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Abstract

Molecules are rarely found in electronic excited states under standard conditions but
such states play a major role in chemical reactions. Computational prediction of
properties of such states is hard with standard DFT protocols, as made evident by
the failure of linear response TDDFT in predicting energies of charge-transfer ex-
cited states with semi-local functionals. Condensed phase dynamics of excited states
are even more intractable on account of the computational cost scaling exponentially
with the number of condensed phase particles under consideration. However, it is
still possible to develop cheap but accurate approximations for properties and dy-
namics of excited states, and herein we describe some of the methods developed by
us along those directions. We first demonstrate that restricted open shell Kohn-Sham
(ROKS) calculations with semi-local hybrid functionals give good agreement with
experimental absorption energies, emission energies, zero-zero transition energies and
singlet-triplet gaps of CT states-unlike TDDFT, which significantly underestimates
energy gaps. We then show that is possible to compute the effects of conical in-
tersections on non-adiabatic dynamics of chemical systems by deriving perturbative
memory kernels for the linear vibronic coupling model, and employing them to cal-
culate the population dynamics of the Fe(II)-Fe(III) self-exchange reaction. Finally,
we present a relationship between perturbation theory traces of the spin-boson model
that allows us to obtain the exact solution with arbitrary initial harmonic bath state
in the slow bath limit. We then attempt to generalize it to multiple states, and
devise a similar trace relationship which makes it trivial to write down closed form
expressions for populations and kernels to arbitrary order for any n level system.

Thesis Supervisor: Troy Van Voorhis
Title: Haslam and Dewey Professor of Chemistry
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Chapter 1

Introduction

The underlying physical laws necessary for the mathematical theory of

a large part of physics and the whole of chemistry are thus completely

known, and the difficulty is only that the exact application of these laws

leads to equations much too complicated to be soluble. It therefore be-

comes desirable that approximate practical methods of applying quantum

mechanics should be developed, which can lead to an explanation of the

main features of complex atomic systems without too much computation.

Paul Dirac, 6th April 1929[6].

Almost a century has passed since Dirac's observation that the advances in quan-

tum mechanics had in principle reduced chemistry to an applied mathematics prob-

lem, with no new experimental evidence been found to the contrary in the intervening

years. Yet the majority of chemistry has not yet been "solved" numerically and theory

did not really play a major role in advancing the science for most of the last century,

which is a somewhat curious state of affairs for an exactly "solved" problem. Dirac

had correctly noted that the problem was the "exactness" itself, as the exact meth-

ods for solving many-body problems in quantum mechanics were far too expensive

for realistic chemical systems on account of the large numbers of electrons and nuclei

present. The computational cost for such methods typically scaled exponentially with

the number of particles involved[7], making them intractable for all but the smallest
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of molecules even with modern computers.

Therefore, approximations remain the only way forward for doing quantum chem-

istry, as Dirac had correctly observed. Yet there is also very good reason to be

cautious of approximations when it comes to applications in chemistry. Chemical

bonds typically have strengths of the order of 1 eV~ 10-2 hartree and thermal energy

at room temperature is around 10-3 hartree, while system energies are often easily

102 hartrees or greater in magnitude, indicating that a very high level of accuracy

is needed in order to have qualitatively accurate methods, to say nothing of quan-

titative accuracy. Such approximations were unfeasible for all but the smallest of

systems (with at most ten light atoms) prior to the wide availability of computing

power from the 1980s and even molecular orbital theory (or as quantum chemists

call it, Hartee-Fock[8]) was simultaneously both too expensive and too inaccurate for

most purposes. Semi-empirical methods therefore tended to be much more useful

than ab-initio approaches for most systems of chemical interest for the majority of

the last century.

The arrival of the computing age and the advances made by Kohn-Sham Density

Functional Theory (DFT) [9, 10] has led to a significant shift in the situation, as

had the widespread availability of "black-box" quantum chemistry programs. DFT

in fact is extremely accurate for closed shell organic molecules in their electronic

ground-state, and it is rarely necessary to apply more accurate techniques that have

a computational cost exceeding the O(N4 ) scaling of DFT (where N is the number of

electrons). It is now in fact possible for even non-specialists to run DFT calculations

for moderately sized systems, leading to widespread use of theoretical methods to

augment experimental discoveries[2-4].

Excited states however offer pose a larger challenge for conventional black box

DFT approaches like Linear Response Time Dependent Density Functional Theory

(LR-TDDFT). LR-TDDFT has classically been employed to study excited states on

account of it being formally exact, courtesy the Runge-Gross theorem[11]. However,

it fails to treat charge-transfer properly with widely used semi-local functionals[12-14]

like B3LYP or PBEO on account of incorrect description of long-range exchange inter-

18



actions. Such issues were seldom a problem for ground state calculations with mostly

localized electrons, but prove to be a major challenge for studying excited states, es-

pecially as systems of interest to experimentalists like organic photovoltaics and LEDs

involve charge-transfer states. This issue however may be alleviated by non-linear re-

sponse approaches like ASCF[15] and Restricted Open-Shell Kohn Sham(ROKS)[161,

which can treat excited states at the cheap mean-field level but can still recover cor-

rect behavior of charge transfer states. We in fact have demonstrated this point in

the next chapter, where we show that ROKS can calculate properties of candidate

materials for OLED use, while conventional semi-local LR-TDDFT fails due to CT

character of excited states.

Dynamics between electronic excited states however pose a much larger challenge,

especially in condensed phases where there are too many atoms for ab-initio atomistic

approaches, whether mean-field or not. This is problematic because nearly all chem-

ical reactions involve some role of electronic excited states, making it important to

have theoretical methods that can predict the properties and dynamics of such states

in order to gain a better understanding of how reactions proceed at the molecular

level. We thus attempt to sidestep the need for atomistic dynamics calculations by

mapping chemical systems into approximate model Hamiltonians like the spin-boson

model[17] and related systems, and then obtain exact chemical dynamics for such

model systems. Certain physical properties of the real chemical system are lost in the

mapping to the simple model, but the effectiveness of methods like Marcus theory[18]

demonstrate that this is an approximation worth making in order to incorporate ef-

fects of the condensed phase. Thus in chapter 3, we attempt to develop methods

for studying condensed phase dynamics between electronic excited states using this

approach, and attempt to apply this formalism to study other processes like electron

transfer. In particular, we are greatly interested in systems with non-adiabatic sur-

face crossings[19 and strong coupling between electronic states, and we demonstrate

that we have developed methods capable of accurately modeling the dynamics for

such systems under certain limits.

We have thus been able to demonstrate the efficacy of a suite of cheap approxima-
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tions that can be employed to calculate both the stationary properties and dynamics

of excited states. In future, we plan to build on these methods in order to develop

more generalized accurate variants with similar cost, that can be employed to theoreti-

cally study interesting chemical systems and processes involving excited states. These

should help development of new materials by providing a computational screen that

would enable experimentalists to determine whether candidate molecules are likely

to fulfill targeted roles, and thus eliminate waste that would have otherwise been re-

sulted from synthesis and experimental testing of properties for hopeless structures.

Our ultimate hope is that our methods will not only contribute to a quantitative

understanding of chemical processes in the atomic scale, but also lead to a more ef-

ficient approach to chemistry where computation can be employed to assist chemical

intuition in designing new materials with interesting properties that can be used to

solve the myriad problems our species faces.

20



Chapter 2

Energies of Charge Transfer Excited

States from Mean Field Approaches

2.1 Introduction

Extensively 7r conjugated organic molecules with distinct charge donor and ac-

ceptor subunits are known to exhibit interesting optoelectronic[20, 21] properties on

account of the high charge-transfer (CT) behavior of their first few excited electronic

states, and thus can be used in fields like non-linear optics[22], organic photovoltaics[23

or organic field-effect transistors[24]. The spatial separation of the transferred electron

(effectively in the ground state LUMO localized on the acceptor) and the resulting

hole (effectively in the ground state HOMO localized on the donor) also minimizes the

exchange interaction between the two singly occupied orbitals in excited CT states, re-

sulting in a reduced energy gap between singlet and triplet states[25-30]. This permits

such molecules to exhibit Thermally Activated Delayed Fluorescence (TADF)[31, 32]

where the "dark" first excited triplet (T1) state indirectly fluoresces back into the

singlet ground (So) state via thermally activated reverse intersystem crossing to the

"bright" first excited singlet (Sl) state (as depicted in Fig 2-1). Molecules exhibiting

TADF are considered to be useful for OLED applications, as they can significantly

increase energy efficiency by harvesting some of the energy that is normally wasted

in generating non-radiative triplet excitons[33-37.
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Figure 2-1: Simplified Jablonski diagram for TADF molecules. Phosphorescence is
spin forbidden and hence much slower than fluorescence, but reverse intersystem
crossing is permitted as AEST is small. This allows T, -> Si transition, permitting
indirect fluorescence of T1 .

TADF is however only possible at appreciable rates if the energy gap (AEsT) be-

tween the S, and T states is smaller than or comparable to kBT. OLED applications

also frequently require emitted radiation of a particular color, thereby constraining

suitable values of emission energy (Eemit) to a narrow interval. It is therefore use-

ful to have computational protocols for prediction of photophysical properties like

Eemit, AEST, quantum yields etc., of molecules with CT excited states[38, 39], as it

allows screening of molecules for use in TADF based OLEDs. Unfortunately, many of

the molecules of interest are too large (--100 atoms) to be studied with high-level ab-

iritio wavefunction based methods like CASPT2[40, 41] or coupled-cluster[8], which

are known to give quite accurate results for small organic molecules[42, 43]. As a

result, Density Functional Theory (DFT)19, 10, 44] based approaches are the only

viable post Hartree-Fock[8] computational tools for studying such molecules.

Consequently, a large amount of effort has gone into developing DFT based proto-

cols for estimation of photophysical properties of potential OLED molecules. One of

the earliest protocols was devised by Adachi and coworkers[28, 35], who attempted to

obtain estimates for AEsT from the difference between Si and T energies obtained at

So optimized geometries with Linear Response Time-Dependent Density Functional

Theory (LR-TDDFT)[11, 45], employing semi-local hybrid functionals like B3LYP[46]

or PBEO[47]. This approach however, was only effective for molecules with relatively
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low CT character[3, 35], as semi-local LR-TDDFT systematically underestimates the

energy of CT states in general[12-14, 48]. A later method proposed by Adachi and

coworkers[1] tried to determine the ideal TDDFT functional for each structure by

empirically calculating an "optimal" percentage of exact-exchange from ground-state

calculations that estimated the extent of CT. Any semi-local hybrid functional em-

ploying close to the calculated exact-exchange percentage was postulated to be effec-

tive for TDDFT studies.

An alternative approach would be to use range-separated hybrid functionals[49, 50]

that were developed for the purpose of performing TDDFT on CT states. This was

also tested by Adachi and coworkers[1], who however reported that range-separated

functionals like CAM-B3LYP[51] or LC-wPBE[52] tended to overestimate absorption

energies (Eabs) for common TADF molecules, indicating that the range separation

parameters for such molecules were not optimal for the length-scale of charge transfer

in such systems. This was not particularly surprising, as such parameters are often

strongly system dependent[53, 54], although it is possible to "tune" them for indi-

vidual systems[55]. Recently, Penfold[29] and Bredas et al. [30] independently used

tuned range separated functionals to investigate TADF molecules, and discovered

that such an approach gave AEST values that are fairly consistent with experimental

data.

There also exist time-independent excited state DFT techniques like ASCF[15],

which offer alternate routes for studying CT excited states. Such methods generally

do not rely on linear response theory and can therefore be expected to not share the

deficiencies of semi-local LR-TDDFT with regards to CT states. In particular, it is

possible to use a Restricted Open Shell Kohn-Sham (ROKS) [16, 56-58] approach to

obtain energies of the Si state, which offers a new way to estimate emission wave-

lengths. Additionally, the Hohenberg-Kohn theorem[9] indicates that ground-state

spin density functional theory (SDFT) should be able to estimate the energy of the

first excited triplet (T1) state, as it is the ground-state within the subspace of all

triplet electronic states. This indicates that a combination of ROKS and SDFT could

also be employed to calculate AEST, thereby implying that such a combination could
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Figure 2-2: Representative members of the test-set. Experimental data obtained from
Adachi et al.[1-41. Structures of all the molecules in the test-set can be found in the
SI.

be useful as a fast and reliable computational screen for potential TADF molecules.

In this chapter, we address these questions by devising two computational proto-

cols that use a combination of ROKS and SDFT to estimate photophysical properties

like Eabs, Eemit, E0_0 (as described in the central panel in Fig.2-3) and AEST. Conse-

quently, these protocols were compared with two TDDFT derived protocols against a

test-set of 27 TADF compounds (Fig.2-2) with available experimental data[1-4].. This

revealed that while it was possible to use cancellation of errors to obtain some useful

results from TDDFT, such approaches in general do not lead to accurate estimations

of all desired parameters. On the other hand, semi-local hybrid functional based

ROKS/SDFT based approaches led to very accurate predictions of Eemit, AEST etc.,

without having to resort to cancellation of errors or parameter optimization. Overall,

it appears that ROKS with semi-local hybrid functionals provides a reliable and fast

alternative to estimating properties of CT states, and can thus be used as a screen

for potential TADF molecules.

2.2 Computational Details

All the calculations were done with the Q-Chem 4.2 Package[59], employing the

PBE[60],B3LYP[46], PBEO[47] and LC-wPBE[52] (with w = 0.3 bohr 1 ) function-
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als. Most, calculations employed the 6-31G* basis[61] set, although some B3LYP

calculations were repeated with the larger cc-pVTZ[62] basis to investigate the ba-

sis set dependence of the paratmeters measured. The Tamm-Dancoff approximation

(TDA)[63-651 was not invoked in TDDFT calculations. Solvent effects were not taken

into consideration in this study, nor was the effect of zero-point energy of molecular

vibrations taken into account.

S1 SI Si
1 1 T,

so

Nuclear Coordinates Nuclear Coordinates Nuclear Coordinates
Protocol A Protocols B and C Protocol D

Figure 2-3: Photophysical parameters measured by the Protocols. The arrows only
indicate energy gaps, and not nuclear coordinates of transitions.

The protocols themselves were as follows:

1. Protocol A: So geometry is optimized using ground-state DFT, and TDDFT

is then employed to find the energies of the Si and T1 states at this geometry.

The resulting vertical absorption energy Labs is then assumed to be a reasonable

estimate for both Eemnit and EF0 0 (Fig.2-3, left panel). AEsT is assumed to be

the difference between Si and T1 energies at the equilibrium So geometry. This

is the computationally cheapest of all the protocols, as it involves only one

ground-state geometry optimization. However, it complromises the physics as

real TADF molecules have nion-zero experimental Stokes shifts, and is not at all

likely to be effective when the exact functional is employed.

2. ProtocoL B: So geometry is optimized using ground-state DFT, while both

Si and T1 geometries are optimized by TDDFT. TDDFT is then employed to

find Eabs and Eemnit as the vertical transition energy between the So and Si

surfaces, starting from the equilibrium So and Si geometries respectively. E0 0o

is obtainied from the difference ini the equilibrium Si and So energies (found

by TDDFT and ground-state DFT respectively) and AEST is given by the
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difference between equilibrium S, and T energies (found by TDDFT). Unlike

Protocol A, this Protocol does not compromise the physics, as the calculated

parameters correspond exactly with experimentally measured ones.

3. Protocol C: So geometry is optimized by ground state DFT while the T geom-

etry is optimized with Restricted Open-Shell DFT (RO-DFT). The equilibrium

S, geometry is obtained via ROKS. The energy differences are then found in

the same manner as Protocol B, except that ROKS and RO-DFT are used

instead of TDDFT to calculate S, and T energies respectively. RO-DFT is

preferred over unrestricted open-shell DFT for accessing T energies in order to

avoid systematic errors in AEST, as discussed in the results section. Like Pro-

tocol B, the parameters calculated with this Protocol also correspond exactly

to experimentally measured ones.

4. Protocol D: So geometry is optimized by ground state DFT while the T

geometry is optimized with RO-DFT. It was assumed that the equilibrium S

geometry is fairly well approximated by the T geometry (which is definitely the

case for molecules with large CT character where AEST is small), and the energy

differences were then found in the same manner as Protocol C. Overall, only

two geometry optimizations (both of which were formally in the ground-state)

were employed, making this significantly cheaper than Protocol C.

The accuracy of the different protocols were compared by applying them to a set of

relevant TADF chromophores, some of which are shown in Fig. 2-2. The experimental

results were collected from work by from Adachi et al.[1-4] A complete listing of the

molecules in the set and the associated experimental absorption and emission energies

and singlet-triplet gaps is provided in the supporting information.

2.3 Results and discussion

The errors associated with Protocols A & B are given in Table 1, while the errors

for Protocol C & D can be found in Table 2. Because of the wide spectrum of
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Parameter Measured PBE B3LYP PBEO LC-wPBE
RMSE (ME) RMSE (ME) RMSE (ME) RMSE (ME)

Eabs (Protocols A and B) 1.38 (-1.31) 0.57 (-0.45) 0.43 (-0.28) 0.74 (0.72)
erm (Protocol A) 0.81 (-0.75) 0.25 (0.11) 0.35 (0.28) 1.29 (1.28)
erm (Protocol B) 1.48 (-1.45) 0.65 (-0.62) 0.49 (-0.44) 0.66 (0.63)

Eo-.o(Protocol A) 1.00 (-0.95) 0.26 (-0.10) 0.23 (0.07) 1.04 (1.03)
Eo-.o(Protocol B) 1.30 (-1.25) 0.52 (-0.46) 0.37 (-0.28) 0.82 (0.81)
log (AEsT) (Protocol A) 0.92 (-0.74) 0.68 (-0.37) 0.45 (-0.09) 0.76 (0.71)
log (AEST) (Protocol B) 1.45 (-1.34) 1.04 (-0.85) 0.85 (-0.60) 0.74 (0.69)

Table 2.1: Errors associated with Energy estimates from TDDFT derived protocols
(RMSE= Root Mean Squared Error, ME= Mean Error). Errors in Eabs, Eemit and
E-00 have unit eV. Both protocols calculate absorption energy in the same manner,
and thus have same errors associated with that parameter.

values for the experimental AEST associated with the test-set, we report the errors

in log (AEST) instead of errors in AEsT.

2.3.1 TDDFT Results: Protocols A & B

Protocol A fares quite badly in estimating Eabs, with all the functionals. This is

unsurprising for semi-local PBE, B3LYP and PBEO calculations in light of the large

CT nature of the Si state[12-14, 48]-which leads to systematic underestimation of Si

energy. Even the long-range corrected LC-wPBE is not successful in estimating Eb8,

although it systematically overestimates energy unlike the other three. This behavior

indicates the length-scale of charge-transfer for the test-set molecules is smaller than
1
- and is consistent with what was reported earlier by Adachi et al.[1] However, the

spurious TDDFT red-shift of energies in the B3LYP and PBEO calculations were

comparable to the Stokes shift for many of the molecules, resulting in a cancellation

of errors that permitted EaDFT to be a fairly accurate estimate of E 0_. With

B3LYP, it was also possible to get reasonable estimates of E t by using E DFT

although PBEO significantly overestimated this parameter (possibly on account of

using a greater percentage of exact-exchange than B3LYP). The energy-shifts for

PBE were too large for a similar cancellation of errors to occur there and LC-wPBE

overestimated energies, making such a cancellation impossible.
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This cancellation of errors however is not applicable to the AEST estimates, and

Protocol A does not perform particularly well on that front. PBE and B3LYP both

have large systematic errors as TDDFT artificially increases the extent of CT in

the S1 and T states in a bid to lower their energies. This spuriously increased CT

character leads to a smaller than expected energy gap, causing underestimation of

AEST. PBEO however has a smaller systematic error in AEST, possibly on account

of the larger proportion of exact-exchange being employed in the functional (a trend

that can also been seen in the decreased errors on going from PBE to B3LYP). LC-

wPBE on the other hand, significantly overestimates AEsT, which is consistent with
1

the CT length-scale being smaller than -. Consequently, single-functional Protocol

A calculations cannot generally be used to get accurate ideas about AEST and Eemit

simultaneously. The former is predicted best with PBEO and the latter by B3LYP.

However, Protocol A does not require excited-state geometry optimizations and is

thus attractive as a preliminary screen for OLED materials, even if two calculations

with different functionals are required.

Protocol B has no cancellation of errors to fall back upon, and thus consistently

underestimates Eemit and E-0. with PBE, B3LYP and PBEO. The AEST estimates

are also considerably underestimated (by nearly an order of magnitude), and are

in fact much worse than Protocol A estimates. This is a consequence of TDDFT

further enhancing the CT character of S1/T1 states by distorting the equilibrium

geometry in an attempt to spuriously lower the energy. LC-wPBE again overestimates

parameters significantly, for the same reason as earlier. Despite Protocol B being the

most computationally expensive of the protocols tested (as it requires three geometry

optimizations, two of which were in the excited state), it proves to be the least effective

in predicting energies. This behavior is consistent with earlier studies[i], and only

serves to reinforce the notion that TDDFT with traditional functionals is unsuitable

for predicting energies of CT states.
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Parameter Measured PBE B3LYP PBEO LC-wPBE
RMSE (ME) RMSE (ME) RMSE (ME) RMSE (ME)

Eabs (Protocols C and D) 0.69 (-0.64) 0.18 (-0.06) 0.28 (0.11) 0.82 (0.75)
erm (Protocol C) 0.53 (-0.49) 0.19 (0.00) 0.20 (0.10) 0.79 (0.45)
erm (Protocol D) 0.52 (-0.48) 0.22 (0.02) 0.23 (0.11) 0.85 (0.79)

Eo.o(Protocol C) 0.56 (-0.54) 0.14 (0.02) 0.17 (0.11) 0.70 (0.66)
Eo..o(Protocol D) 0.55 (-0.52) 0.23 (0.10) 0.27 (0.19) 1.09 (1.03)
log (AEsT) (Protocol C) 0.73 (-0.55) 0.35 (-0.20) 0.27 (-0.07) 0.58 (-0.06)
log (AEsT) (Protocol D) 0.49 (-0.34) 0.35 (-0.03) 0.32 (0.04) 0.64 (0.25)

Table 2.2: Errors associated with Energy estimates from ROKS derived protocols
(ME= Mean Error, RMSE= Root Mean Squared Error). Errors in Eabs, Eemit and
E0_0 have unit eV. Both protocols calculate absorption energy in the same manner,
and thus have same errors associated with that parameter.

2.3.2 ROKS Results: Protocols C & D

Protocols C and D attempt to circumvent the red-shifting of energies by using ROKS

and Restricted Open-Shell DFT (RO-DFT) instead of TDDFT to access the S, and

T1 surfaces. While it is possible to use Unrestricted Open-Shell DFT (UO-DFT) to

access T energies instead, we chose to use RO-DFT as ROKS is a restricted method,

and thus using UO-DFT triplet energies could lead to a systematic error in AEST

from the extra stabilization recovered by the unrestricted calculation. Nonetheless,

we compared UO-DFT and RO-DFT calculation results for the case of the B3LYP

functional and found that the numbers are not significantly different (the UO-DFT

numbers are given in SI), further suggesting that performing RO-DFT was sufficient.

Though Protocol C is not a particularly cheap protocol (it requires three geom-

etry optimizations, although only one of them is in the excited state), it gives quite

accurate estimates of Eabs, Eemit and Eo-O with B3LYP and PBEO. The near zero

mean errors of B3LYP calculations are of particular interest, as they indicate there is

no systematic bias unlike Protocol B with B3LYP. Interestingly, PBEO mean errors

are consistently greater than B3LYP errors by approx 0.1 eV, possibly on account

of PBEO blue-shifting the energies more due to greater exact-exchange. PBE still

underestimates energies, but the deviation is still much less than Protocol B (by ap-

proximately 0.5 eV) or even Protocol A. LC-wPBE still overestimates energies, and
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the deviations here are comparable to the TDDFT deviations, suggesting that these

are more a consequence of the functional than the method.

The trends in AEsT's obtained from Protocol C are somewhat more interesting.

B3LYP and PBEO have the smallest RMS errors, which coupled with their relatively

small mean errors indicate that these two are best suited for calculating AEST (PBEO

being somewhat better than B3LYP). Like in TDDFT calculations, PBE significantly

underestimates AEST, although the errors are smaller. On the other hand, LC-wPBE

has an extremely small mean error along with a fairly large RMS error, indicating that

a lot of noise is associated with calculations based on this functional, but not much

of a bias-which stands in direct contrast to the large Protocol A and B mean errors.

This indicates that the ROKS/RO-DFT combination does not add a systematic bias

to AEST for LC-wPBE calculations, unlike TDDFT-although AEST calculations are

still fairly inaccurate because this functional causes a large blue-shift of the S1 and

T1 energies, which leads to a lot of noise. Overall, Protocol C is found to give very

accurate energies with B3LYP and PBEO and should be the method of choice if

sufficient computational resources for Si geometry optimization are available. It is

also possible to reduce the S1 optimization cost by using T optimized geometries as

the starting guess, as those are expected to be closer to equilibrium S, geometry than

So geometries or ground-state forcefield fits for TADF molecules.

Protocol D aimed to attain accuracy comparable to Protocol C at a lesser com-

putational cost by approximating the equilibrium Si geometry with the equilibrium

T1 geometry. This approach is reasonable for systems exhibiting TADF, as AEST is

very small in these cases, indicating that the S1 and T surfaces are near parallel.

Overall, Protocol D Eemt estimates are quite close to Protocol C estimates, and thus

correspond well to experimental values for B3LYP and PBEO functionals. PBE cal-

culations also give E0_0 similar to Protocol C, although the other three functionals

overestimate this parameter relative to Protocol C (although the shift is only of the

order of 0.1 eV on average for PBEO and B3LYP).

This deficiency is somewhat compensated by the lack of apparent systematic bias

in AEST calculated with PBEO and B3LYP. PBE underestimates AEST as in all
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previous calculations, while LC-wPBE overestimates AEST on average-unlike in Pro-

tocol C. Overall, all the functionals overestimate AEST with Protocol D, relative to

Protocol C as Protocol D slightly overestimates Si energy as it is evaluated close to,

but not at the minima. However, this slight blue shift of AEST improves the mean

accuracy of both PBEO and B3LYP-and allows Protocol D with these two function-

als to be either better than or as effective as Protocol C in estimating Eemit and

AEST, the two parameters of greatest interest for OLED screening. Protocol D with

B3LYP/PBEO is therefore the method we recommend be used first, with Protocol

C only being used for the cases where D predicts large AEST (> 0.5 eV), indicating

smaller than expected CT character that causes our assumption about similarities in

equilibrium S, and T geometries to break down.

2.3.3 Basis Set Effects

Several B3LYP single-point calculations were repeated with the larger cc-pVTZ[62]

basis (using the 6-31G*[61] optimized geometries). It was found that neither the

calculated parameters nor the associated errors were significantly altered, indicating

that calculations with the smaller 6-31G* basis were sufficient.

2.4 Conclusions

In this paper we evaluated four computational protocols for calculating energies

associated with CT states, in order to determine a method that gives accurate esti-

mates of parameters like AEsT and Emit with minimal computational expense. We

tested these protocols with four functionals (PBE, B3LYP, PBEO, LC-wPBE) against

a test-set of 27 compounds and determined TDDFT with all four functionals gave

poor results, although fortuitous cancellation of errors can oftentimes give acceptable

estimates for Eemit (with B3LYP) or AEST (with PBEO). We further discovered that

protocols based on ROKS/RO-DFT with B3LYP and PBEO were well suited for this

problem, as they led to quite accurate predictions for TADF molecules, without hav-

ing to do any form of tuning or fitting. Protocol D in particular seems to be very
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well suited for studying molecules with large CT character, as it requires only two

ground-state geometry optimizations and yet gives accuracy comparable to methods

that rely on computationally expensive excited state optimizations. We believe that

other SCF excited state methods like ASCF[15] and CDFT[66] will also give similar

accuracy to ROKS, and overall such methods are better suited for studying CT states

than TDDFT.

Our results however neglected the impact of the surroundings on the photophysics

of these TADF molecules, mainly because the effects of the surrounding molecules

are difficult to account for. This study only performed calculations on molecules that

were experimentally studied in non-polar solvents like cyclohexane (E, = 2.02[67]) or

toluene (Er = 2.38[67]), in part because the small dielectric constants should have a

proportionately small effect on the photophysics. In future it would be interesting to

examine how these protocols could be extended to deal accurately with the effects

of the surroundings - for example, to tell the difference between the stokes shift in

solution versus in a film. We are also currently unable to predict quantum yields from

first principles, which is another important parameter to be considered for practical

applications. Our future work therefore shall focus on properly accounting for solvent

effects on photophysical properties and ab-initio quantum yield prediction, in order

to enable more efficient design of organic semiconductors involving CT states.
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Chapter 3

Dynamics of Excited States

3.1 Introduction

Previously we discussed how mean-field quantum chemistry approaches might be em-

ployed to calculate equilibrium properties of electronic excited states. However, such

stationary states seldom exist in nature as electronic excited states are rather prone to

relaxation back to the ground state or conversion to other excited states. In TADF

for instance, we effectively have a five state problem with thermal interconversion

between S, and the three T, states, all of which are also capable of relaxation back

to the So state. The overall energy efficiency of the system depends not only on

the thermal reverse intersystem crossing rate, but also the relative rates of radiative

versus non-radiative pathways for relaxation. Common photochemical processes such

as DNA/RNA relaxation[68, 69] also involve excited state relaxation and intercon-

version mechanisms, and an understanding of these processes is therefore essential

for studying photochemistry. The same formalism can also easily be generalized to

study dynamics of electron-transfer processes like photosynthesis, with the reaction

itself essentially being interconversion between the electronic state of the reactants

and the electronic state of the products. It is also important to note that a kinetic

understanding is not sufficient in many of these cases due to the short time-scales

involved, as quantum oscillations often play a much larger role than the exponential

decay predicted by kinetic models in that limit. Kinetics parameters may also be
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calculated from a dynamical model, but the reverse is not possible, indicating that

the more general dynamical model ought to be preferable. The dynamics of electronic

excited states are thus of interest to us, and it would therefore be immensely useful

to have protocols for accurate computation of the dynamics of electronic states.

Unfortunately, this is significantly more complex than computing stationary prop-

erties as most phenomenon of interest like photochemistry and electron-transfer occur

in condensed phases. Previously we avoided incorporating solvent effects in our calcu-

lation of stationary properties, as that was supported by experimental evidence[1-4].

However it was observed by Marcus [18, 70, 71] and others [72, 73] that reorganiza-

tion of the condensed phase was crucial for the dynamics, making it now essential to

include the condensed phase in our models. However the condensed phase (roughly)

has Avogadro's number of atoms while the cost for building the exact-propagator

naively scales exponentially with the number of degrees of freedom under considera-

tion, making a direct numerical solution to the time-dependent Schroedinger equation

an impractical idea for any realistic condensed phase system.

Multiple approaches for performing ab-initio molecular dynamics have been de-

veloped after the pioneering work of Carr and Parinello[74], but such approaches

mostly explore dynamics of nuclear degrees of freedom within a particular electronic

state, as opposed to computing transitions between different electronic states, which

is orthogonal to what we are interested in. Tully's surface hopping algorithm [751

permits transitions between electronic states, but it cannot recover Marcus theory

at the outer-sphere electron transfer limit, giving an incorrect scaling with the elec-

tronic coupling [76] . This is on account of incorrect decoherence effects stemming

from it being a mixed quantum-classical approach, as opposed to a purely quantum

one. Overall, it is relatively easy to calculate energy surfaces for electronic states

with accurate (or at least formally exact) quantum chemistry methods, as seen in the

previous chapter. It is however extremely difficult to do dynamics on these surfaces

to an acceptable level of approximation, leading us to choose the alternative approach

of mapping chemical systems to approximate model Hamiltonians. The dynamics for

such simplified models is much more tractable, and it is in fact possible to obtain

34



numerically exact populations from this approach. This approach also lends itself

easily to non-adiabatic dynamics and allows us to average over all the modes asso-

ciated with the condensed phase, as opposed to atomistic simulations that preserve

extra information about modes needlessly. Admittedly, a large amount of information

is also lost while mapping chemical systems to such simplified Hamiltonians but the

success of Marcus theory (the simplest example of such a model) leads us to believe

that it is a price worth paying.

In this chapter we begin by introducing the spin-boson model[17], which is the

simplest possible two-state model Hamiltonian for condensed phase dynamics. After-

wards, we move on to a generalization called the linear vibronic coupling model[77-

79], which permits relaxation by means of adiabatic surface crossings called conical

intersections[19, 80], a phenomenon not permitted by the spin-boson model. We

then describe the approach to obtain linear vibronic coupling model populations per-

turbatively via analytic closed form expressions (which also automatically gives us

spin-boson populations if we neglect coupling fluctuations), and demonstrate how

conical intersections alter dynamics. Finally, we return to the spin-boson model and

present an exact solution in the slow bath limit, following which we try to generalize

this model to multiple states.

3.2 The Spin-Boson Model

The spin-boson model assumes that the bath interacting with the system is purely

harmonic and the system-bath coupling is linear in the bath coordinates. Devised in

1983 by Caldeira and Leggett[17], it is described by the Hamiltonian HSB given by:

HsB = 11) (1 h, + 2) (2| h2 + V(11) (2|+|2) (1|) 0 I (3.1)

(2hi = -- + + P mxW?2 + ciX (3.2)

6 /2i 1
h2= + + 2mpZ Xi - ciXi (3.3)

2 2mi 2
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Here 11), 2) are the two orthogonal diabatic electronic states with an energy-bias E

and diabatic coupling V. 11), 2) are interacting with a harmonic bath with modes

{xi}, frequencies {wi} and masses {mi}. {ci} are coupling constants that determine

the strength of interaction between the electronic diabatic states and bath modes {xi }.

We define h1 1 ,2 1 to be compact descriptions for the bath hamiltonians associated with

the diabatic electronic states 11) 2). An useful way to think about h1 1 ,2 1 would be

to consider them as representations of Marcus Theory parabolas while 11), 12) are

the initial and final electronic states respectively. In fact it can easily be shown that

the spin-boson model reduces to Marcus theory under appropriate limits(the proof is

given in the Appendices), indicating that this model can be very useful for studying

dynamics of electron transfer not only in Marcusian regimes, but also in cases where

the assumptions behind Marcus theory break down. The spin-boson model can also

be used to study photochemical processes or other chemical transformations that

involve transitions between two electronic states, making it an useful starting point

for developing quantum dynamics methods.

It might appear that the simple nature of the bath and system-bath coupling

would allow this model to be solved relatively easily, but no exact analytic solution

has yet been found for this model other than for the trivial case of {ci} = 0. The

cost for numerical evaluation of the propagator for determining time-evolution scales

exponentially with number of bath modes, making it unsuitable for chemical systems

where as many as Avogadro's number of modes might be involved.

In fact, the large number of bath modes in chemical systems indicates that is more

practical to treat them as a continuum with spectral density J(w) defined to be:

2c ir (c(w))2
J(w) = 2rniw 6 (W - wi) -+ 7 (W)w g(w) (3.4)

2,miwi 2m(w)w

(where g(w) is the density of states) than to keep track of each separate mode (espe-

cially as our point of interest are the electronic states 11) , 12), not the individual bath

modes). It is known that the dynamics of the spin-boson model is completely specified

by the energy-bias E, diabatic coupling V and spectral density J(w) (this is demon-
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strated later, in Eqn. 3.61), although the exact nature of the expression continues to

elude us. While essentially exact numeric methods based on hierarchical equations of

motion exist for solving the problem for J(w) of the Debye form c [81, 82], such
W2 +C2 C

methods are not readily generalizable to the more arbitrary J(w) found in chemical

systems.

Consequently, perturbative approaches represent the best way forward for this and

related models. Classically, the Non-Interacting Blip Approximation (NIBA) [83, 84]

has been one of the most widely used methods, but it is has certain limitations, being

correct to only second order in V. Recent work[85-87] however indicates that resum-

mation of perturbation theory terms to some small order (fourth, sixth or eighth) is

sufficient to give a picture that is often numerically exact, and is at worst "merely"

qualitatively accurate. This is the approach we shall persue for the most part, leading

us to work on deriving the corresponding perturbation theory terms.

3.3 Linear Vibronic Coupling Model

The spin-boson model is a very good starting point for chemical systems, but it

introduces too many simplifying assumptions. It is probably impossible to do due

justice to some physical effects like bath anharmonicity with our analytic approach,

but it is possible to relax certain other constraints of the model without compromising

the effectiveness of our approach for computing dynamics.

In particular, it is not too difficult to abandon the condon approximation which

assumes that electronic transitions are instantaneous compared to nuclear motion,

leading to constant diabatic coupling V. This is especially important as adiabatic

surface crossings are only allowed when h1 = h2 and V = 0 for the same set of

bath coordinates, indicating that non-constant V is needed to have conical intersec-

tions in the model. Conical intersections are not only responsible for isomerization

of DNA/RNA bases[68, 69] and rhodopsin the retina[88, 89], but they also play an

important role in internal conversion and intersystem crossing[90], and thus are impor-

tant for determining quantum yields of photovoltaics and LEDs[91]. We are therefore
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interested in modeling systems with conical intersections, and spin-boson like models

beyond the Condon approximation therefore represent a good starting point.

The linear vibronic coupling Hamiltonian is the simplest such extension of the spin-

boson Hamiltonian, incorporating additional diabatic coupling terms that are linear

in bath modes. Mathematically, we have:

HLVc =11) (11 (h, 0 I + I h3 )+12) (21 @(h 2 o I + I D h3 )

+ (11) (21|+12) (11) 0 VO + EVxzi &I+ I&@E V,yj (3.5)

h3= ( + 1 22 (3.6)+m 2mjw~y;}

while h{1,2 } is given by Eqns. 3.2 and 3.3. We have thus partitioned the bath into two

fragments: one containing modes which couple to both the electronic states and the

off-diagonal V (represented by modes {xi} and reduced Hamiltonians h{1,21) and the

other containing modes that only couple to the off-diagonal f (represented by modes

{yj} and reduced Hamiltonian h3 ). We felt that it was the best to partition the modes

thus as we observed significantly different behavior between the two classes of modes,

and because it allowed us to make some approximations that enabled derivation of a

closed analytic representation of fourth order and beyond, while the non-partitioned

model proved untractable beyond NIBA level of theory.

The dynamics for this model are completely specified by c, V, J(w) and two ad-

ditional spectral densities Jcr08 8 (w) and Jv(w) which are defined by:

7rci, wc(w)V(w)(
Jcros.(w) = 3 d6(w - w) -+ () g() (3.7)

X2miwi 2m(w)w

grV2V2 Ir (V2 (W) + V2()JV w=Z~(W-w)+ 7i(W )>x
2 (E miw ( -w)+ W)- 2m(wL)w gW

(3.8)

All further derivations will involve using the generalized HLVC Hamiltonian, as it

can be reduced to HSB by merely setting Jcross(W) and Jv(w) to zero.
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3.4 Mapping Chemical Systems to Models

Having defined our model Hamiltonians, we now describe our approach for mapping

chemical systems to these models. We achieve this via classical molecular dynamics

by sampling on a single surface. Let E{ 1 ,2} be the energy of states {1, 2} and V be

the coupling for some bath configuration {jI', i}, which is drawn from the canonical

ensemble for the state 1 plus bath combination. E{ 1,21 is consequently just the value

of hI1 ,2}+h3 for that bath configuration, allowing us to calculate correlation functions

of fluctuations 6AE(t) and 6V(t), which are defined to be:

AE(t) E1 - E2 = -E+2 ci x (t) (3.9)

6AE(t) LAE(t) - (AE(t)) = 2 ci (xi(t) - (xi(t))) (3.10)

V = VO + Vxixi(t) + VyJ(t) (3.11)

6V(t) =V(t) - (V(t)) = V (x (t) - (xi(t))) + E V (yj(t) - (yj(t))) (3.12)
i j

where the averages are taken over the state 1 plus bath combination canonical ensem-

ble. We then follow the procedure outlined in section 6.5.1 of Nitzan[92] to obtain:

(6AE(t)6AE(0)) = cos wit (3.13)

-- (JAE(t)6E()) cos wtdt = 4c cos wit cos wtdt (3.14)

0 0Z 4c 2  4 (w
216(w - W = J(w) (3.15)

leading to:

J(w) = J (6AE(t)JAE(0)) coswtdt (3.16)
0
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We similarly find that the other two correlation functions are:

Jeross (w) =

Jv(w) = /3w

7 (JAE(t)6V(0)) cos wtdt

(6V(t)V(0)) cos wtdt
0

which can all be calculated from classical molecular dynamics.

3.5 Time Dependent Perturbation Theory

Having finally defined the chemical system to model Hamiltonian mapping, we can

start working on calculating the dynamics for the LVC Hamiltonian. Treating the

diabatic coupling (off-diagonal) terms of the LVC Hamiltonian as a perturbation, we

obtain:

HLVC = Ho + H1

Ho 11) (1| hi I + 12) (21 0 h2 I+ (11) (11+ 12) (21) o I o h3

=11) (11 & hi 0 I + 12) (210@ h2 0 I + I0 1 ) h3

0+IO
@ I + I a Vy Yj )

(3.19)

(3.20)

(3.21)

(3.22)

In the interaction picture, we may define the operator:

fli(t) = eitHoHie-itHo (3.23)

Time-dependent perturbation then permits us to write the propagator e-itHLVc

as the following power series:

H1 (t1)dti - dti

0

A1 (ti)H 1 (t2 )dt2 .
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(3.18)

(1 - i I
0

(3.24)

+ V

j
0

-== e-itHLV = _-itHO

H, =_ (11) (21|+12) (11) 0 (VO



We then utilize the orthogonality of 11), 2) to note that:

[Ii) (110 hi 0 I, 12) (21 o h2  ] =0

while it is trivially true that:

[11) (11 Ohl OI,1O I ha3] = 0, [12) (21 oh2 01,IOI0 h3] = 0

This allows us to factorize e-itHo into:

-itHo _ e-itI1)(1I@hi®0I e-itI2)( 2 10h20Ie-itI®T&h3

and further simplify it by noting:

e-itill)(110lh0I - 1 (-it i) (1 0I0 h3 ) + (-it Ii) (10 hi 0 I)2
2!

= 1+1) (110 -ith, +
2!

= 12) (2 ) 1 +11) (110 eith 0 1

Since (11) (1I)" = I1) ((111))' (1 = 1) (11 V n> 1 n E Z+. Similarly we have:

e-it2)(2 1Ih2 = |1) (11 0101 + 12) (21 0 eith2 0

e-itI I h3 -
0 eith3

leading to

e-itHo -ithi 0 -ith3 + eith2 0 e-ith3

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

.Hi(t) = eitHo ( 11)(210
(V0 + 01+x OI ZVY Yi)) -itHo + h.c.

(3.34)

= 11) (21 0 0(t) + 12) (11 0 Ot (t)
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(3.35)
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by defining:

0(t) = eith( V0 + i e-ith2 0 1 eithi -ith2 (z Vy(t) (3.36)

y7(t) = eith3yje-ith3 (3.37)

y'(t) is just a standard Heisenberg representation of the coordinate yj, and 0(t)

represents a transition between 1) and 12). 3.35 also leads to:

H1(t1)H1(t2) = 11) (10 0(ti)Ot(t2 ) + 2) (2| 0 Of(t1) 0 O(t2 ) (3.38)

This immediately shows that multiplying an odd number of A1 terms will yield an

electronically off-diagonal result (only 1) (21 and 12) (11 containing terms), while an

even number of f 1 will generate terms with only 11) (1 and 12) (21, which make

contributions to populations. Thus, we will only concern ourselves with terms with

an even number of H1 as the rest have zero trace. With this information, we are

prepared to write the propagator down and obtain populations.

3.6 Perturbation Theory Populations

We are chiefly interested in initial density matrices of the form 1) (1 0 - (i.e.

starting purely from state 1)), as it is trivial to know what happens when we start

from pure 12) via a simple inversion of labels. A more general density matrix of the

form p 11) (if ... + (1 - p) |2) (2. ... can be decomposed into pure 11) and 12) pieces

that evolve independently in time and can be recombined to give the final population

(from linearity of the time evolution of density matrices). We however avoid starting

states with some coherence 1) (21, as these are unlikely to occur in cases that we are

interested in.

Therefore we restrict ourselves to p(0) =|1) (10 PB1 0 PB 2 where PB 1, PB 2 are reduced

initial density matrices for the two classes of modes {x} and {yi}. We then have
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population in state 11), pi(t) be:

pi(t) = Tr [p(t) (11) (11 ) 10 1)]

p(t) = e-itHLvcp(O)eitHLvc

= e-itHo - if Hi(t,)dt, P(O) (1+i

.- p1 (t) = Tr [(e-itHo (1 i...)p(O)(1 + i...)eitHo) (11) (110101)]

= Tr [((I - i ... .) p(O) (I + i ... .)) eitHo 11 101 1)-ifflo]

Now,

eitHo -itHo

from 3.33. Therefore we have:

P1(t = Tr [((1 -- i ... .) p(O) (I1+ i ... .)) (11) (11 g 1 (3 I)]

= Tr [((1 - i .. .) (11) (11 OPB1 0 PB2 ) (1 +i. . .)) (ji) (110101)]

We can immediately see that:

p (t) = TrI [(1') (110 PB1 0) PB 2) (11) (11 0101)] = Tr [P(O)] = 1

(11) (11 ( PB1 09 PB2 )) 1

t t

IJ dt, 1 l (t2)tl (tl)dt2 ) I)(101]
0 0

O PB1 0 PB 2 ) (11I48 )

(3.48)
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0

f 1 (tl)dt1 . .) e itHO

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(2) =
Pi (t Tr dt, NI f (t11(t2)

0~ 0

+ r dt1N1i(t1) (11) (11

dt2 
)

t

I dtifli(ti)
0



and so on.

This is already becoming quite alarmingly complex, but it is possibly to simplify

this by noting the following:

1. The second term is merely the complex conjugate of the first, as the operator

being traced out is the hermitian conjugate of the operator being traced out in

the first term.

2. The third term is zero. This is in fact an example of a more general case:

whenever p(O) is sandwiched between two chains of H1 , the trace will be zero

unless both sides have an even number of H1 terms. The case of one side being

even and the other being odd is simple to see, it will become unbalanced and be

reduced to an electronically off-diagonal term that leaves no trace. The case of

both sides being odd is a bit more complex: this indicates both sides will have

11) (21 g... .+ 2) (11 ... symmetry. Consequently the sandwich will reduce to:

(|1) (20 .. .+ 2) (110 ... ) (|1) (110 ps1 O PB 2 ) (11) (21 - -+ 12) (11 09. . .)

= 12) (21 ... (3.49)

Thus we have a product with 12) (21 ... symmetry, which will cancel out with

the final 1) (11 term.

These simplifications make life significantly simple, and the second order term thus

simply reduces to:

t ti

p (2 (t) = - 2Re r dt, f1(t1)N1f(t2)dt 2  (11) (11 ( PB1 9PB2 ) (Ii) (110101)
0 0 (

(3.50)
t ti

= - 2Re Tr I( dt 1'i (t1)1ftl(t 2)dt 2  (Ii) (11 0PB1 0 PB2 ) (3.51)
- - 0 0.. .

t ti
S- 2 dt, J Re [Tr [O(tl)Of(t2 ) (PB 1 0 PB 2)]] dt2  (3.52)

0 0
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employing 3.38. In a similar fashion we have:

t

P, ~(t) =2Jf
0

dti

0

dt2 fdt 3

0 0

dt2 J

Re [Tr [O(t1)Ot(t2)O(t3 )Of (t4) (PBi 0 PB2 )]] dt4

(Re [Tr [O(t)Of (t4) (PBi 0 PB 2 ) O(t2 )Ot(ti)]] dt4

0 0 0 0

t tl

(dt J dt2
0

+
0

dt1 J
0

I
0

(3.53)

dt3 I Re [Tr [O(t1)Ot(t2)O(t3 )Ot(t4 ) (PBi 0 PB2 )]] dt4

0
t

dt2 Jfdt3
0

t3

0

Re [Tr [O(t2)Ot(t1)O(t3)Ot(t4 ) (PB 1 0 PB2 )]] dt4

(3.54)

using the fact that Tr [AB] = Tr [BA] to group all the 0 operators together in the

second term.

It immediately appears obvious that the crucial objective is to evaluate traces of the

form Tr [O(ti)Ot(t2 ) . - - (PBi 0 PB2)]. For notational simplicity, we define:

F2n(ti, t2 , ... t2n) = Tr [O(ti)Ot(t2) ... O(t2n- 1)Ot(t2 ) (PB 1 0 PB2 )]

and then use F2n to calculate perturbation theory populations.

(3.55)
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3.6.1 Traces within the Condon Approximation

Within the condon approximation O(t) = Veith1 -ith2 0 I, and so it makes sense to

factor out the coupling V from the traces. Thus we use f2n(ti, t2 , ... t2n) such that:

F2n(t1 ,t 2 , ... t2n) = V2nf2n(t, t2 , .. .t 2n) (3.56)

=-> f 2n(ti, t 2, . .. t2n) = Tir [(eitihje-itjh2eit2h2 eit2hi I) (PB1 0 PB2 )] (3.57)

= Ti [(etihi itlh2it2h2 it2hi - -) PBi Ti PB2 ] (3.58)

= Tr [(eitjhje-ith2eit2h2 it2h: -) PB1 ] (3.59)

as the trace of a density matrix is always one.

These traces f2n may be analytically found in a variety of ways. We choose to evaluate

them by employing the position representation of the harmonic oscillator coherent

state basis 1p, q). Using the resolution of identity we have:

Ti [iti h1 -ith2 it2h2 -it2hi it2.h2 e it2nh) PB1]

= Jdpn+dqn+ldXn+1 Kx itihi Pi, qi) (pqi jei(t2-t)h2 X 2 - (Pn+i, qn+i|PB 1 Xi)

(3.60)

which could be evaluated by noting that etlhI etc. are the propagators for harmonic

oscillator Hamiltonians. The position representation of a time-evolving coherent state

is well-known to be Gaussian [93, 94], making this integral analytically tractable if

the bath term (Pn+1, qn+l PB1 XI) follows a similar behavior.

Fortunately, the initial bath density matrix is unlikely to not be related to harmonic

oscillators since that is the native state of the bath. PB1 is often chosen to be of
e-463 1

the "thermal form" where 3= since it indicates that the bath
Tr [e-~hi] kBT

was originally in thermal equilibrium with the initial diabatic state 11), which is a

natural starting point for studying electron-transfer dynamics. We are also interested

PB1of he phoochmicl frm" e-2P1 of the "photochemical form" Tr [e-h2] due to our interest in the dynamics of

excited states. This density matrix represents a case where the system was purely
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e-ph2
in the thermal state 12) (210 Tr [e-h2 before t = 0 but was electronically excited

completely from state 12) to state 11) at t = 0, without giving the bath-modes an

opportunity to respond. The bath-modes thus remained in thermal equilibrium with
e-#h2

state 12), leading to a starting density matrix of the form 1) (10 Tr [eh2]

Directly evaluating such traces for large 2n is especially tedious, but fortuitously we

have:

2n-1 2n

Inf2 n(ti, t2, t3 . .. t2n) = (-1)'+j+'1 n f 2(ti, t) (3.61)
i=1 j~i+1

Thus knowing f2 is sufficient to determine behavior of these traces to arbitrary order.

For thermal initial conditions we have (a complete derivation is given in appendix):

00

4 fJ(w) #Q'(t) - 2 (1- cos wt) coth -- dw (3.62)

0
00

4 rJ(w)
Q"(t) - 2 sin wtdw (3.63)

7r W
0

ln f2(ti, t2 ) = -iC(tl - t 2 ) - Q'(tl - t2 ) - iQ"(ti - t 2 ) (3.64)

while the photochemical initial conditions give:

In f 2(ti, t2 ) = -ie(ti - t2 ) - Q'(ti - t2 ) - iQ"(ti - t 2 ) + 2iQ"(ti) - 2iQ"(t2 ) (3.65)

This shows that knowledge of e and J(w) is sufficient to completely specify f2n. To-

gether with V, these are thus all the parameters one needs to calculate the population

dynamics of the spin-boson Hamiltonian (for the thermal and photochemical initial

conditions at least).

We also note that 3.61 appears to be true in general for any PB1  = ie-fh
TJr [e-rh]

h =i + M WY + dixi is a harmonic oscillator Hamiltonian with same

normal modes and frequencies as h{1 ,2 1 but not necessarily same equilibrium posi-

tions and r is an arbitrary positive real number. No deviation from this behavior
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was observed numerically upto 2n = 20 with randomly generated rK, h. The thermal

and photochemical starting states are special cases of this general PB, (albeit the only

ones with obvious physical meaning).

3.6.2 Non-Condon Traces

Second Order

Non-Condon F2n are substantially more complex than their Condon counterparts, not

the least because the coupling is no longer constant and cannot be factored out.

As a first step we attempt to evaluate F2 (ti, t2 ) to get a sense of the full-sense of the

complexity. We have:

F2 (ti, t2 ) = Tr [O(t1)Ot(t2) (PBi & PB2)] (3.66)

Since the modes in PB 2 do not couple to the diabatic electronic states (only to cou-
e-3h3

plings), we can conclude they are in thermal equilibrium, leading to PB 2 = -eh3]

Consequently we may simplify F2 down to:

F2 (t, t (2) V02 + V r [( Vyj (tl) + Vyy .(t2) PB2  Tr [itih) -itjh2it2h2 -it2hi PB1

+ Tr V yI(ti) (ziy VYY(t2) P2iti

+ V r [eitlh (z -2 etih2 t2h2-t2hPB]

+ V0Tr eitih1e itih2 it2h2 (z e-it 2hi PB1

+ Tr eithi eitih2 ( iX eit2h2 z -it2hPB] (7

This is quite complex, and will have to be evaluated piecewise. From 3.59 we have:

Tr [e tilhe-itih2 eit2h2 e-it2hi PB1 f2 (t 1 , t 2) (3.68)
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e--4h3
We also know that as PB2 = T [ _h], we will have:

(r V Hy(tl) PB2 ]
\ j /j J P vy3

j

(Kyti)) = xVX 0 = 0
Yji

where the average is the thermal average. This results from the equilibrium position

for h3 being {yj} = 0 (3.6) as these modes are not coupled to the diabatic states.

Similarly, we have:

Vyy IY(ti)) \(z Vy Yj(t 2 ) ) PB2

-=Z V KY y(t1)Y'(t 2)) + VYVYk (y,(ti)) (yH(t 2 ))
j kAj

as different modes are uncorrelated. However

Tr[ Vy Y 3 (t2) )

= ZVy (yj(tl)yjH(t 2))

cos (W (tl - t2 )) coth 2.
2mjw3j 2

3

(y'(ti)) = 0, leaving only:

PB2

- i sin(wj(ti - t2))) dw

from Eqn 6.97 of Nitzan[92].

We now focus on the more complex remaining terms. For these, it is convenient to

decompose hf 1 ,21 into sums of single-mode Hamiltonians h , which is to say:f{1,2}'

2 1

h ,2 = 1 2

h{1,2} = - + hcx2 + 1,2

(3.75)

(3.76)

We may also similarly decompose starting density matrix PB, = H p 1 into a product

of single-mode density matrices. This factorization is valid for any density matrix
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i

Z VYk (y, 1 (k)y'(t 2 ))
j k

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

Tr (E
\j

VYjyjH(ti)



of the general form Tr -h where the hamiltonian h can be decomposed into aTr [e-rh]

sum of single-mode hamiltonians, and is thus perfectly valid for both thermal and

photochemical starting conditions.

Therefore we have:

Tr [eit ib, -itih2 eit2h2 e-it2hi PB1]

= th' -itih [it2hee-it2h' ih -t1h2heit2h 2h -E(t1-t2)

(3.77)

as all the modes are independent of each other, permitting this factorization.

Se itih'i ithit2hit2he 2 PB1] is basically f2 (t1, t2 ) for a single mode, with J(w)

consequently being 2 w 6(w - wi), and no energy gap. Therefore, we have:
2miws

f (ti, t2) =

d (
dt, 2t 2

r eitdh2e-it2h

Tr
dt,

eitlhll-it1h eit2h2 e-it2 h!l i

= Tr [etih1 (ih' - ih') e-it1hit2 4 it2e h

= Tr [ei41 (2ich' i) e-itih'it2h'-it2h' J

f (t1 ,t 2) =
i d ln f(tit2) f(t t2 ) = T itih itih it2h' it2h' i

2ci dt1  1 1

(3.82)

Similarly, we find that:

i d

2ci dt2
I d 2

f (ti,
4c? dt2dt1 f

t 2 ) = Tr - it2h -it2h

t2 ) = Tr [eitih'e-it1h'Xieit2h --it2h' p
t2)= 2 xi- 1BL
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2ci dt1

(3.78)

(3.79)

(3.80)

(3.81)

(3.83)

(3.84)



Thus we have:

(3-85)

(3.86)

Tr eithi -ith2 eit2h2 tf -it2hi PB

Vi d ln fi (t, 11 2) tlt2
= V4 2ci dti 2,,t)

as multiplying all the single mode fi (together with the energy bias E) term gives

f 2 (ti, t2 ) for the whole system. We also know that in fi(ti, t2 ) oc J(w) c c ?, and

so the term will be some summation of ciVi (although the exact form depends on

f2 and thus the starting conditions), allowing us to relate it to J,,. We find

Tr eitihi V~ipi e-itih2eit2h2 z X e-it2h pB1] similarly in terms of first

and second derivatives of fi(ti, t2 ). With these we are able to write down F2 (t1 , t2 )

depending on the initial conditions. For the thermal case we have:

00

R'(t) 2 - Jc7 s cos wtdw
7r f

0
00

R"(t) 2 - r"s" sin wt coth dw

0
00

1 # /w
S(t) ]- J(w) (cos wt coth - - isin wt dw

0

F2 (ti, t2 ) = ((V + iR"(ti - t2 ) - R'(ti - t 2)) 2 + S(ti - t2)) f2 (ti, t2 )

The photochemical trace is even more complex, but can be worked out to be:

(3.87)

(3.88)

(3.89)

(3.90)

F2(t1, t2 ) = ((V + 2R'(t1) - R'(t1 - t2 ) + i R"(ti - t 2 )) (Vo + 2R'(t2 ) - R'(t1 - t2 ) + iR"(ti- t2))

+S(ti - t2 )) f 2 (ti, t2 ) (3.91)

Higher Orders

Most of the complexity of the non-condon traces stem from J,,, containing terms.

However symmetry arguments can be made for a variety of systems of interest (such
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as Fe(II)/Fe(III) self exchange) to show that Jcros is zero. Consequently, we decided

to only evaluate higher-order traces after making the Jcross = 0 approximation (as

they proved intractable otherwise). With this, we have:

F2n (tli, t2,i t3, .. t2n) = Tir VO + E vi yf(ti) V + j Vy(t2) ... PB2 f2n(ti, t2, t3, ... t2n)

(3.92)

Since PB2is of the thermal form [eh the first trace is merely a thermal average

and can be simplified fairly easily. However, calculating all the traces directly is

tedious, and so the following trace relationship proves useful:

T2n (ti, t2,... t2n)

T2 (ti,) t2)

T2n (ti, t2, . .. t2n)

-- Ty(4i) Vy(t2) ... Vy(t2n) PB2

(3.93)

= S(ti - t 2) (3.94)

= T 2(ti, t2)T2n- 2 (t, t4 .. . , t2n) + T2(t 1, t3)T2n-2(t2 , t 4 . . ,t2n) ...

+ T2(ti, t2n)T2n-2(t2, t3 ... , t2n-1) (3.95)

3.6.3 Populations from Traces

We have from Eqns. 3.46 and 3.55:

(2)(t) (3.96)

t t1

= - 2 dti Re [F2 (ti, t2)]dt2
0 0

t 0 1 t2 3

P, '(t) =2 fdt1 dt2 fdt3 Re [ F4(t1, t2, t31t4)] dt4

0 0 0 0
t

+ J dt1
0

t0

0

(3.97)

t t3

dt2  dt3 J Re [F4 (t 2 , t1, t3, t4 )] dt4

0 0

etc for population terms in the perturbation theory sequence.
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A neat pattern is a bit hard to see, but differentiating with time, we obtain:

P t = -f Re [F2 (t, t1)] dt1  (3.98)

0

P(4 (t) =2Re -tdt1 t dt2 t2F4(t) t1,t2, t3)dt3 + tdt1 dt2 t2F4(t1, t)t2, t3)dt3

.0 0 0 0 0 0

(3.99)

allowing us to see a pattern a bit more clearly. Although mathematically hard to
p(2f) (t)

explain, we can obtain any dt in the following fashion:

1. Number of terms: There will be n time-integrals of F2, over 2n - 1 time in-

dices. The first term will be F2n(t, t, t2, . . . t 2n- 1 ), the next F2n(ti, t, t 2 , . . t2n-1),

then F2 n(t 2, ti, t, ... t 2n-1) and so on. Essentially the index t translates down

the argument lane, with time indices on the left going in strictly decreasing

order and time indices on the right strictly increase along the sequence. The

maximum index on the left however has to be less than the minimum on the

right. The translation of t only stops once it reaches the nth argument position

of F2n, having begun moving from the first.

2. Limits of integration: Each of the extra 2n - 1 time indices of the F2n are

integrated over. The limits of integration for the time-indices adjacent to the t

variable run from 0 -> t. All other indices ti are integrated from 0 -+ ti_ 1 .

3. Final processing: Finally, the real part of the sum of all these integrals is

taken and multiplied by 2(-1)'.

Odd order terms ignored as the corresponding traces are zero, and thus we have closed

form expressions for all perturbation theory population growth rates.
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3.7 Memory Kernels

It is possible to obtain populations directly from summing the various p(2fls in the

perturbation theory power series. However summing a finite number of terms is

problematic as each individual p(2n) (t) diverges as t -+ oo, and none of the finite term

sums are convergent. Therefore this approach ceases to be viable after very short

times, and we are forced to seek alternative routes. One attractive approach is to use

a memory kernel formalism in the style of Mukamel [95] and we choose to work with

generalized master equations of the form:

=p - K ~,P1tidt + fK22(t, t1)p2 (ti)dti (3.100)

o 0
t t=t - K11 (t, t1)p1 (t1)dt, + f K22(t tl)(1P(t i) ) d (3.100)

0 0
t t

= - (K(tt1) + K22 (t, ti))p1(ti)dti + JK2 2 (t ti)dti (3.102)

0 0
t t

=- K+(t, ti)p1(ti)dti + JK22 (t, ti)dti (3.103)
0 0

where K+(t) K,1(t) + K 22(t ).

This expression is similar to kinetic rates, and similarly prevents populations from

diverging by making decay rates increase with increasing population. It must be noted

however that the memory kernel formalism does not prevent unphysical populations

greater than 1 or less than 0, which can only be prevented by having good quality

K11 and K 2 2 kernels.

Like the populations, the kernels K(t) can be expanded into a power series in terms

of the off-diagonal coupling, enabling us to define K(')(t, ti) such that K(t, ti) =
00

S K(')(t, ti). We can find K(') by expanding K and pi into perturbation theory
n=O
power series and matching all terms with same order on both sides of the equation.

For a two level state we have p1() = 0 for odd n due to all traces being zero, leading
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to K(2 n+1) = 0 V n E Z. Therefore we only focus on even orders and have:

dp2) t n
d "= (t 1 ) - KZ K(tjP)p (t1) dt1  (3.104)

0 (M=0dt n =

= -J (it, t1) + K -2m)(t, t1)P12m (ti) dt, (3.105)

0M=1

since p(O) (t) - 1 (no population transfer sans coupling) and K+ (t) = K 1 (t) + K 2 2 (t).

Reorganizing, we have:

(2 n) dp, tl2n) (Pi 2n2m j 2m)

K "1 td1 = -d t K+ n (t, )1 p2n(t1)dt1 (3.106)
0~ 0m=1

We know that K (t, ti) = 0 as no population transfer happens without coupling.

For the next few higher orders we have:

K ()(t tl)dti = - d1 (3.107)

0

K t1)dt =- - JK)(tt)P (ti)dti (3.108)

0 0

K ()(t, tl)dt = -d K(4 (t, ti)p__(ti) + K( (t, t)p(4)(t)) dt, (3.109)
o 0

etc. We quickly see that sequential evaluation is required as each K "n requires

knowledge of lower order kernels. d contains time integrals going from 0 -+ t,dt
and we can compare LHS and RHS to obtain expressions for K ()(t, ti) that are not

necessarily unique, but yield populations correct to order 2n in perturbation theory.

This is however only possible because K(2) can be found by evaluating K ", similarly

to K "n (it involves merely flipping the sign of c).
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3.7.1 Photochemical Kernels

Using this approach along with the rules for finding 1 outlined in the previous
dt

section, we have:

K (t, ti)dti =

0

dpt =2Re

_O

F 2 (t, tl)dtll -= K (t, t1 ) = 2Re [F2(t, ti)dt1 ]

(3.110)

is a valid Kernel. Similarly, we have:

dt -K (0 t tl)dt
0

(3.111)0 (t, ti)p (
0

= -2Re

t

-
K

0

= -2Re

t

I dt1
0

ti

0

t2

dt2 J
0

F4(tt1,t2,t3)dt3 +

(t, ti)p(2)1(ti)dti

td t2

J dt2 J F4(t, t1, t21 t3)dt3 +
0 0

t t t2

I dt1 J dt2 J F 4 (t1 , t, t2,t3 )dt3

0 0 0

(3.112)

t t2

Jdt2 fF4(t1, t, t2, t)dt3

00 1

(3.113)

and so on and so forth. These are the Kernels we use for problems with photochemical

starting conditions, due to the simplicity in obtaining them.

3.7.2 Thermal Kernels

If F2 is time-translationally invariant (as in the case with thermal initial conditions),

we can go a step further and define K(t, t1 ) = K(t -ti), reducing the kernel to a func-

tion of a single variable similar to the projector operator formalism of Nakajima[96]

and Zwanzig[97-99]. This allows us to uniquely define the kernel by differentiating
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Eqn. 3.106 to obtain:

( (2 n) n
K (t) = - - K 2n- 2 m)(t - ti) (2m)(t1)dt1 (3.114)

0 M=1

.(2m)(2p )
where p,2m)(t) is the time derivative dt

The thermal kernels to second and fourth order are thus (derivation for K(4)(t)

found in the appendices):

K2 (t) = 2Re [F2(t, 0)] (3.115)
t t1 t t

K1 (t) = -2Re dt1 (F4(tit1,t2,0) +F 4(, t, t1,t2)) dt2 + f 1 F4(t1,tit2,

0 0 0 0

- JK (t - t1 )4 2) (ti)dt, (3.116)
0

We also note that the integral of a single time-index kernel (as in the thermal

case) from 0 -+ oo gives the long-time rate constant for the reaction.

3.8 Photochemical Dynamics of Iron self exchange

Having derived closed form expressions for thermal and photochemical kernels, we

proceed to employ them to study the dynamics of Fe(II)-Fe(III) self-exchange as a

simple model system. Small V and c = 0 indicates that this system can be treated

with K(2 ) alone, allowing us to avoid computing the multiple expensive integrals

needed to obtain K

We obtained the required correlation functions via classical molecular dynamics

using the GROMACS 4.6.5 software package [1001 and TIP3P water. V was assumed

to be proportional to the t2g orbital overlap between the two iron atoms (which

was calculated with a STO-16G basis) and was then employed to calculate cross-

correlation and coupling fluctuation autocorrelation. The symmetry of this problem
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Figure 3-1: Change in orbital shapes (and consequently overlap) over
single simulation. Figure taken from [5.

the course of a

however led to cross-correlation being zero, which further simplified the problem.

More details about the simulations may be found in our publication [5].
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Correlation functions versus Figure 3-3: Spectral densities versus fre-
time. Figure taken from [5].

We observe substantial coupling fluctuation due to reorganization of the solvent

sphere around the iron ions, which significantly affected orbital overlap (as shown in

Fig. 3-1). This leads to a fairly large (KV(t)6V(O)) and correspondingly Jv, indicating

that non-condon effects will play a major role in the dynamics.
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Figure 3-4: Dynamics with Vms = 573 cm-.Figure taken from [5].

Our suspicions are proven correct as we observe a dramatic slowdown in diabatic

population transfer on introducing non-condon effects (as show in in Fig. 3-4). This

indicates that conical intersections play a major role in the dynamics, since the slow-

down in diabatic population transfer implies a faster adiabatic population transfer,

suggesting an adiabatic population "funnel" in the form of a conical intersection. We

thus been able to obtain the impact of conical intersections on non-adiabatic dynam-

ics with this simplified model, which can now be applied to more complex systems

with confidence about its abilities to estimate the effect of such surface crossings.

3.9 Exact Solution for Slow Baths within the Con-

don Approximation

Having discussed the LVC model and procedures for solving it perturbatively in great

details, we retreat back to the spin-boson model and attempt to figure out methods

for solving it for large V, and potentially extend such methods to the LVC model by

relaxing the Condon approximation. In the process we find that the spin-boson model

can be exactly solved for very slow baths, and proceed to highlight the solution.
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We have from 3.64 that for a thermal bath:

00

ln f 2 (ti, t2 ) = -ie(ti - t 2 ) - jJ 2 (1 - cos (w(ti - t 2 )))coth 1 + i sin (w(ti- t2)) dw
7r W 2

0

(3.117)

For a very slow bath where w << t for all w with significant density of states, we may

expand the sin and cos as Taylor series to obtain:

In f2 (ti, t2) = -a(ti - t2)2 - i(A + E)(ti - t2 ) (3.118)

A =- f dw, a =- fJ() coth --wd1 (3.119)
7r W 7r 2

0 0

4 c)o 2c?2te oA is the re-organization energy of the system as -r W d_ _ _2,Ir w .. miwote o

tential energy stored in the modes of h2 when {xj} are at the equilibrium position

of hl. The photochemical bath reduces to a similar gaussian form in the slow bath

limit as well, and we believe that this is the case for all initial harmonic bath states.

Using 3.61 to calculate f2n, we obtain:

f2n(ti, t2, t3 ... t 2n) = f2(t1 + t3  ..+. + t2n- 1, t2 + t4 ... + t2n) (3.120)

As a consequence of this we discover that perturbation theory population growth rate

terms obey the following relationship:

-(2n)(t) 2V2 tip(2n- 2)(ti)dti, Vn > 1, n E Z (3.121)
n - 1

0

In Laplace space this becomes:

P(2n)(,) _ 2V2 1 d p(2n-2) 1 (2V2d) p(2)() (3.122)
n - I s ds (n - 1)! s ds f
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We can now sum to infinite order easily and obtain:

00 00 V~T2 1r2

p(2n S 1 (j d P (2)(S) = e 2 dp(2)(s)
n=1 n=1 (n - 1)! s ds

N 2V
2 

d = e42 d

Now e A = ed. 2 represents a translation ins2 . Therefore:

00

(s) = P(2n) e4V2d (2)(V/'S) _ p(2)(V/ 2 + 4V 2 )
n=1

In time domain this translates back to ([101J):

15= = - 2V J J1 (2Vt1 )p(2) ( t 2 - ct1

Since f2 itself is Gaussian, j (t)=-Re

have:

a-e 4-Re 2
= ~ 2 7 Q~ c L

[ - ( )
2 e .T r1 w

vfa-J2 Therefore we

J1(2Vt1)erf 2ax/F t+i(A\e) dt1  erf 2at+i(A\e)

1 2~/ / k 2vra-
0 .J

(3.126)

We call this method GaussSB (Gaussian Spin-Boson).

3.9.1 Comparison to exact code

The accuracy of GaussSB populations were checked against numerically exact HEOM

code for a Debye spectral density [81, 82, 102]. We also compare those to NIBA

populations to see whether it can be applied in regimes where NIBA fails. Since

J(w) = Wc ,the cutoff frequency wc controls the bath time-scale and is chosen to
W2 + W2

be 10-4 a.u. C++ code was written by the author employing the error function im-

plementation by Johnson [1031 and the GSL implementation of Quadpack integration

routines [104, 1051 to give the populations predicted by 3.126. While it is impossible
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to achieve agreement to doubles precision on account of errors in the erf function [103]

and HEOM truncation errors, we obtain essentially exact visual agreement.
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We also check cases with non-zero energy bias (where NIBA is prone to catas-
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trophic failure) and obtain visual agreement there as well.

3.9.2 Non-exponential relaxation

In the event of zero energy bias c, we have K11 (t) = K2 2 (t) from symmetry. Conse-

quently we have:

ti

dp - K 11(t - ti)
0

ti

- JKii(t - t)
0

Pi(s) = -ku(s) (2P 1 (s) -

(3.127)

(3.128)

(3.129)
S J

after taking a Laplace transform on both sides of the equation (k(s) is the Laplace

transform of K(t)).

From properties of Laplace transforms we also know that:

P1 (s) = sPi(s) - P1(0) = sP1(s) - 1 Pi) Pi(s) + 1
S

Therefore, we have:

P(s)
- 2P1(s)

SSP 1(S)

1+ 2P1 (s)

The rate constant is the time-integral of K11(t) from 0 -+ oo, and is thus k(O), which

is zero unless the denominator also goes to zero permitting some limit to be taken.

This is in-fact what happens in real systems. However, for very slow baths we have

from Eqns. 3.124 and 3.126 that

P1(s) = PJ(2) (/s2 +4V2) = -Re [
64

V2 (b-i N//s&4V2)2( - ierfi 'bi182+4V2

(3.130)

(3.131)

V/a(s2 + 4V 2 ) I
(3.132)

(P1 (t1) - P2 (ti)) dti

(2p1(ti) - 1) dti

dp
L I dt

-



[/V 2- (-2V)2 ( ir i
P1(0) = -Re L 4.( f J 2 - (3.133)

2 V V/-a 2

for arbitrary a, b, V. Therefore, the formal rate constant for the Gaussian bath system

is zero, indicating non-exponential relaxation. This is interesting, but not particu-

larly surprising, as a slow bath would take an enormous amount of time to relax to

equilibrium, and can thus have a formal rate constant of near zero.

3.10 Many Level Systems

The LVC and spin-boson models suffer from a major drawback in that they are

two level models while most excited state dynamics processes involve multiple levels.

TADF itself involves no less than five for instance, encouraging us to attempt to

generalize our results to many level problems.

We begin with the basic generalization of the spin-boson model, where:

H =Z a) (al 2 ha + Va8 (ia) (I3+1,) (a1) DI (3.134)
a=1 a=1t3=a+1

ha =6a +Z + ma 2 + (3.135)

ha is the harmonic oscillator Hamiltonian associated with diabatic state a. We further

define:

Ca a C, - C. (3.136)

Oa(t) = eih te-ih3t (3.137)

Fn(ti, t2 , t3 ... tn, ai, a2 ... an, an+1) " 'r PBrJ O kaska1 (tk) (3.138)
- k=1.

Population current only flows if an+1 = a1 , which by our convention about starting
-phi

electronic state must be 1). With thermal initial conditions PB = r ewe

65



have:

n-1

r (jhijihiti ihak 1 (tk+1-tk) -ihltn

Fn(t, t2, t3 ... tn, al = 1, a2... an, an+1 =1) = -e he

(3.139)

We then have the following trace relationship:

n-1 n akak+1 /a 1+1

In Fn = - c 2m ((-1 + cos (Wi(t- t)) coth i sin(Wi(tk - t1)
i k=1 1=k+1

modes

(3.140)

=J (-1 + cos (W(tk - ti))) coth - i sin (W(tk - t)) d

(3.141)

JAl (W) = (6AEakak1(t), 6Eaaji cos wt)dt (3.142)

0

JAEa,,3(t) AEa/ (t) - (AEa,,3(t)) (3.143)

A Eaj,3(t) = Ea. (t) - E,(t) (3.144)

In other words, ln Fn is a sum of all pairs of possible bath correlation functions

with two time-ordered time indices. The weights of each of these functions depend

on the energy-gap cross-correlation between the respective Hamiltonian pairs. This

may be interpreted as follows: Oi a (ti) represents a "hop" from Jai) -+ Jai+,)

in time ti. Population current can only flow if we have a closed path of the form

|1) - In)... -+ 1), otherwise all we will have is coherence. Thus, the traces are

basically an expectation value of all the hops needed along that path. It therefore not

unsurprising that we obtain an expression that is effectively the product of correlations

between two hops, over all such possible pairs of hops. The correlation between hops

depends on how the normal modes responsible couple, resulting the expression with

spectral densities that tie it to the energy gap cross-correlation over each hop pairs.
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While there is a great level of semblance, Eqn. 3.141 is however not strictly

speaking a generalization of Eqn. 3.61 as it only holds for thermal conditions, while

the more general Eqn. 3.61 holds for any harmonic initial conditions for systems with

only two states. The photochemical conditions are trickier, and have so far not been

amenable to such a closed form relationship, although we believe that one exists and

will be discovered.

One final note is that with multiple levels in the picture, odd ordered kernels and

populations are no longer zero beyond the first order (where they remain zero). Thus

the complexity of the problem increases significantly, but not insurmountably. We are

currently attempting to extend GaussSB for such systems with so far little success,

but we hope that it will not be so for long.

3.11 Conclusion and Future Directions

In this chapter we described an approach for perturbatively solving spin-boson and

LVC type systems and provided closed form expressions which can easily be gener-

alized and applied to as high an order in perturbation theory as desired (or possible

based on computing power). This enabled us to discover conical intersections in a

model Fe(II)-Fe(III) self-exchange electron transfer, and also study effects of such

surface crossings on the dynamics of the system. The obvious next step will be to

apply this to larger chemical systems where conical intersections are observed in real

life. Members of our group are already attempting to employ this method to study

the effect of conical intersections on the keto-enol tautomerism of nucleic-acid bases,

and we hope to study larger systems in the future.

We have also proposed a simple analytic exact solution to the spin-boson problem

in the slow bath regime, which we have verified against HEOM. However this solution

does not work for fast baths for timescales beyond the characteristic bath response

time, and we now seek to adjust this method to handle moderately fast baths. We

have noted that one of the issues with the GaussSB solution is that the memory kernel

is too long lived, and we are currently exploring avenues to ensure that the kernel
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decays at approximately the right rate at long times, using what we already know

about perturbative solutions. Various interpolations and resummation techniques

are currently under consideration, but we are yet to find an approach that will be

satisfactory for fast baths in thr strong V regime.

Finally, we hope to extent GaussSB to the LVC model and to many level systems.

We have been able to determine a trace relationship for many level systems (with

thermal initial conditions) that allow us to write down simple closed form expressions

for the populations, but an analytic solution still lies beyond reach. We hope to work

out such an expression soon, and use it to study dynamics of organic semiconductor

materials, and especially TADF.
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Chapter 4

Conclusions and Future Directions

In the two preceding chapters we have explored how approximate quantum chemistry

methods may be employed to determine properties and dynamics of electronic ex-

cited states. In particular, we discovered that while LR-TDDFT is not particularly

effective for studying charge-transfer excited states, ROKS can give reasonably accu-

rate numbers for such states with semi-local-hybrid functionals. This enables use of

ROKS to study materials proposed as candidates for fabricating TADF OLEDs, and

thus assist computational design of materials. However, we need to explicitly account

for the effect of the condensed phase (solvent or host material) into our calculations,

for even though experimental data indicates that they do not affect the stationary

properties of the material all that much, we know from other dynamics studies that

they will play a major role in dynamics and related parameters like quantum yields

and energy efficiency.

We have also worked on developing quantum dynamics methods in order to be able

to calculate such properties cheaply in condensed phases. Currently we are able to

compute dynamics for the LVC model perturbatively to fourth order, which we then

can resum to approximate higher orders. This has enabled us to determine the effect

of conical intersections on non-adiabatic dynamics for a model Fe(II)-Fe(III) self-

exchange reaction, indicating that non-Condon effects play a major role even in outer

sphere electron transfer dynamics, even if they do not affect long term rates as much.

We now hope to use our method on more complex systems, such as photochemistry of
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DNA bases and potentially dynamics of electron transfer for organic semiconductors,

where coupling is expected to fluctuate significantly based on conformations.

At the other limit we have attempted to solve the spin-boson model exactly for

arbitrary coupling strengths. We have succeeded exactly in the slow bath limit, where

we have obtained an exact analytic form for the population that is consistent with

HEOM for Debye spectral densities. In future, we hope to generalize this solution

to faster baths and other models like LVC, bringing us a step closer to obtaining

numerically exact quantum dynamics for such models.

We have also begun working on extending our approaches to many-state problems,

where we have already found a general form for the relevant traces, and can connect

them together to obtain Kernels as well as potentially an exact slow bath solution. All

these in combination would enable us to solve difficult problems regarding behavior of

excited states, where we would be able to use ROKS to obtain the energy surfaces for

each state, and then be able to witness their dynamics. This method can be employed

to study TADF, exciton dynamics, conical intersections in photochemistry, photosyn-

thesis and other processes of experiment, hopefully helping us design new material.

Even if we are rather unfortunate and these methods fail to have sufficient predictive

power, we would still be able to understand what phenomenon are consequential at

the microscopic level, by recognizing the places where our approximations missed the

mark. This is a long way off from "solving" all of chemistry, but it is a baby step in

that direction, to be extended and refined over the years.
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Appendix A

TADF Test-Set

A.1 Molecules Tested

The effectiveness of the four devised protocols were determined by comparison to

experimental data for the following compounds (structures given in Figure A-1):

2CzPN[1J, 4CzPN[1], 4CzTPN-Me[1], 4CzTPN[1], PIC-TRZ[1], ACRFLCN[1], a-

NPD[1], PXZ-TAZ[2], DPA-DPS[1], PXZ-OXD[2], DTC-DPS[1, 4], CBP[1], CC2TA[1j,

DMAC-DPS[3], 2PXZ-OXD[2], DTPA-DPS[1], NPh3[1], PhCz[1], 4CzIPN[1], 2PXZ-

TAZ[2], PXZ-DPS[3], PPZ-4TPT[3], DMOC-DPS[4], PPZ-DPS[3, PXZ-TRZ[1], PPZ-

DPO[3] and PPZ-3TPT[3]. The calculated equilibrium geometries are provided in the

associated geometry.zip file. Convergence failure prevented a couple of Si optimiza-

tions with the LC-wPBE functional (specific instances are noted in the data tables

below), and thus the provided geometry corresponds to the final structure before the

calculations crashed.
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A.2 Structures of tested molecules
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Figure A-1: Structures of all the molecules in the test-set[1-4].
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A.3 PBE Functional Calculations

Expt. Prot. A/B Prot. C/D

3.19

2.82

2.49

2.61

2.01

1.61

1.40

1.49

3.35 1.90

3.05 1.71

Compound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

PPZ-3TPT

2.26

1.85

2.80

1.36

2.47

2.70

1.79

1.88

1.19

2.75

3.30

3.39

1.66

1.70

1.54

1.68

2.20

1.20

1.13

0.96

1.47

Table A. 1: Eabs, from PBE functional in eV. For Protocols A/B, RMS error is 1.38 eV and mean
error -1.31 eV, while Protocols C/D have RMS error 0.69 eV and mean error -0.64 eV.

73

2.68

2.23

2.09

1.97

2.54

3.01

2.46

2.73

2.78

2.59

2.87

3.54

2.76

2.61

2.05

2.71

3.36

3.49

2.16

2.64

2.29

2.42

2.60

1.92

2.65

2.17

2.33

3.31

3.33

3.53

3.18

3.62

3.80

3.64

3.38

3.12

3.47

3.74

3.66

2.85

3.30

3.13

3.34

3.35

2.76

2.73

2.78

3.34



Table A.2: Eem from PBE functional in eV. Protocol A has RMS error 0.81 eV and mean error
-0.75 eV; Protocol B has RMS error 1.48 eV and mean error -1.45 eV; Protocol C has RMS error
0.53 eV and mean error -0.49 eV; and Protocol D has RMS error 0.52 eV and mean error -0.48 eV.

ACompound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

PPZ-3TPT

BExpt.

2.63

2.38

2.22

2.32

2.52

2.55

2.87

2.72

3.09

2.50

3.07

3.40

2.63

2.70

2.47

2.96

3.46

3.43

2.48

2.68

2.45

2.50

2.79

2.15

2.27

2.15

2.35

CProt.

2.01

1.61

1.40

1.49

1.90

1.71

2.26

1.85

2.80

1.36

2.47

2.70

1.79

1.88

1.19

2.75

3.30

3.39

1.66

1.70

1.54

1.68

2.20

1.20

1.13

0.96

1.47
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Prot.

1.06

0.80

0.77

0.85

1.14

1.42

1.44

1.19

1.62

0.97

1.49

2.09,

1.13

1.26

0.81

1.52

2.43

3.18

1.00

1.05

0.81

0.97

1.04

0.46

0.79

0.56

0.77

Prot.

2.35

1.81

1.56

1.55

2.12

2.49

2.10

2.18

2.50

2.09

2.62

2.50

2.30

2.28

1.78

2.41

3.05

3.26

1.81

1.91

1.96

2.05

2.42

1.61

2.11

1.84

1.97

Prot. D

2.38

1.81

1.80

1.56

2.14

2.35

2.09

2.15

2.50

2.07

2.59

2.47

2.35

2.29

1.77

2.41

3.14

3.21

1.80

1.89

1.97

2.05

2.42

1.61

2.12

1.83

1.96



Table A.3: Eo-o from PBE functional in eV. Experimental data was unavailable for a few of the
molecules, and thus the corresponding slots have been left blank. Protocol A has RMS error 1.00 eV
and mean error -0.95 eV; Protocol B has RMS error 1.30 eV and mean error -1.25 eV; Protocol C
has RMS error 0.56 eV and mean error -0.54 eV; and Protocol D has RMS error 0.55 eV and mean
error -0.52 eV.

Compound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

1.54

1.68

2.20

1.20

1.13

0.96

PPZ-3TPT 2.65 1.47

A B C DExpt. Prot.

2.94 2.01

2.60 1.61

2.33 1.40

2.43 1.49

2.91 1.90

2.83 1.71

3.10 2.26

1.85

3.28 2.80

1.36

3.34 2.47

3.54 2.70

3.15 1.79

3.00 1.88

1.19

3.19 2.75

3.60 3.30

3.58 3.39

2.63 1.66

1.70

Prot.

1.55

1.40

1.13

1.26

1.55

1.59

1.84

1.48

2.28

1.18

2.08

2.43

1.52

1.63

1.04

2.18

2.96

3.40

1.48

1.34

1.26

1.31

1.69

0.87

0.97

0.77

1.07

Prot.

2.54

2.03

1.72

1.75

2.36

2.67

2.29

2.42

2.64

2.26

2.75

2.73

2.55

2.45

1.92

2.56

3.20

3.36

2.00

2.11

2.15

2.23

2.52

1.77

2.23

2.00

2.14

1.97

2.11

2.15

2.24

2.51

1.76

2.25

2.00

2.15
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Prot.

2.57

2.02

1.96

1.75

2.39

2.55

2.30

2.42

2.65

2.27

2.74

2.76

2.57

2.47

1.93

2.56

3.35

3.45

2.73

2.80

3.12

2.40

2.53

2.40



Table A.4: AEST from PBE functional in meV. Experimental data was unavailable for a few of the
molecules, and thus the corresponding slots have been left blank. Some of the calculated numbers
were negative, and thus were excluded from the log error calculation. Protocol A has log RMS error
is 0.92 and log mean error -0.74; Protocol B has log RMS error 1.45 and log mean error -1.34;
Protocol C has log RMS error 0.73 and log mean error -0.55; and Protocol D has log RMS error
0.49 and log mean error -0.34.

A B C DCompound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

PPZ-3TPT

Expt. Prot.

310 163

150 81

90 50

90 71

180 34

240 6

730 140

6

520 295

5

360 119

710 177

200 13

90 6

4

460 278

570 400

550 402

100 69

4

80 5

420 10

240 109

90 5

60 4

90 4

270 5

Prot.

9

8

9

11

26

8

15

4

26

4

2

118

23

2

3

32

171

466

11

3

2

3

1

2

4

3

3

76

Prot.

202

13

-18

-10

64

342

124

167

114

178

81

248

62

1

80

80

228

291

14

76

6

142

63

-5

94

106

122

Prot.

225

-1

223

-8

92

228

136

173

117

192

76

276

81

25

95

83

383

382

-16

77

10

149

57

-17

109

108

126



A.4 B3LYP Functional Calculations

Table A.5: Eabs, from B3LYP functional in eV. The numbers in brackets for Protocols C/D are
from the cc-pVTZ basis set (some calculations crashed for a few of the larger molecules, leading to
blanks). The larger basis introduces an RMS red-shift of about 0.08 eV for both protocols, which
however does not affect the overall conclusions. For Protocols A/B, RMS error is 0.57 eV and mean
error -0.45 eV, while Protocols C/D have RMS error 0.18 eV and mean error -0.06 eV. All the
reported errors correspond to the 6-31G* calculations alone.

Prot. A/B Prot. C/D

3.16

2.74

2.44

2.47

Compound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

PPZ-3TPT

(3.14)

(2.72)

(2.40)

(2.43)

Expt.

3.19

2.82

2.49

2.61

3.35

3.05

3.31

3.33

3.53

3.18

3.62

3.80

3.64

3.38

3.12

3.47

3.74

3.66

2.85

3.30

3.13

3.34

3.35

2.76

2.73

2.78

3.34
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2.84

2.47

2.21

2.26

2.82

2.55

3.07

2.74

3.53

2.31

3.31

3.56

2.92

2.75

2.21

3.47

3.93

4.04

2.50

2.63

2.46

2.53

3.10

2.05

2.10

1.90

2.34

3.24

3.25 (3.17)

3.22 (3.14)

3.33 (3.27)

3.52 (3.42)

3.12 (3.07)

3.55

3.68 (3.60)

3.45

3.27 (3.19)

2.79 (2.77)

3.48

3.92 (3.69)

4.02 (3.89)

2.65 (2.64)

3.28 (3.22)

2.96 (2.89)

2.95 (2.85)

3.34 (3.26)

2.75

2.97 (2.93)

2.68 (2.63)

2.89 (2.81)



Table A.6: Eern from B3LYP functional in eV. The labels R and U for Protocol D describes
whether the triplet geometries were obtained via RODFT or UODFT respectively. The numbers
in brackets for Protocols C and D are from the cc-pVTZ basis set (some calculations crashed for
a few of the larger molecules, leading to blanks). The larger basis introduces an RMS red-shift of
about 0.07 eV for both protocols, which however does not affect the overall conclusions. Protocol A
has RMS error 0.25 eV and mean error 0.11 eV; Protocol B has RMS error 0.65 eV and mean error
-0.62 eV; Protocol C has RMS error 0.19 eV and mean error -0.001 eV; and Protocol D has RMS
error 0.22 eV and mean error 0.02 eV with RODFT; and RMS error 0.23 eV with mean error 0.01
eV when used with UODFT. All the reported errors correspond to the 6-31G* calculations alone.

78

Compound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

PPZ-3TPT

Expt.

2.63

2.38

2.22

2.32

2.52

2.55

2.87

2.72

3.09

2.5

3.07

3.40

2.63

2.70

2.47

2.96

3.46

3.43

2.48

2.68

2.45

2.50

2.79

2.15

2.27

2.15

2.35

Prot. A

2.84

2.47

2.21

2.26

2.82

2.55

3.07

2.74

3.53

2.31

3.31

3.56

2.92

2.75

2.21

3.47

3.93

4.04

2.50

2.63

2.46

2.53

3.10

2.05

2.10

1.90

2.34

Prot. B

1.85

1.55

1.41

1.50

1.79

2.12

2.19

2.10

2.59

1.82

2.52

2.87

1.87

2.27

1.70

2.46

3.13

3.74

1.70

1.99

1.81

1.88

2.16

1.45

1.62

1.38

1.66

Prot. C

2.66 (2.65)

2.11 (2.10)

1.87

1.98 (1.96)

2.54 (2.52)

2.77 (2.71)

2.72 (2.64)

2.72 (2.66)

3.11 (3.02)

2.58 (2.53)

3.21

2.99 (2.91)

2.66

2.90 (2.84)

2.37 (2.35)

3.03

3.56 (3.39)

3.75 (3.65)

2.20 (2.19)

2.54 (2.51)

2.52 (2.46)

2.50 (2.42)

3.00 (2.91)

2.23

2.51 (2.47)

2.25 (2.21)

2.43 (2.37)

Prot. D (R)

2.79 (2.76)

2.25 (2.24)

2.07 (2.03)

2.01 (1.99)

2.70

2.83 (2.76)

2.62 (2.55)

2.63 (2.57)

3.10 (3.01)

2.49 (2.44)

3.17

2.87 (2.79)

2.74

3.27 (3.18)

2.28 (2.26)

3.04

3.51 (3.40)

3.75 (3.64)

2.26 (2.25)

2.47 (2.43)

2.53 (2.46)

2.49 (2.40)

3.00 (2.92)

2.29

2.51 (2.46)

2.25 (2.21)

2.43 (2.37)

Prot. D (U)

2.78

2.25

2.00

2.00

2.72

2.82

2.62

2.62

3.10

2.47

3.17

2.85

2.69

3.29

2.26

3.04

3.51

3.68

2.25

2.46

2.53

2.49

3.00

2.29

2.50

2.25

2.43



Table A.7: Eo-o from B3LYP functional in eV. Experimental data was unavailable for a few of the
molecules, and thus the corresponding slots have been left blank. The labels R and U for Protocol
D describes whether the triplet geometries were obtained via RODFT or UODFT respectively. The
numbers in brackets for Protocols C and D are from the cc-pVTZ basis set (some calculations crashed
for a few of the larger molecules, leading to blanks). The larger basis introduces an RMS shift of
about 0.05 eV for both protocols, which however does not affect the overall conclusions. Protocol
A has RMS error 0.26 eV and mean error -0.10 eV; Protocol B has RMS error 0.52 eV and mean
error -0.46 eV; Protocol C has RMS error 0.14 eV and mean error 0.02 eV; Protocol D has RMS
error 0.23 eV and mean error 0.10 eV with RODFT; and RMS error 0.24 eV with mean error 0.09
eV when used with UODFT. All the reported errors correspond to the 6-31G* calculations alone.

Compound Expt. Prot. A Prot. B Prot. C Prot. D (R) Prot. D (U)

2CzPN 2.94 2.84 2.28 2.95 (2.96) 3.03 (3.04) 3.04

4CzPN 2.60 2.47 2.04 2.46 (2.45) 2.49 (2.51) 2.49

4CzTPN-Me 2.33 2.21 1.81 2.20 2.26 2.22

4CzTPN 2.43 2.26 1.9 2.24 (2.23) 2.24 (2.25) 2.24

PIC-TRZ 2.91 2.82 2.35 2.91 3.09 3.16

ACRFLCN 2.83 2.55 2.34 3.02 (2.97) 3.17 (3.12) 3.19

a-NPD 3.10 3.07 2.65 2.97 (2.90) 3.01 (2.94) 3.02

PXZ-TAZ 2.74 2.41 3.03 (3.01) 3.06 (3.05) 3.07

DPA-DPS 3.28 3.53 3.11 3.33 (3.26) 3.39 (3.33) 3.39

PXZ-OXD 2.31 2.07 2.82 (2.81) 2.85 (2.85) 2.86

DTC-DPS 3.34 3.31 2.91 3.41 3.48 3.49

CBP 3.54 3.56 3.24 3.30 (3.24) 3.41 (3.26) 3.32

CC2TA 3.15 2.92 2.43 3.09 3.09 3.08

DMAC-DPS 3.00 2.75 2.54 3.11 (3.06) 3.66 (3.63) 3.69

2PXZ-OXD 2.21 1.95 2.58 (2.59) 2.61 (2.63) 2.61

DTPA-DPS 3.19 3.47 3.02 3.27 3.32 3.33

NPh3 3.60 3.93 3.65 3.74 (3.60) 3.86 (3.78) 3.86

PhCz 3.58 4.04 3.9 3.88 (3.81) 4.14 (4.05) 4.08

4CzIPN 2.63 2.5 2.12 2.46 (2.45) 2.46 (2.47) 2.45

2PXZ-TAZ 2.63 2.31 2.84 (2.85) 2.88 (2.89) 2.89

PXZ-DPS 2.73 2.46 2.17 2.78 (2.75) 2.78 (2.76) 2.78

PPZ-4TPT 2.80 2.53 2.22 2.73 (2.66) 2.74 (2.66) 2.74

DMOC-DPS 3.12 3.1 2.59 3.21 (3.13) 3.27 (3.21) 3.27

PPZ-DPS 2.40 2.05 1.78 2.51 2.52 2.52

PXZ-TRZ 2.53 2.1 1.87 2.73 (2.71) 2.76 (2.75) 2.76

PPZ-DPO 2.40 1.9 1.65 2.47 (2.44) 2.47 (2.44) 2.47

PPZ-3TPT 2.65 2.34 1.99 2.66 (2.61) 2.67 (2.62) 2.67
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Table A.8: AEST from B3LYP functional in eV. The labels R and U for Protocols C and D
describes whether the T1 state was obtained via RODFT or UODFT respectively. Experimental
data was unavailable for a few of the molecules, and thus the corresponding slots have been left
blank. Some of the calculated numbers were negative, and thus were excluded from the log error
calculation. The numbers in brackets for Restricted calculations with Protocols C and D are from
the cc-pVTZ basis set (some calculations crashed for a few of the larger molecules, leading to blanks).
The larger basis introduces some shift which however does not affect the overall conclusions. Protocol
A has log RMS error is 0.68 and log mean error -0.37; Protocol B has log RMS error 1.04 and log
mean error -0.85; Protocol C has log RMS error 0.35 and log mean error -0.20 with RODFT; and
log RMS error 0.16 and log mean error 0.00 with UODFT. Finally, Protocol D has log RMS error
0.35 and log mean error -0.03 with RODFT, and log RMS error 0.31 and log mean error 0.12 with
UODFT. All the reported errors correspond to the 6-31G* calculations alone.

Compound Expt. Prot. A Prot. B Prot. C (R) Prot. C (U) Prot. D (R) Prot. D (U)

2CzPN 310 340 10 284(274) 394 357(352) 477

4CzPN 150 179 10 13 (-26) 71 48 (41) 105

4CzTPN-Me 90 107 10 -13 49 47 64

4CzTPN 90 129 -3 52 (50) 108 44 (67) 99

PIC-TRZ 180 78 28 129 198 308 448

ACRFLCN 240 8 10 354 (313) 439 500 (468) 613

a-NPD 730 582 513 370 (365) 430 411 (408) 479

PXZ-TAZ 11 7 353 (333) 413 382 (372) 447

DPA-DPS 520 636 395 341 (320) 403 407 (397) 472

PXZ-OXD 8 6 324 (304) 387 356 (347) 424

DTC-DPS 360 337 80 265 324 341 404

CBP 710 596 753 497 (487) 570 610 (505) 597

CC2TA 200 66 55 53 139 53 135

DMAC-DPS 90 9 9 79 (53) 146 631 (614) 727

2PXZ-OXD 20 6 175 (167) 224 202 (208) 259

DTPA-DPS 460 606 338 307 369 363 428

NPh3 570 745 699 460 (359) 540 582 (536) 661

PhCz 550 852 1007 599(571) 702 863 (813) 908

4CzIPN 100 126 10 35 (23) 92 27 (42) 83

2PXZ-TAZ 9 6 215 (211) 267 247 (255) 315

PXZ-DPS 80 38 8 20 (-21) 66 18 (-11) 62

PPZ-4TPT 420 57 6 239 (244) 289 254 (244) 306

DMOC-DPS 240 280 6 177 (162) 232 239 (244) 301

PPZ-DPS 90 7 7 131 178 134 181

PXZ-TRZ 60 6 5 197 (176) 255 228 (220) 287

PPZ-DPO 90 6 5 135 (132) 179 141 (140) 185

PPZ-3TPT 270 8 5 195 (196) 241 207 (205) 255
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A.5 PBEO Functional Calculations

Table A.9: Ebas from PBEO functional in eV. For Protocols A/B, RMS error is 0.43 eV and mean
error -0.28 eV, while Protocols C/D have RMS error 0.28 eV and mean error 0.11 eV.

A/BCompound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

PPZ-3TPT

C/D

81

Expt.

3.19

2.82

2.49

2.61

3.35

3.05

3.31

3.33

3.53

3.18

3.62

3.80

3.64

3.38

3.12

3.47

3.74

3.66

2.85

3.30

3.13

3.34

3.35

2.76

2.73

2.78

3.34

Prot.

3.03

2.66

2.41

2.45

3.03

2.73

3.22

2.90

3.63

2.50

3.47

3.73

3.16

2.91

2.39

3.57

4.05

4.16

2.70

2.81

2.65

2.69

3.29

2.20

2.28

2.09

2.51

Prot.

3.31

2.83

2.61

3.31

3.35

3.29

3.36

3.41

3.63

3.20

3.67

4.73

3.66

3.35

3.12

3.56

4.04

4.16

2.78

3.38

3.04

3.04

3.47

2.80

3.02

2.76

2.97



Table A.10: Eem from PBEO functional in eV. Protocol A has RMS error 0.35 eV and mean error
0.28 eV; Protocol B has RMS error 0.49 eV and mean error -0.44 eV; Protocol C has RMS error
0.20 eV and mean error 0.10 eV; and Protocol D has RMS error 0.23 eV and mean error 0.11 eV.

ACompound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

PPZ-3TPT

BExpt.

2.63

2.38

2.22

2.32

2.52

2.55

2.87

2.72

3.09

2.50

3.07

3.40

2.63

2.70

2.47

2.96

3.46

3.43

2.48

2.68

2.45

2.50

2.79

2.15

2.27

2.15

2.35

CProt.

3.03

2.66

2.41

2.45

3.03

2.73

3.22

2.90

3.63

2.50

3.47

3.73

3.16

2.91

2.39

3.57

4.05

4.16

2.70

2.81

2.65

2.69

3.29

2.20

2.28

2.09

2.51

82

Prot.

2.00

1.80

1.57

1.66

2.03

2.28

2.40

2.29

2.77

2.01

2.63

3.10

2.11

2.39

1.90

2.57

3.32

3.94

1.86

2.18

1.95

2.05

2.35

1.55

1.79

1.57

1.84

Prot.

2.73

2.36

2.09

2.09

2.62

2.94

2.83

2.84

3.21

2.68

3.32

3.13

2.83

2.94

2.49

3.11

3.51

3.88

2.37

2.67

2.59

2.57

3.11

2.21

2.55

2.31

2.50

Prot. D

2.89

2.45

2.13

2.12

2.88

2.84

2.74

2.74

3.20

2.59

3.29

2.99

2.83

2.91

2.39

3.13

3.62

3.91

2.43

2.62

2.60

2.57

3.30

2.18

2.57

2.32

2.51



Table A.11: Eo-o from PBEO functional in eV. Experimental data was unavailable for a few of the
molecules, and thus the corresponding slots have been left blank. Protocol A has RMS error 0.23
eV and mean error 0.07 eV; Protocol B has RMS error 0.37 eV and mean error -0.28 eV; Protocol
C has RMS error 0.17 eV and mean error 0.11 eV; and Protocol D has RMS error 0.27 eV and mean
error 0.19 eV.

A BCompound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

PPZ-3TPT

Expt. Prot.

2.94 3.03

2.60 2.66

2.33 2.41

2.43 2.45

2.91 3.03

2.83 2.73

3.10 3.22

2.90

3.28 3.63

2.50

3.34 3.47

3.54 3.73

3.15 3.16

3.00 2.91

2.39

3.19 3.57

3.60 4.05

3.58 4.16

2.63 2.70

2.81

2.73 2.65

2.80 2.69

3.12 3.29

2.40 2.20

2.53 2.28

2.40 2.09

2.65 2.51

Prot.

2.48

2.29

1.99

2.10

2.55

2.51

2.83

2.59

3.26

2.26

3.09

3.46

2.66

2.67

2.14

3.15

3.84

4.09

2.35

2.48

2.30

2.37

2.77

1.90

2.04

1.83

2.16

83

Prot.

3.05

2.63

2.33

2.34

2.99

3.20

3.10

3.12

3.43

2.90

3.51

3.44

3.21

3.16

2.69

3.35

3.84

4.01

2.60

2.95

2.84

2.80

3.31

2.45

2.76

2.53

2.73

C Prot. D

3.14

2.69

2.33

2.36

3.32

3.22

3.15

3.17

3.51

2.96

3.64

3.46

3.21

3.32

2.74

3.43

3.99

4.31

2.62

3.03

2.85

2.83

3.51

2.44

2.81

2.55

2.77



Table A.12: AEST from PBE0 functional in meV. Experimental data was unavailable for a few of
the molecules, and thus the corresponding slots have been left blank. Protocol A has log RMS error
is 0.45 and log mean error -0.09; Protocol B has log RMS error 0.85 and log mean error -0.60;
Protocol C has log RMS error 0.27 and log mean error -0.07; and Protocol D has log RMS error
0.32 and log mean error 0.04.

A B CCompound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

PPZ-3TPT

Expt. Prot.

310 477

150 276

90 154

90 177

180 215

240 134

730 805

144

520 767

11

360 460

710 785

200 181

90 13

10

460 727

570 936

550 1062

100 213

45

80 98

420 243

240 397

90 10

60 8

90 9

270 51

Prot.

12

51

60

58

38

13

814

203

587

9

255

1028

66

14

8

510

960

1278

29

9

11

9

9

10

8

7

8

84

Prot.

316

130

65

92

158

468

445

388

423

349

332

573

81

141

204

386

529

676

76

261

29

270

318

12

202

136

213

Prot. D

410

190

71

105

486

483

496

438

504

403

457

599

82

294

249

465

679

980

92

344

40

304

517

11

254

153

245



A.6 LC-wPBE Functional Calculations

Table A.13: Eabs from LC-wPBE functional in eV. For Protocols A/B, RMS error is 0.74 eV and
mean error 0.72 eV, while Protocols C/D have RMS error 0.82 eV and mean error 0.75 eV.

Compound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

PPZ-3TPT

85

A/B C/DExpt.

3.19

2.82

2.49

2.61

3.35

3.05

3.31

3.33

3.53

3.18

3.62

3.80

3.64

3.38

3.12

3.47

3.74

3.66

2.85

3.30

3.13

3.34

3.35

2.76

2.73

2.78

Prot.

3.98

3.65

3.45

3.36

4.13

4.21

4.01

4.02

4.22

3.80

4.34

4.47

4.34

4.02

3.74

4.19

4.59

4.48

3.58

4.08

3.81

3.58

4.09

3.47

3.71

3.49

Prot.

3.85

3.52

3.45

3.44

4.22

3.74

4.64

4.06

4.80

3.54

4.35

4.93

4.38

4.48

3.47

4.76

4.81

4.76

3.58

3.84

3.59

3.58

4.17

316

3.34

3.15

3.583.34 3.58



Table A.14: erm from LC-wPBE functional in eV. A few of the S1 optimizations for Protocol C
failed to converge, and the corresponding spaces have been left blank. Protocol A has RMS error
1.28 eV and mean error 1.29 eV; Protocol B has RMS error 0.66 eV and mean error 0.63 eV; Protocol
C has RMS error 0.79 eV and mean error 0.45 eV; and Protocol D has RMS error 0.85 eV and mean
error 0.79 eV.

ACompound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

PPZ-3TPT

B Prot. C

3.10

Expt.

2.63

2.38

2.22

2.32

2.52

2.55

2.87

2.72

3.09

2.50

3.07

3.4.

2.63

2.70

2.47

2.96

3.46

3.43

2.48

2.68

2.45

2.50

2.79

2.15

2.27

2.15

2.35

Prot.

3.98

3.65

3.45

3.36

4.13

4.21

4.01

4.02

4.22

3.80

4.34

4.47

4.34

4.02

3.74

4.19

4.59

4.48

3.58

4.08

3.81

3.58

4.09

3.47

3.71

3.49

3.58

86

Prot.

3.32

3.15

2.82

2.86

3.75

3.56

3.49

3.19

3.82

3.30

3.54

3.76

3.12

3.30

3.24

3.45

4.09

4.23

3.06

3.17

2.88

2.82

3.31

2.65

3.12

2.93

2.93

Prot. D

3.43

3.10

2.87

2.90

2.99

3.13

3.52

3.34

3.85

3.16

4.39

4.80

4.19

3.77

3.46

3.78

4.13

4.43

3.17

3.30

3.48

2.92

4.08

2.30

3.00

2.53

2.92

2.91

3.17

3.75

3.24

3.67

3.02

3.80

3.93

3.14

3.63

3.66

1.14

4.43

2.95

3.83

2.71

2.60

3.53

2.30

2.72

2.53

2.75



Table A.15: Eo-o from LC-wPBE functional in eV. The blanks in the Experimental column corre-
spond to cases where data was unavailable, while the blanks in column C resulted from convergence
failure in Si optimization. Protocol A has RMS error 1.04 eV and mean error 1.03 eV; Protocol B
has RMS error 0.82 eV and mean error 0.81 eV; Protocol C has RMS error 0.70 eV and mean error
0.66 eV; and Protocol D has RMS error 1.09 eV and mean error 1.03 eV.

Compound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

PPZ-3TPT

Expt. Prot.

2.94 3.98

2.60 3.65

2.33 3.45

2.43 3.36

2.91 4.13

2.83 4.21

3.10 4.01

4.02

3.28 4.22

3.80

3.34 4.34

3.54 4.47

3.15 4.34

3.00 4.02

3.74

3.19 4.19

3.60 4.59

3.58 4.48

2.63 3.58

4.08

2.73 3.81

2.80 3.58

3.12 4.09

2.40 3.47

2.53 3.71

2.40 3.49

2.65 3.58

A Prot. B

3.74

3.51

3.07

3.13

4.09

3.90

3.76

3.79

4.04

3.56

4.19

4.17

3.96

3.74

3.49

4.03

4.58

4.36

3.42

3.75

3.44

3.44

3.96

3.12

3.42

3.21

3.47

87

Prot.

3.54

3.51

3.46

4.15

3.57

4.40

3.29

4.09

4.37

3.53

3.90

3.98

4.16

4.59

3.31

4.25

3.19

3.15

3.90

2.78

3.03

2.84

3.13

C Prot. D

3.43

3.10

2.87

2.90

2.99

3.13

3.52

3.34

3.85

3.16

4.39

4.80

4.19

3.77

3.46

3.78

4.13

4.43

3.17

3.30

3.48

2.92

4.08

2.30

3.00

2.53

2.92



Table A.16: AEST from LC-wPBE functional in meV. The blanks in the Experimental column
correspond to cases where data was unavailable, while the blanks in column C resulted from con-
vergence failure in S1 optimization. Some of the calculated numbers were negative, and thus were
excluded from the log error calculation. Protocol A has log RMS error is 0.76 and log mean error
0.71; Protocol B has log RMS error 0.74 and log mean error 0.69; Protocol C has log RMS error
0.58 and log mean error -0.06; and Protocol D has log RMS error 0.65 and log mean error 0.25.

PPZ-3TPT 270 1045 1244 252

A DCompound

2CzPN

4CzPN

4CzTPN-Me

4CzTPN

PIC-TRZ

ACRFLCN

a-NPD

PXZ-TAZ

DPA-DPS

PXZ-OXD

DTC-DPS

CBP

CC2TA

DMAC-DPS

2PXZ-OXD

DTPA-DPS

NPh3

PhCz

4CzIPN

2PXZ-TAZ

PXZ-DPS

PPZ-4TPT

DMOC-DPS

PPZ-DPS

PXZ-TRZ

PPZ-DPO

B Prot. C

-9

Expt. Prot.

310 1187

150 990

90 774

90 698

180 1290

240 1538

730 1562

1229

520 1235

1003

360 1297

710 1386

200 1305

90 857

934

460 1215

570 1432

550 1396

100 879

1235

80 938

420 1040

240 1113

90 917

60 910

90 947

Prot.

1292

696

442

443

1703

1673

1242

1272

1321

1030

902

1725

1174

512

698

1318

1725

1586

976

1223

903

1206

1305

883

900

974

88

25

438

1118

459

1204

324

617

1145

220

958

577

731

1053

346

1142

46

257

559

2

-339

7

Prot.

349

764

392

496

79

690

1176

850

1087

730

1478

2123

1232

1067

1014

808

1200

1432

688

805

734

403

1163

6

11

7

408



Appendix B

Explicit derivation of photochemical

f2 (t1 , t2 ) from populations

Under thermal initial conditions we have f2 (ti, t2 ) defined to be:

f 2 (ti, t 2 ) = Tr e ithle-ith2 eit2h2 e-it2hL e-h2 (B.1)
I Tr [e-4 3h2]

hi= - + p + MiY + ciX (B.2)
2 k2mi 2/

h2 - ++ mx - z(B)

Since all the modes are independent, we can first calculate the one mode trace (using

the one-mode Hamiltonians defined by Eqns. 3.75 and 3.76), multiply them together

and finally add in the energy bias.

We begin by calculating:

TI itih6e-itlh'eit2h' e-it2h' -Oh' (B.4)
00 00

= dp dq pi, qi leth-itlh eit2he-it2h e-3h2 1pi q (B.5)

-00 -00

Using the coherent state basis Pi, qj)-which is a coherent state of a harmonic oscillator

(with mass mi and frequency wi) hamiltonian with initial position qi and initial
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momentum pl. These form an overcomplete basis when pi, qi span the whole of

phase space.

We know from Tannor[94 that for a harmonic oscillator hamiltonian with mass mi and

frequency wi will have their position and momentum evolve with classical equations

of motion. Specifically we have in the position representation:

2 2 1 K2

h- = + -miowx + ixx=- + -M tf x + (B.6)
2mi 2 2mi 2 mpW 2miw?

= -> (x(le-ith -) = ( x- q(t))
2 +ip1 (t)(xi -qi (t))+j P1(t) q (t)+ P- i qi+ 

(B.7)

This is a gaussian in terms of xi, Pi, qi and can thus be integrated over analytically.

We may factorize the whole trace into products like this, having:

T /iti h' it-hi it2h -- h i t(B.-)

= dpi dqi \pi, q 'e 2  2 e-i e-h2piqi (B.9)

-00 -00 M M 00 0

= dp1 J dq1 J dx1 f dp 2 Jdq2 J dx 2

-00 -00 -00 -00 -00 -00

(pi, q heil1h 1 Kxie-i(ti-t2 )h' p 292  p2q 2 eit2h' x2 (x 2 Iei(iO)h2 piqi) (B.1o)

by treating i,3 as a "time" as well. Eqn. B.7 then enables us to write down the

argument of the integrand as a product of gaussians (which itself is a gaussian) in

x1 , x 2 , p1 , p2, P3, p4 (as changing , -+ ci gives us h = h' ). Integrating the gaussian

via Mathematica, we analytically obtain:

=T itih it2h' it2he-8h2 (B. 11)

=T e- --- 1((-cos wi(ti-t2))) coth 1 +i Sin(Wi(t1 -t2))-2i sin wit1+2iit) (B.12)
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Therefore:

f 2 (ti, t2) =
rr [etithi e-itih2 eit2h2e-it2hlel-h2

Tr [e-3h2]

Se-iE(ti-t2)

e -i(t1-t2)

STr [eitih' it1h eit2h -it2h' -3h
i

171 Tr [e-,h'1

2c
2

_iE(t-t2)e -- 3-((1-cos(wi(ti-t2 ))) coth Pl+i sin(wi(ti-t2))-2i sin wit1+2i sin wit2)=e e

(B.16)

00
- -2-y (COS(W(ti -t2))) coth 0+i sin(w(ti -t2))-2i sin t1+2i sin (t2)

(B.17)

_ -ie(tl -t 2)-Q'(ti -t 2)-iQ" (tI -t 2)+2iQ"(ti)-2iQ" (t2 ) (B.18)

which is what we found earlier. This same procedure could be in principle generalized

to find higher order traces, but Eqn. 3.61 already does that for us.
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(B.13)

(B.14)

2c'(1-COS(Wi(t1 -t2))) coth -3+i sin(wi(ti -t2))-2i sin witi +2i sin Wit2)
ri e-

(B. 15)
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Appendix C

Marcus Theory from Spin-Boson

Model

For electron-transfer in outer-sphere complexes we have V sufficiently small that

NIBA is adequate. Therefore we may assume that K(t) ~ K(2)(t).

We have from 3.118 that

In f 2 (ti, t2 ) = -a(ti - t2 ) 2 - i(A + c)(ti - t2 )
00

a~ J fJ(w) coth

0

2 dw =
2

0

A

(C.1)

(C.2)

(C.3)f 2 (ti, t2 ) = e (t t2)2 -i( E)(t1t--2)

at high-temperature (#w << 1). We thus have:

K(t) = K(2 )(t) - 2V2Re [f2 (t, 0)] = 2V 2-2 cos ((A + C)t) (C.4)

Integrating we get the rate constant

t

k = K(t)dt = 2V 2

0

00
[-tP

0

which is the Marcus rate-law!
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cos ((A + E)t) = V 2 e - , 2

(C.5)
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Appendix D

Explicit derivation of thermal K( 4)(t)

from populations

F4 (t1, t2 , t3 , t4 ) and F2 (tI, t2 ) exhibit time-translation invariance due to thermal start-

ing conditions, allowing us to obtain an unique one time index kernel. However, this

derivation is slightly more involved than the arguments by analogy used for the two

time index photochemical kernel, and thus we choose to describe this derivation ex-

actly. K(2) (t) is trivial and K(6 ) onwards can be found similarly to this, making it a

perfect example.

We have from Eqn. 3.99 that:

t t1 t2 t t t2

pb(')(t) = 2Re Idt1 dt2 fdt3F4(t7 t1,t2, t3)+ fdt1 dt2 fdt3F4(6t1,) t2, t3)

.O 0 0 0 0 0

(D.1)

t lt t2

= 2Re [ dt1j dt2 f dt3 F 4 (O, ti- t2 - t, -t)

0 0 0
t t 2

+ Idt1 dt2 jdt3F4 (t1 - t,0,t2 - tit3 -0 (D.2)
0 0 0
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from time translation invariance. Therefore we can differentiate to obtain:

p(4)(t) = 2 dRe

+

0

t

.0

t t

dt J

0

dt1 J
0
t2

dt2

0

t2

dt2  dtF4 (O, t1 - t, t2 - t, t3 -t)

0

dt 3F4(t1 - t,0,t 2 -

We can simplify piecewise in the following manner:

t

0
dt1

0

t2

dt2 J dt3F4 (O, t1 - tt 2 - t,t3 - t)

0

dt1 Jdt 2

0 0

dt 3 F4 (O, t1 - tt 2 - tt 3 - t)

t2

2 dt3 F4 (0,t1 -J dt20
t2

2 dt3 - F4 (0,t1 -
j dt3
0

dt3 F4(7 ti- ti t 2

(D.5)

t)t2 - t, t3 - t)

t, t2 - ti t3 - t)

- t) t3 - 0

= dt I
0 0

t

I dt1
0 0

dt2 F4 (O, ti - t, t 2 - t, t 2 - t) - J

t ti

( dtiJf dt2 F4 (0, ti - t, t 2 - t, -t)

0 0
t22

dt2 J
0

dt2  F4 (0, ti - t, t2 - t,t3 -- t)dt2
(Integration limits switched)

t ti

= dtI dt3 (F4 (0, t1 - t, t1 - t, t3 - t) - F4 (o, t1 - t, t3 - t, t3 - t))
0 0
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t2

dt2 fdt3F4(0, 0,t2 - ti t3 - t)

0

(D.3)

t

=

0

-i
-0 0

(D.4)

t1

dtI di

0

dt 1 f di

0

t

-i
0

t

-J
0

t

I dt1
0

t0

0

t2

dt2 J
0

t

= dti

0

tl ti

Jdt3
0 t~q

(D.6)

(D.7)

(D.8)

(D.9)

t, t3 - t)



Similarly:

I
0

dt1 J
0

t

= dt3
0

t

= dt3
0

dt2 dt3 F4(O, t1 - t, t2 - t, t3 - t )

0
t t

dt2 dt1  F4 (0,t1 - tt 2 - tt 3 - t)2] dt,
t3  t2

t

I dt2 (F4(O01 t2 - ti t3 -t) - F4 (0, t2 - t, t2 - ti t3 - t))

t3

Adding Eqns. D.6, D.9 and D.12 we have:

0

+

dt1 J dt2 (F4 (O, t 1 - t, t2 - t, t 2 - t) - F4 (0, t 1 - t, t 2 - t, -t))

0

Idt1 dt (F4 (Otl - t,t 1 - t,t3 - t) - F 4 (0,t1 - 1 -

0 0
t

Jdt dt2 (F4(0,Ot2 - t t3 - 0 -F4(0,t2 - t)t2 - t5t3 - 0)

o t3

t ti

dt1 J dt2 (F 4 (O, t 1 - t, t2 - t, t 2 - t) - F 4 (0,t1 - t, t2 - t, -t)

0 0

+ F4(Oit1 - t) t1 ti t2 - 0) - 4(0,1 - 7 t2 - ti t2 - t))

+ J dt2  dt3 (F4 (0,0,t2 - tt 3 - t) - F4(0,t2 - tt 2 - tt 3 - t))

0 0

= J dt1 dt2 (F4 (0, 0, t1 - t, t2 - t)) - F4 (0, t1 - t, t2 - t, -t))

0 0

by reorganizing the dummy time indices and reswitching integration limits. Therefore,
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(D.10)

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)



dt3F4 (0,t1 - t,t2 - t,t3 - t) =

by inserting Eqn. D.15 into Eqn. D.5.

Next we proceed to attack the other term and have:

dt2  dtF 4 (t1 - t,0,t2 - tt -t)

0

dt2 Jdt3F
0 0

+ J dt1 J dt2

0 0

(0,0,t2 - t,t3 -t) +

I
0

t

I dt1

0
I
0

dt3F4 (t1 - t,0,0,t3 - t)

dt3 F4 (t1 - t,0,t2 - tt 3 - t) (D.18)

dt3 F4 (t1 - t,0,t2 - tt - t)

dt3 F4(t1 - t,0,t 2 - t, t3 - t) + - F4 (t1dt2
- t,0,t2 - tit3 - t)

t2

~2 I dt3 -dF4 (tl - t,O0,t2 - tlt3 -t)J dt3
0

t2

d2dt3 -dF4 (tl - t7O)t 2 - tit3 - t)
f dt3

0

J dt2 (F4 (tl - t7,01t 2 - ti t2 - t) -F -t t),01t2 - t,1 -)

0

98

we have:

t

0

dt1

0

dt2 J
0

tl

dt1 J F4 (O, t 1 - t, t 2 - t, -t)dt 2

0

(D. 16)

d
t t

J dt, J
0 0

(D.17)

where

J dt1
0

t

I dt2
0 0
t

= Jdt,
0

t

I dt2
0 0

-j
0

t

(cid

(D.19)

cit1
0

Thus:

t

I
0

dt1 J
0

- dt,
0

(D.20)

(D.21)

(D.22)

=



I
0

dt1
0

t t2

(dt 2 Jf
0

= dt2 ] dt3 (F4 (0, 0, t 2 - t, t3 - t) - F4 (-t, 0, t2

0 0
t ti

= dt1 dt2 (F4 (0, 0, t1 - t, t2 - t) - F4 (-t, 0, t1

0 0

- t, t3 - t))

- tt 2 - t))

I dt1 jdt 2

0 0 0

0
t

=1j
0

dt1  dt3
0

dt1 J
0

t

dt2  F4 (t1 - t,0,t2 - tt 3 - t)
dt2

t3

dt3 (F4(ti - t, 0, 0, t3 - t) - F4(tl - t, 0, t3 - t, t3 - t))

Combining we have:

t t t2

- Jt 1J2]d3 dtF4(tl - t,0, t2 - t, t3 - t)

0 0 0
t ti

f dt1] dt2 (F4(0,

0 0
t t
f r

+J dt1J dt2 (F4 (t 1 - t, 0, 0,t2 - t) - F4(t1 - t, 0,t2 - t, -0)

0 0

Therefore from Eqns. D.18 and D.30:

d] dt dt2  dtF4 (t1 - t,0,t 2 - t,t3 - t)
0 0 0

t tl

= dt1
0 0

t t

dt2 F4 (-t, 0, t1 - t, t 2 - t) + dt1 I dt2F4 (t1 - t, 0, t2 - t, -t)
0
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dt3 F4(t1 - t, 0, t2 - t, t3 - t )

(D.29)

(D.30)

(D.31)

(D.32)

(D.23)

(D.24)

(D.25)

(D.26)

(D.27)

(D.28)

0,1 - t7 t2 - t ) - F4(-t, 0,1 - ti t2 - 0))



The total expression is:

( t t )

P( (t) = 2Re fdt1 dt2 ( F4 (0, t1 - tit2 - t, -t ) + F4(-t,0, t1 - ti t2 - t ))

t t

+1 dt1 Jdt 2 F 4 (t1 - t, 0,t2 - t, -t)

0 0 I
t 1  t (

=2Re jdt1 dt2 (F4(ti t1, t2,0) +
0 0

F4(0,t, t1 ,t 2 )) +

(D.33)

t

Jdt1
0

t

J dt2 F4 (t1 , t, t 2 ,0)

0

(D.34)

from time-translation invariance.

Therefore we have from Eqn. 3.114:

Kit (t) = -p4) (t) - I
0

= -2Re I dt1 J (F4 (t, t1, t2, 0) + F4 (O, t, t1, t2 )) dt2 + dt1
0O 0 0

t

I F4 (t1 ,

0

--- JK(t - t1)p(2)(t1)dti

0

t, t2,0)dt 2

(D.36)
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