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ABSTRACT

After product adoption, consumers make decisions about continued use. These choices can be

influenced by peer decisions in networks, but identifying causal peer influence effects is challenging.

Correlations in peer behavior may be driven by correlated effects, exogenous consumer and peer

characteristics, or endogenous peer effects of behavior (Manski 1993). Extending the work of

Bramoull6 et al. (2009), we apply proofs of peer effect identification in networks under a set of

exogeneity assumptions to the panel data case. With engagement data for Yahoo Go, a mobile

application, we use the network topology of application users in an instrumental variables setup to

estimate usage peer effects, comparing the performance of a variety of regression models. We find
analyses of this type may be especially useful for ruling out endogenous peer effects as a driver of

behavior. Omitted variables (especially ones related to network homophily) and violation of the

exogeneity assumptions can bias regression coefficients toward finding statistically significant peer

effects.
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Introduction

The longstanding econometric challenge of accurately measuring peer effects has recently been the
subject of renewed interest (Angrist and Lang 2004; Card and Giuliano 2012; Christakis and Fowler 2007;
Dupas et al. 2008; Sacerdote 2001). Recent methodological developments, together with the increased
availability of granular data on behavior in networks, offer new opportunities to empirically address
questions of social cause and effect. However, the increased number of peer effects studies coincides with
considerable discussion of their associated methodological challenges. While the idea that individuals may
act under the influence of their peers is widely accepted, measuring and interpreting these effects remains
difficult, especially in the context of social networks and digital products.

Research in peer effects often refers to the effects of social influence with respect to isolated
diffusion or adoption events. Some of the new datasets available to researchers provide detail on use patterns
over time. Online systems in particular offer a wealth of opportunities for observational analysis because
the data collection costs are so low. Our aim in this work is to first provide and apply an appropriate model
for estimation of peer effects in a dynamic setting, then suggest conditions under which the model is most
useful. We discuss some of the econometric issues in using network topology to estimate peer effects. Weak
instruments, omitted variables, and violation of the exogeneity assumptions can bias regression coefficients
toward finding statistically significant peer effects. Our dataset comes from a Yahoo! mobile browsing
application with more than 25 million users. We apply a network-based two-stage least squares estimation
procedure to the mobile application's pageview time series at the individual level. Our results suggest that
measuring causal peer effects remains tricky. There are many ways to unwittingly overestimate peer effects.
In some cases a failure to reject the null of no peer effects is therefore more informative.

Manski (1993) characterizes apparent correlations between individual and peer behaviors to come
from three coincident sources: correlated effects, "endogenous" peer effects, and "exogenous" peer effects.
In the context of a rainy day, the correlated effect might refer to the tendency of those outside to open
umbrellas, endogenous peer effects would be the increased tendency for us to open umbrellas given an
observation that others are doing the same, and exogenous peer effects would be the change in our
propensity to open an umbrella given an observation of what others are wearing. An ordinary least squares
regression of individual umbrella use on peer umbrella use with individual controls would pick up all three
effects. Angrist (2014) adds that any regression of an individual outcome on group outcomes alone produces
a coefficient of 1. Even if we wanted to study umbrella use on a sunny day, we would still face the issue that
exogenous and endogenous effects are not individually identified. Angrist reminds us that here we have
Manski's "reflection problem", meaning that "observed behavior is always consistent with the hypothesis
that individual behavior reflects mean reference-group behavior". This problem is inescapable without a
strategy to distinguish between the different types of peer influence. Moffitt (2001) also discusses issues
with identification of peer effects and how they might be solved.

Following the model described by Lee (2007), Bramoull6 et al. (2009) offer one way to handle the
reflection problem in observational data. Relying on spatial econometrics as a guide, they move beyond
groups as traditionally defined toward social network connections to develop reference groups on the
individual-level. They provide sufficient conditions for identification of endogenous and exogenous peer
effects coefficients in static linear-in-means models. In their model the pre-assigned covariates of nth-degree
connections (for n>2 in the basic model) in a social network can be used as instruments for peer behavior.
Models of this sort have scarcely been tested in the past. The first purpose of our work is to extend this
model to the time-varying case and show that the original identification results still hold for panel data. We
then elaborate by investigating challenges to the model's assumptions, offering suggestions for potential
applications of this method in business and policy contexts.
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Business applications for peer effects estimation have already established a foothold via studies of
adoption and diffusion (Aral et al. 2009; Manchanda et al. 2008; Miller and Tucker 2009; Tucker 2008).
Scholars in many disciplines have been thinking about these ideas for quite a while (Hartmann et al. 2008).
Information about the causes of diffusion is valuable. In the next section we discuss research into adoption
and engagement in greater depth. While both "diffusive" behaviors, compared to adoption, engagement is
relatively understudied given the business value of proper engagement strategy. Extending the model of
Bramoull6 et al. to a dynamic panel data application in the style of Arellano and Bond (1991) opens the door
for more studies of time-dependent behaviors like engagement and product use. This necessitates additional
assumptions to maintain identification of the model parameters. As with similar regression structures, the
conditions required for the model to accurately estimate peer effects can pose a challenge.

Identification is a second-order concern if a model can be expected to generate spurious estimates
of peer effects. Peer effects two-stage least squares (2SLS) setups (like ours in this paper) and ordinary least
squares (OLS) regression estimates might diverge for many reasons, some of them quotidian or mechanical
(Angrist 2014). Yet in many cases the relevant standard for an approach to be useful is if the exercise
provides actionable information to managers or policy-makers. Knowing, for instance, that a product's
engagement is not driven by social processes is vital for a marketer considering a viral distribution channel.
We find that 2SLS-based network models might help a manager more reliably conclude that their product
lacks a social component given the propensity of unobservables to be positively correlated for peers. Much
has been made of product virality. But at least in the network we examined the evidence suggests
engagement behavior isn't always "contagious".

Section 1 presents key parts of the relevant literature on peer effects and engagement. Section 2
reviews the Bramoull6 et al. (2009) model and extends it to the panel data case. Section 3 describes the data
and how our dataset was constructed. Section 4 presents estimation results and different model
specifications. Section 5 discusses the results and possible extensions. Section 6 concludes.

Section 1- Diffusion, Peer Influence, and Estimation of Peer Effects

Social effects can act as an amplifier for policy or business decisions. Human activity is connected;
policy-makers or managers should be mindful of the social externalities involved with their choices. Previous
work on diffusion and peer influence has spanned many disciplines, each applying a different bundle of
methods (Hartmann et al. 2008). Some of that research has focused on generating contagion, or solving the
"influence maximization problem". Domingos and Richardson (2001) propose algorithms to maximize lift
in marketing efforts via social network interactions. Bakshy et al. (2011) suggest that cascade prediction
based on prior influence events in the Twitter network is improved by targeting many influential network
nodes. Aral et al. (2013) propose strategies to "engineer" contagion in the presence of homophily, i.e. the
tendency of "birds of a feather to flock together" in networks (McPherson et al. 2001). These empirical
studies of cascades complement theoretical work discussing or modeling how diffusion might occur (Bass
1969; Granovetter 1978; Jackson and Yariv 2007; Schelling 1971; Watts 2002).

Many studies have also directly measured peer effects at the individual level, under both
observational and experimental conditions. For observational datasets, a variety of econometric techniques
have been used to estimate social multipliers. Tucker (2008) measures peer effects in the diffusion of a
video-messaging technology, comparing the relative size of network externalities for managers and other
employees at a bank. This work also used an instrumental variables approach, finding that measures of ego-
level importance in the network affected the magnitude of observed adoption externalities. Bollinger and
Gillingham (2012) model peer effects in adoption of solar panels using a first differences approach, where
lags of peer solar panel installation are used to predict adoption. Consistent estimates of peer effect
coefficients in this specification, however, can be problematic because of omitted variables bias even if the
"pre-assigned" covariate regressors are truly exogenous to the behavior of interest.
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Noting that the individual node characteristics and behaviors tend to be correlated with observed
networks, Aral et al. (2009) use covariate matching to distinguish between social influences and homophily
in adoption of a mobile application. They find that failure to control for homophily leads to overestimation
of behavioral contagion effects in adoption by as much as 300-700%. Even matching methods, however,
might not fully account for potential bias in estimation. To assess the magnitude of estimation bias, Eckles
and Bakshy (2014) compare the results of a randomized experiment to observational techniques. In an
experiment with 67 million users on Facebook, naive observational estimators overstated the experimental
measure of contagion by as much as 300%. They point out that some of the difficulty in measuring peer
effects comes from the "implausible assumption that the available covariates are sufficient to make peer
behavior unconfounded". Thus undercontrolled studies are often more likely to find positive peer effects
far in excess of the real externalities.

Social contagion over network ties can operate differentially depending on the individual's
"influence" and "susceptibility" (Aral and Walker 2012). This is true beyond the effects of homophily.
Network positioning, heterogeneity in tie strength, and dyad-level variation in the sign of social effects
combine in real networks to generate the data we observe. Most people can personally relate to the concepts
of trendsetters and followers or differences in the strength of social relations. Certainly if peer influence is
a fact of life, we have all been either encouraged or discouraged by the actions of others at some point. So-
called "chilling effects", when peer behavior slows down the growth rate of others' behaviors, were found
in a number of contexts by Goldenberg et al. (2010). They point to adopters of CD players, DVD players,
and cellular services waiting for early adopters to act first, creating "hockey stick" shaped growth. Of course
growth need not rebound if peer use leads to congestion. The wide range of possibilities for different types
of influence underscores that average effects may not tell a sufficiently granular story.

Experimental designs get around the typical worries about exogeneity. Experiments are now
common in networks and peer effects research, especially as digital tools have made them cheaper to
conduct (Bapna and Umyarov 2012). Some studies have focused on experimentally changing the behavior
or product of interest instead of networks or group means. Aral and Walker (2011) create treatment and
control groups by randomly embedding viral features of different kinds into a Facebook application and
tracking the diffusion. With a hazard model specification, they show a 246% increase in social contagion
with the addition of passive message broadcasting. Muchnik et al. (2013) demonstrate herding effects in
ratings by manipulating the initial rating of posts on a social news aggregation website. These particular
designs escape some of the "perils" of peer effects analysis by separating the subjects of analysis from the
treatment (whereas a regression of individual behavior on group mean behavior does not). One concern for
networked experiments is interference, or the tendency for the stable unit treatment value assumption
(SUTVA) to fail when treatments can diffuse into control groups. Athey et al. (2015) discusses p-value
calculation in networked contexts.

Other experimental designs focus on changing network exposure conditions and observing
differences in diffused behaviors. This might entail changing the connections in a network or experimentally
altering the information moving between connected individuals. In the Facebook network, for example,
people who were exposed to signals about friends' information (in the form of different urls) were found
more likely to transmit that information themselves (Bakshy et al. 2012). In that study it was the exposure
condition that the researchers randomly assigned. In contrast, the treatment in Bapna and Umyarov (2012)
was being exposed to a peer who had adopted a paid service. This later design is more analogous to the
observational models commonly applied to the study of peer effects.

Many of these studies focus on one-shot behaviors like adoption, ratings, or clicks. But actions that
vary over time may often carry more value. Fader et al. (2005) point out that measuring customer lifetime
value (CLV), for example, may come from individual-level conditional expectations or aggregate-level sales
projections. They offer a taxonomy of probability models for estimating CLV, noting that "recency,
frequency, and monetary value" or "RFM" of transactions can be used to estimate "residual lifetime value"

(customer value unexplained by covariates). Though one of many possible frameworks, but RFM is
conceptually closer to engagement and use than it is to adoption. Peer effects in usage may differ from peer
effects in adoption, with large implications for businesses looking to monetize user behavior. Companies
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can set usage-based pricing structures and subsidize influential individuals ("opinion leaders") to generate
value or stimulate diffusion (Ghose and Han 2011; Iyengar et al. 2011). These studies on engagement rely
on observational data as well. As with Bollinger and Gillingham's work on solar panel adoption, they use
fixed effects in an attempt to handle the reflection problem. Aral and Nicolaides (2016) examine peer effects
in exercise over time, relying on exogeneity of the weather conditions for peers in other cities in a continuous
IV setup. This research design more convincingly argues for "contagion" in healthy behaviors than
observational data would. Future work might compare the parameter estimates from studies of this sort to
those retrieved from observational network methods.

Whether an observational or experimental study design, it isn't clear that "the coefficient on group
averages in a multivariate model of endogenous peer effects reveals the action of social forces" (Angrist
2014; Shalizi and Thomas 2011). Consider, as Angrist does, a setup where we estimate the OLS and
instrumental variables (IV) coefficients in a regression of individual on group behavior (group average
behavior is the instrumented variable). The peer effect is represented as the divergence between the OLS
and IV of the relationship between covariates and outcomes, but these estimands can differ for reasons
other than peer effects. Many standard econometric problem apply here, plus a few more unique to
networks. In a many weak instruments situation, the IV estimates will be biased toward OLS estimates.
"Common variance components in outcomes" can produce correlations that resemble social effects, but
are driven by omitted factors. And deciding which observation of "the network" is the true latent
representation of links between units can be a judgment call.

The model we develop is appropriate for observational networked data where outcome behavior
and at least one of the covariates vary over time. It is principally based upon the work of Bramoull6 et al.
(2009), which explicitly leverages network topology to create local group means of outcome and explanatory
variables. The presence and linearly independent arrangement of intransitive triads of individuals in the
network permits identification results to hold. In other words, a network where all friends-of-friends are
also friends will lead to degenerate estimation outcomes. That kind of model reduces to a regression of
outcomes on leave-out group means and covariates.

Section 2 - Extension of Bramoulli, Djebbari, and Fortin's Social Network Model (BDF)

A review of the static network model
The baseline structural model used describes the (linear) relationship between the individual

behavior vector y, the vector of connected peers' behaviors Gy, the vectors of exogenous (i.e. pre-assigned
in this case) covariates x, and the vectors of pre-assigned covariates for connected peers Gx. G is the row-
normalized adjacency matrix representing the social network of peers. Entries in G are zero if two
individuals are not connected (Gij = 0 if there is no i,j dyad). For simple averaging of peer behavior, entries
in each row (representing the peers of individual :) will sum to 1 and will have the value 1/n where n is the
count of nonzero entries in the row. This is equivalent to a simple leave-out mean. To review, following the
simplest version of Bramoull6 et al. (2009) (or "BDF" for the rest of the paper) we have the equation:

y = a + Gy + yx + 6Gx + E; IE[E x ]= (1)

With |fll < 1 and (I - #G)~l = r,0 #kGk, we have that:

y = a(I - flG)- + (I - lG)~'(yI + 6G)x + (I - flG)-1 (2)

y= )L + yx + (yfl + ) kGk+lX.1 00 pkGkE (3)
k=O k=O

Equations (2) and (3) describe the reduced form structure of the model where y is purely a function of
observables x and network G. We then can write the expected average peer behavior as:
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lE(GyJx) = - f + yGx + (G + ) kG+x (4)
(_-#) L G yl+6 k=0

BDF goes on to show in their proposition 1 that if y# + & * 0 and the matrices I, G, and G2 are
linearly independent, then social effects are identified. Additionally if those 3 matrices are linearly dependent
and no individual is isolated, social effects are not identified (the paper has more detailed results). Without
linear independence, then it is not possible to find an identifying instrument for Gy in equation (1) above.
Otherwise we can use network structure to find exogenous covariates that instrument for Gy. This is to say
that friends-of-friends' covariates (G2x) or even deeper network connections' covariates (Gnx for n>2) can
be used to predict friends' behavior in an IV setup. While for our purposes we will restrict the model in this
analysis to one connected component of a network, writing a block diagonal matrix I where the diagonal is
composed of disjoint subnetworks G,...,G. is a natural extension of this model. Including network fixed
effects, BDF generalizes the model to partially deal with correlated effects. Note that this does not deal with
the tendency for networks to be formed because of behaviors. We still must assume that the network and
network formation process is strictly exogenous to vector y. With the correlated effects setup, for a network

yk = ak +fGkyk + YXk + SGkxk + Ek; IE[Ek I ak,Gk,xk] = 0 (5)

Subtracting the local network average from the individual, BDF shows the result that I, G, G2, and
G3 must be linearly independent in addition to the assumption that there are social effects, i.e. yf + 6 * 0.
In this case the valid identifying instrument set will be (I - Gk)G2xk, (I - Gk)G3xk, ..., (I - Gk)nxk.
This "within local transformation" is analogous to a first difference estimator where the fixed effect for
network k is differenced out across the network. It is this model and Arellano and Bond (1991) which inspire
the panel model. We present the setup for a single connected network, though the results can be extended
to include multiple networks with correlated effects in a stacked matrix.

The Simple Panel Model
For a single connected network, if t indexes time, we have:

yt = ai + #Gtyt + yxt + SGtxt + e [; E[FEt | xt,G] = 0 Vt (5)

And analogously to (2) and (3), with If < 1, 1 - flGt and (I - flGt) = 0 flPk Gk, we have that:

yt = a(I - flG)-'t + (I - PGt)- 1 (yI + 6Gt)xt + (I - flGt)~let (6)

Yt = ( #a) + YXt + (y? +8) 1 pkGk+1 ZI kG t (7)

IE(Gytlx) a 0 pk k+2Xt (8)1E(Geyfxl) = ( + yGtxt + (y + 6) 1k=0 zt(1-#)k=O

(see Appendix A. 1 in Bramoull6 et al. (2009) for a proof that proves results for all models once they have
been reduced to equations analogous to (5)-(8)).

The Panel Model with Fixed Effects and Static Networks
This setup has no means of handling the propensity for "common shocks" to affect networks over

time or within connected components. If we want to model time-specific fixed effects, we have a structural
equation of the form:
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yt = AtL + at + #Gt yt + yxt + 6Gtxt + Et (9)

Using first differences, this setup too can be used to derive the reduced form in analogous way. Let

Ayt = yt+1 - yt, Axt = xt+1 - Xt, AEt = Et+1 - Et, A. = + - A

By differencing two equations at time t and time t+1, we have:

Ayt = AXtL + P(Gt+ 1yt+1 - Gtyt) + yAxt + 6(Gt+1xt+1 - Gtxt) + Act;
E[AEt I Axt, Gt+ 1,Gt ] = 0 Vt (10)

Assume for now that the latent network is stable and Gt is isomorphic for all time t. We'll denote
this graph Gf for "final graph". In this case the problem reduces cleanly as we can factor the final graph out.
We get:

Ayt = AAtt + f3GfAyt + yAxt + 8GfAxt + AEt (11)

With reduced form, by an argument similar to the ones above:

Ayt = +yAXt + (yfl + 8) p~+at+pG t (A~= X~tYA t+y1+5) k k+ G Ax 1-lk=O PGkA (12)

E(Gt 00xt #k Gt ~k+2 ~ (13)E (GfAytIAxt) -= i + YGfxt + (y# + 6) 1 G1-,8 k=O

Incidentally this will be the reduced form equation that applies to the Yahoo! Go network. We can
only observe the network on the final day of a 28 day period, and therefore take the network at the end of
the period as the latent "true" network (this assumes that if two people were friends by the end of the
month, they were likely friends at the beginning of the month too). Where these results fail, however, is in
the case that Gt Gf for all time t. In that case equation 10 does not reduce as cleanly. It may be that the
network is measured with error; some observed connections might not be active while other unobserved
connections are activated. We assume we can observe the true latent network, though previous work has
developed methods to more concretely describe links between nodes (A. Goldenberg et al. 2010).

The Panel Model with Fixed Effects and Dynamic Networks
Returning to (10), to use the series expansion shortcut to the reduced form we must find some

matrix which represents the change in the network over time. Let us now modify G slightly to use matrix
F, which will represent a version of G that is not yet row-normalized. Fii = 1 if individual i and individual j
are connected. Fy is then the sum of peer behaviors for a given individual. We have:

Ayt = AAti + f(Ft+1yt+i - Ftyt) + ytAxt + S(Ft+1 x,+1 - Ftxt) + Act;
E[AEt I Axt, AFt] = 0 Vt (14)

so it follows that:

Ayt - I3(Ft+1 yt+1 - Ftyt) = Ati + yAxt + 6(Ft+1xt+1 - Ftxt) + Act

The researcher must decide on the precise timing of peer effects to allow for separation of changing
network effects from changing behavior effects. We have two boundary conditions. In the "early" condition,
former friends are discarded and the relevant adjacency matrix for the next period will be Fti. In the "late"
condition, new friends have no peer influence and the relevant adjacency matrix is F,. In general, we can
define a parameter (or potentially a vector of parameters) p E [0,1] to determine relative influence levels
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of new friends and old friends. This weighting value determines which convex combination of friends to
use.

Fp, = pFt+1 + (1 - p)Ft (15)

With Q selected, we can renormalize Fe,t row-wise to get Ge,t, and then we have:

Ayt - #G p,tAyt = AXt + yAxt + Gp,tAxt + AEt (16)

And then using the representation of |(51< 1, (I - = Zo| 0 flkGk, equation (12) will hold
subbing in G,, for Gf. Appendix A briefly discusses a few ways to calculate Ge. For the "between" estimator,
where we have individual specific fixed effects, there is no problem factoring out the network after de-
meaning the vectors in the equation. The network is stable in cross-section after fixing the time period.

Generalfeatures of all of the models
All of these models struggle to handle some of the key problems with measuring peer effects.

Nowhere do we fix the problem of distinguishing genuine social contagion from homophily. Correlated
effects can be differenced out at the network-level, but subgraphs may contain their own localized correlated
effects that further influence connected peers. To the extent that pre-assigned characteristics of peers
influence behaviors (without, somehow, influencing formation of ties), we can calculate an estimate of an
average peer effect of behavior contingent on observable types of homophily. Yet rarely do researchers have
sufficient data on covariates to control for every type of correlation in tie formation. Additionally, there is
often good reason to think that a given behavior of interest generates peer connections from period to
period. In that case the moment restrictions do not hold. It is therefore difficult to fully trust a causal
interpretation of the peer effects coefficients generated by these models. The identification of these
parameters is subordinate to the concern that they are fragile. In other words, we should maintain skepticism
of the estimated parameters because previous research on behavior in networks suggests these models will
often fail to fully describe social dynamics.

Pessimism aside, the structure of the reduced form of the type in equations (3), (7), and (12) permits
a robustness check on the assumptions of the model. We could run a kind of truncated reduced form
regression of outcomes on covariates, friends' covariates, friends-of-friends' covariates,..., n-distant friends'
covariates, etc. Since |P|<1, we would expect to see coefficients on friends' covariates declining
exponentially in network distance. This coefficients would of course be biased (likely upward) by the omitted
variables calculated by letting n go to infinity. Nevertheless, normalizing the coefficient on the immediate
neighbors' covariates to be 1, we should see coefficients rapidly shrink as a function of network distance.
This kind of check would be most useful in the case that the model is just identified. Otherwise a test of
overidentification suffices. So far we have also assumed that social effects exist. In the case that they do not
exist, we expect that the first stage of the IV regression collapses. This condition of no social effects implies
that the 2SLS estimates will not differ greatly from OLS estimates in expectation. That weak instrument
scenario presents an asset: either the included covariates have no social content, the behavior of interest is
unlikely to be contagious, or both. These are useful facts for managers to know.

Section 3 - The Yahoo! Go Data and Network

Our network, engagement, and covariate data come from Yahoo! Go, a mobile application designed
for browsing behavior. Yahoo! designed Go as a way for online users to access Yahoo! services on their
mobile phones and/or PDAs. Launched in July 2007 and discontinued in January 2010, the network of
users had over 27 million members. Go services enabled users to check sports scores, look up stock quotes,
send and receive email, search, and read news (see Appendix C for an image of one of the application
screens). Each user has a unique Yahoo! ID across all Yahoo! services (mobile or otherwise). These IDs
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have been anonymized by the company and all users under age 18 have been removed from the dataset.

Go, however, does not support instant messaging and social activities like link sharing, commenting, or

liking were not included on the Go! Platform. Go activities should not be expected to exhibit network

externalities in usage. This is to say that though adoption might spread via word-of-mouth or similar
channels, use is not likely to be social on the basis that an observable network exists.

The exogeneity of the network with respect to the behavior of interest is assumed in the model

setup we have described. In practice these types of networks are hard to come by, especially with the
proliferation of social or "viral" application features in digital products. The separation of network

formation from the behavior of interest makes the Go network an attractive context in which to apply the

model. We wish to rule out the criticism that our results might be driven by network endogeneity in

discussing the performance and estimation results of our model specifications. Go serves that purpose,
facilitating a more nuanced discussion of the research value of network topology-based panel models.

The network of interest is formed by instant messaging (IM) behavior, and we have daily use data

in the form of mobile page views for October 2007. We also have covariate data on user demographics,
including age, gender, and friend counts (degree). Using the IM connections, we also build a series of
network covariates which are static over the course of our panel (since we use the end-of-month network

to represent the latent network). We use the total mobile pageviews because the desktop behaviors might

also be linked to network formation processes. Starting with the 27 million Yahoo! Messenger users, we

narrow the user set to adopters of Go who also have friends using Go (21,896 users), and then perform the

analysis on the largest connected component to satisfy the condition that I, G, and G2 are linearly
independent. This leaves us with 2,203 users with use behavior observed over 28 days. Figure 1.A depicts

the network of users, while figure 1.B zooms in on the largest connected component. Figure 1.C shows the

degree distribution of nodes in the largest connected component and 1.D shows the distribution of node

counts in all connected components of users except the largest one. Our largest connected component is
exceptionally large in comparison to the others.

Figure L.A - User Network (21,896 users)

Figure 1.B - Largest Connected Component (2,203 users)
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Figure 1.C - Degree Distribution (logged frequencies) in largest component
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Figure 1.D - Size Distribution of Other Connected Components (11,108 in total)

In our largest connected component, the degree distribution closely follows an exponential

density and the network diameter is 21. This "scale-free" characteristic is common in networks (Barabisi

and Albert 1999). Aside from the largest connected component, there are 11,108 smaller networks of

users which either fail to have a large enough user pool to develop precise estimates, fail to meet the

identification conditions of the model, or both. Summary statistics for the largest connected component

are reported below (Table 1).
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Table 1- Summary Statistics Mean Standard Count
Deviation

Age 35.53 7.93 2203

Friend Age 35.25 4.51 2203

Friend-of-Friend Age 35.36 2.94 2203

Gender 0.77 0.43 2203

Friend Gender 0.76 0.28 2203

Friend-of-Friend Gender 0.76 0.18 2203

Degree 6.41 5.84 2203

Friend Degree 10.07 5.17 2203

Friend-of-Friend Degree 9.83 3.68 2203

PageRank 0.000046 0.000029 2203

Friend PageRank 0.000067 0.000022 2203

Friend-of-Friend PageRank 0.000064 0.000013 2203

Use (pageviews) 16.90 44.02 61684

Lagged Use (1 Day) 17.09 44.40 61684

Lagged Use (2 Days) 17.16 44.55 61684

Friend Use 18.70 27.39 61684

Lagged Friend Use (1 Day) 18.91 27.62 61684

Lagged Friend Use (2 Day) 19.03 27.77 61684

Friend-of-Friend Use 18.45 14.72 61684

Lagged Friend-of-Friend Use (1 18.66 14.79 61684
Day)
Lagged Friend-of-Friend Use (2 18.76 14.83 61684
Day) II

Table 1 - Summary Statistics for Selected Variables

It is not surprising that friend and friend-of-friend summary statistics are so similar to individual
statistics (everyone is someone's friend). We do see a common feature of human networks that the
average degree of friends is higher than the individual's degree. This is because the most connected
individuals are more likely to be friends with many people. We also calculate the PageRank score for all
nodes in the network as a means of measuring network centrality (Page et al. 1998). This will be used as a
control in our peer effects regressions. The average age is 35.53 with a standard deviation of 7.93. Gender
is coded as 1 for men and 0 for women. Since we only have use (mobile pageviews) as a time-varying
characteristic of individuals in our network, we will use lags of use as our pre-assigned covariate for
individuals, friends, and friends-of-friends. In the next section we present the regression results from
estimation of our panel specifications.

Section 4 - Regression Results

The tables are organized as follows: Tables 2A and 2B show estimates from OLS regressions of
individual use (in mobile pageviews) on the average friend use and other covariates. Tables 3A and 3B
show the IV estimates for the same equations, using all available friend-of-friend covariates as instruments
for the endogenous average friend use. For example, we have in columns 3 and 4 of Table 2A pooled and
fixed effect versions (respectively) of a regression of individual use on friends' use, lagged individual use (1
and 2 days lagged) and lagged friends' use. We use lagged friends-of-friends' use (1 and 2 day) to

13



instrument for friends' use in columns 1 and 2 of Table 3A. When we include more demographic

covariates to predict individual use, we similarly use friends-of-friends covariates of the same type as

instruments. First stage results are presented in Tables 4A and 4B in Appendix B. Tables 5A-C present

Sargan J statistics and Cragg-Donald Wald F statistics and Stock and Yogo (2005) weak identification

critical values for the 6 IV specifications.
The "full model" containing all covariates and lagged usage behaviors for the individual and their

friends has the following equation (similar to equation 9 in section 2):

Uset = a + f3GtUset + y1LagUselt + y2LagUse2t + y3Age + y4Gender + y5Degree

+ y6PageRank + S1 GtLagUse1t + S2GtLagUse2t + 63GtAge + 64GtGender

+ 65 GtDegree + S6GtPageRank + At + Eij

We substitute in the network we observe at the end of the period of analysis Gf (in row-normalized form)

for G, for each day in the 28 day period we examined. The other models use a subset of the variables

included in this larger equation. Multiplying a vector by G therefore returns a vector containing the

average for an individual's friends' values (use or covariate). We use 1 and 2 day lags in these

specifications.

(1) (2) (3) (4)

Table 2A 1.S )IS - lMoled O.S - Fixt'd iTcet OLS - lctded with Lags O)S - Fixed I ri-ts With IAgs

Dep. Var.:

1t 1. (Pageviews)

Friend 11me 0.066W*" 0.05f60"* 0.0444*" 0.0299*"

lAg lse (I IDay) 0.29" 0.298"*

(0.0122) (0.0121)

Lag Utwe (2 D~ay) ()-18q**O-91
(Ot.i9$C.) (O.f 1990)

Frientid Lig Use 0.(XY)295 0.(0)363

(1 Ihiy)
(0.AX)766) (.X72

Friend lAg lse -0.(XXY29() 0.(X)975

(2 Day)
(O.(XKi18) (.Xi3

ContaS R.S"* MA.W"* 7**" 2,8

(0.205) (().911) (0.226) (0.672)

Observations c.1,681 61,684 57,27S !7,288

Il-squared .X)'2 00)5 0.180 0-.18

Timi F: NO YL.S NO YES
lobust standard errors in parenthses

" p. I0.01. ** p.'O.05, * Jp t.

Table 2A - OLS Estimates
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(1) (2) (3) (4)

'Iatol, 211 ((IS ((IS PtxI.n with 3)9.ruphins OUS FE with Defmrphim? 01.1 3IoJ Full MAOd 03.1 l3I. Full klotiq4

Iqj. Vnr.:

I- ricIod I 1m, 0.0W.M.- 0.0w1). 0l.0i:1M* Ir,

(0.0(N) ((.061) (0(1)695.) (o.0(1195

la. I'm (I 3)Uay) 0.297- 0.26*
(0-0121) (0.0121)

Friend I~Ag U1e 0.0020M1 0.002"1

(I Day)
(0.11K)7731) (0.00777)

F~riund LaF, U'se 0.00334 0.00(46

(2 Dany)
(0.11(650)(0mv 0051)

Age ((.0073 ().13(121 0.(W.(74 0.MM554

(01.02181) (w(.0218) (0.039W) (0.0192)

3ed~ 3125- U.17 1,791.. 19.

(0.1543) ((1.45.3) (042$) (0.4281)

lrie-nd Are 0.3 If;** 0).3 119* 0 .0 r 2 2 0.0)525

(0.0I111) (0.0111) (((.0312) (0.03183)

lr1'nd (ewk'kr .1 *".. 3.5.1Z.. 1.243* 1.230

(0.5114))(0.511(3)(((.564) (.59

IkRrm' 0 311-1 0.341..

((I.1(4i) (0.3(4))

I'a~eIRiuk 21,5M0 21,46 1

(19,3150) (19,124)

Friend 3)e"rrw' 0-0745 (0.0774

(0.01153)(w(.115)

Friend 12.37Q 12,5135

l'agpliank
(16,7849) (16,757)

(5.WmUit 11.57** 11M. 4.49.. 0.255

(1.513) (1.77.1) (35) (3.15

(flar'vation 63,6114 631,614 57,27N4 57,2781

R..squared 0,.003 0.006 0.332 0. 11M.

limbe FE NO v S No y F.

H(031115 standard ernts in grf-hiohene

- (((I.0, *0 (((05, - p' 0, 1

Table 2B - OLS Estimates
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I ttstrtait MVtItctl

Fritid Um 01sI D 3 063

((o. I I)) ((1.:I r) (0,21-3) (0J.22(l)

((o034 .01.121) (0,.0126) (0.0121)

Lig Us~e (2 IDay) 0117 .N~(.INC40* 0. 187*

(0.M~~~)(o(1101) (wwqwl8) (t.01I w)

UrFiA.id Lag 1 T~q -0.17S -0.15 -1t _0 MY -0. 1 82

(I I)aI-)
(o. I'll IW9) (o. as I )

Iri,ivl Lig Use ~ -01.1101 -0.09H. -0. 127* DI. I()()*

(2 Da)z~
((108:9) 0.(32)(0.018:1) (0.0.142)

A g'0.1377 40.0112

(0.r217) ((I.(r23!)

(endtr 2.6370 2.489'
(0.671) (0.62v)

Friendt Age -0.01 201 -0.0035,7

(0.1)57) (o.04 8 1)

Fivis-d (en.Ier -2.487' -2.405'

(31mr) (:3.328) (2.013) (2.266;)
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Table 3A - IV Estimates
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(1) (2)

Table 31 IV IV - (L'RANd Full Iodel IV - i [ Full MIx(eI

D~ep. Var.:

lie (lageviewli)
Instrumnentedl:
I riend lIe

Iriin lId e 0.75'* 0.555
(0.381) (0.330)

Uxg lITM (I D~ay) 0.293*** 0.293**
(0.0127) (0.0121)

Lag lIfN (2 Day) 0.18**. *

(0.(K)979) (0.0101)
Iriend Lag UIhe -41.2 I -0.157
(I )ay)

(0.119) (0.101)

IriendI lAg Iw- -0.1320 -0.0924
(2 )ay)

(0.0697) (0.06:17)
Age -0.0305 -0.R236

(0.0265) (0.0242)

(ender 2. K14** 2.546***
(0.783) (0.711)

Friend Age -0.0267 -0.(M74
(0.0617) (0.0557)

-riend Gender -2.49*** -2.039*
(0.876) (0.799)

1)egree 0.377' 0.367*
(0.116) (0.111)

l'ageltank -24,778 -23,855
(20,901) (19,961)

Friend Degree -0.28 -0.143
(0.18,1) (0.161)

-riend 31.73 -3,450

1'agellank
(19,717) (18,370)

Cofslanl 3.9** 4.262*
(1.8.03) (2.09)

Observations 57,278 57,278
li--.iuared 0.25 0.102

Tirme IL No YON

Rlobit iLandnrd errorN in parenthmwcs
+T-l.01, +* 1.0.0- , * pe.1

Table 3B - IV Estimates
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I
Table 5A - Over ID and Weak ID Tests Pooled with Lags FE with Lags

J Statistic 0.974 0.12
J Statistic P-Value 0.3237 0.729

Cragg-Donald Wald F Statistic 16.969 26.749

Stock-Yogo Weak ID 10% Size Critical Value 19.93 19.93

Table 5B - Over ID and Weak ID Tests Pooled with Demographics FE with Demographics

J Statistic 21.339 21.475

J Statistic P-Value 0.0001 0.0001

Cragg-Donald Wald F Statistic 18.99 23.21

Stock-Yogo Weak ID 10% Size Critical Value 10.27 10.27

Table 5C - Over ID and Weak ID Tests Pooled Full Model FE Full Model

J Statistic 26.344 27.794

J Statistic P-Value 0.0001 0

Cragg-Donald Wald F Statistic :34.187 6.53

Stock-Yogo Weak ID 10% Size Critical Value 11.12 11.12

The OLS regression of individual pageviews on peer average pageviews would suggest there are

peer effects in our network. A simple regression of individual on peer use without controls suggests a 1 view

increase in the peer average corresponds to a 0.0665 view increase for individuals (Table 2A column 1).

With more controls, this increase remains statistically significant but declines to 0.0299 once we include

fixed effects for the day of the month and lagged use for the individual and peers. Unsurprisingly, lagged

individual use is the best predictor of future individual use. An extra pageview one day prior and two days

prior is associated with a respective (statistically significant at 5%) increases of around .3 and .19 pageviews

in nearly all models. The full OLS model (Table 2B column 4) with fixed effects predicts a statistically

significant 0.0286 extra pageviews for an increase in mean peer pageviews of 1. Gender is significant and

also predicts more engagement (1.77 additional pageviews if the individual is male), though having more

male friends predicts a decline in individual engagement. Individuals of higher degree also tend to have an

additional 0.34 pageviews for every additional friend they have. The purely correlational analysis appears

consistent with peer effects, though these correlations are misleading. We should note here that aside from

use and gender of friends, there are no statistically significant friend-based measures in the full model. This

is the first indication that certain types of peer covariates may not have exogenous peer effects (to use

Manski's framing).
The IV regressions offer mixed evidence on the existence of peer effects. In Table 3A column 1,

we see the results for the pooled IV with only lagged individual and friend behavior (no fixed effects for the

day). Friend Use is instrumented by friend-of-friend lagged use of 1 and 2 days. Once again we have the

statistically significant lagged individual coefficients of about 0.3 and 0.19 for 1 and 2 day lags respectively.

But the average friend pageviews are not significantly different from 0. Adding time fixed effects (column

2) gets friend use to marginal but not convincing significance (10%). The specifications in columns 3 and 4

add age and gender covariates for the individual and friends, instrumenting for friend use with the lagged

friend-of-friend use as before in addition to friend-of-friend "average" gender and age. Now peer effects

appear to be statistically significant at the 1% level and quite strong! In column 4, a 1 pageview increase in

peer averages appears to cause a 0.633 pageview increase in the individual's use. The full specification (Table

3B column 4) tempers the apparent effect: here an increase in peer average pageviews of 1 corresponds to

a 0.555 increase in individual views at a 10% significance level. The coefficients on friends' covariates are

quite close to zero. This is an important red flag to which we will return soon.

Discussion of Results

How can we reconcile the mixed indications for evidence of peer effects? A combination of the

overidentification and weak instruments tests is informative. Looking at Table 5A, the J statistics are small
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enough that we fail to reject at even a 10% significance level the null hypothesis that the instruments are
exogenous. Under the assumption that contemporaneous peer pageviews are indeed the only endogenous
variable, lags of friends-of-friends' use behavior appear to be valid instruments. Yet once we add in
instruments that reflect demographics (age and gender), Table 5B tells us that at least one of the instruments
is not exogenous. We reject the null hypothesis for the Sargan Overidentification Test at nearly any
reasonable significance level (this is true for the full model in Table 5C as well). The exclusion restriction
fails for at least one covariate. The correlation with the error term of friend-of-friend demographics suggests
an unobserved covariate related to the individual's outcomes. It would appear that the evidence for peer
effects is relatively weak. Either we fail to include covariates which are likely related to the data-generating
process, or our peer effects estimates are too imprecise to be convincing.

We assumed when applied this model BDF's "natural" condition that yf) + 6 # 0, i.e. there are
social effects in this context. Maybe there are social effects, but evidently the friend-of-friend covariate
instruments which make that condition true are in fact endogenous. These are the unobservable "shared
components of variance in outcomes" which make precisely measuring endogenous peer effects challenging.
Models relying on network structure to generate exogenous network instruments fall victim to the likely
condition of widespread homophily. Setups such as the one we have presented and the original static version
in BDF are especially prone to find positive peer effects whenever positive sorting on unobserved covariates
is correlated with the behavior of interest.

If "birds of a feather flock together", then they likely roost together as well (as it were). Indeed
models like these effectively stack the deck in favor of finding peer effects by first isolating connected
individuals and only then applying an estimation technique within similar groups. Regressions on group
leave-out average outcomes are also problematic, but might have additional noise in the definition of "peer"
so as to avoid intensified homophily. Furthermore in some applications it may be a problem that the matrix
Gn represents paths of length n, including paths that return to the individual (though not if assumptions are
strictly satisfied). This can create mechanical nonzero correlations between instrumented peer behavior and
outcomes that do not exist for leave-out" matrices. It is also possible that there are no exogenous or
endogenous peer effects, in which case any coefficients on peers we have found is due to statistical noise.
We might have weak instruments. Our first stage estimates (Appendix B) have predictive power though. So
why isn't there substantial evidence for peer effects? Yahoo! Go lacks social features, but the network
exhibits homophily. It would be surprising if we found endogenous peer effects. The Yahoo! Go product
engagement is driven primarily by previous engagement. Marketing strategies to leverage "virality" in
behaviors for Go would likely fail. A loyal user base (however small) existed, but the lack of a social
component likely contributed to the decision to stop support for Go.

Conclusion

Given the multitude of reasons that a 2SLS IV estimator and an OLS estimator might diverge, of
which peer effects is one of many, what is the place for network structure-based IV setups like the one we
have used and BDF? Because the model setup is so fragile, estimation results reflecting social multipliers
are unlikely to be trustworthy. Researchers must carefully consider whether using network instruments is
appropriate given the context. But arguably there is a meaningful practical application of these models. A
null result, however disappointing in some cases, is still potentially valuable and informative.

Marketers, project managers, and business analysts can use this setup to pick out products without
peer influence. In any case where homophily is likely to lead to positive correlation in behaviors, a failure to
reject the null of zero peer effects is a strong statement. Null results in the presence of a bias of magnitude
are more reliable null results. With the results we have presented, there is now a dynamic framework to
apply as well (if only as a robustness check). There are mitigating factors which might make a null result less
reliable too. Heterogeneity, congestion effects, and omitted variables could make a null result more likely.
Future work might extend to matching estimators or simulation techniques to handle these challenges. Yet
in the simplest of cases homophily will often lead us to find a putative peer effect that isn't really there. In
our case, knowing that Yahoo! Go lacked a positive social externality might have helped Yahoo! end support
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for the product earlier, or perhaps to focus their efforts on the most engaged users. Engineering and
exploiting contagion in marketing can be a worthy pursuit, but often an expensive strategy to pursue. These
models can help decide if resources are better deployed elsewhere.
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Appendix A - Calculation Strategies for g

The simplest way to start is to choose either the new network or the old network as the relevant

period-level isomorphic graph. We might also define a scalar to indicate the relative "socialness" of each

period as well. One way to determine a weighting value between 0 and 1 is to define a row vector of weights

for each individual, where the ith element of the row vector is the proportion of the total count of

connections belonging to the new network for individual i. This is to say that:

Pi,t - nj, +l ni,t is the connection count of person i in time t
ni,t ni,t+1

We could treat C as another parameter to optimize in the estimation procedure, choosing its value

in each period (as a scalar) to minimize the sum of squared residuals. This approach is not discussed in this

paper. Lastly we might abandon the convex combination idea entirely, focusing instead on finding the graph

union or graph intersection of Ft and Ft+1. The graph union has the advantage of including all connections

as important in peer effects. The graph intersection represents the part of the graph that is stable over time.

Most network software packages contain algorithms for calculating these matrices. A combination of both

approaches may be worthwhile, taking the "true" network to be some convex combination of the

intersection and union graphs.

Appendix B - First Stage Estimates from Tables 3A and 3B
(1) (2) (3) )

TIable IA i irht Stuig Firmt SAge - Pm, t. with Uag I Iirst StAgv - IT with .rgs.rt Stin. lh--d with Ikrt.ographi Fimrt Stago - FI with I).mographw.

1k1 .. Var.:

Friild IP

(I Dl.y)
(0( 0922) (0.00932) (0.(092) (0.10933)

Lag P nild f-Friend U*, DIV0 (XL2W 02*. 0.XMIt .45*

(2 DaY)

(o m)921) (0.009:1) (0.00922) (0.01)932)

Frkndml-I- rknd Age -0.0(d)) 4t.0(;I 1

((o119) (0.0192)

Vrjtnd-4f>rind (ender 9 1.776*
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(1) (2)

Table liI First StUge 1 irst Stagv - oIed 1ull Mq.lel Iirst Singe - 11: -ull Mil

D)ep. Var.:

Iriead Ise

Lag -rietid-ofl-'riend I'se 0.0327*** 01 SC

(I l)ny)
(0.00926) (0.0937)

Lag 1riend-of-l'rietid Ume -0.0122 0.0272***

(2 1)ay)

(OAM92S) (009M9)

lrietlil-Ap-friend Age -0.0722 -0.QND3

-rivindi-of-IFrieid C4endr -3.,3A2 '- Hl***

(0.790) (0.782)

iriewd-of-F riend I)egrix' 0.07'; O.Ost:I
(a I FK) (o. I t6)

Irieiil-of-Friend I'agell:ank 618.1 2,232

(29,)45) (2S,776)

Cownitalki 2.r,82* 4.339**

Olvervatiotts 57,278 57,278

IR-sqtared 0.2)5 0.220

Standard errors in parenthases

*** [pc0.01, ** p<A.0S, * p-AL.I

Appendix C - Yahoo! Go Screen
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Source: Wikipedia
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