalysts with Density Functional

Theory

2.1 Introduction

The oxygen evolution reaction (OER) is a popular proposal to store energy from sources such as the sun

in chemical bonds, using the energy to split water and produce hydrogen gas as a fuel,

H2O(`) → H2 (g) +
1

2
O2 (g) E◦ = 1.23V

where E◦ is reported with respect to the standard hydrogen electrode (SHE). This reaction can then

be reversed, oxidizing hydrogen gas in a fuel cell to produce water and releasing the energy in the

process. The oxygen evolution half-reaction occurs efficiently in nature with low activation barriers

[21, 22, 23]; promoting efficient oxygen evolution artificially is a much larger challenge, due to an ill-

understood mechanism and resulting high catalytic overpotentials [5, 6]. Catalytic design varies wildly,

from small molecule transition metal complexes [7, 8] to amorphous cobalt oxides [9] and perovskite

materials [10, 11, 12]; unfortunately, underlying design principles of these materials are often poorly

understood.

At first glance, the thermodynamics of the water splitting reaction seem quite simple. In one half-

reaction, two molecules of water are split into four protons and a molecule of O2, releasing four electrons
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at a potential of 1.23 V per electron with reference to the standard hydrogen electrode (SHE). In the

other half-reaction, which occurs at the SHE, two protons and two electrons combine to form one molecule

of H2. Nevertheless, the full catalytic cycle, illustrated schematically in Figure 2-1, involves several in-

termediates whose thermodynamic stabilities and interconversion kinetics dictate the overall catalytic

activity. Furthermore, the stability of certain intermediates necessitates voltages larger than 1.23 V

(overpotential) when running the water splitting reaction on a catalytic surface. Ultimately, the cata-

lyst’s molecular structure and the experimental conditions determine the observed efficiency through four

interrelated factors:

• Thermodynamics of stable intermediates

• Solvent effects

• Kinetics of chemical and electrochemical steps

• Mechanisms of O-O bond formation and O2 release

The catalytic cycle proceeds through a series of stable intermediates leading up to the central event of

water splitting: formation of the oxygen-oxygen bond. Two qualitatively different mechanisms, dubbed

the “acid-base” mechanism (also known as the “nucleophilic water attack” mechanism) and the “direct

coupling” mechanism (or “radical coupling” mechanism), are shown in Figure 2-1. The acid-base mech-

anism proposes that the O-O bond is formed via a nucleophilic attack on an electrophilic metal-oxo

species; it is suspected to be the mechanism at play for oxygen evolution in a wealth of synthetic systems

[8, 127, 128]. By contrast, the direct-coupling mechanism proposes that two high-valent metal-oxo species

on the catalytic surface come together to form O2; recent computational [129] and experimental [130, 131]

evidence suggest this mechanism may be at play for certain metal oxide catalysts.

The acting mechanism for O-O bond formation depends on the participating transition metal center(s)

[132] and the pH [133], among other factors. Further complicating matters, the relationship between OER

thermodynamics and kinetics is not always clear. Many of the reactive steps shown in Figure 2-1 are

proton-coupled electron transfer (PCET) events whose nature (concerted vs. sequential) depends on

the transition metal system [21, 22, 7, 130, 129, 127, 131]. Additionally, the critical oxygen-oxygen bond

formation step is, invariably, a chemical step – one that depends little on the governing electrical potential

and highly on small fluctuations of the local environment. The aqueous environment plays a critical role

here, both in providing the proper electrostatic environment around the metal oxo species to facilitate

the reaction, and also as a reactant itself: water ultimately is responsible for the displacement of O2 from

the catalyst.

The role of computation in understanding heterogeneous catalysis cannot be overstated. With appro-

priate care and for systems of moderate size (up to hundreds of atoms), density functional theory (DFT)
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Figure 2-1: Oxygen evolution can proceed via a variety of mechanisms. In this chapter, we will focus
on the acid-base (also known as water nucleophillic attack) mechanism, where the O-O bond is formed
by a nucleophillic attack by water on an oxidized catalyst; and the direct-coupling (or radical coupling)
mechanism, where oxygens a doubly-oxidized catalyst snap together to form the O-O bond. For the direct-
coupling mechanism, we refer to the steps in order from the top by the following names: (1) Metal(III)
first oxidation, (2) Metal(III) second oxidation, (3) O-O bond formation, (4) Water attachment; (5)
Metal(II) oxidation, and (6) Oxygen displacement. In accordance with the observations of many in the
literature [125, 126], we focus only on mechanisms involving a Lewis acid, which is thought to be essential
for oxygen evolution to occur.
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calculations in particular can be used to make useful predictions about the thermodynamics, kinetics,

and mechanism of the water splitting reaction on a wide variety of materials, saving time and money in

the laboratory by suggesting experiments that should be performed. In particular, DFT can in principle

be used both to screen large numbers of catalytic materials [36] and to provide a detailed understanding

of the catalytic process on a particular material [129]–both of which can be utilized to guide experimen-

tation. While computation is poised to provide important insights, black-box application of DFT to the

problem could easily lead to false conclusions. Proper care must be taken in order to extract accurate

thermodynamic data and meaningful trends from electronic structure calculations.

2.1.1 Catalytic screens

Computational high throughput screening for materials design is increasingly a reality, since computing

power and memory have increased to the point where materials can be treated with sufficient accuracy

in reasonable amounts of time. The ultimate goal of a computational screen is to judge the efficacy of

a catalyst without knowing the detailed mechanistic workings of a catalytic cycle; after all, for a novel

catalyst, these workings are at best unknown, and at worst unknowable. Sabatier analysis originated in the

1910s [134] and was reintroduced recently by Norskov and others [88, 36, 135] as a tool to screen materials

without a priori knowledge of mechanism. The Sabatier principle states that an ideal catalyst falls in a

Goldilocks region of substrate binding: not too weak, or the substrate cannot adsorb to the catalyst; and

not too strong, or the final product cannot desorb. A Sabatier analysis correlates catalytic activity with

catalyst-substrate bond energies—quantities which are thermodynamic in nature, eliminating the need to

study kinetics and thus mechanism. Sabatier analysis has been used with great success in electrochemical

catalysis over the past decade [136, 137, 138, 139, 34, 140], in particular guiding the design of certain

efficient perovskite catalysts before their experimental realization [141, 10, 142]. It unfortunately requires

a ’chemical descriptor’ of activity, which certainly will not be universal and may not exist at all for entire

classes of catalytic materials.

The challenge for the computational screening of materials is typically cast in terms of finding an

appropriate descriptor for the activity, a quantity that can be conveniently calculated for modest cost.

Due to the importance of OER, a sizeable quantity of literature is devoted to the exploration of the

mechanism of OER and the discovery of such descriptors. Since the basis for the OER mechanism

involves oxygen bond breaking, water (or OH) binding, and metal center oxidation, it should be no

surprise that these quantities form the basis for descriptors.

Three groups of interrelated descriptors are prevalent in the design of OER. In the first, an or-

bital/energy level framework, good catalysts are found to have particular 3d states, a good d-band

energy match with O2 energy levels, or particular eg orbital occupations [143, 10]. These descriptors

were used to recently find a barium-strontium-cobalt-iron metal oxide with an order of magnitude higher
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activity than iridium oxides.

A prominent group of authors assert that a universal framework for design can be achieved by con-

sidering a second descriptor: surface binding of oxygen, hydroxide, or other intermediates [34]. Experi-

mental attempts to use this descriptor to design new catalysts date back to 1955 [144]; recently, Noskov

and coworkers have pioneered their use in computational catalytic design through their work on rutiles

[145, 146] and metals [135]. It should come as no surprise that the metal-oxygen bond strength descriptor

and the orbital framework descriptor are related, as observed by Vojvodic and Norskov [141].

The final descriptor considers the oxidation of the metal. A 1980 paper by Trasatti suggested metal

oxidation would supersede the strength of surface adatom binding as the optimal descriptor [147]. Since

descriptors always have linear relationships with the overpotential, it is natural to consider whether the

overpotential of alloys can be estimated from a linear combination of their constituents. This approach

would prevent the increase of computational complexity when ternary complexes are considered, and has

recently found success in the case of the design of a Fe-Co-W alloy for OER [148].

Common to all approaches is the formation of a volcano plot with respect to the descriptor. In each

case, there is a linear relationship with positive slope on one side of an optimal value of the descriptor,

and a linear relationship with negative slope on the other side of this optimal value. Both higher and

lower values than this optimal value will result in a greater overpotential and thus catalytic inefficiency.

While a useful construct, there often exists significant deviation away from the lines defining a volcano

plot (see, e.g., [149]). An open question remains as to the utility of using high-accuracy density functional

theory (DFT) calculations to explore the design space away from the volcano—does such a space exist,

and is its exploration useful in guiding catalytic design?

The concept of a computational screen hinges on systematically understanding what thermodynamic

and kinetic factors affect the stability and formation of key intermediates in the catalytic cycle under

study. Developing high-throughput screens is thus intricately intertwined with understanding reaction

mechanism. Mechanisms determine catalytic intermediates, which determine which physical and chemical

properties can be used for screening; screens, in turn, eliminate unfeasible mechanisms.

2.1.2 This chapter

In this chapter, we review the role of computation in understanding water splitting by artificial transition

metal catalysts. We first review what DFT is particularly good at: thermochemistry. We compute the

overpotentials associated with different mechanisms on the same catalysts, hypothesizing that if the true

rate-determining step (RDS) of a catalyst is chemically similar to the RDS of an incorrect mechanism, the

overpotentials predicted from the incorrect mechanism may still be quantiatively accurate. We next aim

to develop a catalytic screen for mixed alloys of transition metals by studying in detail the properties of

mixed metal-oxide dimers, or ’heterobimetallics.’ Through the development of this screen, we necessarily
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must critically examine the utility of the widely-used Sabatier analysis to study the properties of alloys,

as its utility in such complex chemical systems is unclear. By studying how the two metals in a dimer

interact and whether or not these interactions raise or lower overpotentials, we aim to answer the question:

Can the properties of heterobimetallic OER catalysts be predicted soley from the properties of the

homobimetallics, or are the electronic interactions between metals of different chemical character too

complex to make such predictions?

We then examine high-fidelity simulations of catalytic water-splitting, in which the treatment of

solvation and the selection of model catalysts are key factors. We focus on OER on Nocera’s CoPi

catalyst [9, 150, 130, 151] to discuss these issues. Additionally, we pay particularly close attention to

the kinetics of PCET events so ubiquitous in this reaction. Our hope is that we may provide a concise

summary of the state-of-the-art methods and best practices for applying DFT to study catalysis in order

to guide future work.

2.2 Computational Thermodynamics of Water Splitting

Water splitting catalysis is not a concerted process, but proceeds through stable intermediates. To know

the intermediates in the water splitting cycle, we must first propose a mechanism. Once we propose a

mechanism and enumerate the intermediates, we can calculate the thermodynamic stability of the different

intermediates, and determine how stable they are in relation to one another. Though the overall reaction

may have a potential of 1.23 V per electron transfered, individual reaction steps may have potentials

thermodynamically uphill by a value much greater than 1.23 V (or even downhill!). The thermodynamic

stability of different intermediates in the catalytic cycle depends heavily on both the nature of the catalytic

surface (both the type of transition metal and uniformity) and the catalytic mechanism.

There are also reaction barriers between these steps, which determine the kinetics of electron transfer.

The overpotential of the overall reaction depends on the magnitude of the largest barrier in the entire

cycle. If we ignore activation energy (and thus reaction kinetics) by assuming it is small, then the

overpotential of a given mechanism is determined entirely by thermodynamics. This overpotential will be

an underestimate of the true overpotential, but can be a quite useful estimate, and is attainable without

studying reaction kinetics in detail. In certain cases, ignoring barrier heights is justifiable: for example,

PCET events, ubiquitous in water splitting, usually have small barriers and PCET rate constants often

contain large quantum-mechanical tunneling prefactors [152, 153]. In other cases—cases which we will

examine in detail later—it is not as justifiable, and a careful treatment of the reaction barriers is necessary.
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Figure 2-2: Thermodynamic cycle which can be used for the computation of ∆G298
f,aq, the aqueous free

energy of formation of a molecule. The numbered steps correspond to the numbered steps in the main
text. Once one references the absolute energy of a molecule to a suitable standard state (steps 1 and 2 in
the cycle), one can then apply a series of corrections to the DFT-calculated internal energy to adjust the
temperature from 0 K to an arbitrary temperature (step 3; here, room temperature, or 298 K); include
entropic effects due to molecular vibrations (step 4); and include the effects of solvent electrostatics
(including those on entropy) through a continuum dielectric model (step 5).

2.2.1 Thermodynamics Overview

Density functional theory is quite well-suited to computing relative thermodynamic stabilities among a

series of compounds. Using reasonably-sized basis sets and hybrid functionals, one can get very close

to “chemically accurate” heats of atomization (and, with suitable use of experimental tables, heats of

formation) for compounds in the gas phase at 0 K [154, 155]. The challenges of density functional

thermochemistry come with predicting free energies of formation in solution at finite temperature. For

ease of notation, we shall illustrate how to compute free energies of formation at 298 K, but in practice

this protocol can be applied for any temperature. Fortunately, there has been much development on this

topic in recent years [156, 157, 111, 112, 118]; we shall summarize some of the main finding here.

Many authors have made use of thermodynamic cycles in order to study the thermodynamics of water

splitting. Yang and Baik have developed computational methods for studying the thermodynamics of

water splitting from a molecular perspective [158, 159, 160]; likewise, Norskov et al. pioneered similar

methods for plane-wave computations on simulated surfaces [145, 88]. In this chapter, we shall focus in

particular on one example of a protocol, shown in Figure 2-2. This particular protocol is not original or

unique, but is chosen in order to clearly illustrate themes in water splitting thermodynamics which are
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detailed below.

The cycle in Figure 2-2 can be used to calculate ∆G298
f,aq, from which reaction free energies–and thus

redox potentials–can be computed. Many ideas in this cycle are well-established for wavefunction-based

methods [154, 161, 155], and have more recently been extended to DFT methods [162]. The main idea

can be summarized as follows:

1. Computation of atomization energies from DFT is straightforward, but computation of formation

energies is not. We must thus first adjust the “reference” from elements in their standard state at

298 K to atoms at 0 K using empirical data from standard thermodynamic tables [163] by applying

an adjustment ∆G0→298
adj . This will eventually allow for the calculation of free energies of formation.

2. Compute ∆H0
atom,g, the gas-phase atomization energy at 0 K, from the DFT energies of the com-

pound of interest and its constituent atoms.

3. Compute the vibrational frequencies of the molecule using a harmonic frequency analysis; from this,

extract:

(a) ∆∆H0→298
f,g = ∆∆Hvib+∆∆Hrot+∆∆Htrans+PV = 1

2

∑
i ~ωi coth

[ ~ωi
2RT

]
+ 3

2RT+ 3
2RT+RT .

Note that this includes the zero-point vibrational energy, as well as thermal contributions from

higher vibrational states within the harmonic approximation. The translational and rotational

contributions to the enthalpy are treated classically.

(b) T∆S298
g =

∑
i

~ωi coth
[

~ωi
2RT

]
2 + RT ln

[
1
2csch

[ ~ωi
2RT

]]
. This comes from the standard statistical

mechanical relationship for vibrational enthalpy.

4. Compute ∆G298
f,g = ∆H0

atom,g + ∆G0→298
adj + ∆∆H0→298

f,g − T∆S298
g , the gas-phase free energy of

formation of the molecule at 298 K.

5. Compute ∆G298
solv; then, ∆G298

f,aq = ∆Gf,g + ∆G298
solv.

In passing, we will note that the computation of ∆H0
atom,g can be non-trivial for transition metals, as

the ground-state spin multiplicity is often incorrectly predicted by DFT [164, 165, 140]. Procedures have

been tested to get the ordering of spin states correct and minimize the errors in ∆O, the octahedral

crystal field energy spin splitting [166, 167].

Furthermore, computation of ∆G298
solv is a delicate matter. In a continuum dielectric solvation calcu-

lation, the molecule of interest is enclosed in a cavity; then, the rest of space is filled with a dielectric

medium. The medium is allowed to polarize the electrons on the molecule (and vice-versa) in a self-

consistent fashion, which ultimately influences the total energy of the system. Accurate solvation free

energies rely largely on the quality of the cavity used as well as the parameterization of the dielectric

response of the polarized continuum. Many models capture these effects with different underlying physics,
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each with their own strengths and weaknesses; for a good review on the topic, we direct interested readers

to the exchange in References [112] and [113].

From a ∆G298
f,aq we can easily compute a reaction free energy, ∆G298

r , from which we can calculate an

absolute electrochemical potential,

E◦ = −∆G298
r

nF

where n is the number of electrons transferred and F is the Faraday constant. One final step must be

completed before a comparison to experiment is possible: adjusting the absolute potential with respect to

a reference electrode. Experimentally, redox potentials are measured with respect to a reference electrode

or an internal standard reference redox couple whose absolute potential is known. Computationally, redox

potentials are often calculated as the difference in (free) energy between a species with an excess electron

and that same species without its excess electron. In order to compare theory to experiment, these two

methods must be reconciled.

One complication which arises in these calculations is how to treat the solvation of a proton and

an electron in order to get accurate free energies. The solvation free energy of both of these particles

is beyond the reach of the state-of-the-art in computational chemistry; as such, alternatives must be

used. One common approach is to compute an absolute free energy of solvation for each by using an

experimental reference value [168, 169, 170].

Another common approach, which we use in our calcuations, is to use a computational internal

standard (see, e.g., References [145, 171]). As an example, consider the PCET reaction

MH2+ → M3+ + H+ + e−

If we assume the reaction

H+ + e− �
1

2
H2

is in equilibrium (E = 0.00V), then we can add the two reactions of interest without changing the redox

potential of the reaction of interest, and compute the absolute redox potential of

MH2+ → M3+ +
1

2
H2

In doing so, we have used a computational internal standard – namely, we have referenced all of our

redox potentials to the redox potential of the atomization of molecular hydrogen. This specific choice of

a reference redox couple is given a special name in the experimental literature: the standard hydrogen

electrode (SHE). In principle, this referencing technique can be applied to any redox couple; besides
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Figure 2-3: All calculations in this section were performed using the above model complex. This complex
was chosen so as to (1) replicate the octahedral oxygen coordination sphere found in heterogeneous metal-
oxide catalysts, and (2) fix the oxidation states of each metal. The metal oxidation states are controlled
by removing a hydrogen atom (proton + electron) from the simulation on the two apical sites. In this
catalytic intermediate, each metal has an -OH at its active site, meaning each metal is in the +3 oxidation
state. Metal atoms are represented in cyan and brown; oxygens in red; nitrogens in blue; carbons in black;
and hydrogens in white.

referencing to the SHE, referencing to the ferrocene couple has been quite popular in recent years [171].

In practice, it is most convenient to compute the redox potential of a reaction with respect to a reference

that is easily experimentally accessible.

2.2.2 Computational model

In order to screen a large number of metal-oxide alloys, it was necessary for us to reduce a bulk het-

erogeneous catalyst down to a simpler model system, in order to reduce cost. We chose to reduce a

bulk metal-oxide down to a two-metal small-molecule catalyst, as depicted in Figure 2-3. The model

was chosen to allow us to examine how two transition metals (like or dislike) interact during the course

of the mechanisms in Figure 2-1. The metals have octahedral oxygen coordination sphere (like in most

bulk metal oxides), and the ligands were chosen to give the metals the correct oxidation state (MIII for

both metals in the depicted intermediate). The catalytic intermediate can be changed by permuting the

protonation state of the two OH ligands bound to the top of the metals, allowing us to study the entire

catalytic cycle. With our model, we make the implicit assumption that only nearest-neighbor effects

affect catalytic overpotentials.

We computed redox potentials following the thermodynamic procedure detailed in the previous section.

All ab initio calculations were performed using PBE0 [98] and the 6-31g* basis set as implemented in the

Q-Chem software package [172]. Geometry optimizations were performed for each intermediate in the

catalytic cycle. A stability analysis was performed after each optimization to ensure the structure was at a

minimum; imaginary frequencies smaller than 100 cm−1 were ignored. The energy at each minimum was
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corrected using (1) finite temperature enthalpy corrections, and (2) vibrational entropy corrections, using

a combination of the real vibrational frequencies of the intermediate (scaled appropriately for PBE0/6-

31g* [162]) and the equipartition theorem. A solvation correction was also added to the energy, using

the polarizable continuum model (PCM) [110, 108] with a dielectric of 78.39 (that of water at 298 K).

Van der Waals radii for all elements were taken from standard tables [173] and scaled by 1.2 (1.1 for

H), following established precedent [174, 175, 111, 112]. An integration grid of 74 radial points and 302

angular points were used for all SCF computations.

In order to simplify our analysis, we assumed that the resting state of the catalyst was always M-OH,

and the metal in the catalytic resting state had an oxidation state consistent with the metal’s most-

prevalent oxidation states (III for most metals, IV for V and Cr). As the catalyst progressed through the

catalytic cycle, we adjusted the oxidation accordingly—from III for M-OH and M-OOH, to IV for M-O

and M-OO, to II for M-OH2. We additionally made the simplifying assumption that each metal had a

spin state consistent with a low-spin octahedral crystal field picture, and that the spins of the two metals

in the dimer were ferromagnetically coupled.

We explicitly computed the redox potentials versus the standard hydrogen electrode (SHE) (and, in

cases of chemical steps where there was no electron transfer, the ∆G◦rxn) for each step in the mechanisms

shown in Figure 2-1. To be consistent with analyses done by other authors [88], we combined chemical

steps (i.e., ones with no explicit electron transfer) with electrochemical steps (i.e., ones with explicit

electron transfer) to reduce each mechanism down to four electrochemical steps. We performed the

grouping according to the following heuristic:

• If a chemical step is downhill, assume the previous step is pre-equilibrium; group the chemical step

with the previous step

• If a chemical step is uphill, it is rate-determining for the chemical transformation; group it and all

other following chemical steps with the next electrochemical step.

With four electrochemical redox potentials present for each mechanism, we computed the overpotential

η by taking the largest of these four potentials and subtracting from it the thermodynamic potential for

water splitting against the SHE, 1.23 V:

η = E◦max − 1.23V

where E◦max is the potential of the largest uphill step in the considered mechanisms.

2.2.3 Application to the first-row transition metal series

In order to illustrate the utility of the procedure described in the previous section, we applied the thermo-

dynamics protocol outlined above to compute the overpotential for water splitting on a family of model
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Figure 2-4: (a) Overpotentials of metal-oxide model clusters follow the expected periodic trend: as the
d-orbitals fill up and the number of unpaired eg electrons is maximized, the overpotential decreases.
This is associated with a change in the mechanistic rate-determining step from O-O bond formation to
metal oxidation. Somewhat surprisingly, mechanisms with chemically-similar rate-determining steps have
computationally indistinguishable overpotentials, suggesting that DFT can predict overpotentials even
if the assumed mechanism is incorrect (but chemically similar to the true mechanism). (b) A principle
component analysis of the data used to generate (a) reveals that the coordinate along which the catalytic
activity is maximized is a linear combination of the energy of MIII (MIV ) oxidation and oxygen-oxygen
bond formation. Error bars represent the intrinsic error of DFT calculations on these sorts of systems,
estimated generously as ±0.3 V [165].

molecular catalysts shown in Figure 2-3 spanning the first row of the transition metal series. The selection

and design of the model catalysts are discussed in Section 2.2.2. Figure 2-4 shows our results, where we

plot activity versus our descriptor, atomic number of the transition metal center. Both the acid-base

mechanism and direct-coupling mechanism are considered.

As Figure 2-4 shows, the lower bound on overpotentials which we calculate using our model system

has two linear regions, which intersect at a peak of activity. This trend has been observed generally

for many molecular scaffolds, as explained in more detail below. Our data also serves as a scan across

the first period of the periodic table for catalytic activity and its relation to mechanism. There are two

interesting points to note:

• The rate-limiting step of OER shifts from oxygen-oxygen bond formation to formation ofM IV from

M III going left to right across the period

• The observed activity does not depend on mechanism to within the error of our calculations

As we go from left to right across the period, the overpotential required to evolve oxygen from a metal-

oxide catalyst first decreases, and then increases again—forming a peak in activity consistent with previ-

ous experimental and theoretical results [135, 10, 142, 34]. The rate-determining step changes from O-O

bond formation on the left side of the period, to MIII oxidation on the right side of the period; this ob-

servation is consistent with arguments regarding the origin of this periodic trend based on metal-oxygen
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bond strength and d-band filling as outlined in detail in Section 2.1.

The second point raises a bit of a conundrum, as the rate of oxygen evolution should depend on

mechanism, provided the rate-limiting step is O-O bond formation. This dependence is not observed.

Regardless, the fact that the overpotentials don’t vary with mechanism can be classified as a strength of

this type of thermodynamic analysis, as one can predict overpotentials without worrying about getting

precisely the correct mechanism. As a caveat, the converse is not true: just because the overpotential

agrees with an experimentally observed value does not mean that the mechanism that is used to predict

the overpotential is correct. Thermodynamic analysis is incredibly useful as a fast, computationally cheap

screen of a large number of potential catalysts, but conclusions about mechanism or the chemical nature

of oxygen evolution cannot and should not be drawn from such an analysis. For the remainder of this

chapter, we will thus focus only on direct-coupling overpotentials for simplicity.

2.2.4 Chemical Descriptors of Reactivity

In the previous two sections, we have described the computation of the thermodynamics of the water-

splitting reaction on a heterogeneous catalyst and demonstrated how thermodynamics can be used as

a predictor of catalytic activity; we will now review the theoretical work that went into pioneering this

approach, and the experimental work that has grown from it. Much of the initial work in this area came

out of the group of Jens Norskov [88, 145, 135, 141, 34], but other theoretical groups [139, 176] and

some experimental groups [10, 142] have extended the principles and used them to explain experimental

observations. We do not plan on engaging in a comprehensive review of transition-metal water oxidation

catalysis here; for such a review, the interested reader is directed to Reference [177].

The use of thermodynamics to describe catalysis is not a new concept: Paul Sabatier introduced

his eponymous principle in 1911 [134]. The Sabatier Principle states that the optimal catalyst for a

particular substrate will not bind the substrate too weakly (because if it did, the substrate would not

bind to the catalyst) or the product too strongly (because if it did, the product would never be released

from the catalytic surface, and the catalyst would be “poisoned”). As a special case of the discussion in

the previous section, Sabatier analysis suggests that it should be possible to use thermodynamics alone

to predict catalytic activity.

Norskov extended this analysis to the 21st century by proposing that one could computationally

screen a large number of catalysts using DFT by focusing on the metal-oxygen bond strength. By the

Sabatier principle, the perfect catalyst for water splitting should bind water “strongly” and oxygen “not too

strongly”; since both bind through a metal-oxygen bond, a plot of catalytic activity as a function of metal-

oxygen bond strength should have a maximum at the “optimal” metal-oxygen bond strength. In practice,

one forms two calibration curves (one with a positive slope, and one with a negative slope) by calculating

the metal-oxygen bond strength of a large number of species and correlating these with experimentally-
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measured activities; these two calibration curves form a “volcano” of activity, with their intersection lying

at the peak of the volcano. Then, one can screen large numbers of compounds computationally, and those

compounds with metal-oxygen bond strengths near the peak of the volcano are predicted to have high

catalytic activity.

Metal-oxygen bond strength is not the only useful chemical descriptor for Sabatier analysis. Other

descriptors exist as well, including the filling of transition metal eg orbitals—the orbitals most implicated

in surface metal-oxygen bonds. Ultimately, these all boil down to the same sort of Sabatier principle: if

it’s easy for the substrate to form a chemical bond to the catalyst, and easy for the product to break

a chemical bond with the catalyst, the catalyst will work well. Remarkably, these volcano plots work

extremely well at predicting activity as a function of a simple chemical descriptor.

We performed a principle component analysis on the six free energy changes associated with the

direct coupling mechanism across the metal series in order to better understand the origin of the periodic

trend; the result of this analysis is shown in Figure 2-4(b). Unsurprisingly, the two potentials that best

characterize the data are the potential for MIII oxidation (or MIV oxidation in the case of V/Cr) and

the energy for oxygen-oxygen bond formation. For at least the homobimetallic case, where the catalyst

is comprised of only a single type of metal, a linear combination of these two energies can serve as an

adequate descriptor of catalytic activity.

One major criticism of this Sabatier-type analysis is that it assumes the rate-limiting step of catalytic

water splitting is either the association of the substrate with the catalyst or the dissociation of the product

from the catalyst. In many cases, this is simply not true: redox steps and oxygen-oxygen bond formation

have been found to be rate-limiting in certain systems [131, 136, 143, 178, 130, 8, 129, 179, 12]. Sabatier

analysis is thus successful when the rate-limiting step of the catalytic cycle is a redox step, but its scope

is limited to such systems; as such, the use of Sabatier analysis is often precluded by not knowing the

rate-limiting step of a catalytic cycle ahead of time. Nevertheless, the technique is powerful, in that it

uses thermodynamic information (along with an assumption about the rate-limiting step of the cycle) in

order to predict kinetics.

2.2.5 Extracting catalytic design principles from metal alloy overpotentials

Building off of the observed trends for homobimetallic complexes, we extended our investigation to hetero-

bimetallic complex—catalysts where two different metals can interact, altering the stability of mechanistic

intermediates. To extract general catalytic design principles, we must ask: How does doping a metal-

oxide with a different type of metal affect the energetics of catalysts? And how much of the properties

of the heterobimetallic species can be predicted a priori from the homobimetallic data?

To answer these questions, we first extended the analysis presented in Figure 2-4 to metal dimers

composed of all possible combinations of metals in the first period of the transition metal series; the
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Figure 2-5: Absolute overpotentials of all heterobimetallic complexes studied, in volts with respect to
the standard hydrogen electrode. No data is reported for two complexes, Ti-Cu and V-Cr, as certain
catalytic intermediates in each case fell apart upon geometry optimization. Additionally, Cr-Mn through
Cr-Ni complexes did not remain octahedral during O-O bond formation, and Mn-Cu was found to have
a different resting state (Mn-O Cu-OH2) than the other complexes studied. While certain points appear
questionable (especially Ti-Ci), we observe reasonably low overpotentials near the center of the matrix,
begging the question: is there a chemical descriptor that we can use to predict alloy overpotentials a
priori?

overpotentials associated with these dimers are presented in Figure 2-5. We limit the scope of our

discussion for the heterobimetallics to the direct coupling mechanism. The diagonal elements of the

pictured overpotential matrix are the direct coupling overpotentials depicted in Figure 2-4.

Of greater interest are the off-diagonal elements, which represent heterodimer overpotentials. Some of

these have lower overpotentials than the homobimetallic materials, suggesting higher catalytic turnover.

Of the screened materials with small overpotentials, we suspect that Ti-Cr and Ti-Ni may be questionable,

as titatium(III) oxide catalysts are known to be inefficient due to their large band gaps [180]. Additionally,

many of the chromium dimers required a significant distortion of the ligand field in order to accomodate

O-O bond formation. These materials aside, none of the rest of the materials screened showed any large

issues, so we expect the overpotentials of materials containing Mn-, Fe-, Co- and Ni- to be chemically

relevant—to within the accuracy of our DFT calculations. We are unable to, e.g., order the overpotentials

of Ni-Fe, Ni-Co, and Co-Fe with respect to one another, because they are all the same to within the error

of our calculations; the ordering presented here may thus be inconsistent with experimental observations

[181].

To understand the origins of the overpotentials presented in Figure 2-5, we examine qualitatively

which step in the water splitting cycle is the rate-determining step. The results are presented in Figure 2-

6. While the mechanism of homobimetallic complexes (see Figure 2-4) shows a clear trend—shifting from

an O-O bond formation RDS to a metal oxidation RDS across the period—the corresponding analysis of
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Figure 2-6: Rate-determining steps of the oxygen evolution reaction on transition metal-oxide dimers.
While the homobimetallics showed a clear trend, the RDS of heterobimetallic species is much more varied.
A Sabatier analysis thus cannot be applied in a straightforward manner to the heterobimetallics.

the RDS of heterobimetallic complex does no such thing. O-O bond formation is the predominent RDS: it

accounts for the bottleneck step in over half of the complexes studied. In spite of this observation, nickle-

containing complexes have a tendences to have metal oxidation as the RDS, and manganese-containing

complexes water attachment. Because of these frequent blips, a Sabatier analysis is not straightforward;

we will thus focus our discussion on trying to understand the origin of these trends and searching for a

descriptor that can be used to inform catalytic design.

2.2.5.1 Metal Cooperativity

We recapitulate that our desire in this chapter is to understand how much of the properties of the

heterobimetallics can be predicted solely from the properties of the homobimetallics, and how a mapping

of one on to the other can inform rational design. We begin our analysis by quantifying how much

two unlike metals cooperate with one another to lower overpotentials. With the exception of O-O bond

formation, each step in the direct-coupling mechanism is local: it occurs on only one of the two metals

in the complex. As a measure of cooperativity, then, we ask: for a RDS occuring primarily on metal A

in the transition metal dimer A-B, what is the difference between the A-B overpotential and the A-A

overpotential? Or, in the case where the RDS is O-O bond formation, what is the difference between the

A-B overpotential with the average of the A-A and B-B overpotentials?

Figure 2-7 shows the results of this analysis. We observe, generally, that in the lower-right corner of

the table—where metal(III) oxidation is the RDS—metal dimers tend to behave weakly anticooperatively

or independently. In the region near Mn-Mn—where water attachment is the RDS—metal dimers tend

to behave weakly cooperatively or independently. By contrast, in the rest of the table—where O-O bond

formation is the RDS—metal dimers tend to cooperate strongly.
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Figure 2-7: For each metal pair, we compute a naive estimation of the overpotential by taking either (1)
the homobimetallic overpotential of the site associated with the chemistry of the RDS, or (2) the average
of the two homobimetallic overpotentials for the alloy in question if the RDS is O-O bond formation. By
plotting the difference between the heterobimetallic overpotential and our naive estimate, we extract a
measure of how cooperative the metals are in the heterodimers. Blue squares represent a positive effect
(i.e. the metals work together to lower overpotentials) and red squares represent a negative effect. The
size of the square corresponds to the magnitude of the effect.

These observations are consistent with our chemical intuition that when chemistry is local (i.e. the

RDS only involves one metal site directly), the other metal center tends to act as a spectator, only weakly

influencing the RDS. We point out an exception to this rule in the case of Ni doping (where the RDS

is predominantly metal(III) / metal(IV) oxidation but we observe strong cooperativity). This exception

can be understood by examining the individual redox potentials for Ni oxidation versus M oxidation for

each other metal in the series, as plotted in Figure 2-8. The RDS in this series does actually change from

Ni oxidation to M oxidation across the period. This change in RDS inflates our cooperativity metric

towards the left half of this series, as overpotentials are being drastically lowered by changing the RDS

from O-O bond formation to Ni oxidation.

O-O bond formation, on the other hand, is inherently nonlocal, and thus requires more than sum

of parts. Interestingly, in this case, we observe that overpotentials on heterodimers which arise due to

large barriers for O-O bond formation are reduced significantly compared to the average of the homod-

imer overpotentials, indicating nonequal contributions from the two metals in the radical coupling step.

Overall, the results in Figure 2-7 tell us how many of the overpotentials presented in Figure 2-5 could

have been guessed looking only at the overpotentials in Figure 2-4. In cases where cooperativity is small,

homobimetal overpotentials are a good predictor of alloy overpotentials; in cases where cooperativity is

large, they are not a good predictor. Thus, we must continue our search for a good universal predictor

of alloy catalytic activity.
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Figure 2-8: Examining Ni-M dimers across the series of metals reveals an interesting trend: overpotentials
of Ni-M species are generally lowered with respect to M-M species because the O-O bond formation energy
is substantially lowered, making a metal oxidation event the rate-determining step. For the first half of
the series, Ni oxidation is higher in energy than M oxidation, making it the RDS; later, this flips, and M
oxidation becomes the RDS.

2.2.5.2 Metal Communication

We next ask the question: Is an a priori universal predictor of heterobimetallic activity even possible, or

do the metals interact to such a significant effect that finding such a descriptor is hopeless? We purport to

answer this question by measuring communication between the metals. As a metric for communication,

we must look not only at how much the redox potential of the RDS changes going from a homobimetal-

based description of redox potentials to a heterobimetal-based description, but also at how much every

redox potential changes.

For this analysis, we use all six free energy changes occuring in the direct coupling cycle presented in

Figure 2-1, as combining chemical and electrochemical steps obfuscates metal communication. For each

metal pair, we look at the two sets of homobimetal redox potentials (and free energy changes) for the two

metals in the heterodimer. We compute six naive overpotentials for the heterodimer using the following

procedure:

1. First metal oxidation is the lower of the two homodimer metal oxidation potentials

2. If the first oxidation occurred on the left metal, take the second metal oxidation potential from the

right metal, or vice-versa

3. Average the two homodimer O-O bond formation free energies

4. Take the lower of the two homodimer free energies for water attachment

5. If water attachment occurred on the left metal, take the third redox potential from the left metal,

or vice-versa
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Figure 2-9: We wish to determine whether or not any information about heterodimer overpotentials can
be surmised by looking at only the homodimer data. For each heterodimer, we constructed a series of 6
chemical and electrochemical energies / redox potentials assuming the metals do not interact (except for
O-O bond formation, where they interact in a mean-field sense). Concretely, we took the lower of the two
homodimer energies for the two steps where there is a choice to be made (the initial metal oxidation, and
the site of water attachment), and followed the chemistry of the mechanism through for the rest of the
energies. The RMSD of these six energies from the heterodimer energies is shown, where the homodimers
by definition have an RMSD of 0 V.

6. If water attachment occurred on the left metal, take the final redox potential from the right metal,

or vice-versa.

These six redox potentials (and free energies) form a naive picture of the thermodynamics of catalysis on

a heterodimer: If the metals do not communicate much or at all, we would expect the true heterodimer

potentials / energies to be very close to these naive potentials / energies; if the metals communicate a

lot, we would expect the true heterodimer energies to deviate substantially from the naive energies.

We measure the root-mean-square deviation (RMSD) of the true redox potentials from the naive redox

potentials of all six steps for each metal dimer; the results are plotted in Figure 2-9. We wish to make two

observations about the data. First, overall, most of the metals in the heterodimers communicate fairly

substantially; in all of our data, the smallest RMSD is 0.4 V (for Co-Fe) and the largest is 3.1 V (for

Ti-V), and the mean RMSD is 0.9 V with a standard deviation of 0.7 V. Second, the communication data

show only a weak correlation with the cooperativity data in Figure 2-7. We observe that when the RDS

is metal oxidation or water attachment, the metals on average communicate less than when the RDS is

O-O bond formation (again, confluent with our chemical intuition); any deeper insights are difficult to

perceive.

From these observations, we conclude that even if metals communicate, it isn’t necessarily in a way

that affects cooperativity—sometimes, communication just affects redox potentials that aren’t the RDS.

While this indirectly affects overpotentials (as raising the potential of one step necessarily lowers the
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Figure 2-10: A principle component analysis of the six free energy differences computed for all compounds
studied reveals two key coordinates which can be used as descriptors of catalytic activity. (a) Examining
only the first of these two coordinates does not show a peak in activity, only a downward trend (especially
once the homobimetallic points, pictured as red squares, are excised from the data). (b) Looking at both
coordinates reveals a clear volcanic island of activity. We thus observe that in general, four energies are
needed to characterize the activity of a catalyst: the ionization potentials of metal(II) and metal(III);
the metal - water bond dissociation energy; and the O-O bond formation energy.

energy of at least one other), it does not necessitate the lowering of overpotentials. We can additionally

conclude that while there is overall a lot of metal-metal communication, since it does not necessarily

affect the RDS, it should (in principle) be possible to extract descriptors of catalytic activity from the

data.

2.2.5.3 Sabatier Analysis

Given the complexity of all that we’ve discussed so far, we return to our original question: Does anything

we know about homobimetals help predict heterobimetal behavior, or does the Sabatier analysis break

down due to the large amounts of communication and cooperativity in certain metal pairs? We perform

a principle component analysis on the data [182]—again using all six free energy changes implicated in

the direct coupling catalytic cycle instead of folding chemical steps into electrochemical steps as discussed

previously. The results are shown in Figure 2-10. The principle eigenvector of the covariance matrix of

redox potentials (averaged over the ensemble of all metal pairs) is, in full,

e1 = 0.32EM(III) ox1 + 0.20EM(III) ox2 − 0.89EO−O + 0.20EH2O add + 0.18EM(II) ox

with eigenvalue 6.13. This coordinate can be approximated by its two largest values,

e1 ≈ 0.32EM(III) ox1 − 0.89EO−O

Plotted versus this linear combination of potentials, the traditional Sabatier analysis breaks down
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(Figure 2-10(a)): the overpotentials decrease along this coordinate, but do not appear to increase again

after a minimum is reached (especially if the homobimetallic data are excised).

We do, however, recover Sabatier-like behavior if the second eigenvector (eigenvalue 1.20) is included;

in full, this eigenvector is

e1 = 0.25EM(III) ox2 − 0.80EH2O add + 0.54EM(II) ox

which can again be approximated by its two largest components,

e2 ≈ −0.80EH2O add + 0.54EM(II) ox

The correlation of overpotential with these two coordinates is shown in Figure 2-10(b). A volcano of

activity emerges along these two coordinates where none existed along only the first. Additionally, all

other eigenvalues of the covarience matrix are smaller than 1, suggesting that only the two coordinates

presented are chemically relevant for exploring design space.

2.3 Modeling water splitting kinetics

DFT thermochemistry can often reproduce trends in catalytic activity, as illustrated by the analysis in the

previous section. This level of modeling can provide actionable insight without a detailed understanding

of the mechanism of catalytic activity. However, to determine plausible reaction pathways or to predict

the activity of novel catalyst designs, a mechanistic understanding of the catalytic cycle is indispensable.

Strictly thermochemical approaches neglect the role of kinetics, which must be incorporated into the

simulation strategy for mechanistic studies. In this section, using recent computational studies of Nocera’s

CoPi cobalt oxide catalyst [9, 150, 130, 151] as a basis for discussion, we discuss the computation of redox

potentials in solution and the insight it can provide into kinetics of catalytic water splitting.

2.3.1 Catalyst model selection

The active form of the aqueous CoPi catalyst is a cobalt oxide cluster possessing pendant water and

hydroxo ligands. The catalytic cycle of CoPi is comprised of a series of four oxidations of the CoPi-

water complex coupled to the formation of an O-O bond, release of O2 from the catalytic surface, and

regeneration of the catalyst resting state by water addition [129]. Identification of the rate-determining

step (RDS) of the CoPi catalytic cycle is a central goal of computational studies. The RDS controls

the turnover rate, and its identification helps narrow the range of plausible mechanisms. For chemical

(bond-breaking and forming) steps in the cycle, the activation free energy ∆G‡ is the key quantity to be

determined, while for redox events, the ET kinetics are governed predominantly by the redox potentials
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a) b) c)

Figure 2-11: (a) 7-center model of the CoPi surface (protons omitted), consisting of edge-sharing
CoO6 octahedra and supported by EXAFS studies. (b) Cubane Co4O4model of the CoPi catalyst, used
in Reference [129]. (c) O-O bonding in the 5-center CoPi model, which was used for the additional
calculations described in this chapter. Letters identify terminal oxo (a,e) and bridging µ-oxo (b,c,d)
protons available for abstraction in the third and fourth PCET events.

of the catalyst.

Given the extensive network of single-step chemical reactions that can take place in, on, and around

the CoPi catalyst, an exhaustive exploration of all possible water oxidation pathways is possible only for

model systems of modest size. EXAFS studies support structures as small as the 7-center cobaltate model

[183] shown in Figure 2-11(a), but initial mechanistic studies of the CoPi catalyst focused on a minimal

4-center cubane model, Figure 2-11(b). This model permits the quantification of both acid-base and

direct coupling mechanisms while satisfying Occam’s razor by limiting the investigation to the simplest

mechanism capable of explaining experimentally observed features.

To consider additional PCET pathways not testable with the cubane model, we introduced a 5-center

model, Figure 2-11(b), shown here in the state immediately following two PCET events and O-O bond

formation. Here, terminal oxo (labels a, e) and µ-oxo protons (labels b, c, d) are both available for

abstraction by PCET. The 5-center model is thus capable of distinguishing among a larger variety of

PCET pathways.

A related study of water splitting on CoPi [184] raised the important issue of identifying the lowest

energy protonation state of the model complex. Using a different computational model from the one used

in Reference [129], Li et al. found a lower-energy protonation state for the 4-center catalyst, containing

protonated µ-oxo bridges. DFT MD simulations of representative Co6O23, Co7O24, and Co7O26 clusters

by Mattioli et al. also suggested a role for protonated µ-O atoms in the resting state [185]. Their

model structures were derived from the known crystal structure of LiCoO2 and included a linked pair

of perfect Co4O4 cubanes; a pair of defective cubanes (identical to the 7-center model discussed above);

and a mixed case. The structural differences in these studies lead to differing conclusions about the O-O

bonding mechanism in CoPi, as discussed below.

56



2.3.2 Treatment of solvent

In practice, DFT-derived reduction potentials can depend strongly on the level of theory at which the

solvent is treated, especially for protic solvents like water. This dependence has been investigated exten-

sively [112, 186, 187, 118], supporting an informed decision about how to model the aqueous environment

of the CoPi catalyst. The CoPi water oxidation studies of Li et al [184]. employed a Poisson-Boltzmann

implicit solvent model [188], based on the success of this approach for modeling biological water oxidation

[125]. However, in the case of water oxidation by the CoPi catalyst, the potentially important role of

hydrogen-bonding at the surface of the catalyst is a strong argument against the use of implicit solvation

models which do not account for hydrogen bonding across the artificial solute-solvent interface.

In a benchmark study of reduction potentials of aqueous transition metal clusters, we showed that

DFT (using the B3LYP functional) [97] with the conductor-like screening model (COSMO) [109] suc-

cessfully predicts experimental reduction potentials for organic molecules, metallocene complexes, and

transition-metal complexes in various solvents, with the key exception of octahedrally coordinated aque-

ous transition-metal complexes [118]. The calculated reduction potentials of aqueous transition-metal

complexes, shown in blue, are nearly all overestimated by more than 1 V, in contrast to root mean square

deviations (RMSD) of 0.2-0.4 V between calculated and experimental reduction potentials for all other

classes of complexes. While such errors were acceptable when extracting qualitative trends and design

principles, they are less desirable when we wish to pin down kinetic barriers quantitatively.

A polarizable QM/MM (QM/MMpol) treatment showed significant improvement, achieving a similar

RMSD to the other systems in implicit solvent. In the QM/MMpol model, electronic polarization of

the solvent due to redox events was accounted for explicitly [116]; its inclusion proved to be essential

for reproducing the experimental reduction potentials. The QM/MMpol approach overcomes the failures

of implicit solvation for aqueous transition metal complexes, but at significant computational cost. By

isolating the effects of solute flexibility and of temporal solute-solvent correlation on the solvation energy,

we showed that hydrogen-bonding effects are the primary feature absent from the implicit solvation

models which account for most of the error in the calculated reduction potentials.

The CoPi studies of Mattioli et al. also rely on an explicit representation of the solvent, treating the

surrounding water at the same DFT level of theory as the catalyst itself [185, 189]. This even-handed

approach accounts for hydrogen-bonding effects—to the extent that the underlying functional successfully

describes noncovalent interactions—while naturally including both electronic and orientational polariza-

tion of the solvent after a redox event. The only clear disadvantage of such an approach is computational

cost. In the next section, we will explore how the model selection and solvent considerations above

influence the calculation of redox potentials and reaction profiles for water oxidation in CoPi.
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2.3.3 Computational methodology

To calculate redox potentials in the QM/MM approach, we ran equilibriumMD trajectories of the solvated

catalyst both before and after the PCET event. The change in free energy was computed by sampling

configurations from both the oxidized and reduced ensembles; calculating the ensemble-averaged energy

gaps between oxidized and reduced states, Eox - Ered; and finally taking the mean of these two energy

gaps:

∆G =
1

2
(〈Eox − Ered〉ox + 〈Eox − Ered〉red) (2.1)

This working equation stems from the technique of thermodynamic integration and assumes that free

energy changes are linear in the thermodynamic integration parameter, which can be thought of as a

reaction coordinate for PCET [118].

To calculate redox potentials for the third and fourth PCET events in CoPi, we employed the QM/MM

approach described in the Supporting Information of Reference [129] with some minor modifications.

For QM/MM simulations, the CoPi catalyst and all pendant ligands, including water, are treated

quantum mechanically with DFT (PBE0 functional) and the TZVP basis set [190]. The catalyst was sur-

rounded by 216 SPC/E water molecules [191] in a periodic box (length 37.2 Å). The QM/MM interaction

potential is derived from the usual electronic embedding scheme [192]; for van der Waals interactions,

hydrogen and oxygen parameters are taken from the SPC/E model while cobalt parameters are taken

from UFF [193]. All QM/MM MD simulations were performed through the CHARMM/Q-Chem interface

[194].

Initial configurations for QM/MM MD simulations of the 3rd and 4th PCET events were sampled

from NVT-equilibrated configurations of the previous (O-O bonding) step in the catalytic cycle. For each

protonation state (as described in Figure 2-12), between 2 and 6 independent QM/MM MD simulations

were performed with a velocity Verlet integrator, a timestep of 1 fs, and a Nosé-Hoover thermostat

to maintain a simulation temperature of 298 K. The SHAKE algorithm [195] was used to constrain

highfrequency vibrations in SPC/E water during the dynamics. After collecting at least 2.5 ps of dynamics

from each trajectory, the first 0.5 ps were discarded and snapshots were sampled at regular intervals of

20 fs for the calculation of energy gaps.

Vertical energy gaps between neutral and ionized species were computed using a polarizable QM/MM

model. Electronic polarization of the solvent was described through a modified SPC/E water model de-

scribed in previous work [129], which employs a Drude particle on oxygen whose polarizability parameter

is taken from the SWM4-DP water model [116]. Vertical energy gaps are adjusted for referencing with

respect to the standard hydrogen electrode (4.43 V, pH 0) by subtracting 4.43 V and 59 mV for each pH

unit.
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2.3.4 Redox potentials for the CoPi catalyst

In previous work, we showed a direct coupling pathway for O2 bond formation on the 4-center CoPi model

of Figure 2-11(b), where an O-O bond formed spontaneously between a pair of terminal oxo ligands after

two PCET events [129]. The redox potentials for these two PCETs, computed using the QM/MMpol

approach described in the previous section, are 0.8 V and 1.4 V, respectively. Here we report redox

potentials for the third and fourth PCET events, assuming that both take place before water addition

and O2 displacement. The same QM/MMpol strategy used for the first two PCET events is employed here:

the QM region consists of the CoPi model complex including all hydroxyl and water ligands, surrounded

by water treated through the MMpol model. Redox potentials were obtained through conformational

sampling of the ionization potential and electron affinity of the catalyst in different oxidation states, as

described in the Section 2.3.3. All possible pairs of deprotonation sites, indicated in Figure 2-11(c), were

considered.

The pathway with lowest determined overpotential consisted of deprotonation of a water ligand (a)

at 0.2 V, followed by deprotonation at a µ-oxo site (b) at 1.2 V; the complete series of redox events is

summarized in Figure 2-12. For the fourth PCET, deprotonation of a second water (e) was calculated to

require an additional potential of 0.4 V above the (a,b) pathway. Interligand proton transfer on CoPi is

also relatively facile in the simulations, evidenced for example by proton transfer from water to a hydroxyo

ligand preceding the fourth PCET in Figure 2-12. The simulations show a lower redox potential for the

fourth PCET than for the second PCET preceding O-O bond formation. Therefore it is feasible for all

four PCET steps to precede water addition, making O2 release a plausible rate-limiting step. This finding

helps rationalize the Sabatier-type analysis discussed previously by supporting its underlying assumption

that the rate-limiting step is a catalyst-reactant association or dissociation process.

The prediction of water splitting kinetics in catalysts like CoPi ultimately hinges on three capabilities:

simulating solvent dynamics, accurately computing redox potentials, and estimating reaction free energy

barriers. The computational investigations presented here each addressed these requirements in slightly

different ways, but they collectively point to several points of consensus about CoPi. Mattioli et al. carried

out direct Car-Parrinello MD simulations of a solvated CoPi complex including full DFT treatment of

water. Redox processes were simulated by removing electrons at fixed time intervals of 1 ps [189]. The

timescale is incompatible with the relaxation time of water [196]. but allowed for real-time simulation

of the full sequence of redox events within DFT. The simulations did not show spontaneous formation

of terminal Co(O) groups until all four electrons were removed, requiring an overpotential of 1.87 V for

a Co6O23 model catalyst. Li et al. considered redox events on the cubane Co4O4 model using implicit

solvent and found a slightly lower barrier for water attack than for direct coupling after the first two

oxidations [184].

All of the studies agree that the 4-center model for CoPi cannot fully account for all experimental
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−e−, −H+, 0.8 V

−e−, −H+, 1.4 V

−e−, −H+, 0.2 V

−e−, −H+, 1.2 V

Figure 2-12: Oxidations and bond rearrangements on CoPi leading up to water addition and O2 release,
assuming a direct coupling mechanism across neighboring terminal oxos. The lowest redox potential
identified for each step is shown with the corresponding deprotonation site.
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observations, especially the distribution of bond lengths determined by X-ray absorption spectroscopy.

Regarding the sequence of redox processes, the QM/MM and CPMD studies agree on several points: (1)

O-O bonding can proceed after loss of as few as two electrons, though losing additional electrons helps;

(2) pre-equilibrium steps involving proton transfer are likely, as intramolecular proton transfer is facile on

the surface of CoPi; and (3) direct coupling, not an acid-base mechanism, is responsible for O-O bonding

in the Co4O4 model cluster. It is of course possible that multiple mechanisms contribute to the overall

performance of a heterogeneous, self-assembled catalyst such as CoPi.

The direct coupling mechanism supported by the QM/MM and CPMD studies is at odds with the

implicit solvation study of Li et al., where O-O bonding occurred between an oxo group and an attacking

water molecule. This difference underscores the importance of treating catalyst-solvent interactions

explicitly in order to accurately model catalytic water oxidation. For this reason, progress in theoretical

modeling of water oxidation is closely linked to the broader challenge of developing high-quality theoretical

models for water and its interactions with solutes.

2.4 Conclusions

Artificial water oxidation catalysis is poised to become a commercially significant technology in the near

future. A detailed understanding of the structure and reactivity of candidate catalysts will play an

essential role in further catalyst design and optimization. In this chapter we have discussed the current

state of the art in electronic structure calculations of artificial water oxidation catalysts, with an emphasis

on how DFT is used to explore reactivity trends and underlying mechanisms. DFT thermochemistry can

be employed to quantify chemical descriptors of reactivity, and these descriptors reproduce experimentally

observed “volcano plots” describing the dependence of catalytic activity on the constituent transition

metal. The proper incorporation of solvent effects remains a challenge, but polarizable QM/MM and

full QM/MM models of the surrounding water provided insight into the sequence of PCET events in the

catalytic cycle of the CoPi water oxidation catalyst.

We conclude by returning to the central question of this chapter: Can we predict the overpotentials

of metal oxide alloys by only looking at properties of individual metal oxides? We answer the question

with a qualified “yes.” As we pointed out in Sections 2.2.5.1 and 2.2.5.2, the metals tend to communicate

and cooperate when the RDS is O-O bond formation, but they do not tend to be as communicative when

the RDS is something else. Additionally, in Section 2.2.5.3, we present two generalized coordinates that

are both blind to which step is the RDS and predictive of catalytic activity.

Based on these two central results, we propose that a descriptor of catalytic activity can be attained

by using the generalized coordinates in Section 2.2.5.3 and relevant homogenous metal-oxide energies.

Computation of the M(II) and M(III) ionization potentials and M-OH2 bond enthalpies for two indepen-
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dent metal-oxide catalysts should be able to provide a reasonable stand-in for the same energies in an

alloy, as each corresponds to an event that occurs relatively locally on a single metal.

Unfortunately, the fourth and most significant energy involves—that of O-O bond formation—is

required to attain an accurate descriptor of activity and cannot be readily extracted from only the pure

metal data. Nevertheless, we believe that through the work presented in this chapter, we have reduced

the cost for a computational screen of heterometallic oxides. Previously, the ground-state energies of 9

OER intermediates on a heterometallic catalyst were required to construct a complete energy landscape

for the catalytic cycle in order to extract an overpotential. Now, based on the analysis provided, only 2

intermediates are required to compute the energy of O-O bond formation on the heterometal catalyst.

This energy, along with a handful of energies readily computed from monometal-oxide catalysts, can be

used along with the coordinates described in Section 2.2.5.3 to screen potential bimetal-oxide catalysts

for OER activity.

The ability of theory and computation to address the mechanism of water oxidation catalysis is largely

tied to developments in DFT and other electronic structure theories. Current shortcomings relevant to

the artificial water oxidation problem include the treatment of dispersion effects, reaction barrier heights,

and the underlying issue of self-interaction error. All of these areas are very active topics of research, and

there is good reason to expect steady improvement in the accuracy of DFT models for water oxidation

catalysts in the coming years.

2.5 Acknowledgement

The work described in this chapter was carried out with Takashi Tsuchimochi, Lexie McIsaac, Tim

Kowalczyk, and Lee-Ping Wang, who are co-authors of Ref. [19].

62



Chapter 3

Resummed Memory Kernels in

Generalized System-Bath Master

Equations

3.1 Introduction

Generalized master equations are useful constructs in chemical physics for solving problems that involve

a few “system” degrees of freedom interacting with a large number of “bath” degrees of freedom, like when

considering electron transfer in solution. When used to monitor time evolution of system populations,

these equations generally have the form

Ṗ(t)=

ˆ t

0

K(t− s)P(s)ds (3.1)

where P is a vector containing the populations of the various system states and K is a matrix controlling

the (non-Markovian) flow of populations among states without explicitly referencing the bath degrees of

freedom; this time-nonlocal matrix K is often referred to as the memory kernel. Such equations allow us

to solve explicitly for system observables while only taking into account aspects of the bath that directly

influence the system. Formally equivalent to generalized Langevin equations and path integral methods,

generalized master equations allow for a somewhat phenomenological description of the bath and are thus

useful when detailed statistical information about the bath is not known a priori.

Many different methods have been proposed that solve the system-bath dynamics problem to varying

extents; unfortunately, none are both robust and general. Due to the existence of the influence functional

for harmonic baths [197], path-integral-based numerical methods have been quite successful for this
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problem [66, 67]. Additionally, there are also formulations of this problem that are not fully quantum-

mechanical. The simplest formulation is a mixed quantum-classical set-up where the system (and perhaps

a few important bath degrees of freedom) are treated quantum-mechanically and (the rest of) the bath

is treated classically. There are several detailed reviews of these methods including their successes and

shortcomings in the literature [198, 199, 200].

In recent years, several alternative methods not based on generalized master equations have been pro-

posed that successfully solve the quantum dynamics problem for certain classes of system-bath Hamil-

tonians. One method of particular merit is the multi-configuration time-dependent Hartree approach

[201, 202, 203], which in and of itself is limited to treating only a few degrees of freedom exactly but

can be quite powerful when coupled with other degrees of freedom semiclassically [69, 68]. Even more

recently, hierarchical equation of motion (HEOM) approachs to this problem have been proposed which in

principle give numerically exact results [71, 72]. Unfortunately, these state-of-the-art numerical methods

are not general in that they require very specific assumptions about the nature of the bath. They can

also often be extremely slow to converge, especially at low temperatures [204].

In the general case of a generalized master equation of the form of equation 3.1, K(t) cannot be ob-

tained; often, we must resort to using perturbation theory to gain information about K(t). In cases when

the system-bath coupling is weak, one can expand the Hamiltonian perturbatively in the system-bath

coupling and utilize the tools of Redfield theory to obtain a solution [205, 206]. In the opposite regime,

when the strength of the system-bath coupling is much stronger than the strength of the intrasystem

electronic couplings, one can first apply a polaron transform and then expand the kernels perturbatively

in the system-bath coupling. The original polaron transform was proposed for application in solid state

physics [207], but can be particularly effective for system-bath dynamics problems in the special case of

a harmonic bath [208, 209, 210, 211, 212]. Recently, for particular classes of harmonic bath models, po-

laron transformations have been used effectively to solve the quantum dynamics problem in an effectively

nonperturbative fashion [213, 214].

In other treatments, the memory kernel is expanded in a power series in the electronic coupling V . A

truncation of this series at second order results in the famous non-interacting blip approximation (NIBA)

[62, 64, 208], which gives a second-order approximation of the dynamics and Fermi’s Golden Rule rate

constants.

Additionally, many groups have worked with this expansion out to fourth order in certain limits. The

Cao group has worked extensively with fourth order rate constants (given by k = K(ω = 0))[215, 216, 217],

inspired by the analytical work of Mukamel [218] and Silbey [219]. Reichman, working with Silbey and

Neu, derived analytical results for dynamics in the low-temperature limit for certain classes of baths

[220, 221, 65]. Finally, a fourth-order correction to Redfield theory that is guaranteed to obey detailed

balance has been derived [222]; however, it requires making additional assumptions about the system-bath

64



coupling. Despite this work, no one has studied detailed short-time two-state dynamics for a system-bath

Hamiltonian governed by a generalized master equation.

In this chapter, we examine for the first time the dynamics generated by a resummed memory kernel

correct to fourth-order. We consider in detail the spin-boson Hamiltonian [62], for which it is possible to

derive analytical expressions for K(2), K(4), and (in principle) all higher-order coefficients. We present

what we believe to be a novel derivation of K(4) for this problem that can be easily generalized to derive

both higher-order terms and non-Condon versions of K(2), K(4), etc. with electronic coupling linear

in the bath coordinate. We then present numerical results where we evaluate our analytical memory

kernels using a model spectral density. In our numerical results, we compare several methods to resum

K(2) and K(4) into a kernel K containing all orders of the electronic coupling—a necessary procedure

to prevent long-time divergence of the populations. Finally, we show how we can almost trivially force

our resummed kernels to obey detailed balance, giving the correct infinite-time equilibrium populations.

Our aim is to build towards a general, robust, systematically-improvable system-bath approximation for

molecular systems in condensed phases.

3.2 Theory

3.2.1 Generalized Master Equation Formalism

Despite its simplicity, the brute-force numerical propagation of a density matrix under the influence

of a system-bath Hamiltonian is not possible, as the computational cost of such a propagation scales

exponentially with the number of bath modes represented; hence, generalized master equation approaches

become useful. Unfortunately, the memory kernels of equation 3.1 are as computationally intractable as

the propagator.

To approach this problem, we can use time-dependent perturbation theory. For simplicity, we shall

restrict our discussion to the special case where our system contains only two (diabatically-coupled) states;

however, all of the results in this section can be generalized to the general problem of many interacting

system states. For any two-level system, we can suggestively write the Hamiltonian as

Ĥ =

 ĥ1 0

0 ĥ2

+ λ

 0 V̂

V̂ 0

 ≡ Ĥ0 + Ĥ1 (3.2)

where ĥ1 and ĥ2 represent all diagonal elements of the Hamiltonian related to both system and bath,

V̂ represents all off-diagonal elements of the Hamiltonian related to both system and bath, and we have

introduced an ordering parameter λ. The physical Hamiltonian is recovered for λ = 1.

To study the quantum dynamics generated by memory kernel resummations, we adopt the generalized

master equation for the populations of a two-level system interacting with a general bath first derived by
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Sparpaglione and Mukamel [218] using projection operator methods [223, 224, 225]

ṗ1(t) = −
ˆ t

0

K11(t− s)p1(s)ds+

ˆ t

0

K22(t− s)p2(s)ds

ṗ2(t) =

ˆ t

0

K11(t− s)p1(s)ds−
ˆ t

0

K22(t− s)p2(s)ds (3.3)

where p1(t) and p2(t) are the populations of the two states as functions of time, and K11 and K22 are

the time-dependent memory kernels for the forward (1 → 2) and backward (2 → 1) transitions. We use

this formalism primarily because it can be trivially generalized to include many states.

We will work explicitly with populations differences. It can be shown using the normalization condition

p1(t) + p2(t) = 1 that equation 3.3 can be rewritten in terms of P (t) ≡ p1(t)− p2(t) as

Ṗ (t) = −
ˆ t

0

K+(t− s)P (s)ds−
ˆ t

0

K−(s)ds (3.4)

where K±(t) ≡ K11(t)±K22(t). Note that equation 3.4 has the form of a generalized Langevin equation,

with K+ acting as a friction kernel and the integral of K− acting as a random noise term.

Using this formalism allows us to expand the memory kernels perturbatively, using λ to collect terms

of similar order:

K11/22(t) = λ2K
(2)
11/22(t) + λ4K

(4)
11/22(t) + · · · (3.5)

where K(2n)
11/22(t) is the 2nth-order contribution to the memory kernel. Note that in the special case where

V̂ is a constant, V , this is equivalent to expanding the memory kernels in a power series in V . For the

remainder of this chapter and in order to simplify our discussion, we shall assume that V̂ is a constant.

3.2.2 Derivation of K(4) for the Spin-Boson Model

In order to examine the dynamics generated by these memory kernels in detail, we restrict ourselves

to specifically to the spin-boson Hamiltonian (see Section 1.1.3 for details). Because the spin-boson

Hamiltonian comprises a two-level system linearly coupled to a bath of harmonic oscillators, it should

come as no surprise that analytical expressions can be derived for K(2)(t), K(4)(t), and all K(2n)(t). We

present here the main analytical result of this chapter: a novel, generalizable derivation of K(4)(t) that

does not invoke Liouville space. For the spin-boson problem, the memory kernels can be written as

K
(2)
11/22(t) = 2Re

[
f±2 (t)

]
(3.6)
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K
(4)
11/22(t) =

ˆ t

0

ds1

ˆ s1

0

ds2K
(2)
+ (t− s1)K

(2)
11/22(s2)− 2

ˆ t

0

ds1

ˆ t−s1

0

ds2Re
[
f±4 (t− s1 − s2, s1, s2)

]
+2

ˆ t

0

ds1

ˆ −t
0

ds2Re
[
f±4 (−t− s2, t− s1, s1)

]
−2

ˆ t

0

ds1

ˆ t−s1

0

ds2Re
[
f±4 (−t, t− s1 − s2, s1)

]
(3.7)

where K(2)
+ (t) = K

(2)
11 (t)+K

(2)
22 (t) and the top sign is for K11 / the bottom sign is for K22. The ubiquitous

functions f±2 and f±4 can be represented analytically as

f±2 (t) = V 2 exp [−iεt− (Q′(t)± iQ′′(t))] (3.8)

f±4 (s1, s2, s3) =
f±2 (s1)f±2 (s2)f±2 (s3)f±2 (s1 + s2 + s3)

f±2 (s1 + s2)f±2 (s2 + s3)
(3.9)

where

Q′(t) =
4

π

ˆ ∞
0

J (ω)

ω2
(1− cos (ωt)) coth

(
βω

2

)
(3.10)

Q′′(t) =
4

π

ˆ ∞
0

J (ω)

ω2
sin (ωt) (3.11)

A detailed derivation of equations 3.6 through 3.10 can be found in Appendices A.1 and A.2.

3.2.3 Resummation Schemes

It is well-known that series generated from perturbation theory are not always convergent, especially

when truncated [226]. Resummation techniques are ubiquitous in many areas of physics, including quan-

tum electrodynamics [227, 228], renormalization group theory [229, 230], and quantum chemistry [231].

Resummations have also been used in the context of system-bath models to compute rate constants

[218, 219, 217], but to our knowledge have never been applied to time-dependent rate kernels in order to

study dynamics.

We will focus our attention in particular to resummations of memory kernels for generalized master

equations. Resumming at the level of the memory kernels is preferable to resumming at the level of the

populations for many reasons, summarized concisely in References [232] and [233]. These resummations

are historically performed in the frequency domain, defined through the Fourier transform

K(ω) =

ˆ ∞
−∞

eiωtK(t)dt

As such, we will be focusing in particular on ways to resum K(2)(ω) and K(4)(ω) into a K(ω) containing
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all orders of the electronic coupling V .

For the particular problem at hand, two resummation schemes have been proposed [218], dubbed

the “Padé resummation” and the “Landau-Zener resummation.” The Padé resummation is a rational

resummation based off of Padé approximants [234], which have been very successful in several areas of

physics related to the present problem. Particularly relevant is the result of Cho and Silbey, who showed

[219] that the in the subspace comprised of N perturbatively-expanded states, the Fourier transform of

the memory kernel K(ω) can best be represented by an [N/N−1]-Padé approximant. The authors proved

that this particular resummation choice obeys Schwinger’s stationary variational principle for scattering

processes [235]. The consequence of this result is that rates obtained from these memory kernels will

obey detailed balance as best as possible, a desirable feature that suggests that Padé resummation is the

optimal resummation choice for this problem.

For the case N = 1 (our present scenario), the Padé approximant, to fourth order, is

KPadé(ω) =
V 2
[
K(2)(ω)

]2
K(2)(ω)− V 2K(4)(ω)

(3.12)

This form of resummation has been recently employed by Wu and Cao [217] to study kinetics (the

t→∞ limit of equation 3.1). Using the ω → 0 limit of equation 3.12, the authors showed that the Padé

resummation gives very good agreement with numerically-exact results for a model problem. The authors

also pointed out that part of this agreement can be attributed to the fact that the Padé resummation

recovers the Zusman result [236] in the limit of weak system-bath and weak electronic coupling.

The Padé resummation scheme has been previously investigated in the context of certain classes

generalized master equations [237, 238], with the conclusion that a Padé-resummed memory kernel leads

to dynamics that converge for all times. Later work by Shi et al [232] pointed out that the quality of the

dynamics generated by a Padé-resummed memory kernel for arbitrary regimes of Hamiltonian parameter

space is still unknown. The general applicability of the Padé resummation for dynamics is one of the

central questions this work sets out to answer.

An alternative resummation scheme proposed [239] has been dubbed the Landau-Zener resummation

due to its similarity in form to the famous Landau-Zener equation. To fourth order, the Landau-Zener

resummation is given by

KLZ(ω) = −
[
K(2)(ω)

]2
2K(4)(ω)

[
1− exp

(
2V 2K(4)(ω)

K(2)(ω)

)]
(3.13)

It has been shown [218] that this resummation scheme agrees with the Padé scheme in the nonadiabatic

limit, but differs from the Padé scheme by a factor of 2 in the adiabatic limit. This flaw prevents the

Landau-Zener scheme from being applicable to study dynamics in the adiabatic regime. Fortunately,

mixed quantum-classical and semiclassical schemes have great success when the dynamics evolve strictly
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on one adiabat, so we shall focus our attention on the nonadiabatic regime.

3.2.3.1 Time-domain Padé Resummation

A very recent detailed analysis of Padé resummations for this problem [240] has made explicit certain

conditions on the second-order and fourth-order kernels that predict whether or not Padé resummation

will blow up or not; using these conditions, Reichman et al have shown that Padé resummation is expected

to behave poorly at low temperatures and high system-bath coupling.

Based on this discussion, we observe that it is possible for the Padé resummation to fail because the

Padé resummation is a rational resummation, and certain sets of bath parameters can cause singularities

in the resummed kernel in Fourier (or Laplace) space, leading to long-time divergences. A Padé resummed

kernel can be written in Laplace space as

KPadé(s) =

[
K(2)(s)

]2
K(2)(s)−K(4)(s)

(3.14)

Besides the methods that have been investigated previously, there is one additional method that can

be used to potentially smooth the divergences inherent to a rational approximation: Get rid of the

denominator. We do so by first rearranging equation 3.14:

KPadé(s) = K(2)(s) + φ(s)KPadé(s) (3.15)

where we have defined

φ(s) ≡ K(4)(s)

K(2)(s)
(3.16)

We then analytically inverse Laplace transform equations 3.15 and 3.16, recognizing that a multiplication

in the Laplace domain is a convolution in the time domain:

K(4)(t) =

ˆ t

0

dt
′
φ(t− t

′
)K(2)(t

′
) (3.17)

KPadé(t) = K(2)(t) +

ˆ t

0

dt
′
φ(t− t

′
)KPadé(t

′
) (3.18)

We can thus carry out Padé resummation in the time domain by solving equation 3.17 numerically for

φ(t), and then using that solution to solve equation 3.18 numerically for KPadé(t). Throughout this

chapter, we will refer to the kernel obtained via Equation 3.18 as the time-domain Padé or TDP kernel.
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3.2.4 Populations at Equilibrium

For the case of a system with electronic bias, resummation is rather arbitrary: Do we resum the forward

rate kernel K11 and the backward rate kernel K22 and then add and subtract them to form K±? Or

do we resum K± directly? Stating this another way, we can define a resummation function that takes a

second-order kernel and a fourth-order kernel and returns a resummed kernel (through, for instance, a

Padé resummation):

K = R
[
K(2),K(4)

]
(3.19)

we can then imagine that we can form K±through a number of different schemes; for instance,

K± = R
[
K

(2)
11 ,K

(4)
11

]
±R

[
K

(2)
22 ,K

(4)
22

]
(3.20)

or

K± = R
[
K

(2)
11 ±K

(2)
22 ,K

(4)
11 ±K

(4)
11

]
(3.21)

Both of these schemes give the exact perturbation series to fourth order, but differ at higher orders.

Selecting one over the other is an arbitrary choice.

We can reduce this arbitrariness by introducing a parameter α that interpolates smoothly between

these two limits:

K± = R
[
(1− α)K

(2)
11 ± αK

(2)
22 , (1− α)K

(4)
11 ± αK

(4)
22

]
+R

[
αK

(2)
11 ± (1− α)K

(2)
22 , αK

(4)
11 ± (1− α)K

(4)
22

]
(3.22)

As long as the resummation is first-order homogeneous (as is the case for both the Padé scheme and the

Landau-Zener scheme), we can recover equation 3.20 if α = 0 and equation 3.21 if α = 1
2 .

Adding in this additional degree of freedom allows us to ensure that the dynamics created by the

resummed memory kernel will obey detailed balance. It is well-known that using master equations with

second-order kernels does not guarantee that the dynamics settle on the correct equilibrium populations

in the case of a system with electronic bias [68, 70]. Introducing α allows us to choose from an infinitely

large number of arbitrary choices the optimal manner of resummation that gets equilibrium populations

correct. Namely, if the equilibrium populations are known (e.g., from a path integral Monte Carlo
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simulation [241, 242]), we can tune α by enforcing the detailed balance condition

k11(α)

k22(α)
=
peq2
peq1

(3.23)

by tuning α over the interval
[
0, 1

2

]
, where k11 ≡ K11(ω = 0) and k22 ≡ K22(ω = 0) are the forward and

backward rate constants, and peq1 and peq2 are the equilibrium populations.

We note in passing, though importantly, that we cannot use Equation 3.22 for the case of time-

domain Padé resummation. The TDP resummation scheme (Equations 3.17 and 3.18) rely on solving

an auxilliary Volterra Equation of the First Kind for φ(t), and then using this function to solving a

Volterra Equation of the Second Kind for K(t). Unfortunately, Volterra Equations of the First Kind

do not have unique solutions when the Volterra kernel (in the case of Equation 3.17, K(2)(t)) is 0 at

t = 0. This is not a problem normally; however, K(2)
− (0) = 0 rigorously, meaning using time-domain Padé

resummation cannot be done to form a resummed K−(t) and thus optimizing the kernel for equilibrium

populations cannot be done in general. The end result is that often, time-domain Padé is not the preferred

resummation of choice in cases with bias.

3.3 Results and Discussion

3.3.1 Implementation Details

For each set of spin-boson parameters studied, K(2)
11 and K(4)

11 (and, in cases where an electronic bias is

present, K(2)
22 and K(4)

22 ) were calculated using a FORTRAN95 implementation of equations 3.6 and 3.7.

All integrals were computed using an adaptive Gauss-Legendre quadrature until an integral tolerance of

10−6 was reached. The frequency integrals over the spectral density were computed with a hard upper

frequency cutoff of ω = 30, which was found to be enough to give stable and convergent results for the

short propagation time ranges studied.

Once the kernels were computed, they were resummed according to equation 3.12 (Padé resummation)

and equation 3.13 (Landau-Zener resummation). Then, a standard algorithm for solving Volterra inte-

grodifferential equations of the second kind [243] was used to solve equation 3.4 for P (t) ≡ p1(t)− p2(t),

the difference in population between states 1 and 2 as a function of time. Propagating population dy-

namics using only K(2)
11 and K(2)

22 , i.e. applying the non-interacting blip approximation or NIBA, is also

considered for comparison.

In order to benchmark our fourth-order resummations, we use an Ohmic spectral density with a

Drude-Lorentz cutoff, often referred to as a Debye spectral density

J(ω) =
ηωωc
ω2
c + ω2

(3.24)
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Figure 3-1: Population dynamics of the spin-boson Hamiltonian for various strengths of the electronic
coupling. The HEOM (exact) result and the NIBA result are plotted to compare with the two differ-
ent fourth-order resummations presented in this work: the Padé resummation (equation 3.12) and the
Landau-Zener resummation (equation 3.13). Values of the Hamiltonian parameters are ωc = 1.0, η = 2.0,
β = 0.125, and (a) V = 0.5, (b) V = 1.0, (c) V = 2.0, and (d) V = 4.0. Where no green curve for Padé
resummation is shown, it is superimposed on top of the teal TDP curve.

where η and ωc are parameters that control the strength of the system-bath coupling the the upper cutoff

frequency of the bath, respectively. A benefit of using this spectral density is that numerical results for

this problem have been presented in the past [68, 70] using various approximate methods.

Additionally, a hierarchical equation of motion (HEOM) technique has recently been presented [71, 72]

that obtains (in principle) numerically-exact results for the spin-boson problem. The HEOM technique

is a path-integral-based technique which replaces the Vernon-Feynman influence functional with a set

of time-nonlocal auxilliary density matrices which account for non-Markovian system-bath coherences.

These density matrices are related to one another via hierarchical equations; truncating this hierarchy at

orderM is equivalent to order 2M in perturbation theory in the system-bath coupling [244]. As such, the

hierarchy is often very quickly convergent, provided the system-bath coupling is not strong. If changing

the depth of the hierarchy does not change the resulting population dynamics, the approximation is
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equivalent to infinite-order perturbation theory and is thus exact.

While the HEOM has the potential to give numerically-exact results, it has some shortcomings.

The most glaring is that it can only be used for spectral densities of the form given in equation 3.24.

Additionally, the HEOM requires evaluation of many depths of a hierarchy of increasing computational

complexity; a deeper hierarchy is needed for strong system-bath coupling or low temperature. However,

despite the breakdown of the standard HEOM technique in the strong system-bath coupling regime and

the low-temperature regime (the latter problem which can been solved using a stochastic HEOM [204]),

for many parameter regimes of the Debye spectral density, the HEOM gives extremely accurate results.

In this chapter, we consider results from a sufficiently deep HEOM truncation (a hierarchy depth of 11

with a maximum Matsubara frequency of 6) to be numerically exact for this problem. For all calculations,

the cutoff frequency ωc was normalized to 1, and other parameters adjusted with relation to ωc.

3.3.2 Stability with Increasing Electronic Coupling

As noted previously, NIBA fails with increasing electronic coupling. The reason is quite obvious: we are

doing a perturbative expansion in the electronic coupling, so a second-order truncation won’t capture

any quantum events that involve more than two hops between energy surfaces [70]. Figure 3-1 shows

clearly that this is indeed the case. For the case of small electronic coupling (panel (a)), NIBA is good

enough to reproduce the HEOM result, and, as higher-order terms in the perturbation series are small,

any fourth-order resummation does not significantly change this result.

Going to higher and higher values of the electronic coupling (panels (b) through (d)), NIBA breaks

down: two-hop events are no longer sufficient to accurately describe the short-time quantum dynamics

of the spin-boson model. Specifically, oscillations in population die out much too fast. Comparing the

two fourth-order resummation schemes presented in this chapter with the HEOM result, however, shows

that there is hope: higher-order terms recover these oscillations with nearly the correct frequency and a

relatively correct damping rate.

In the case of very strong electronic coupling, it is interesting to note that recovering qualitatively

correct dynamics depends on the nature of the fourth-order resummation. In particular, using a Padé

approximant to resum the second- and fourth-order memory kernels gives a memory kernel which leads

to populations that oscillate wildly in time and at the incorrect frequency; by contrast, the Landau-

Zener-resummed kernel produces populations which are well-behaved for all times. The time-domain

Padé resummed kernel also gives populations which are well-behaved for all times, and are quantitatively

different from the Landau-Zener populations.

This is a notable result, as the Padé approximant is the resummation method of choice for rate

constants, the zero-frequency limit of the frequency-dependent memory kernel [219, 217]. It can easily be

shown that in the small electronic, slow bath limit, the Padé-resummed rate is exactly the rate derived
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Figure 3-2: Population dynamics of the spin-boson Hamiltonian for various temperatures at moderate
electronic coupling. Values of the Hamiltonian parameters are ωc = 1.0, η = 1.0, V = 0.5 and (a) β = 0.5
(high temperature); or (b) β = 10.0 (low temperature). Where no green curve for Padé resummation is
shown, it is superimposed on top of the teal TDP curve.

by Zusman connecting the nonadiabatic regime to the adiabatic regime [236, 219].

For short-time dynamics in the large electronic coupling limit, however, the dynamics generated by a

Padé resummation are qualitatively incorrect. The reason why this approximate resummation is good for

rate constants but bad for dynamics can be seen by examining equation 3.12: WhenK(2)(ω) ≈ V 2K(4)(ω),

the Padé-resummed kernel diverges. It is very unlikely that this equality will occur at ω = 0; however, as

V grows, the chance that this divergence will occur for some larger value of ω also grows. This introduces

a spurious high-frequency component to the memory kernel in the time domain, which translates into

populations that oscillate indefinitely, rather than settling down to equilibrium at the desired rate. These

divergences are smoothed over by instead performing the resummation in Laplace space, or, since the

inverse Laplace transform is not numerically well-conditioned, in the time domain.

3.3.3 Temperature Dependence

The low-temperature regime has often proved problematic for quantum dynamics studies, as many sys-

tems are “very quantum” at extremely low temperatures. This problem was studied (and to some extent

solved for Ohmic baths) in detail by Reichman [221], but the general case remains an open problem

in quantum dynamics. Even the HEOM approach to solving the spin-boson problem breaks down as

the temperature approaches 0: while still in principle exact, computation of the exact answer requires

inclusion of many Matsubara frequencies and a very deep hierarchy, which very quickly becomes com-

putationally intractable. Other formulations of the HEOM have been designed to fix this problem [204],

but a solution still does not exist for general spectral densities.

While our approach is robust in the strong electronic coupling regime, the same cannot be said for the

low-temperature regime. Short-time dynamics of the spin-boson Hamiltonian to fourth order in V are
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shown in figure 3-2 for moderate values of the system-bath coupling and the electronic coupling. As can

be seen in the figure, for high temperature (small values of β ≡ 1/kBT ), even NIBA gets qualitatively

correct dynamics. This makes sense, as the Marcus rate for electron transfer can be formulated as the

high-temperature, slow-bath, long-time limit of NIBA [51, 218], and the Marcus rate is a quite good

description of the kinetics of many experimental systems [245]. A Padé-based resummation is required

to recover correct quantitative dynamics in this regime, as only Padé resummations are known to recover

the Zusman limit.

At low temperatures, both NIBA and any fourth-order resummations give qualitatively incorrect

description of the dynamics: NIBA dephases too quickly, and the fourth-order resummations do not

decay to equilibrium quickly enough. Both the lack of low-frequency oscillations and the incorrect zero-

frequency component of the population dynamics can be traced to the presence of a large number of

low-frequency bath modes at low temperatures, which have a large contribution to the memory kernels.

The fourth-order resummations studied in this thesis assume a “small” V 4K(4), which may not necessarily

be the case at low temperatures; this observation may lend to the development of alternative resummation

schemes for fourth-order perturbation series and beyond.

We note in passing that for regimes where NIBA does not give good dynamics, adding in fourth-order

effects tends to overcorrect. This result has been observed for rates [217], and is seen very clearly in figure

3-2 to also be the case for dynamics.

3.3.4 Systems with Electronic Bias

A systematic problem with NIBA arises in systems with an electronic bias: NIBA memory kernels generate

population dynamics that do not decay to the correct equilibrium, meaning these memory kernels disobey

detailed balance. Disobedience of detailed balance implies a fictitious breaking of time-reversal symmetry,

which may cause systemic problems with short-time dynamics. This issue should be addressed, at least

to some extent, by including higher-order contributions to the memory kernel; indeed, it has previously

been shown that fourth-order corrections to Redfield theory obey detailed balance exactly [222]. We now

turn our attention to the dynamics of a system with an electronic bias, particularly to the question of

how including fourth-order effects in the memory kernels affects the obedience of detailed balance.

Figure 3-3 shows our main result for the biased case: going to fourth order helps, but does not guar-

antee, the satisfaction of the detailed balance condition (and, in some cases, conservation of probability!).

As expected, for small values of the electronic coupling (when effects fourth-order in the coupling are

small), the equilibrium populations are more-or-less exactly correct; for larger values, the equilibrium

populations deviate more from their correct values. For reasons discussed in cases without bias, using

a Padé resummation can exacerbate this problem; additionally, time-domain Padé is not as easy fixed

as K−(t = 0) = 0, making Equation 3.17 numerically ill-conditioned. Nevertheless, a combination of
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Figure 3-3: Population dynamics of the spin-boson Hamiltonian for various strengths of the electronic
bias. All resummations were conducted using equation 3.22 for the reasons discussed in section 3.2.4;
where possible, the value of the parameter α was fixed by enforcing detailed balance, equation 3.23. The
“time-domain Padé resummation” plots were generated using the TDP resummation for K11, K22, and
K+, but the frequency-domain Padé resummation for K− to avoid the ill-conditioning problem (Equation
3.17 has no unique solution for K−(t)). Values of the Hamiltonian parameters are (a) ωc = 1.0, η = 0.1,
β = 5.0, V = 0.2, and ε = 0.4 (α = 0.19 for Padé and Landau-Zener resummations; note the different
scale on the time axis); (b) ωc = 1.0, η = 0.665, β = 0.376, V = 1.33, and ε = 1.33 (α = 0.37 for Padé
and Landau-Zener resummations); and (c) ωc = 1.0, η = 0.5, β = 5.0, V = 1.0, and ε = −2.0 (α = 0.16
for Padé, α = 0.5 for Landau-Zener). Panel (d) uses the same parameters as Panel (c) but sets α = 0.5
for all resummations.
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(a) 

(b) 

Figure 3-4: As stated in the text, there is an arbitrary choice of which memory kernels to resum: the
forward and backwards rate kernels K11 and K22, or some linear combination of these kernels. Plotted
here are three specific choices of which memory kernels to resum in a Landau-Zener fashion (i.e. according
to equation 3.13): resummation according to equation 3.20, equation 3.21, and equation 3.22. (a) For
most choices of Hamiltonian parameters, it is possible to satisfy the detailed balance condition exactly
using an intermediate value of α. For the set of Hamiltonian parameters in figure 3-3(a) (ωc = 1.0,
η = 0.1, β = 5.0, V = 0.2, and ε = 0.4), using α = 0.19 causes detailed balance to be satisfied. (b)
For other sets of Hamiltonian parameters, it is only possible to satisfy detailed balance in a least-squares
sense. For example, with ωc = 1.0, η = 1.0, β = 0.25, V = 2.0, and ε = −4.0, using α = 0.26 will give
dynamics with the “best” long-time asymptotics allowed. Note that the time axes on the two panels have
different ranges.
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frequency-domain and time-domain Padé resummations for the four different kernels involved (K11, K22,

K+ and K−) will often produce the best possible dynamics of any resummation scheme studied.

We note that the divergence seen in Figure 3-3(c) is decidedly not due to the divergence of the Padé

denominator, but another effect entirely. We suspect that it may be due to poor numerical convergence of

the underlying kernels (K(2)
11 , K(2)

22 , K(4)
11 , and K(4)

22 ) at intermediate times, giving unphysical resummed

kernels. We note that if we set α = 0.5 for the two Padé resummations, the dynamics improve consider-

ably, as shown in Figure 3-3(d); however, our algorithm for optimizing α based on the detailed-balance

condition does not currently pick out this solution, suggesting that it is not the optimal algorithm for

choosing the best resummed kernel.

Including memory effects up to infinite order in V is one way to guarantee the obedience of detailed

balance. Since this is not computationally feasible, we present an alternative approach that guarantees

that any kernel resummed to fourth order (or higher) will generate dynamics that decay to the correct

equilibrium populations.

Following the discussion in section 3.2.4, we have tried resummations of the form of equation 3.22,

enforcing the detailed balance relation in equation 3.23 to optimize a parameter α. This scheme exploits a

choice we have when deciding how to perform a resummation in order to guarantee the correct equilibrium.

We will note that in general, it is also possible to know a priori the correct equilibrium populations, either

by knowing the long-time limit of a numerically exact solution (as is the case in this present work), or,

more generally, by doing path integral Monte Carlo or molecular dynamics simulations in order to explore

the energy landscape of the two states as they interact with a bath [241, 242].

Figure 3-4 shows the dynamics generated by a Hamiltonian in the moderate electronic coupling,

moderate system-bath coupling, moderate temperature regime with strong electronic bias. In each panel,

four dynamics runs are plotted: the HEOM run, and runs generated by resumming the memory kernels

in a Landau-Zener fashion according to equations 3.20, 3.21, and 3.22. For most sets of Hamiltonian

parameters, like those in figure 3-4(a), the detailed balance condition can be met exactly with some

0 ≤ α ≤ 1
2 . For some sets of Hamiltonian parameters, like those in figure 3-4(b), the detailed balance

condition can only be satisfied in a least-squares sense.

As can be seen in the figure, the different choices for how to resum the forward and backward memory

kernels can give very different trajectories. The different trajectories are entirely artifactual: were we to

know all of the K(2n) out to infinite order, we wouldn’t need to perform an approximate resummation

and the discrepancy in how we choose to resum kernels disappears. Nevertheless, if we wish to compute

memory kernels to finite order, we must make an arbitrary choice. Figure 3-4 shows that the best value

for this choice is the particular interpolation between equations 3.20 and 3.21 that satisfies equation 3.23

(either exactly or in a least-square manner)—i.e., the particular resummation where the long-time limit

of the resummed kernels best obeys detailed balance.
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It is worth noting that for some parameter regimes, one of the two resummations in equations 3.20

and 3.21 diverges. A set of parameters where this occurs is the set of parameters used in figure 3-3(c):

the kernel resummed according to equation 3.20 diverges but the kernel resummed according to equation

3.21 does not. Using equation 3.22 to resum and optimizing α gives a value α = 0.5. For this value of α,

equation 3.22 reduces exactly to equation 3.21. Thus, using equation 3.22 and optimizing α to enforce

detailed balance not only gives qualitatively better dynamics for some parameter regimes, but prevents

divergences in other parameter regimes. Doing the resummation in this manner is not just a bonus; it is

imperative.

3.4 Conclusions

In this chapter, we have shown for the first time numerical results for a generalized system-bath mas-

ter equation that uses rate kernels resummed from a fourth-order perturbation series in the electronic

coupling. We have shown that for the case of a two-level system interacting with a harmonic bath that

a Fourier-resummed Padé resummation diverges for even moderate values of the electronic coupling;

however, most of these divergences are smoothed over when carrying out this resummation in the time

domain. The Landau-Zener resummation scheme never diverges; however, it has the incorrect asymp-

totics. Therefore, Padé resummation is recommended for regions of parameter space where the resulting

dynamical kernel does not diverge (as discussed in great detail in Reference [240]).

The current resummation techniques robustly describe the dynamics for a wide range of Hamiltonian

parameters, including cases with an electronic bias—cases which have historically troubled system-bath

methods. The low-temperature regime, a regime which has plagued system-bath models for decades,

remains problematic. We have lastly shown that by using a fourth-order resummation, one can always

guarantee that the dynamics reach the correct equilibrium by exploiting a freedom inherent in the struc-

ture of the problem.

One of our goals when beginning this work was to develop a general, systematically improvable scheme

to study system-bath dynamics. We have noted that the scheme that we have presented gets close to

the exact answer for a model spectral density in most parameter regimes, but does not recover the exact

result for regimes of very strong electronic coupling or low temperature.

To address the former issue, we need to include higher orders in the perturbation series. The simplest

approach is to generalize our derivation in section 3.2.2 to arrive at an expression for K(6); unfortunately,

the computational scaling becomes limiting when going out to such high orders of perturbation theory.

Perhaps a more promising approach is to enforce both good short-time behavior and good strong-coupling

behavior. The Landau-Zener resummation scheme succeeds at the former, but disagrees with the adiabatic

(V →∞) limit by a factor of two [218]. Correct behavior in the adiabatic limit can be built into a more
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sophisticated resummation scheme. To improve even more on behavior in the strong-coupling (but not

adiabatic) regime, we can derive expressions for the lowest-order non-adiabatic correction to adiabatic

behavior and incorporate it into our resummed memory kernels.

To address the latter issue, new resummation schemes are required that correctly capture the low-

temperature limit. Other resummation schemes, such as a generalized high-order resummation [218], the

noncrossing cumulant scheme [65], and convolution resummation with auxillary kernels [232, 246] have

the potential to capture this limit. Exploration into the numerical results of kernels generated by these

resummation schemes to fourth order is ongoing.

Finally, and perhaps most excitingly, we have limited the discussion in this chapter to one partic-

ular form of the spectral density J(ω)—namely, the Debye spectral density. Our method makes no

assumptions as to the form of the spectral density; as such, we should be able to investigate system-bath

dynamics using arbitrary spectral densities. Many procedures have been suggested in the literature for

sampling numerical spectral densities from classical molecular dynamics trajectories and applying a post-

hoc quantum-mechanical correction to the classical trajectories to extract a semiclassical spectral density

[245, 66, 247, 248, 249]. In the next chapter, we investigate the dynamics for the case of a general spectral

density, with the hope that approximate dynamics for a large number of chemically-relevant problems

may become accessible in the near future.
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Chapter 4

Condensed Phase Electron Transfer

Beyond the Condon Approximation

4.1 Introduction

Electron transfer is a fundamental process in chemistry and biology. An exact dynamical description of

this process from first principles is difficult if not impossible due to the multitude of degrees of freedom

involved in solvent reorganization. These solvent degrees of freedom are critical for properly describing

electron transfer rates and dynamics, as observed originally by Marcus [48, 49, 50] and subsequently

reinforced by many others [53, 54, 55, 56, 57, 58, 59, 60, 61]. Because exact quantum methods can-

not describe systems with thousands of degrees of freedom without running into exponential scaling,

approximate models are often invoked to describe electron transfer dynamics.

As described in Section 1.1.3, one important model for describing condensed-phase electron transfer is

the spin-boson model, a system-bath model that describes a two-level system coupled linearly to a large

number of harmonic bath modes [62]. While simpler than an atomistic model, the spin-boson model

still cannot be solved exactly: the exact density matrix and the propagator must each be expanded in

the basis of a many-dimensional collection of harmonic oscillators, again leading to exponential scaling.

Nevertheless, many approximate methods [63, 65, 66, 67, 68, 69, 70] (and exact methods for certain

assumptions about the bath [71, 72]) for solving the Schrödinger equation for this Hamiltonian exist. We

have outlined and explored some of these methods in the previous chapter.

The spin-boson model is useful; however, it is not without its limitations. One limitation is that

the spin-boson model makes the Condon approximation—which states that electronic transitions occur

instantaneously on the timescale of nuclear motion, or alternatively that the electronic coupling operator

V̂ is a constant that does not depend on nuclear coordinates [51]. This approximation is often successful,
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but in certain cases—specifically, photochemistry—it is demonstrably bad.

In this chapter, we examine approximate solutions to the linear vibronic coupling Hamiltonian, which

is an extension of the spin-boson Hamiltonian that includes these non-Condon effects. Using a generalized

master equation formalism [218], we derive memory kernels for the linear vibronic coupling Hamiltonian

to fourth order in perturbation theory in the electronic coupling, amounting to augmenting the well-

studied second- and fourth-order kernels [68, 70, 250] with several extra non-Condon terms. In order to

demonstrate the impact of these non-Condon terms, we examine the dynamics of the electron transfer

self-exchange reaction Fe(II) + Fe(III)→Fe(III) + Fe(II) in water. We choose these system because

(1) the partitioning between system and bath is straightforward; (2) the system is very well-studied

[251, 252, 253, 245, 254, 255, 256, 257, 258, 259], and (3) there is no intrinsic bias driving the reaction

one way or the other, meaning we are not in a regime where second-order methods are known to give

qualitatively incorrect answers [68, 70].

4.2 Theory

4.2.1 Spin-Boson Hamiltonian

A detailed description of the spin-boson model can be found in Section 1.1.3; here, we briefly recap what

was said there. Mathematically, the spin-boson model can be described with the Hamiltonian

ĤSBM = Ĥs + Ĥb + Ĥs−b

=

 − ε
2 V0

V0
ε
2

+
∑
j

 p̂2j
2 + 1

2ω
2
j x̂

2
j 0

0
p̂2j
2 + 1

2ω
2
j x̂

2
j


+
∑
j

 cj x̂j 0

0 −cj x̂j

 (4.1)

where Ĥs is the Hamiltonian describing the two-level system, Ĥb the harmonic bath, and Ĥs−b the

system-bath coupling. The two system states intrinsically differ in energy by a bias of ε and are coupled

with a constant coupling V0. The bath is comprised of a collection of harmonic oscillators with frequency

ωj that couple to the system with coupling cj . The mass-scaled normal mode coordinates and momenta

of the bath are represented by x̂j and p̂j , respectively.

4.2.2 Linear Vibronic Coupling Hamiltonian

The most straightforward way to generalize the spin-boson Hamiltonian to include non-Condon effects is

to add to the Hamiltonian an off-diagonal coupling to the bath. This new Hamiltonian is known as the
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linear vibronic coupling Hamiltonian, and has been studied in some detail [260, 261, 262, 263, 17, 264].

We described this model previously in Section 1.1.4; to recap, we can write the linear vibronic coupling

Hamiltonian as

ĤLV C = ĤSBM +
∑
j

 0 Vj x̂j

Vj x̂j 0

 (4.2)

where ĤSBM is the Hamiltonian defined in equation 4.1. This Hamiltonian has the advantage over

ĤSBM in that for some set of bath coordinates{x̂j}, it is possible for ĤLV C to become proportional to

the identity, allowing for the existence of conical intersections.

The linear vibronic coupling model can be understood by considering a two-level system interaction

with a collection of harmonic oscillators. The two states have an energy difference, ε, and a coupling,

V—each which fluctuate in time. The fluctuations in ε and V are driven by the action of the harmonic

bath: some bath modes couple to the energy gap ε(t), driving its fluctuations; other bath modes couple to

the coupling, V (t), driving its fluctuations. In general, some bath modes could drive fluctuations in both

ε and V , introducing cross-terms into the dynamics correlating the energy gap and coupling trajectories;

as discussed in more detail in the next section, we will be neglecting cross-correlations.

4.2.3 Mode Continuua in Condensed Phases

In the gas phase, the number of bath modes defining ĤSBM or ĤLV C is numerable: a nonlinear molecule

with N atoms has 3N − 6 vibrational models. In the condensed phase, where thousands of atoms

must often be considered to get even a rudimentary desciption of charge-transfer dynamics, the number

of bath modes quickly becomes innumerable. This quickly facilitates the introduction of the spectral

density, which coarse-grains an uncountably large number of bath modes in the condensed phase into

a continuous function describing how strongly the bath couples to the diagonal elements of the system

Hamiltonian at various frequencies ω[51]

JEG (ω) ≡ π

2

∑
j

c2j
ωj
δ(ω − ωj) (4.3)

In the case of the linear vibronic coupling model, the bath also couples to the off-diagonal elements of

the system Hamiltonian. We thus must introduce two more spectral densities: one describing the explicit

coupling of the bath to off-diagonal elements of the Hamiltonian,

JV (ω) ≡ π

2

∑
j

V 2
j

ωj
δ(ω − ωj) (4.4)

and one describing the cross-correlation between time-domain energy gap fluctuations and coupling fluc-

tuations,
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Jcross (ω) ≡ π

2

∑
j

cjVj
ωj

δ(ω − ωj) (4.5)

where ωj , cj , and Vj are Hamiltonian parameters introduced in equations 4.1 and 4.2. The details of

how these spectral densities may be obtained from molecular simulation will be discussed in the following

section.

For the bulk of the discussion below, we make the approximation

Jcross (ω) ≈ 0

i.e., there is no coupling between bath modes which drive fluctuations in the energy gap and those

which drive fluctuations in the coupling. While such a cross-coupling may exist in principle, in the

vast majority of physical situations, very different bath motions are required to drive charge transfer in

molecular systems like transition metal complexes and organic semiconductors. Thus, we shall neglect

cross-coupling to distill the discussion down to the core bath effects responsible for driving charge transfer.

4.2.4 Generalized Master Equations and Memory Kernels

In order to study the dynamics generated by the linear vibronic coupling Hamiltonian, we have adopted

a generalized master equation formalism [223, 224, 225], following the approach of Sparpaglione and

Mukamel[218]. Generalized master equations are convenient ways of expressing the population dynamics

of a system coupled to a bath when one is not interested in the detailed dynamics of the bath. We now

assume a set of generalized master equations of the form

ṗ1 = −
tˆ

0

K1(t, t1)p1(t1)dt1 +

tˆ

0

K2(t, t1)p2(t1)dt1

ṗ2 =

tˆ

0

K11(t, t1)p1(t1)dt1 −
tˆ

0

K2(t, t1)p2(t1)dt1 (4.6)

which are identical to the equations in the Sparpaglione-Mukamel formalism [218], except that the kernels

are no longer time-translationally invariant due to the use of the photochemical initial condition. Here,

p1(t) and p2(t) are the populations of state 1 and state 2 respectively, and K1(t) and K2(t) are memory

kernels describing the 1 → 2 and 2 → 1 population transfer process, respectively. Populations of a

two-state system can be determined by solving these master equations for a given set of memory kernels.

While determining K(t) is tantamount to solving the time-dependent Schrödinger equation and is

84



thus exponentially hard, one can expand K(t) in a formal power series in the electronic coupling operator

V̂ ,

K(t) = V̂ 2K(2)(t) + V̂ 4K(4)(t) + ... (4.7)

and use time-dependent perturbation theory in order to derive analytic expressions for K(2), K(4), and in

principle all higher order terms. The exact kernel can then be reconstructed via a resummation technique,

e.g. a Padé resummation [219, 250, 265, 240]. Note that truncating this perturbation series to second

order for the spin-boson model results in the famous non-interacting blip approximation (NIBA) [64, 63],

which is the Fermi’s Golden Rule result for this problem—in many senses, it is a dynamical generalization

of Marcus theory.

Using time-dependent perturbation theory and the master equations defined in equation 4.6, we have

derived the non-Condon version of the memory kernel K(2)(t)—giving us a version of NIBA including

linear vibronic coupling and allowing us to compute generalized Marcus rates (and short-time dynamics!)

beyond the Condon approximation. As we are interested in describing photochemistry, we have derived

these kernels using the photochemical initial condition: p1(0) = 1 but the bath is initially in equilibrium

with State 2. A full derivation is presented in the Appendix. In summary, to second order in perturbation

theory in V̂ ,

K(2)(t) = K(2)
c (t) +K(2)

nc (t) (4.8)

where K(2)
c (t) is the Condon kernel,

K(2)
c (t, t1) = 2V 2

0 exp [−Q′(t− t1)] cos (ε(t− t1)± φ(t, t1)) (4.9)

where

φ(t, t1) = Q′′(t− t1)− 2Q′′(t) + 2Q′′(t1) (4.10)

Q′(t) =
4

π

ˆ ∞
0

JEG (ω)

ω2
(1− cos (ωt)) coth

(
βω

2

)
Q′′(t) =

4

π

ˆ ∞
0

JEG (ω)

ω2
sin (ωt) (4.11)

and K(2)
nc is the non-Condon kernel,
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K(2)
nc (t, t1) = 2 exp [−Q′(t)] [S′(t− t1) cos (ε(t− t1)± φ(t, t1))− S′′(t− t1) sin (ε(t− t1)± φ(t, t1))(

(R′(t− t1)− 2R′(t)) (R′(t− t1)− 2R′(t1))−R′′(t− t1)2
)

cos (ε(t− t1)± φ(t, t1))

+ (2 (R′(t) +R′(t1)−R′(t− t1))R′′(t− t1))) sin (ε(t− t1)± φ(t, t1))

+ 2V0 (R′(t) +R′(t1)−R′(t− t1)) cos (ε(t− t1)± φ(t, t1))

+2V0R
′′(t− t1) sin (ε(t− t1)± φ(t, t1))] (4.12)

where

R′(t) =
2

π

ˆ ∞
0

dω
Jcross (ω)

ω
cos (ωt)

R′′(t) =
2

π

ˆ ∞
0

dω
Jcross (ω)

ω
coth

(
βω

2

)
sin (ωt) (4.13)

and

S′(t) =
1

π

ˆ ∞
0

dωJV (ω) cos (ωt) coth

(
βω

2

)
S′′(t) =

1

π

ˆ ∞
0

dωJV (ω) sin (ωt) (4.14)

If we approximately neglect cross-correlation, R′(t) = R′′(t) = 0, and Equation 4.12 simplifies:

K(2)
nc (t) ≈ 2 exp [−Q′(t)]× (4.15)

[S′(t− t1) cos (ε(t− t1)± φ(t, t1))

−S′′(t− t1) sin (ε(t− t1)± φ(t, t1))]

Other authors have arrived at similar expressions [266, 267]. We will assess the validity of this approxi-

mation for a relevant chemical problem in this chapter. We would like to note in particular that in this

regime and at short times, the non-Condon kernel effectively modulates the electronic coupling. One can

rewrite the above equations as

K(2)(t) =
〈V 2〉 − [λV (t)]

2

〈V 2〉
K(2)
c (t) (4.16)

where λV (t) acts as an effective time-dependent reorganization energy along the coupling coordinate; it
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is strictly positive. When averaging over the bath in this manner, we observe that non-Condon effects

are strictly expected to slow down population transfer from |1〉 to |2〉. Other authors [266, 268, 269] have

observed that by averaging over the bath in a different manner (which amounts to rewriting Equation

4.16 in terms of 〈V 〉2) amounts to a strict non-Condon speedup in population transfer. We also note that

diabatic population transfer is slowed down by non-Condon effects. Adiabatic population transfer is thus

sped up, which makes sense: non-Condon effects facilitate traversal through conical intersections, a fast

nonradiative decay pathway.

4.3 Computational Details

4.3.1 Extracting spectral densities from molecular simulation

Following our discussion in Section 4.2.4, it is apparent that in order to map chemical dynamics on to

the spin-boson model, we require a way to extract the bath spectral density (or densities) from molecular

simulation. Many authors [254, 51, 120] have observed that the energy gap spectral density JEG defined

in equation 4.3 is related to the Fourier transform of the energy gap fluctuation autocorrelation function:

JEG(ω) =
βω

4

ˆ ∞
0

〈δ∆E(t)δ∆E(0)〉 cos (ωt) dt (4.17)

where β is the inverse temperature, δ∆E(t) ≡ ∆E(t) − 〈∆E〉, and ∆E(t) is the energy gap, ∆E(t) ≡

E2(t)−E1(t). We recognize that (up to some factors of 2, which we have wrapped up in our definition of

the non-Condon kernel, equation 4.12), the cross- and coupling spectral densities defined in equations 4.5

and 4.4 can be written in terms of the energy gap - coupling cross correlation function and the coupling

autocorrelation function, respectively:

Jcross(ω) =
βω

2

ˆ ∞
0

〈δ∆E(t)δV (0)〉 cos (ωt) dt (4.18)

JV (ω) = βω

ˆ ∞
0

〈δV (t)δV (0)〉 cos (ωt) dt (4.19)

where δV (t) ≡ V (t)− 〈V 〉.

Using these relations, we are able to map time correlation functions—quantities which we can readily

extract from molecular simulation—on to the linear vibronic coupling Hamiltonian—a Hamiltonian with

an in-principle numerically exact dynamical solution. In the remainder of this section, we discuss in detail

how we extract the relevant information from simulation for a simple molecular system. In the following

sections, we discuss the short-time and long-time dynamics which result from this mapping.
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4.3.2 Simulation details

4.3.2.1 Molecular dynamics simulations

Following our discussion in Section 4.2.4, it is apparent that in order to map chemical dynamics on to

the spin-boson model, we require a way to extract the bath spectral density (or densities) from molecular

simulation. Many authors [254, 51, 249, 120] have observed that the energy gap spectral density JEG

defined in equation 4.3 is related to the Fourier transform of the energy gap fluctuation autocorrelation

function:

JEG(ω) =
βω

4

ˆ ∞
0

〈δ∆E(t)δ∆E(0)〉 cos (ωt) dt (4.20)

where β is the inverse temperature, δ∆E(t) ≡ ∆E(t) − 〈∆E〉, and ∆E(t) is the energy gap, ∆E(t) ≡

E2(t)−E1(t). We recognize that (up to some factors of 2, which we have wrapped up in our definition of

the non-Condon kernel, equation 4.12), the cross- and coupling spectral densities defined in equations 4.5

and 4.4 can be written in terms of the energy gap - coupling cross correlation function and the coupling

autocorrelation function, respectively:

Jcross(ω) =
βω

2

ˆ ∞
0

〈δ∆E(t)δV (0)〉 cos (ωt) dt (4.21)

JV (ω) = βω

ˆ ∞
0

〈δV (t)δV (0)〉 cos (ωt) dt (4.22)

where δV (t) ≡ V (t)− 〈V 〉.

Using these relations, we are able to map time correlation functions—quantities which we can readily

extract from molecular simulation—on to the linear vibronic coupling Hamiltonian—a Hamiltonian with

an in-principle numerically exact dynamical solution. In the remainder of this section, we discuss in detail

how we extract the relevant information from simulation for a simple molecular system. In the following

sections, we discuss the short-time and long-time dynamics which result from this mapping.

4.3.3 Simulation details

4.3.3.1 Molecular dynamics simulations

In order to examine the non-Condon effects on electron transfer dynamics predicted by equation 4.12, we

have examined the aqueous electron transfer self-exchange reaction

FeII + FeIII → FeIII + FeII
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All molecular dynamics simulations were performed using the GROMACS 4.6.5 software package [270].

Two iron atoms (van der Waals parameters σi = 2.2 Å, εi = 0.0323 kcal/mol employing combination rule

σij =
√
σiσj for both σ and ε [255]) were placed at their touching-sphere distance of 5.5 inside a periodic

simulation box of dimensions 4 nm x 4.55 nm x 4.018 nm and then solvated with 2466 molecules of TIP3P

water [271]. Iron atoms were allowed to interaction with solvent via nonbonded interactions only. For

NVT runs, the simulation box was coupled to a Nose-Hoover thermostat at 300 K with a time constant

of 200 fs. Electrostatics were treated with the Particle Mesh Ewald method [272] with a cutoff of 1.5 nm;

van der Waals interactions were cut off after 1.4 nm. A harmonic restraining potential (r0 = 0.35 nm,

k = 100.0 kJ mol−1 nm−2) was used in order to keep the two irons in close proximity to each other.

A 1 ns NVT equilibration run was performed followed by a 1 ns NVT production run, each with a

timestep of 1 fs. 300 configurations were sampled randomly from the production run at intervals of 100

fs; from each of these starting configurations, a 50 ps NVE run with a timestep of 0.5 fs was performed

in order to ensure that correlation functions were sampled in the correct ensemble. For the NVE runs,

Coulomb interactions were treated with the Reaction Field Zero method [273] with a cutoff of 1.3 nm,

for better energy conservation; van der Waals interactions were treated as before.

For each snapshot in each NVE simulation, the energy was computed twice: once with the original

force field, and again with the charges on the two iron atoms swapped. The difference between these

two energies is the energy gap, ∆E. The mean energy gap was subtracted from each data point to give

fluctuations in the energy gap, δ∆E. A 5 ps energy gap - energy gap time correlation function was

computed using a shifting average over the data from each NVE run to give 〈δ∆E(t)δ∆E(0)〉NV E ; these

correlation functions were then averaged over the 300 different NVE runs to give a the final energy gap

- energy gap time correlation function at 300 K, 〈δ∆E(t)δ∆E(0)〉NV E .

For these same snapshots, we additionally computed the coupling V using the ansatz outlined in

the subsequent section. The mean coupling 〈V 〉 was subtracted out from each value of V (t) to give

fluctuations in the coupling, δV . A 5 ps coupling - coupling time correlation function was computed in

the same manner as for the energy gap correlation function (including the same averaging over many

NVE trajectories) to give 〈δV (t)δV (0)〉NV E . Plots of one NVE trajectory and the resulting correlation

functions are shown in Figure 4-1.

4.3.3.2 Ansatz for the coupling

From our NVE production runs, we additionally extracted the coordinates of the two iron atoms and

those of the twelve waters forming the first solvation shell (six in an octahedral configuration around

each iron). In principle, one can compute the coupling using an ab initio method such as constrained

density functional theory with configuration interaction [103, 105, 106, 47]; in practice, we found these

computations to be quite challenging for this system [274] . As such, we treated the coupling semi-
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Figure 4-1: (a) Energy gaps and couplings fluctuate rapidly on short timescales due to bath motions; the
trajectory shown here is one of 300 NVE trajectories sampled from an NVT ensemble used to compute
time correlation functions. (b) Energy gap - energy gap and coupling - coupling time autocorrelation
functions are computed for this system. For illustration only, the correlation functions are normalized by
C(0); unnormalized correlation functions were used in all calculations.

empirically.

The coupling should decay exponentially with distance [53, 58, 47], and, in order to allow for the

existence of conical intersections, should be zero for some nuclear configuration [73]. One observable

with both of these properties is d-orbital overlap. Figure 4-2 shows four snapshots from a single NVE

molecular dynamics trajectory described in the previous section. As can be seen, two things occur over

the course of the simulation: (1) the crystal field around each iron ion rotates, causing the d-orbitals on

the irons to rotate with respect to each other; and (2) degenerate orbitals mix, causing the orbitals to

change shape qualitatively. The latter effect occurs because the distorted octahedral environment causes

electron transfer to occur from (and to) the lowest energy t2g-like orbital on each iron atom, and the

shape of that orbital fluctuates with the environment. We compute the overlaps, accounting for both

factors, as detailed in Appendix 4.6.1.

The overlap of the d-orbitals on the two irons involved in our electron transfer process make an

excellent proxy for a coupling. Like couplings, overlaps decay exponentially with distance, and since the

orbitals are rotating with respect to one another throughout the course of the simulation, there is some

rotation of the two molecules that will make the orbitals on one iron orthogonal to the orbitals on the

other iron, giving an overlap of zero. We thus make an ansatz that the coupling is directly proportional

to the overlap of the two d-orbitals involved in electron transfer, overlap, S:

V = αS (4.23)

Upon computing orbital overlaps at each step of our simulation, we transform them into couplings in

such a way to recover the root-mean-square average of the literature values of 〈V 〉rms reported for this
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Figure 4-2: Over the course an NVE trajectory, the orbitals of the two irons change significantly. Due
to both rotation of the crystal field around each iron and mixing of degenerate t2g orbitals, both the
orientation and qualitative character of the orbitals with respect to one another fluctuate. This causes
large fluctuations in the overlap, meaning that even for this simple system, we cannot expect the coupling
between the two orbital manifolds to remain constant—it, too, must fluctuate.
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system [256], 57.3 cm−1 . We do this by first fixing the undetermined constant α using the average value

of S,

α =

√
〈V 2〉
〈S〉

(4.24)

and then applying Equation 4.23 to compute couplings. It stands to reason that the coupling cannot

be constant, even in this simple system: the orbital overlap changes rapidly with time, causing large

fluctuations in the coupling.

4.3.3.3 Computing memory kernels and populations

In order to compute population dynamics and rates, equations 4.9 and 4.12 were implemented in FOR-

TRAN 95. Since the spectral density J(ω) is sampled at a finite number of frequencies from molecular

dynamics simulations, we chose to linearly interpolate between the sampled frequencies, as the integrals

Q
′′
(t), R

′
(t), and S

′′
(t) are piecewise analytic for a piecewise linear spectral density. The three remain-

ing integrals (Q
′
(t), R

′′
(t), and S

′
(t)) are not analytic; we computed these numerically using Simpson’s

Rule for each piecewise-linear segment, recursively subdividing the intervals until an absolute accuracy

of 10−15 was reached. In order to avoid numerical divergences, we treated frequencies lower than 10−4

a.u. by taking the first 20 terms in the Taylor expansion about ω = 0 of each integrand and evaluating

the integral analytically.

Once the kernels were computed, the populations were computed using a standard algorithm for

solving Volterra integrodifferential equations of the second kind [243] to solve equation 4.6 for P (t) ≡

p1(t)− p2(t), the difference in population between states 1 and 2 as a function of time.

4.4 Results and Analysis

The spectral densities computed for iron self-exchange in water are showcased in Figure 4-3. The energy

gap spectral density showcases the strength with which certain bath frequencies drive energy gap fluctua-

tions; similarly, the coupling spectral density showcases the strength with which certain bath frequencies

drive coupling fluctuations.

The energy gap spectral density has four features of note: a weak, broad, low-frequency band and three

strong, sharp, high-frequency bands. These can be interpreted as bath modes driving outer-sphere and

inner-sphere electron transfer, respectively. The three high-frequency bands can be assigned to typical

vibrational frequencies observed in hexaaquairon complexes [275]. The role of outer-sphere bath modes

and inner-sphere bath modes in driving iron self-exchange electron transfer has long been a subject of

debate [251, 252, 253, 245, 254, 255, 256, 276, 277, 278], with a consensus that both types of modes can

play a role but coupling-driven outer-sphere electron transfer often plays the bigger role. We observe

92



0.000 0.002 0.004 0.006 0.008 0.010 0.012

ω (a.u.)

0

50

100

150

200

250

300

350

400

N
o
rm

a
liz
e
d
 J
(ω
)

Energy Gap

Coupling

Figure 4-3: Energy-gap and coupling spectral densities are computed from the correlation functions shown
in Figure 4-1 via equations 4.20 and 4.22. The energy-gap spectral density has high-frequency structure
due to iron-oxygen vibrations—inner-sphere bath modes. While the coupling spectral density shows
less structure, there is still substantial off-diagonal system-bath coupling at low and higher frequencies.
For illustration purposes, the spectral densities shown are computed from the normalized correlation
functions; unnormalized spectral densities were used in dynamics calculations.

here both modes of electron transfer driven by energy gap fluctuations occur: slow bath librations drive

outer-sphere electron transfer and fast Fe-O vibrations drive inner-sphere transfer.

Energy gap fluctuations are not the only force driving electron transfer; though smaller in magnitude,

coupling fluctuations also drive electron transfer, shown by the substantial magnitude of the coupling

spectral density. Bath modes that drive fluctuations in the coupling tend to be lower-frequency in

nature; in the present case, coupling fluctuations are coupled to iron-iron separation distance and the

relative orientation of the irons’ ligands with respect to one another. Both of these fluctuate slowly—very

importantly, along independent characteristic physical coordinates. The decorrelation of these motions

manifests itself in two distinct features in the spectral density.

Figure 4-4(a) showcases the short-time dynamics generated by the spectral densities in Figure 4-3.

Plotted here are photochemical dynamics here computed using the kernels in Appendix A.3, as these

dynamics more clearly illustrate the relative importance of non-Condon effects. Non-Condon effects do

appreciably change the magnitude of population transfer, but not the overall profile; additionally, non-

Condon effects strictly slow down diabatic population transfer (and thus speed up adiabatic population

transfer)—in line with the analytic observation made in equation 4.16.

Unfortunately, because outer-sphere electron transfer dominates and 〈V 〉rms is very small for this

system, the magnitude of population transfer over the first hundred femtoseconds is small. Nevertheless,

examining this system provides an important benchmark: if 〈V 〉rms were bigger, non-Condon effects

would play a vital role in population transfer. This can be seen by scaling 〈V 〉rms by a factor of 10 so
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Figure 4-4: (a) Condon and non-Condon dynamics for hexaaquairon(II/III) self-exchange, with 〈V 〉rms =
57.3 cm−1. Non-Condon effects are appreciable, even though charge-transfer is slow due to the small
value of 〈V 〉rms for this system. (b) If the coupling used is instead 〈V 〉rms = 573 cm−1—a reasonable
size for many condensed-phase charge-transfer systems—it becomes readily apparent that non-Condon
effects cannot be neglected when studying condensed-phase electron transfer, as even for a simple metal
self-exchange reaction in water there are substantial fluctuations in the coupling.

94



that it has a value of approximately 0.1 eV (a reasonable size for a coupling in, say, an organic charge-

transfer system), and scaling the fluctuations in the coupling appropriately. The resulting dynamics

are shown in Figure 4-4(b)—showcasing very appreciable diabatic population transfer over the first 100

femtoseconds. In the case where the coupling is larger (though still small enough that we can neglect

fourth-order effects), non-Condon effects prevent 5% of the population from switching diabats by the time

a steady-state decay to equilibrium is reached at approximately 55 fs—a non-negligible amount. This

suggests that a substantial fraction of adiabatic charge transfer is facilitated by bath-induced fluctuations

in the coupling.

We conclude our discussion with one important observation from this study: while non-Condon effects

can change the instantaneous rate of relaxation towards equilibrium, they do not change the overall rate

of electron transfer. Figure 4-4(c) contains a plot of the rate of change of the diabatic populations with

time for both the Condon case and the non-Condon case. While the two curves do not align at short and

intermediate times, they are identical at long times. While it is certainly true in this case, it is likely to be

true in the general case that non-Condon effects will have a small impact on rates. To second order (and

with a slow-bath, high-temperature approximation), that rate is the Marcus rate; to higher orders, it is

more complicated. Nevertheless, this observation is important for rate processes and should be noted.

4.5 Conclusions

In this chapter, we have asserted that even in simple electron transfer systems, the Condon approximation

will often result in short-time dynamics that are not quantitatively accurate. We have shown that for

hexaaquairon self-exchange in water, the coupling is expected to fluctuate significantly on short (~10-100

fs) timescales. In more complex systems, this fluctuation in the coupling is necessary in order to predict

photochemical dynamics accurately, including such phenomina as conical intersections. By developing

a formalism based on the linear vibronic coupling Hamiltonian, we show that in iron self-exchange, for

reasonable values of 〈V 〉rms, non-Condon effects are expected to substantially alter the amount of initial

nonequilibrium charge transfer that occurs before the system reaches steady-state.

We hope to extend our work to provide more accurate dynamics by going to higher-orders in pertur-

bation theory, so that we can safely tackle the intermediate- and strong-coupling regimes with conviction.

We also wish to examine the effect of using polarizable force fields on the resulting spectral densities, as

polarizable force fields are necessary for quantitatively-accurate solvent reorganization and thus photo-

chemical dynamics [279].
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4.6 Appendix

4.6.1 Computing the overlap between d-orbitals

According to crystal field theory, the electron transfer in this problem is from the t2g manifold of one iron

to the t2g manifold of another iron; thus, the d-orbitals overlaps relevant to our problem are the overlaps

of dxy, dxz, and dyz on one iron atom with those of dxy, dxz, and dyz on the other iron atom. Since

there are manifolds of orbitals and thus 9 relevant overlaps involves in this electron transfer process, we

choose to use as S in equation 4.23 the magnitude of the largest eigenvalue of the 3x3 overlap matrix in

the subspace of the t2g manifolds.

Evaluation of these overlaps not simple: it is confounded by the rotation of one iron with respect

to the other. The process by which we arrive at the eigenvalue of the t2g − t2g subspace of the overlap

matrix can be enumerated as follows:

1. Using a STO-16g basis set which we parameterized to fit a Slater orbital with an exponent of 6.25

(as determined by Slater’s Rules [89]), compute the 36 overlaps of the unrotated Cartesian d-orbitals

dxx,dxy,dyy,dxz,dyz, and dzz on one iron atom with the other, and build the untransformed cartesian

overlap matrix Sij = 〈dFe(II)i |dFe(III)j 〉.

2. Build the two rotation matrices R
′

1 and R
′′

2 that transform the Cartesian basis vectors into the

principle axes of molecule 1 and the principle axes of molecule 2, respectively. The principle axes can

be determined from diagonalization of the inertia tensors for each hexaaquairon molecule. Special

care must be taken to reorder the principle axes at each simulation step to ensure, e.g., that the

rotated x axis remains in the x position and do not flip to the y or z position.

3. Build the matrices T
′

d1 and T
′′

d2 that transform the Cartesian d-orbitals in the lab frame to the

rotated frame for each molecule. These are 6x6 matrices for quadratic and bilinear coordinates which

can be constructed using appropriate combinations of elements from the linear rotation matrices

R
′

1 and R
′′

2 .

4. Build the matrix Y that transforms the Cartesian d-orbitals into the spherical d-orbitals

5. The rotated overlaps in the spherical harmonic basis can then be computed as

Srot = YT
[
T
′

d1

]T
ST

′′

d2Y (4.25)

Once the 6x6 Srot is computed, the 3x3 block corresponding to the t2g subspace, S
t2g
rot, can be excised.

The numerical value S to be used in equation 4.23 can be computed as

S = max
(
abs

(
eig
(
St2grot

)))
(4.26)
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Chapter 5

Fractional Charge Transfer and

CDFT-CI Couplings

5.1 Introduction

As discussed in Section 1.1.1, working in a diabatic basis is appealing for numerous problems in chemistry,

including electron transfer [47, 58], proton transfer [280], and valence bond theory [281]. Of central interest

in any diabatic picture are the off-diagonal matrix elements of the Hamiltonian: the diabatic couplings.

As many contemporary problems in chemistry such as electron transfer are often more tractable to

study in a diabatic basis, various methods have been proposed to efficiently and accurately compute

diabatic couplings [282, 283, 284, 285, 286, 287]. Constrained density functional theory with configuration

interaction (CDFT-CI) has emerged as one such tool that, with proper application of chemical intuition,

can provide an accurate approximation to the couplings with minimal computational cost [106, 288, 77,

289].

Unfortunately, CDFT-CI occasionally seems to be ill-behaved, especially at short distances [290]; in

some cases, the coupling is hypersensitive to the choice of exchange-correlation functional, and it others

it does not decay exponentially with distance, as it should [53]. Without running a large number of

calculations, it can be difficult to determine whether the CDFT-CI coupling for a particular system is

trustworthy, or if a alternative method must be used. In this chapter, we do two things: We first explain

one reason why CDFT-CI fails in certain situations; we then present a metric that shows when the

coupling predicted by CDFT-CI can be trusted and when it should be treated with suspicion.
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5.2 Theory

5.2.1 Motivation of the Problem

An overview of CDFT and CDFT-CI has been provided in Section 1.2.1. In summary, CDFT can be

used to construct approximate diabats, |D〉 and |A〉 with energies ED and EA (respectively) by using an

effective Kohn-Sham potential to solve the Kohn-Sham equations subject to a constraint with weighting

function wC(r) and Lagrance multiplier VC ,

V effKS = VKS + VCwC(r) (5.1)

By using the states |D〉 and |A〉 as the basis of a configuration-interaction calculation, the coupling V

between these two states can be estimated as

V =

[
ED + EA

2
+
VCDwCD + VCAwCA

2

]
〈D|A〉

−VCD〈D|wCD|A〉 − VCA〈D|wCA|A〉 (5.2)

where w Of particular note is that this estimate of the coupling decays as states |D〉 and |A〉—which, in

typical applications of CDFT-CI, are often separated from each other spatially—get further apart from

one another. CDFT-CI couplings should even exhibit exponential decay (as one would expect a diabatic

coupling would behave)[53], since, as can be seen in equation 5.2, the major component of the coupling

is proportional to a wavefunction overlap.

Figure 5-1(a) shows the ideal case where we expect CDFT-CI to predict physical couplings. In this

case, each CDFT state is localized on one molecular center. As the distance between the constraint

centers goes to zero, the overlap, 〈D|A〉, and the matrix elements of the constraint potentials, 〈D|wCA|A〉

and 〈D|wCD|A〉, decay exponentially, as expected. For charge-transfer states, |D〉 describes a state where

the extra electron is localized on one center, and |A〉 describes a state where the extra electron is localized

on the other center.

Occasionally, we and others [290] have observed that the CDFI-CI coupling behaves unphysically.

As part of the work in Chapter 4, we attempted to compute diabatic couplings for hexaaquairon(II) /

hexaaquairon(III) self-exchange; the couplings are plotted in Figure 5-2. It can be seen in the figure that

the couplings typically do not decay exponentially with distance. The question naturally arises: How

can we explain this? Similarly, we occasionally observe a hypersensitivity of the CDFT-CI coupling to

the percent Hartree-Fock exchange present in the exchange-correlation functional; in extreme cases, like

in Figure 5-2, the coupling can span 5 orders of magnitude as the amount of exact exchange increases

from 0% to 100%. We must also ask ourselves: how can we explain this effect, and is it related to the

non-exponential decay of the coupling with distance?
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Figure 5-1: (a) In systems without degeneracies or near-degeneracies, the donor and acceptor wavefunc-
tions (depicted in red and blue, respectively) are localized on the donor and acceptor, respectively. As the
donor and acceptor are pulled apart, the wavefunction overlap (depicted in purple) and thus the coupling
decays exponentially to zero. (b) In systems with degenerate electronic states near the HOMO, such as
transition metal complexes, donor and acceptor wavefunctions can be delocalized and their overlap may
not decay to zero at large distances. While the physical process typically involves transfer of a single
electron from a single orbital, in this situation CDFT often describes the transfer of several fractions of
an electron from several nearly-degenerate orbitals.
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Figure 5-2: Diabatic couplings in atomic units as a function of percent Hartree-Fock exchange (x in
equation 5.5) for hexaaquairon(II) / hexaaquairon(III) electron self-exchange in water. Different data
series represent different iron-iron separation distances. Geometries were sampled as described in Chapter
4; one solvation shell past the coordination waters was included in the QM calculation. Depending on
what fraction of Hartree-Fock exchange is used, the coupling computed spans five orders of magnitude,
and does not decay exponentially (or at all) with distance.
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We can answer these questions with a thought experiment. The constrained density states |D〉 and

|A〉 can often be pictured as being comprised of single orbitals, |φD〉 and |φA〉. The electron transfer

process simulated by CDFT-CI takes an electron from |φD〉 and puts it in |φA〉, as pictured in Figure

5-1(a). In this case, as |D〉 and |A〉 are separated to infinity, the overlap 〈D|A〉 (and thus the CDFT-CI

coupling) decays exponentially to zero.

This ansatz may or may not actually be the case, since a CDFT calculation constrains the density

and not the Kohn-Sham orbitals. Indeed, for systems with degenerate (or nearly degenerate) frontier

orbitals, such as iron, one could easily imagine the donor and acceptor states being comprised of multiple

orbitals, some of which are spatially delocalized. An example may be that |D〉 = |φD1φD2〉 and |A〉 =

1
2 |φD1+A1φD2+A2〉, where |φD1+A1〉 = |φD1〉 + |φA1〉, and the subscripts D and A notate whether the

orbital is localized on donor or acceptor, respectively. This scenario is depicted in Figure 5-1(b). This

corresponds to transferring parts of multiple electrons to each of several different orbitals. In this case,

the overlap 〈D|A〉 is non-zero even when the donor and acceptor are very far apart: for the present

example,〈D|A〉 = 1
2 at infinity. The resulting coupling thus does not decay to zero, as observed in the

case of hexaaquairon self-exchange; it also depends heavily on the percentage of Hartree-Fock exchange,

as this determines how favorable fractional spins are. Based on this logic, we hypothesize that the

transfer of multiple fractional charges largely explains the unusual results which we sometimes observe

from CDFT-CI.

5.2.2 Proposed diagnostic tool

If we can detect when partial charge transfer occurs, we should be able to diagnose when CDFT-CI gives

reliable estimates of the coupling and when it does not. Fortunately, this information exists in the output

of a CDFT-CI calculation: it is encoded in the difference density matrix between state |D〉 and |A〉,

Pdiff = P|D〉 −P|A〉 (5.3)

When a whole electron is transferred, Pdiff has exactly one eigenvalue of -1 (corresponding to an

electron being transferred from an orbital on the donor to an orbital on the acceptor) and exactly one

eigenvalue of +1 (corresponding to a hole being transferred from an orbital on the acceptor to an orbital

on the donor). The rest of the eigenvalues are very small, corresponding to small amounts of valence

orbital relaxation due to the electron transfer process, or numerically zero, corresponding to core orbitals

unaffected by the electron transfer.

For the situation depicted in Figure 5-1(b), we expect the eigenvalues of Pdiff to be quite different.

In this scenario, most eigenvalues are still either 0 or ±1, but in addition we expect a few significant eigen-

values between 0 and 1, reflecting partial charge transfer between donor and acceptor. These eigenvalues
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Table 5.1: Summary of Results. p(α) and p(β) are averaged over all distances and fractions of Hartree-
Fock exchange studied (except where noted). Where p(α) and p(β) are bolded, we expect CDFT-CI to be
unreliable. Exponential fit R2 computed using 20% Hartree-Fock exchange (except where noted).

System p(α) p(β) Exponential fit R2

[Cyclohexane]+2 0.01 0.01 0.97
Ne+

2 0.02 0.01 0.98
Zn+

2 0.02 0.16; 0.01∗ 0.998
Hexaaquairon2+/3+ 0.28 0.27 0.48

Fe2+/3+ 0.15 0.01 0.41†

Polyene 0.02 0.13 0.28
∗p(β) = 0.16 at 2 Å and 0.01 at 4.5 Å
†R2 computed using 10% Hartree-Fock exchange

are too big for orbital relaxation, but too small for whole electron transfer. Thus, if Pdiff has a few

significant eigenvalues between around 0 and 1, we would expect that CDFT-CI should give unreliable

couplings.

In order to avoid having to explicitly look at every eigenvalue of Pdiff , we can instead look at the

sum

p =
1

4

∑
j

λ2
j − λ4

j (5.4)

where the λj are the eigenvalues of the difference density matrix Pdiff . If the eigenvalues are only +1,

-1, or 0, this metric will be 0; for any other values, it will be a finite number greater than 0. Our metric p

is small if we have whole charge transfer, as only the very small orbital relaxation eigenvalues contribute.

Thus, in order to test whether or not CDFT-CI couplings are reliable, we can compute p as in equation

5.4. A small value of p indicates whole charge transfer whereas a large value of p indicates partial charge

transfer, giving us a quantitative metric with which to test our hypothesis.

5.3 Results for test systems

We now tabulate results for several sample systems. All calculations were performed in a modified version

of Q-Chem 4.2 [172] using the 6-31g* basis set and a modified version of the PBE0 functional:

Exc = xExHF + (1− x)ExPBE + EcPBC (5.5)

where, unless otherwise noted, x = 0.2. All calculations were unrestricted and performed with symmetry

off, with a grid of 74 radial points and 302 angular points. Since unrestricted calculations were performed,

we examined the difference density matrix for alpha and beta electrons, P(α)
diff and P

(β)
diff , separately, to

compute p(α) and p(β). Table 5.1 summarizes the main results of this study. Figure 5-3 summarizes the

distance dependence of CDFT-CI couplings for all test systems studied.
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5.3.1 “Good” systems

To begin with, we examine some simple examples where the frontier orbitals are non-degenerate; in these

systems, we expect CDFT-CI to behave sensibly. In order to determine whether this is true, and, more

importantly, whether our metric p informs us that this is true, we study the cyclohexane cation dimer.

This electron transfer system has little degeneracy, so we expect good behavior. The constraints are

applied such that state |D〉 has the hole constrained to one molecule in the dimer, and state |A〉 has the

hole constrained to the other molecule. Both p(α) and p(β) are equal to 0.01. Such small values of p

indicate whole electron transfer; as such, we expect the CDFT-CI coupling to be well-behaved. This is

indeed the case: as we separate the cyclohexane cation dimer from 5 Å to 8 Å, the coupling decreases

exponentially with a decay exponent of -1.0 (R2 = 0.97).

We extend our study to some very simple systems which could potential exhibit s-p or s-d degenracy:

diatomic cations. The cation of the Ne dimer, Ne+
2 is the simplest many-electron electron transfer; if

CDFT-CI is unreliable for such a system, there is no hope that it will work for more complicated systems.

We construct our diabatic states such that the excess hole is localized on a single atom: |D〉 = [Ne+]Ne

and |A〉 = Ne[Ne+]. Fortunately, CDFT-CI predicts exponential decay of the coupling with distance:

As the dimer is separated from 2.5 Å to 4 Å with a CDFT-CI calculation performed every 0.5 Å, the

logarithm of the coupling decays linearly with a slope of -1.47 (R2 = 0.98). For each distance, p(α) = 0.02

and p(β) = 0.009; our metric correctly predicts that CDFT-CI works.

Slightly more complicated is the Zn cation dimer, Zn+
2 . CDFT-CI was benchmarked against this

system [105], so we again expect the results to be reliable. Again, we separated the dimer from 2.5 Å

to 4.5 Å, and again, as expected, the coupling decays exponentially with distance (decay exponent of

-0.39, R2 = 0.998). Cave and Newton report couplings of ~10 mHa at a separation distance of 5 Å [291],

which is roughly what we observe at our largest separation distance of 4.5 Å. Averaged over distance,

p(α) = 0.02 for this system. p(β) is less well-behaved: the metric gets as high as 0.16 at 2 Å, though it

get progressively smaller at larger distances until it drops to 0.01 at 4.5 Å. Unfortunately, this represents

a false positive of our metric. While the CDFT-CI coupling is well-behaved here, we assert that a large

value of p(β) at short distances indicates that there is substantial fractional charge transfer between the

CDFT states and thus the CDFT-CI succeeds only through fortuitous cancellation of errors.

5.3.2 “Bad” systems

CDFT-CI does not work well for all classes of charge-transfer systems; our primary motivation for de-

veloping the metric p was to be able to determine a priori which systems CDFT-CI fails for. Figure 5-2

summarizes perhaps the biggest failing of CDFT-CI we have observed to date, in the computation of a

coupling for electron self-exchange of hexaaquairon(II) / hexaaquairon(III) in water. As shown in the

figure, the computed coupling spans 5 orders of magnitude as the fraction of Hartree-Fock exchange is
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Figure 5-3: CDFT-CI coupling (in Hartree) as a function of distance for each system studied. For the
purposes of this figure, all distances were translated by the shortest distance studied, such that the
shortest distance is reported as “0”. Additionally, all other distances studied are reported as a fraction of
the largest distance studied (which is designated as “1”). The three systems plotted in blue decay roughly
exponentially; the three in orange do not decay.

increased—behavior which is not observed for any of the “good” cases. Additionally, the coupling does

not decay exponentially as the irons are separated; in some cases (such as 20% Hartree-Fock exchange),

the coupling does not decay with distance at all. Averaged across both percent Hartree-Fock exchange

and distance, p(α) = 0.28 and p(β) = 0.27, with neither metric dropping below 0.1 for any calculation

performed; based on this, we conclude that significant partial charge transfer is occluding the accurate

prediction of the coupling for this system. The likely cause of this partial charge transfer is d-orbital

near-degeneracy caused by the solvent crystal field splitting, though solvent-mediated superexchange may

also be at play [292]. Other have estimated the coupling matrix element for this system at ~0.1 mHa

[292, 256], which we can recover with 20-30% Hartree-Fock exchange.

In order to strip out the possibility of superexchange, we repeated the coupling calculation for

iron(II)/iron(III) self-exchange with all solvent stripped out. The oxygen atoms were replaced by point

charges with magnitude q = −0.25 atomic units in order to qualitatively preserve the crystal field split-

ting. Again, the couplings do not decay exponentially with distance (of the available data, the best fit is

R2 = 0.41 at 10% Hartree-Fock exchange); nor are they stable as the fraction of Hartree-Fock exchange

increases, varying as much as 4 orders of magnitude. Somewhat disturbingly, at short distances (2 Å),

the difference density metrics p(α) and p(β) do not predict the failure of CDFT-CI: the average value of

p(α) at this distance is 0.03, and that of p(β) is 0.01. At larger distances (4 Å), the metric does predict the

observed catastrophic failure of CDFT-CI, with p(α) = 0.15, indicating significant partial charge transfer.

Thus it should be noted that while quite useful, this metric is not perfect. While superexchange may be

partially to blame for poor CDFT-CI couplings in the hexaaquairon self-exchange system, CDFT-CI still

fails to predict stable couplings when sources of superexchange are removed, leaving orbital degeneracy

as the primary cause of partial charge transfer.

CDFT-CI fails not only for certain classes of transition metal systems, but also for certain organic
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systems, including polyenes. Polyenes have small band gaps and thus nearly degenerate frontier orbitals;

as a result, we expect CDFT-CI to predict couplings for these molecules poorly. To demonstrate this effect,

we examine hole transfer from perhydroxylbenzene to perfluorobenzene connected by a polyene chain of

varying length. Geometries were optimized with 6-31g*/PBE0. The couplings behave as expected: As a

function of fraction Hartree-Fock exchange, they span approximately one order of magnitude; and as the

polyene chain gets longer, the couplings do not decay exponentially (and for some fractions of Hartree-

Fock exchange, even increase as donor-acceptor distance increases!). The density difference diagnostic

behaves as expected: p(α) = 0.02 and p(β) = 0.13 averaged over all distances and fractions of Hartree-Fock

exchange studied, again indicating partial charge transfer from nearly-degenerate orbitals.

5.4 Conclusions

In this chapter, we have indicated that CDFT-CI can sometimes predict couplings which do not de-

cay exponentially with distance and/or show hypersensitivity to the amount of exact exchange in the

exchange-correlation functional. We have hypothesized that this problem is present in electron transfer

systems where fractions of electrons are transmitted from donor to acceptor. Fractional electrons indeed

have a long history in density functional theory [293] and are especially problematic in cases with large

amounts of static correlation, or orbital degeneracy [294, 295].

We have examined cases where we expect small amounts of static correlation, such as noncovalent

organic dimers, and cases where we expect large amounts of static correlation, such as transition metal

complexes. Based on our data, the best rule of thumb seems to be that when p < 0.05, CDFT-CI

couplings typically decay exponentially with distance and are stable with respect to fraction of exact

exchange. When p ≥ 0.05, the couplings are typically not reliable. This metric is not perfect, but it fits

well with most of the data.

While not perfect, the metric p is generally good for predicting whether or not to trust CDFT-CI

couplings. When p is large and CDFT-CI couplings cannot be trusted, it is unclear how reliable couplings

can be extracted. In such cases, any method based on orbital overlaps, such as CDFT-CI, will fail. It is

important to note that it is not equation 5.2 that is erroneous, but rather that in these cases the CDFT

states (or at least ones that come from approximate functionals) have the wrong physical character. In

such a situation, it is hard to imagine any coupling formula working well; instead, to predict accurate

couplings, one would need a better description of the electronic structure of the monomers. Based on

this diagnostic, we observe that there is room for figuring out ways to improve CDFT-CI, or better ways

to compute couplings. Recent work on local scaling corrections in DFT [296] may show promise. In

the meantime, we hope that the metric communicated in this contribution helps determine when the

couplings computed from CDFT-CI can be trusted.
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Chapter 6

Conclusion

Electron transfer in solvent is a very challenging problem for computers due to the large number of degrees

of freedom that must be accounted for quantum-mechanically, but it has very important technological and

environmental applications. In this thesis we have examined in detail one of these important applications,

artificial catalytic water splitting, using several DFT-based methods. We additionally examined the

detailed short-time dynamics of electron transfer for some model systems in the context of system-bath

models based on the spin-boson Hamiltonian. We developed a dynamics approach based on high-order

resummations of generalized master equation memory kernels, showing that at a high enough order and

with the appropriate resummation, the dynamics are convergent; additionally, we extended our formalism

to treat fluctuations in electronic couplings, showing that these fluctuations could enhance population

transfer between adiabats at short times. We finally examined critically the reliability of the computation

of CDFT-CI couplings, which are used in a variety of condensed-phase electron transfer applications.

The density functional thermochemistry and polarizable QM/MM methodologies applied in Chapter

2 allowed us to make various predictions about artificial catalytic water splitting. We showed that

thermochemical screens of catalyts based on the stability of their mechanistic intermediates can open up

regions of design space not yet explored. We additionally showed that very accurate redox potentials

can be computed using polarizable QM/MM simulations with explicit solvent, an accuracy which can be

used as a gateway into studying barrier heights, reorganization energies, and redox kinetics. Our detailed

analysis [19] reviews the sorts of computational methods that can be used to address open questions in

redox catalytic.

Efforts to harness DFT models of structure and reactivity for computational screening of materials

are already underway [31, 297, 298], and water oxidation catalysis is a natural target to include in

such studies [36]. By combining electronic structure calculations with cheminformatic approaches, the

necessary machinery for high-throughput screening of candidate materials is within reach and will likely

produce useful leads in the near future. But neither cheminformatic approaches nor mechanistic studies
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will attain their full potential without vigorous experimental collaboration. Input from experiments

will help refine informatic approaches and will continue to push the limits of our mechanistic models.

Together, theoretical and experimental mechanistic studies will continue to drive advances in artificial

water oxidation catalysis.

Open questions in this area still remain. We limited our analysis in this thesis to small-molecule first-

row metal dimers in octahedral coordination geometries with a very particular selection of oxidation and

spin states. It remains to be seen how this analysis holds up (or changes) if any of these constraints are

relaxed. Of particular interest is an extension of this work to ternary compounds, as catalysts containing

more than 2 metals are a region of design space that we have yet left unexplored. Additionally, we mainly

focused our work on a single mechanism; while we have shown that our conclusions should be applicable

to chemically-similar mechanisms, it remains to be seen how these conclusions will change if we look

at chemically dissimilar mechanisms. In particular, mechanisms involving intramolecular proton-coupled

electron transfer (or just proton transfer) have been shown to potentially alter observed overpotentials

[299]; modeling of related mechanistic intermediates may reveal helpful aspects of catalytic design not

yet considered.

Moving towards the underlying theory of electron transfer in solvent, Chapter 3 outlined a method-

ology that can be used to study two-state systems interacting with a bath of harmonic modes. We

showed that adding in corrections to fourth-order in time-dependent perturbation theory in the diabatic

coupling to dynamical memory kernels in generalized master equations gave semi-quantitative to quan-

titative short-time dynamics for model baths [250]. The theory outlined in this chapter is not perfect;

there exists room for improved resummation schemes, as well as for resummations involving kernels to

even higher orders. We outline one resummation scheme based on constructing a Dyson-like series for

the memory kernels in the Appendix. We believe that this resummation scheme may have a natural

extension to higher-order perturbative effects, the inclusion of which will allow us to compute spin-boson

dynamics numerically-exactly. We also believe that this resummation may be of use in extending our

theory to N-level systems interacting with harmonic baths, to allow us to study electron-transfer processes

involving multiple states.

Chapter 4 saw us extending and applying this memory kernel formalism to study a chemical electron

transfer problem: iron self-exchange in water. We showed that allowing diabatic couplings to fluctuate—

as is the case in the linear vibronic coupling model Hamiltonian—slowed down electron transfer in the

diabatic basis, speeding it up in the adiabatic basis. We assert on the basis of this work that these model

Hamiltonians are the simplest feasible model of condensed-phase conical intersections—phenomena of

paramount importance in photochemistry.

Ultimately, we hope to use our formalism to study chemical systems with conical intersections. Many

chemical systems contain conical intersections that can be directly modeled [300, 301, 43, 44, 302].
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Direct observation of molecular relaxation through conical intersections via a mapping on to the lin-

ear vibronic coupling Hamiltonian will allow us to make predictions about nonradiative decay rates in

photochemistry—an essential component to first-principles prediction of quantum yields. Even an approx-

imate description of such photochemical dynamics will be invaluable towards predicting the photochemical

properties of small molecules in the condensed phase.

Unfortunately, as we showed in Chapter 5, a key component in computing conical intersection

dynamics—namely, dynamical trajectories of diabatic couplings—is still a challenge for electronic struc-

ture theory [274]. While CDFT-CI is an excellent tool for computing couplings in many cases, it sometimes

fails, meaning we must rely on alternative methods [284, 291]. An avenue of research remains to develop

a computational method that reliably predicts electronic couplings of both diabats and DFT approximate

adiabats. We are presently exploring the possibility of using an alternative solution of the Hartree-Fock

solutions to approximate coupling matrix elements directly from the transition density matrix.

The progress made in condensed-phase electron transfer dynamics outlined in this thesis has several

important applications. We see several avenues for interesting exploration in electrochemistry. Because of

its interesting electronic structure, redox catalysts based on graphene [303] have recently been discovered

that could provide efficient routes towards producing hydrogen fuel cells. The work presented in this

thesis could be used to understand how these novel catalysts work mechanistically, in order to refine their

efficiency. Additionally, graphene can act as both a source and sink of electrons; studying the dynamics

of electron transfer to and from this continuum of states may reveal insight into its catalytic nature.

Perhaps most excitingly, work on electron transfer dynamics beyond the Condon approximation pro-

vides an avenue for predicting quantum yields from first principle. Quantum yield prediction is a very

difficult problem with a wealth of applications both in academia and industry [304, 305, 306]. As Marcus

theory comes from a particular limit of the memory kernels for the spin-boson Hamiltonian, so too could a

version of Marcus theory accounting for fluctuating couplings (and thus conical intersections) come from

the same limit of the linear vibronic coupling Hamiltonian; such a rate theory may provide an avenue

towards ab initio prediction of nonradiative rates and thus quantum yields [263].

Applications are not limited to molecules in solution: solid-phase charge-transfer dynamics can also be

modeled using system-bath Hamiltonians. Of particular interest is charge transfer across organic-organic

interfaces, essential for the development of novel organic photovoltaic devices. Non-Condon rate and

dynamics calculations can be applied to such systems to predict their nonradiative relaxation rates and

thus quantum yields, which could provide a computational screen for their use in solar cells.

Finally, we hope that some of the theoretical developments outlined in this thesis will see experimental

realization. In particular, we see an avenue for materials science to design water oxidation catalysts

based on some of the design principles outlined in Chapter 2, and for spectroscopists to model quantum

coherences through condensed-phase conical intersections using some of the theoretical models outlined

109



in Chapters 3 and 4. Fluctuating couplings are a hallmark of condensed-phase electron transfer systems

as others in our group have previously observed [117]. A critical examination of the applicability of the

Condon approximation in problems of this class may have a lot to teach us about the electronic properties

and electron dynamics of condensed-phase compounds, leading to innumerable innovations in solar energy

materials in the decades to come.
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Appendix A

Derivation of Spin-Boson Memory

Kernels

A.1 Derivation of general expressions for K
(2)
11 and K

(4)
11 from time-

dependent perturbation theory

Our starting point is time-dependent perturbation theory for the density matrix, ρ(t). We’re interested

in deriving an expression for K(2n)
11 and K(2n)

22 —quantities related to ṗ1 and ṗ2, the time derivatives of

the populations of the two states. We shall examine K(2n)
11 and p1 in particular, but the steps in this

derivation can easily be repeated with p2 as the starting point to arrive at an expression for K(2n)
22 .

Additionally, we will specifically derive the expressions for K(2)
11 and K

(4)
11 , but the result can easily be

generalized to derive higher-order rate kernels.

In the interaction representation, we can write the population in state 1 as

p1(t) = Trb
[
U(t)ρ(0)U†(t)|1〉〈1|

]
(A.1)

where U(t) is the time evolution operator U(t) ≡ exp
[
−iĤt

]
, and the subscript “b” on the trace indicated

a trace over all bath coordinates. To 4th order,

p1(t) = 1 + Trb
[
2Re

[
U (2)(t)ρ(0)

]
|1〉〈1|

]
+Trb

[
2Re

[
U (4)(t)ρ(0)

]
|1〉〈1|

+U (2)(t)ρ(0)U†(2)(t)|1〉〈1|
]

+ ...

≡ 1 + V 2p
(2)
1 (t) + V 4p

(4)
1 (t) + ...
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where we have defined p(2n)
1 in the last line and used the operator identity Ô + Ô† = 2Re

[
Ô
]
. Taking a

time derivative and working through some algebra, one can show that

ṗ
(2)
1 (t) = −2

ˆ t

0

Re
[
f+

2 (s1)
]
ds1 (A.2)

ṗ
(4)
1 (t) = 2

ˆ t

0

ds1

ˆ t−s1

0

ds2[ˆ t−s1−s2

0

ds3Re
[
f+

4 (s1, s2, s3)
]

+

ˆ t−s1−s2

−s1−s2
dt3Re

[
f+

4 (−s1 − s2 − s3, s1, s2)
]]

(A.3)

where we have introduced two functions f+
2 (s1) and f+

4 (s1, s2, s3) defined as

f+
2 (s1) ≡ V 2Trb

[
Ô(s1)ρ(0)

]
(A.4)

f+
4 (s1, s2, s3) ≡ V 4Trb

[
Ô(s1)Ô†(s2)Ô(s3)ρ(0)

]
(A.5)

where we have defined Ô(t) ≡ eiĥ1te−iĥ2t, and ĥ1 and ĥ2 are defined through equation 3.2.

We can perform a similar expansion on equation 3.3 (using p(0)
1 = 1− p(0)

2 = 1) to show that

ṗ
(2)
1 (t) = −

ˆ t

0

K
(2)
11 (t− s)ds (A.6)

ṗ
(4)
1 (t) = −

ˆ t

0

(
K

(2)
11 (t− s)p(2)

1 (s)

+K
(4)
11 (t− s) +K

(2)
22 (t− s)p(2)

1 (s)
)
ds (A.7)

Comparing equations A.2 to A.6 and equations A.3 to A.7 (doing some algebra in the latter case)

allows us to arrive at equations 3.6 and 3.7, the equations for K(2) and K(4) in terms of equations f+
2 and

f+
4 ; all that remains is to work out the functional forms of these traces (i.e., prove the equality between

equations 3.8 and A.4, and also equations 3.9 and A.5) . This result is general for any two-level system

coupled to a bath, so long as the electronic coupling is constant; we have not yet specified the bath to be

harmonic.
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A.2 Derivation of the bath correlation functions f2 and f4 for the

spin-boson problem using Gaussian coherent states

We now compute the traces in equations A.4 and A.5 for the special case of a harmonic bath. In order

to make computation simple, we shall assume that the reduced density matrix describing the system

initially contains no populations in state 2 and no coherences (i.e. its (1,1) element is unity, and all other

elements are zero). We shall additionally assume that the bath is in equilibrium with a thermal heat

reservoir of inverse temperature β ≡ 1/kBT . This brings our list of assumptions up to 3:

1. The electronic coupling is constant;

2. The bath is harmonic and coupled to the system linearly to the system; and

3. The full density matrix at time t=0 can be represented as ρ(0) = e−βĥ1/ Tr
[
e−βĥ1

]
Of particular importance is that we have not assumed anything about the bath other than its harmonicity,

which should manifest in the form of our equations depending on a general spectral density function J(ω).

In passing, we will also note that it should be possible to repeat this derivation relaxing assumption 1,

though we shall leave this to future work.

In the position representation, a Gaussian coherent state |p, q;φ〉 parameterized by average position

q and average momentum p with phase φ can be written

〈x|p, q;φ〉 =
(ω
π

)1/4

exp
[
−ω

2
(x− q)2

+ ip (x− q) + iφ
]

(A.8)

Note that for a harmonic oscillator, the phase φ(t) does not depend explicitly on t, only on p(t) and q(t)

[307]; thus, phase space integration over p and q will eliminate φ as well. Nevertheless, we include it in

the definition of our Gaussian coherent state for clarity, as will be made evident over the next few steps

in the derivation.

Using these Gaussian coherent states as a basis, we can work out the traces. For brevity, we shall work

out the fourth-order trace (equation A.5), as it is more related to the general case and the second-order

trace has been previously computed elsewhere. The trace can be written as

f+
4 (s1, s2, s3) =

V 4

Z

ˆ
〈p, q;φ|Ô(s1)Ô†(s2)Ô(s3)e−βĥ1 |p, q;φ〉dp0dq0

where Z ≡
´
〈p, q;φ|e−βĥ1 |p, q;φ〉dpdq is the partition function, and the phase space integral is over all

initial positions and momenta.

In order to compute this integral, we can utilize the property of Gaussian coherent states that their

average position, momentum, and phase evolve classically in time. We can also exploit the fact that ĥ1 and

ĥ2 are related by symmetry: since the bath is (by assumption) significantly larger than the system, the
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bath Hamiltonians contain identical spectra, and only differ by some displacement δ along one coordinate.

These two facts allow us to compute the action of the operator eiĥ1te−iĥ2t on the state |p, q;φ〉 mode-by-

mode. We shall perform this deconstruction, and then “reassemble” the complete bath in the final step.

The two states of the system see a bath mode of frequency ω as the same one-dimensional harmonic well

displaced horizontally by a distance δ and vertically by a distance ε, the energy bias between the states.

The time evolution due to the (constant) energy bias ε can be factored out; the rest of the time evolution

can be evaluated analytically according to the classical equations of motion for a harmonic oscillator [308]

eiĥ1te−iĥ2t|p, q;φ〉 = eiεt|p(t), q(t);φ(t)〉

q(t) = q0 − δω (cos(ωt)− 1)

p(t) = p0 − δω sin(ωt)

φ(t) =
δ2ω

2
(cos(ωt)− 1) sin(ωt)− δωq0 sin(ωt)

Acting the real time evolution operators to the left, and the imaginary time evolution operator to the

right, we obtain

f+
4 (s1, s2, s3) =

V 4

Z

ˆ
〈P (s1, s2, s3), Q(s1, s2, s3); Φ(s1, s2, s3)|p(−iβ), q(−iβ);φ(−iβ)〉dp0dq0

definining

P (s1, s2, s3) ≡ −p(s1) + p(s2)− p(s3)

Q(s1, s2, s3) ≡ −q(s1) + q(s2)− q(s3)

Φ(s1, s2, s3) ≡ −φ(s1) + φ(s2)− φ(s3)

which is just the integral of the overlap of two Gaussians over all possible initial values of position and

momentum. This can be computed analytically (inserting a resolution of the identity and using equation

A.8) to derive an explicit form for f4(s1, s2, s3) for a single bath mode. We were able to verify that

equation 3.7 together with equation A.7 gives the correct fourth-order population for the one mode

problem by solving the for the populations of this problem numerically-exactly through brute-force time

propagation of the full density matrix.
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A spectral density can be incorporated noting that a spectral density is just a way of specifying exactly

what the harmonic displacement δ that each state “sees” at each frequency of the bath ω:

J(ω) =
π

2

∑
j

ω3
j δ

2
j δ(ω − ωj)

Putting all of this together, one arrives at equation 3.9. A similar (simpler) derivation can be used to

arrive at equation 3.8, and the extension to calculate bath correlation functions involving five-time events,

seven-time events, and higher is straightforward.

A.3 Derivation of the Photochemical Kernels to Fourth-order

K(2) and K(4)

We present here an explicit derivation of the photochemical memory kernels for the linear vibronic

coupling Hamiltonian to fourth-order in perturbation theory. The lack of explicit time dependence in

ĤLV C implies that the overall density matrix of the system ρ(t) evolves as

ρ(t) = e−itĤLVCρ(0)eitĤLVC (A.9)

Since we are only interested in the populations in states |1〉 and |2〉, we can trace out the bath modes

and write:

p1(t) = Trbath [ρ(t)|1〉〈1|] (A.10)

p2(t) = Trbath [ρ(t)|2〉〈2|] = 1− p1(t) (A.11)

Treating the off-diagonal elements of ĤLV C as perturbations allows us to expand p1(t) as a power series

in terms of the off-diagonal elements. If we start purely at state |1〉, we have:

ρ(0) =

ρB 0

0 0

 (A.12)

where ρB is the initial bath density matrix. We discuss two initial conditions:

1. The photochemical initial condition, ρB =
e−βĥ2

Tr
[
e−βĥ2

] , where the system has been electronically

excited from |2〉 to |1〉, but the bath modes have not yet had an opportunity to relax from their

initial thermal equilibrium with |2〉.
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2. The thermal initial condition, ρB =
e−βĥ1

Tr
[
e−βĥ1

] , where the system starts in State 1 (p1(0) = 1) in

equilibrium with the bath.

We focus most of our discussion on the photochemical initial condition. This initial condition implies

p1(0) = 1 and so we have

p1(t) = 1 + p
(2)
1 (t) + p

(4)
1 (t) . . . (A.13)

where p(2n)
1 (t) is the 2nth order term in the series (odd order terms are zero with these initial conditions),

which are all zero at t = 0 and can be determined using time-dependent perturbation theory.

We then define ĥ1, ĥ2, Ô(t) and F2n(t1, t2) such that

ĤLV C =


ĥ1 V0 +

∑
j

Vj x̂j

V0 +
∑
j

Vj x̂j ĥ2

 (A.14)

Ô(t) ≡ eiĥ1t

V0 +
∑
j

Vj x̂j

 e−iĥ2t (A.15)

F2n(t1, t2 . . . t2n) ≡ Tr

[
n∏
i=1

(
O(t2i−1)O†(t2i)

)
ρB(0)

]
(A.16)

The populations p(2n)(t) can be obtained by integrating traces F2n(t1, t2 . . . t2n), which can be evalu-

ated using a Gaussian coherent state basis as described in the previous section of this Appendix. Conse-

quently, we find that for photochemical ρB we have:

F2(t1, t2) = ((V0 + α(t1, t2)) (V0 + β(t1, t2))

+γ(t1 − t2)) f2(t1, t2) (A.17)

where

f2(t1, t2) = exp [−iε(t1 − t2)−Q′(t1 − t2)− iφ(t1, t2)] (A.18)

and we define
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φ(t1, t2) ≡ Q′′(t1 − t2)− 2Q′′(t1) + 2Q′′(t2) (A.19)

α(t1, t2) ≡ 2R′(t1)−R′(t1 − t2) + iR′′(t1 − t2) (A.20)

β(t1, t2) ≡ 2R′(t2)−R′(t1 − t2) + iR′′(t1 − t2) (A.21)

γ(t) ≡ S′(t)− iS′′(t) (A.22)

Here, Q′(t), Q′′(t), R′(t), R′′(t), S′(t), and S′′(t) have been defined previously, in Equations 3.10 –

4.14. Note that for the spin-boson Hamiltonian, when the coupling is a constant (V0), α = β = γ = 0. In

the case where we can neglect the cross-correlation, R′(t) = R′′(t) = 0 and the above equations simplify:

F2(t1, t2) ≈ T2(t1, t2)f2(t1, t2) (A.23)

where f2(t1, t2) is defined in Equation A.18 and we define

T2(t1, t2) ≡
(
V 2

0 + γ(t1 − t2)
)

=
(
〈V 2〉+ γ(t1 − t2)− γ(0)

)
(A.24)

When we can neglect cross-correlation, we can analogously write the fourth-order bath correlation

function F4 as

F4(t1, t2, t3, t4) = T4(t1, t2, t3, t4)f4(t1, t2, t3, t4) (A.25)

where

f4(t1, t2, t3, t4) =
f2(t1, t2)f2(t2, t3)f2(t3, t4)f2(t1, t4)

f2(t1, t3)f2(t2, t4)
(A.26)

and

T4(t1, t2, t3, t4) = T2(t1, t2)T2(t3, t4) + T2(t1, t3)T2(t2, t4)

+ T2(t1, t4)T2(t2, t3)− 2V 4
0 (A.27)
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All that remains is to connect the bath correlation functions F2 and F4 to the memory kernels K(2)

and K(4). From perturbation theory, these bath correlation functions are related to the populations by

p
(2)
1 (t) = −2

tˆ

0

dt1

t1ˆ

0

dt2Re [F2(t1, t2)] (A.28)

p
(4)
1 (t) = 2

tˆ

0

dt1

t1ˆ

0

dt2

t2ˆ

0

dt3

t3ˆ

0

dt4Re [F2(t1, t2, t3, t4)] +

tˆ

0

dt1

t1ˆ

0

dt2

tˆ

0

dt3

t3ˆ

0

dt4F2(t2, t1, t3, t4) (A.29)

The memory kernels K(2n)(t, t1) cannot be uniquely determined; however, kernels consistent with Equa-

tions A.28 and A.29 can be obtained by expanding the rate equations (Equation 4.6) in the coupling V̂

and matching orders in perturbation theory by analogy. This results in the kernels

K
(2)
1 (t, t1) = 2Re [F2(t, t1)] (A.30)

which is consistent with A.28, and

K
(4)
1 (t, t1) = −2Re

 t1ˆ

0

dt2

t2ˆ

0

F4(t, t1, t2, t3)dt3 +

tˆ

0

dt2

t2ˆ

0

F4(t1, t, t2, t3)dt3


+K

(2)
+ (t, t1)

t1ˆ

0

dt2

t2ˆ

0

K
(2)
1 (t2, t3)dt3 (A.31)

which is consistent with A.29.

We briefly consider the thermal initial conditions discussed at the start of this section. Under this

set of initial conditions, only the form of f2 changes on moving from photochemical initial conditions to

thermal conditions; thus, all of the equations described in this section can be used to compute memory

kernels under thermal initial conditions, making the substitution:

f2(t1, t2)→ f th2 (t1 − t2) (A.32)

f th2 (t) = exp [−iεt−Q′(t)− iQ′′(t)] (A.33)

Importantly, the non-Condon piece of the kernels, T2, remains the same so long as cross-correlations

between energy gap fluctuations and coupling fluctuations can be neglected. The fourth-order kernels

can be derived making the same substitution for f2 and using equations A.26 and A.27.

For reference, the full second-order thermal kernel is

K
(2)
th = K

(2)
th,c +K

(2)
th,nc
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where K(2)
th,c is the Condon piece,

K
(2)
th,c(t) = 2V 2

0 exp [−Q′(t)] cos [εt±Q′′(t)] (A.34)

and K(2)
th,nc is the non-Condon piece,

K
(2)
th,nc(t) = 2 exp [−Q′(t)] [S′(t) cos(εt±Q′′(t))− S′′(t) sin(εt±Q′′(t))

+
(

(R′(t))
2 − (R′′(t))

2
)

cos(εt±Q′′(t))− 2R′′(t)R′(t) sin(εt±Q′′(t))

−2V0 (R′(t) cos (εt±Q′′(t))−R′′(t) sin (εt±Q′′(t)))] (A.35)

The fourth-order generalization is straightforward.

A.4 A note on the backwards rate kernel, K22

All of the results in the previous two sections can be applied as well to compute K22. Only two things

change:

1. We must compute the trace over the equilibrium configuration of state 2, which effectively means

ĥ1 ↔ ĥ2 (and thus, by symmetry, δ/2↔ −δ/2) everywhere

2. The initial condition changes to p1(0) = 1 − p2(0) = 0, changing K(2)
11 (s2) → K

(2)
22 (s2) in equation

3.7

Otherwise, the derivation proceeds virtually identically.
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