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Abstract

Given a set of target detections over several time periods, this paper addresses
the multi-target tracking problem (MTT) of optimally assigning detections to targets
and estimating the trajectory of the targets over time. MTT has been studied in the
literature via predominantly probabilistic methods. In contrast to these approaches,
we propose the use of mixed integer optimization (MIO) models and local search algo-
rithms that are (a) scalable, as they provide near optimal solutions for six targets and
ten time periods in milliseconds to seconds, (b) general, as they make no assumptions
on the data, (c) robust, as they can accommodate missed and false detections of the
targets, and (d) easily implementable, as they use at most two tuning parameters.
We evaluate the performance of the new methods using a novel metric for complexity
of an instance and find that they provide high quality solutions both reliably and
quickly for a large range of scenarios, resulting in a promising approach to the area
of MTT.

Thesis Supervisor: Sung-Hyun Son
Title: Assistant Group Leader, Lincoln Laboratory Group 36

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research
Co-Director, Operations Research Center

3



4



Acknowledgments

I would like to thank everyone who played a role in making this opportunity

possible, everyone who supported me throughout this process, and everyone who

influenced this project in any manner. Though I unfortunately do not have the space

to thank each of you by name, I am immensely grateful for each and every one of you

and the impacts you have had on me and this work.

I would like to thank my advisor, Professor Dimitris Bertsimas, for his ongoing

support and guidance throughout this project. Without your direction and ideas

none of this would have been possible. I thank you for constantly challenging me to

push myself and for propelling me to expand my academic prowess beyond what I

could have thought possible for myself. Additionally, I would like to thank Shimrit

Shtern for her guidance and counseling on this project as well. Thank you for taking

the time to pour over my error ridden scripts, edit this paper, and provide further

guidance at critical points of this project.

Thank you to everyone at Lincoln Laboratories who played a role in making this

degree possible. To Mr John Kuconis, thank you for facilitating this opportunity and

generously sponsoring me through a military fellowship. To my advisor, Sung-Hyun

Son, I also want to thank you for providing me with the opportunity to be a Lincoln

Laboratory Military Fellow in Group 36. Additionally, thank you for introducing me

to the MTT problem and encouraging me to explore a field of the Air Force that was

new to me, something that will no doubt pay dividends in my future as an officer. To

Steve Relyea, thank you for meeting with me regularly and helping me weed through

the details of the MTT problem, repeatedly scratching out ideas on paper. Your

advice and insight was critical to both getting this project up and running, as well as

keeping it on track throughout the process. Furthermore, I would like to thank the

Lincoln Laboratories LLGrid team for their support in running my experiments. As

a first time Linux user, your assistance was instrumental in running my simulations

and gathering my results.

Finally, I want to thank my friends and family. To my family, Mom, Dad, Tess,

5



Mathew, and Molly, thank you for your endless love and support and for constantly

reminding me that hard work and due diligence always pays off. Without your con-

tinual support I would not be where I am today. I would also like to thank the

truly extraordinary students at the MIT Operations Research Center who not only

provided me with lasting friendships but also supported me academically both in the

classroom and on this project.

CONTRACT ACKNOWLEDGMENT: This material is based upon work sup-

ported by the Air Force under Air Force Contract No. FA8721-05-C-0002 and/or

FA8702-15-D-0001. The views expressed in this document are those of the author

and do not reflect the official policy or position of the United States Air Force, the

United States Department of Defense or the United States Government.

6



Contents

1 Introduction 13

2 Problem Description 19

3 MIO Model 21

3.1 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Overall Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Generalized Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Local Search Heuristic 29

5 Extensions to Detection Ambiguity 33

5.1 Robust MIO with Fixed Number of Targets . . . . . . . . . . . . . . 35

5.1.1 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.4 Full Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Heuristic with Fixed Number of Targets . . . . . . . . . . . . . . . . 39

6 Scenario Complexity & Performance Metrics 41

6.1 Data Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Trajectory Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7



7 Experimental Simulations & Computational Results 45

7.1 Scenarios without Detection Ambiguity . . . . . . . . . . . . . . . . . 46

7.1.1 Scenario Generation . . . . . . . . . . . . . . . . . . . . . . . 47

7.1.2 Basic Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1.3 Data Association . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.4 Trajectory Estimation . . . . . . . . . . . . . . . . . . . . . . 54

7.1.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Scenarios with Detection Ambiguity . . . . . . . . . . . . . . . . . . . 56

7.2.1 Robust Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.2 Number of Targets . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2.3 Data Association . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2.4 Trajectory Estimation . . . . . . . . . . . . . . . . . . . . . . 64

7.2.5 Summary of Detection Ambiguity Results . . . . . . . . . . . 65

8 Summary and Future Work 69

A Detection Ambiguity Penalty Values 71

B Robust MIO With Number of Targets as a Decision Variable 75

B.1 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.4 Full Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.5 Extension of Robust Heuristic . . . . . . . . . . . . . . . . . . . . . . 79

C Trajectory Assignment Pairing 81

C.1 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.4 Generalized Assignment Pairing Model . . . . . . . . . . . . . . . . . 83

8



List of Figures

4-1 Pseudocode for heuristic for a single starting point. . . . . . . . . . . 30

7-1 Relationship between 𝜎 and 𝜌 summarized by scenario type for all 20

generated scenarios in this experiment. . . . . . . . . . . . . . . . . . 48

7-2 Quality of heuristic solution as compared to the ideal solution’s MIO

objective value summarized by number of starting points. . . . . . . . 51

7-3 Accuracy of MIO compared against the heuristic and a randomized

solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7-4 Trajectory estimation performance . . . . . . . . . . . . . . . . . . . 55

7-5 Distribution of the difference in true and estimated number of targets

for scenarios with 4 targets and 8 scans, arranged by 𝛾 and 𝜆. . . . . 60

7-6 Distribution of the difference in true and estimated number of targets

for scenarios with 8 targets and 8 scans, arranged by 𝛾 and 𝜆. . . . . 61

7-7 Accuracy of robust heuristic and MIO as compared to random solutions

for scenarios of 4 targets and 8 scans, arranged by 𝛾 and 𝜆. . . . . . . 62

7-8 Accuracy of robust heuristic and MIO as compared to random solutions

for scenarios of 8 targets and 8 scans, arranged by 𝛾 and 𝜆. . . . . . . 63

7-9 𝛿 of robust heuristic and MIO as compared to random solutions for

scenarios of 4 targets and 8 scans. . . . . . . . . . . . . . . . . . . . . 65

7-10 𝛿 of robust heuristic and MIO as compared to random solutions for

scenarios of 8 targets and 8 scans. . . . . . . . . . . . . . . . . . . . . 66

9



THIS PAGE INTENTIONALLY LEFT BLANK

10



List of Tables

7.1 Heuristic run times (in milliseconds) for a single starting point. . . . . 49

7.2 Robust heuristic run times (in milliseconds) for a single starting point. 58

A.1 False alarm penalties (𝜃) as a function of 𝜆 and 𝜎. . . . . . . . . . . . 72

A.2 Missed detection penalties (𝜑) as a function of 𝜆, 𝛾, and 𝜎. . . . . . . 73

11



THIS PAGE INTENTIONALLY LEFT BLANK

12



Chapter 1

Introduction

Multi-target tracking is the problem of estimating the state of multiple dynamic

objects, referred to as targets, over a fixed window of time. At various points of time

within the window, the targets are observed in a scan, resulting in a set of detections.

The multi-target tracking problem aims to extract information about target dynamics

from these detections.

Solutions to this problem are sought across many civilian and military applications

including, but not limited to, ballistic missile and aircraft defense, space applications,

the movement of ships and ground troops, autonomous vehicles and robotics, and air

traffic control. As each application has unique attributes and assumptions, various

algorithms have been developed to solve this problem across the spectrum of contexts.

As a result the field of multi-target tracking has expanded to numerous research

venues, generating a wide range of literature on the topic. A complete overview of

all MTT methods, including the classes of algorithms and their variants, as well as

additional methods not discussed in this paper can be found in [22]. For a more

exhaustive overview of estimation techniques, filtering, gating, and other methods

see [3] and [4].

The field of multi-target tracking faces two primary challenges: (i) data association

and (ii) trajectory estimation. Given a set of sensor detections, the data association

problem consists of assigning the detections to a set of targets. Alternatively, this can

be viewed as a labeling problem in which each detection must be labeled with a target
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identifier. The association problem is further complicated when sensors fail to report

detections (missed detection) or incorrectly report detections (false alarm), resulting

in ambiguity in the number of existing targets. The trajectory estimation problem

consists of estimating the state space of a target (i.e., position, velocity, acceleration,

size, etc.) from the associated detections of the aforementioned assignment problem.

Even when all of the associations are known, the estimation problem is challenging

due to the presence of measurement noise. The two problems of data association and

trajectory estimation are closely related and dependent on one another.

Some classical algorithms treat the data association and trajectory estimation

problems separately using a combination of probabilistic approaches to determine

data associations and filters to estimate trajectories. One such algorithm is the global

nearest neighbor (GNN). The GNN algorithm is a naive 2-D assignment algorithm

that evaluates one scan of detections at a time, globally assigning the nearest detection

at each scan [7]. Once the data association has been determined, the detections are

often passed through one of numerous filters, most commonly a Kalman filter [15],

which updates the trajectory estimates before the algorithm progresses forward to

the next scan. This process repeats sequentially through each scan of the data.

Modern algorithms in the field of multi-target tracking are most commonly statis-

tically based, often relying on heavy probabilistic assumptions about the underlying

target dynamics or detection process. The two most prevalent statistical algorithms in

the field of multi-target tracking are the Multiple Hypothesis Tracker (MHT) and the

Joint Probability Data Association Filter (JPDAF), along with their numerous vari-

ants and extensions. Both classes of algorithms attempt to solve the data association

problem by generating a set of potential hypotheses, or possible detection-to-track

assignments. Here a track is a set of labeled detections belonging to the same target.

Probabilities are assigned to each hypothesis based on the likelihood of the trajectory’s

existence, and numerous approaches for accomplishing this task have been proposed.

The MHT, first proposed by Reid in [23], assigns likelihood values to hypothe-

ses using a Bayesian maximum a posteriori estimator, which requires probabilistic

assumptions on both object dynamics and detection process. This algorithm is gen-
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erally considered to be the modern standard for solving the data association problem.

Many variants have been proposed for implementation, which leverage techniques such

as clustering, gating, hypothesis selection, hypothesis pruning, and merging of state

estimates. Many of these methods are summarized in [8].

While the MHT has seen various forms of success, it faces several key challenges.

Namely, the curses of dimensionality and complexity. The number of possible hy-

potheses grows exponentially with the number of potential tracks and the number of

scans. Consequently, it is considered intractable for large scenarios. Moreover, the

MHT may potentially require extensive tuning and thus may be difficult to implement

in practice, in addition to being computationally expensive. For these reasons, it is

generally considered to be one of the most complex MTT algorithms.

A Probability Data Association (PDA) takes a Bayesian approach to solving the

data association problem by finding detection-to-target assignment probabilities via a

posterior PDF, which again requires heavy assumptions on object dynamics and the

detection process. In similar fashion, a Joint PDA (JPDA) assigns probabilities that

are computed jointly across all targets. The JPDAF is an algorithm that implements

the JPDA along with filters and estimation methods as discussed previously in [3].

A limited number of optimization based algorithms have been applied to solve

the MTT problem, most of which attempt to solve it by mapping the measurement

set onto a trellis and seeking the optimal measurement association sequence. Some

examples of such approaches include the Multi-Target Viterbi [27] and a following

extension in [11], which formulates the method in [27] as a network flow, reducing

the solve time from exponential to polynomial. Still other works, in particular [20],

suggested adaptations of this approach that output a single best set of tracks, or a

list of best sets of tracks, similar to the MHT.

Compared to the number of statistically based algorithms in the MTT literature,

optimization based algorithms are relatively scarce. In fact, most of these algorithms

in the MTT literature propose the use of optimization to leverage statistical algo-

rithms such as, in particular, the MHT. For example, integer optimization has been

used to improve the MHT hypothesis selection by solving an assignment problem
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that chooses the best hypothesis, but only after costs have been assigned (statistically

based) and hypotheses have been pruned [18]. Somewhat similarly, linear optimiza-

tion has also been used to assist in the hypothesis selection process for the MHT [10].

Other optimization approaches aim to improve the MHT hypothesis selection process

via Lagrangian relaxation [21].

More recently, Andriyenko and Schindler have proposed formulating the MTT

problem as a minimization of a continuous energy in [2], and then again as a mini-

mization of discrete-continuous energy in [1]. These algorithms work towards more

accurate representations of the nature of the problem, but sacrifice interpretability

for complexity in the process. Rather than formulating the problem in a way that

lends easily to traditional global optimization methods, the authors leverage the use

of optimization techniques to find strong local minima of their proposed energy ob-

jective and achieve strong results in doing so. However, this approach calls for the use

of several parameters that require tuning and the work provides limited recommen-

dations for such a tuning process. Additionally, these methods require initialization

heuristics to begin the solving process, which is in itself complicated to implement

and is not directly connected to the final optimization problem solved.

In this paper, we propose the use of mixed integer optimization (MIO) to formulate

and solve the multi-target tracking problem. Although MIOs are generally thought

to be intractable (NP-Hard), in many practical cases near optimal solutions and even

optimal solutions to these problems are obtainable efficiently [16]. This is largely at-

tributed to the fact that MIO solvers have seen significant performance improvements

in recent years due to advancements in both methodology and hardware. The devel-

opment of new heuristic methods, discoveries in cutting plane theory, and improved

linear optimization methods have all contributed to improvements in performance [6].

Modern solvers such as Gurobi and CPLEX have been shown to perform extremely

well on benchmark tests. In the past six years alone, Gurobi has seen performance

improvements by a factor of 48.7 [12]. CPLEX saw improvements by a factor of 29,000

from 1991 to 2007 [19]. From 1994 to 2014, the growth of supercomputing power as

recorded by the TOP500 list has improved by a factor of 567,839 [26]. Thus, the
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total combined effective improvement of software and hardware advancements is on

the scale of 800 billion in the past 25 years [5].

The existing literature is additionally lacking in performance metrics for the eval-

uation of MTT algorithms. There is no standard method of measuring scenario

complexity or algorithm performance as a function of this complexity. In many cases,

only the sensor’s detection noise is taken into account and other factors such as target

density are negated. Recent work in [24] proposes a mathematically rigorous perfor-

mance metric for measuring the distance between ground truth and estimated track,

but little attention is given to the complexity of generated scenarios. In this paper,

we also introduce measures of complexity and performance related to those suggested

in [24], but we show the value in relating a complexity measure to performance mea-

sures, namely in that it allows us to evaluate the data association and trajectory

estimation problems separately. We evaluate the methods suggested in this paper

using these complexity and performance measures on two simulated experiments.

The main contributions of this paper are as follows:

(i) We introduce a simple interpretable MIO model that solves the data association

and trajectory estimation problems simultaneously for a sensor with no detection

ambiguity. The model does not require assumptions on data generation or any

parameter tuning. Furthermore, this MIO is practically tractable in that it

obtains high quality solutions in a reasonable amount of time for the considered

applications.

(ii) We propose a simple local search heuristic, motivated by the optimization prob-

lem, which provides feasible solutions that can be used as warm starts for the

MIO in order to improve the quality of the solutions obtained as well as the

running time. This heuristic is highly scalable and parallelizable, solving in

milliseconds.

(iii) We extend this basic MIO model and the corresponding heuristic algorithm

to incorporate detection ambiguity, i.e., the case where there are both missed

detections and false alarms. This extension maintains interpretability while
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only introducing two additional parameters, for which we provide general tuning

guidelines.

(iv) We present a novel measure of complexity for the data association problem

and propose a simplified measure of performance for the trajectory estimation

problem.

The paper structure is outlined as follows. We begin with a description of the

MTT problem in Chapter 2, as this is the setting we aim to model for the entirety

of the work. In Chapter 3 we introduce a simple MIO formulation for a sensor with

no detection ambiguity and extend it to a generalized formulation. We then present

a randomized local search heuristic in Chapter 4, which we use as a warm start

for the MIO. In Chapter 5 we discuss extensions to both the MIO model and the

heuristic for the case of detection ambiguity. In order to quantify the performance

of our suggested methods, we develop metrics for measuring scenario complexity

and algorithm performance in Chapter 6. Experimental methods and computational

results are presented in Chapter 7, including results for scenarios both with and

without detection ambiguity. Finally, we summarize our contributions and describe

future work in Chapter 8.

General Notations: Unless specified otherwise, ‖ · ‖ is used to indicate a norm,

and | · | refers to element-wise absolute value.
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Chapter 2

Problem Description

In this paper, we restrict our exploration of the MTT problem to the automatic

tracking of multiple, independent point targets using a single sensor. A target is the

object of interest. A point target’s only identifiable attributes are features of its state

space, which we restrict to position and velocity. The state space fully defines the

field of trajectories, or paths, along which targets travel. A detection is collected

from each target at sequential scans and is subject to noise. We consider two general

scenarios: with and without detection ambiguity.

When there is no detection ambiguity the sensor produces exactly one detection

for each target in each scan, without any other source of detections. Therefore,

the number of detections in each scan is exactly equal to the number of existing

targets. Under these conditions, the data association problem reduces to a one-to-

one assignment problem. Our basic optimization model, presented in Chapter 3,

addresses this variant of the MTT problem.

The presence of detection ambiguity results in a more complex case where the

sensor both generates false alarms and misses detections. A false alarm occurs when

a detection is collected but in fact no target exists. This could be the result of

measurement error or difficulties in the sensor’s signal processing. A missed detection

occurs when a data point is not collected in a given scan where a target actually

exists. Due to such ambiguity the number of detections in each scan could be higher

or lower than the actual number of existing targets. Thus, the number of targets can
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not be immediately deduced from the number of detections. Under these conditions

each detection can be assigned to either a target, in the same manner as before, or

classified as a false alarm. Furthermore, we wish to identify the location (scan and

target ID) of a missed detection. In Chapter 5 we present extensions of our basic

optimization model to a robust formulation that deals with this detection ambiguity,

which we will refer to as the robust MIO model.

Throughout the paper we make the following assumptions:

Assumption 1.

(i) All targets have constant velocity. i.e., targets do not maneuver and no outside

forces act on them.

(ii) Each target’s dynamics are independent of any other target’s dynamics.

(iii) The number of targets remains constant throughout the window of observation,

i.e., there is no birth/death of targets.

(iv) The detection errors are independent of one another.

Notation: We observe 𝑃 targets over a fixed time window in which 𝑇 scans are

collected. Without loss of generality, and for ease of notation, we assume the scans

arrive at a fixed rate of 1Hz, such that the set of scans can be time stamped by

{1, 2, ..., 𝑇}. The 𝑖𝑡ℎ detection of the 𝑡𝑡ℎ scan is indicated by 𝑥𝑖𝑡, such that a scan of

data at time t is the unordered set of detections 𝒳𝑡 = {𝑥1𝑡, 𝑥2,𝑡, ..., 𝑥𝑃,𝑡}. The data

for the problem is the ordered set of scans 𝒳 = (𝒳1,𝒳2, ...,𝒳𝑇 ). The state space of

target trajectories is paramaterized by a true initial position 𝛼true
𝑗 and a true constant

velocity 𝛽true
𝑗 .
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Chapter 3

MIO Model

In this chapter, we deal with the case of no detection ambiguity. Therefore, we

add the following, more restrictive assumptions, to those presented in Assumption 1:

Assumption 2.

(i) The sensor generates exactly one detection for each target in each scan i.e., no

missed detections.

(ii) The sensor does not generate any spurious detections i.e., no false alarms.

A corollary to Assumption 2 is that the number of detections at each scan will be

constant and equal to the number of targets. This seemingly simple point is critical to

developing models in the case of no detection ambiguity. We begin constructing our

MIO model by introducing decision variables that define data associations as well as

estimated trajectories. Using these decision variables, we then develop an objective

function that mathematically quantifies the value of the model solutions. Finally,

we restrict the set of feasible solutions using constraints that force the model to find

solutions that are suitable for the MTT problem as we have defined it. A simple model

is first developed step by step in the coming sections before a generalized formulation

is presented.
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3.1 Decision Variables

The data association and trajectory estimation problems each require unique de-

cision variables. Because these two problems lie in different domains, the variables

we use to represent these decisions also differ. First, we introduce continuous decision

variables 𝛼𝑗 ∈ R𝑛 and 𝛽𝑗 ∈ R𝑛 to represent the estimated initial position and veloc-

ity, respectively, of each trajectory j. In our interpretation of the MTT problem, we

allow the trajectory parameters to lie anywhere in the real-continuous domain. For

the data association problem, we wish to assign detections to trajectories, which is a

naturally discrete problem. Therefore, we introduce binary decision variables 𝑦𝑖𝑡𝑗 to

indicate whether detection 𝑥𝑖𝑡 is assigned to trajectory j or not:

𝑦𝑖𝑡𝑗 =

⎧⎪⎨⎪⎩1, if detection 𝑥𝑖𝑡 is assigned to trajectory j,

0, otherwise.
(3.1)

Next, we use these decision variables to develop an objective function that accurately

scores the solutions found by the model.

3.2 Objective Function

We would like to develop a function that quantifies the quality of a feasible so-

lution. Toward this goal, we aim to establish a single measure for both the data

association and the trajectory estimation problems, though we will construct the ob-

jective function in steps by considering each of these problems individually. Beginning

with the estimation problem, we define the quality of an estimated trajectory as the

distance between the estimated position of the trajectory and its associated detec-

tions. Let �̂�𝑗𝑡 denote the estimated position of target 𝑗 in scan 𝑡. Then the distance

between detection 𝑥𝑖𝑡 and target 𝑗 in scan 𝑡 is:

‖𝑥𝑖𝑡 − �̂�𝑗𝑡‖,
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which represents of measure of the quality of the estimation for trajectory 𝑗 in scan

𝑡. The total estimation quality for a trajectory is then given by:

𝑃∑︁
𝑗=1

𝑇∑︁
𝑡=1

⃦⃦⃦⃦
⃦⃦ ∑︁
(𝑖,𝑗)∈𝒜𝑡

𝑥𝑖𝑡 − �̂�𝑗𝑡

⃦⃦⃦⃦
⃦⃦ , (3.2)

where 𝒜𝑡 is the set of pairs of detection-trajectory associations for scan 𝑡.

We can now separate the problem into two parts: 1) given a set of associations,

find the estimated trajectories that minimizes (3.2), and 2) find the set of associations

that result in the best estimated trajectories. Recall that each trajectory is defined

by two parameters, 𝛼true
𝑗 and 𝛽true

𝑗 , such that the true position of target 𝑗 in scan 𝑡 is

given by:

�̄�𝑗𝑡 = 𝛼true
𝑗 + 𝛽true

𝑗 𝑡. (3.3)

Thus, an estimated trajectory can be analogously defined by 𝛼𝑗 and 𝛽𝑗 such that its

estimated location at the time of scan 𝑡 is given by:

�̂�𝑗𝑡 = 𝛼𝑗 + 𝛽𝑗𝑡. (3.4)

Therefore, given a complete set of associations 𝒜 = (𝒜1, . . . ,𝒜𝑇 ), the trajectory

with the best estimation error is given by the solution to the following optimization

problem:

minimize:
𝛼𝑗 ,𝛽𝑗

𝑃∑︁
𝑗=1

𝑇∑︁
𝑡=1

⃦⃦⃦⃦
⃦⃦ ∑︁
(𝑖,𝑗)∈𝒜𝑡

𝑥𝑖𝑡 − (𝛼𝑗 + 𝛽𝑗𝑡)

⃦⃦⃦⃦
⃦⃦ . (3.5)

Notice that under the current assumptions, in which there is no detection ambiguity,

(3.5) represents the cost of the association set 𝒜.

Now we turn to the problem of choosing the associations, based on this measure.

To this end we formulate the assignment cost (3.5) in terms of our decision variables
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for the association problem. Note that (𝑖, 𝑗) ∈ 𝒜𝑡 if and only if 𝑦𝑖𝑡𝑗 = 1. Thus,

∑︁
(𝑖,𝑗)∈𝒜𝑡

𝑥𝑖𝑡 =
𝑃∑︁
𝑖=1

𝑦𝑖𝑡𝑗𝑥𝑖𝑡, (3.6)

holds because all detections will be associated to a target and vice versa under As-

sumption 2. Making the appropriate substitutions, the cost of an assignment de-

scribed by variables 𝑦𝑖𝑡𝑗 is given by:

⃦⃦⃦⃦
⃦

𝑃∑︁
𝑖=1

𝑦𝑖𝑡𝑗𝑥𝑖𝑡 − (𝛼𝑗 + 𝛽𝑗𝑡)

⃦⃦⃦⃦
⃦ . (3.7)

Therefore, in order to find the assignment with the lowest cost, we are left to minimize

cost (3.7) over all assignments, and we obtain the following final objective:

minimize:
𝑦𝑖𝑡𝑗 ,𝛼𝑗 ,𝛽𝑗

𝑃∑︁
𝑗=1

𝑇∑︁
𝑡=1

⃦⃦⃦⃦
⃦

𝑃∑︁
𝑖=1

𝑦𝑖𝑡𝑗𝑥𝑖𝑡 − (𝛼𝑗 + 𝛽𝑗𝑡)

⃦⃦⃦⃦
⃦ . (3.8)

At this point it is necessary to discuss the advantages and disadvantages of the

two natural distance measures (norms) that will be considered: the ℓ1 and the ℓ2

norms. The ℓ1 norm has the advantage that it can be reformulated using linear

optimization (through the addition of continuous variables and constraints), and it is

well known to be more robust to outliers. Furthermore, existing algorithms for MIO

are better developed for linear rather than quadratic optimization. However, the ℓ2

norm squared form, which is equivalent to the residual sum of squares (RSS), has

the advantage that it can be quickly computed using simple linear algebra, making

it more amenable to a heuristic. This concept will be discussed further in Chapter 4.

Because of the computational benefits of linear optimization over quadratic opti-

mization, we choose to formulate the objective function to the MIO model using the

ℓ1 norm. This allows us to reformulate (3.8) using linear optimization by introducing
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continuous variables 𝜓𝑗𝑡 ∈ R𝑛 and the following two constraints:

𝑃∑︁
𝑖=1

𝑦𝑖𝑡𝑗𝑥𝑖𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡 ≤ 𝜓𝑗𝑡, ∀𝑗, 𝑡, (3.9)

−

(︃
𝑃∑︁
𝑖=1

𝑦𝑖𝑡𝑗𝑥𝑖𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡

)︃
≥ 𝜓𝑗𝑡 ∀𝑗, 𝑡. (3.10)

The resulting objective function for the case of the ℓ1 norm would then be:

minimize:
𝜓𝑗𝑡

𝑃∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝜓𝑗𝑡. (3.11)

3.3 Constraints

In addition to the constraints used to linearize the objective function, we also

require standard assignment constraints to ensure that only one detection is assigned

to each target in each scan and vice versa. Specifically, for each target and each scan,

each detection must be assigned to exactly one target j :

𝑃∑︁
𝑗=1

𝑦𝑖𝑡𝑗 = 1 ∀𝑖, 𝑡. (3.12)

Similarly, for each scan, each target must be assigned exactly one detection:

𝑃∑︁
𝑖=1

𝑦𝑖𝑡𝑗 = 1 ∀𝑗, 𝑡. (3.13)
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3.4 Overall Formulation

Integrating all of these elements together, we arrive at the following MIO model:

minimize:
𝜓𝑗𝑡

𝑃∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝜓𝑗𝑡 (3.14)

subject to:
𝑃∑︁
𝑗=1

𝑦𝑖𝑡𝑗 = 1 ∀𝑖, 𝑡

𝑃∑︁
𝑖=1

𝑦𝑖𝑡𝑗 = 1 ∀𝑗, 𝑡

𝑃∑︁
𝑖=1

𝑦𝑖𝑡𝑗𝑥𝑖𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡 ≤ 𝜓𝑗𝑡 ∀𝑗, 𝑡

−

(︃
𝑃∑︁
𝑖=1

𝑦𝑖𝑡𝑗𝑥𝑖𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡

)︃
≥ 𝜓𝑗𝑡 ∀𝑗, 𝑡

𝑦𝑖𝑡𝑗 ∈ {0, 1} ∀𝑖, 𝑡, 𝑗

𝛼𝑗 ∈ R𝑛 ∀𝑗, 𝛽𝑗 ∈ R𝑛 ∀𝑗.

This formulation is simple in the sense that it involves few variables and constraints,

making it highly interpretable and easily implementable. However, it has the disad-

vantage of being ill suited for extensions to detection ambiguity because it heavily

relies on the fact that exactly one of the detections in each scan is associated to a

target, which implies:

𝑃∑︁
𝑖=1

𝑦𝑖𝑡𝑗𝑥𝑖𝑡 = 𝑥𝑖𝑡, (3.15)

will always hold true. However, in the case of detection ambiguity, (3.15) no longer

holds true since there might be trajectories that are not associated with a detection in

a given scan. Therefore, in the following section we present a generalized formulation,

which is amenable to scenarios with detection ambiguity.
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3.5 Generalized Formulation

Here we modify (3.14) so that it can be easily extended to handle false alarms

and missed detections that occur in the case of detection ambiguity. We previously

identified that (3.14) cannot extend to handle detection ambiguity because (3.15)

will no longer hold true. Therefore, we seek an alternate method of representing the

objective function. Toward this goal, we introduce a new continuous variable 𝑧𝑗𝑡, and

add the following constraint to the model:

𝑀𝑡(1− 𝑦𝑖𝑡𝑗) ≥ |𝑧𝑗𝑡 − 𝑥𝑖𝑡𝑦𝑖𝑡𝑗| ∀𝑖, 𝑡, 𝑗. (3.16)

where 𝑀𝑡 = max
𝑖
|𝑥𝑖𝑡| for each scan. This constraint forces 𝑧𝑗𝑡 to take the value of 𝑥𝑖𝑡

when 𝑦𝑖𝑡𝑗 = 1 and some arbitrary number when 𝑦𝑖𝑡𝑗 = 0.

𝑧𝑗𝑡 =

⎧⎪⎨⎪⎩𝑥𝑖𝑡, if 𝑦𝑖𝑡𝑗 = 1,

free, otherwise.

In the case of no detection ambiguity,
∑︀𝑃

𝑖=1 𝑦𝑖𝑡𝑗 = 1 will always hold true as forced

by (3.13). Thus, we recover (3.8) exactly because 𝑧𝑗𝑡 will always take on the value of

exactly one of the 𝑥𝑖𝑡. Thus, the resulting alternate objective function is:

minimize:
𝑧𝑗𝑡,𝛼𝑗 ,𝛽𝑗

𝑃∑︁
𝑗=1

𝑇∑︁
𝑡=1

‖𝑧𝑗𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡‖. (3.17)

This objective can be linearized in the same fashion as (3.8) by again introducing

continuous variables 𝜓𝑗𝑡 and additional constraints as follows:

minimize:
𝜓𝑗𝑡

𝑃∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝜓𝑗𝑡 (3.18)

𝑧𝑗𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡 ≤ 𝜓𝑗𝑡 ∀𝑖, 𝑗, 𝑡,
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−(𝑧𝑗𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡) ≥ 𝜓𝑗𝑡 ∀𝑖, 𝑗, 𝑡.

Also note that we can linearize (3.16) by substituting it for the following two linear

constraints:

𝑥𝑖𝑡𝑦𝑖𝑡𝑗 +𝑀𝑡(1− 𝑦𝑖𝑡𝑗) ≥ 𝑧𝑗𝑡 ∀𝑖, 𝑡, 𝑗,

𝑥𝑖𝑡𝑦𝑖𝑡𝑗 −𝑀𝑡(1− 𝑦𝑖𝑡𝑗) ≤ 𝑧𝑗𝑡 ∀𝑖, 𝑡, 𝑗.

Again, we consolidate these elements together and arrive at the following gener-

alized MIO model:

minimize:
𝜓𝑗𝑡

𝑃∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝜓𝑗𝑡 (3.19)

subject to:
𝑃∑︁
𝑗=1

𝑦𝑖𝑡𝑗 = 1 ∀𝑖, 𝑡

𝑃∑︁
𝑖=1

𝑦𝑖𝑡𝑗 = 1 ∀𝑗, 𝑡

𝑥𝑖𝑡𝑦𝑖𝑡𝑗 +𝑀𝑡(1− 𝑦𝑖𝑡𝑗) ≥ 𝑧𝑗𝑡 ∀𝑖, 𝑡, 𝑗

𝑥𝑖𝑡𝑦𝑖𝑡𝑗 −𝑀𝑡(1− 𝑦𝑖𝑡𝑗) ≤ 𝑧𝑗𝑡 ∀𝑖, 𝑡, 𝑗

𝑧𝑗𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡 ≤ 𝜓𝑗𝑡 ∀𝑖, 𝑗, 𝑡

− (𝑧𝑗𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡) ≥ 𝜓𝑗𝑡 ∀𝑖, 𝑗, 𝑡

𝑦𝑖𝑡𝑗 ∈ {0, 1} ∀𝑖, 𝑡, 𝑗

𝛼𝑗 ∈ R𝑛 ∀𝑗, 𝛽𝑗 ∈ R𝑛 ∀𝑗, 𝑧𝑗𝑡 ∈ R𝑛 ∀𝑗, 𝑡.

Note that (3.14) and (3.19) are exactly identical formulations when detection

ambiguity does not exist. Throughout the remainder of this paper, we refer to (3.14)

as the basic MIO. In Chapter 5 we will extend (3.19) to account for false alarms and

missed detections when detection ambiguity exits.
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Chapter 4

Local Search Heuristic

In this chapter, we present a detailed description of a local search heuristic that

finds high quality feasible solutions to (3.19), which we call the basic MIO model.

These solutions can be used as a warm start to the basic MIO model, providing a

performance boost in run time and improved solution quality. The heuristic utilizes

randomized local search methods to find locally optimal solutions. Fundamentally,

randomized local search methods begin with a random initial starting point and

converge to a locally optimal solution through local improvements. Applying this

scheme to a growing number of randomized starting points increases the probability

of reaching high quality solutions or even the globally optimal solution.

We begin by describing the heuristic mechanism for a single starting point. A

starting point is a randomized solution to the association problem that satisfies the

assignment equations (3.12) and (3.13). To generate a random starting point, asso-

ciations are randomly assigned to detections for each scan, in such a way that each

ordered association, or permutation, has an equal probability of occurring. The as-

signment cost, temporarily denoted by 𝑓 , of this starting point is then calculated by

solving (3.7) for all scans of each trajectory. After initializing with a starting point,

the heuristic begins a sweep through the scans, i.e., a single pass through the scans.

At each scan of the sweep two detections are randomly selected from the current scan

and their assignments are exchanged, an operation referred to as a swap. this process

generates a new feasible solution. The assignment cost of this new solution is calcu-
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lated, and the swap is kept if the cost of the new solution improves. Otherwise the

swap is rejected. The heuristic continues to conduct sweeps until a full sweep is com-

pleted without accepting a single swap, at which point it terminates. Pseudocode for

this local search heuristic, referred to as the basic heuristic, is provided in Figure 4-1.

Algorithm 1 Randomized local search with heuristic swaps
Input: 𝒳 , P, T
Output: 𝑓 , 𝑦

Initialization : Assign random initial assignment to 𝑦0
1: Calculate 𝛼𝑗, 𝛽𝑗 ∀𝑗
2: Calculate 𝑓 0 - the cost of assignment 𝑦0
3: swapped ← 𝑡𝑟𝑢𝑒
4: 𝑘 ← 1
5: while swapped do
6: swapped ← 𝑓𝑎𝑙𝑠𝑒
7: for 𝑡 in {𝑡1, 𝑡2, ..., 𝑇} do
8: Randomly choose 𝑗,𝑚 ∈ {1, . . . , 𝑃}
9: Find 𝑖, 𝑙 such that 𝑦𝑘−1

𝑖𝑡𝑚 = 1 and 𝑦𝑘−1
𝑙𝑡𝑗 = 1

10: Swap such that 𝑦𝑘𝑖𝑡𝑗 ← 1, 𝑦𝑘−1
𝑖𝑡𝑚 ← 0, 𝑦𝑘𝑙𝑡𝑚 ← 1 and 𝑦𝑘𝑙𝑡𝑗 ← 0

11: Calculate 𝑓𝑘 the cost of assignment 𝑦𝑘 as well as 𝛼𝑗, 𝛽𝑗, 𝛼𝑚, 𝛽𝑚
12: if (𝑓𝑘 ≥ 𝑓𝑘−1) then
13: 𝑦𝑘 ← 𝑦𝑘−1

14: else
15: swapped ← 𝑡𝑟𝑢𝑒
16: end if
17: end for
18: 𝑘 ← 𝑘 + 1
19: end while
20: return 𝑓𝑘, 𝑦𝑘

Figure 4-1: Pseudocode for heuristic for a single starting point.

The goal of any heuristic is to find good feasible solutions in an efficient manner.

In particular, the goal of our heuristic is to find good feasible solutions that can serve

as a warm start for the basic MIO model. In Chapter 3 we discussed our choice to use

the ℓ1 norm over the ℓ2 norm for use in the objective function of our MIO models. We

now turn to discuss why the ℓ2 norm is the preferred choice for use in this heuristic.
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The two main areas of concern are 1) efficiency of the algorithm and 2) quality of the

solution.

In the case of the MIO models, the preferred objective function utilizes the ℓ1

norm because it lends itself easily to linear optimization solvers which have known

performance advantages over quadratic optimization solvers. However, in the case

of the heuristic, the objective function no longer needs to determine the associations

because they are predetermined by the initialization and swapping processes. In

addition, the heuristic objective score needs to be recomputed after each swap, even

if it is eventually rejected, and hundreds to thousands of swaps may be carried out

for a single starting point. This fact makes the computational cost of this calculation

critical to the scalability of the heuristic. Computing the ℓ1 norm objective would

require solving an linear optimization problem. Even though this linear optimization

problem can be computed quite quickly by state of the art optimization solvers, the

ℓ2 norm squared, or RSS, can be computed by simple linear algebra in a fraction of

the time, as shown in [14]. Therefore, with respect to efficiency, the ℓ2 norm is the

clear choice for use in the local search heuristic.

In judging the quality of a heuristic solution, it is important to remember that it

will serve as a warm start for the MIO, which uses the ℓ1 norm in its objective. It

is natural to assume that using the same norm for the heuristic objective would lead

to higher quality solutions. While this holds true, we found that both norms find

good quality solutions, likely due to the fact that they both represent measures of

distance, making them highly correlated. Thus, the choice of the ℓ2 over the ℓ1 norm

might not significantly degrade the solution quality. Although the use of ℓ2 norm runs

the risk of obtaining solutions which are not necessarily extremely good solutions for

the ℓ1 norm objective the potential loss in solution quality is far outweighed by the

guaranteed efficiency improvements afforded by the ℓ2 norm.

Furthermore, the local search heuristic can be parallelized by running unique

starting points on separate processors, enabling the ability to run a larger number of

starting points without increasing the run time. Increasing the number of starting

points greatly increases the potential for the heuristic to improve solution quality and
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thus further reducing the risk of reduced solution quality. Therefore, we make the

choice to use the ℓ2 norm in the objective function of the heuristic.
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Chapter 5

Extensions to Detection Ambiguity

We transition to treat the case of detection ambiguity. Specifically, we now al-

low for false alarms, the instance in which a detection is triggered when no target

exists, and missed detections, the instance in which a target exists but no detection

is generated. Consequently, the number of detections at each scan varies, and the

number of targets we wish to track becomes ambiguous. To define this explicitly,

we introduce additional notation for the case of detection ambiguity. Let 𝑛𝑡 be the

number of detections at scan t. We denote:

𝑁0 = min
𝑡
𝑛𝑡,

as the largest number of detections across all scans. Similarly, we denote:

𝑁1 = max
𝑡
𝑛𝑡,

as the smallest number of detections across all scans. In the case of detection ambi-

guity we only assume that the true number of targets falls somewhere in the range

of [𝑁0, 𝑁1]. Specifically, we replace Assumption 2 with the following less restrictive

assumption.

Assumption 3.

(i) The sensor generates at most one detection for each target in each scan i.e.,
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there can be missed detections.

(ii) The sensor can generate detections that do not originate from any target i.e.,

there can be false alarms.

(iii) The number of true targets 𝑃 satisfies 𝑁0 ≤ 𝑃 ≤ 𝑁1.

Several new challenges emerge in the case of detection ambiguity. First, we need

to estimate the number of targets. We denote the number of estimated targets as

𝑃est. Second, we aim to identify detections as false alarms in addition to assigning

them to targets, however, these cannot occur simultaneously for a single detection.

Finally, we wish to identify the scans in which a particular target was not detected.

We identify two approaches for estimating the number of targets. In the first

approach, the number of targets can be determined via the optimization model itself,

through the use of additional decision variables and constraints. Alternatively, the

second approach formulate a variant of the MIO model that assumes a fixed number

of targets 𝑃 and then uses the power of parallelization to run that model with all

possible values of 𝑃 which satisfy Assumption 3. At the completion of this process,

we choose the solution for 𝑃 that minimizes the total objective function value. These

two approaches are equivalent, in the sense they have the same optimal solution set.

However, as it turns out, the first approach leads to a model that is not tractable

for practical use, while the second approach yields smaller, more tractable models,

which as we stated have the added benefit that they can be solved in parallel. There-

fore, we turn our focus to discuss the second approach and defer the interested reader

to Appendix A for a complete discussion of the first approach. In this chapter, we

extend our basic MIO model to the case of detection ambiguity before discussing

necessary adaptations to the basic heuristic, which will also assume a fixed number

of targets and provide good quality warm start solutions to its corresponding MIO.
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5.1 Robust MIO with Fixed Number of Targets

In this section, we extend (3.19) to account for missed detections and false alarms

through the addition of new decision variables and constraints. The objective function

is also updated to reflect the necessary additions.

5.1.1 Decision Variables

We need to establish new variables for identifying false alarms as well as missed de-

tections. Toward this goal, we introduce new binary decision variables 𝐹𝑖𝑡 to indicate

whether or not a detection 𝑥𝑖𝑡 is a false alarm.

𝐹𝑖𝑡 =

⎧⎪⎨⎪⎩1, if detection i at time t is a false alarm,

0, otherwise.

Likewise, we introduce new binary decision variables 𝑀𝑗𝑡 to indicate whether or not

trajectory j has a missed detection at time t.

𝑀𝑗𝑡 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if detection for trajectory j

at time t is a missed detection,

0, otherwise.

5.1.2 Objective Function

We can easily extend (3.17) to account for detection ambiguity by introducing

penalties 𝜃 and 𝜑 for each missed detection and false alarm, respectively. This implies

a linear penalty function, meaning that each missed detection (false alarm) contributes

the same penalty to the objective function. Therefore, we simply need to penalize

the total number of false alarms and missed detections in the objective function. If

we denote the total number of false alarms 𝑇𝐹 and total number of missed detections
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𝑇𝑀 , the resulting objective function takes the form:

minimize:
𝜓𝑗𝑡

𝑃∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝜓𝑗𝑡 + 𝜃 · 𝑇𝐹 + 𝜑 · 𝑇𝑀. (5.1)

As a general rule, we would expect to increase 𝜃 or 𝜑, as the number of expected false

alarms or missed detections decreases, respectively. A more exhaustive discussion on

the insight behind these penalties, in addition to recommendations for tuning them

can be found in Appendix A.

5.1.3 Constraints

Finally, we restrict the set of feasible solutions to satisfy Assumption 3. This is

accomplished by simply modifying (3.12) and (3.13) to account for false alarms and

missed detections, respectively. Specifically, all detections must either be assigned to

a trajectory j or to a false alarm:

𝑃∑︁
𝑗=1

𝑦𝑖𝑡𝑗 + 𝐹𝑖𝑡 = 1 ∀𝑖, 𝑡. (5.2)

All trajectories j must either be assigned a detection or a missed detection:

𝑛𝑡∑︁
𝑖=1

𝑦𝑖𝑡𝑗 +𝑀𝑗𝑡 = 1 ∀𝑗, 𝑡 (5.3)

Here we see why it was necessary to generalize the simple model to (3.19). When

𝑀𝑗𝑡 = 1, we have
∑︀𝑛𝑡

𝑖=1 𝑦𝑖𝑡𝑗 = 0 by (5.3). Therefore (3.16) does not restrict 𝑧𝑗𝑡 at

all and it is obvious, from the structure of the objective function, that in this case

𝑧𝑗𝑡 = 𝛼𝑗 − 𝛽𝑗𝑡 is the optimal solution, since it results in no change to the objective

score (no estimation penalty), which is precisely the desired effect. To state this

explicitly, we have:

𝑧𝑗𝑡 =

⎧⎪⎨⎪⎩𝑥𝑖𝑡, if 𝑦𝑖𝑡𝑗 = 1,

𝛼𝑗 − 𝛽𝑗𝑡, otherwise,

36



in the case of detection ambiguity.

Lastly, to properly penalize false alarms and missed detections in the objective

function, we must force 𝑇𝐹 (𝑇𝑀 , respectively) to equal the sum of all false alarms

(missed detections, respectively).

𝑛𝑡∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝐹𝑖𝑡 = 𝑇𝐹

𝑃∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝑀𝑗𝑡 = 𝑇𝑀 (5.4)
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5.1.4 Full Formulation

Merging all of these elements together we arrive at our MIO model for a case of

detection ambiguity and a fixed number of targets.

𝑔(𝑃 ) = minimize:
𝜓𝑗𝑡

𝑃∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝜓𝑗𝑡 + 𝜃 · 𝑇𝐹 + 𝜑 · 𝑇𝑀 (5.5)

subject to:
𝑃∑︁
𝑗=1

𝑦𝑖𝑡𝑗 + 𝐹𝑖𝑡 = 1 ∀𝑖, 𝑡

𝑛𝑡∑︁
𝑖=1

𝑦𝑖𝑡𝑗 +𝑀𝑗𝑡 = 1 ∀𝑗, 𝑡

𝑛𝑡∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝐹𝑖𝑡 = 𝑇𝐹

𝑃∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝑀𝑗𝑡 = 𝑇𝑀

𝑥𝑖𝑡𝑦𝑖𝑡𝑗 +𝑀𝑡(1− 𝑦𝑖𝑡𝑗) ≥ 𝑧𝑗𝑡 ∀𝑖, 𝑡, 𝑗

𝑥𝑖𝑡𝑦𝑖𝑡𝑗 −𝑀𝑡(1− 𝑦𝑖𝑡𝑗) ≤ 𝑧𝑗𝑡 ∀𝑖, 𝑡, 𝑗

𝑧𝑗𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡 ≤ 𝜓𝑗𝑡 ∀𝑗, 𝑡

− (𝑧𝑗𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡) ≤ 𝜓𝑗𝑡 ∀𝑗, 𝑡

𝑦𝑖𝑡𝑗 ∈ {0, 1} ∀𝑖, 𝑡, 𝑗

𝛼𝑗 ∈ R𝑛 ∀𝑗, 𝛽𝑗 ∈ R𝑛 ∀𝑗

𝑧𝑗𝑡 ∈ R𝑛, ∀𝑗, 𝑡.

We refer to this model as the robust MIO. Note that 𝑃est would then be given by:

𝑃est = min
𝑁𝑜≤𝑃≤𝑁1

𝑔(𝑃 ),

and the trajectories and assignments will correspond to the optimal solution of the

corresponding model.
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5.2 Heuristic with Fixed Number of Targets

The local search heuristic for scenarios with detection ambiguity follows closely

from the heuristic developed under the scenario without ambiguity, with a few key

differences. In the first place, the process for establishing a random starting point

during the initialization process requires refinement. Initial solutions should allow for

false alarms and missed detections. With equal probability, each detection is randomly

classified as a false alarm or selected to receive a target assignment. If a detection has

been identified for assignment, assignments are randomly selected uniformly across

all targets. The remaining scans for which trajectories do not receive an assignment

are identified as missed detections.

Once a starting point has been initialized, the heuristic progresses in much the

same manner as before. Again, it sweeps through all scans continuously making ran-

dom swaps. However, the swapping process must be adjusted to include the addition

of false alarms and missed detections. Specifically, the robust heuristic randomly

chooses from the following options when making swaps:

1. Switch detection assignments between two targets.

2. Switch the detection assignment of a target with a false alarm.

3. Switch the detection assignment of a target with a missed detection for a dif-

ferent target.

4. Move the detection assignment of a target to a false alarm and replace it with

a missed detection.

5. Move a false alarm into the position of a missed detection for a target

Similar to the basic heuristic, this robust extension will accept the switch/move if

the objective score improves, and reject the switch/move otherwise, and the heuristic

terminates once it completes a full sweep without accepting a single swap. The

framework of this new heuristic, also referred to as the robust heuristic, is identical
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to the one presented in Figure 4-1, barring the appropriate modifications to the

initialization and swapping steps outlined above.

Due to the increase in potential combinations of solutions, we expect this variant

of the heuristic to run slower. Though this effect can be mitigated by the fact that

this variant is just as parallelizable as the basic heuristic. Next, we shift our discus-

sion to focus on measuring the complexity of scenarios and the performance of our

approaches.
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Chapter 6

Scenario Complexity & Performance

Metrics

In order to measure the quality of a solution obtained by any MTT algorithm one

must have measures of both performance and scenario complexity. Unfortunately, as

stated in [22], a unified approach for measuring scenario complexity does not exist,

nor is there any clear measure of performance for either the trajectory estimation

or the data association problem. In this paper, we argue that the data association

problem has a natural performance metric but lacks a measure of complexity, while the

trajectory estimation problem has a natural measure of complexity but lacks a clear

performance metric. Thus, we construct the missing measures for each, respectively.

Intuitively, one can assume that the difficulty of a scenario is highly correlated

with a sensor property that quantifies the deviation of the detections from the true

targets. Therefore we first define 𝜎 to be a measure of this sensor property that

quantitatively captures the noise in the sensor detections, which in most cases is

the standard deviation of the detection error. We will show how to use 𝜎 to define

complexity measures for different scenarios.
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6.1 Data Association

In the case of the data association problem, the preferred performance metric of-

ten used in practice is % accuracy, i.e., the number of correct detection assignments

out of the number of possible correct assignments. For the case without sensor am-

biguity, the number of possible assignments is simply the total number of detections,

or equivalently, the number of targets multiplied by the number of scans:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# correct assignments
Total # of detections

=
# correct assignments

𝑃𝑇
.

In the case of sensor ambiguity, however, the number of possible correct assign-

ments requires a deeper explanation. To develop a better understanding we consider

our goal, which is to correctly assign detections to targets and identify both false

alarms and missed detections. With this in mind, we define the number of possible

correct assignments as the number of targets multiplied by the number of scans plus

the number of false alarms:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# correct assignments
𝑃𝑇 + # False Alarms

.

Whereas accuracy serves as a good measure of performance for data association,

there does not exist a corresponding measure of complexity that comparatively mea-

sures the difficulty of the data association problem. We argue that 𝜎 alone is not

the best measure of difficulty for the data association problem. For example, in a

scenario with very close target trajectories it may be difficult to ascertain data asso-

ciations even for small 𝜎 values, and similarly with high enough 𝜎 values even widely

spaced targets could be difficult to differentiate. Therefore, we introduce a metric 𝜌

to quantify this complexity. For ease of notation in developing this metric we first

define 𝐷𝑖𝑗𝑡 as the distance between one true trajectory i and another true trajectory

j in scan t :

𝐷𝑖𝑗𝑡 = ‖𝛼true
𝑖 + 𝛽true

𝑖 𝑡− 𝛼true
𝑗 + 𝛽true

𝑗 𝑡‖.
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Additionally, we define a variable 𝑐𝑖𝑗𝑡 that will take the value of 1 if the distance

between trajectory i and trajectory j in scan t is greater than some monotonically

increasing function of 𝜎 which we will denote by ℎ(𝜎):

𝑐𝑖𝑗𝑡 =

⎧⎪⎨⎪⎩1, if 𝐷𝑖𝑗𝑡 > ℎ(𝜎),

0, otherwise.

Then the difficulty of a scenario in the sphere of the data association problem is

quantified by the complexity measure 𝜌, which is the proportion of detection pairs

that fall within a closely defined proximity of each other:

𝜌 =

𝑇∑︀
𝑡=1

∑︀
𝑖<𝑗

𝑐𝑖𝑗𝑡(︀
𝑃
2

)︀
𝑇

.

This metric has several desirable attributes. First and foremost, it falls within

the range of [0, 1], which is identical to the range of accuracy and makes it easily

comparable. Second, it is straightforward to understand and interpret. Higher values

of 𝜌 indicate easier scenarios because fewer targets are within close proximity for a

shorter amount of time, and vice versa. Finally, as we have defined it, 𝜌 has an

inverse relationship with 𝜎, which means that it serves as a connection between the

scenario generation and performance measuring processes. While 𝜎 can be used more

naturally for scenario generation, where it is useful as a parameter for signal noise, 𝜌

can be calculated after the fact and used to quantify the difficulty of the scenario as

it pertains to the data association problem.

6.2 Trajectory Estimation

In the case of the trajectory estimation problem, the preferred complexity metric

often used in practice is 𝜎 itself. Increasing the noise may often lead to stronger bias

in the trajectory estimation, especially in scenarios with fewer scans, and results in

a deteriorated quality of the estimation. Therefore, we believe that 𝜎 is the correct
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metric for use in measuring the difficulty of the trajectory estimation problem.

However, establishing a performance metric for the trajectory estimation problem

is necessary. We choose to apply a metric that captures the core goal of this problem:

to estimate a trajectory as close as possible to the true ground track. Therefore, we

use the following metric as a measure of this error:

𝛿 =

𝑇∑︀
𝑡=1

𝑃∑︀
𝑗=1

‖�̄�𝑗𝑡 − �̂�𝑗𝑡‖

𝑃𝑇
. (6.1)

Lower values of 𝛿 correspond to higher performance because the distance between

the estimated and true ground trajectories is smaller. We match the true trajectories

to the estimated trajectories using an one-to-one assignment problem that can be

formulated using linear optimization. Note that in the case of detection ambiguity,

𝑃 is unknown, and so we may generate either more or less trajectories than the

true number. Thus when assigning the trajectories to each other, we must take

𝑃 in equation (6.1) to be the minimum between the true number of targets and

the estimated number of targets. See Appendix C for more details and a complete

formulation of the assignment problem.

In the next chapter, we will see how these measures of complexity and performance

are useful in quantifying the strengths and weaknesses of our methods.
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Chapter 7

Experimental Simulations &

Computational Results

We evaluate our approaches on a wide variety of simulated scenarios and compare

the results against two benchmark solutions. As a first benchmark we randomly

generate detection assignments, including randomly assigning false alarms and missed

detections in the case of detection ambiguity. We will refer to this solution as the

random solution. In the second benchmark the detection assignments are perfectly

known, meaning that all assignments are exactly correct including the classification of

false alarms and identification of missed detections. This solution is referred to as the

ideal solution; while it is only ideal with respect to the data association problem, this

solution provides a means for bounding the expected error in the trajectory estimation

problem. Note that we do not compare our methods to any known MTT algorithms,

such as the MHT or JPDAF, due to the complexity in parameter tuning and the

overhead of implementation of these algorithms.

The existing literature does not currently propose a clearly defined comprehensive

set of standard test scenarios, as pointed out in [22] where it is noted that two

particularly important types of scenarios include crossing trajectories and parallel

trajectories. In order to test our methods across scenarios with a wide range of

complexity, for both the data association and trajectory estimation problems, it is

necessary to create scenarios that capture these key types. With this in mind, we
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choose to generate scenarios of both trajectory types using a simple methodology that

will be outlined in our discussion on experimental methods.

We run two separate experiments, one with detection ambiguity and one without.

Both experiments, including the scenario generation process, heuristic, and MIO,

were implemented in the development software julia 0.4.3 [25] using the optimization

package JuMP [17]. The optimization software Gurobi 6.5.0 [13] was used to solve

the MIOs and the optimization process was restricted to the use of a single core.

Each simulation was run on a single compute node of the unclassified TX-Green

cluster located at Lincoln Laboratories. The cluster utilizes DL165 G7 compute

nodes consisting of 2.2 GHz compute cores with 8 GB of RAM each, for a total peak

performance of 77.1 TFLOPS [9].

We begin by outlining our experimental methods for scenarios without detection

ambiguity and discuss the results of our approaches on these scenarios.

7.1 Scenarios without Detection Ambiguity

In order to evaluate the scalability of our algorithms we test our methods across

a range of scenarios with varying numbers of targets and scans. In particular, we

consider 𝑃 ∈ {4, 6, 8, 10} targets and 𝑇 ∈ {4, 6, 8, 10} scans, where the scans are

collected at a rate of 1 Hz. The cartesian product of 𝑃 and 𝑇 creates sixteen unique

scenario sizes. We generate ten unique crossing scenarios and ten unique parallel

scenarios of each size.

To generate trajectories, we first establish a state space as the segment [−𝜏, 𝜏 ]. For

our experiments, we elected for 𝜏 = 20. Two points within this state space are selected

to define a trajectory, where the first is referred to as the trajectory’s initial position

and the second as the trajectory’s final position. To generate crossing trajectories,

the initial and final positions are randomly selected from within the full range of the

state space. To generate parallel trajectories, the state space is divided into 𝑃 equal

non overlapping segments, such that within the 𝑖th segment we randomly select the

initial and final positions for target 𝑖. This ensures the generation of trajectories that
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do not cross or overlap, but they remain within close proximity of one other.

For each scenario, we randomly generate ten realizations of data by first perturbing

each true position measurement by an error 𝜖 ∼ 𝒩 (0, 𝜎), where 𝜎 represents the

signal to noise ratio. We also refer to 𝜎 as the noise parameter, and we consider

𝜎 ∈ {0.1, 0.5, 1.0, 2.0, 3.5, 5.0}. Adding this detection error to the true position results

in a detection:

𝑥𝑖𝑡 = 𝛼true
𝑖 + 𝛽true

𝑖 𝑡+ 𝜖.

Scans 𝒳𝑡 are simulated by randomizing the order of 𝑥𝑖𝑡 for each t. Each unique 𝒳

generated is referred to as a simulation. For every simulation, we run the heuristic

with each of the fixed number of starting points from the set𝑁 ∈ {100 1, 000 10, 000},

and then we use each of these solutions as a warm start for the MIO. The optimization

process is set to terminate after 3T seconds, with solutions recorded at intervals of

{1, 𝑇, 2𝑇, 3𝑇} seconds.

At the conclusion of the experiment we calculate the difficulty of each scenario,

the accuracy of each solution, and the trajectory estimation error 𝛿. When measuring

the difficulty of scenarios in terms of 𝜌, we propose the use of ℎ(𝜎) = 2𝜎 because it

is difficult to distinguish between detections originating from target trajectories that

are closer together.

7.1.1 Scenario Generation

We begin with a discussion of the relationship between 𝜌 and 𝜎 and demonstrate

how this relationship benefits both scenario generation and complexity measurement

by allowing each to occur in its own natural domain. Figure 7-1 shows the relationship

between 𝜎 and 𝜌 for the twenty scenarios simulated in our experiments. The plot is

broken down by scenario type between crossing and parallel trajectories.

Note that higher values of 𝜌 indicate a lower proportion of detections within very

close proximity to one another. This plot shows that the parallel method of scenario

generation clearly generates easier scenarios, as measured by 𝜌. This suggests that
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Figure 7-1: Relationship between 𝜎 and 𝜌 summarized by scenario type for all 20
generated scenarios in this experiment.

it may be more difficult to discern correct associations for crossing scenarios than

for parallel scenarios. In addition, we can conclude from Figure 7-1 that 𝜎 and 𝜌

are highly correlated; increasingly higher values of 𝜎 correspond to increasingly lower

values of 𝜌, which is intuitive based on the definition of 𝜌.

We also note that the range of 𝜌 values corresponding to a single value of 𝜎

decreases as the number of targets increases. In other words, as the number of targets

increases, it becomes more difficult to generate a wider variety of 𝜌 values from a given

𝜎. For example, in the crossing scenarios with 𝑇 = 10 and 𝜎 = 5 in the case of four

targets, the range of 𝜌 is approximately [0, 0.5], while in the case of ten targets it is

limited to [0.125, 0.375]. This most likely results from using a fixed state space; as
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the number of targets increases, the density of trajectories also increases, ultimately

limiting the range of scenario complexity. Although the variety of difficulty measures

decreases as the number of targets increases, the measure 𝜌 still provides a meaningful

quantification of difficulty for the data association problem.

7.1.2 Basic Heuristic

We now transition to evaluating the scalability of the heuristic run times. Table 7.1

summarizes the minimum, mean, and maximum run times of the heuristic for a single

starting point, arranged by the number of targets (𝑃 ) and number of scans (𝑇 ). Times

are shown in milliseconds.

Basic Heuristic Run Times
(in milliseconds)

P T Min Mean Max
4 4 0.07 0.10 0.18
4 6 0.18 0.24 0.38
4 8 0.34 0.45 0.62
4 10 0.58 0.76 1.02
6 4 0.11 0.15 0.25
6 6 0.31 0.39 0.58
6 8 0.64 0.81 1.05
6 10 1.24 1.56 2.02
8 4 0.14 0.19 0.30
8 6 0.46 0.57 0.86
8 8 0.95 1.24 1.58
8 10 2.07 2.53 3.37
10 4 0.19 0.25 0.41
10 6 0.63 0.80 1.03
10 8 1.44 1.84 2.44
10 10 2.96 3.73 4.56

Table 7.1: Heuristic run times (in milliseconds) for a single starting point.

Close examination shows that the heuristic scales more efficiently with increases in

the number of targets than increases in the number of scans. For example, increasing

from four to six targets for four scans increases the computational cost by 50%, while

increasing from four to six scans for four targets increases the computational cost by

140%. The same trend holds true across all targets and scans. Although the heuristic

49



scales more efficiently in 𝑃 than 𝑇 , it does not exceed 5 milliseconds across all cases

for any tested starting point.

The true scalability of the heuristic is fully realized when we consider the power

of parallelization. By running the heuristic on several processors, we can reduce the

number of starting points run on each processor and thus in turn reduce the total

running time. As a result, given enough processors, the heuristic can run several

thousand starting points and still find solutions in a fraction of a second. To illustrate

this concept, consider the task of running 50,000 heuristic starting points for a scenario

with six targets and six scans. The average run time for a single starting point of this

size is about 0.4 milliseconds. Running all of these starting points in sequence would

require approximately 20 seconds of total run time; however, those same starting

points parallelized onto 100 processors would only require a run time of 0.2 seconds.

Thus the run time of the heuristic can be reduced to meet the efficiency needs of the

system, subject only to the limitation of available processors.

In order to determine the appropriate number of starting points for the heuristic

we examine the MIO objective function value of the heuristic solutions for various

numbers of starting points. Recall that regardless of the number of starting points,

we will always choose the solution with the best objective function value. For ease of

notation, let 𝑓𝐻 be the MIO objective score of the heuristic solution and 𝑓𝐼 be the

MIO objective score of the ideal solution, which refers to the solution in which the

data association problem is exactly correct. We then compute the ratio of 𝑓𝐻/𝑓𝐼 ,

providing us with a normalized measure for comparing the objective score across

several scenarios. Figure 7-2 plots 𝑓𝐻/𝑓𝐼 (log scale) against 𝜎.

In all cases, increasing the number of starting points improves the heuristic so-

lution relative to the ideal solution. This improvement is greatest for scenarios of

four targets, in which case the objective function value gain is on the order of about

five times when 𝑁 increases from 100 to 10,000 starting points. However, for scenar-

ios with more targets, there is only slight improvement in the objective score with

increases in the number of starting points, suggesting the need for higher value of

𝑁 . This marginal gain is likely a result of the added computational complexity that
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Figure 7-2: Quality of heuristic solution as compared to the ideal solution’s MIO
objective value summarized by number of starting points.

grows exponentially as the number of targets increases. In any sense, we found that

there is not a significant difference in heuristic performance for the range of 𝑁 values

that we explored. Therefore, for simplification as we move forward in our analysis,

we will restrict our discussions of the heuristic to 𝑁 = 1, 000.

It is also interesting to note that in some instances the ratio 𝑓𝐻/𝑓𝐼 falls below

the value 1, indicating that the heuristic outperforms the ideal solution as measured

by the objective function. This occurs for higher values of 𝜎, for example when 𝜎 is

larger than 2, regardless of the values of 𝑃 and 𝑇 . To explain this phenomenon we

recall that the ideal solution is only ideal in the sphere of data association, while the

MIO objective function serves to provide a high quality solution that balances the
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tradeoff between data association and trajectory estimation. This suggests that it

may be necessary to sacrifice some correct data associations in order to improve the

trajectory estimation in cases where there is more noise in the detections.

With these points in mind we continue our analysis to evaluate solution quality

for both the data association problem and trajectory estimation for both the heuristic

and MIO approaches.

7.1.3 Data Association

We shift our focus to analyze the performance of both the basic heuristic and

the basic MIO model in the context of the data association problem. Figure 7-3

plots the mean accuracy of both solutions against 𝜌, our measure of difficulty for

data association. The heuristic shown on the plot was initialized with 1,000 starting

points and its corresponding solution was provided to the MIO model as a warm start.

Note that the results for the MIO model do not include the solution at 3𝑇 seconds

because it exhibited little to no improvement over the MIO solution at 2𝑇 seconds.

The ideal solution, which trivially always achieves an accuracy of 1.0, has also been

excluded for the sake of clarity.

Figure 7-3 shows that the quality of the associations found by both the heuristic

and the MIO are indeed highly correlated with the scenario complexity parameter 𝜌.

The number of correct associations in both methods increase as 𝜌 reaches 1, as we

see in the cases of four and six targets, where the association is extremely close or

exactly equal to the ideal association when 𝜌 is equal to 1. By contrast, the random

association approach is unaffected by the value of 𝜌 and its accuracy is always lower

than the heuristic’s accuracy.

In general it seems that running the MIO for 𝑇 or less seconds is optimal, since

longer running times do not significantly improve the accuracy attained. Specifically,

for scenarios of four targets the best accuracy is reached after 1 second, while for

scenarios of eight and ten targets, the best accuracy is reached after 𝑇 seconds.

The heuristic improves over the random solution in scenarios of all sizes, suggesting

that the heuristic finds good quality solutions. In fact, for scenarios of four targets,
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Figure 7-3: Accuracy of MIO compared against the heuristic and a randomized solu-
tion.

the heuristic performs as well as the MIO model across all numbers of scans. Although

the heuristic does not perform as well as the MIO in scenarios with more targets, it

still provides good solutions from which the MIO benefits. In particular, for larger

scenarios with eight and ten targets, the MIO provides about a 30% improvement

over the heuristic solution after 𝑇 seconds. Moreover, it seems that as the number of

targets increases, the accuracy deteriorates due to the added combinatorial difficulty

of the association problem.

Both algorithms appear to scale well with increases in the number of scans. In

fact, the accuracy of MIO solutions appears to improve as the number of scans grows.

In the case of ten targets, the accuracy of the MIO after 𝑇 (or 2𝑇 ) seconds is higher

53



for eight and ten scans than for four and six scans, especially for high values of 𝜌.

This suggests that the MIO benefits from additional scans, which is likely a result of

the additional information gained from increasing the number of detections. For a

fixed number of targets, there appears to be no change in heuristic solution quality

as the number of scans changes.

7.1.4 Trajectory Estimation

We next evaluate the performance of the basic heuristic and MIO model through

the lens of trajectory estimation. As previously discussed, we are interested in com-

paring 𝛿, our performance measure proxy for ground track error, against 𝜎, our mea-

sure of difficulty for trajectory estimation, in order to analyze the performance of our

methods in the sphere of estimation. Figure 7-4 plots 𝜎 against 𝛿 for each of the

previous solution types, in addition to the ideal solution.

Recall that lower values of delta correspond to trajectory estimations that are

close to that of the true ground track. We note that as 𝜎 approaches zero, both the

heuristic and MIO trajectory estimates approach the trajectory estimates of the ideal

solution, suggesting that both algorithms find very high quality trajectory estimates

in these cases. Similar to the data association problem, we find that the best estimates

are reached after 1 second for scenarios with four targets and after 𝑇 seconds for all

other target scenarios.

The heuristic and MIO outperform the ideal solution in scenarios with only four

scans and high values of 𝜎. However, the algorithms do not outperform the ideal

solution for larger numbers of scans. Moreover, 𝛿 of the ideal solution changes linearly

with sigma, but the slope of this linear dependence decreases as the number of scans

increases. This suggests that as the number of scans approaches infinity, the estimated

trajectories given by the ideal data association will converge to the true ground tracks,

even for large sigma values. To a lesser extent this is also true for the MIO and

heuristic solutions, which is demonstrated by the fact they move further away from

the ideal solution when the number of scans increases, showing the tradeoff between

added information and computational complexity.
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Figure 7-4: Trajectory estimation performance

We find that the estimation errors of the MIO and heuristic solutions have a

bounded distance from the error of the ideal solution, and that our methods always

outperform the random solution even for large values of 𝜎. This implies that although

we do not necessarily obtain the optimal solution, the guiding objective prevents us

from finding solutions that are very poor. In particular, the gap between the ideal

estimation error and the heuristic/MIO estimation error remains relatively constant

across all values of 𝑃 for a fixed number of scans.

7.1.5 Summary of Results

We have shown that in the case of no detection ambiguity,

55



∙ The heuristic is highly scalable and we can find good quality solutions in frac-

tions of a second using parallelization.

∙ Using the heuristic solutions as a warm start, the MIO achieves high quality

solutions to both the data association and trajectory estimation problems after

𝑇 or fewer seconds.

∙ The MIO is scalable with respect to increases in both the number of targets

and scans.

∙ There exists a tradeoff between making correct data associations and improving

trajectory estimation, particularly in cases of high signal to noise ratios.

∙ Increasing the number of scans while adding computational complexity to the

model helps to obtain better solutions.

With these results in mind, we proceed to discussing the case of scenarios with de-

tection ambiguity.

7.2 Scenarios with Detection Ambiguity

We now extend our discussion to analyze the performance of our methods in

scenarios with detection ambiguity. We first summarize our experimental methods

before discussing performance of both the robust heuristic and the robust MIO in the

spheres of both the data association and trajectory estimation problems.

This experiment serves as an extension of the basic one in order to test the per-

formance of our algorithms under detection ambiguity. We use the same scenar-

ios generated from the basic experiment, however due to the additional difficulty

inherent in the case of detection ambiguity, we limit the range of signal noise to

𝜎 ∈ {0.1, 0.5, 1.0, 2.0}, choosing to exclude the more extreme noise values. In addi-

tion, we simulate both missed detections and false alarms. A detection is removed

with probability 𝛾, where we consider 𝛾 ∈ {0.2, 0.15, 0.1, 0.05}. We do not allow
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empty scans. For each scan, we generate false alarms according to a Poisson dis-

tribution with parameter 𝜆, where we consider 𝜆 ∈ {0.1, 0.5, 0.1, 2.0}. False alarm

positions are selected uniformly at random from within the state space. The false

alarms are then added to 𝒳𝑡 and the detection order of 𝒳𝑡 is randomly shuffled in the

same manner as described in the first experiment.

After generating the data we follow the same sequence of steps as outlined for

the basic experiment, running the heuristic first and then feeding the corresponding

solution into the MIO as a warm start. Note that the heuristic is only initialized with

1,000 starting points, as determined from the results of the basic experiment. We

terminate the optimization process after 2𝑇 seconds since the previous experiment

showed no added benefit in running it for longer time periods. Solutions are recorded

at intervals of {1, 𝑇, 2𝑇} seconds.

Prior to running this experiment we also performed a mini experiment and used

its results to tune the penalties 𝜃 and 𝜑; a summary of the exact penalties used, along

with an explanation of the insight behind them, can be found in Appendix A. With

respect to the penalties, it is important to note that while the estimation error and

the number of missed detections are highly correlated with the number of targets, the

number of false alarms are not; thus, the penalty 𝜃 is set to be linearly dependent

on the number of estimated targets. In order to decide on a final estimate for the

number of targets, we compared normalized performance scores, i.e., the MIO objec-

tive function divided by the estimated number of targets, and ultimately chose this

estimate to be the number of targets with the best resulting ratio.

7.2.1 Robust Heuristic

Table 7.2 summarizes the minimum, mean, and maximum run times of the robust

heuristic for a single starting point, arranged by the number of estimated targets

(𝑃est) and number of scans (𝑇 ). Times are shown in milliseconds.

As expected, the robust heuristic requires longer run times than the basic heuristic

due to the increase in combinatorial solutions to the assignment problem. Comparing

Table 7.1 and Table 7.2 we see that robust run times for four estimated targets are
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Robust Heuristic Run Times
(in milliseconds)

𝑃estimated T Min Mean Max
2 4 0.15 0.23 0.41
2 6 0.42 0.56 0.93
2 8 0.77 1.04 2.24
2 10 1.27 1.73 3.07
4 4 0.15 0.34 1.04
4 6 0.50 0.94 2.69
4 8 1.09 1.88 3.87
4 10 2.12 3.25 7.20
6 4 0.14 0.42 0.96
6 6 0.57 1.29 4.45
6 8 1.33 2.66 5.82
6 10 2.53 4.61 9.4
8 4 0.16 0.50 1.10
8 6 0.60 1.59 3.46
8 8 1.38 3.37 6.87
8 10 2.63 5.84 12.40
10 4 0.18 0.55 1.10
10 6 0.72 1.82 3.98
10 8 1.53 3.96 8.18
10 10 3.42 6.93 13.93
12 4 0.16 0.56 0.99
12 6 0.99 1.95 3.96
12 8 1.74 4.33 8.69
12 10 3.40 7.71 15.10

Table 7.2: Robust heuristic run times (in milliseconds) for a single starting point.

roughly four times longer than the corresponding run times in the basic heuristic for

a fixed number of scans. However, the magnitude of this effect appears to decay as

the number of targets increases. For example, in the case of eight targets the robust

heuristic times are only about twice that of the basic heuristic. This suggests that

the robust heuristic still scales well with increases in the number of targets. It is

also important to note that the run time variance in the robust case is much wider

than that of the basic case. However, parallelization may somewhat relieve this issue,

enabling the actual runtime to fall closer to the average.

As demonstrated by the symmetric result for the basic heuristic, the scalabil-

ity with respect to 𝑃est is better than with respect to 𝑇 . For example, increasing
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from eight to ten targets for eight scans inflates the computational cost by 18%,

while increasing from eight to ten scans for eight targets inflates the computational

cost by 75%. We note, as a necessary clarification, that for each scenario we must

check several 𝑃est values, which requires additional processing time and paralleliza-

tion. Through our simulations we found that the range of possible 𝑃est values was

generally limited to a set of size six.

7.2.2 Number of Targets

In order to correctly estimate the trajectories in the case of detection ambiguity

we must first correctly identify the number of targets, which consequently makes the

task of estimating the correct number of targets extremely important. Therefore, we

begin our analysis of detection ambiguity by evaluating the difference between the

true and estimated number of targets. Explicitly, we define:

𝑃diff = 𝑃true − 𝑃est, (7.1)

where 𝑃est is the number of estimated targets and 𝑃true is the number of true targets.

Note that 𝑃diff = 0 indicates that we have correctly estimated the number of targets.

When 𝑃diff < 0 we have overestimated the number of targets, whereas when 𝑃diff > 0

we have underestimated the number of targets. Figure 7-5 plots the distribution of

𝑃diff for scenarios with four targets and eight scans and, for comparison, Figure 7-6

plots the same result for scenarios with eight targets and eight time scans.

We see that when 𝜆 = 0.1, both the robust heuristic and the robust MIO estimate

the number of targets correctly a very high proportion of the time in both scenario

sizes. As 𝜆 increases, we find that there is a tendency to overestimate the number

of targets. This trend appears more prominently in Figure 7-5, indicating that for

large values of 𝜆, the scenario with four targets has a higher tendency to overestimate

than the scenario with eight targets. Further examination shows that the solutions

for both methods have slightly fewer false alarms than the ideal solution for scenarios

with eight targets; this effect is again slightly more exaggerated for the scenarios with
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Figure 7-5: Distribution of the difference in true and estimated number of targets for
scenarios with 4 targets and 8 scans, arranged by 𝛾 and 𝜆.

four targets. These results suggest that 𝜃 was set too high. In addition to the above

conclusions, analysis also reveals that both the heuristic and the MIO identified too

many missed detections; this suggests that the missed detection penalty 𝜑 was too

low.

Ultimately, the combination of these effects results in a tendency to overestimate

the number of targets. Finer tuning of 𝜃 and 𝜑 can resolve this propensity for overes-

timation. However, we found it challenging to tune these parameters for higher levels

of the false alarm rate 𝜆, which explains why the overestimation effect grows worse

as 𝜆 increases. Moreover, it is difficult to tune the parameters in such a way that we

attain the same tendencies for different numbers of targets. Unfortunately, we do not
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Figure 7-6: Distribution of the difference in true and estimated number of targets for
scenarios with 8 targets and 8 scans, arranged by 𝛾 and 𝜆.

know the true number of targets, which leads us to believe that more sophisticated

penalty functions are necessary in order to neutralize this difference.

7.2.3 Data Association

Bearing in mind the fact that we tend to overestimate the number of targets with

the given penalties, we move on in our analysis to measuring the accuracy of our

robust approaches. Figures 7-7 and 7-8 plot accuracy against the difficulty metric, 𝜌,

for scenarios of four and eight targets, respectively. Both scenarios have eight scans

and both figures have been arranged by 𝛾 and 𝜆.

In Figure 7-7 we see the accuracy results for four targets. In this case, the heuristic
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Figure 7-7: Accuracy of robust heuristic and MIO as compared to random solutions
for scenarios of 4 targets and 8 scans, arranged by 𝛾 and 𝜆.

solution is a significant improvement over the random solution and is close to the best

solution achieved by the MIO. The MIO achieves this best solution after 1 second

and no significant improvement is gained from running it for a longer period of time.

However, in larger scenarios with eight targets, as shown in Figure 7-8, the accuracy

of the heuristic offers only a small improvement over the random solution and the

MIO improves upon the heuristic solution only after 𝑇 seconds (when it reaches its

best accuracy).

As we stated earlier, even with small values of 𝜆 and 𝛾, the case of detection

ambiguity has the added difficulty of estimating the correct number of targets. Let us

consider the simplest scenarios with detection ambiguity where 𝜆 = 0.1 and 𝛾 = 0.05.

62



Lambda: 0.1 Lambda: 0.5 Lambda: 1 Lambda: 2

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

G
am

m
a: 0.05

G
am

m
a: 0.1

G
am

m
a: 0.15

G
am

m
a: 0.2

0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9
Rho

%
 o

f C
or

re
ct

ly
 L

ab
el

le
d 

D
et

ec
tio

ns

Random Heuristic MIO (1 sec) MIO (T sec) MIO (2T sec)

Mean Accuracy vs Rho by Solution Type

Figure 7-8: Accuracy of robust heuristic and MIO as compared to random solutions
for scenarios of 8 targets and 8 scans, arranged by 𝛾 and 𝜆.

We compare the accuracy for four or eight targets in Figure 7-3, where the number

of targets was known, to the accuracy for the corresponding scenarios in Figures 7-7

and 7-8, where the number of targets is unknown. We see a drop in accuracy of

only about 5% − 10% in the presence of detection ambiguity across all values of 𝜌,

suggesting that our approaches deal well with this challenge.

These robust approaches also appear to be more sensitive to higher false detection

rates than higher missed detection probabilities. In order to illustrate this result, let

us consider the following example with eight targets where we analyze data association

accuracy; in this example we (i) fix 𝛾 and alter 𝜆, and then (ii) fix 𝜆 and alter 𝛾.

If we choose 𝛾 = .05 and increase 𝜆 from 0.1 to 2.0, we find that the MIO solution
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after 𝑇 seconds decreases in accuracy from about 90% to 65%. If we now instead fix

𝜆 = .1 and increase 𝛾 from .05 to .2, the resulting MIO solution after 𝑇 seconds only

reduces in accuracy to 75%, showing the aforementioned sensitivity property. This

effect can be attributed to the challenge in tuning the penalties for higher levels of

𝜆, which in turn results in an overestimation of the number of targets and therefore

a reduced accuracy.

7.2.4 Trajectory Estimation

We conclude our analysis of the robust approaches with a discussion of their

performance in the sphere of the trajectory estimation problem. Figures 7-9 and 7-10

plot the 𝛿 performance metric against the detection error 𝜎 for scenarios of four and

eight targets, respectively.

Note that 𝛿 is calculated using the min{𝑃true, 𝑃est}. The fact that we tend to

overestimate means that 𝛿 will be calculated using 𝑃true much more often. This

implies that in most cases we match all of the true trajectories to estimated ones,

and thus the number of trajectories for the 𝛿 calculation is the same as in the basic

scenarios without detection ambiguity. Therefore, we can compare and interpret their

values directly.

If we compare Figure 7-10 with the graph in Figure 7-4 corresponding to 𝑃 = 8

and 𝑇 = 8, we find that, for 𝜆 = 0.1 and 𝛾 = 0.05, there is no observable loss of

performance in adding the detection ambiguity in the MIO solution after 𝑇 seconds.

Furthermore, this observation also holds true for the heuristic solution. By contrast,

if we instead compare Figure 7-9 with the graph in Figure 7-4 corresponding to 𝑃 = 4

and 𝑇 = 8, at the same values of 𝜆 and 𝛾, the 𝛿 value for the MIO increases for 𝜎

values larger than 0.5, and this increase becomes worse as 𝜎 grows. Moreover, in this

same case, the heuristic performance deteriorates at an even higher rate than that of

the MIO.

Similar to what we observed in the data association problem, our approaches in

the trajectory estimation problem are also more robust to increases in 𝛾 than increases

in 𝜆. Figures 7-9 and 7-10 both show that there is little to no loss in the quality of
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Figure 7-9: 𝛿 of robust heuristic and MIO as compared to random solutions for
scenarios of 4 targets and 8 scans.

the trajectory estimation when increasing 𝛾 for both the heuristic and MIO, which

holds true across all values of 𝜎 and 𝜆. However as 𝜆 increases, particularly for small

values of 𝜎, we find that the estimation of the MIO at 𝑇 seconds deteriorates. For

example, in the case of eight targets and 𝜎 = 0.1, when 𝜆 = 0.1 we obtain 𝛿 close to

zero, but when 𝜆 increases to 𝜆 = 2 the value of delta grows to 1. This deterioration

effect is not as prominent in the case of only four targets.

7.2.5 Summary of Detection Ambiguity Results

Incorporating detection ambiguity presents two additional challenges: (i) the as-

signment problem is more complex for a fixed number of targets and, (ii) there is the
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Figure 7-10: 𝛿 of robust heuristic and MIO as compared to random solutions for
scenarios of 8 targets and 8 scans.

additional problem of estimating the correct number of targets. The results in this

setting indicate that,

∙ Tuning the parameters leads to a correct estimation of the number of targets,

even for a relatively large scenario.

∙ The accuracy of the data association solutions deteriorates by 5%-10% with the

inclusion of detection ambiguity.

∙ Although we tend to overestimate the number of targets, the quality of es-

timated trajectories that correspond to the true trajectories is similar to the

basic setting with no detection ambiguity.
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∙ The solution of the MIO is more robust to changes in missed detection proba-

bility than to changes in the false alarm rate.
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Chapter 8

Summary and Future Work

In this paper, we present a new approach to the multi-target tracking problem

that jointly solves the problems of data association and trajectory estimation via

global optimization methods using a single objective function. In order to solve

these problems efficiently we propose the use of a randomized local search heuristic

as a warm start for an MIO model, while addressing scenarios with and without

detection ambiguity. The described approach is both general, because it makes no

assumptions on the data generation process, and easily implementable, as it is based

on a simple model with little to no tunable parameters. We demonstrate that the

local search heuristic finds high quality feasible solutions very quickly, and that the

MIO model generates improvement over the heuristic in seconds. Furthermore, we

show that while the introduction of detection ambiguity deteriorates the performance

of the data association, it does not significantly effect the quality of the trajectory

estimation. We are able to conclude that the quality of the obtained solution is robust

to the missed detection rate, but less so to the false alarm rate.

In the process of analyzing this widely-studied problem through a new optimiza-

tion lens, we identified challenges in both model formulation and successful imple-

mentation that can be addressed in future work. Due to the fact that the runtimes

of the MIO and the heuristic are proportional to the number of scans, these models

have limited scalability in that sense. However, they show strong potential for larger

applications in a sliding window scheme, which would use past decisions to fix detec-
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tion assignments and thus contribute additional information to the current tracking

window. This would allow for the tracking of targets in real time systems for longer

periods of observation. Additionally, we observed that one of the key difficulties in

the case of detection ambiguity involves the correct estimation of the true number of

targets. Our results suggest that tuning the penalties for a scenario with a certain

number of targets may lead to over or underestimation for scenarios with differing

numbers of targets. Therefore, we suggest exploration into more complex penalties

that further analyze this dependency. Other directions for consideration also lie in re-

laxing some of the scenario based assumptions, in particular, extensions to non-linear

trajectories or the birth/death of targets.
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Appendix A

Detection Ambiguity Penalty Values

Here we provide recommendations for the tuning of the false alarm penalty 𝜃 and

the missed detection penalty 𝜑. We begin with an explanation grounded in logic. It

can be shown that the expected number of false alarms increases as the false alarm

rate 𝜆 increases. Therefore, it stands to reason that the false alarm penalty should

decrease as the false alarm rate increases, as a general rule of thumb. Similarly, the

expected number of missed detections increases as the missed detection probability 𝛾

increases, and so too the missed detection penalty 𝜑 should decrease. Furthermore,

there is reason to believe that the value of both of these penalties should be tied to

the value of 𝜎. Specifically, the estimation error (first term in (5.1)) will naturally

increase as the noise 𝜎 increases. Therefore, the values of 𝜃 and 𝜑 should be adjusted

to account for this tradeoff. In particular, we should consider increasing both penalties

as 𝜎 increases.

We also note that the number of false alarms is independent of the number of

targets. In contrast, both the estimation error and number of missed detections are

directly proportional to the number of targets. This presents a challenge because

the true number of targets is unknown and we cannot tune the penalties to suit this

number. Instead, we suggest normalizing 𝜃 for the number of targets the MIO is

currently estimating. This effectively balances the terms in the objective function by

making each term proportional to the number of targets. For example, we tuned 𝜃

for scenarios with eight targets and used the following linear dependence to update
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𝜃(𝑃est) for the estimated number of targets 𝑃est:

𝜃(𝑃est) =
𝑃est

8
𝜃. (A.1)

Additionally, we empirically observed that the missed detection penalty 𝜑 benefits

from tuning for 𝛾, 𝜆 and 𝜎, while the false alarm penalty 𝜃 benefits from tuning for

𝜆 and 𝜎, but gains no added benefit from tuning for 𝛾.

Through examination and experimentation we found these conclusions to gener-

ally hold true across a variety of scenario sizes and difficulties. Using the insight

gained from these results, we tuned both penalties for the full scale experiment with

detection ambiguity outlined in Chapter 7. The false alarm penalties for the eight

target scenarios in the robust experiment are shown in Table A.1 and the missed

detection penalties are shown in Table A.2.

𝜎
𝜆 0.1 0.5 1.0 2.0

0.1 1.7 2.6 3.1 3.5
0.5 1.1 1.9 2.3 2.5
1.0 0.9 1.2 1.6 1.8
2.0 0.5 0.9 0.9 1.0

Table A.1: False alarm penalties (𝜃) as a function of 𝜆 and 𝜎.
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𝜎
𝜆 𝛾 0.1 0.5 1 2

0.10 0.05 0.20 0.50 0.80 0.70
0.10 0.10 0.10 0.30 0.50 0.50
0.10 0.15 0.10 0.20 0.40 0.40
0.10 0.20 0.10 0.10 0.30 0.40
0.50 0.05 0.20 0.50 0.80 0.80
0.50 0.10 0.20 0.30 0.50 0.60
0.50 0.15 0.20 0.25 0.40 0.40
0.50 0.20 0.10 0.20 0.30 0.40
1.00 0.05 0.30 0.70 0.80 0.80
1.00 0.10 0.20 0.40 0.50 0.60
1.00 0.15 0.20 0.25 0.40 0.40
1.00 0.20 0.10 0.20 0.30 0.40
2.00 0.05 0.30 0.70 0.90 1.00
2.00 0.10 0.20 0.50 0.60 0.60
2.00 0.15 0.20 0.25 0.40 0.50
2.00 0.20 0.10 0.20 0.30 0.40

Table A.2: Missed detection penalties (𝜑) as a function of 𝜆, 𝛾, and 𝜎.
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Appendix B

Robust MIO With Number of

Targets as a Decision Variable

For completeness we take the time to present an alternative approach to solving

the MTT problem with detection ambiguity. We extend (5.5) to develop a new MIO

model that directly determines the number of targets via optimization. We accomplish

this by incorporating additional decision variables and constraints into the framework

of the MIO formulation.

B.1 Decision Variables

Rather than assume a fixed number of targets for the model, we now allow this

decision to be made by the model itself. Toward this goal, we introduce a new binary

decision variable 𝑤𝑗 to indicate whether or not trajectory j corresponds to an existing

target:

𝑤𝑗 =

⎧⎪⎨⎪⎩1, if trajectory j exists,

0, otherwise.

We make two important notes in regard to this modification:

∙ Detections assigned to a non-existing target would be classified as a false alarm.

∙ 𝑤𝑗 ranges from 1, ...., 𝑁1. As a result, all instances of j in the new MIO must
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be adjusted accordingly.

B.2 Objective Function

We can utilize the same objective function from (5.1), except for slight adjustments

needed to account for the possibility that some trajectories may not exist. Explicitly,

the number of possible trajectories is now 𝑁1 so the objective should be adjusted to

sum over j the full range of 𝑗 from 1 to 𝑁1:

minimize:
𝜓𝑗𝑡

𝑁1∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝜓𝑗𝑡 + 𝜃 · 𝑇𝐹 + 𝜑 · 𝑇𝑀

B.3 Constraints

In the same fashion, most constraints remain similar to their original counterparts

in (5.5), with the exception that the summations must be adjusted appropriately. For

example, we adjust (5.2) and (5.4) as follows:

𝑁1∑︁
𝑗=1

𝑦𝑖𝑡𝑗 + 𝐹𝑖𝑡 = 1 ∀𝑖, 𝑡,

𝑁1∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝑀𝑗𝑡 = 𝑇𝑀.

By the same accord the RHS of (5.3) no longer equals one because some trajec-

tories may not exist. Therefore we say that all existing trajectories must either be

assigned a detection or a missed detection, which implies the following constraint:

𝑛𝑡∑︁
𝑖=1

𝑦𝑖𝑡𝑗 +𝑀𝑗𝑡 = 𝑤𝑗 ∀𝑗, 𝑡. (B.1)

Also, we restrict 𝛼𝑗 and 𝛽𝑗 to be zero if trajectory j does not exist. This ensures

76



only existing trajectories are penalized in the objective function.

|𝛼𝑗|+ |𝛽𝑗| ≤𝑀0𝑤𝑗 ∀𝑗.

This model is symmetric with respect to 𝑤𝑗 variables. Such symmetry in models

is an undesirable quality because multiple optimal solutions may exist, resulting in

a less efficient formulation. However, we can actually reduce the symmetry through

careful design. Since 𝑁0 ≤ 𝑃 ≤ 𝑁1, we can set 𝑤𝑗 = 1 for all 𝑗 = 1, . . . , 𝑁0, which

leaves us with only 𝑁1 − 𝑁0 unknown 𝑤𝑗 variables. In addition, we can add the

following constraint:

𝑤𝑁0+1 ≥ ... ≥ 𝑤𝑁1 ,

to further reduce the number of equivalent solutions and increase the efficient resolv-

ability of the model.
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B.4 Full Formulation

Incorporating these additional variables and constraints, we arrive at the full for-

mulation of an MIO model that uses decision variables to solve for the number of

estimated targets when detection ambiguity exists.

minimize:
𝜓𝑗𝑡

𝑁1∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝜓𝑗𝑡 + 𝜃 · 𝑇𝐹 + 𝜑 · 𝑇𝑀 (B.2)

subject to:
𝑁1∑︁
𝑗=1

𝑦𝑖𝑡𝑗 + 𝐹𝑖𝑡 = 1 ∀𝑖, 𝑡

𝑛𝑡∑︁
𝑖=1

𝑦𝑖𝑡𝑗 +𝑀𝑗𝑡 = 1 ∀𝑗 = 1, ..., 𝑁0, 𝑡

𝑛𝑡∑︁
𝑖=1

𝑦𝑖𝑡𝑗 +𝑀𝑗𝑡 = 𝑤𝑗 ∀𝑗 = 𝑁0, ..., 𝑁1, 𝑡

𝑛𝑡∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝐹𝑖𝑡 = 𝑇𝐹

𝑁1∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝑀𝑗𝑡 = 𝑇𝑀

𝑤𝑁0+1 ≥ ... ≥ 𝑤𝑁1

|𝛼𝑗|+ |𝛽𝑗| ≤𝑀0𝑤𝑗 ∀𝑗

𝑥𝑖𝑡𝑦𝑖𝑡𝑗 +𝑀𝑡(1− 𝑦𝑖𝑡𝑗) ≥ 𝑧𝑗𝑡 ∀𝑖, 𝑡, 𝑗

𝑥𝑖𝑡𝑦𝑖𝑡𝑗 −𝑀𝑡(1− 𝑦𝑖𝑡𝑗) ≤ 𝑧𝑗𝑡 ∀𝑖, 𝑡, 𝑗

𝑧𝑗𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡 ≤ 𝜓𝑗𝑡 ∀𝑗, 𝑡

− (𝑧𝑗𝑡 − 𝛼𝑗 − 𝛽𝑗𝑡) ≤ 𝜓𝑗𝑡 ∀𝑗, 𝑡

𝑦𝑖𝑡𝑗 ∈ {0, 1} ∀𝑖, 𝑡, 𝑗

𝛼𝑗 ∈ R𝑛, 𝛽𝑗 ∈ R𝑛, 𝑤𝑗 ∈ R𝑛 ∀𝑗

𝑧𝑗𝑡 ∈ R𝑛, ∀𝑗, 𝑡.
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B.5 Extension of Robust Heuristic

The robust local search heuristic presented in section 5.2 can also be used to find

warm start solutions to (B.2). Although the robust heuristic requires a given fixed

number of targets for the heuristic, it does not require running the heuristic in parallel

for all values of 𝑃 . Alternatively, the number of targets can be selected at random

prior to initializing the heuristic. No matter the case, the heuristic solutions can be

used as a warm start to (B.2) by simply setting 𝑤𝑗 = 1 for all 𝑗 = 1, ...., 𝑃 and 𝑤𝑗 = 0

for all remaining 𝑤𝑗 up to 𝑁1.
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Appendix C

Trajectory Assignment Pairing

In order to analyze the performance of a multi-target tracking algorithm, we must

first match the true trajectories of the scenario to the estimated trajectories of the

algorithm solution. In other words, we wish to the best pairings of true and estimated

trajectories. With this in mind, we present an integer optimization model that solves

for the globally optimal pairings of true and estimated trajectories. In addition, we

extend this assignment problem to scenarios with detection ambiguity, where the

MTT algorithms may overestimate or underestimate the number of targets.

C.1 Decision Variables

The goal of this assignment problem is to optimally assign pairs of true trajectories

i to estimated trajectories j if there exists such a pairing to be made. Only a single

set of decision variables are needed to determine this pairing:

𝑦𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if true trajectory i is assigned

to estimated trajectory j,

0, otherwise.
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C.2 Objective Function

Remember that we denote the true position of trajectory i in scan t with �̄�𝑖𝑡 and

the estimated position of trajectory j in scan t with �̂�𝑗𝑡. Then the cost 𝑐𝑖𝑗 of assigning

true trajectory i to estimated trajectory j is the norm distance between these two

trajectories in all scans.

𝑐𝑖𝑗 =
𝑇∑︁
𝑡=1

‖�̄�𝑖𝑡 − �̂�𝑗𝑡‖.

If we denote the true number of targets as 𝑃true and the estimated number of targets

as 𝑃est then the objective of the integer optimization model is:

minimize:
𝑦𝑖𝑗

𝑃true∑︁
𝑖=1

𝑃est∑︁
𝑗=1

𝑐𝑖𝑗𝑦𝑖𝑗.

C.3 Constraints

When the number of true targets is equal to the number of estimated targets

(𝑃true = 𝑃est = 𝑃 ), we simply require two equality constraints to ensure that each

true trajectory i is assigned to exactly one estimated trajectory j and vice versa.

𝑃∑︁
𝑖=1

𝑦𝑖𝑗 = 1 ∀𝑗 = 1, ..., 𝑃 (C.1)

𝑃∑︁
𝑗=1

𝑦𝑖𝑗 = 1 ∀𝑖 = 1, ..., 𝑃. (C.2)

However, when the number of estimated trajectories differs from the number of

true trajectories, these constraints must be adjusted appropriately. For the case in

which the number of true targets exceeds the estimated number of targets (𝑃true ≥

𝑃est), we restrict each true trajectory i to the assignment of at most one estimated
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trajectory j. In effect, Equation C.1 is modified to:

𝑃true∑︁
𝑖=1

𝑦𝑖𝑗 ≤ 1 ∀𝑗 = 1, ..., 𝑃est.

By contrast, when the number of estimated targets exceeds the true number of

targets (𝑃true ≤ 𝑃est), then we restrict each estimated trajectory j to the assignment

of at most one true trajectory i, and Equation C.2 is modified to:

𝑃est∑︁
𝑗=1

𝑦𝑖𝑗 ≤ 1 ∀𝑖 = 1, ..., 𝑃true.

C.4 Generalized Assignment Pairing Model

In summary, we arrive at the following generalized integer optimization assignment

model:

minimize:
𝑦𝑖𝑗

𝑃true∑︁
𝑖=1

𝑃est∑︁
𝑗=1

𝑐𝑖𝑗𝑦𝑖𝑗

subject to:
𝑃true∑︁
𝑖=1

𝑦𝑖𝑗 = 1 ∀𝑗 = 1, ..., 𝑃est

𝑃est∑︁
𝑗=1

𝑦𝑖𝑗 = 1 ∀𝑖 = 1, ..., 𝑃true

𝑦𝑖𝑗 ∈ {0, 1} ∀𝑖 = 1, ..., 𝑃true, 𝑗 = 1, ..., 𝑃est.

This model is vital to scoring the performance of an MTT algorithm’s solution because

it ensures the globally optimal pairing of true and estimated trajectories.
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