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Abstract

The increasing volume of air traffic in recent years has led to heavier use of airports and airways,
while their capacities have not grown accordingly. This leads to a situation of congestion in
air traffic networks, with departure delays and queues before landing, causing great economic
losses to air carriers and potentially affecting air traffic safety. A way of reducing congestion
is to adopt a Ground Holding policy, i.e., delay some aircraft before departure in order to
avoid airborne delay. This thesis focuses on the static/deterministic Multi Airport Ground
Holding Problem (MAGHP) under the assumption of insufficient capacities at arrival airports.
Different approaches for the solution of the MAGHP are presented: (i) three alternative integer
linear programming models; (ii) a heuristic algorithm based on priorities; (iii) a new algorithm
based on the integration of the heuristic algorithm with one of the integer linear programming
models. A comparison of their performance based on 39 test cases is provided. The integrated
algorithm provides exact solutions in a much shorter time than previous algorithms proposed
in the literature.
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Professor of Civil and Environmental Engineering



Acknowledgments

I would like to thank Professor Amedeo Odoni and Professor Giovanni Andreatta for their
continuous guidance and support, and the C. S. Draper Laboratories for funding my work.

Friends on both sides of the ocean helped me go through the tough moments and shared
the happy ones. A huge grazie goes to all of them, but in particular to Susan, Mina, Abdoul,
Arni, Amy and Bonfy.

Finally, I would like to thank all my family and Barbara, for everything.



Contents

1 Introduction
1.1 Background . . . . . . .. ... e
1.2 The Multi Airport Ground Holding Problem . . . . .. ... ... .........

1.3 Thetestcases. . . . . . . . . o v v v i e e e

2 Integer programming models
2.1 The Vranas, Bertsimas and Odonimodel . . . . .. ... ..............
2.2 The Bertsimas and Stockmodel . . . . .. .. ... ... ... .. ... ......
2.3 The Andreatta, Brunetta and Guastalla Exact model . . . . . . ... .... ...
24 Anexamplewithtwoflights . . . ... ... ... ..................
2.5 Number of variables and constraints . . ... ....................

2.6 Results. . . . . . . . . . .

3.2 The modified heuristic . . . . .. ... ... . ... .. .. . ... . ... ..
3.3 Implementation . . . . . ... ... ... ... ..
3.4 Some examples of priorities . . . .. ... ... ...

3.5 Results. . . . . . o e e e e

4 The integrated algorithm
4.1 Description of the algorithm . . . . . . .. ... ... ... ..... ... .....
4.2 Results. . . .. .. . .. e

12

15
15
17
18
19
21
23

30
30
31
35
36
38



4.3 New test cases based on OAG data

5 Conclusions and further research



Chapter 1

Introduction

1.1 Background

The air traffic network consists of two subsets: sectors and airports. Their capacities are
determined by the maximum number of aircraft that air traffic controllers can safely handle
during a given time period. For airports we can further distinguish between departure capacity
(number of take-offs per unit of time ) and arrival capacity (number of landings per unit of
time).

The increasing volume of air traffic in recent years has led to heavier use of airports and
airways, while their capacities have not grown accordingly. As a result, air traffic congestion is a
critical problem in North America, Western Europe and East Asia. Congestion arises whenever
the capacity of airports or sectors is exceeded. Usually it is caused by a reduction of capacity
due to bad weather and the problem is more severe when this reduction coincides with peak
traffic time.

Possible solutions may be, according to the time frame considered ([7]):

e Long-term: Construction of new airports and/or runways and advancements in air traffic

control.

e Medium-term: Congestion pricing, i.e., pricing strategies leading to a more even distrib-

ution of demand; use of larger aircraft.
e Short-term: Implementation of Traffic Flow Management (TFM) strategies, whose goal
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is to optimize the flow of aircraft in the air traffic network. The two main tools are

ground-holding and redistribution of flows in the airspace.

TFM optimization models may be classified in ([4]):

e Ground Holding Problem (GHP): The objective is to minimize the total cost of delays by
absorbing airborne delays on the ground. Depending on the number of airports considered,
we have the Single Airport Ground Holding Problem (SAGHP) or the Multi Airport
Ground Holding Problem (MAGHP). This thesis will focus on this latter problem, of

which we give a detailed description in Section 1.2.

e The Generalized Tactical TFM Problem (GTFMP): In addition to ground delays, we
consider the possibility of assigning airborne delays to flights, either at the arrival airport

or in a sector (e.g., through speed reduction).

e The Traffic Flow Management Rerouting Problem (TFMRP): A further extension of the
GTFMP, in which the possibility of modifying the flight’s path is also considered.

Different versions of the GHP exist:

Static vs. Dynamic. Static versions allocate slots once before the schedule is actually flown,
while the dynamic versions update the allocation at different st=ges, in accordance to

updated information.

Deterministic vs. Probabilistic. Airports’ capacities are constant in the deterministic ver-

sions and random variables in the probabilistic versions.

Note that the deterministic GHP, focusing on ground delays, implicitly assumes that there
are no restrictions on sector capacities or on departure capacities. When these are considered,
in fact, it is not necessarily true that an optimal solution consists of ground delays only.

Figure 1-1 gives an example in which only airport capacities are considered. Each square
represents a (departure or arrival) time slot; the number inside the square is the airport’s
capacity for that time slot. In the example flight f is scheduled for departure from airport A
at time dy and arrival at airport C' at time 7, while flight f* is scheduled for departure from

airport B at time dy+ and arrival at airport C at time 4. (= ry).
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Figure 1-1: Optimality of ground delays uuder the assumption of unlimited departure capacities
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Denote with ¢® and ¢ the cost, respectively, of an air and ground delay, and assume 1 <
‘é—; < 4 (Z_: ~ 2 is considered a reasonable estimate). The optimal solution to the limited
departure capacities example (top part of the figure) assigns an air delay to one of the flights
(f in the figure). If we were to consider only ground delays, we would assign 4 units of ground
delay (even though there is a departure slot available at A at time dy + 3, the arrival capacity
for C at time 7y + 3 is equal to 0). On the other hand, in case of infinite departure capacities
(bottom part of the figure), the optimal solution assigns 1 unit of ground delay. Since there is
always capacity to accommodate a departure, we can always replace an airborne delay with a
less expensive ground delay.

The assumption of limited capacities only on arrival is not unreasonable. Sectors are seldom
a cause of delay (especially in the US traffic systein). Moreover, safety concerns (the minimum
separation between aircraft is larger for landings than for take-offs) lead to much higher values
for departure capacities than for arrival capacities. In addition, air carriers have been pushing
towards the concept of free flight. Under free flight, airlines are assigned an arrival time slot

for each flight and, after that, they are free to select the time, route and speed for the flight as

long as they arrive at the assigned time.

1.2 The Multi Airport Ground Holding Problem

This thesis discusses the static/deterministic version of the problem, under the assumption of
unlimited departure and sector capacities. The Multi Airport Ground Holding Problem will be
defined as follows:

Given a schedule for a set of flights F, and arrival capacities for a set of airports
A, assign to each flight f an amount of delay 67 so as to minimize the total cost of

the delays in the network.

Table 1.1 presents the notation that will be used. It should be stressed that, since capacity
is expressed per time unit, time is discretized, i.e., time ¢ refers to the t** time interval (similarly
a delay 6 means a delay of § units of time). We explain the variables and parameters in more

detail below.



Table 1.1: Notation

R RN

&

t

.'.'Bft

:Df6

Set of flights;

Generic flight (f € F);

Set of couples of connected flights ((f, f') € F x F);
Set of airports;

Generic airport (a € A);

Set of times;

Generic time (t € T);

Arrival capacity for airport a at time {;

Maximum delay allowed;

Set of feasible delays {0,1,...,6*};

Generic delay (6 € A);

Delay of flight f;

Scheduled arrival period for flight f;

Arrival airport of flight f;

Set of feasible times for flight f (T = {rs,...,75 +6*});
Slack time between flights f and f’' ((f, f') € F¢);
Inherited delay of flight f;

Cost of delaying flight f for a time period,;

Binary decision variables in the VBO and BS models
((f,t):fEF, teTf);

Binary decision variables in the ABGE model
((f,0): fEF, s€A)
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The feature that distinguishes the MAGHP from the SAGHP is the presence of “inherited”
delays (Figure 1-2). For every flight we have a turnaround time, i.e., the minimum amount of
time that the aircraft must spend on the ground hefore performing another flight. Turnaround
time is needed for loading/unloading passengers, cleaning the aircraft, refueling, etc.. With
respect to the time between the scheduled arrival and departure of the aircraft, the complement
of the turnaround time is the slack time. If the delay for the arriving aircraft is less than or equal
to the slack time there is no consequence for the departing flight. When the delay & is greater
than the slack time s/, there is not enough time to complete the turnaround operations before
the scheduled departure time: the departing flight “inherits” from the arriving one a delay 7
equal to the difference 65 — syy.

Figure 1-2: Definition of turnaround time, slack time and inherited delay
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The key elements of a mathematical programming model for the MAGHP are:

e Objective function: We want to minimize the sum of the costs of delays;

e Capacity constraints: A limited number of planes may land at a given airport in any

period of time;

e Assignment constraints: Every flight must land at the destination airport no earlier
than the desired arrival time r¢ and no later than r¢ + §*. Note that a limit is set on the
amount of delay that can be assigned to a flight. This may be motivated, for example, by

equity reasons.

o Coupling constraints: Arrivals of two connected flights f and f’ must be separated by
at least the sum of the turnaround time for flight f plus the traveling time and delay of
flight f'; this is equivalent to the condition 65 > 714, i.e., the delay of flight f' must be

greater than or equal to its inherited delay.

e Integrality constraints: Every flight must be assigned to land at the destination ai. port

in one and only one period of time.

We conclude by noting that if coupling constraints were dropped, the problem could be

decomposed into |A| SAGHP’s. These could be cast as transportation problems; hence the

constraint matrix would be totally unimodular and the integrality constraints would no longer

be needed.

1.3 The test cases

All the algorithms that are presented in this thesis were tested on two sets of instances already
used in the existing literature ([2], [3], [8]). We will refer to cases V1, ..., V7 and BGN1, ...,
BGN32, as V and BGN test cases, respectively. The first set was created ad hoc by P. D. Vranas
for his Ph.D. thesis. The second set was created with POAGG (Pseudo OAG Generator). This

code, developed at Charles Stark Draper Laboratories, generates schedules with characteristics

similar to actual OAG (Official Airline Guide) schedules.
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Table 1.2: Test cases description

Number of itineraries with
Case | 14| IF| | IF| 1]%,1"1|2|3|4|5|26
( legs
V1 2 [1000] 200 | 20.00% || 600 | 200 ] 0 | 0 | 0 | O
V2 2 | 1000 400 | 40.00% || 200 { 400 | 0 | 0 [ 0 | O
V3 2 [ 1000] 600 {60.00% | 100 | 0 [300| 0 | 0| 0O
V4 2 | 1000 | 800 |806.00% | © 0 0| o [20] o
V5 4 2000 400 |20.00% {1200 400 | 0 | 0 | 0 | O
V6 4 |2000| 800 |40.00% |l 500 | 600 {100 O | 0 | O
V7 4 | 2000 | 1200 | 60.00% || 200 | 300 | 100 | 100 | 100 | 0
BGN1 I 2 11004 496 [49.40% || 50 | 431 [ 24 [ 1 | O | 6
BGN2 || 3 | 1172 | 767 |65.44% || 77 | 119 |114| 30 | 29 | 70
BGN3 | 3 | 1181 773 | 65.45% || 77 | 124 | 100 | 47 | 27 | 68
BGN4 || 2 [ 1342 935 [69.67% || 67 | 71 |130| 49 | 40 | 97
BGN5 || 9 | 1403 | 729 |51.96% | 70 | 525 | 52 | 18 | 3 | 10
BGN6 || 9 | 1419 733 |5166% || 76 | 514 | 73 | 20| 2 | 1
BGN7 || 3 | 1593|1043 |65.47% || 120 | 139 | 148 | 62 | 36 | 98
BGN8 || 5 | 1760|1370 | 77.84% || 23 | 67 | 65 | 56 | 57 | 289
BGN9 | 4 | 1854 (1339]72.22% (| 8 | 89 |129| 66 | 46 | 214
BGN10 || 2 | 1909 | 956 [50.08% ( 90 | 784 [ 73| 4 | o | 6
BGN11 | 4 | 1940|1229 (63.35% || 93 | 201 184 | 71 | 32 | 69
BGN12 || 3 | 1945|1134 [58.30% || 66 | 470 [ 199 | 49 | 20 | 11
BGN13 | 3 | 1989|1316 66.16% || 124 | 192 [179| 69 | 42 | 123
BGN14 || 4 | 2366|1507 [63.69% || 98 | 360 |217| 88 | 57 | 65
BGN15 || 9 | 2396|1313 | 54.80% || 130 | 735 | 128 | 52 | 28 | 14
BGN16 || 3 | 2526|1272 |50.36% || 127 | 1023 | 81 | 15| 2 | 10
BGN17 || 3 | 2527|1273 (50.38% || 134 | 1006 | 94 | 11 | 3 | 1¢
BGN18 || 3 | 2530|1276 | 50.43% Il 132 | 1010 90 | 12 | 4 | 10
BGN19 || 3 | 2532 {1278 |50.47% || 126 | 1020| 86 | 12 | 4 | 10
BGN20 || 3 | 2534|1280 |5051% || 128 | 989 [120] 17| o | o
BGN21 || 6 | 2546 | 1539 | 60.45% || 147 | 464 [243| 83 | 31 | 60
BGN22 || 4 | 2672|1418 53.07% || 107 | 915 [199| 20 | 3 | 2
BGN23 || 4 | 2806|1689 [ 60.19% || 95 | 612 {260 90 | 36 | 47
BGN24 | 5 | 2882|2196 | 76.20% (| 44 | 148 {132 | 114 | 60 | 450
BGN25 | 6 | 3034|2277 |75.05% || 109 | 93 | 184 | 95 | 65 | 427
BGN26 || 10 | 3142 | 1722 [ 54.81% || 197 | 902 [ 201 | 70 | 42 | 8
BGN27 | 5 | 3192|2443 [ 76.54% || 63 | 99 |[183 | 122 75 | 484
BGN28 || 5 | 3805|2319 |60.95% || 185 | 700 | 366 | 134 | 55 | 81
BGN29 || 5 | 3823|2794 | 73.08% || 149 | 144 | 276 | 148 | 118 | 406
BGN30 || 6 | 4523|2953 | 65.29% || 227 | 549 | 393 | 173 | 118 | 187
BGN31 | 5 | 4773|2888 | 60.51% || 240 | 921 | 433 {153 | 79 | 90
BGN32 || 10 | 5005 | 2935 | 58.64% || 11 | 1481 | 366 | 142 | 56 | 16
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Table 1.2 gives a summary of the different instances. In the first 5 colurnns the following

data are shown:

e the name given to the instance;

® |A|, the number of airports;

e |F|, the number of flights;

e |F¢|, the number of couples of connected flights;

® ]r%ll%, the percentage of connected flights.

The last 6 columns give a description of the different “itineraries” comyposing the instances,
e.g., an aircraft scheduled to perform a 2-ieg itinerary will perform a first fight, make a con-
nection in an airport and perform a second flight. Itineraries with more than 5 legs are grouped
together (the maximum number of legs is 11).

The value of s;y is equal to 1 unit of time for all couple of connected flights (f, /) € F; in
the V test cases, while in the BGN test cases the value of sy;/ depends on the time between the
scheduled arrival and departure of connected flights (in these cases it is the turnaround time
that is equal to 1 unit of time for all (f, f') € F).

Scme characteristics are common to all instances:

e ¢y = c = $50 for all flights;

e The number of time slots considered for each airport is 96, corresponding to the number

of 15 minute intervals in 24 hours;
e The maximum admissible dalay 6* is equal to 4 unita of time, i.e., one hour;

o Capacity is constant for each airport throughout the day, i.e., for time slots 1, ..., 96.
However, in order to cover the case of delayed flights originally scheduled at the end of

the day, some slots with “infinite” capacity are added after the 96 slot.
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Chapter 2
Integer programming models

In this chapter we present three different integer programming formulations for the solution of

the MAGHP as defined in this thesis.

2.1 The Vranas, Bertsimas and Odoni model

The Vranas, Bertsimas and Odoni (VBO) model was the first one proposed in the literature
([9]) for solving the MAGHP. The decision variable z, is set equal to 1 if flight f is scheduled
to arrive at time ¢. Figure 2-1 illustrates the different definition of the decision variables in the
VBO, BS and ABGE models. For each flight f there are |A| decision variables, one for each
possible delay (0,1,...,6%).

min Y ¢ | ) txp—ry (2.1)
fer teTy '
s.t.
> e < Koy VaeA VteT (2.2)
(f.t):
(ag=a,teTy)
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T zp =1 VfeF (2.3)
teTy

E txp — E txpy <Tp—Tp +84p V(f,f') € F, (2.4)
teTy teTy
zs € {0,1} VfeF vteTy (2.5)
Figure 2-1: Different definition of the decision variables
Xt ? VBO
o I A
> Time T [——
t t+6 t+6 "
A
X5
ABGE » Time
t t+8 t+6*
l P
> Delay
0 )
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The term [ZzeT, txf — Tf] is equal to the amount of delay assigned to flight f (i.e., 8¢);
hence the objective function (2.1) minimizes the total cost of delay in the network. Capacity
constraints (2.2) ensure that the number of flights landing in airport @ at time ¢ does not
exceed the capacity. Each flight must land during its feasible time window T¥; this is achieved
through the assignment constraints (2.3). The network effects are taken into consideration
by the coupling constraints (2.4); the constraint may be rewritten as ZteT,, tapy —rp 2
ZteT, txpe—rr—8gp o 285 —ssp 018 2 My, e, the delay of flight f must be greater

than or equal to its inherited delay. Constraints (2.5) are simply the integrality constraints.

2.2 The Bertsimas and Stock model

The Bertsimas and Stock (BS) has been the most efficient MAGHP model to date ([1]). It
makes use of a different definition of the value of the decision variables: zy, is equal to 1 if and
only if flight f arrives by time ¢ (Figure 2-1).

The new definition leads to the following formulation.

min Y c; | 3 t(zp — 2p-1)) — 75 (2.6)
feEF tGT,

s.t.

Y [zpe—zjp-ny) < Kay Va€A WeT  (27)
(f!t):

(ay=a,teTy)
Tpe ~ Ty(e-1) 2 0 VfeF vteT, (2.8)
Trp+60) =1 VfEF (2.9)
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zp—zpp 20 VY(f, f') e F. V(1) €Ty x Ty,

t’=t—7‘f+'l'f:—3ff' (210)

zsp € {0,1} VfeEF VteTy (2.11)

In order to pinpoint the moment of arrival of flight f, given the new decision variables z;,
we evaluate the quantity [zs — zf@-1)]. This quantity is equal to one only during the time
interval ¢ when flight f arrives, and is used in the objective function (2.6) and in the capacity
constraints (2.7). The assignment constraints (2.8) and (2.9) take the place of constraints (2.3)
in model VBO. Constraints (2.8) guarantee that variables corresponding to time periods after
the arrival time will all be set to 1. In (2.9) the value of the variable corresponding to the
last admissible delay is set to 1, because in every feasible solution flight f must have landed
by this time. We can substitute this value in all other constraints to reduce the total number
of variables by |F| (one variable less for each flight). Constraints (2.10) make use again of
the new definition of the decision variables to prohibit unacceptable combinations of delays for
connected flights. The values of t and ¢ are such that np = bg; if Ty = 0, then it follows
zsy =0, i.e., if flight f has not landed by time ¢, then flight f’ cannot have landed by time #’
because the delay of flight f’ would be less than its inherited delay. Constraints (2.11) are the

integrality constraints.

2.3 The Andreatta, Brunetta and Guastalla Exact model

The Andreatta, Brunetta and Guastalla Exact model (ABGE) is nearly identical to the VBO

model.

18



min Y ¢y Y bz (2.12)
feF  beA

s.t.

S x5 < Kay VacA YteT (2.13)

(/,9):
(fEF.6€A 5=t—r,)

Y ap=1 VfeF (2.14)
bea

§ b—syp

Z:de —z zpg 20 V(f,f’) € F, V&:(6,6—81f1)6A2 (215)
d=0 d=0
255 € {0,1} ViEF, V6cA (2.16)

Constraints (2.13), (2.14), and (2.16) are identical to constraints (2.2), (2.3), and (2.5),
except for the use of delays instead of times in the variable definitions (Figure 2-1). Each
individual constraint (2.4) is replaced by a set of constraints (2.15), one for each value of §
between sy and 6* (for 6 < s;p we have 6 — 8 1+ € A). In the next section, it will be shown

that this choice leads to a stronger formulation.

2.4 An example with two flights

Table 2.1 presents the VBO and ABGE formulations for a simple case with two flights: f; is
scheduled to arrive at airport a; at time 12, and f, is scheduled to arrive at airport ag at time
20. The flights are connected, with slack time s f1f2 equal to one. The capacity is such that
flight fi can arrive with 3 or 4 periods of delay, while flight f, can land with 1, 3 or 4 periods of
delay. The cost for a period of delay is $50 and the maximum admissible delay, 6*, is equal to

19



Table 2.1: Example of formulation

Model ABGE VBO
50211 -+ 10012 + 150Z13+ 600z 12 + 650x,13 + 700,14+
Minimize +4-200x14 + 50z2) + 100222+ +'1759m1’15 + 80021,16 + 100022,20+
+150z93 + 200224 +1050x2 21 + 1100x2 22 + 1150x2 23+
+1200:l:2'24
Subject To
Assign(1) [ zio+zn +x12+ T3 +zZu=1]|T112+ T1 13+ T114 + T1a5 + 2116 = 1
Assign(2) | z20 + z21 + zo2 + T23 + Toa =1 | Ta20 + To21 + T222 + T223 + T224 =1
Cap(1,12) | 16 <0 7112 <0
Cap(1,13) 11 S J xy,13 S 0
Cap(1,14) | 12 <0 T34 <0
Cap(1,15) | z13 < 1 115 <1
Cap(1,16) | 714 < 1 z116 <1
Cap(2,20) | 20 <0 x220 <0
Cap(2,21) [ zo1 £ 1 Tyo1 <1
Cap(2,22) | £22 <0 T222 <0
Cap(2,23) | z23 <1 T223 <1
Cap(2,24) | z24 <1 T224 <1
T+ T11 —T2020
T10 + 211 + T12+ 12z 32 + 137113 + 147114 + 152115+
Coup(1,2) —Zog—x91 20 +16x1 16 — 20x9,20 — 217391 — 22222+
T10 + 1 + Z12 + T13+ —23zg.03 — 24w 04 < -7
—Tg0 — To1 — T2z > 0
Binaries 10, T11, 212,213,714 1,12, T1,13, 21,14, 1,15, T1,16

20, T21,T22,T23,T24

2,20, 2,21, T2,22, £2,23, £2,24

20




4 (as in the V and BGN test cases). It can be seen that the two problems are identical, except
for the number of coupling constraints (1 for the VBO model, 3 for the ABGE model) and the
coefficients in the objective function (a constant value of ) ; ¢y 7y = 850(12+20) = $1600 must
be subtracted from the objective function value of VBQ). The optimal solution of the linear
relaxation of VBO is 71,15 = 1, Ta,21 = %, and mp04 = § (e, 65, =3.65, = 3.1+ 1 .4=2),
with a total cost of $250. The optimal integer solution is 1,15 = 7293 = 1 (i.e., b5, = 6, = 3),
with a total cost of $300. The optimal solution to ABGE is the same, i.e., 713 = x93 = 1, and
is obtained directly from the model relaxation. The solution 13 = i, 29; = %, Toq = 51; does
not, in fact, satisfy the second coupling constraint: —% # 0.

The unique coupling constraint in the VBO model limits the value of the weighted average
of the flights’ decision variables, with weights equal to the corresponding times. The set of
constraints in ABGE deals with several combinations of delay values. Pursuing the analogy
with random variables, we say that VBO places a constraint on the mean, while ABGE places
constraints on several (6* — sss) percentiles. Even though the two formulations are equivalent
in terms of integer feasible solutions, they are not so if fractional values are allowed: the ABGE
formulation is stronger.

As the example shows, it is possible for the VBO model to have a solution to the relaxed
problem with a lower value than that of the integer optimal solution. It will be seen that the
ABGE and BS models have always given the same value for the relaxed and integer problems

for the tested instances.

2.5 Number of variables and constraints

Since the size of the instances exceeded the capabilities of our model generating software, we
implemented a special purpose C code to generate the 3 different formulations and eliminate

redundant constraints, according to the following rules:

Variables. There are exactly |A| variables for each flight in the VBO and ABGE models. As
pointed out in Section 2.2, we can use constraints (2.9) to eliminate one variable for each

flight, leaving us with §* variables per flight.



Capacity constraints. A capacity constraint was considered redundant whenever the number
of variables with positive coefficients was less than or equal to the capacity of the airport.
The number of non redundant capacity constraints is the same for all three models, for
the number of positive coefficient variables is the same in {2.2), (2.7), and (2.13) for every

{a,t). The maximum number of constraints is |A4||T].

Assignment constraints. There are exactly (F| assignment constraints in the VBO and
ABGE models. The number of constraints for model BS ic, according to the formula-
tion given, |F||A|. For each flight, however, two constraints are redundant: when ¢t = ry
we have zy(, 1) equal to zero (fight cannot be assigned to a slot before the scheduled
arrival time) and zy., > 0 is redundant; when ¢ = r; 4 6* we have Ty(r 46ty = 1 (sub-
stitution of constraints (2.9)) and zj(;,45+_1) < 1 is redundant. Therefore the number of

non redundant constraints for model BS is exactly |F|(]A| — 2).

Coupling constraints. The number of non redundant coupling constraints is equal to §*|F;| —
_Y_:( f.f)eF. Sf' for the ABGE and BS models, as we will now prove. First, we will
show that the number of constraints is the same. Constraints (2.10) are defined over
the set {(t,t') € Ty x Tp: ¥ =t —rp+rp — 35y }; since § = t — ry,this is equivalent
to {(6,6')€A?:¢ =6—3s5p} = {6:(6,6 —3sp) € A?}, i.e., the set over which con-
straints (2.15) are defined. The constraint corresponding to § = §* is redundant in both
models: in the ABGE model because the first sum in the constraint is over all values of
6 and therefore equal to one (constraint (2.14)), while in model BS because . +60) =1
(substitution of constraints (2.9)). Therefore for each couple of connected flights we have
6* - 35 constraints, for a total of Z(f,f')ch(‘S* —syp) = 8*|Fe| — 2_(f.f)eF, 8fs (this
is in O(6"F¢)). This analysis shows also that coupl- of flights for which sy > 6* should
not be included in the |F¢| set even if performed by the same aircraft, because they don't
imply any constraint. The number of coupling constraints for medel VBO is exactly equal

to | Fel.

Table 2.2 summarizes this information. Since the number of capacity constraints is the same
for the three models and the number of coupling constraints in ABGE and BS is the same (this

number being greater than or equal to |F;|), the models may be ranked in increasing order

22



Table 2.2: Number of variables and constraints

. Constraints
Model | Variables Capacity | Assignment | Coupling
ABGE | [|Fl|A| | O(]A||T]) |F| O(6"| Fe|)
BS §*|F| | O(JANTI) [ |FI(6* —1) | O(6*|Fel)
VBO | |F||A] | O(AlIT]) |F] | Fel

Note: §* = |A| - 1;

of the total number of constraints as follows: VBO, ABGE, BS.This ranking is confirmed in
table 2.3, which gives information about the constraint matrix given as input to Cplex 3.0©,
including the number of constraints (rows), variables (columns) and nonzero elements for each

formulation.

2.6 Results

All experiments were performed on a SUN Sparc 20 with 120 Mb of RAM. The integer pro-
gramming solver was Cplex 3.0©. We set time limits of one hour for the solution of the relaxed
formulation and one hour for the branch & bound algorithm, together with a limit of 5000
nodes in the tree for the latter.

Tables 2.4, 2.5 and 2.6 report the results obtained. With the exception of cases V1 and V2,
the VBO model was not able to reach an optimal solution. In such cases the last column of
Table 2.4 reports the best, if any, integer solution found. For the same reason, in Table 2.7,
which compares the running times of the different algorithms, VBO times are reported only for
the solution of the relaxed problem. In the same table, the total solution time includes the time
to generate the problem (input of data and elimination of redundant constraints) using the C
code.

Examining the four tables, we can draw the following conclusions:

e VBO was the fastest model to solve the relaxed problem (with the exception of case V3),
while BS was the slowest. This was to be expected since the complexity of the simplex
algorithm depends on the number of constraints, of which VBO has the fewest while BS

has the most.
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Table 2.3: Cplex problem matrices: number of rows, columns and nonzeroes

Case Constraints Variables Nonzeroes

ABGE| BS |VBO | ABGE| BS VBO | ABGE | BS VBO

V1 1697 3697 | 1297 5000 4000 | 5000 12760 | 14810 | 11760
V2 2317 4317 | 1517 || 5000 4000 | 5000 16000 | 16400 | 14000
V3 2907 | 4907 | 1707 || 5000 | 4000 | 5000 | 18970 | 17550 | 15970
V4 3514 | 5514 | 1914 || 500 | 4000 | 5000 || 22000 | 18800 | 18000
V5 3421 7421 | 2621 || 10000 | 8000 | 10000 {| 26000 | 30400 | 24000
V6 4629 8629 [ 3029 || 10000 | 8000 { 10000 || 32000 | 32800 | 28000
A4 5831 | 9831 | 3431 || 10000 | 8000 | 10000 J 38000 | 35200 | 32000
BGN1 2141 4149 | 1626 ]| 5020 4016 | 5020 || 12789 [ 12395 | 12694
BGN2 2696 5040 | 2140 5860 4688 | 5860 16826 | 16652 | 17881
BGN3 2691 5053 | 2150 5905 4724 | 5905 16801 | 16641 | 17961
BGN4 3233 | 5917 | 2420 || 6710 | 5368 | 6710 || 20494 | 19620 | 21104
BGN5 3283 | 6089 | 2623 || 7015 | 5612 | 7015 || 17837 | 17402 | 18182
BGN6 3395 | 6233 | 2659 || 7095 | 5676 | 7095 || 18352 | 17718 | 18337
BGN7 3760 6946 | 2839 7965 6372 | 7965 || 23656 | 22888 | 24 266
BGN8 4189 | 7709 | 3467 || 8800 | 7040 | 8800 }i 26998 | 27136 | 30238
BGN9 4448 8156 | 3459 9270 7416 | 9270 || 28481 | 27904 | 30231
BGN10 || 3989 7807 | 2992 9545 7636 | 9545 24550 | 23758 | 24 345
BGN11 4578 8458 | 3430 9700 7760 | 9700 || 28583 | 27606 | 28 988
BGN12 || 4371 | 8261 [ 3273 | 9725 | 7780 | 9725 || 27093 | 26078 | 27273
BGN13 || 4704 | 8682 | 3509 || 9945 | 7956 { 9945 [ 29922 | 28847 { 30527
BGN14 || 5605 | 10337 | 4132 || 11830 | 9464 | 11830 || 35193 | 33709 | 35363
BGN15{| 5554 | 10346 | 4253 || 11980 | 9584 | 11980 || 32205 | 31067 | 32265
BGN16 || 5237 | 10289 | 3985 || 12630 | 10104 | 12630 || 32272 | 31456 | 32372
BGN17 || 5178 | 10232 ] 3997 || 12635 | 10108 | 12635 || 31882 | 31239 | 32342
BGNI18 || 5179 | 102391 4003 || 12650 | 10120 | 12650 || 31886 | 31251 | 32386
BGN19 | 5137 | 10201 | 4000 || 12660 | 10128 | 12660 || 31746 | 31256 | 32451
BGN20 [| 5345 | 10413 ] 4001 || 12670 | 10136 | 12670 || 32810 | 31694 | 32490
BGN21 6105 | 11197 | 4463 || 12730 | 10184 | 12730 || 37314 | 35543 | 36 799
BGN22 || 5690 | 11034 | 4316 || 13360 | 10688 | 13360 || 34873 | 33719 | 35093
BGN23 || 6461 | 12073 | 4754 || 14030 | 11224 | 14030 || 40471 | 38783 | 40381
BGN24 || 7230 | 12994 | 5416 || 14410 | 11528 | 14410 || 46542 | 44662 | 48452
BGN25 || 7336 | 13404 | 5699 || 15170 { 12136 | 15170 || 47427 | 46357 | 50627
BGN26 || 7246 | 13530 | 5469 || 15710 | 12568 | 15710 || 42666 | 41010 | 42391
BGN27 || 7570 | 13954 | 5971 || 15960 | 12768 | 15960 || 49713 | 48938 | 53933
BGN28 || 8775 | 16385 | 6451 || 19025 | 15220 | 19025 || 55484 | 53326 | 55459
BGN29 | 8849 | 16495 | 6945 || 19115 { 15292 | 19115 |{ 58112 | 57178 | 62562
BGN30 || 10747 | 19793 | 7870 (| 22615 | 18092 | 22615 || 68524 | 65634 | 68904
BGN31 || 10965 | 20511 | 7995 || 23865 | 19092 | 23865 || 69745 | 66921 | 69335
BGN32 || 11463 | 21473 | 8419 || 25025 | 20020 | 25025 || 69583 | 65473 | 69038
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e The ABGE model reached an optimal integer solution for the relaxed problem in 24 out
of 39 cases; model BS did so in 23 out of 39 cases. This never happened with VBO.

e In only 5 cases (V1, V2, V4, V5, BGN12) the optimal value of the relaxed problem of
model VBO coincide with the optimal integer value. On the contrary, this was always the
case for models BS and ABGE.

e Model VBO found an integer solution in only 13 cases and reached optimality in only 2.

e The mean number of non integers in the solution and nodes in the branch & bound
search was lower for ABGE (1332 ~ 28.43 and %5- ~ 280.93 respectively) than for BS

-l-ggﬂ ~ 39.21 and 57122 ~ 323.06 respectively).

o With the exception of case V4, ABGE was faster then BS in terms of total times, even
when ABGE performed a brauch & bound search and the BS model did not.

® The “most difficult” case (BGN31) was solved in about 35 minutes with ABGE and in
about 65 minutes with BS. This was the only case that took more than 30 minutes to
solve with ABGE, while this threshold was exceeded for BS in cases BGN29 (about 36
minutes) and BGN30 (about 48 minutes) as well.

e On average, ABGE is about 4 times faster than BS (average of ‘—%359- ~ 26.44%). In 21
out of 39 cases it is more than 4 times faster, and in one case (BGN30) is more than 10

times faster.

Given these results, ABGE was chosen as the model for use in the integrated algorithm that
will be presented in Chapter 4.
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Table 2.4: Solving VBO: Detailed results

Relaxed Problem

Branch & Bound

Non | Optimal . Optimal
Iter. Int. 8alue Time Iter. | Nodes Value
1678 108 { 71000.00 21.36 1828 374 71000
2634 | 261 | 56000.00 92.62 7758 | 1243 56 000
3260 | 523 | 84300.00 [ 1038.35 | 97129 | 5000 —
3499 | 588 | 65000.00 || 2695.80 | 226490 | 5000 —
2992 | 448 | 96300.00 674.62 | 28320 | 5000 —
3644 543 | 89933.33 {{ 1132.79 | 61234 | 5000 —
4987 | 627 | 71600.00 952,00 { 47712 | 5000 —
BGN1 2.71 | 418 | 168 | 12900.00 390.20 | 36043 | 5000 [ 15100*
BGN2 9.66 | 1799 | 474 | 50512.50 562.01 | 42985 | 5000 —
BGN3 4.06 642 213 | 25400.00 482.04 | 34464 | 5000 | 27850*
BGN4 12.46 [ 2122 | 535 | 50575.00 973.98 | 68407 | 5000 —
BGN5 4001 401} 153 10725.00 46870 | 22782 | 5000 | 13800*
BGN6 341 | 420 161 | 10450.00 526.65 | 29225 | 5000 | 12650*
BGN7 11.60 | 1853 ] 664 | 58650.00 || 1008.06 | 59803 | 5000 —
BGN8 14.03 1 1978 | 496 | 62200.00 917.77 | 46092 | 5000 —
BGN9 17.11 | 2387 | 693 | 78950.00 | 1174.42 | 57987 { 5000 —
BGN10 || 11.82|1215| 589 | 41725.00 792.88 1 39731 ( 5000 —
BGN11 98311329 653 | 54750.00 || 1036.36 | 53837 | 5000 —
BGN12 4.78 | 722 | 333 | 22400.00 808.88 [ 37992 | 5000 28900*
BGN13 || 12.01 {1341 | 388 | 44533.33 901.61 | 42878 | 5000 | 52050*
BGN14 || 18.72 1890 | 647 | 63100.00 || 1145.20 | 47782 | 5000 | 74150*
BGN15 || 1887|2174 | 994 | 68178.12 924.82 1 32785 5000 —
BGN16 || 17.21 1397 608 | 50881.25 882.86 | 30871 | 5000 —
BGN17 || 10.57 | 868 | 391 | 24087.50 || 1034.12 | 46265 | 5000 | 33900*
BGN18 || 12.16 | 907 | 420 | 25937.50 953.32 | 37319 | 5000 | 34750*
BGN19 14.85 | 1186 477 | 3151250 || 1034.16 | 42075 | 5000 | 40400*
BGN20 || 15.69 | 1237 | 548 | 38712.50 || 1150.46 | 52632 | 5000 | 50350*
BGN21 || 30.12 | 2816 | 863 | 73200.00 || 1248.44 ] 51922 | 5000 —
BGN22 || 16.79 | 1302 | 622 | 42775.00 |[ 1037.54 | 36350 { 5000 —
BGN23 || 28.87 | 2415 | 861 74650.00 || 1354.42 | 45617 | 5000 —
BGN24 || 71.14 | 6019 | 1019 | 137654.17 || 2666.78 | 86684 { 5000 —
BGN25 || 64.41 | 5418 | 997 | 145762.50 || 2547.28 | 84124 { 5000 -
BGN26 || 278012169 | 915| 78579.17 ([ 1223.56 | 28948 | 5000 —
BGN27 || 114.57 | 6980 | 1107 | 188487.50 || 3600.54 | 76687 | 4762 —
BGN28 || 57.66 | 3569 | 1123 ; 112645.83 | 2173.06 | 62773 | 5000 —
BGN29 || 54.02 [ 3502 | 1067 | 123800.00 {{ 3043.86 | 76841 | 5000 —
BGN30 )| 70.22 | 4283 | 1333 | 136950.00 || 53040.03 | 71086 | 5000 —
BGN31 || 9291479211643 1 171775.00 || 2729.61 | 57905 | 5000 —
BGN32 || 90.70 | 4628 | 1752 | 129775.00 {{ 2169.23 ; 40061 | 5000 —

Total: 26 005
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Table 2.5: Solving BS: Detailed results
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| Relaxed Problem Branch & Bound |
Case u Time Iter. I;I[?tn O\I;;i;neal Time Iter. | Nodes O&Sﬁ;al
V1 || 14.00 [ 3403 0| 71000.00 — — — 71000
V2 28.36 | 4741 0| 56000.00 — — — 56 000
V3 37.73 | 5061 73 | 84700.00 112.85 | 4468 410 84700
V4 62.93 | 6679 43 | 65000.00 16.56 639 43 65000
V5 101.71 | 8687 01{ 96300.00 — — — 96 300
V6 144.28 | 10499 0| 92200.00 — — — 92200
12969 0| 72200.00 — — | = 72200
1593 [ 3243 0] 13200.00 — | — —_ 13200
BGN2 37.82 | 5302 8| 51000.00 0.44 6 1 51000
BGN3 34.68 | 4925 0| 26150.00 — — — 26150
BGN4 70.83 | 7566 18 | 51500.00 30.53 1126 99 51500
BGNS 30.82 | 4771 0] 11250.00 — — — 11250
BGN6 3260 4770 0] 10750.00 — — — 10750
BGN7 97.06 | 8502 92 | 58900.00 36.32 | 1091 96 58900
BGN8 140.49 | 10286 121 62400.00 0.64 2 1 62400
BGN9 173.29 | 11955 67 | 79350.00 211.24 | 5687 242 79350
BGN10 72.90 | 6927 0| 42700.00 — — — 42700
BGN11 144.29 | 10626 71| 54750.00 191.01 | 5022 298 54 750
BGN12 102.78 | 8342 0| 22400.00 -— — — 22400
BGN13 139.81 { 9930 0| 45150.00 — — - 45150
BGN14 235.48 | 13048 28 | 63550.00 14.05 365 16 63550
BGN15 121.13 | 9507 0| 70500.00 — — 70500
BGN16 102.90 | 8536 0| 52150.00 — — — 52150
BGN17 97.55 | 8496 0 25250.00 — — — 25250
BGN18 97.81 | 8442 0| 27000.00 — — — 27000
BGN19 106.23 | 8435 0| 32600.00 — — - 32600
BGN20 111.90 | 8539 0| 39800.00 — — — 39800
BGN21 309.03 | 15816 58 | 74250.00 103.87 | 2467 36 74 250
BGN22 125.64 | 9063 0| 43900.00 — — — 43900
BGN23 287.86 | 14713 0| 75300.00 — — — 75 300
BGN24 453.17 | 19647 | 195 | 138 350.00 691.24 | 11892 508 | 138350
BGN25 486.32 | 20731 | 219 | 146400.00 858.30 | 14039 485 | 146490
BGN26 204.39 | 11983 0] 80950.00 — — — 80950
BGN27 563.64 | 19012 | 207 | 189600.00 || 1023.81 | 11271 570 | 189600
BGN28 625.99 | 21898 0] 113600.00 — — — 113600
BGN29 771.47 | 23542 | 234 | 124000.00 | 1419.96 | 18156 764 | 124000
BGN30 || 1098.24 | 30092 | 152 | 137800.00 || 1801.97 | 19124 632 | 137800
BGN31 || 1164.47 | 31227 52 | 172450.00 || 2663.61 | 25786 908 | 172450
BGN32 610.48 | 20920 0 | 134500.00 — — — 134500

Total: 1529 Total: 5169




Table 2.6: Solving ABGE: detailed results

i Relaxed Problem Branch & Bound

Case Time | Iter. ﬁf:t O"/)Srl::l Time Iter. | Nodes Os;;x;ieal
Vi1 3.51 ] 1619 0| 71000.00 — — — 71000
V2 8.51 { 2358 0| 56000.00 — — — 56 D0
V3 16.47 | 2863 | 129 | 84700.00 135.60 | 7504 428 84 700
V4 26.46 | 3782 74 | 65000.00 157.38 | 7980 392 65000
V5 16.46 | 3375 0| 96300.00 — — — 96 300
V6 36.88 | 4342 0| 92200.00 — — — 92200
44191 261 72200.00 1.74 29 7 72200

BGN1 614 13200.00 — — 13200 |
BGN2 14.65 | 2413 0} 51000.00 -— — -— 51000
BGN3 6.11 942 0| 26150.00 - — — 26 150
BGN4 19.89 | 2585 | 121 | 51500.00 25,93 | 1236 131 51500
BGN5 4.52 534 01 11250.00 — — — 11250
BGN6 4.80 606 0| 10750.00 — —_ — 10750
RGN7 22.59 | 2756 0| 58900.00 — — — 58 900
BGN8 23.80 | 2566 | 18 { 62400.00 0.78 19 2 62400
BGN9 38.31 13664 | 52| 79350.00 90.90 | 3438 186 79350
BGN10 20.73 | 2191 0| 42700.00 — —- — 42700
BGN11 242512426 78| 54750.00 145.46 | 5425 288 54750
BGN12 10.80 | 1311 0] 22400.00 — — — 22400
BGN13 18.12 | 1831 22 | 45150.00 6.39 255 24 45150
BGN14 37.73 1 3332 36 | 63550.00 88.29 | 2793 187 63 550
BGN15 34.06 | 3460 0] 70500.00 — — — 70500
BGN16 27.01 | 2295 0] 52150.00 — — — 52150
BGN17 17.15 | 1451 0| 25250.00 — — — 25250
BGN18 18.36 | 1633 0| 27000.00 — — — 27000
BGN19 18.34 | 1572 0 32600.00 — — — 32600
BGN20 25.42 | 2089 0] 39800.00 — — — 39 800
BGN21 57.87 | 4239 0} 74250.00 — — — 74 250
BGN22 27.12 | 2089 0] 43900.00 — — — 43900
BGN23 57.27 | 3675 16 | 75300.00 2.55 58 7 75300
BGN24 || 117.23 | 7128 0 | 138350.00 — — — 138 350
BGN25 || 117.07 | 6790 | 130 | 146 400.00 602.78 | 15052 428 | 146400
BGN26 52.79 | 3516 0| 80950.00 — — — 80950
BGN27 || 155.23 | 7573 | 82 | 189600.00 || 937.84 | 17085 590 | 189600
BGN28 [ 123.25 | 5882 | 48 | 113600.00 3.18 58 5| 113600
BGN29 || 127.28 { 5902 | 134 | 124000.00 || 1378.76 | 25568 741 | 124000
BGN30 || 237.04 | 8852 0 | 137800.00 — — — 137800
BGN31 || 256.94 | 9114 | 143 | 172450.00 || 1852.06 | 26 243 798 | 172450
BGN32 || 168.36 | 6927 0 | 134500.00 — — — 134 500

Total: 1109 Total: 4214
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Table 2.7: Comparison of times

Solving Relaxation B&B Total”
Case I"\BGE| BS | VBO | ABGE | BS | ABGE | BS BGE
Vi 3511 1400| 380 — — 356 | 14.05 | 25.34%
V2 851 | 2836( 740 — — 858 | 28.42| 30.19%
v3 | 1647| 3773] 1827 13560| 11285| 15214 150.65 | 100.99%
va | 26.46| 6293| 2399| 157.38| 1656{ 183.94| 79.57 | 231.17%
vs | 1646 | 10171] 1340 — — 1658 | 101.85 | 16.28%
ve | 3688 14428| 2162 — — 37.04 | 144.40 | 25.65%
vi | 4123 22172| 2055 | 17a| — 43.13 | 221.86 | 19.44%
BGNL | 320 1592] o7l — = 3.04| 1508 20.28%
BGN2 | 1465 us782| 966| — 044 | 1473 3834 38.42%
BGN3 | 6.11| 3468| 406| — — 6.20| 3474 17.85%
BGN4 | 19.89| 7083 1246| 2593 3053| 4590| 101.46 | 45.24%
BGN5 | 452| 3082 400 — — 460 | 3090 14.80%
BGN6 | 480 3260 341| — _ 489 | 3266| 14.97%
BGN7 | 2259 9706| 1160| — 36.32 | 2268 133.48 | 16.99%
BGN8 | 2380 14049 | 1403| 078 064| 2469| 14124 17.48%
BGN9 | 3831 17329 17.11| 9090 21124 12935 | 384.66 | 33.63%
BGN10| 2073| 7290 11.82| — — 2085 | 73.01| 28.56%
BGN11 | 24.25| 14420| 983| 14546 191.01] 169.85| 335.40 | 50.64%
BGN12 | 1080| 10278 | 478 — — 1094 | 102.90 | 10.63%
BGN13 | 18.12| 13981 | 1201 639| — 2464 | 13094 | 17.61%
BGN14 | 37.73| 235.48| 1872 8820 1405| 12620 24967 | 50.55%
BGN15 | 3406| 121.13| 1887 — 3421 | 121.25 | 28.21%
BGN16 | 27.01| 10290| 1721 — _ 27.15 | 103.02 | 26.35%
BGN17| 17.15| 9755 | 1057 — _ 1729 | o7.60 | 17.70%
BGNi8 | 1836 9781| 1216 — _ 1851 | 9797 | 18.80%
BGN19 | 1834 10623 1485| — — 18.49 | 106.36 | 17.38%
BGN20 | 25.42| 111.90] 1569 — _ 25.58 | 112.01 | 22.84%
BGN21 | 57.87| 300.03| 3012| — 10387 | 5802 | 413.03| 14.05%
BGN22 | 27.12| 12564 | 1679 — — 27.28 | 12580 | 21.69%
BGN23 | 57.27| 287.86| 2887 255| — 60.01 | 288.03 | 20.83%
BGN24 | 117.23 | 453.17| 7114| — | 601.24| 117.42 | 114458 | 10.26%
BGN25 | 117.07 | 486.32 | 64.41| 602.78 | 858.30 | 720.08 | 1344.82 | 53.54%
BGN26 | 5279 | 20439| 2780 — — 5299 | 20457 | 25.90%
BGN27 | 155.23 | 563.64 | 114.57 | 937.84 | 1023.81 | 100332 | 1587.68 | 68.86%
BGN28 | 123.25 | 625.99 | 5766 318 — 126.68 | 626.21 | 20.23%
BGN29 | 127.28 | 771.47 | 54.02 | 1378.76 | 1419.96 | 1506.30 | 2101.67 | 68.73%
BGN30 | 237.04 | 109824 | 70.22| — |1801.97| 237.37 290048 | 8.18%
BGN31 | 256.94 | 1164.47 | 92.91 | 1852.06 | 2663.61 | 2109.28 | 3828.37 | 55.10%
BGN32 | 168.36 | 61048 | 90.70| — — 168.67 | 610.74 | 27.62%

* Including generating time
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Chapter 3

The heuristic

3.1 The basic heuristic

The basic heuristic is a greedy algorithm based on dynamic priorities, of which we present a
fiow chart (Figure 3-1).

Figure 3-1: The basic heuristic: flow chart

Place flights w/o
predecessor in qucues

Move flights
to next queue

I Assign slot I
Successor ? —
No
Yes
I Enqueue l_
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Queues are ordered according to the flight priorities (descending order); every time we place
a flight into a (ueue, its priority 7y is updated. A flight is not placed into a queue until its
preceding flight has been assigned e time slot, so that we are guaranteed to have the correct
value for the inherited delay. As a computational by-product, the number of flights in the
queue is always kept at a minimum (corresponding to the number of itineraries), iinproving the
algorithm'’s running time.

We make two remarks:

e The algorithm does not guarantee feasibility: there is no attempt to limit the amount of

delay assigned to a flight.

o Nothing is specified about how to compute priorities 7 ;. Obviously, a flight’s priority must
depend on its delay, especially considering the previous remark. The definition of delay,
however, is left to the “user”. For example we may consider the delay already suffered, or
the delay we would obtain by moving the flight to next available time slot. Furthermore,
the priority could also be a function of other parameters or vaciables. We will give some

examples of priority rules in Section 3.4.

3.2 The modified heuristic

A simple modification of the previous algorithm aims toward an improvement in terms of
feasibility and of number of delays assigned.

In order to describe the modified heuristic we present a pseudo-code description (Tables 3.1
and 3.2) and a flow chart (Figure 3-2). The difference from the basic heuristic is the introduction
of local optimization through the swap function.

The swap function relies on the assumption of unlimited capacities for departures. As
pointed out in the introduction, this assumption gives us the freedom to reschedule flights
without worrying about the departure capacities. The only restrictions left are those regarding

the connections.
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Table 3.1: Pseudo-code description of the modified heuristic: main program.

FOR EVERY FLIGHT f WITHOUT PREDECESSOR
COMPUTE PRIORITY 7y
PLACE f IN QUEUE(ay,ry)
FOR EVERY TIME ¢
FOR EVERY AIRPORT a
IF QUEUE(a,t) IS NOT EMPTY
ASSIGN FIRST FLIGHT (f) TO SLOT (a,t)
IF THERE IS A SUCCESSOR f’
COMPUTE INKERITED DELAY 1)
IFnpy >00Rt—1p > 6"
IF SWAP(f,t) FINDS f
SWAP SLOTS OF f AND f
IF THERE IS A SUCCESSOR f’
UPDATE INHERITED DELAY 74
COMPUTE PRIORITY 7 g/
PLACE f' IN QUEUE(ay, Tpr+7p1)
ELSE MOVE ALL FLIGHTS TO QUEUE(e, t + 1)
NEXT AIRPORT
NEXT TIME

Table 3.2: Pseudo-code description of the modified heuristic: swap procedure.

PROCEDURE SWAP( f,t)

FOR EACH TIME £:f € T;” AND t<i

FOR EACH FLIGHT f ALREADY ASSIGNED TO (ay,%)

IFtETf

RETURN f (LEAVE PROCEDURE)
NEXT FLIGHT
NEXT TIME
RETURN @ (NOT FOUND)

32



We consider the time window T within which we can freely move the flight:

T = {rf + 0.y + 8y +5,,} NT; (f,f) € Fe
! —
{rr+ng...,rs+86"} (f f)¢F.

This time window (i) is composed of feasible times (NT}), (ii) begins with r; + 7, because
we cannot ignore inherited delays, (iii) ends with ry + sy + 6, because this is the last time
for which we can ignore effects on flight f' (if flight f’ doesn’t exist the window ends at the last
feasible time, i.e., 7y + 6*).

Thus, T;” may be considered a dynamic feasible window. Note that the window depends on
both the previous flight (setting the value of n;) and the successive one (through ;). When
we assign a delay (6, > 0) to a flight, we are also expanding the dynamic feasible window of
its predecessor.

Suppose we are about to assign a flight f to a time slot ¢ and that this will cause either
inherited delay or infeasibility. Then we check for the existence of flight f, previously assigned
toatimet (<t i€ T;?), such that t € T!':’ (i.e., flight f can be assigned to time t without
worrying about its successor). If such a flight exists, we can assign f to time ¢ and f to time t;
we call such an operation swapping.

Swapping has the following effects:

o The sum of the delays assigned to f and f does not change: an increase of the first is

compensated by a decrease of the latter.

o If the swap function has been called because of inherited delay for f’, the successor of f,
then the inherited delay has certainly been reduced (Z < t).

e If the swap function has been called due to feasibility problems and ¢ — r; < 6*, i.e., if
the delay assigned to f is less or equal than the maximum delay aliowed, then feasibility

has been “restored”.
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Figure 3-2: The modified heuristic: Flow chart
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3.3 Implementation

The heuristic requires fast access to data for each flight (that must be updated during the
algorithm) and queue capabilities.

The first requirement calls for a static data structure, e.g., a matrix; the latter calls for a
dynamic data structure, e.g., a linked list.

We implemented the heuristic in C, making use of the following data structures:

e A matrix, of dimension |F|, of structure flight, each with the following type of fields:

~ Data fields, e.g. ay,7y,6¢,7,,7y, etc.

— Index fields, giving the position in the matrix of the preceding flight (f*: (f*,f) €
rc) and the successive flight (f' : (f, f') € F¢). This allows to retrieve the information
on these flights, needed to compute the dynamic time window Tf, in O(1).

— Pointer to structure flight: The flight will always be part of a list (specifically
the queue of flights requesting landing or the list of assigned flights); this field points

to the next element in the list.

o A matrix (doubie dimension: |T'|x|A]) of structure time_slots, each with the following

fields:

— Capacity.
— Number of flights assigned.

— Pointer to structure flight,pointing to the first element in the queue of flights

requesting landing. This queue is ordered according to the priorities.

— Pointer to structure flight,pointing to the first element in the list of flights
assigned to the slot. This list is used during the search for flights available for

swapping.
We conclude this section with a simple asscssment of the heuristic’s complexity:

o Each flight must be assigned once and may be placed in several queues before being

assigned.
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e The queues are maintained as ordered lists. In the worst case (i.e., all flights in the same

aucue), the enqueuing operation is in O(|F).

o There is no need to maintain the list of assigned flights in a specific order. Therefore the

assignment operation is in O(1).
o The enqueuing operation is executed at most |T| - |F| times.

e Since [T} <« |F|, it follows that the complexity of the algorithm is in O(|F|?).

3.4 Some examples of priorities

In this section we give some examples of possible priority rules. All of them were used in testing
the heuristic on the V and BGN instances presented in Section 1.3. In defining the priority

rules, we will use a connection indicator function:

I = 1 3f:(f,f)eF
0 3f':(f,f)€eF.

Priority D : 7|-!’.3 = 26;+1; -
Our primary interest is in the amount of delay assigned; therefore higher delays cor-
respond to higher priorities. When two flights are tied in delays, we give priority to a
flight with a successor over one without (Table 3.6 shows the possible values given by the
priority when §* = 4).

§+1p- 5] 6<%

26+ I by > %'-
If the delay suffered is more than half of the maxirnum feasible delay, we follow the

Priority H : 7] =

same reasoning of the previous rule. For shorter delays, the importance of the delay and
the existence of a connection are inverted: The priority is based on the existence of a
successor; in case of tie, the delay already suffered by the flight is considered. There is
an attempt to get rid of connecting flights as soon as possible, because they are the “dif-

ficult” ones to handle. Once the delay is large, however, maintaining feasibility become
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Table 3.3: Priority table D

L6 0l (ff)EF | (], f)€F]

0 0 1
1 2 3
2 4 5
3 6 7
4 8 9

Table 3.4: Priority table H

Lol (ff)EF|(ff)€EF

0

0
1 1
2 2
3|| 6
1 8

O] T |

as important as avoiding inherited delay. The threshold delay of -‘-52'- is just a matter of

convenience (Table 3.4).

Priority N : 1r’!" = §;+1Ip -

The existence of a connection is considered as important as a unit of delay (Table 3.5).

Priority I : #{ = I;+2-min {6",I;- 65} + 26* - min {6*,6;)} -
This priority considers the amount of delay for the connected flight as well. In fact,
the other priority rules may be considered to be “nearsighted”, because the presence of a
successor does not necessarily imply that there is inherited delay. Priority I uses informa-
tion about inherited delay to choose between flights that have suffered equal delay.(Table
3.6).

It seems reasonable, when considering network effects, to consider how many legs follow the
flight in the itinerary, because the more flights are still to be performed by the aircraft, the
more potential effects a delay has. Previous work ([2]), however, suggests that priority rules
based on the number of legs following the flight in the itinerary do not lead to improvements

over priority rules based on the simple connection indicator function.
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Table 3.5: Priority table N

GTUNEFR]G L EF]
0 0 1
1 1 2
2 2 3
3 3 4
4 4 5

Table 3.6: Priority table I

61
5”f=001é'34
0 C [1]—]—]—]—
1 8 9 |11 | —|—1|—
21 16 |17|19]21]—]—
3| 24 |25|27]20|31| —
4| 32 |33[35)37139]4a1

3.5 Results

The heuristic was tested on the V and BGN cases using the priority rules presented in the
previous section. Priorities D, H and 1 always led to feasible delay assignments, while priority
N gave infeasible resnlts in 11 cases for which the maximum delay was 5, i.e., one more than
the maximum allowed.

In Table 3.7, we summarize the results in terms of distance from optimality. With the excep-
tion of one case (BGN2) the modified heuristic gave results within 5% of the optimal, averaging
between 1.5% and 2% from optimal. The use of the swap function implied an improvement of
a little more than 1% for all the rules.

The running time was always less then 0.1 CPU seconds, with the smaller instances running
in 0.01 CPU seconds. In some cases the modified hetristic ran faster than the basic heuristic.
The modified heuristic assigns fewer delays in total, therefore reducing the number of enqueing

operations. This reduction may compensate for the time spent looking for swap possibilities.



Table 3.7: Comparison of performances

Distance from optimum
Heuristic o0 "0 199 | [1,2)% | [2,3)% | [3,5)% | [5,00)% | *VeF28°
q No swap || 4 4 6 11 9 5 2.63%
Swap 8 8 9 6 7 1 1.60%
p | No swap‘H 2 3 6 12 10 6 2.97%
Swap || 6 7 9 7 9 1 1.92%
N [Ne swap || 2 4 3 10 4 5 2.75%
Swap || 6 6 8 3 4 1 1.50%
[ |Noswap [ 2 | 3 3 1 10 6 | 2.05%
Swap || 6 8 8 8 8 1 1.89%
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Chapter 4

The integrated algorithm

4.1 Description of the algorithm

We now introduce the integrated algorithm, which uses the heuristic presented in the previous
section to “help” the best integer programming model of Chapter 2 (i.e., the ABGE model).

The idea stems from the following considerations:

e The heuristic is very fast and provides a near optimal solution. The value of this solution
can be used as an upper bound for the branch & bound procedure, whenever the latter

is required.

» The simplex method goes from one basic feasible solution to the other, improving the value
of the objective function. If we provide an initial basic feasible solution, i.e., an advanced
basis, we automatically reduce the number of solutions to be examined. Furthermore, our

initial feasible solution is relatively close to the optimal; the reduction may be significant.

e If the coupling constraints were ignored, then the optimal solution of the relaxation would
be integral. Therefore we may consider these constraints as the ones which lead to non-
integrality. The solution of the heuristic satisfies these constraints, thus we hope that by

starting from the heuristic solution, integrality will be more probably maintained.

e All variables in the ABGE model are binary. This means that every variable is always

at its lower or upper bound and may therefore be considered basic or at its bound. The
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solution provided by the heuristic will be an extreme point of the feasible region. Hence
there will be no cross—over time (i.e., the time needed to “go” from a solution inside the

feasible region to a solution corresponding to an extreme point).

The above considerations are clearly heuristic in themselves. The results of the next section
show, however, that this kind of approach led to very good results.

The integrated algorithm (which we will refer to as ABGI) consists of two distinct stages:
in the first stage the heuristic algorithm is run using different priority rules, while in the second
the best result of the heuristic is given in input to Cplex©, which converts this result to an
initial feasible solution and solves the problem. More specifically, at the end of the heuristic
the decision variables corresponding to the delays assigned by the heuristic (x4 if the delay
assigned is greater than §*) are passed to Cplex© as “variable at upper bound”, while all the
other variables are passed to Cplex© as “variable at lower bound”. It is left to Cplex© internal

algorithm to decide which variables to consider basic.

4.2 Results

Table 4.1 shows how the algorithm performed on the V and BGN test cases. The second
column reports the time spent to run the heuristic with the 4 different priority rules (HDNI).
In the third column we have the heuristics that achieved the best objective function value (that
may be found in next column). Only one solution is given in input to the ABGE model, and
this corresponds to the priority rule out of the parenthesis. In the fifth column, A},% is the
percentage error relative to the optimum, i.e. Q”g.c—'%, where Cp is the cost given by the
heuristic and C* is the optimal cost.

Figure 4-1 compares the total running times for the BS, ABGE and ABGI models.

It is clear from Table 4.1 (compare with Table 2.7) and Figure 4-1 that the integration of
the heuristic and the ABGE model substantially improved the performance of the algorithm.
With only one exception (case BGN7 ), ABGI gave an integer solution without resorting to
branch & bound. Even in case BGN7, the first node of the branch & bound resulted in an
integer solution which took only 5 iterations to solve. It is worth noting that this case did

not require branch & bound with ABGE and that in two cases (BGN15 and BGN26) ABGI
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Table 4.1: Solving with ABGI: Detailed results

I ___Heuristic Relaxed Problem TT |
Case || Search | Chosen | Obj. Time | Tter Non | Optimal Tci)xg?e
Time | (equiv.) | Value " { Int. Value
V1 0.04 H 71000 061 176 0| 71000.00 0.70
V2 0.04 | H (DNI) | 56000 1.50 | 324 0| 56000.00 1.61
V3 0.07 | H (DNI) | 84800 2.57 | 466 0] 84700.00 2.71
Va4 0.04 | H (DNI) | 65000 227 373 0| 65000.00 2.41
V5 0.10 H 96 300 463 | 729 0] 96300.00 4.85
V6 0.09 H 93300 10.02 [ 1190 0| 92200.00 |j 10.27
V7 0.09 H (N) 72400 | 13.10 | 1354 0| 72200.00 j| 13.35
BGN1 || 004 |H (DNI)| 13200] 000 0.75] 138| 0] 1320000 0.83]
BGN2 0.c7 I 54600 | 7.05 3.88 | 722 01 51000.00 4.03
BGN3 0.04 I 26500 | 1.34 1.53 | 245 0| 26150.00 1.66
BGN4 009 | H(DN) | 52300 | 1.55 3.92| 573 0| 51500.00 4.09
BGNS 0.06 | H (DNI)| 11250 0.00 1.44 | 182 0] 11250.00 1.58
BGN6 0.06 | H(DNI)| 10750 | 0.00 146 | 180 0| 10750.00 1.61
BGNT* 0.07 H (N) 60500 | 2.71 5.20 | 609 14 | 58900.00 5.84
BGN8 0.08 | H(DN) | 63750 | 2.16 5.18 | 562 0| 62400.00 5.37
BGN9 0.10 H (D) 81500 | 2.71 6.59 | 699 0] 79350.00 6.83
BGN10 || 0.08 I 43150 [ 1.05 442 | 839 0| 42700.00 4.62
BGN11 0.08 | H (DNI)| 55300 | 1.00 3.50 | 332 0] 54750.00 3.72
BGN12 ) 0.09 | H (DNI){ 22400 0.0 1.69 | 115 01 22400.00 1.92
BGN13 | 0.09 H (DI) 46350 | 2.66 446 | 465 0] 45150.00 4.68
BGN14 || 0.09 H (DI) 64150 | 0.94 5.82 | 509 0| 63550.00 6.09
BGN15 | 0.10 | H (DNI)| 71550 1.49 | 71.64 | 4077 0] 70500.00 || 71.89
BGN16 | 0.12 H (D) 52550 | 0.77 781 | 775 0| 52150.00 8.07
BGN17 || 0.08 | H(DNI) | 25400 | 0.59 3.57 { 313 0| 25250.00 3.79
BGN18 | 008 | H(DNI)| 27150 | 0.56 3.84 | 350 0| 27000.00 4.07
BGN19 | 0.09 I 32900 | 0.92 427 | 378 0 3260C0.00 4.51
BGN20 || 0.12 | H(DNI)| 39950 ; 0.38 5.18 | 466 0| 39800.00 5.46
BGN21 || 0.10 I 77050 | 3.77 || 11.72 | 946 0' 74250.00 || 11.97
BGN22 | 0.10 | H (DNI)| 44250 | 0.80 734 638 ¢ | 43900.00 7.60
BGN23 || 0.10 1 76600 | 1.73 8.45| 626 0| 75300.0C 8.74
BGN24 || 0.16 H 142500 | 3.00 || 19.86 | 1415 0] 138350.00 || 20.21
BGN25 || 0.20 I 151250 | 3.31 || 127.09 | 5159 0 | 146 400.00 || 127.52
BGN26 || 0.13 I 81900 | 1.17 |[ 147.17 | 5584 0| 80950.00 || 147.50
BGN27 || 0.21 1 193450 | 2.03 || 128.82 | 4843 0| 189600.00 || 129.28
BGN28 || 0.18 I 117150 | 3.12 || 21.72 | 1234 0| 113600.00 || 22.15
BGN29 | 0.17 | H (DNI) [ 126600 | 2.1G [ 14.53 | 789 0| 124000.00 |j 14.96
BGN30 || 0.21 N 142250 | 3.23 || 29.00 | 1359 0| 137800.00 |f 29.54
BGN31 || 0.24 I 178150 | 2.24 || 30.15| 1374 0| 172450.00 || 30.67
BGN32 || 0.25 | H(DN) | 140000 [ 4.09 || 59.69 | 2661 0] 134500.00 || 60.25

*B&B: Time 0.48, Iter. 5, Nodes 1
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was slower than ABGE. This confirms the fact that the integrated algorithm cannot guarantee
the improvement over the mathematical model: the solution of the heuristic may lead on “the

wrong path” from the optimum.

Figure 4-1: Comparison of running times for ABGE, BS and ABGI.

|—+ABGI —#-ABGE - BS |

3000 +

2500 }

Totsl gsoiution time (seconds)

Nonetheless, we were able to solve every test case in less than 2.5 minutes. Given these
results, we decided to test the ABGI on more “realistic” instances. The next section describes

the new instances and the results.
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4.3 New test cases based on OAG data

The new cases are based on real OAG data, corresponding to January 13** and July 3¢ 1993.
The two data sets comprise respectively 63,455 and 55,106 flights, respectively, on a network of
more than 100 airports.

For each flight, we had information on the official number, the departure/arrival airports,
the departure/arrival times, and the equipment (i.e., the aircraft type). The information on
connections is kept confidential by airlines and is not available in the OAG. For this reason,
we implemented a C program to generate couplings. The program takes in input the entire
OAG schedule, a list of airports of interest and two time thresholds, defined as minimum and
maximum connection times. Two flights are considered connected if they are performed with
the same equipment, by the same carrier and if the departure of the second flight is between
the time of arrival of the first plus the minimum connection time and the arrival of the first
plus the maximum connection time.

The minimum and maximum connection times were set to 20 and 40 minutes respectively.
In order to increase the percentage of connections, we first relaxed the constraint about the
equipment. Then we relaxed the constraint about the carrier. Thus we obtained three different
instances for each day. The January 13" instances comprise 22,522 flights with the percentage
of connections equal to 69%, 72%, and 77%. The July 3¢ instances comprise 20,220 flights
with the percentage of connections equal to 67%, 71%, and 77%.

The list of airports was the same for all the instances. It included the 23 airports that
exceeded 20,000 hours of aircraft delay in 1993 ([6]): Atlanta Hartsfield, Boston Logan, Char-
lotte/Douglas, Washington National, Denver Stapleton, Dallas—Ft.Worth, Detroit, Newark,
Honolulu, Houston Intercontinental, New York JFK, Los Angeles, New York La Guardia, Or-
lando, Miami, Minneapolis-Saint Paul, Chicago O’Hare, Philadelphia, Phoenix, Pittsburgh,
Seattle-Tacoma, San Francisco, St. Louis.

For each airport, the value of the capacity was found running the heuristic on a problem in
which the only capacitated airport was the one of interest and choosing the last value for which
a feasible solution was obtained.

Table 4.2 reports the results on the new test cases. ABGI solves all instances in less than

20 minutes, without ever requiring branch & bound.
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Table 4.2: Solving the OAG instances with ABGI

Heuristic ABGE
Search Objective Optimal Total
Case Chosen A%% || Time | It i

Time Value °7° 1 value Time
Jan:13.69 || 1.34 H 666 700 3.45 657.22 | 5847 | 644450 662.42
Jan13.72 || 1.44 H 674750 4.60 701.13 | 6288 | 645100 706.21
Jan13.77 | 1.46 H 709 350 9.32 || 1099.07 | 9591 | 648900 [} 1104.13
Jul03.67 1.40 H 639 250 3.93 606.04 | 6176 | 615100 610.58
Jul03.71 1.42 H 643 850 4.55 665.35 | 6764 | 615850 670.04
Jui03.77 1.42 1 669 650 7.87 884.45 | 8799 | 620800 889.20
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Chapter 5

Conclusions and further research

The results of the last chapter showed that the integration of heuristic methods with good
mathematical programming formulations can lead to substaatial performance improvements in
the solution of the MAGHP.

The good performance depends on two factors, and each of them deserves further attention:

e The heuristic gives surprisingly good results, especially considering its simplicity. It would
be interesting to provide bounds on the distance from the optimal solution and charac-

terize under which conditions good results are achievable.

¢ The value of the objective function for the relaxed ABGE and BS problem was always
equal to the integer optimum, suggesting that this could be an inherent characteristic
of these two formulations. Is it possible to prove such a result, or, again, identify the

conditions under which this happens?

We believe the first phenomenon to depend on the flatness of the feasible region around the
optimum: the problem has seversl equivalent (in terms of objective function) optimal solutions,
and many other near-optimal solution.

Similar questions to the one investigated in this thesis could also be posed with regards to
limiting capacities for other elements of the air traffic network.

The ABGE model can be easily modified to consider the case of limited departure capacities.

We denote by K2 the departure capacity of airport a at time ¢, ¢} and ¢} the cost of ground
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and airborne delay respectively and consider the decision variables yss equal to one if the delay

of flight f on arrival is equal to §. The extended model is:

min 3 [c} 3 bxys +c{’, (E Syss — Y 6:1:;6)] (5.1)
fer seA scA seA
s.t.
o zps < K‘ﬂ Vaec A, VteT (5.2)
£,6):
(feF,&éA,?s::—d,)
2 Yrs < Kag Va€ A, VteT (5.3)
,6):
(fel-".égA,%=t—r,)
> zgs=1 VieF (5.4)
e
2 yss=1 VfeF (5.5)
€A
6 [
Y ysd— > a2 0 VfEF Y6eA (5.6)
d=0 =
§ 6—8,!1
S Yra—p, Tfa20 Y(f,f') € F., V6 : (6,6 —374/) € A? (5.7)
d=0 d=0
zyss € {0,1} VfEF, Vé6eA (5.8)
yys € {0,1} VfeF, YéeA (5.9)

Note in (5.1) that the cost of airborne delay c‘} is multiplied by the difference between the
total delay and ground delay and that we need constraints (5.6) to ensure that the delay on
arrival will be at least equal to the assigned ground delay, i.e., the delay at departure.

The model can be similarly extended to consider en route sector capacities (the actual

formulation has not been included because it implies the use of cumbersome notation):

e The objective function is still (5.1) (under the reasonable assumption that the cost of

airborne delay does not depend on where the airborne delay is incurred);
e Capacity constraints similar to (5.2) and (5.3) are added for each sector/time cornbination;
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e Assignment constraints similar to (5.4) and (5.5) are added for each flight/sector traversed
by the flight combination;

e Constraiuts similar to (5.6) are added to guarantee that the delay of flight f is not
decreasing: one constraint for each couple of consecutive elements of the air traffic network
used by the flight, starting from the couple (departure airport, first sector) and ending

with the couple (last sector, arrival airport).

We suspect that the formulation will still be strong enough to avoid long branch & bound
solution times, at least in the case with limited capacities in departure and unlimited en route
sector capacities. However, it should be stressed that any constraint of type (5.6) could be
considered equivalent to a coupling constraint of two copies of the same flight with slack time
equal to zero. This means we are adding “difficult” constraints.

We can consider two different strategies for the implementation of the integrated algorithm
in the case of limited capacities. The first strategy uses the same heuristic presented in this
chapter as a starting point for the mathematical model, while the second strategy will consider
the development of new heuristics.

The first strategy is based on the consideration that departure (and sector} capacities, as
stated in the introduction, are seldom a problem. Therefore the solution of the heuristic will
(hopefully) be feasible most of the time and slighly infeasible in other cases.

The second strategy aims at reaching a solution that satisfies the coupling constraints im-
mediately (this gives also a starting bound for the branch & bound procedure). We believe that
the development of the new heuristic will require much more ingenuity if one wants to achieve

a performance similar to that of the heuristic presented in this thesis.
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