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Abstract

To operate effectively in many domains, the robot must react to unex-
pected events, as well as generate persistent action to achieve a task.
This thesis describes a sensor based strategy, termed a task-level con-
trol system, which allows a robot to respond appropriately to perceived
changes in the environment while retaining the ability to define se-
quences of preplanned motion. The technique has been applied to
robotic grasping, allowing the theoretical development to be tested in a
practical implementation. This research develops a framework for the
task-level control system, including methods for state estimation based
on previous sensor history and environmental models, as well as proofs
of stability and convergence. This thesis also describes analytic tools to
facilitate the design and analysis of task-level control systems, as well
as implementations in both simulation and on the robot hand/arm sys-
tem.
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Chapter 1

Introduction

1.1 Introduction

A robot is a machine designed to autonomously perform a task. In order to achieve
a given task, the designer must consider not only the mechanics of the robot, but
also of the environment in which it operates. In a static, structured and known
environment, preplanned motion and feedforward control may successfully perform
many tasks; however in a dynamic, chaotic and unpredictable environment, successful
execution is more difficult. Between these two extremes lay environments which may
be considered semi-structured, being neither perfectly regular nor completely random.
This type of domain, characteristic of many "real-world" situations, models reality in
that many orderly and uniform structures are embedded in chaotic and unpredictable
surroundings. To operate effectively in such an environment, the robot must take
full advantage of all uniform aspects, by generating persistent and rational plans,
yet simultaneously compensate for all unpredictable features, through the immediate
generation of corrective action.

The main result of this thesis is a control architecture designed to operate ef-
fectively in semi-structured environments. The control system combines preplanned
sequences of action with the ability to react immediately to perceived environmental
changes. The architecture follows the functional decomposition common in reactive
or behavioral systems, yet combines geometric and kinematic models from traditional
planning. Because of the incorporation of explicit models, we are able to develop cri-
teria for stability and convergence, and the avoid chattering instabilities and limit
cycles common in reactive control systems. The models also provide a method for
the design of robot action given the limited information gathered from the sensory
systems. The system also facilitates the incorporation of disparate sensory systems,
feature abstraction algorithms, modeling systems, and controller functions. Finally,
the system also provides a hierarchical task description, allowiing complex operations
composed of functional primitives.

The control system is composed of a collection of independent modules designed to

6



CHAPTER 1. INTRODUCTION 7

accomplish a specific task. Associated with each module is a set of feature abstraction
algorithms which resolve only those features necessary to accomplish the given task
- thus minimizing the complexity of the object recognition algorithms and providing
an opportunity for real-time control. The features abstracted from the current sensor
data are used to construct a partial model which is then compared to one which uses
the complete sensor history. Discrepancies in the models are resolved by assuming the
current sensor information reflects some unexpected change in the environment, and
the internal representation is updated accordingly. Finally, for each model generated,
there is a unique stereotypical action, defined as either a sequence of tasks or a specific
robot motion.

Geometric and kinematic models are used to design the stereotypical actions, as
well as to guarantee successful execution of the specified task. In this way, it is possible
to use explicit models in the generation of the real-time control algorithms without
the associated complexity of embedding these models in the control algorithm itself.
In order to demonstrate these concepts and to provide a practical application, this
thesis will focus on robotic grasping, which allows both a physical implementation on
a robot hand/arm system and thorough analysis using geometric models.

1.2 Background

Servo control systems which allow robotic manipulators to follow predetermined tra-
jectories have been well characterized. The difficulty lies at the next higher level of
control, in which robot is required to perform a specific task within a particular do-
main. At this level it is necessary to include a description of both the robot and the
environment into the design and analysis of the control system. Two approaches have
emerged to address this issue of "task-level" control. These are geometric planning
and reactive control.

1.2.1 Planning

Planning systems are characterized by a linear sequence of computational modules,
which interpret sensor data, generate a world model, reason within this description,
and produce an appropriate trajectory, as illustrated in Figure 1-1. Raw data acquired
from physical sensors, such as passive vision (Horn 1983), laser scanning (Jones 1988),
tactile sensing (Grimson 1984) or range sonar (Drumheller 1985), is interpreted by a
perception algorithm, which abstracts relevant feature data, such as surface points and
normals, edges and corners. Using tree search techniques, these abstracted features
are compared to the features from library of possible geometric shapes in a variety
of possible positions (Gaston 84; Grimson 84, 85). By limiting the search of feasible
interpretations through geometric constraints and empirical pruning, the algorithm
eventually produces a set of consistent objects and poses. The result is a model of
the environment consisting of a set of polyhedral objects together with coordinate
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transformations describing their position relative to some reference frame. At this
point a planning or reasoning system is used to derive a sequence of trajectories
necessary to achieve a desired task. Such tasks which have been extensively studied,
include collision free motion, fine motion planning, automatic grasping, sliding and
assembly.

Collision free robot motion has been an area of intense research. Collisions can be
predicted by intersecting polyhedral models of the robot and environment (Ambler
1975, Lozano-Perez 1976) or by finding polyhedral contact conditions (Canny 1986;
Kawabe 1987). To find collision free motion, polyhedral obstacles can be mapped into
the configuration space of a moving polyhedron and paths are found using general
conic freeways (Brooks 82a, 82b, 83), rectanguloids bounding slice projections of the
obstacles (Arimoto 1987; Lozano-Perez 1979, 80, 81), or more generally as in (Donald
1985; Canny 1987, 88). While free space pathways through polyhedral obstacles
proved sufficient for global motion, fine motion control was found necessary near grasp
locations (Lozano-Perez 1984). These grasp locations were generated on polyhedral
objects assuming the necessary conditions of kinematic feasibility and force closure
(Abel 1985; Brost 1986; Cutkowsky 1987b; Jameson 1985; Laugier 1981; Li 1987;
Nguyen 1986a, 86b, 86c, 87a, 87b; Pertin-Troccaz 1987; Pollard 1989). With the
object securely in a grasp, internal forces may be optimized and major slipping modes
resolved (Brock 1987, 88; Fearing 1984, 86; Markenscoff 1989; Mason 1982). Finally,
the robot may impose arbitrary position, force or stiffness trajectories (Chiu 1985;
Salisbury 1985), or perform some operation, such as insertion (Caine 1985; Whitney
1985).

Feature Geometric Task Trajectory
list model sequence queue

Fess a btrecio- -Rccgio k Planning Tajecry CSnrolr- Actuators

Figure 1-1. Planning systems consist of a linear sequence of computation
modules. Raw sensor data is interpreted by a perception algorithm which
abstract relevant feature data. This features is then compared, using search
techniques, to a library of shapes to produce an explicit internal model. A
planning or reasoning system then analyzes this model to determine motions
necessary solve the particular task. Finally, a trajectory list is generated
which is issued to the servo control system to be executed on the physical
robot.

The planning methodology has a number of distinct advantages. Since explicit
mathematical representations are used of the environment, operations such as collision
free motion, force closure grasps, and object insertion can be guaranteed to succeed
within the limits of the model. Furthermore, object recognition and localization,
path planning, and task execution may all be incrementally improved by increasing
the accuracy of the models or through more efficient tree search techniques.

There are, however, a some disadvantages with traditional planning. First, since
tree search techniques are used to fit various models into acquired feature data, in-
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creasing the number and complexity of the objects often greatly increases the com-
putational complexity of the recognition and planning systems. Second, the internal
representation generally relies on accurate models of the robot and objects. Thus in-
herent errors due to sensor noise and robot calibration, may produce aberrant results,
or at least contribute to the overall complexity. Third, the acquired sensor data may
be inadequate to resolve a unique description, and in situations where robot action
is either demanded or advantageous, motion would not be possible since the system
would not have a complete motion with which to operate. Fourth, some assumptions
in traditional planning may be overly restrictive and could, in some circumstances,
be eased. For example, guaranteed collision avoidance could be replaced in some non-
critical domains by local contact force minimization together with compliant robotic
surfaces. Fifth, the models used in current planners may be inappropriate for some
environments. For example, many common objects display a great deal of symmetry
and simplicity. These simple objects would be obscured by a more general polyhe-
dral model; while other objects, particular non-rigid ones such as paper, cloth and
wire, cannot be modeled by rigid polyhedron at all. Finally, the complexity of cur-
rent planning systems generally precludes their use in rapidly changing environments.
Small changes in position of the robot or objects in the environment would generally
require complete path replanning. Whereas a small change of the current plan - or
no change at all - may have been sufficient.

1.2.2 Reactive control

An alternative approach to model based planning is reactive control. The reactive
control strategy consists of a collection of independent modules which relate prepro-
cessed sensor input to either actuator output or stereotypical motor responses, as
shown in Figure 1-2. These modules are generally of uniform computational struc-
ture and are organized into hierarchical layers or amorphous networks. The individual
modules essentially embed the functions of feature abstraction, model construction,
and trajectory planning into a single intrinsic function, thus allowing minimum com-
putation and real-time response.

The concept of reactive control developed from a number of sources, including the
need for dynamic task-level control, reduction of computational complexity, increased
robustness, and improved fault tolerance, as well as observations from the biological
sciences, including ethology (the study of animal behavior under natural conditions),
neurobiology, and psychophysics. The need for real-time, task-level control became
apparent when sensorless ballistic trajectories generated from planning systems cause
aberrant or catastrophic motion when sudden environmental changes or calibration
errors produced discrepancies between the internal model and the physical world.
The solution proposed by reactive systems was to directly link sensors to actuators
at every level of control, thus improving response in dynamic situations, as well
as minimizing error propagation from sequential computation. To further reduce

9
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complexity in reactive control systems, the definition of the tasks associated with the
individual modules was greatly reduced. In other words, instead of a general purpose
algorithm, such as obstacle avoidance among polyhedral objects, the modules solved
simple tasks for specific situations. In addition, the designers of reactive control
systems endeavored to produce competent strategies in common situations rather
than optimized behavior in abstract domains.

Behavior
N

Behavior
4

Behavior

Sensors 3 Actuators

Behavior
2

Behavior
1

Behavior
0 r

Environment

Figure 1-2. The reactive control system consists of a collection of inde-
pendent modules arranged in either a hierarchy or an amorphous network
which directly relate sensor input to actuator output. The individual mod-
ules essentially embed the functions of feature abstraction, model construc-
tion, and trajectory planning into a single intrinsic function, thus allowing
minimum computation and real-time response.

Part of the motivation for reactive control strategies came from observations of
biological systems, whose robust and efficient behavior inspire serious consideration.
Studies of animal behavior in their natural environment show that many animals
possessed motor programs (coordinated sequences of motor response) evoked by re-
leasers (particular patterns of sensory input) (Gould 1983, 87). Thus, by analogy, the
individual modules of a reactive control system could be considered motor programs,
while their specific function depends on releasers. Neurobiological research into hu-
man and primate cerebral function seems to indicate that the brain is composed of

10
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a loosely connected set of independent computational structures specialized for par-
ticular functions. Studies of the visual pathway (Zeki 1988; Livingstone 1988, 89),
sensory motor, and auditory, show that, in general, raw sensor data is analyzed by
a hierarchy of increasingly more numerous, abstract, and specialized. computational
modules. Finally, psychophysical research into human manipulation and perception
demonstrates that, in many cases, stereotypical movement is generated by different
individuals in similar situations (Gesell 1952). Thus it could be argued that the gen-
eral pattern for biological systems is represented by reactive control systems (and
neural networks, by analogy, at a finer level). While it would be difficult and per-
haps inadvisable to copy biological systems exactly, their study may provide concepts
whose independent and thorough analysis may yield practical and efficient systems.

The reactive control strategy was applied to robotics in a number of different ways,
including the emulation of human tactile exploration (Bajcsy 1984, 87), stereotypi-
cal manipulation primitives (Chammas 1989, 90; Greiner 1990; Grupen 1988; Iberall
1987; Stansfield 1988, 89, 90; Tomovic 1987), qualitative control strategies (Jacobsen
1987), and the subsumption architecture (Brooks 1985, 86a, 86b, 86c, 86d, 87, 88,
89a, 89b; Connell 1987, 88, 89; Flynn 88, Mataric 1989). The subsumption architec-
ture consists of a hierarchical arrangement of small independent functions, in which
superior units subsume, when appropriate, control over less competent modules.

The reactive control strategy has a number of advantages, some of which have been
outlined above. Since only simple computational elements are used with a minimum
of sequential processing, the system can respond instantly to perceived environmental
changes. Furthermore, the parallel computational architecture minimizes error prop-
agated between sequential elements, as well as increases redundancy and resistance
to catastrophic failure along critical pathways. In addition, homogeneous computa-
tional elements allow uniform algorithmic definitions and compiler designs. Finally,
the segregation of control into multiple independent elements provides flexibility and
diagnostic ability, in that individual modules may be independently enabled.

There are, however, a number of disadvantages with reactive control systems.
First, there are few theoretical tools for the design and analysis of such systems.
The computational modules which compose the control system are usually designed
through heuristic trial and error, while their resulting behavior is proven through
simulation or physical prototypes. Second, it is not possible to prove, in general,
the success of the control strategy, or even the stability, when applied to a given
environment. Third, it is difficult to determine the rate or the time necessary for
these systems to converge, that is to accomplish a given task. Fourth, there are
no methods or guidelines to provide incremental improvement to the system once
it has been designed. Fifth, while it may be possible to verify the performance of
an individual module, it is difficult to determine the interaction between modules in
the complete system. It is this interdependence and collective behavior which makes
these systems particularly difficult to analyze.
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1.2.3 Summary

The planning and reactive control strategies evolved independently to meet the needs
of fundamentally different environments and thus employ separate sets underlying
assumptions. Planning systems initially developed from the need to perform au-
tonomous assembly in manufacturing environments. In this domain, objects were
assumed to be static rigid solids, easily represented as complex polyhedron. It was
also assumed these objects could be in arbitrary orientations and in the presence of
other objects which could occlude or constrain them. Reactive control systems, on
the other hand, were applied primarily to the control mobile vehicles in dynamic un-
structured domains, many of which were populated by humans. These mobile vehicles
were required to perform such fundamental tasks such as collision avoidance, terrain
contouring, and simple navigation. Objects were generally assumed to be obstruc-
tions or free-space pathways which may change at any time. Thus the environment
was considered to be unpredictable and without structure or regularity. There are,
however, many environments which can be considered regular, but retain their abil-
ity to undergo unpredictable change. These are the domains to which the task-level
control strategy will be applied.

1.3 Task-level Control

The task-level control scheme describe in this thesis'attempts to combine the advan-
tages of both reactive control and geometric planning into a single system. From
reactive control, the task-level control system provides dynamic response, reduced
complexity algorithms, independent computational modules, parallel architecture,
and redundant structure; and from the planning approach, feature abstraction al-
gorithms, explicit world models, analytic design and evaluation tools, and proofs of
stability and convergence. The basic architecture of the task-level control system
is illustrated in Figure 1-3. Control of the robot is decomposed into a collection of
discrete tasks. Each task achieves'a particular objective given a specific arrangement
of the environment as perceived by the robot. In other words, rather than solving
a complex problem for a broadly defined environment, we solve a number of specific
problems in narrowly defined situations. By linking these specific solutions together
in an appropriate way, we create a seamless task-level control system, able to solve
more general situations the robot may encounter.

12
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Task

SWITCH
Task

2

Task
3

Task
N

ENVIRONMENT

Figure 1-3. Control of the robot is decomposed into a collection of discrete
tasks, where each task solves a particular problem for a specific arrangement
of the environment. By linking together these specific solutions, we create
a seamless control system, able to more accommodate general situations
encountered by the robot.

Each task in the system, as shown in Figure 1-4, is comprised of a context, that
is an arrangement of the environment as it is known to the robot; a goal, that is an
objective to be achieved within the context; and an action, which is either a further
collection of tasks or a stereotypical robot motion designed to achieve the immediate
objective. Since the action may be defined as a sequence of tasks, this produces
a recursive structure of tasks and subtasks which operate on increasingly specific
arrangements of the environment, as shown in Figure 1-5. Since the environment is
monitored at every level, small changes in the world may only require minor revisions
in the execution of the tasks at lower levels without affecting the overall execution
at higher levels. The advantage is that overall plans need not be thwarted by minor
variations in the perception of the environment.
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Task

SWITCH /
Task

2

Task

Task
/ N

E)#VIRONMENT

/ / /
/ / / Ts

/ /

TASK

ACTION
CONTEXT GOAL

Figure 1-4. Control of the robot is decomposed into a collection of discrete
tasks. Each task is described by a contert, that is a particular environment
and arrangement of the environment as it is known to the robot; a goal, that
is an objective to be achieved within the context; and an action, which is
either a further collection of tasks or a stereotypical robot motion designed
to achieve the immediate objective.

14



CHAPTER 1. INTRODUCTION

z
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/ Task

SWITCH 1
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Task
N

ENVIRONMENT -

ENVIRONMENT

Figure 1-5. The action associated with a task may be defined as a sequence
of tasks, thus producing a recursive structure of tasks and subtasks which
operate on increasingly specific arrangements of the environment.

The context is defined as a specific arrangement of the environment as it is known
to the robot. To determine whether a particular task should execute, the task-level
control system must determine whether the environment, as currently perceived, satis-
fies the conditions described by the context. Therefore each context has an associated
set of computational modules which perform the functions outline in Figure 1-6. Fea-
tures abstracted from low-level sensory data are used to construct a partial model of
the environment. This model is then compared to one based on the previous sensor
history. Discrepancies arising between the current and the previous models are then
assumed as result of some sudden and unexpected change in the environment. Given
this situation, the system incorporates only the current knowledge, and the previous
model is disregarded. If, on the other hand, there exist common states between the
previous and current models, the new model will represent their union. Since the
set of computational modules shown in Figure 1-6, is defined for each task, the al-
gorithms are greatly simplified since they need only determine those environmental
features relevant to a particular task. Furthermore, because of the limited scope of
these algorithms, real-time computation is possible - thus providing an accurate rep-
resentation of the current environment. Also combining Figire 1-6 with 1-5, we see
that the task-level control system provides a model of the environment of increasing
resolution and one specific to the needs of the particular tasks.
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TASK

CONTEXT GOAL

/ N

/ / \
/ I \~

Current Model

Model
from sensors

Feature
abstraction

Sensors Previous Model

Figure 1-6. The context associated with each task is resolved using a
hierarchy of perceptual elements. These elements detect features from lower
level sensory data to construct a current model of the environment specific
to the associated task.

The task-level control system has a number of advantages. First, since recogni-
tion is coupled to specific tasks, the associated modeling algorithms may be greatly
simplified, thus allowing the possibility of real-time response. Second, since the task-
level control system provides a hierarchical representation of increasing complexity,
changes in the execution of the lower level tasks may have no effect on the course of
higher-level task execution. Third, incremental improvement is allowed by replacing
only some tasks or perceptual algorithms without affecting the rest of the system. In
addition, new tasks and contexts may be added to increase the scope and the com-
petence of the system without affecting the existing algorithms Fourth, the modular
structure provides an opportunity for parallel execution, since the computational de-
pendencies are explicitly delineate-d. Fifth, the control system employs explicit world
models which allow traditional geometric analysis and planning, as well as proofs
of convergence and performance criteria. Sixth, the system provides a link between
lower level trajectory generation and higher level task description.

1.4 Assumptions

The task-level control scheme is designed to operate in a semi-structured environment,
that is an environment composed of regular objects in various configurations, which
may, at any time, undergo random displacements as a result of an unexpected distur-
bance or an unanticipated consequence of robot motion. The idea of a semi-structured
environment was derived to contrast with structured and unstructured environments
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- terms used previously to describe the robot domain. Here we describe a struc-
tured domain as one composed of objects whose geometry and position are orderly
and predictable. This description essentially represents manufacturing environments
used in the development of robotic control system for automated assembly and com-
puter control machinery. Unstructured environments, on the other hand, refer to
potentially chaotic surroundings associated with undersea, extraterrestrial, and haz-
ardous environments. Objects in this domain are assumed to be of arbitrary form
and location, and whose positions may change dynamically. The description of a
semi-structured environment essentially lies between these two extremes; that is the
objects in this domain are of uniform geometry and their position may only vary
within certain constraints. This description attempts to model many man-made fnd
natural environments, in which the objects and their components contain symmetric
and regular structures and that their position, while usually stationary, may change
unexpectedly.

In this thesis, we will concentrate on the geometric and kinematic aspects of
grasping rather than on the mechanical dynamics and contact force interaction. The
objective is to exploit the available sensor information to build a partial geometric
representation, which will guide addition exploration or partial task completion. Al-
though we use simple geometric solids in the examples, some of the techniques and
analyses are applicable to more general geometries.

1.5 Example

Consider the problem of grasping a small rectangular object, such as a blackboard
eraser or small box, from a planar surface, such as a table or shelf, as shown in Figure
1-7. In this example, we assume that the robot or human is without vision and must
grasp the object using only tactile and kinesthetic sensing. We make this assumption
for the purposes of illustration, and to demonstrate that robust grasping behavior is
possible without complex vision hardware. Also the application of strategies based on
subsets of the available sensors provides a basis for fault tolerant intelligent control
systems. Suppose the position and the exact size of the object are not know, except
that it lies on the planar surface and is approximately rectangular.
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Figure 1-7. The objective is to grasp a small rectangular solid from a
planar surface without the use of vision. We suppose the exact size and
position of the object are unknown, but that it is approximately rectangular
and lies on the planar surface.

Thus the task in this example is to grasp the object, the context is a rectangular
object on a planar surface, the goal is a force closure grasp, and the action is either a
single trajectory or a sequence of subtasks will achieve this goal. There are a number
of actions that one could image to solve this task. For example, the hand could move
through a fixed trajectory over the surface of the table, and without using sensing,
simply sweep the object into the grasp. The action in this case would be a single
trajectory which moves the hand over every portion of the surface. However, this
would be less efficient than otherwise possible, since it does not take advantage of the
available contact sensing during the course of the motion.

Suppose we initially probe the surface and acquire a single contact on the object.
The position of the object is now partially constrained to lie within a disk centered at
the contact point, as illustrated in Figure 1-8. Now we must decide on a subsequent
action. One strategy would be to continue to probe in order to acquire a additional
contacts to uniquely resolve the position of the object. Alternatively we could generate
a more efficient action, that is one which would bring us more quickly toward the goal
of a force closure grasp. Suppose we move the center of the palm directly through the
acquired contact point. Not only would this guarantee a second contact, but would
also move the hand in the most likely position to grasp the object, as illustrated in
Figure 1-9. With a second contact point resolved, it is possible to move the fingers
into opposing regions about the longitudinal axis of the rectangular solid, as shown
in Figure 1-10. By squeezing the fingers together, we are assured a force closure
grasp, since it is not possible for the object to rotate to such an extent as to miss the
converging fingertips.

18
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Figure 1-8. A single contact constrains the position of the rectangular
solid to lie within a disk centered at the contact location.

Figure 1-9. By moving the center of the palm through the acquired point,
we are guaranteed an additional contact.

Figure 1-10. By moving the fingers about the longitudinal axis and
squeezing them together we are assured a force closure grasp, since the
object cannot rotate to such an extent as to miss the converging fingertips.

-A



INTRODUCTION

The task-level control system in
illustrated in Figures 1-11 and 1-12.

this case could be described by four tasks, as
Each task has an associated context, that is

a partial object model; a goal, which is a desired configuration between the robot
and the object; and an action, which, in this case, is either a simple stereotypical
trajectory or a task sequence.

TASK 4

ENVIRONMENT

Figure 1-11. The task-level control system for this example is composed
of four tasks, the higher-level task to grasp the block, and three subtasks:
probe, center, and grasp.

Task 1:
Context: Rectangular object

on a planar surface
Goal: Single point constraint
Action: Patterned search

Task 2:
Context: Single point constraint
Goal: Two point constraint
Action: Palm through point

Task 3:
Context: Two point constraint
Goal: Force closure grasp
Action: Rotate about axis

close fingers

Figure 1-12. Each task has an associated context, that is a partial object
model constructed from the initial assumptions and information gained
from the contact and position sensors; a goal, that is a desired configuration;
and an action, which in this case is a simple stereotypical trajectory.

SWIT CH Task

Task L

FTask]_

Task 4:
Context: Rectangular object

on a planar surface
Goal: Force closure grasp
Action: Tasks: 1, 2, 3

CH APT ER1. 20
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Again, the environment is continually monitored to determine the appropriate
context and to execute the associated task. Suppose that during the execution of
the final task in the sequence, the object was suddenly displaced, as shown in Figure
1-13. The discrepancy would be recognized as soon as an inconsistent contact was
achieved or an expected contact did not occur. Since the new contact is inconsistent
with the previous model, the task-level control system ignores the past information
and accepts the new contact point. Given this scenario, task 2 is again executed,
and the hand attempts center the palm over the contact point. If, as in the case in
Figure 1-14, no contact was acquired where one was expected, the system is forced
to reexecute the entire sequence.

New Position
New Interpretation

Old Interpretation

Figure 1-13. The object was unexpectedly moved such that a new incon-
sistent contact was generated.

New Position

Old Interpretation

Figure 1-14. The object was unexpectedly moved such that an expected
contact was not acquired.

21
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1.6 Overview

Chapter 2 outlines the overall theoretical framework for the task-level control system.
In this chapter we develop criteria for stable and convergence task-level behavior.
Chapter 3 describes the architecture of the task-level control system. The architecture
allows the rapid integration of multiple sensors and feature abstraction algorithms,
task-level control routines, and debugging facilities. Chapter 4 introduces methods
for the design and analysis of task-level controllers. Chapter 5 describes applications
of the task-level control system, including a simulation of a planar hand/arm system
and an implementation on the Salisbury Hand/PUMA arm robot system. Finally,
chapter 6 provides a list of future research topics and robotic hardware.
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Chapter 2

Theoretical Framework for
Task-level Control

2.1 Introduction

In this chapter we will develop a theoretical framework for the task-level control
scheme. We begin by partitioning the control of the robot into a number of discrete
tasks, representing specific goals to be achieved for specific arrangements of the en-
vironment. Our definition of a task includes a context, that is a specific composition
of the environment as it is known to the robot, a goal, that is a desired objective to
be achieved within that context, and an action, that is either a further sequence of
tasks, or a robot motion, designed to achieve the immediate goal, as shown in Figure
2-1.

TASK

ACTION
CONTEXT GOAL

Figure 2-1. A task is composed of a context, that is a particular composi-
tion of the environment, a goal, that is an objective to be achieved, and an
action, that is a further sequence of tasks, or a motion, designed to achieve
the immediate objective.

The context traditionally has been defined rather broadly., For example, a com-
mon definition is of a collection of arbitrary polyhedral objects in random, possibly
overlapping, positions. The difficulty with such a general description is the inherent
complexity of object recognition and task planning. Alternatively we could describe
the context as a more restrictive class of environments. Not only would this be consis-
tent with the concept of a semi-structure environment, but would also greatly reduce

23
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the complexity of recognition and planning. For example, consider an environment
composed of only isolated objects on a planar surface, each with opposing parallel
faces. In order to grasp such an object, a recognition system need only approximate
the location of these faces, so that a planning system may place antagonist fingers
on opposite sides. Other examples, may include spatial arrangements of extruded
solids, bundles of flexible linear objects, or aggregates of amorphous spheroids. At
one extreme we could have a single model to represent all possible objects and en-
vironments, and on the other, a separate model for every situation the robot may
encounter. Between these two extremes we can define a set of environmental con-
texts, which individually are as generic and simple as possible, and which corporately
approximate a complete world description.

The definition of the context also includes information about the environment as
it is known to the robot. For example, the task of retrieving a book from a table
would be very different if we could not use vision. The acquisition of the book,
however, could still be accomplished, but would require some exploratory motion.
There are other perhaps less extreme examples were sensing provides only incomplete
or approximate models of the physical world. Our objective is to include partial
models into the definition of the context, so that robust behavior may be designed
despite limited information.

The goal is defined as the achievement of a particular relationship among objects
in the environment. For example, a goal may be the alignment of the principal axes of
robot with those of an object, the mating between two parts, a conformational change
of an articulated object, or the acquisition of an object through a force closure grasp.
In any case, we represent all possible configurations in terms of a state space, that is
the space of all possible positions of the robot and objects within the environment.
We then define the goal as collection of subsets or regions within this state space.
For example, if the objective is "to align the palm of a robot hand with the principle
axis of a revolute solid, then the goal is simply a subset of all configurations which
produce this alignment. The definition of a goal thus provides an explicit definition
of success, as well as an analytic basis for the evaluation of performance.

An action is defined as either a further sequence of tasks or a single motion de-
signed to achieve the goal. If an action is described by a sequence of tasks, this results
in a recursive structure as shown in Figure 2-2. In this case, the goal associated with
a particular task is contained within the context of the subsequent task in the series.
The result is a sequence of increasingly refined contexts and actions which carry the
system from one context to the next, as shown in Figure 2-3. Suppose, for exam-
ple, the task is to push an object which lying on a table. We could decompose this
problem into a sequence of two tasks. The first is to move the hand into the plane
of the table, and the second is to move within the plane to push the object. The
context of the first task thus includes the full three dimensiohal space describing the
location of the end effector, and the context of the second includes only the subspace
defined by the plane of the table. In general, the purpose of the decomposition is to



CHAPTER 2. THEORETICAL FRAMEWORK FOR TASK-LEVEL CONTROL25

create a sequence of increasingly restrictive contexts in which the system is allowed
to operate. This reduces the complexity of design and analysis of robot action by
reducing consideration to action only within a particular context.

TASK

ACTION

TASK1 TASK2 TASKn
ACT7ON I CI CIN,,

CONTEXT2 COAL CONTEXnT GOALn

Figure 2-2. An action can be defined as either a sequence of tasks or
a single trajectory designed to achieve the goal. If it is described by a
task sequence this produces in a recursive structure, in which each of the
subtasks has the same structure as the parent.

wit te cntxt f hesubeqenttak.Chuotas qec rpeensa

Actioncti

Goal

C1
2

a1 a2 C3

a3nn ,-

Goal

Figure 2-3. The goal associated with each task in the sequence is contained
with the context of the subsequent task. Thus a task sequence represents an
increasingly refined set of contexts together with associated actions which
carry the system from one to the next. Note Ci denotes the, context and ai
denotes the action associate with the ith task in the sequence.

By recursively expanding the definition of the action, it is clear that all tasks are
composed of a sequence of robot trajectories. It may seem more efficient to plan



CHAPTER 2. THEORETICAL FRAMEWORK FOR TASK-LEVEL CONTROL26

a single trajectory in the first place rather than this collection of discrete motions.
However, the recursive structure has a number of advantages. First, it may not be
possible to resolve the state of the environment with sufficient accuracy to generate
a single rational plan from start to goal. Intermediate exploratory motion may be
necessary to acquire enough information to achieve the task; and it is this possibility
which we wish to include explicitly into the definition of the task. Second, unexpected
changes in the environment may preclude the applicability of persistent plans or long-
term trajectories. In the semi-structured model of the environment, we assume that
unpredictable events occur in an otherwise static or quasi-static domain. Thus it is
necessary to include in the definition of the task, the ability to compensate for sudden
unexpected disturbances, and it is this ability that essentially defines the approach as
a control system. Third, the definition of a specific action for specific context greatly
reduces the complexity of design and analysis. One of the objectives of this approach
is to decouple complex robot/object interaction into a sequence of discrete contexts
and actions. Finally, the decomposition of a task into multiple independent entities
provides an opportunity to create a reusable set of primitives which may serve as a
basis for other composite tasks.

Although tasks may be specified in a sequence, as shown in Figure 2-2, the order
in which they are executed does not depend on their position in the series, but on
the recognition of the appropriate environmental context. For example, suppose the
task is to retrieve a book from the shelf and place it on the table. A task sequence is
specified as follows: locate book, acquire grasp, transport, orient, and release on the
surface. However, suppose that during the retrieval process, the book slips and falls
to the table. In this case, the task is done - albeit accidentally - and the robot
should immediately proceed to some other problem. The natural sequence: transport,
orient, and release, was circumvented by an unexpected event, and it is this type of
event which we wish the robot to recognize and respond to. In general, however,
the natural course of events tends to thwart rather than complete the task. Thus
elements of the task sequence may have to be repeated or even abandoned in favor
of some more fundamental objective. For example, suppose the book falls behind the
table, in which case a more basic problem of clearing a path to the object must be
undertaken.

Task execution may therefore be considered a control system, as shown in Figure 2-
4. The environment, as perceived through the physical sensors, dictates the execution
of the current task. If the system, that is the perceived states of both environment
and the robot, are within the context of a particular task and not within the goal,
the task continues to execute. The task-level controller determines the appropriate
context by sampling the sensors at certain time intervals. For each sensor sample an
interpretation is constructed, that is a partial model of the environment based only on
the current sensor value, as shown in Figure 2-5. This model is then compared with
one constructed from the previous sensor data to produce the current knowledge, that
is the partial model of the environment based on the current interpretation and the
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previous environmental model. If the current knowledge satisfies the conditions for
the context but not the goal, then that task is executed, that is the action associated
with the particular task is executed. If the action is a task sequence, then this
sequence of subtasks is enabled, as shown in Figure 2-6. We say that a task is
enabled if the control system evaluates the associated context and goal. In other
words, it is not necessary to evaluate all the tasks in the system, but only those
pertinent to the current situation. However, if the action is a trajectory, the robot
immediately begins to execute that motion. Again, this motion continues as long as
the perceived environmental states remain within the context and not in the goal.
Thus the sequence of task execution depends on the state of the environment, and
may vary as depicted conceptually in Figure 2-7, where the solid arrows represent
orderly transitions, and dashed arrows, unexpected disturbances. These disturbances
may be advantageous or detrimental to the overall objective, but in either case, the
task-level system response immediately to these perceived changes and generates the
appropriate action.

TASK

ACTION

CONTEXT GOAL

ENVIRONMENT

Figure 2-4. Task execution may be considered a control system. The
environment as perceived through the physical sensors determines the con-
text. If the system is within the context and outside goal, the associated
task continues to execute.
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TASK

ACTION
CONTEXT GOAL

ENVIRONMENT

CONTEXT

N1-

N-1

GOAL

Current
knowledge

Interpretation

PreviousSensors knowlede

ENVIRONMENT

Figure 2-5. Sensor values are used to compute the interpretation, that
is a model of the environment based on the most recent sensor data. This
model is then compared with the previous knowledge, which is the model
based on all previous sensor values, to determine the current knowledge.
The action associated with the task is executed as long as the currrent
knowledge remains inside the current context and outside the goal.

z

Current
knowledge

Interpretation

Sensors Previous
Senorsknowledge
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TASK

ACTON-

ENVIRONMENT

TASKI TASK2 TASKn

CONTEXT GOAL CONTEXT2 GOAL CONTETA'n ALn

ENVIRONMENT ENVIRONMENT ENVIRONMENT

Figure 2-6. If the action associated with an active task is a task sequence,
then each task in the sequence is enabled, each with its own context, action,
and goal.

C1
2

al a 2 Cn 3

a2 a. Goal

Figure 2-7. The sequence of execution depends on the particular context
as perceived from the sensor data. Thus the actual path of execution may
undergo discrete jumps resulting from unexpected occurances in the envi-
ronment. Note C denotes the context and ai denotes the action associate
with the ith task in the sequence. The nodes along the path represent time
steps during which the current knowledge is reevaluated.

In the following sections, we will offer a formal definition for the task, along with
its components, the context, goal, and action. We will also present a definition for
task-level control system in general, as well as conditions for guaranteed stability and
convergence. We also include, along with the definitions, an example which we will
use throughout this chapter to clarify some of the concepts. The example we consider
is a single link and disk, as shown in Figure 2-5. The link is equipped with a joint
position sensor, and two binary contact sensors on opposing sides. The disk is free
to move within a rectangle of width w and height h, though we initially assume it
resides within the workspace of the link. Therefore if the disk is given by a location
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x = (x, y) and a radius R, and, the link, by an angle 0 and a length L, we initially
assume lixil < L. Given these assumptions, the task is to simply touch the disk.

w

contact sensors

diskhRL

joint sensorX

Figure 2-5. The task is to touch the disk with the link. We assume the
link is equipped with joint position and binary contact sensors, and that
the disk resides within the workspace of the link.

2.1.1 Assumptions

We make a number of assumptions in the example, and in the task-level control
system in general. First, we assume the environment may change in unpredictable
ways as a result of some unknown event. This compelled us to design robust behavior
which compensates for accidents and errors which were not foreseen. Second, we
assume the sensors on the robot always return true values, that is we assume the
sensors return the correct value to within some bounded error. We do not allow the
sensors to return random values, since it would be impossible to distinguish these
from random changes in the environment allowed under the first assumption. The
recognition of sensor failure based on constrained models of the environmental state
would however be useful area for future research. Third, we generally assume quasi-
static motion, that is motion in which the inertial forces are assumed to be negligible.
In this thesis, we will concentrate on the geometric and kinematic aspects of sensing
and manipulation. Finally, though'not critical to the general definitions, we assume
the environment is composed of discrete rigid solids.

2.2 Definition of the Context

The definition of the context embodies three ideas: first, the particular environment
in which the robot operates; second, a particular relationship among objects within
that environment; and third, the particular relationship as it is known to the robot.
We allow the possibility of multiple environments, since it is our desire to reduce the
complexity of the design and analysis of the robot action by restricting it to particular
domains. In addition, we further constrain the operation to particular relationships
among the objects within these environments. For example, the movement of the
end effector in a plane, the alignment of a robot hand with a point, a rectangular
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solid with one edge on a line, a cylinder whose axis intersects a point, all define
constraints on either the objects or the robot. Again, the idea is to simplify analysis
of robot action, as well as maintaining relationships once formed among the objects
and the robot. Finally, the context includes the idea of a relationship as it is known
to the robot. In other words, the objective is to define a context which may be easily
perceived by physical sensors available to the robot.

In order to provide a formal definition of the context, we begin by defining the state
space as the space of all parameters of both the robot and the environment. In order
to perceive these states, we must develop a method of estimating the current state
from the physical sensor values. Therefore we begin with by discussing the physical
sensors, and then describe an interpretation of their values. These interpretations
must be reconciled with past information in order to generate a consistent knowledge
space, that is a subset of state space describing the best state estimate. Finally,
we must determine the context, that is to recognize whether the current knowledge
satifies the relationship defined by the context.

2.2.1 State Space

The state space is the space of all parameters necessary to characterize the system.
We describe the state space as the cartesian product of the states of the independent
entities.

Definition. The state space S = S1 x ... x S" is the set of all states of the system,
where S' is the state of all independent and complete parameters necessary to predict
future events of the ith entity. 1

Example. In the example, the state space is given by S = S1 x S2 , where S' is the
position of the disk

S' = {(x, y)jx E [-w/2+ R, w/2 - R] and y E [R, h - R]},

where R is the disk radius, and h and w the width and height of the workspace, and
S 2 is the position of the link

S 2 = {EjO E [0,ir]}.

2.2.2 Sensors

The physical sensors determine to a large degree the environmental features which
may be perceived, as well as the types of tasks which may be performed and the meth-
ods used to achieve them. Thus rather than starting with a mathematical description

'The Cartesian product of sets A and B is the the set A x B = {(a, b)Ia E A, b E B}.
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of the environment, we begin with by examining the physical sensing hardware and
from this develop an environmental representation. Therefore we will briefly comment
on the various types of sensing hardware available, the application of these sensors to
particular tasks, and the effects of the sensors on the methods of task execution. We
will then define a set representing the output of the physical sensors, and using this
construct a representation of the environment.

Sensing hardware for robotics may be broadly classified as imaging, contact, and
internal. We refer to imaging as those technologies which produce an array of data
which can be used to construct a spatial representation of the surroundings, such
as passive vision (Binford 1987, Horn 1983), active vision (laser light strip systems:
Flynn 1987, Lozano-Perez 1989), tactile arrays (survey: Nicholls 1989, Howe 1992),
and acoustic imaging (Steward 1988). Contact type sensing, on the other hand, refer
to systems which provide partial information in the proximity of the sensor. Such
systems include intrinsic contact sensors (Brock 1987a, Bicchi 1992), joint torque
sensing (Eberman 1990, Gordon 1989), and proximity sensing (ultra-sonic: Mataric
1992, infered: Flynn 1988). We should note, that while not involving contact, prox-
imity sensors provide similar information to contact sensors, and that tactile arrays
have been used from for both imaging (e.g. tactile profiles: Hillis 1980) and contact
(e.g. local curvature: Fearing 1989). Finally, internal sensors refer to systems which
determine the internal state of the robot, such as joint position sensors (hall effect or
potentiometer), torque (reverse EMF or instrumented gauges), orientation (compass
and gyroscopes), and location (global positioning systems).

Imaging, contact, and internal sensors are generally applied to different tasks, or
to different components of the same task. Image sensors provide an approximate rep-
resentation of the surroundings, and are therefore useful in tasks which require coarse
yet encompassing models, such as gross motion planning, navigation, and object dis-
crimination. This is particularly true in cluttered environments composed to multiple
occluded objects. In this thesis, however, we will generally consider isolated objects,
whose geometry, position, and orientation lie within certain constraints. The inten-
tion is that by developing robust' algorithms for partially modeled objects, we can
incorporate these with coarse information produced from image sensing, and thereby
reducing the reliance on high resolution, accurate models, complex algorithms, and
expensive hardware. Contact sensors provide local information useful in tasks requir-
ing partial guidance - particularly in manipulation, collision avoidance, and local
object feature recognition. We will be primarily concerned in this thesis with the use
of contact sensors to guide and select action. Internal sensors are primarily used to
determine the states of the robot, but may, in some instances, abstract environmental
features. For example, contact locations and forces between a robot and an object
can be deduced from joint position and torque sensing (Eberman 1990).

Given a particular task, the type and arrangement of the physical sensors can
effect the methods by which a task is executed. The objective is thus to determine
the most efficient method to accomplish the task given the sensing capability of the
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robot. In the area of robot manipulation, visual sensing clearly provides information
which would be difficult to acquire through contact sensing alone; however, the ad-
ditional complexity and expense may limit its application. In the same way, tactile
arrays provide information not available from force based contact sensors. For exam-
ple, suppose a robot hand was equipped with a tactile array. Such a system could
immediately provide an estimate of the contact location, radius, and orientation of a
revolute solid from a single contact; whereas additional exploratory motion would be
required using only instrinic contact sensing. The simplicity of force based contact
sensors, however, in contrast to tactile arrays with their associated wires, connec-
tors, electronics, and computation, generally compensates for the additional motion
needed to accomplish a task. Furthermore, by consi*dering minimal sensing systems,
we develop fault tolerant capability, since these systems could continue to operate in
the event more complex sensors are unavailable.

Not only do the sensors influence the tasks, but conversely, certain tasks imply
particular sensors. For example, suppose the robot end effector was supplied with
contact area sensors in addition to a contact force based system. Using this combina-
tion, the orientation of the cylinder could be approximated for a given radius. Other
robot sensors have been constructed in a similar manner. For example, an interfer-
ence sensor was used to detect the presence of an object within a gripper (Connell
1987, Ernst 1969), a mechanical probe to resolve proximal obstacles (Angle 1991),
and a mechanical foot switch to determine impact events (Raibert 1989).

Definition. The sensors B is the set of all possible sensor output, and an element
b E B is a particular sensor reading at a particular instant.

Example. In our example, we assume a joint position sensor provides the joint angle
and contact sensors on opposing sides of the link provide binary contact information.
Therefore we define

B = {(b 1,b 2,b 3 )|b1 E [0, r] and b2 ,b 3 E {0, 1}},

where b, is the joint angle, and b2 and b3 are the binary contact data, where b 2 is
the sensor on the left or counterclockwise side of the link and b3 is on the other.

2.2.3 Interpretation

Given a sensor reading b E B, we wish to determine the state of the environment using
this and any a-priori information. Therefore we define an interpretation I = I(b) C S
as a subset of the state space representing all states consistent with a single sensor
reading. Hence the interpretation region I represents the knowledge gained through
a sensor reading.

Definition. The interpretation I = I(b) C S is the set of all states consistent
with the sensor reading b E B. Since the states are defined as a product space, the
interpretation is defined in a-similar way, that is I = V x . . _ x I", where P C Si.
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Example. In the example, we assume the joint angle sensor returns the position
of the link and that the contact sensors indicate the existence of a contact with an
object. Thus there are only two possible situations: contact with the disk, b1 =
(0, 1, 0) (by symmetry we need only consider contact with one side of the link), and
no contact b2 = (0,0,0). Thus these cases span the range of possible input. In the
first instance, b1 = (0,1,0), the interpretation is given by I = I(b) = I1 (b) x I2(b),
where

I' = {(x, y)Ix = Ac - Rs, y = As + Rc, A E [R(1 - c)/s, L]},

and
I2

where c = cos(6) and s = sin(O). The set I is given by a line parallel to the link as
shown in Figure 2-8.

R

G R

Figure 2-8. Contact with the manipulator constrains the disk to lie along
a line parallel to the link and offset by the radius.

In the second case, b 2 = (0, 0,0),

Il = {(x,y)cx+sy<0,cx+sy> L,-sx+cy< -R,-sx+cy> R,
xE [R,w - R],y E [R,h- R]},

and
I2

where c = cos(6) and s = sin(9). The set Il is given by the shaded area as shown
in Figure 2-9.

w

h

R

Figure 2-9. Non contact implies the disk lies within the workspace, yet
outside of a region in the proximity of the link.
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2.2.4 Knowledge

We define the knowledge K as a region in the state space S, representing the set of
states currently known to the robot. For example, if the robot has perfect knowledge
of the states, K would simply be a point in S, that is K = {s} for some s E S. It is
more likely, however, that the robot will know the states of some entities to within
some error, K' = {sI s - soi < ei, .s E S'} C S' for some i, while the states of others
will be completely unknown; Ki = Si for some j, where K = K' x - - - x K1 . In
control theory, the knowledge, that is the current state estimate, is usually defined
as a either single point or a point with some probablistic or indeterminate bounded
error. However, here we define the current state estimate as a subset or even a
subspace of the state space, in order to represent the partial knowledge gained from
the sensory system. The objective is to then use this partial knowledge to design
meaningful control action despite the limited information. As the robot proceeds
in its task, we assume the knowledge K will become finer as the incoming sensory
data is incorporated into the current model, and thus the resulting control action will
become more delibrate.

Definition. The knowledge K = K1 x ... x K" is the set of all states current
known to the robot, where K' is the set of states known about the ith entity.

Suppose at times to, ... , ti we have acquired sensor data bo, ... , bi, where bi E B,
and have constructed an estimate of the states Ki = K,' x ... x K'. Suppose at time
ti+1 we obtain a new sensor reading bi+,, and have formulated a new interpretation
I+1. We wish to integrate this new information with the previous knowledge to
construct a new estimate of the current states. Between times ti and ti+1, the robot
will have executed some action ai. (In the task-level control system a, is depends
only on the previous knowledge K,. We will use this fact in both the theory and
the implementation to simplify the evaluation of the new state estimate K+1 as
given below.) Thus the best estimate of the current states given only the previous
knowledge K and the action ai, is the forward projection Fa,(K) over the set K.

Definition. The forward projection Fa(A) C S of an action a over a set A C S
is subset of the state space given by the set of points in A projected forward through
some physical model.

Given the forward projection, Fa,(KIj) C Si, and the current interpretation
I3 C Si, we would expect some intersection. It is possible, however, not such in-
tersection exists. This may happen, for example, because of some expected intrusion
into the workspace - a distinct possibility when considering robots in human environ-
ments - or as a result of some unmodeled sensor or actuator error. Even small errors
may lead to large unpredictable changes in the environment (Bradley 1990). Thus
we will assume descrepancies between the forward projection and the current inter-
pretation are a result of an unpredictable event, and will therefore ignore all previous
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information related to that entity and retain only the current interpretation, as illus-
trated in Figure 2-10. Hence we define the new knowledge Ki+1 =Kl1 x x -- x K ,
as

K3  = 'Fa(K)fl I41  if Fai(Kj)flIi # (2.1)
KiI+ otherwise.

Realistically there may be multiple forward projections, which can be represented
by collection of set of increasing size. For example, suppose a robot hand loses contact
with an object which was in its grasp. The first estimate, or forward projection, for its
position may be directly below the gripper. A second, more general, estimate may be
the entire region under the robot, and a final, guess as to its location may be the en-
tire workspace of the robot. Similarly we may define a family of forward projections,
Fa0c(K),...,FaT(K3), such that F k (Kj) C F (KI) for k < 1 and Fa(Kj) = Si,
as shown schematically in Figure 2-11. Thus we know at least one forward projec-
tion will intersect the current interpretation, and we base the new knowledge on the
intersection of minimum size, that is

= Min{FK (2.2)

In addition to above equations, there are obviously various statistical and probabilis-
tic methods for updating the current state estimate from the sensor data, previous
knowledge, and system model. The Kalman filter is an example from traditional con-
trol theory. Thus an interesting area for future research may be the extension of the
knowledge space estimates based on optimal probabilistic methods.

Fai( ) I+1

K

ti+

Figure 2-10. The current knowledge is given by the intersection between
the forward projection of the previous knowledge and the current inter-
pretation. If no such intersection exists we ignore all previous knowledge
related to an entity and retain only the current interpretation.
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Fal (K )

Fa (Ki ) a

.* +1

. ti

ti

ti+ 1 Fa ( Ki) n Ii+1
Figure 2-11. The current knowledge may be estimated as the minimum
intersection between the family of forward projections and the current in-
terpretation.

CH APT ER 2.
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Example. Suppose the link is initially in contact with the disk, as shown in Figure
2-11. Thus the sensor data is bo = (9, 1, 0), and the knowledge is equal to the current
interpretation, that is Ko = K x K = Io = Io x I, where

K= {(x, y)|x = Ac - Rs, y = As + Rc, A E [R(1 - c)/s, L]},

and

where c = cos(9) and s = sin(9). Suppose between times to and t1 , the link rotated
by an amount AO. If we neglect the dynamics, we may assume the disk remains
either on the link or falls off, as shown in Figure 2-12. Thus the forward projection
is given by F,,(Ko) = F,,(K0) x Fa,(K2), where F,,(Kj) = F." U Foff, where

Fon = {(x, y)Ix = Ac - Rs, y = As + Rc, A E [R(1 - c)/s, L]},

where a = sin(9 + AO) and s = cos(9 + AO),

Fff = {(x,y)|x = Lcos(9+$) - Rsin(9+q)+w/2,
y = L sin(9 + q) + R cos( + 4), E [0, AO],
x = R cos(o) + L cos(9), y = R sin(o) + L sin(9),

0E [0 - 7r /2, 0]}

and
Fai (K2)= {+ A},

where al is the link rotation. Suppose we obtain a new sensor reading b1 = (9, 1,0),
representing contact along the same side. The interpretation region I,, is then
the same as the original knowledge space Ko, but with 9 replaced by 9 + AO, and
the intersection with the forward projection Fa,(Ko), yields the new knowledge
K1 = Fon and K2 = {0 + AO}, as shown in Figure 2-13. Alternatively, we may not
have a contact, b 1 = (0, 0,0), in which case we assume the disk has fallen off the end.
Intersecting the forward projection of the knowledge with the current interpretation
implies the disk exists somewhere along the arc swept out by the endpoint of the link.
Thus the new knowledge is given by K1 = Fff and K2 = {0 + A0}, as illustrated
in Figure 2-14. A final possibility is a contact with the opposing side, b1 = (9, 0,1).
This would unexpected and we must assume a result of some unkown event. Thus
the current knowledge K1 is given by the current interpretation K1 = I, = Il x I1

I, = {(x, y)Ix = Ac + Rs, y = As - Rc, A E [R(1 + c)/s, L]},

and
wh= {) + A},

where e = cos(9 + AO) and s = sin(9 + AO), Figure 2-15.
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Kl\

Figure 2-11. The initial knowledge space is given by a line parallel to the
link and offset by the radius of the disk.

F

Fo n
A6

Figure 2-12. The forward projection of the knowledge space is given by
a union of two sets, one composed of points along the link and the other of
points along the arc.

Fon

Figure 2-13. Contact implies the disk remains on the link. (Note if
we assume a uniform pressure distribution under the disk, the disk will
transverse a distance RAO along the link, independent of friction.)

1ofK, = Fof

Figure 2-14. No contact implies the disk has fallen off the end of the link,
and thus exists somewhere along the arc defined by the endpoint of the link
swept through the angle AO.
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K I

Figure 2-15. Contact along the opposing side is an unexpected event in
that the interpretation does not intersect the forward projection. Therefore
we must ignore all previous knowledge related to the entity and assume only
the current interpretation, which in this case is a line on the oppose side.

2.2.5 Context

The context C is defined as an equivalence class of knowledge sets, that is a class
of all elements K E P(S) that are equivalent to some set K, E P(S) under some
relation R C P(S) x P(S), where 'P(S) indicates the power set of the state space. In
other words, the context is simply a collection of knowledge sets which satisfy some
relation.

Definition. The context C is an equivalence class of knowledge sets, that is a class
of all elements K E P(S) that are equivalent to a set K,, E P(S) under some relation
R c P(S) x P(S) (where P(S) is the power set of the state space).

We say that the system is within a particular context, if the current knowledge is
a subset of some element in context, that is if K is the current knowledge and C is a
context, then the system is in C if K C K, for some Ka E C.

Definition. The current knowledge is in a context C if K C K,, for some K, E C.

Part of the motivation of the task-level control scheme is to decompose the control
of the robot into a number of discrete tasks. It is desired that some tasks operate
in coarse or more general contexts, and others in fine and specific situations. This
is analogous to gross path planning and fine motion strategies (Lozano-Perez 1987).
Therefore we will formalize the concept of one context being finer, or smaller, than
another, and use this to say that one task operates in smaller context than another.

Definition. A context C = {Klb E B} is smaller or finer than another Ci =
{Kala E A}, denoted Ci >- C, if

nlKbcflKa
bEB aEA

and for all Kb E C, there exists Ka E Ci such that Kb C Ka.

We will see in the next sections, that the objective of the task-level control system
is reduce the context, that is to move the system closer to the goal, which is the
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objective of the task, or to increase the knowledge of the states, which makes effective
motion possible.

Example. Suppose that the position of the link is known, that is K 2 = {9}, and
the disk lies within the workspace of the arm,

K' = {(x, y)|x 2 + y 2 < L 2 , y > R}.

This situation can be described in general by a collection of knowledge sets, that is
a context, which given as follows:

C1 = {KolKe = {(x, y,)x2 + y2 < L 2 , y > R R < -sx + cy 5 -R},9 E [0,7r]},

where s = sin(O) and c = sin(O), as illustrated in Figure 2-16. Suppose we have
more refined knowledge, that is we know disk is on the link or to the right of the
link. The context, in this case, may be described as

C2 = {KIKO = {(x,y,O)jx 2 + y 2 < L 2 , y R, -sx + cy -R}, 0 E [0, 7]},

as shown schematically in Figure 2-17. Within this context we see that a simple
motion, that is clockwise rotation, will produce a contact with the disk and solve
the task. Thus the goal, that is a contact with the disk, can be described by a third
context

C3 = {Ke|Ke = {(x, y,O)Ix = Ac Rs, y = As T Rc, A E [R(1 T c)/s, L]},0 E [0,7]},

as shown in Figure 2-18. The objective of the task-level control system is to move
from a general context to the goal through a sequence of actions. In this case, given
the initial context C1 and the the goal C3, we see that the contexts C1, C2, and C3
form a natural sequence

C1 >- C 2 >- C3

representing both a reduction in state and an increase in knowledge.
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n

Figure 2-16. If we know the position of the link and the fact that the disk
lies in the workspace of the arm, this information may be represented by a
collection of knowledge sets.

K

C
0

C

Figure 2-17. Knowing the disk lies to the right of the link represents
an increase in knowledge from the former situation, and allows a simple
motion, that is clockwise rotation, to contact the disk and solve the task.

01 K 2 
C 1

K 8

K 0

Ke
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7,7

K91

K C3

K3

K 4

KE
n

S
0

Figure 2-18. Contact with the link, on either the right or left side, repre-
sents the goal of the task.

2.3 Definition of the Goal

We define the goal in the same way as we defined the context. In other words, the
goal is a desired relationship among objects in the environment which is known to
the robot. Therefore the goal G is simply some context C.

Definition. The goal G is simply a specific context, that is the goal represents a
desired relation among objects in the environment which is recognized by the robot.

Example. The goal is to contact the disk, thus G = C3

2.4 Definition of the Action

Given a context C and a goal G, we wish to define some robot action a to achieve
the goal. We define an action as either a sequence of tasks which operate on finer
partitions of the context, or a simple trajectory in the joint sp4ce of the robot.

Definition. An action a is either a sequence of tasks a = (t1 ,... t) or a robot
trajectory a = (xo, x,), where ti are tasks and xi are joint positions.

If the action a is a trajectory a = (x0 ,... , x,,), we will describe its value a(A) on
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an interval [A,, Ae] as
a(A) = (xi1 - x;)A, + xi,

and
jA-AS I A-As

= [A -AsJ Ac =nAT AT -Z

where x0 is the initial joint position.

Example. Let us define an action a, = (t 1 , t2) composed of two tasks (where
tasks will be defined in the next section), and actions a2 = (ir) and a3 = (0) which
represent simple sweeping motions of the arm, as shown in Figure 2-20. Together
these motions span the workspace, and will thus guarantee a contact. We will use
these actions in the next section to define the tasks.

a=(n a -=(0)

Figure 2-20. Trajectories specified by actions a 2 = (7r) and a3 = (0) first
sweep the arm to one side and then the other to span the workspace and
thus guarantee a contact with the disk.

Alternatively, we could define a slightly more complex trajectory a4 = (7r, 0) which
performs the same operation with a single motion, Figure 2-21.

a4=(Tr,O)

Figure 2-21. A simple trajectory, given by first rotating counterclockwise
to one joint limit and then clockwise to the other, is guaranteed to produce
a contact and solve the problem.

2.5 Definition of the Task

Intuitively we can think of a task as an action which only operates within a particular
context to achieve a specific objective. More formally we say a task t is a set which
contains a context C, goal G, and action a, that is t = {C, G, a}.

Definition. A task t on a state space S is a context C, goal G, action a, that is
t = {C, G, a}.

For convenience, particularly in the implementation, we may partition the context
C into a family of disjoint regions Ri, where

URi = C and Ri =0,
S S
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and associate an action ai with each one, as illustrated in Figure 2-19.

C

Ro
Ri

a G

ti 
R

to R2

Figure 2-19. For convenience in analysis and implement the context C can
be partitioned into distinct regions Ri, each one with an associate action
ai.

Example. Suppose the task is to touch the disk, and we know that the disk lies
within the workspace of the arm. Then the task t is defined as t = {C1, C3, a},
where C1 is the context specifying the disk is in the workspace, and C3 is the
goal specifying contact with the disk. We could solve this problem by defining an
action a = a, = (t1 ,t 2), where t1,t 2 are two task given by t1 = {C1, C2 ,a 2} and
t2 = {C 2, C3,a3 }, where a2 = (7r) and a3 = (0), as shown in Figure 2-22. Thus the
task t1 operates only within context C1, has a goal C2, and an associated action
a2 = (ir). The action simply sweeps the arm to one side which either establishes
a contact, which is in context C3 , or the fact that the disk lies on the other side,
that is context C2. In either case the action a2 will move the system from context
C1 to C2 . The second task t2 operates within context C2 , has a goal C3, and an
associated action a3 = (0). Thus the disk is known to lie on the right and clockwise
rotation will establish a contact. Alternatively we could have solve this problem
more directly with a single action a = a4 = (ir,0), which sweeps the link through
the workspace to produce a contact, as illustrated in Figure 2-23.
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ti

Ca C3

t2  t3
C 3 Ca a3

C2

aC2

a2(7T) ai=(0)

Figure 2-22. We can contact the disk by defining two tasks ti,t2 . The
first operates assuming the disk is within the workspace and moves the arm
to the left. The second assumes the disk lies to the right thus rotates the
arm clockwise to establish a contact.

ti

C1 C3

C1

a

3

a = (7T, 0)

Figure 2-23. A single action given by first rotating counterclockwise to
one joint limit and then clockwise to the other is guaranteed o produce a
contact and accomplish the task.
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2.6 Definition of the Task-Level Control System
We execute a task t = {C, G, a} when the knowledge K is in the context C and not in
the goal G. We say a task is executed when a trajectory is sent to the robot actuators
if the action a = (xl, .. ., X) is a trajectory, or when a set of tasks t1 , ... , tn is enabled
when a = (t1 ,... , tn) is a task sequence. Also, we say that a task t is enabled when
the control system checks whether the current knowledge is in the context, otherwise
the task is ignored.

Thus the execution of a task depends on the current knowledge K, which, in
turn depends, on both the previous knowledge and the sensor data. Since the sensor
data is updated periodically (we use the discrete time model in this thesis), we have
essentially defined a control system.

Specifically we define the task-level control system as a set of tasks T = {t 1 , .. , tn}
and the sequence of elements shown in Figure 2-24. Beginning from the left, we
assume that at time ti the system states assume some value si E S. The states si
then generate some sensor value b, E B, as a function of the measurement model,
where the measurement model is a function h : S -+ B where si F-+ bi. The sensor data
bi and the previous knowledge Ki_ 1 are then combined using a state estimate function
to compute a new knowledge space Ki. The state estimate function can be though of
as a generalized Kalman filter, and can be denoted as a function f : B x P(S) --+ T(S)
which maps sensor data bi and previous knowledge Ki_1 to new knowledge Ki, that
is (bi, Ki-1) F-+ K. Equations 2.1 and 2.2 from the previous section give examples
of state estimate functions. We should note that in practice, we employ separate
estimate functions ft for each task t, E T. This makes sense, since environmental
states which are important for one task may not be relevant to the others.

MEASUREMENT STATE ESTIMA'E TASK-LEVEL ROBOT PLANT
CONTROLLER CONTROLLER

a i_ I DELAY

K_ DELAY

Si bi Kia i.s.

Figure 2-24. Sensor data and the previous state estimate are combined
to form a current estimate of the system states. This state estimate, or
knowledge space as defined in this thesis, is then issued to the task-level
control system. The controller then determines whether 'the knowledge
space resides within the context of all the enabled tasks. For all tasks for
which the knowledge space is in the context and not in the goal, the task
is executed.
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The knowledge space Ki, representing the current model of the system states, is
entered into the task-level controller T. If this estimate is within the context of a
particular task and not within the goal, then the task is executed. An executing task
may have an associated action, which is defined as a task sequence. In this case, every
task in the sequence is enabled; which simply means the control system will check
whether these tasks should execute. This procedure is represented schematically in
Figure 2-25. In the figure the highlighted boxes represent enabled tasks and the
shaded boxes executing tasks. As illustrated in Figure 2-26, a sudden change in the
environment may cause a rearrangement in the pattern of execution at the lower level,
yet not effect the overall task execution at the higher level. Again, the advantage
of this structure is to allow the robot to response immediately to changes in the
environment, and to generate corrective action to accomplish the tasks. Also the
degree of change in the task execution is coupled with the degree of change in the
perceived environment.

Finally, the trajectory a, generated by the task-level controller is then delivered to
the robot control system, which then executes the appropriate displacement di. Given
displacement di and the previous state s -1 , the physics of the system determines the
subsequent state si, and the loop is complete.

==enabled =executing

Figure 2-25. If the system state estimate, or knowledge space, is within
the context of a particular task and not within the goal, the task is executed.
If the action associated with an executing task is a task sequence, every task
in the sequence is enable, which simply means the control system checks
whether these tasks should be executed.
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=enabled =executing

Figure 2-25. A sudden change in the environment causes a rearrangement
in the pattern of execution at the lower level, but does not effect the overall
task execution at the higher level. Thus the degree of change in the task
execution is coupled with the degree of change in the perceived environment.

Example. Let us define the collection of tasks T = {1, t 2 , t 3} as illustrated in

Figure 2-23, where t1 = {C1,C3 ,a1}, t2 = {C1,C2 ,a 2 }, and t3 = {C2 ,C 3,aa}, and
implement the control loop as given in Figure 2-24. Figure 2-26 shows the progress

of events for a particular example. The link is initially unaware of the location of

the disk, except that it is known to lie within the workspace of the arm. In 1, the

knowledge space K1 is given by all positions disk positions not intersecting the link.

Since K1C is in context C1 and not in C2 , task t1 and t 2 are active and the arm

executed trajectory a, = (r). In 2, the knowledge space is refined but is still not

contained in any context Ci i > 1, thus a, continues to execute. In 3, a contact

is established, hence K3 is in C1 , C2 , and C3 , and task t, is terminated. In 4, the

disk moves or is moved suddenly and unexpectedly to a new position. The new

sensor data is inconsistent with the previous knowledge, thus the old information

is discarded and the new knowledge space is given by K4 as shown in the figure.
The arm executes action a, = (ir), until, in 6, it is established the disk is to the
right and task t3 is active. Task t 3 executes action a3 = (0) until a contact is finally

established in 7.
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1. 0-

2. 0

5.

6.

7.
/

/
=enabled =executing

Figure 2-26. The task-level control system reacts immedistely to per-
ceived changes in the environment and executes an action associated with
the task appropriate to the current situation.
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2.7 Stability and Convergence

One of the major issues in any control problem is provable stability and convergence.
In other words, is it possible to guarantee that the system will actually solve the task
and do so uniformily. Part of the difficulty with behavior based systems is the inability,
in many cases, to guarantee the system would solve the task, and avoid chattering
instabilities and limit cycles. A visualization tool discussed in the next section was
designed to study stability and convergence issues for behavior based systems, as
well as offer guidelines in the formulation of system behavior. However, part of
the motivation for task-level control system was to intrisically provide stability and
convergence, as well as allow various design tools based on the parial representations
which describe the contexts. Proofs of stability and convergence are possible because
the robot actions for the task-level control system are initiated in response to explicit
partial representations of the environment rather than particular sensory events and
memory states.

We have stated that the task-level control system operates in a semi-structured
environment, and in our assumption of a semi-structured environment we have allowed
the states to change arbitrarily and at random times. Clearly we cannot guarantee a
stable control system with this assumption. However, we would like to demonstrate
that in an otherwise static environment, the task-level control system remains stable
and converges to the goal in a finite time. Since the control system is composed
of a collection of discrete tasks, each one operating within a particular context and
executing a particular action, we would like to develop some criteria on the tasks, such
that they cooperate together to accomplish the overall objective. Therefore in this
section we will develop the ideas of stability and convergence for a task-level system
and offer criteria on the tasks which guarantee these qualities. However, before the
issues of stability and convergence can be addressed, we must establish criteria for a
consistent control system, that is a control system which generates one and only one
trajectory for any given input.

2.7.1 Comment on Stability and Convergence of Behavior
Based Systems

A behavior based system may be described as a control system which generates a robot
motion based on the sensor values and the internal memory state. Since the states of
the system, that is the states of both the robot and the environment, determine the
values of the sensors, within the limits of noise, then given an internal memory state
we can uniquely determine the action of the robot. Therefore we can describe these
effects as a vector or trajectory field on a configuration space formed as a product of
the state space and the memory states. We will call such a inap a behavior diagram
(Brock 1991) since it completely describes the behavior of the system in a given
environment. Although similar to potential or gradient fields used previously (Payton
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1990, Arkin 1990), these diagrams extend to include both trajectories and memory
state transitions. An important aspect of these maps is that a sudden environmental
change can be represented as a sudden shift in position within the behavior diagram.

Example. As an example, we will consider a mobile robot (Mataric 1989, 90) which employs
the subsumption architecture through use of the behavioral language (Brooks 1990). The
cylindrical mobile robot translates and rotates independently and has twelve sonar range
sensors spaced evenly about its circumference, Figure 2-27. Significant regions about the
robot are described by thresholding sensor values or comparing their ratios. By considering
both the robot and these critical regions we describe an extended object, Figure 2-28. The
position of this extended object within a particular environment describes an extended con-
figuration space. This is similar to the extended configuration space proposed by (Villarreal
1991), which incorporates the effects of compliance during assembly. The present definition,
however, also includes aspects of sensing and control as well as compliance. In Figure 2-29
we show a projection of the extended configuration space for the robot encountering a wall.
The vertical axis represents its displacement from the wall and horizontal axis its rotation.
The control algorithm, assigns a displacement vector or state transition for each critical
region. This is reflected in the behavior diagram, Figure 2-30. The behavior of the robot is
thus described as the motion of a point through this diagram and a sudden environmental
change as a shift in this point.
Figure 2-30 shows the effects of the lower level "stroll" behavior. The length of the vectors
define the translational or rotation displacements and the state transition regions define
shifts to alternate diagrams. In this case, positions in the RECENT STOP region cause
transitions to the right diagram. Many aspects of the system behavior become readily
apparent, such as a collision region (D, limit cycle ( , and a stable region, line (D.
These diagrams also offer implications for behavioral design. The actions, that is the dis-
placement vectors or trajectories, must be compatible between adjoining regions to avoid
chattering. Specifically, the components of the command pvectors along the boundary nor-
mal in neighboring regions must be in the same direction. Design may also be possible
by examining the extended configuration space and assigning vectors or trajectories to the
disjoint regions.

In the subsumption architecture, state transitions are represented by triggered monostables,
which are variables that when set remain true for a specific length of time. Since these
variables represent knowledge states gained through sensing, their persistence for a fixed
length of time may not be desirable, since newly acquired sensor values may negate their
validity. The most recent sensor values should be compared with the previous knowledge
state to yield a consistent re sentation.

2 3 O'
1 4

0 5

11 6

10 7
98

Figure 2-27. The cylindrical mobile robot translates and rotates indepen-
dently and has twelve sonar range sensors space evenly about its circum-
ference.

I
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RECENT STOP

stop

robot

forward

RECENT STOP

rotate

backup robot backup

Figure 2-28. The robot and critical regions surrounding it represent an
extended object which can be used to construct a configuration space map.
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Figure 2-29. The extended configuration space is shown for the robot
encountering a wall. The space is parameterized by the distance and incli-
nation from the wall.

RECENT STOP RECENT STOP
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Figure 2-30. The diagrams illustrate the operation of the "stroll" behav-
ior. The length of the vectors define the length of the displacement or angle
relative to the wall. In the left diagram, positions in the RECENT STOP
region cause a transition to the right diagram. A point remains in the right
diagram for a fixed period of time after leaving the shaded region. This may
cause aberrant behavior for moving obstacles, such as the case for region (
which causes the robot to collide with the wall. Also incompatible vectors
at the interface of the boundaries cause chattering instabilities Q. On the
other hand, line Q represents a stable region, in which the robot neither
moves toward nor away from the wall.

30

~20

(6 10
.4-)

0

3

forward backup

RECENT STOP
atop

30
left- right left

20

10

backup

0 L I



CHAPTER 2. THEORETICAL FRAMEWORK FOR TASK-LEVEL CONTROL54

Example As part of a grasping behavior, the Salisbury Robot Hand is required to align
with an object given only the binary contact information available from a palm sensor (see
Figure 5-4), as shown in Figure 2-31. Based on this information, Figure 2-32 shows the
behavior diagrams and the experimental results for three different robot behavior. In the
first case a poorly designed motion fails to converge to the goal; in the second, convergence
is achieved but the incompatiable across the switching surface causes the system to chatter;
and in the last case, a correctly design motion causes the system to smoothly converge to
the goal. The incompatiability of the vector fields across switching surfaces can be easily
observed in these diagrams.

0

Figure 2-31. The Salisbury Robot Hand is required to align with an
object given only binary contact information Available from a palm sensor
(see Figure 5-4), as shown in Figure 2-31.
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Figure 2-32 The behavior diagram combines the extended configuration
space and associated actions. Smooth convergence, chattering instability
and limit cycling are demonstrated. The horizontal axis represents the
distance of the palm to side of cylinder and vertical axis the angle between
them. The plots to the right are result from experimental trials.
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2.7.2 Consistent Task-Level Control

Definition. A task-level controller T is consistent if it produces no output, or one
and only one parameterized action a(t), for all input K C S.

The task-level controller consists of a set of tasks T = {t,... , t,}, where each
task ti is given by a context, action, and goal, that is ti = {Ci, Gi, ai}. The action
ai is defined as a trajectory ai = (x1 ,... , X,) or a task sequence ai = (ti1 , ... , ti). If
the action ai is a task sequence, we may consider the task ti to be a node and the
subtasks, ti1,..., tin, a set of branches, as shown Figure 2-33. More formally, we can
describe ti as a vertex and the subtasks as a set of directed edges (ti, ti1),... (ti, tin)
in a directed graph, see appendix A section 1 for definitions and terminology of
graph theory. Continuing in this way, we may describe the entire control system as
a directed graph GT = (T, E), where the set of tasks T are represented by vertices,
and E = { , t 1 ), ... , (ti., t3.)} by edges. By describing the task-level controller in
this way, one criteria that is clearly necessary is that GT should be an acyclic graph,
which is to say GT is a forest or a graph of trees, as in the example shown in Figure
2-34. Since GT is a directed graph it will contain a set of roots T, C T. We define a
root as a task t, E T such that there exist no (t, tr) E E. Let us define a subgraph Gtr
of GT given by the set tasks connected which are connected to the root t,, as shown
in Figure 2-35. In order to avoid conflict in the task-level controller, we require one
and only one root to be enabled at a time. This implies that the robot has only one
task to accomplish at any one time. Thus the control system may be considered as a
single tree Gt, with a root given by the enabled task t,.

t

ti t 2  t3  t4 tn

Figure 2-33. If the action is a task sequence, the task t may be considered
a node and the subtasks, ti,.. .,t, branches.

Figure 2-34. In order to avoid obvious loops the task structure should be
acyclic
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/ \

Figure 2-35. The set of tasks which are enabled at any one time form a
tree.

Lemma. Suppose C1 >- - C,, is a sequence of contexts, suppose K C S in C
and not in C,+1 for some j, then K is in C and not in Ck for all i < j < k.

PROOF. First, by induction, given K in Cj, assume K in C for i < j, and show
K in Ci_1. Since K in Cj, there exists some Kb E Cj such that K C Kb. Since
C1 >- Cj, there exists some Kb such that Kb C Ka, hence K C Kb and K in

Second, again by induction, given K is not in Cj+1, assume K is not in Ck for
k > j + 1, and show K is not in Ck+1. By contradiction, assume K E Ck+1. This
implies there exists some Kb E Ck+1 such that K C Kb. Since Ck >- Ck+1, there
exists some Ka E Ck such that Kb C Ka. Hence K C Ka E Ck a contradiction
1:.

Definition. A sequence of tasks ti,... ,i, is consistent if no task executes or one
and only one task executes.

Lemma. (2.1) A sequence of tasks t1 ,...,t., where ti = {Ci, Gi, ai} such that
Ci+1 = Gi and C >- Gi is consistent for all K C S.

PROOF. If K is not in C1 or K is in G., no task executes. Therefore assume K
is in C1 and not in G,. Thus the sets sets C,..., C, C,+ = G., form a sequence
of contexts C1 >- - - - >- C,+1. Let C = {C,,,..., Ci,} be a set of contexts of the
sequence for which K is not in C,,. The set C contains at least one element since
K is not in G., and not all elements, since K is in C1 . Let Cm E C be the largest
context in the set. Therefore K is in Cm,-1 and not in C, and thus the task tm-

executes. By the previous lemma K is in C and not in Cj' for all i < m - 1 and
j > m, so that tm- 1 is the only task executed. 0

Definition. A task-level controller has a regular structure if

The graph of T, GT, is acyclic.
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GT has one and only one root t,. which is enabled.

For each task t = {C, G, a} in G,., the action a is a trajectory or a task sequence
a = (t,7..-. tn), such that C = C1, G = Gn, Ci >- Gi, and G; = Ci+1-

Proposition. If a task-level controller T has a regular structure it is consistent.

PROOF. Let K C S, and t,. = {C,., G,., a,.} be the root task. If K is not in C,.
or is in G,., the system produces no output. Therefore assume K is in C, and
not in G,., and thus t, executes. If a,. is a trajectory the proposition is proved,
so assume a,. is a task sequence. By induction, we are given t, executes and that
the action a,. = {t.1,... , t,.} is a consistent task sequence. Thus only one task
tri executes. Assume that tk is an executing task, such that tr, t1 ,..., tk is a path
of executing tasks in the graph Gt,. Again if ak is a trajectory, the inductive
step is proved; therefore assume ak = (tkl, ... , tkn) is a task sequence. Since ak is
a consistent, only one task executes and the tasks t,., t1 ,..., tk, tk+1 is a path of
executing tasks in Gt,. Finally, since the task-level controller is finite, only one
trajectory executes. 0

2.7.3 Stable Task-Level Control

The task-level control system is defined as a set of tasks T = { 1 ,... , tn}, where each
task t = {C, G, a} has a context C, goal G, and action a. The intuitive notion of
stability for such a system is that the effect of the action a contains the system within
its context. In other words, once the system has arrived in a particular context, the
actions are such to keep it there. This is somewhat analogous to the bounded-input
bounded-output (BIBO) stability criteria for linear time-invariant (LTI) systems, in
that an action (in this case a bounded input x[n] where Ix[n]I < B for all n) produces
a bounded output

+00

|y[n]| ; B Z Ih[k]I forall n,
k=-oo

if the unit response is absolutely summable,

+00
E Jh[k]J < oo

k=-00

(Oppenheim 1983). In other words, the effect of the action'mantains the system
within a certain bound for all time, which in this case is defined as the context C.

Definition. A task t = {C, G, a} is stable if the effect of the action a maintains
the system within the context C.
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Definition. A task-level control system T is stable if all tasks t E T are stable.

Let us first define the forward task projection, that is a task t = {C, G, a} and
a knowledge space K in C, the forward task projection describes the effect of the
knowledge space K as the result of the action a.

Definition. Let t = {C, G, a} be a task, where a(A) is trajectory parameterized
on an interval [A,, Ae], and assume a discretization A, = A,..., A, = Ae. Then given
a knowledge space K in C, forward task projection is a collection of knowledge
spaces F(K) = {K0,.. ., K}, where K+1 = Fa(Ai)(Ki n K.), for all Kg E G.

For a particular task to be stable, the elements of the forward task projection
must be within the context. In other words, given a task t = {C, G, a}, the effect of
the action a maintains the system within within the context C. For the task-level
control system to be stable, every element in F(K) for K in C, must be in C.

Proposition. A task-level control system T is stable, if it is consistent and the
forward task projection for every task t containing a trajectory is smaller than its
context, that is for t = {C, G, a(A)}, C >- F(K), for all K in C.

PROOF. Since the T is stable, we know that either T produces no output,
or one and only one trajectory executes. If it produces no output T is stable
by definition. Therefore suppose T receives some input K, then one and only
one trajectory a(A) executes. Since the forward task projection C >- F(K) =
{Ko,..., K,}, for all Ki E F(K), Ki C K, for some Kc. E C. Thus for all input
K the effect of the executing task t = {C, G, a} E T mantains the system within
the context C.

2.7.4 Convergent Task-Level Control

Intuitively, we say a task-level controller converges if it accomplishes the task in finite
time.

Definition. A task t = {C, G, a} converges if it is stable and if the effect of the
action a moves the system into the goal G.

Definition. A task-level control system T converges if it is stable and all the tasks
t E T converge.

Proposition. Let t = {C, G, a} be a stable task where the action a is a trajectory
a(t). The task t will converge if the exists an element K in the forward task projection
F(K) such that K; in G.
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PROOF. For all K in C not in G, let F(K) = {Ko,... , I,} be the forward
task projection. Since t is stable Kj E F(K) is in C, for j = 0,... , n. If IK, is
in G, for j < i, the proposition if proved. If K, not in G, the task continues to
execute and for j = i, Kj is not in G by hypothesis, thus the task converges.

Proposition. A task-level control system T converges if it has a regular structure
and all tasks whose actions are trajectories converge.

PROOF. By induction. Given that tasks whose actions are trajectories converge,
assume a task t = {C, G, a}, where a = (t,... , tn), is such that all tasks ti =
{ Ci, G,, ai} converge. Show t converges. Let K be in C not in G. Since T is
regular, C = C1 >- - - - >- Gn = G, and by lemma 2.1, only one task ti executes.
Since ti converges by hypothesis, then there exists a K' in F(K), such that K'
is in C1+1 . If K' is in Cn+i, then the proposition is proved. Assuming K' is not
in C,+1 , continue the above procedure. Since n is finite there will exists some K'
such that K' is in Cn+1 = Gn. [



Chapter 3

Architecture of the Task-Level
Control System

3.1 Introduction

In this chapter we will describe the computational architecture of the task-level control
system, which has been implemented in simulation and on a robot hand/arm system.
The computational architecture reflects the recursive task organization described in
the previous chapter. Again, control of the robot is decomposed into a set of discrete
tasks, in which each task represents, essentially, a complete control loop. The control
loop has its own model, that is the context; a control law, that is the associated action;
and a set point, which is the goal, as shown in figure 3-1. Since the task-level control
system is composed of multiple tasks - each operating within a specific context -
the entire control system may be considered a collection of unique controllers, which
are turned on and off as necessary to achieve specific objectives. In the following
sections we will describe the components of the task-level control architecture, and
provide examples to illustrate their operation.

TASK

ACTION
CONTEXT GOAL

ENVIRONMENT

Figure 3-1. The computational architecture is represented by a collection
of discrete tasks. Each task represents essentially a complete control loop,
where the conter is analogous to the system model, the action to the control
law, and the goalto the set point.

61
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3.2 Structure of the Task

The computational structure of the task is illustrated in figure 3-2, and includes
elements which represent the context, goal, and action. These elements will be
described in more detail in the following sections. The definition also includes the
boolean values on, which allows the activity of the task to be controlled externally;
enabled, which indicates a task should be evaluated; evaluated, indicating that a
task has already been evaluated; and executed, which signifies that the task has
been executed.

typedef struct task {
char *name; /* task name */
char *description; /* task description */
BOOLEAN on; /* on */
BOOLEAN enabled; /* enabled */
BOOLEAN evaluated; /* evaluated */
BOOLEAN executed; /* executed */
CONTEXT *context; /* context */
GOAL *goal; /* goal */
ACTION *action; /* action */
ITASK;

Figure 3-2. The structure of the task includes elements which represent
the context, goal, and action

At each time step, all the tasks in the task-level control system are examined. If
a task is both on and enabled, the task is evaluated. Evaluation of a task means
that the knowledge space, or the current state estimate, appropriate for that task
is constructed. If this knowledge space satisfies the conditions for the context and
not those of the goal then the task is executed, which simply means that the action
associated with the task is initiated. If the action associated with the executing task
is a task sequence, then every task in that sequence is enabled; and if the action is a
trajectory, then that trajectory is sent to the robot servo controller.

We can consider two extremes for the practical construction of the knowledge
space. In the first case, illustrated in figure 3-3, we could consider a single model-
ing function, which produces a unique representation common to every task in the
hierarchy. The advantage of this approach is the inherent simplicity of a single repre-
sentation, as well as the ability to decouple the modeling from the control algorithms.
However, the disadvantage is the every task would use the same representation, in-
dependent of its context or purpose. The result is that the model may be overly
general in order to accomodate every possible task, thus producing more complex
recognition and planning algorithms and limiting the possibility of real-time control.
At the other extreme, we could employ a separate modeling function for every task,
as shown in figure 3-4. The advantage would be that every task could use a different
representation of the environment, as well as separate recognition algorithms tailored
for its particular purpose. Furthermore only enabled tasks would execute their re-
spective modeling functions, thus eliminating the computatign of inappropriate, and
potentially expensive, algorithms. The disadvantage, is that similar tasks would pro-
duce similar information, thus resulting in redundant and wasteful computation. The
solution adopted in this thesis is a hybrid approach, in that individual tasks construct
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their own unique knowledge space, that is each task employs a unique representation
of the environment that is built separately for that particular task. However, common
algorithms associate with multiple tasks are extract and organized into a dependent
hierarchy, which we will describe in detail in the following sections.

1
DELAY

bi
am f

DELAY

ai

Figure 3-3. The practical construction of the knowledge space could be
achieve with a single modeling function. The advantage is the inherent
simplicity of a single representation, as well as the ability to decouple the
modeling from the control algorithms. However, the disadvantage is that
every task must employ the same representation independent of its con-
text or purpose. In addition, the overly general model may increase the
complexity of the recogniton and planning algorithms, thus limiting the
possibility of real-time control.

aF I

*4 b,

Figure 3-4. Separate recognition algorithms could be employed for ev-
ery task in the hierarchy. The advantage is that every task could employ
unique environmental representations and modeling algorithms tailored for
its particular purpose. However, the disadvantage is that similar tasks
may produce similar information, thus resulting in redundant and wasteful
computation.

CH APTER 3.
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3.3 Evaluating the knowledge space

Each task has an associated context, whose structure is given in figure 3-5. The con-
text contains a list of perception units which represent common algorithms shared
among various tasks. The structure and the organization of the perceptual units are
given in the next section. The context also contains a unique function which uses the
data generated from the perception algorithms to construct the current knowledge.
If this current knowledge is within the context, the function sets the boolean element
in, indicating that the perceived state of the environment satisfies the conditions of
the context. In addition, the structure contains the integer region representing the
particular partition within the context in which the perceived knowledge space re-
sides. The goal, as stated before, is defined in the same way as the context; thus the
structure, as shown in figure 3-6, contains many of the same elements as the context.
However, the knowledge and region elements are not included in the structure, since
in definition of the task-level control system simply satisfying the conditions of the
goal are all that is required. The knowledge space is represented by the structure
shown in figure 3-7. It contains an element indicating a generic type and a list of
parameters which describe the specific knowledge; that is, these parameters essen-
tially encode geometry of possible positions of objects in the environment. In our
implementation, the generic type is given by an integer whose increasing value indi-
cates either a refinement of knowledge of the environmental states or an increase in
constraint between the robot and the environment. This value thus corresponds to
the sequence contexts used in the definition of the tasks.

typedef struct context
char *name; /* context name */
int n percept; /* number of perception functions */
char *rpercept str; /* perception list string */
PERCEPTION **perceptT /* perception list */
char -*unc str; /* function string */int (* funcTo; /* function */
BOOLEAN active; /* context active */
int region; /* artition */
KNOWLEDGE *knowledge; /* knowledge space */
ICONTEXT;

Figure 3-5. The computational structure of the context contains elements
function used to construct the knowledge space, as well as a list of common
algorithms share by various other tasks.

typedef struct goal {
char *name; /* goal name */int n-percept; /* number of perception functions */char **percept str; /* perception list string */PERCEPTION **perceptT /* perception list */char unc str; /* function string */int (* funcT(); /* function */
BOOLEAN active; /* goal active */
KNOWLEDGE *knowledge; /* knowledge space */

IGOAL;

Figure 3-6. The goal is given by a structure similar to the context.
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typedef struct parameter
int id;
char *name;
int n floats;
double '*f val;
int n inits;
int wi val;
int n bools;
int Tb val;
PARAMETER; -

typedef struct knowledge
int type;
int n parameters;
PARAMETER **parameter;
KNOWLEDGE;

/ *
/*
1*
/*
1*
1*
/*
/*

numerical identifier */
name of parameter */
number of floats */
floats */
number of integers */
integers */
number of booleans */
booleans */

/* type */
/* number of parameters
/* parameter list */

Figure 3-7. The knowledge space structure contains a integer type, whose
increasing value indicates an increase in knowledge of the states or an in-
creasing restriction of those states. The structure also contains a list of
parameters which explicitly describes the partial environmental represen-
tation.

3.4 Perceptual units

In practice the construction of the current knowledge may require a number of levels
of processing, as shown in figure 3-8. This includes, at the lowest-level, the physical
sensors; at intermediate levels, data processing, and feature abstraction algorithms;
and at higher-levels, the interpretation, and the current knowledge. The interpreta-
tion, that is the state estimate based only on the current sensor values, is combined
with the forward projection of the previous knowledge space to yield the current
knowledge. In other words, the estimate of the system states is based on both the
sensor data and the previous estimate projected forward through the robot action.
This is analogous to the Kalman filter, in which state estimate is based on both
the measurement data and previous estimate projected forward through the system
model.

*/
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Knowledge

Interpretation

Feature Abstraction

Low-Level Processing

Sensing Hardware

F orward Projection -

Figure 3-8. In practice, the estimate of the system state may require
a number of levels of processing, including sensor data acquisition, low-
level processing, feature abstraction, feature interpretation, and knowledge
construction.

Suppose, for example, the task is to push an object which lies on a table, and
suppose this task is only executes when the robot hand is actually on the surface. Thus
the context for this task may be defined as the set of all positions such that the robot
hand lies in the plane defining table. To actually determine the position of the hand,
however, the robot may require a number of physical sensors, such as a contact force,
contact area, tactile, proximity, and joint position sensors. The data generated from
these sensors may require a some initial processing to reduce noise and other spurious
readings. After this, feature abstraction algorithms may be necessary to identify
particular aspects of the processed data. For example, the identification of local
curvature using tactile array, contact force and contact area sensors, may be necessary
to determine whether an acquired contact actually represents the flat surface of the
table or the curved surface of some object which lies on it. The sensory data and
abstracted features are then combined to construct the current interpretation, that is
an environmental model based only on the current sensory information. The current
interpretation, in this example, is simply an estimate of the position of the hand
relative to the surface of the table. Finally, this interpretation is combined with
the forward projection of the previous knowledge to produce the current knowledge.
These processing steps are illustrated in figure 3-9.
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Knowledge

Interpretation

Feature Abstraction

Low-Level Processing

Sensing Hardware

Forward Projection

EZ~

Projected
Hand
Position

Figure 3-9. The task is to push an object on the table, and the context
for this task is the set of all hand positions which actually lie in the plane
of the table. To determine the position of the hand relative to the surface,
the robot requires a number of physical sensors, as well as low-level pro-
cessing and feature abstraction algorithms. The position estimated from
the current sensor data is combined with the previous position to yield the
best current estimate of the hand position.

The sequence of processing steps outlined above may be generalized as a hierar-
chy of computational elements. These computation elements - called perceptual
units - include, at the lowest-level, the sensing hardware; at intermediate levels,
data processing, and feature abstraction algorithms; and at the highest-level, fea-
ture interpretation, and the knowledge space, as shown in figure 3-10. Although the
perceptual units process different data at different levels, they are define as compu-
tationally identical. Figure 3-11 outlines the structure of a perceptual unit.

Hand
Position "d
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Curvature
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Filter Filter
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Knowledge

Interpretation

Feature Abstraction

Low-Level Processing]

Sensing Hardware

Forward Projection

Unft Unit Unit
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Figure 3-10. The construction of the system state is generalized as a hier-
archical network of computational elements, or perceptual units, which
include, at the lowest-level, the physical sensors; at intermediate levels,
data processing, and feature abstraction algorithms; and at the highest-
level, feature interpretation, and the knowledge space.

typedef struct perception
struct perception *p;
char *name;
int id;
int enabled;
int active;
int changed
int executed;
int n depend;
char *wdepend name;
struct perception **dependT
char *func name;
int (* funcT();
int n parameters;
PARAMETER *rparameter;
KNOWLEDGE *knowledge;

Figure 3-11. Structure of the perceptual unit.

} PERCEPTION;
/* pointer */
/* name */
/* numerical idenifier */
/* enabled */
/* active */
/* changed */
/* executed */
/* number of dependencies */
/* dependency list names */
/* dependency list */
/* function name */
/* perceptual function */
/* number of parameters */
/* parameter values */
/* knowledge space */

When a perceptual unit is enabled, it implies that its output should be reeval-
uated on the next cycle through the control algorithm. The output of a perceptual
unit, however, may depend on the output of a number of other perceptual units. For
example, a perceptual unit which computes the radius of curvature of an acquired
contact may depend on the output of a tactile array, contact force, and contact area
sensor, as shown in figure 3-12. Therefore each perceptual unit contains a list of
dependencies, that is a list of other perceptual units on whikh its computation de-
pends. Thus when a perceptual unit is enabled, it sends a message to every perceptual
unit in the list of dependencies and enables them. Each perceptual unit in the list,
in turn, sends a message to the units in their lists enabling them, and so on. This
continues until the entire dependent structure is enabled, as shown in figure 3-13.

Perceptual
units

2
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The reason for this approach, is that specialized sensors and processing algorithms
should only be executed when the relevant tasks require them.

Local
Curvature

Low-pass*Low-ps
Filter Filter

Contact TactileContact
Sensors Sensors Sensors

Figure 3-12. A perceptual unit which computes the radius of curvature of
a revolute object which pressed against the robot surface depends on three
other perceptual units which compute the output of a tactile array, contact
force, and contact area sensor.

Knowledge

Interpretation

Feature Abstraction

Low-Level Processing

Physical Sensors

Forward Projection

Figure 3-13. When a perceptual unit is enabled, it sends a message each
perceptual unit in its list of dependencies, enabling them. This continues
until the entire dependent structure is enabled.

The lowest-level units in the perceptual hierarchy are the physical sensors (and
the forward projection of the previous knowledge which we will treat as a physical
sensor). When the perceptual units are enabled they automatically recompute their
values. In the case of the physical sensors, the raw data from the A/D converters is
read into the system. If the sensor values have changed since the last time they were
read, the boolean flag changed is set. Proceeding up the hierarchy, each perceptual
unit recomputes its value only if there is a perceived change among the output of the
perceptual units in its list of dependencies, as shown in figure 3-14. Hence, if there
is no change, the unit will not execute, thus saving valuable computation resources.
However, if a perceptual unit does recompute its output, the flag executed is set,

I
L ---------

F
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thus ensuring the unit will only be computed once.during a time step. Given this
structure, we see that the perception of the environment, and thus the behavior of the
robot, is driven only by changes in the sensory data or the abstracted environmental
features. The detection of change is thus critical in the selection of action for the
robot. We should note, that consistent with this idea is some recent research which
focuses on the identification of change or significant events in the incoming sensory
data stream (McCarragher 1990, Eberman 1993).

Knowledge

I Interpretation

Feature Abstraction

Low-Level Processing

Physical Sensors

Forward Projection

Figure 3-14. A perceptual unit is recomputed only if there is a change
among its list of dependencies. Therefore, perception of the environment,
and hence the behavior of the robot, is driven only by changes in the sensory
data or the abstracted environmental features.

The output of the perceptual unit is stored in the knowledge element. At lower
levels this represents simply the sensory values or abstracted features, and at higher
levels this is the current interpretation and knowledge space. Based on the data from
the list of dependencies, the function in the perceptual unit actually determines the
output. The perceptual unit also contains a list of parameters which represent easily
accessible values used in the computation of the output. For example, such values
may include threshold and polynomial coefficients of a low pass filter, or tolerances
and geometric variance in higher level units.

The decomposition of the state estimate into a hierarchical structure of percep-
tual elements has a number of advantages. First, common modeling and feature
abstraction algorithms are shared among higher level units. Second, the dependent
organization recomputes only when necessary, thus conservipg valuable computa-
tional resources. Third, new algorithms and sensing hardware can be added to the
system without interfering with the other units. Fourth, thetsystem facilitates rapid
development, program modification, and debugging. Finally, the structure provides
a complete representation of the environment, from the lowest level sensor values, to
abstracted feature, and explicit environmental representation.
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3.5 Definition of the Action

The action is defined as either a sequence of tasks or a robot trajectory, as repre-
sented by the computational structure given in figure 3-15. The structure includes an
initialization function which is executed when the action is first activated. This
function calculates the way-points of the trajectory based on the information stored
in the knowledge structure of the context. In other words, the particular motion
generated is a function of the particular model of the environment. Since the action
is based on a recognition of a particular state of the environment, the construction of
the forward projection is most conveniently computed within structure of the action.
Therefore the structure contains the function, project, which computes the forward
projection. Finally, the structure also included, the list of tasks in the task sequence,
or the points of the trajectory, as given in figure 3-16.

typedef struct
char
int
int
char
int
int
char
struct task
int
TRAJECTORY
char
} t
IACTION;

action {
*name;
id;
type;

*init str;
(* initT();
n tasks;
*task str;
**task-,
n traj;
*TtraV;
*Prol str;

(* projT);

1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*

action name */
numerical identification */
action type either: TASK SEQ or TRAJ
initialization function string */
initialization function */
number of tasks in sequence */
names of tasks in task sequence */
tasks in task sequence */
number of trajectories */
trajectory */
projection function string */
projection function */

Figure 3-15. The action associated with the task is
of tasks or a robot trajectory.

typedef struct traj point
int n points;
double itemplate;
int *type;int direction;
double speed;
double *point;
double *rate;
KNOWLEDGE *project;

} TRAJPOINT;

typedef struct trajectory
int npoints;
int new;int current;
TRAJ POINT **start;
KNOWLEDGE *project;
TRAJECTORY;

given by a sequence

/ *
/*
/*
/*
/*
/*
1*
/*

/*
1*
/*
1*
/*

number of indices */
tra jectory point */
(relative or absolute) */
for revolute joints (long or shc
speed (deg/s) */
absolute trajectory point */
rate */
forward projection */

number of trajectory points */
new trajectory point */
current point *7
starting point */
forward projection */

Figure 3-16. The definition of the robot trajectory includes elements for
a set template points and forward project. Both of these can be used for
predetermine stereotypical motion.



Chapter 4

Task-level Control System Design
and Analysis

4.1 Introduction

The design of the task-level control system involves the decomposition of a task into
a collection of discrete subtasks. This decomposition continues until an individual
task may be achieved with a single robot motion. Since a task is comprised of a
context, goal, and action, the design of the task-level control system thus involves
the determination of discrete contexts in which the robot operates and associated
actions, either sequences of tasks or trajectories, which achieve the specified goals.
The analysis of the task-level control system employs geometric and kinematic models
to verify that the actions, once defined, achieve the goals within the given contexts.
Thus, the purpose of this chapter is to construct a set of practical contexts and goals,
and then derive actions, which through geometric and kinematic analysis, can be
shown to achieve the goals within the specified contexts.

The construction of the context depends on a number of factors. First, there is
the physical environment in which the robot operates. This includes both the objects
which populate the environment, and the kinematic and obstructive constraints which
restrain these objects. Hence the first issue in the construction of the context is
the identification of the specific environment in which the robot will operate and
the models used to represent it. Since one of the objectives of the task-level control
architecture is to divide robot control into discrete components, there may be multiple,
perhaps disparate, environmental representations. For example, one representation
may be rectangular solids on a planar surface; another, cylinders in free space; and
a third, flexible planar objects in a stack. The particular representation used by
the task-level control system depends on the real-time recognition of that particular
context. Second, the specific task the robot must perform 'affects the definition of
the context. For example, if the task is to grasp a box, the representation may only
require an approximate model of the overall geometry; however, if the task is to open
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the box, the representation must include some model of the articulated lid, as well as
the operation of the mechanism used to secure it. Therefore given an identical object
in an identical situation, the definition of the task will determine how this object is
represented. Third, since the context is defined as a relationship among objects which
is known to the robot, the robot kinematics and sensing hardware also determines how
the context is defined. For example, a parallel planar gripper may only require an
object model which specifies opposing surfaces, while a multi-fingered robot hand
may require a more general representation. Sensing hardware also greatly effects the
way in which the context is defined. For example, contact and tactile sensors provide
only incomplete or partial information about the environment. Thus the context must
incorporate these partial or constrained models in its representation.

The construction of the action depends on the specific context and goal. It would
seem that given a context, it would be possible to construct a robot path to achieve
the goal. However, because of the uncertainty inherent in some contexts and the
dynamic variability in some environments, a single robot motion may not be sufficient.
Exploratory or tentative motion may be required to constrain the context to a point
where a single trajectory will be successful. In this case, the definition of the action
would be a sequence of tasks, each with its own context, goal, and action.

Throughout the design and analysis of the task-level control system we will em-
ploy traditional geometric and kinematic models to describe the contexts, goals, and
actions. Each context implies a particular relationship among objects in the environ-
ment, which we will model as a collection of geometric solids. The uncertainties in
object position and the partial constraints resulting from incomplete sensor informa-
tion will be represented by swept volumes constructed by moving the objects through
a range of possible positions consistent with the sensor information. For example,
suppose we acquired a single contact on a block as shown in figure 4-1. We can con-
struct a region of possible object positions by taking the union of volumes produced
by moving the block through the range of positions consistent with the contact data,
as shown in figure 4-2a. Conversely, by intersecting these volumes, as in figure 4-2b,
we can construct a region in which part of the object is known to lie. Thus the union
represents the minimum volume in which the object is contained and the intersection
maximum volume which contains part of the object. Hence by constructing an action
which avoids this union, collision free motion is assured; while an action which passes
through the intersection guarentees an additional contact. We will use these volumes
to design trajectories which either avoid collisions, produce partial alignments, or
create additional contacts.
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Figure 4-1. A single contact partially constrains the position of a block.

Figure 4-2. By taking the union of volumes consistent with the contact,
we construct a region which, when avoided, guarantees collision free motion.
Conversely by taking intersections, we generate a volume through which an
additional contact is guaranteed.

4.2 Construction of the Context

In this section we will develop contexts which are useful in the task of grasping. Again,
the context is defined as a collection of knowledge spaces, that is particular arrange-
ment of objects in the environment which is known to the robot. The construction
of the context depends on three factors: the physical environment in which the robot
operates; the overall task (in this case grasping), and the manipulator, including both
its kinematics and sensing hardware. Thus in the following sections we will examine
the physical environment, task of grasping, and kinematics and the sensing hardware
of the robot. From this analysis we will propose some practical contexts which will
be used to derive robot action appropriate to the task of grasping.

4.2.1 Physical Environment

It is useful, at some point, to consider the actual physical eijvironment in which the
robot operates. We will broadly classify robot environments as structured, unstruc-
tured, and semi-structured. Although not a strict classification, this decomposition
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provides a general outline for the analysis of physical objects and their associated
constraints.

Structured domains refer to those environments in which the objects and their po-
sitions are orderly and predictable. The concept of a structured environment evolved
from development of robotic systems for automated assembly and computer con-
trolled machinery (Anderson 1973, Boothroyd 1982). Because of the predictable and
uniform nature of a structured environment, persistent and preplanned motion for
obstacle avoidance and grasp acquisition is feasible. Offline programming techniques
based on manual or automatic way-point generation produce acceptable results for
robot motion (Dombre 1984, Gordon 1983, Latombe 1983, Lieberman 1977). The
difficulty with applying similar techniques outside the structured domain is the pos-
sible variation in the character of the objects, as well as the dynamic nature of many
environments. For example, the desire to apply automation to undersea exploration
(DePeiro 1986), extraterrestrial manipulation (Townsend 1988, Schenker 1988), and
hazardous environments (Stansfield 1989, Johnson 1987, Simmons 1991) necessitates
the development of alternative representations.

The unstructured environment removes the assumption of predictable objects and
uniform locations, and replaces it with arbitrary objects in random positions. In or-
der to describe objects in such a domain, it is necessary to develop a representation of
sufficient generality to model objects with arbitrary geometry. Such representations
include arbitrary polyhedral solids (Lozano-Peres 1979), quadric surfaces (Franklin
1981), and piecewise smooth manifolds (Canny 1987, Richards 1985). With such
assumptions, motion planning algorithms which guarantee obstacle avoidance and
stable grasping essentially provide complete solutions for almost every situation the
robot may encounter. The difficulty, however, is that such algorithms become sub-
stantially complex in an effort to accommodate the generality of these assumptions
(Canny 1987, Nguyen 1986). In addition, the algorithms necessary to recognize and
location these objects also become quite complex, as well as computationally ex-
pensive. The issue is even more pronounced when considering real-time control in
dynamic environments. The solution proposed in this thesis is to reexamine the un-
derlying assumptions of the physical domain. Many environments, far from being
arbitrary, display a great deal of order and uniformity. Thus rather than ignoring
the inherent structure in many environments, the objective is to exploit the underly-
ing symmetry to reduce the complexity of recognition and planning, and to ease the
demands on a real-time control system.

The semi-structured environment, introduced in this thesis, describes a physical
domain composed of regular objects whose geometry and position can be approxi-
mated within certain constraints. This representation is derived from observations
made of the physical world, in both man-made and natural domains, in that many
objects have regular geometries and uniform constraints. Examples of such domains
include human environments, such as machine rooms, hospitals, offices, homes, or lab-
oratories, as well as natural environments, such as forests, fields, gardens, etc. Such
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assumptions greatly reduce the complexity of task planning and robot manipulation,
but implies the use of multiple simultaneous representations. The semi-structured
environment also assumes that while most objects remain stationary, there remains
a possibility of some unpredictable displacement resulting from either an unexpected
intrusion into the robot workspace or an unanticipated effect of the robot motion.
In the following sections, we will consider examples of semi-structured environments,
along with the objects which compose them, and the kinematic and obstructive con-
strain which restrain the objects.

Objects in Semi-structured Environments

In order to develop a reasonable representation of the objects in semi-structure en-
vironments, it is necessary to examine the objects which actually exist within them.
In tables 4-1 to 4-3 we enumerate the objects which populate a particular machine
shop, office, and kitchen. An attempt was made to remove as much bias as possible
by listing every object in these domains, not just those which may be easily manipu-
lated. We should note that these enumerations serve only as examples and guidelines
for model selection rather than a complete taxonomy of all physical objects in semi-
structured domains. Based on these limited observations, however, we will propose a
prototype taxonomy which may serve as a basis for a more complete description. We
should also note that this taxonomy is related to object manipulation and grasping,
as opposed to some other perhaps more complex task.

Many aspects become immediate apparent upon examine these lists. First, many
objects cannot be adequately described as single rigid solids. They fall into such
categories a flexible sheets (e.g. paper, cloth, mats), flexible linear objects (e.g. cord,
wire, string, rope, and tubes), articulated objects (e.g scissors, books, staplers), and
large composite structures (e.g. oven, milling machine, stool, file cabinet).

Second, of the those objects which may be considered rigid solids, many - both
man-made and natural objects - display a great deal of symmetry and regular-
ity. The regularity of man-made objects proceeds, by a large degree, from the man-
ufacturing processes used to produce them. Metal products are generally formed
through casting, turning, milling, punching, welding, and forging; while plastics are
constructed through blow molding, thermoforming, compression molding, extrusion,
transfer molding, and injection molding. These techniques produce symmetric objects
as a result of either the direct machining process or the associated molds. Further-
more many of these objects can be approximated by simple geometric solids, such as
cylinders and rectangular solids. Natural objects also display symmetric structures
as a result of the underlying biological and physical processes. These symmetries may
be described as bilateral, radial, crystallographic, and spherical (Weyl 1952).

Third, most objects in human environments are designed (as can be expected) for
human interaction. Objects such as the computer keyboard, telephone, screw driver,
or paint brush, have specific purposes and are intended for specific methods of manip-
ulation. Since in this thesis, we are mainly concerned with object acquisition, these
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specific functions are not immediately relevant. Manipulation of objects consistent
with their intended function is an interesting area of further research and has been
studied to some extent with respect to grinding (Asada 1988).

Finally, while many objects display a significant degree of geometric variance, the
method of manipulation or interaction with these objects remains consistent. Con-
sider, for example, the variation in the geometry of pushbuttons and toggle switches,
yet the same, or nearly the same, motion operates them all. In natural environments,
geometric disparity is exaggerated to an even greater degree, yet many of the same
stereotypical motions produce similar results, such as a grasping cylindrical branches.

By considering not only the physical environment, but also the specific task, we
can reduce the complexity of the object representation by modeling only those features
relevant to the specific operation. Since our focus is on grasping, many characteristics
of the objects may be neglected. For example, object articulations, such as the lid of
a jar, cap of a pen, or joint of a stapler, may be irrelevant to simple task of acquisition
and transportation. In addition, many geometric details, such as knurling, ribs, slots,
indentations, or protrusions, may be superfluous in the analysis of object acquisition.
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Rectangular Objects:

fish tank
atomatic timer
fish tank filter
K4m wipe box
first ,aid kit
Vasetine jar
drawing storage tubes
name plate
postit note tray
trash container
computer monitor
plastic ruler
shelves

ve tacqs
celtng iles

Cylindrical Objects:

door handle
?Tper cupgs food contginer
medicine gontainer
tetracycline container
hgney cotainer
oil ontaineip
aluminum cylinderical stock
so4a cans
white board marker
tyrque sensor
bic yc le pump
mecnanical pencil
pen
plastic cap
?otlourscent lights

Composite Structures

Lar e:
d or
b9ok case
file cab net
desk
computer teble
office chair
window blinds
white board

Medium:
transmission model
robot model
te lehone
track shoes
urpberlla
light covers
tennis racket

Small:
het bolt
reference calculator
hole punch
rolodex
scissors
tape dispenser
stapler

Fixed Objects

recta gular:
shelve mounts
electric socket

cylindricgl:
screws in wall

Articulated:

hindges
noteg9 okstechnical manuals
computer keyboard

Flexible/compliant objects:

Plnar:
2qckettie.
?9sterile folders
poster board
newpaper
plastic file holders?ostit notes

arge pert chart
letters
photographs
ellipse tem to
telefhone directory
shirt
shorts

Linear:
electrical cable
wind9w shade cords

Spheroid:
Amorphous:

large plant
cec us
fish

Anthropomorphic

watering jar
skates

Other Solids
S--------------------------Medium:
Small:
can ooener
coat hanger
shelve brackets
lunch tray

Table 4-2. Objects within an office.
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Rectangular Objects:
------------------------
Picture Frames
Cutting Board
Cereal Box
Glass
Knapkin Holder
Recipe Box

Cylindrical Objects:------------------------
Trash Container
Pen
Soda Bottle
Vase
Tuperware Jar
Wine Bottles
Cooking Spray
Spice Container
Pepper Container
Liquid Spray Cleaner
Lotion Container
Baby Bottles
Thermometer
Light
Lamp
Plates

Composite Structures
------------------------
Large:
Refrigerator
Oven
Potted Plant

Medium:
Sink
Wine Rack
Chair
Toaster Oven
Mixer
Stool
Foundue Set
Cuisinart

Small:
Coffee Maker
Tea Kettle
Dust Buster
Telephone
Spatule
Brush
Burner Covers
Beaters
Hammer
Dish Brush

Articulated:

Sissors
Tongs
Cook Books

Table 4-3. Objects within a kitchen.

Flexible/compliant objects:

Sheets:
Magazine
Papers
Calender
Dish Towels
Rug
Nail File
Diaper
Cloth
Paper Plates
Gloves

Linear:
Electric Cord

Spheroid:
Onions
Tomatoes
Oranges
Apples

Amorphous:
Dryed Spices
Trash
Wreath

Anthropomorphic

Ladle
Spoon
Fork
Knife
Drainer

Other Solids------------------------
Medium:
Antique Broom
Large Bowl

Small:
Refrigerator Magnets
Glove Holders

Based on the enumerations outlined above, we. present a prototype taxonomy
based on object geometry as it relates to grasping and manipulation. The objects,
listed in tables 4-1 to 4-3 are organized roughly into one or more of the categories
outlined below.

CHAPTER 4.

A
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Prototype Taxonomy

Rectangular Many objects (or major components) encountered in the environments can be
approximated as rectangular solids, as illustrated in figure 4-3. Rectilinear objects such as
boxes, erasers, desks, cabinets, doors, etc., acquire their shape from the simple processing of
stock material.

Cylindrical A second major category is the cylindrical object. Examples such as jars, glasses,
cans, tubes, pencils, shown in figure 4-3, obtain their geometry from turning operations on
the objects themselves or the associated molds, as well as from circular extursions, rolling, or
spinning.

Composite Composite structures are defined here as those objects whose major components
consist of simple geometric forms. For example, a hammer may be roughly approximated as
two cylinders joined at right angles, or a telephone receiver as two cylinders and a rectangular
solid, as shown in figure 4-3. Composite structures are further classified into sizes, which are
defined relative to the size of the manipulator. For this classification we will assume the
Salisbury Robot Hand, which is approximately of anthropomorphic scale.

Small A small composite structure refers to one which may be grasped readily by the ma-
nipulator.

Medium A medium sized composite structure refers to an object which can be grasped
or transported through manipulation of its components, as would be the case for a
pushbroom, trash can, fire extinguisher, and chair.

Large A large composite structure is one which cannot be manipulated as a whole by the
robot. Examples of Such structures include a tool cabinet, milling machine, operating
table, and refrigerator.

Articulated Although not as important for simple grasping operations, a number of objects
are composed of major components connected by joints. Examples include scissors, boxes,
computer keyboards, books, etc.

Fixed Fixed objects refer to those which cannot be manipulated in any way. These include
electrical outlets, water pipes, thermostats, and electrical conduits.

Small Small objects refer to those whose small size is beyond the scope of manipulation.
Examples of such objects include mechanical pencil leads, suturing needles, threads, small
washers, etc. Again, we should note that size, as defined here, refers only to the scale of the
object relative to the manipulator, which in this case the Salisbury Robot Hand.

Flexible/compliant A large class of compliant and flexible objects cannot be adequately
described as rigid solids. These are decomposed into planar, linear, spheriodal, and amorphous
flexible/compliant objects. Although some research has been applied to the manipulation of
these objects, further exploration into the handling and interaction with these objects could
prove both interesting and of practical importance.

Planar Examples of planar flexible objects include clothing, plastic sheets, paper, carpet,
etc.

Linear Linear flexible objects refer to such objects as cords, ropes, electrical cables, pneu-
matic tubes, etc.

Spheroidal Spheroidal compliant objects describe soft objects with a discernable geometry,
such as sponges, steel wool, pillows, etc.

Amorphous Amorphous compliant objects refer to those which bave variable or indistinct
geometry. These may include especially natural objects, such as plants, which are not
classified by any other category.

Anthropomorphic Anthropomorphic objects refer specifically those objects which cannot
be classified elsewhere and designed solely for human interaction.

Other The miscellaneous category is included to accommodate all remaining objects.
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Figure 4-3. A majority rigid solid objects in common environments seem
to be composed of geometric primatives - especially cylinders and rectan-
gular solids. If such an approximation is possible, then the complexity of
recognition and planning can be greatly reduced. Part of the motivation
for the task-level control system was to take advantage of such a possibility
by employing numerous simultanteous representations appropriate to the
predomainant object types encounterd in an environment.

Although the above analysis is somewhat cursory, it is clear that many environ-
ments have distinct classes of objects. One objective of the task-level controller is
to take advantage common object types by incorporating multiple simultaneous rep-
resentations, recognition, and planning algorithms within the same system, which
are appropriate for the distinct object classes. Another advantage is that modeling
and control functions for the individual object types can be decoupled and analyzed
separately. As will be seen in the following sections, this decomposition continues,
including not only distinct object types, but also distinct object contraints, robot
tasks, and levels of knowledge about these objects.

However, assuming the environment can be decomposed in the manner described
above, we see a large number of objects can be modeled with simple geometries,
particularly cylinders and rectangular solids. Again, this representation relates less
to the specific object geometry than to the overall shape as it relates to the task of
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grasping. Also, since an objective of this thesis is the decomposition robot control into
an aggregate of discrete contexts, goals, and actions, additional object representations
can be added incrementally without effecting the current implementation. Therefore,
as an initial set of object models, we will consider an approximate cylinder and
rectangular solid, as shown in figure 4-4 and 4-5. In the first case, we assume the
object is bound by two cylinders: a smaller one, of radius r1 and height hl, inscribed
in the object, and a larger, of radius r2 and height h2, circumscribing it. In the
second case, an inscribe rectangular solid has height hl, width wl, and length 11,
while a circumscribed solid has dimensions h2 , W2 , and 12.

Ri
R2

Li

L2

Figure 4-4. Cylindrical approximation

Wv2

W

h, h2

12

Figure 4-5. Rectangular solid approximation

Kinematic Constraints in Semi-structured Environments

Kinematic constraints refer to limitations on object motion imposed by contacting
objects. Examples of such constraints include drawers, doors, knobs, switches, slides,
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and screws. We will enumerate and classify kinematic constraints using the same
techniques employ in manipulator kinematics.

Since the position of one object relative to another may be specified by as a point in
the configuration manifold x E SE(3), given by the Euclidean group of 3-dimensional
space, SE(3) = R' x SO(3); and the instantaneous displacement v by a point in
the tangent space, (x, v) E TxSE(3), then the constraint imposed by two objects in
contact can be represented locally as a k-dimensional linear subspace of the tangent
space TxSE(3). Thus by enumerating subspaces of dimensions k = 1, ... ,5, we span
the space of all possible kinematic "joints" which existing between two objects. A
basis for this space is given by the set of lower order kinematic pairs, shown in figure 4-
6, (see Angeles 1982 for a more complete description). Although joints with different
degrees of freedom, such as the two-dimensional condyloid joint formed by orthogonal
revolute hyperboloids (an example of which is found in the metacarpel-trapezium joint
of the human thumb), the lower order pairs specific all joints for which the objects
contact along a surface. All other joints contact along a point or a line.
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Figure 4-6. The space of all possible joints is spanned by a basis given by
six lower order pairs, which include the revolute, prismatic, screw, cylindri-
cal, spherical, and planar joint.

Examples of all lower order pairs are observed in real semi-structured environ-
ments. The planar pair is perhaps the most common, since any stationary indepen-
dent object in a gravitational field will naturally form a local planar joint with any
supporting surface. Revolute joints including doors, knobs, and valves, and prismatic
joints such as drawers and buttons, are common, as well as screws in any mechanical
setting. Spherical and cylindrical kinematic pairs are perhaps less common, though
clearly cannot be ignored. Thus, the development of a practical set of context must
include the set of kinematic couplings given by lower order pairs.

Obstructive Constraints in Semi-structured Environments

Obstructive constraints refer to workspace limitations imposed by neighboring obsta-
cles which are not in direct contact with the object to be grasped. It is clear, that
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in many situations, other objects place boundaries around the object of interest, re-
stricting both its motion and accessibility. To solve the complete obstacle avoidance
problem, it is necessary to employ an entire geometric model of the environment, and
develop the necessary algorithms to maneuver without collision within this model
(Canny 1986, 1987; Lozano-Perez 1980). However, if it were possible to categorize
obstacles into a number of generic types, as in the case of kinematic couplings, then
the problem of obstacle avoidance could be greatly simplified. In this case, the con-
trol system need only recognize a particular type of obstruction, and generate an
appropriate stereotypical action to avoid the obstacle. In many practical situations,
this generalization seems possible. For example, tables, walls, ceilings, cabinets, and
shelves, all present similar constraints which are common to many situations. There-
fore, as a first assumption, we will model the obstacles around an object may as
a set of orthogonal planes, as shown in figure 4-7. Figure 4-8 also illustrates some
common examples of obstructive constraints. In the first case, a fixed object has no
surrounding obstructions, representing perhaps a pole, pipe, or structural support;
in the second, an object is supported by a single plane, representing a number of
scenarios in which an object lies on a surface; and in the third, five orthogonal planes
place restrictions on an object, representing perhaps a object within a cabinet or on
a shelf.

Figure 4-7. As a first order approximation, we will assume that many
common obstacles can be approximately modeled as a set of orthogonal
planes surrounding the object of interest. Employing this assumption rather
than a more general one, allows the resulting recognition and planning
algorithms to be greatly simplified.

J



CHAPTER 4. TASK-LEVEL CONTROL SYSTEM DESIGN AND ANALYSIS 87

No bounding planes Multiple bounding planes

One bounding planes

Figure 4-8. Examples of common obstacle types include an object in free
space, an object on a plane, and an object bound within a box. These
examples, as well as others, serve as prototypes in the construction of the
context.

4.2.2 Overall Task

In addition to the objects and their constraints, the definition of the context also
depends on the particular task the robot is required to perform. In the example
given at the beginning of this section, the representation of a box was dependent on
the particular task performed with it. If the task was to acquire and transport the
box, the representation only includes the overall geometry; however, if the task was
to open the box, the model must include a representation of the articulated lid. In
general, different tasks will require different models to represent the same objects.
Since, in this thesis, we are mainly concerned with robot grasping, we will employ
gross geometric models to represent the objects in the environment. The next chapter,
however, provides a few examples of tasks and object representations which do not
involve grasping.

4.2.3 Manipulator

Since the context is defined as a particular relationship among objects in the en-
vironment as perceived by the robot, the particular kinematic structure and sensing
hardware of the manipulator will affect the construction of the context. For exam-
ple, suppose the robot was equipped with a tactile array (Dario 1987, Berkemeier
1990), then contact with the side of a cylinder would determine the cylindrical axis
- though the center of mass would be unresolved, as shown in figure 4-9a. Tactile ar-
rays, however, have only been applied to robot control with some difficultly because
of the associated complexity of the wiring and sensors. Contact force sensing, on
the other hand, has been applied successfully in a number of robotic systems (Brock
1985, 1989; Bicchi 1991, 1993). A single contact with a contact force sensor, however,
can only resolv a single point and the surface normal. Thus contact with the side
of a cylinder would constrain the object to lie within a disk centered at the contact
point, as shown in figure 4-9b. If errors were present in the sensor reading, this would
constraint would be somewhat larger as represented in figure 4-9c. Binary contact
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sensors, such as those in figure 5-x and 5-y, have also been employ as an economi-
cal and robust means of extracting useful information from the environment (Brock
1989). A single contact with the cylinder on one of these sensors, would produce
a fairly large region of possible positions, as shown in figure 4-9d. Finally, torque
sensing at the robot joints has been used to infer some contact information on the
links (Eberman 1990). Using only torque information, the estimated position of the
cylinder is shown in figure 4-9e.

We see that the estimate of the environmental states varies as function of the type
of sensors used on the robot. In general, a single sensor reading b E B produces a set
of consistent system states, referred to as an interpretation region I = I(b) in chapter
2. The intersection of multiple interpretation regions define the knowledge spaces K,
which thus forms the basis for the construction of the context.

A
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Figure 4-9. The interpretation of the environment varies depending on
the types of sensors used on the robot. Given a single contact with the
side of a cylinder, the above examples show volumes representing cylinder
positions consistent with the sensor data.

4.2.4 Examples of contexts

Given a representation of the objects in the environment, the overall task, and the
kinematic and sensing hardware of the robot, we are in a position to construct the
contexts, which essentially form the basis of the task-level control system. In order
to analyze the contexts and design appropriate actions, we must use some method to
explicitly represent these geometric entities. Therefore for the purposes of designing
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and analyzing the task-level control system, we will construct computer representa-
tions of the geometric volume which describe the contexts. We begin by constructing
a model of the manipulator, as shown in figures 4-10 through 4-12. The contexts
then represent by geometric volumes which exist in relation to the manipulator. For
example, suppose a cylinder contacts a force sensing fingertip, as in figure 4-9c, then
the resulting set of cylindrical positions can be represented by the disk shown in figure
4-13. Using a fingertip binary contact sensor, a single contact with a rectangular solid
on a planar surface produces the set of consistent positions shown in figure 4-14. The
robot in figure 4-15 contacts a large vertical surface, (e.g. a wall, cabinet, door, etc).
Using only joint torque information, the location of the surface can be limited to the
reqion shown in the figure.
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Figure 4-10. A coarse solid model of the Salisbury Robot Hand and
PUMA arm system are shown. The software used to generate these mod-
els can simulate the trajectory of the manipulator and test for possible
collisions with any other volume

CH APT ER 4.



CHAPTER 4. TASK-LEVEL CONTROL SYSTEM DESIGN AND ANALYSIS 92

Figure 4-11. A detailed model of the Salisbury Robot Hand and PUMA
arm system allows percise calculations of volume intersections, but carries
substantial computational cost.

j
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Figure 4-12. The Whole Arm Manipulator (WAM) robot (Salisbury 1987,
Townsend 1988) is shown with a hypothetical hand based on the prototype
finger (see figures 6-3 through 6-6).

CH APT ER 4.
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Figure 4-13. Contact with a force/torque contact sensor limits the posi-
tion of a cylinder to a set of positions which exist within a disk centered at
the contact point.

I
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Figure 4-14. A single contact with a rectangular solid limits its position
to a disk.

CH APT ER 4.
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Figure 4-15. Using only torque sensing in one joint, the WAM robot can
limit the position of a rectangular solid to the region shown above.

4.3 Construction of the Action

An action is defined as either a task sequence or a trajectory, both of which designed
to achieve the goal within a given context. Both the context and the goal are defined
in the same way, that is both are collections of knowledge spaces. In other words, the
context and the goal represent particular relationships among objects in the environ-
ment which are known to the robot. Given a context and goal, however, there is no
fixed rule for the construction of the action. Even the choice between a task sequence
and a trajectory cannot be easily determined. For example, the relatively complex
task of aligning an L shaped block from an arbitrary initial position can be achieved
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with a single fixed trajectory (Erdmann 1988). However, the seemingly simple task
of grasping an object which is placed in the hand and moving it some fixed distance,
cannot be achieved with a single motion. The transition between the grasping and
transportation, in this case, depends on the knowledge of a secure grasp, which, in
turn, depends on finger force and/or torque information. There are also many tasks
which can be solved with a single trajectory, but may be solved more efficiently with
a task sequence. For example, the problem of acquiring an object on the table, as
outline in the first chapter, could be accomplished with a single motion; that is, the
hand could be moved over the surface of the table in an effort to sweep the object
into the grasp. However, it would be more efficient to use the intermediate sensor
information to grasp the object as soon as it contacts the fingers.

In general, we will use the contexts, as constructed in the previous section, as
guidelines in the design of the actions. The contexts represent geometric entities
formed by sweeping an object through the set of positions consistent with the sensor
data. These swept volumes represent weak constraints on the desired trajectory of the
robot. Given these weak constraints, we will determine a set of equivalent trajectories
to achieve the desired goal.



Chapter 5

Implementation of the Task-Level
Control System

5.1 Introduction

The primary motivation for the task-level control system was to develop a system
which takes full advantage of the available sensing hardware, which guarantees sta-
bility and convergence, and which responses immediately to perceived changes in the
environment. These attributes make the task-level control system particularly attrac-
tive for practical implementation on existing robot systems. In order to demonstrate
these concepts, we will consider some autonomous systems, both in simulation and
physical hardware, which must achieve a specific task given limited sensing.

5.2 Planar Hand/Arm Simulation

As an ex ample which illustrates many of the key concepts of the task-level control
system, we will consider the simple system shown in figure 5-1. This planar hand/arm
system has binary contact sensors on the links, position sensors in the joints, and a
binary sensor in the goal region, as shown in figure. The task for this manipulator is
simply to place the disk into the goal region. Even for this seemingly simple task, a
number of difficulties become evident. First, it is not always possible to determine the
position of the disk exactly, although it is precisely the position of the disk which the
system must control. Second, there numerous ways in which this task can be achieved,
including pushing, grasping, or a combination of both, to move the disk into the goal.
Third, the disk may at any time experience a random displacerhent. This assumption
is included to model unexpected intrusions into the robot workspace or unmodeled
consequences of robot action. Thus the manipulator must'perceive these changes,
and generate immediate action to achieve the goal. Fourth, even though this is a
simple example, it is fairly high dimensional. Six parameters are needed to describe

98
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the state space, four for the position of the manipulator and two for the disk, as
shown in figure 5-2.

Disk Q

0
Binary Contact
Sensors

0

Figure 5-1. A simulated planar hand/arm system has binary contact
sensors on the surface of every link, position sensors at the joints, and a
binary sensor in the goal region.

0
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e 4 03 L3
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Figure 5-2. This planar system requires six parameters to describe its
state, four for the position of the manipulator and two for the disk.

We will assume the position of the disk is initially unknown, expect that it lies
within the workspace of the arm. We will also assume in this example, quasi-static
motion; that is the motion dictated only by frictional and contact forces. Inertial
forces are assumed to be negligible. Therefore the set of system states is given S =
S' x S 2 , where S' = {x, y} is the position of the disk, and S 2 = {1, 02, 03, 04} the
position of the manipulator. The context, in this case, can be described by

C = {K|K = K' x K2
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where K'= {x= (x,y)IjxII < L1+L2 + L3} K2 S 2 , and the goal by

G = {KIK = K' x K2

where K1 = {x = (x, y)Ix E (xm, xm), Y E (ym, yM)} and K 2 
= 0.

In other words, the context is simply the knowledge that the position of the disk
lies within the workspace of the arm, and the goal is the knowledge that the disk is
in the goal region and the arm is at the null position, as represented schematically in
figure 5-3.

/

/

/

/

TASK

CONTEXT ACTION GOAL

C G

Figure 5-3. The context is defined as the disk in the workspace and the
goal as the disk in the goal region and the manipulator in the null position.

There are many possible solutions to this task. For example, the arm could be
extended and simply rotate about the workspace until the disk was pushed into the
goal. This type of solution is consistent with the concept of sensorless manipulation
(Erdmann 1984, Goldberg 1989, Mason 1986); however, it does not take advantage
of the available sensing. Employing the procedure of the previous chapter, we can
construct a sequence of contexts based on the information pro'duced from the available
sensors. We can also construct contexts by constraining the variability of the known
states; that is given partial information it may be possible to incrementally achieve
a given task. Based on these concepts a sequence of contexts are constructed as
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shown in figure 5-4. In the first case, a single contact with the disk decreases the
uncertainty of its position from a plane to a line. A second contact, refines this
knowledge from a line to a point. With the position of the disk known, it is possible
from the manipulator to simply grasp the object and place it in the goal region.
Finally, the position of the disk in the goal implies a single arm motion to the null
position. This sequence of contexts thus form the basis for a task-level controller, as
shown in figure 5-5.

C

C'

G

C2 C3

Figure 5-4. Based on the available sensors, as well as incremental con-
straints representing partial solutions of the task, we can construct a se-
quence of contexts representing increased knowledge or increased restric-
tions on the system states.
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Figure 5-5. The sequence of contexts based on the available sensor infor-
mation form the basis for the construction of a task-level controller.

Given a sequence of contexts, we must now construct an associated set of actions
which move the system from one context to the next. In the first case, a single contact
can be acquired by extending the arm and rotating it through the workspace. Once a
contact is established, the position of the disk is now known to lie along a line adjacent
to the associated link. This context can be partitioned into smaller ones, in which
the disk is known to lie next to a particular link, as shown in figure 5-6. By moving
the hand through line possible disk positions, we guarantee an additional contact,
and thus transition to the subsequent context. The establishment a second contact
constrains the known disk position to a point, and by closing the fingers about this
point we guarantee a grasp. Finally, with the disk in the grasp, the manipulator can
simply move to the goal region, release the object, and move to the null position. Since
every step involved an increase in knowledge of the states or an increase restriction
of the known states, we are guaranteed a stable and convergent system.

CONTEXT
SWITCH To
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Figure 5-6. The context describing contact with the disk can be par-
titioned into separate regions corresponding to contact along a particular
link.

An important point, is that the task-level control system constructs an estimate of
the system states in real-time, and this estimate is described by a region or subset of
state space, rather than a particular point. This estimate is then compared with sets
describing the contexts given above. If the set satisfies the conditions of the context
and not the goal of a particular task, then the action associated with that task is
executed.

This particular system and the task-level control system described above were
simulated, and a time history of a particular run is shown in figure 5-7. The graph
includes a plot of the sensory events, the distance of the disk from the goal, and level
of knowledge of the system states. Notice that as sensory events occur, the level of
knowledge is increased and the appropriate action is executed. The arrows at the top
of the chart represent random displacements of the disk. As soon as a discrepancy
is recognized between the expected position and the position consistent with the
sensor values, the previous information is discarded, and the current interpretation is
retained.
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I 111I J

Time
Figure 5-7. A time-line history of the planar hand/arm simulation. The
plot shows the distance of the disk from the goal, as well as the sensory
events, and the executing tasks. The task correspond to the level of knowl-
edge of the disk location. The arrows at the top of the chart indicate
external random disturbances in the position of disk. Notice the corre-
sponding lose of knowledge when the interpretation of the sensory events
conflict with the previous model.
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5.3 Example with Robot Hand/Arm System

As a second example. we will consider the problem of grasping a cylinder with Salis-
l)bry Robot 11and/PIMA arm system shown in figure 5-S (Salisbury 1982).

Figure 5-8. The Salisbury Robot Hand with three fingers each with three
degrees of freedom is mounted on a six degree of freedom PUMA Robot
Arm (Salisbury 1982).

5.3.1 State Space

The state space in this case is 20 dimensional and is described by = _ x 2  5:3
where

5' = {(l )}

(esrribes the position of the cylinder in Plicker line coordinates. 1,

Sescribe[ the - I si3 )f.th J-5m6 aT

(escribes the position of the arm, and

S3 ={ Fh 1

Ih 1

12

22

hI32

h113

1? 23

h/3 II
the position of the hand.

The first three elements I represent the normalize direction of the line and the last three L. the
moment of the line about the origin of the reference system.

CIf.\kPTE R 5.
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5.3.2 Available Sensors

Since the contexts on which the task-level controller depends are derived directly
from the sensing capability of the physical hardware, we must first consider the sen-
sors available on the robot. The Salisbury Hand/PUMA Arm system has a number
of sensors including joint position, joint torque, fingertip, palm, and phalange sen-
sors. The force/torque based fingertip shown in figure 5-9 can resolve the magnitude,
direction, and location of an applied force (Brock 1985, Bicchi 1992). Binary con-
tact sensors, shown in figure 5-10, were constructed as a less expensive alternative
to the intrinsic force sensors. These sensors, however, provide less specific informa-
tion resulting in a larger interpretation region. Phalange sensors based on PTFE,
a piezoelectric polymer, have recently been constructed (Morrell 1993), figure 5-11.
These sensors provide transient force information, which can be used to determine the
formation and termination of contact. As with the binary contact sensors, however,
the phalange sensors can determine only a region of contact. Finally, a contact sens-
ing palm was constructed, which consists of a curved plate supported by mechanical
springs, figure 5-12. Four infrared emitter/detector pairs measure the displacement of
the corners of the plate and thus deduce the approximate location of contact (Brock
1990).
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Figure 5-9. The force/torque base fingertip sensor cari determine the
magnitude, the location, and the direction of a force applied on the surface
through a point contact (Brock 1989). Small semiconductor strain gauges
mounted on small steel flexure are used to resolve the forces and moments
on the fingertip shell.
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Figure 5-10. A binary contact sensor, based on commercial contact sen-
sors, provides simple contact information which is useful for simple task-
level control systems.

Silicone

PTFE Piezoelectric
Polymer

Figure 5-11. Phalange sensors based on PTFE, a piezoelectric polymer,
provide transient force information, which can be used to determine the
formation and termination of contact.
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Figure 5-12. Optical range sensors detect the position of the palmar
surface supported by simple mechanical springs.

5.3.3 Initial Context and Goal

We assume the cylinder lies within the workspace of the hand and that its position is
initially unknown. Thus the context is described by five dimensions, representing the
unknown values of the position of the cylinder. The goal in this case is a stable grasp;
however there are a number of robot/cylinder configurations which produce equally
acceptable force closure grasps. We could, for example, grasp the cylinder at the
fingertips, between a pairs of opposing phalanges, or around the entire circumference.
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While there are many solutions to this problem, the objective is to derive a sufficient
solution and then develop a set of actions which generate this solution. Therefore we
will specify an enclosure or "wrap" grasp as the objective of this task-level control
system.

In addition to the various arrangements of the manipulator which produce force
closure grasps, there are also multiple configurations resulting from the symmetry
of the task. Since the cylinder possesses radial, linear and reflective symmetry, a
grasp anywhere along its length, about its circumference, or in either direction (palm
up or palm down) are equally acceptable. Workspace boundaries and singularities
will of course place limit the possible configurations, but, at the least, symmetry
considerations provide a greater range of possible solutions. In addition, considering
small motions within the boundaries of the workspace, the symmetry of the task can
reduce the dimensionality of the problem and ease the complexity of control system
design and analysis. Also, in keeping with the idea of a semi-structured environment,
we will generally consider objects with at least some degree of symmetry. Thus the
example presented here can serve as a basis for the analysis of other tasks.

Taken together, multiple configurations and symmetry produce an equivalent set of
acceptable solutions for both the robot and object. For our example, we will consider
an enclosing grasp in which the fingers are wraped around the surface. Given radial,
linear, and reflective symmetry this produces an equivalent set of configurations and
defines the goal region as

G = {p, h, 1},
where h is the hand coordinate frame given by

R1 A[H R H R H RpHORG
H

L0 0 0 1

where RPHORG is the origin of the hand frame,

RpHORG = LP

where RT is the transformation from a line coordinate system given by

T = R XL R L R L RpLORG

0 0 0 1

where
R XL

R AL

RkL I= / 1,11

RZL I

RPLORG X
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and Lp is an arbitrary point on the surface of the cylinder

cos(0)1
Lp = sin(9)I

Z

where 0 is some angle about the z-axis in the line coordinate frame and z is an
arbitrary point along its length. Finally, the axes of the hand coordinate frame are
given by

- cos() 1
RH R H= - sin(O) R H = RkH X R H-

0

Note the positive or negative orientation allowed for RZH due to the reflexive sym-
metry of this system. The goal in the example is a pair of two dimensional spaces,
parameterized by an angle about the cylinder, a position along its length and a
boolean value specifying the orientation of the palm.

5.3.4 Constructing Contexts from Sensor Data

Proceeding, as in the planar case, a single contact on the fingertip sensor, resolves
a single contact point and contact normal, thus providing partial constraint on the
position of the cylinder. Given the contact location and normal direction and the
position of the robot from the joint angle sensors, we can determine a point through
which the axis of the cylinder must pass, as shown in figure 5-13. The the context is
describe by a set of knowledge spaces given by K = K' x K2 x K3 , where K2 = {p},
K 3 = {h}, and K1 = {l}, where

1 =R 1 - Rp C R 0 Ci,

where RR is the 3 x 3 rotation matrix from the contact coordinate frame C to the
reference coordinate frame R, RX is the 3 x 3 antisymmetric matrix which yields the
cross product of the origin of R with respect to C with RR, and C1 is the line defined
with respect to the contact coordiante frame,

Cl = .1 x y 0 -yR xR 0 ,T

where (x, y) is the contact point defined in the contact coordinate frame. Finally, a
second contact uniquely constrains the position of the cylinder, as shown in figure
5-14.
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Figure 5-13. A single contact reduces the dimension of the context from
five to one; that is the direction of the cylinder in the plane has yet to be
defined.

Figure 5-14. Two contacts constrain the position of the cylinder.

5.3.5 Task Sequence

Since the robot is unaware of the position of the cylinder, the only possible action
is to search the space of possible positions. The establishment of a single contact,
however, partially constrains the position of the cylinder. At this point the robot
could probe in a region surrounding the contact in order to acquire a second point
and thus fix the location of the cylinder. Alternatively, the robot could move in
a more efficient manner to not only acquire a second contact, but to also reduce
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the dimensionality of the task and partially achieve the goal. If the hand is moved
into the space of possible positions and aligned with the plane defining the partial
constraint, the robot is guaranteed to simultaneously establish an additional contact
while partially achieving the task. With a second contact achieved, the palm can
move directly to alignment with the cylinder while closing the fingers around the
circumference. The sequence of tasks described above is illustrated in figure 5-15.
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ENVIRONMENT

Figure 5-15. Acquisition of the cylinder is possible with a sequence of
three tasks representing either an increase in knowledge of the object posi-
tion or an increase constraint on the known states.
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Chapter 6

Conclusion

In this thesis, we have developed a task-level control system which can respond im-
mediately to perceived changes in the environment and generate the necessary action
to achieve the goal. Rather than simple error detection and correction, this abil-
ity to react is an intrinsic part of the task-level control structure. The system also
uses explicit models of both the robot and the environment, thus allowing precise
proofs of performance, as well as analytic tools for the design of robot action. Also
fundamental in the definition of the task-level control system is a representation of
the actual information available from the physical sensing hardware. This allows the
design of the task-level control system to be coupled directly to the sensing ability
of the physical robot. In this thesis, we have developed the theoretical basis for the
task-level control system, as well as practical implementations in both simulation and
physical hardware.

6.1 Review

First, we developed a general theory for the task-level control. We partitioned the
control of a robot into a number of discrete tasks representing specific goals to be
achieved for specific arrangements of the environment. Each task included a context,
that is a specific composition of the environment as it is known to the robot, a goal,
that is a desired objective to be achieved within that context, and an action, that is
either a further sequence of tasks, or a robot trajectory. We then developed criteria
for the tasks which guarantee stability and convergence. Second, a computational
architecture was developed based on the theoretical development, in which individual
task modules execute a specific action based on the output of the context module.
The context module is a computation element, associated with a each task, which
constructs the current knowledge of the system states using a hierarchical organization
of perceptual units. These perceptual units form a dependent hierarchy which, at the
lower-levels, include the physical sensors and raw data processing, and, at the higher-
levels, feature abstraction and environmental modeling. Third, we presented tools for
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the analysis and design of the task-level control system and were applied primarily
to the task of robotic grasping. Fourth, we implemented a task-level control system
in both simulation and physical hardware.

6.2 Contributions

* Task-level Control System The main result of this thesis is a task-level
control architecture which can respond immediately to perceived changes in the
environment, as well as maintain persistent and rational sequences of action.
The system also employs explicit models of both the robot and the environ-
ment, thus allowing exact proofs of stability and convergence. Inherent in the
definition of the task-level control system is an exact representation of the lim-
ited information available from actual physical sensing systems. This feature
is critical, since it allows rapid implementation of task-level control systems on
physical hardware.

* Stability and Convergence Criteria Conditions were developed which
guarantee the task-level control system remains stable and converges to the
goal. Traditionally the development of stability criteria and proofs of perfor-
mance were difficult for task-level reactive systems. However, the introducing
explicit models of the partial information gained from the limited sensing hard-
ware, allowed these stability and convergence conditions to be developed. These
conditions were based on the requirement that the resulting robot action either
increase the knowledge of the system states or further restricts the allowed
variance of the known states.

* Design Tools Geometric design tools were introduced, based on the partial
environmental models, to allow robot actions to be constructed which satisfy
the conditions for stability and convergence. These tools now clarify the design
of previous ill-defined problems in the intelligent control of robot manipulation.

e Software Architecture A software architecture was developed for the task-
level control system which allows incorporation of multiple disparate sensors,
feature interpretation algorithms, object representations, and planning proce-
dures.

6.3 Future Research

The development of the task-level control system suggests a number of areas for
further research. These areas were roughly divided into theoretical issues and design
tools, and robotic hardware and sensory systems.
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6.3.1 Theoretical Issues and Design Tools

0 Symmetry It was observed that many objects, as well as the robots which
manipulate them, display a significant degree of geometric symmetry. This
symmetry could be used explicitly to reduce the complexity of path planning and
object recognition. The symmetry of the objects, robots, and their interaction
can be represented by algebraic symmetry groups (Poppelstone 1987). Robot
trajectories can then be generated in the symmetric subspaces, thus reducing
the dimension of the path planning problem. These ideas could be applied
not only to trajectory generation, but also to robot construction and sensor
configurations

* Multiple Objects In this thesis, it was assumed that the context can be
constrained to a single object/robot interaction. However, an area of further
research - and one of practical importance - would be the development of task
sequences which restrict the contexts to the point where a single object/robot
interaction is possible.

9 Multiple Forward Projections In the practical implementation, we assumed
a sensor interpretation inconsistent with the forward projection previous knowl-
edge resulted produced a complete lose of knowledge within a particular context.
However, an area of future research would be the application of multiple forward
projections, as in equation 2.2,

kKi-+ min{Fa,(Ki) n Ii3+},

where Iij'1 was the current sensor interpretation, and FZ(Ki) for k = 1,..., n
was a sequence of forward projections. The increasing size of the forward pro-
jections represent more general - and less likely - consequences of the robot
action.

* Task-level Kalman Filter In the implementation, the forward projection of
the previous knowledge space was simply intersected with the current sensory
interpretation. This process was analogous to a generalized Kalman filter. How-
ever, it may be possible to apply the analogy further by actually a performing
a weighted intersection of the forward projection and interpretation based on
the statistics of the measured state.

* Sensor Fault Tolerance In this thesis, we assume the sensor always provide
data accuracy to with some undetermined bounded errdr. However, as in the
case of binary contact sensors, aberrant sensor data is indistinguishable from
random environmental disturbances. Thus the incorporation of probabilistic
models could be applied to resolution of sensor error from environmental dis-
turbance, thus providing essentially sensor fault tolerance.
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* Search strategies Many of the actions performed by the robot involved in-
creasing the knowledge of the systems states. These actions were usually per-
formed by a direct and deterministic motion. However, it may be possible
to apply random search techniques for increasing state knowledge, allow more
rapid statistical convergence than the deterministic method (Erdmann 1990).

6.3.2 Robotic Hardware and Sensory Systems

The task-level control system allowed the robot to respond immediately to perceived
changes in the environment. However, to perceive these changes and react to them,
the robot requires a greater extent of both sensing hardware and manipulation sur-
faces. To explore the possibility of extending the manipulation surfaces, a prototype
robotic fingers were developed which presented compliant surfaces and sensing over
the entire exterior, appendix A.

6.4 Conclusion

This thesis was motivated by three observations. The first was of a robot, which
after having dropped a part accidentally, continued to move, vacously inserting the
phantom object into a fixture. It seems reasonable that the robot should respond
appropriately to any situation - either catastrophic or serendipitous. The second,
was that in many domains, objects have regular and uniform geometries. Thus it was
desired to create a task-level robot control system which exploits these characteristics.
Finally, in agreement with behavior based systems (Brooks 1986), it seems that both
humans and animals employ different strategies in disparate situations. This implies a
granularity of robot contexts and tasks necessary for effective operatation in practical
environments.
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Appendix A'

Prototype Robotic Hardware

In order to accomodate unforeseen'changes in the environment, it was clear the robot
must manipulate objects with other surfaces besides the fingertips. For this reason
a prototype finger was constructed which presented compliant on the entire exterior,
figure A-1. The finger was constructed from thin walled steel, and maintained same
kinematic structure and cable routing scheme as the Salisbury Robot Hand. The cov-
ering was composed of a foam core and latex skin, containing various viscous fluids,
producing a compliant, viscoelastic surface with similar force/displacement charac-
teristics of a human finger, figure A-2. This rheological finger provided a number
of advantages including tendon lubrication, load distribution, comformability and
mechanical interlock around contacting objects, and energy dissipation, as well as
continuous and uniform surfaces. Although the rheological finger provided conve-
nient mechanical surfaces for manipulation, it was not designed for active control or
contact sensing.

A second prototype was constructed which provided both compliant exteriors and
contact sensing, as shown in figures A-3 to A-6. Again the finger maintains the same
kinematic structure, cable routing, and mechanical freedoms as the Salisbury Robot
Hand, though with the addition of compliant surfaces, intrinsic force/torque sensing
(Brock 1985; Bicchi 1989, 1992, Bonivento 1991), and coarse tactile sensing, figure
A-7. Internal electrical cable conduits free the exterior surface for manipulation and
sensing. The goal is the eventual inclusion of the finger as part of a hand, figure A-8,
or a hand/arm system, as in figure 4-12.
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Figure A-1. In order to manipulate objects in unexpected locations, a
prototype finger was constructed which provides a compliant exterior on all
exposed surfaces. The covering was composed of a foam core and latex skin,
which contained a viscous fluid, thus providing a compliant and viscoelastic
interface with the environment.
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Figure A-2. Force/displacement graphs for both the human and rheo-
logical finger demonstrate similar characteristics, where E = Human finger
pad and + = Rheological fingertip.
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Figure A-3. A second prototype was constructed, providing both compli-
ant surfaces and contact sensing. The finger maintains the same kinematic
structure, cable routing, and mechanical freedoms as the Salisbury Robot
Hand, though with the addition of compliant surfaces, intrinsic force/torque
sensing (Brock 1985; Bicchi 1989, 1992; Bonivento 1991), and coarse tactile
sensing.

Figure A-4. Intrinsic force/torque sensing is provided on the distal and
medial phalanges.
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Figure A-5. A prototype finger was constructed which has both sensing
and compliant manipulation surfaces over the entire exterior.
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0

Figure A-6. Internal electrical cable conduits allow sensory signals to be
conducted through the kinematic structure.
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Figure A-7. Capacitive tactile sensing based on small (0.1 in x 0.1 in)
metal flexures reduces hysteresis common in polymer based systems. Also
relatively large vertical displacements from 0.01 in to 0.001 in provide ad-
equate changes in capacitance.

Figure A-8. The goal is the eventual inclusion of this finger as part of a
hand or a hand/arm system.
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