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ABSTRACT

The distributions of stars and prestellar cores by mass (initial and dense core mass functions, IMF/DCMF) are
among the key factors regulating star formation and are the subject of detailed theoretical and observational
studies. Results from numerical simulations of star formation qualitatively resemble an observed mass function, a
scale-free power law with a sharp decline at low masses. However, most analytic IMF theories critically depend on
the empirically chosen input spectrum of mass fluctuations which evolve into dense cores and, subsequently, stars,
and on the scaling relation between the amplitude and mass of a fluctuation. Here we propose a new approach
exploiting techniques from the field of network science. We represent a system of dense cores accreting gas from
the surrounding diffuse interstellar medium (ISM) as a spatial network growing by preferential attachment and
assume that the ISM density has a self-similar fractal distribution following the Kolmogorov turbulence theory. We
effectively combine gravoturbulent and competitive accretion approaches and predict the accretion rate to be
proportional to the dense core mass: µdM dt M . Then we describe the dense core growth and demonstrate that
the power-law core mass function emerges independently of the initial distribution of density fluctuations by mass.
Our model yields a power law solely defined by the fractal dimensionalities of the ISM and accreting gas. With a
proper choice of the low-mass cut-off, it reproduces observations over three decades in mass. We also rule out a
low-mass star dominated “bottom-heavy” IMF in a single star-forming region.

Key words: ISM: clouds – ISM: structure – stars: formation – stars: luminosity function, mass function

1. INTRODUCTION AND MOTIVATION

Six decades ago the stellar initial mass function (IMF) was
derived from star counts (Salpeter 1955) as a scale-free power
law ( » adN dm m ; a = -2.35) with more frequent low-mass
stars than high-mass stars. Since then, it has attracted attention
as one of the principal star formation characteristics that
controls stellar feedback and, therefore, governs galaxy
evolution. Furthermore, explaining the IMF will help us
understand star formation physics. From observations, the
IMF shape appears to be universal across different star-forming
regions (Kroupa 2002). Resembling a unimodal (Salpeter 1955)
or bimodal (Kroupa 2001) power law or a log-normal
distribution with a power-law tail (Chabrier 2003), it sharply
declines at the low end at masses<1 12 solar mass (Me). The
dense core mass function (DCMF) derived from observations
of giant molecular clouds (Alves et al. 2007; André et al. 2010)
is an IMF precursor: First, dense cores grow from density
fluctuations by attracting surrounding material, cool down, then
protostars form inside them and evolve into stars. The DCMF
shape also looks like a power law at high masses and declines
below 1/3 Me, offset by a factor of ∼4 to higher masses
compared to the stellar IMF, illustrating a ∼25% gas-to-stars
transformation efficiency. Thus, if robust arguments were
provided to explain the DCMF shape, the IMF shape would
follow through that heuristic conversion rule.

All existing analytic and numerical IMF theories (see the
review by Hennebelle & Chabrier 2011) consider either the
accretion of material on protostars (Zinnecker 1982; Bonnell &
Bate 2006) or the gravitational fragmentation of the interstellar
medium (ISM) (Padoan & Nordlund 2002). In a simple model,
a nonlinear stage of the molecular cloud fragmentation yields a
low-mass IMF decline (Silk & Takahashi 1979) but does not

reproduce a power-law high-mass tail. Diverse physical
mechanisms of the molecular cloud cooling that affect the
collapse and fragmentation are often hidden in a complex
equation of state for molecular clouds where the polytropic
index depends on density, temperature, and chemical composi-
tion (Spaans & Silk 2000). One of the most complete analytic
IMF theories to date (Hennebelle & Chabrier 2008, 2013)
explains the observed overall IMF shape by analyzing the
evolution of density fluctuations in a self-gravitating turbulent
ISM in the presence of a magnetic field. Similarly to other
gravoturbulent theories, in order to reproduce a power-law part
of the mass function consistent with the Salpeter slope, it relies
on a specific choice of the scaling relation that connects the
density fluctuation amplitude with the mass contained within
that fluctuation, and a log-normal initial ISM density
probability density function (PDF) required for the analytic
computation of the mass function shape. However, the density
PDF scale dependence chosen in Hennebelle & Chabrier
(2008) relies on results from numerical simulations. Also,
density PDFs observed in molecular clouds deviate substan-
tially from the log-normal shape and vary across different star-
forming regions (Lombardi et al. 2015). Moreover, gravotur-
bulent theories do not consider any external accretion on dense
core progenitors, so there is no guarantee that a power-law
DCMF holds as the system evolves.
Recent developments by Hopkins (2013) introduce a variety

of modifications to the gravoturbulent fragmentation conditions
and propose different grounds for the density PDF scaling
relation. The author claims that the input ISM density
distribution does not have to be log-normal. However, this
might be the result of the mathematical simplification applied
(the top-hat filtering in the Fourier space and the consequent
Taylor expansion) that transforms an arbitrary function into a
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log-normal like shape. Nevertheless, this theory yields a
fluctuation mass function consistent with the Salpeter slope
after some fine tuning of the model parameters. At the same
time, no argument is provided for the fundamental reasons of
the power law and a particular value of the exponent.

The generalization of gravoturbulent theories to non-log-
normal or non-analytic PDF shapes becomes cumbersome and
not very straightforward. Schmidt et al. (2010) demonstrate
analytically and numerically that gravoturbulent theories can
reproduce the power-law IMF for arbitrary initial PDF shapes,
however, in their analytic computation they rely on specific
simplifications (e.g., excluding the largest cores from con-
sideration in the case of the Hennebelle–Chabrier theory),
which de facto restricts the input density PDFs to certain
functional families.

Whereas analytic theories that deal with the competitive
accretion scenario reproduce the power-law IMF tail, they fail
to match its observed exponent ( )a = -2.35 and cannot be
applied to non-clustered star formation. A recent IMF theory
from that family (Basu et al. 2015) generates a log-normal
distribution with a power-law tail via the process of quenched
accretion with the exponential distribution of accretion time-
scales. However, that theory neither provides a justification for
the exponential distribution nor does it proposes a quantitative
argument for the slope of the power-law tail.

The theory by Maschberger (2013) considers both linear and
nonlinear accretion of mass onto dense cores and takes into
account the stochasticity of the process using the Stratonovich
stochastic calculus. While it successfully reproduces high-mass
power-law tails, the accretion laws considered there are not
connected to the ISM properties.

Hence, the following questions still remain unanswered by
existing IMF theories: (i) can a scale-free power-law distribu-
tion of dense core masses become established by some physical
processes independent of the initial density distribution; (ii)
does it hold as the system evolves by accreting external
material; and (iii) what does the power-law exponent
depend on?

Here we present a different approach to the analytic DCMF
theory. We describe the mass accretion onto prestellar dense
cores in the fractal ISM as preferential attachment, a key
phenomenon studied in the field of network science (Merton
1968; Newman 2010; Barthélemy 2011). We use probabilistic
accounting of small parcels that join dense cores, subject to
gravitational attraction and stochastic noise. We limit our
model to the early stages of the dense core growth by mass
accretion without complex physics following protostar forma-
tion. Therefore, it applies to starless dense cores. The principal
result of our theory is an analytic expression for the power-law
tail that develops for any initial distribution of dense core
progenitors by mass. This is the first example of a theory that
consistently connects the accretion rate to global properties of
the turbulent ISM and, thus, effectively combines the
gravoturbulent and competitive accretion approaches.

2. MASS DISTRIBUTION AND A SYSTEM OF UNITS

We describe a system of dense cores as an array of masses
Mi distributed according to some time-dependent function

( )p m t, . At a given moment, the system has a total mass Mtot
and a total number of dense cores N. The mass distribution
shape is governed by two processes: accretion of mass parcels
onto existing cores and generation of new core progenitors. We

first treat events of parcel accretion and, thus, masses of dense
cores as discrete and further take the continuum limit.
Let us consider an event where a gas parcel of a small mass

dm per one unit of time dt attaches to one of the cores.
Regardless of which core it joins, the total mass of the system
grows by dm, hence =dM dmtot . The accretion summed over
the entire system (e.g., the global mass growth of the system)
happens at some characteristic rate K = dm/dt. Over a time
step dt every mass bin m can only be affected by bins within
dm = Kdt from it. Hence, the timescale choice uniquely defines
the mass bin size. A volume density of new dense core
progenitors created per unit time in each bin is described by
some function f(m). This function is the only mechanism that
increases N, therefore ( )ò= =

¥
dN dt f m dm F

0
. We stress

that the K and F values are, in general, time-dependent. As the
accretion exhausts available material in the surrounding ISM,
both rates should slowly decay to zero. However, as we show
in Section 5, neither their exact time dependence nor their
absolute values matter for the final DCMF shape.
Then, the mass distribution of cores is expressed as ( )p m t,

with { }Î ¼m dm dm dm, 2 , 3 , , discrete time
{ }Î ¼t dt dt dt, 2 , 3 , , and normalization ( )å ==

¥ p m t, 1m 1 .
We are interested in its long term behavior, such
that ( ) ( )

¥
p m t p m,

t
.

3. THE FRACTAL MATTER DISTRIBUTION IN THE ISM

Observations suggest that density and velocity distributions
in the ISM are predominantly defined by turbulent motions on
scales from hundredths of a parsec to hundreds of parsecs
(Elmegreen & Scalo 2004). A consequence of the Kolmogorov
theory (Kolmogorov 1941) is a self-similar or fractal density
distribution in a turbulent flow (Sreenivasan et al. 1989) with
the predicted fractal dimensionality = =D 7 3 2.33. It stays
in agreement with measurements obtained from observations of
giant molecular clouds (Falgarone et al. 1991; Elmegreen &
Falgarone 1996) ( –=D 2.2 2.4) and in laboratory studies of
turbulence (Sreenivasan et al. 1989) (D = 2.35). Numerical
simulations of the ISM evolution with an input fractal density
field (Elmegreen 1997, 2002) yield power-law mass distribu-
tions of overdensities that correspond to dense cores in star-
forming regions.
We describe ISM as a two-phase medium where the two

phases may have different fractal dimensions. One phase
corresponds to dense cores. The other one corresponds to
parcels, small gas/dust fragments with individual masses
substantially below the turbulent and gravitational Jeans
masses (Hennebelle & Chabrier 2008; Hennebelle & Falgar-
one 2012) that do not have to obey the same law. Dense cores
arise from the initial turbulent medium and, therefore, their
positions trace the initial overdensities in the turbulent flow.
Parcels correspond to all remaining material of the ISM that did
not enter dense core overdensities initially, but can be accreted
by them. The dense core phase defines the gravitational field
profile in the ISM, and the parcel phase moves in that field and
accretes on dense cores. The spatial distributions of the two
phases are governed by different mechanisms and thus are
neither positively nor negatively correlated.
Our mathematical description of the two-phase ISM follows

a fractal model by Tarasov (2005). Both phases have a
characteristic “microscopic” lengthscale (pore size in Tarasov
(2005)) on which the discreteness of the medium is visible. For
the dense core phase this characteristic lengthscale l
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corresponds to the average distance between adjacent dense
cores. It can be inferred from the Jeans mass and the total
system mass. For the parcel phase, the lengthscale d
corresponds to the average separation between particles of
gas or dust. Presumably l d , which corresponds to dense
cores being much larger and less frequent than parcels.
However, for the purpose of this calculation we are interested
in the statistics on much larger scales.

As Tarasov (2005) suggests, for a fractal medium observed
on scales r l or r d , uniform fractal scaling is observed,
i.e., the mass confined in a sphere of radius r grows as

( ) ~M r r Dm, where Dm is the fractal dimensionality of the
density distribution. This relation has two important properties,
fractality and homogeneity. For the uniform distribution of
matter in 3D space Dm = 3, but for the fractal distribution

<D 3m . Consequently, the average density in a sphere
( )r ~ M r r3 is not constant, but is scale-dependent. The

homogeneity means that the fractal power-law scaling of mass
confined in a sphere is independent of the position of that
sphere. Features and structures of the fractal distribution are
associated with observing it on different scales rather than at
different positions. Self-similar (or fractal) scaling appears only
on scales when discrete features of characteristic scales l and d
blur out.

Since the dense core distribution traces the initial
Kolmogorov-like supersonic turbulent distribution, we take
it to have = D 7 3 2.33m . Confining our system to a box of
linear size L and normalizing its mass to Mtot, the mass
confined in a thin concentric sphere becomes

( ) = - -dM r M D r L drm
D D

tot
1m m . The fractal dimension of

parcels < D2 3p is left as a free parameter for now and
is discussed below in more detail. Therefore, the average
number of parcels confined within a thin concentric sphere,
properly normalized, is ( ) = - -dn r D r L drp

D D1p p .
Even if a substantial mass fraction is contained in the diffuse

phase (e.g., an order of 50%), our calculations will remain
valid, because the gravitational field gradients and, correspond-
ingly, the basins of attraction (see Figure 1 right) will still be
defined by “point-like” dense cores.

4. DENSE CORE GROWTH BY PREFERENTIAL
ATTACHMENT

Preferential attachment is a stochastic process in which a set
of objects possessing some property acquire discrete units of
this property in a partly random fashion such that the
probability of a given unit to be attached to a given object
increases with the increase of the amount of that property
already contained in this object. It is also referred as a “Yule
process” in speciation (Yule 1925), a “Matthew effect” in
science organizations (Merton 1968), a “cumulative advantage”
in bibliometrics (Simon 1955; Price 1976), and as a “capital
gain” in economics (Yakovenko & Rosser 2009). Preferential
attachment in random networks naturally explains power-law
distributions (Barabási & Albert 1999) of node sizes defined by
the number of links. This approach explained power laws
emerging across different fields of science, e.g., in the World
Wide Web structure (Albert et al. 1999), protein interactions
(Jeong et al. 2001), metabolics (Ravasz et al. 2002), transporta-
tion, social networks, and scientific collaborations (Barabási
et al. 2002; Newman 2004). Here we describe a system of
dense cores growing in a molecular cloud by preferential
attachment. Gravitational forces representing “links” between
dense cores are distance-dependent, hence we exploit the
spatial network formalism (Barthélemy 2011).
When a new parcel emerges in the system, it becomes

subject to multiple competing attractive gravitational forces
from existing dense core progenitors, and at the same time to
drag forces as it moves through the ISM. We assume that drag
forces dominate over the inertia, so that the exact dense core
which will acquire a given parcel is determined only by the
competition of forces at the parcel’s starting position (see
Figure 1, right panel). We set the parcel accretion probability
by a given core proportional to the initial gravitation
acceleration toward it (Figure 2, left panel). In close vicinities
of dense cores, where the gravitational field is totally
dominated by one mass, our description becomes equivalent
to the deterministic accretion onto that particular core.
However, at the border separating areas of dominant attraction
(Figure 1) from two cores, a parcel can be tipped over it by
stochastic pushes from other particles of the ISM. The
probabilistic approach allows us to model that situation. Hence,
the probability of a newly emergent parcel j to join an existing

Figure 1. (Left) We generated a three-dimensional fractal density field
(Elmegreen 1997) with the dimensionality Dm = 2.35, projected it onto a plane,
and identified dense core progenitors as overdensities shown as circles with
radii proportional to masses. A gravitational acceleration field generated by
dense cores is displayed by vectors. (Right) In the same system of dense cores,
the color density corresponds to the the fraction (0 to 1) of the prevailing force
in the overall force balance, while different colors stand for different basins of
attraction. The lengths of vectors from the parcel (box) show the accretion
probabilities by corresponding dense cores.

Figure 2. (Left) A new parcel j emerges in an arbitrary point of the system and
chooses between different fractally distributed dense cores i it can attach to,
with the attachment probability directly proportional to the gravitational
acceleration. (Right) The same process as seen by a core i: as new identical
fractally distributed parcels emerge throughout the system, they can be accreted
with probabilities decaying with distance.
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dense core i is:

∣ ∣
( )p =

- d
c

M

r r

1
1j i

j

i

i j

where Mi is the mass of the ith core, ∣ ∣-r ri j is the Euclidean
distance between the points, δ is the gravitational law exponent
(d = 2 in the three-dimensional space). A possible alternative
choice is d = 1, which corresponds to the decay of gravitational
potential rather than acceleration. This, however, is not very
important for the preferential attachment description. We
choose a normalization so that the probability of a parcel
joining some dense core is unity by using the continuous
random fractal approximation to sum over all cores:

∣ ∣
( )

( )

òå

d

=
-

=

=
-

-

d
d

d d

-

- -

c
M

r r
dM r r

M D

L

L l

D
2

j
i

i

i j l

L

m
D

D
j
D

m

tot

i

m

m m

where lj is a distance from a new parcel to the nearest dense
core. Assuming d>Dm and l Lj , we can neglect lj so that
the statistics is dominated by distant dense cores, owing to the
long distance nature of gravitation. Thus, the normalization
factor is the same for all parcels, regardless of where they
emerge.

From examining the integrals in Equations (2) and (3) below
we can see that distant spherical layers of the ISM contribute
very little to the dense core growth or the parcel accretion,
since their contribution is proportional to d-r rD 1m or d-r rD 1p

and vanishes in the limit of large r.
The average dense core mass increase per time step is a

probability weighted sum over all possible positions where
parcels emerge.

( )

( )ò

å p

d
b

=

=
-

=
d

d




-

rdM dm N

dm D dr
r

L

L

M

D

D

M

r

M

M
dm 3

r
i j i

l

L

p

D

D
m

m

i i
1

tot toti

p

p

We notice the difference between our calculated accretion
rate for an individual core µdM dt Mi i and the classical
Bondi–Hoyle–Lyttleton model (Hoyle & Lyttleton 1939;
Bondi 1952) of spherical accretion ( µdM dt M2). This
inconsistency is trivially explained by two facts: (a) we assume
a fractal distribution of the infalling matter so that a thin
spherical layer no longer contains the mass rR dR2 used in the
Hoyle–Lyttleton calculations; and (b) our model considers
motions of fractally distributed gas parcels in space to be
overdamped as opposed to ballistic motions, therefore the
whole orbital computation including the impact parameter and
the escape velocity from Hoyle & Lyttleton (1939) is not
applicable to our case.

We denote the growth exponent
( ) ( )b d d= - - <D D1 1 1m p . It characterizes the growth

rate of individual masses. We can illustrate its contribution to
the dense core growth by using a simple, but manifestly
unrealistic assumption of a constant accretion rate in the
system. If at some moment t0, a dense core has mass Mi,0 and
the global mass growth rate is quasi-constant ( ~dm dt and

~M ttot ), then it grows in time according to a sublinear power

law:

( )=
b⎛

⎝⎜
⎞
⎠⎟M M

t

t
. 4i i,0

0

In reality, this law does not hold because the global mass
growth rate K might not be constant. However, one cannot
directly observe the growth of a single dense core because it
lasts tens of thousands of years. As we show in the next
section, the directly observable quantity is a snapshot of the
DCMF in the  ¥t limit, which in turn is not affected by the
specific time dependence of K and F.

5. THE POWER-LAW DISTRIBUTION FROM THE
MASTER EQUATION IN NETWORKS

The growth law for an individual dense core is not sufficient
to derive the mass distribution shape. Therefore we use the
master equation (Dorogovtsev & Mendes 2002; Newman 2010)
for the distribution evolution (Schnakenberg 1976) that
describes probability flows between different states of a
system, in our case, different masses of dense cores described
by the DCMF ( )p m t, .
The DCMF declines at low masses because dense cores

cannot form below the Jeans mass (MJ) where the gravitational
contraction cannot overcome the gas thermal pressure
(Jeans 1901) or the turbulent support (Hennebelle & Chabrier
2008). In our model, dense core progenitors are generated
across a finite range of masses according to the initial
probability distribution called source function f(m).
The three processes change the number of dense cores in a

cell m over one time step dt: some cores of mass m − dm grow
and enter the cell, some cores of mass m grow and leave the
cell, and ( )f m dt new cores are created in this cell. The
accretion rate given by the growth equation (Equation (3)) is
the same for all dense cores in a given cell. Putting these
contributions together:

( )( ) ( )
( ) ( ) ( ) ( )

( )

b b

+ + =

+
- -

- +

p m t dt N dN p m t N
m dm p m dm t N

M

mp m t N

M
f m dt

, ,
, ,

.

5
tot tot

As the evolution runs for a long time, p(m) converges to a
constant shape even if the number of dense cores and the total
mass of the system keep growing. We take the dynamic
equilibrium limit, so that ( ) ( )p m t p m, . We also now go to
the continuous-mass and continuous-time description, such that

dm dt, 0, while =dm dt K . In that case, we replace the
difference between the two accretion terms in Equation (5)
above with a differential.

( ) ( ( )) ( ) ( )b= - +p m dN dm
N

M

d

dm
mp m f m dt. 6

tot

We can substitute =dN dt F and take the steady-state limit
where dm dN M Ntot . This is actually a very weak
assumption: we do not presuppose any specific functional
law for either K = dm/dt or F = dN/dt, we only need to
assume that the ratio of those two rates is asymptotically
constant. As both accretion and generation of new dense core
progenitors are governed by the same physical processes, we
expect them to slow down at the same rate. With this

4
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simplification, we obtain the growth equation:

( ) ( ( )) ( ) ( )b+ =p m
d

dm
mp m

f m

F
. 7

Equation (7) acts as a filter (a linear functional map) that
converts an initial density fluctuation spectrum f(m) for dense
core progenitors into a DCMF p(m). Note that all time-
dependent quantities, such as K or independently standing F
(now it only normalizes the differential source function) have
canceled out, thus the DCMF shape does not depend on how the
system slows down in time. This equation preserves the
normalization because ( ) ( )ò ò= =

¥ ¥
p m dm f m dm F 1

0 0
.

An exact analytical solution is only possible for some simple
functional shape of f(m), but a number of numerical solutions are
presented for illustrative purposes in Figure 3. At high masses,
for any choice of f(m) the DCMF develops the same power-law
tail with an exponent defined only by the fractal mass
distribution properties, while at low masses it essentially
preserves the source function shape, with a smooth transition
in between. In order to match observations, we take a log-normal
source function of a form ( )( ) ( )µ - m

s
-f m exp

m

m1 ln

2 2 (Chabrier
2003; Hennebelle & Chabrier 2008; Hennebelle & Falgar-
one 2012). Its maximum lies at ( ( )) ( )m= =M O O Mexpmax J .
In Figure 4 we pick the μ and σ that best resemble the observed
distribution.

While Equation (7) allows us to accurately match the
observed DCMF, its relevance and generality stretches beyond
that. To calculate the high-mass tail of the distribution
analytically, in that limit we can neglect a rapidly decaying f
(m) (e.g., a decaying exponent, Gaussian, or log-normal). Then,
Equation (7) becomes homogeneous and has an analytic
solution of a form ( ) = ap m Cm , regardless of the f(m) input
source function shape:

( ) ( )a
b

d
d

= = - + = - +
-

-
a

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟p m Cm

D

D
, 1

1
1

1

1
. 8

p

m

6. NONLINEAR ACCRETION

Maschberger (2013) considers the dense core growth
through accretion that is in general both nonlinear and
stochastic. The accretion rate derived above is linear
( µdM dt Mi i), although in general, nonlinear cases are also
possible with µdM dt Mi i

a and ¹a 1. Accretion can be either
sublinear ( <a 1, e.g., Bonnell et al. 2001) or superlinear
( >a 1, e.g., a = 2 in Bondi 1952).
Maschberger (2013) describes the process of competitive

accretion using the Stratonovich stochastic calculus formalism
in order to predict the mass distribution of dense cores when
the accretion rate is partially random and fluctuating. The
possible fluctuations need to be restricted to be exclusively
non-negative, to rule out the mass loss. In our theory, we
account for the stochasticity of accretion using the master
equation (Equation (7)). Since in our case, the only possible
transition from each bin in mass is to the next bin, our
calculation is also restricted to non-negative fluctuations.
Therefore, by plugging in an alternative accretion rate

µdM dt Mi i
a, the tail part of the DCMF becomes:

( ) ( )
b

= -
-

-
-⎛

⎝⎜
⎞
⎠⎟p m Cm

m

a
exp

1

1
9a

a1

Here the constant β is now dimensionful for ¹a 1. For
sublinear accretion, the DCMF decays at high mass as a
stretched exponential, while for the superlinear growth it results
in a shallow power law -m a.
Here the nonlinear accretion is directly analogous to the

nonlinear preferential attachment in network science (Krapivsky
et al. 2000; Newman 2010). The sublinear preferential
attachment similarly results in a stretched exponential type
distribution. The superlinear preferential attachment results in a
situation where a few network nodes accumulate a macroscopic
fraction of all edges in the network. This issue is recognized in
Maschberger (2013) as an “explosion” of dense core masses in
the absence of noise. Since there is no observational evidence of

Figure 3. Numerical solutions of Equation (7) for different shapes of the source
function f(m). Top left: log-normal; top right: normal (Gaussian); bottom left:
Dirac δ-function; bottom right: an arbitrary multi-modal shape. We stress that
for all these source functions, the tail of p(m) is a power law with the same
exponent as that given by Equation (8).

Figure 4. An analytic DCMF model (blue solid line) computed for fractal
dimensionalities Dm = 2.35, Dp = 2.5, and a log-normal source function (blue
dotted line) are compared to the Kroupa stellar IMF (Kroupa 2001) (green
dashed line), the Kroupa IMF shifted by a factor of 3 to higher masses (red
dashed line), and an observed mass distribution of dense cores in four star-
forming regions (black histogram). We co-added observed mass distributions
of 555 dense cores not containing protostars in the Orion, Perseus, Ophiuchus,
and Taurus star-forming regions (Sadavoy et al. 2010) by normalizing the
numbers of cores in the < < M M1.25 3.2 mass range. The uncertainties were
estimated by varying dense core temperatures by 30% (Sadavoy et al. 2010).
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star-forming regions, where the entire mass is dominated by a
few very massive stars, the explosive growth scenario seems
unrealistic.

Because the phenomenology of accretion in fractal media is
not clear, we restrict further analysis to the simple case of linear
accretion following from our model and given by Equation (7).

7. DISCUSSION AND SUMMARY

7.1. Dependence of the Slope α on Input Parameters

Having obtained an analytic expression (Equation (8)) for
the power-law exponent α, we can now explore how it behaves
as we vary the three possible parameters of the system Dm, Dp,
and δ. An important thing to stress is that none of the three
parameters bears any dimensional units. On one hand, this is
due to the term “scale-free distribution”: in the high-mass tail

( ) ~ ap m Cm there is no characteristic mass or scale that
defines the shape of the distribution (as opposed to other
functional forms, such as normal, log-normal, or exponential).
On the other hand, these parameters are directly related to
fundamental scaling laws of statistical physics relevant on a
broad spectrum of length, time, and mass scales.

By substituting the observed value Dm = 2.35 (Falgarone
et al. 1991; Elmegreen & Falgarone 1996), we obtain

( ( ))a = - + - D1 6.7 1 2 p . The uniform density distribution
of gas parcels corresponds to Dp = 3 and a » -3.24. The
Salpeter value a = -2.35 corresponds to Dp = 2.5. This
fractal dimensionality is predicted and observed in a number of
physical systems governed by Brownian processes such as the
diffusion-limited aggregation (Meakin 1983) known to take
place for dust in the ISM (Planck Collaboration et al. 2011).
Whether or not an actual Brownian process stays behind the Dp

value is beyond the scope of our work, however, finding how
observed physical properties of the ISM may affect its fractal
dimensionality at the low-mass end might provide a clue to our
understanding of IMF variations.

We also notice that if Dp = Dm, the second term in the
expression turns into unity and yields a = -2.0. For generic
values of the parameters, the numerator in the last fraction of
Equation (8) represents the variety of choice of parcels for a
given dense core (Figure 2 (right)), whereas the denominator
represents the variety of choices of dense cores for a parcel
(Figure 2 (left)). If both are distributed in space following the
same fractal dimension, then the patterns of parcels attaching to
dense cores no longer depend on the spatial coordinates.
Effectively, for Dp = Dm the spatiality of the problem cancels
out and it reduces to the “regular” preferential attachment
process (avoiding the double-counting of network edges as in
Barabási & Albert 1999). The expression also becomes
independent of δ, thus removing the necessity of our model
choice to weigh the accretion probabilities by gravitational
accelerations or gravitational potentials.
A specific possible value of a = -2.0 at Dp = Dm is

described by Hopkins (2013) as “a generic scale-free distribu-
tion, allotting equal mass to each equal logarithmic interval in
mass.” The actual value obtained by Hopkins is equal to 2 plus
a small addition coming from various effects related to the
properties of the turbulent ISM and magnetic fields. In our
theory, that addition appears naturally from considering a two-
phase medium, i.e., different spatial distributions of dense cores
and parcels.
Our result favors the unimodal IMF shape over the bimodal.

The broken power law (Kroupa 2001) is acceptable as a fitting
approximation for the smooth transition between the low-mass
decline and the high-mass power-law tail. This agrees with the
conclusions drawn from numerical simulations (Elme-
green 1997, 2002) of the fractal ISM evolution. Clauset et al.
(2009) specifically discuss the difficulties of fitting power laws
and other fat-tail distributions to empirical data and point out
that it is often hard to distinguish which model represents the
data better.
Then, given no evidence that the turbulence induced ISM

fractal dimensionality Dm = 2.35 varies across different star-
forming regions, the variation of < D2 3p remains the only
channel to explain possible IMF non-universality. The two hard
limits are a = 1 (Dp = 2) and a = 3.24 (Dp = 3).
For a system with a finite number of cores N, we estimate the

mass ratio of the largest to smallest cores in the power-law
regime as = bM M Nmax min . This explains the observed
correlation between the most massive star mass and the total
star cluster mass that we can calculate for any specific solution
of Equation (7) (Kroupa et al. 2013).
Larson (1992) attempted to relate the ISM fractal dimen-

sionality to the IMF shape by assuming that the entire mass
from some fragment of the molecular cloud surrounding a core
accretes onto it. Then, the IMF power-law exponent becomes
equal to the fractal dimensionality. In our model, however, we
do not make the assumption that every core grows by accreting
matter from a distinct region of the cloud but rather consider
the competitive accretion (or preferential attachment) in order
to account for overlapping basins of gravitational attraction.
A filamentary distribution of parcels will correspond to
< <D1 2p . This will change the convergence of integrals in

Equations (2)–(3) but will still result in a power-law mass
function. In principle, it is possible to introduce a scale-
dependent fractal structure where Dp and/or Dm change at
some characteristic scale Rf. This will, however, make the
calculations bulky and will also introduce additional free

Figure 5. (Top) An analytic DCMF model (blue solid line) computed for
fractal dimensionalities Dm = 2.35, Dp = 2.5, and a source function having
negative values at > M M0.97 (blue dotted line) are compared to a fiducial
bottom-heavy stellar IMF (green dashed line), and the same IMF shifted by a
factor of 3 to higher masses (red dashed line). (Bottom) The vertical axis scale
is linear in order to demonstrate the partially negative source function shape.
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parameters so that the solution behavior will be more difficult
to investigate and explain analytically.

7.2. Bottom-heavy Mass Functions

The low-mass star dominated bottom-heavy IMF suggested
by recent observations (van Dokkum & Conroy 2010;
Cappellari et al. 2012) has a slope at certain masses steeper
than the asymptotic value α (Figure 5). The logarithmic slope is
given by ( ) ( ( ) )( ( ))=d p m d m dp m dm m p mlog log . We
derive it directly from the master equation (Equation (7)) in a
self-referential form, without solving it for any specific f(m):

( ) ( )
( )

( )
( )

( )a
b

= = +
d p m

d m

dp m

dm

m

p m

f m

Fp m

log

log
10

f(m) is always non-negative because dense cores in our model
are never destroyed, and p(m) is non-negative as a probability
distribution. Asymptotically, their ratio ( ) ( ) f m p m 0
because f(m) has exponential or faster decay and p(m) is a
“slower” power law. Thus, the logarithmic slope

( ) ad p m d mlog log from above, and it can never become
steeper than α unless the non-negativity condition is violated.
We solved Equation (7) for a fiducial source function that is
negative for some masses (Figure 5) in order to illustrate how a
bottom-heavy DCMF can be established. Because α only
depends on the fundamental scaling exponents δ, Dm, and Dp,
and because it serves as a hard lower bound on the DCMF
slope, bottom-heavy mass functions are ruled out by our theory
for the linear accretion regime.

This conclusion comes into tension with the results that
suggest a bottom-heavy IMF shape in elliptical galaxies (van
Dokkum & Conroy 2010; Cappellari et al. 2012) with a » 3. It
is worth mentioning that those conclusions have recently been
challenged by statistical data analysis (Smith 2014; Clauwens
et al. 2015), observations of extragalactic X-ray binaries
(Peacock et al. 2014), and strong gravitational lensing (Smith
et al. 2015). However, one has to keep in mind that it is
impossible to observationally measure the IMF slope at masses
( > M M0.7 ) in old stellar populations, because stars at that
mass range have already evolved into remnants. Therefore, the
unimodal steep IMF slope cannot be excluded as a solution
satisfying both our theory and observations, if future studies
explain how the parcel fractal density dimensionality Dp

depends on a galaxy mass or the ISM metal content.
Also, if we admit variations of the unimodal IMF slope

across different star-forming regions in the same galaxy, the
observational appearance of an IMF to be bottom-heavy
becomes plausible for composite stellar populations (e.g.,
galaxies formed by major dry mergers). That can happen if, for
example, a combined IMF shape is determined for a stellar
system that consists of several building blocks having different
intrinsic IMF slopes and comparable masses. Then, the
combined stellar distribution will be dominated by low-mass
stars preferably from a bottom-heavy building block, while its
high-mass end will be defined by a shallow (top-heavy) IMF
stellar component. This explains why until now, no stand-alone
star cluster or a star-forming complex with a bottom-heavy
IMF has been found with the same integrated light spectral
diagnostics as those used to derive the bottom-heavy IMF
shape in giant early-type galaxies (van Dokkum & Conroy
2010, 2011). Stellar systems that can be reasonably well
represented by simple stellar populations, such as ultracompact

dwarf galaxies and massive globular clusters, exhibit stellar
masses corresponding to the low-mass IMF slopes between
Kroupa and Salpeter (Chilingarian et al. 2011; van Dokkum &
Conroy 2011; Podorvanyuk et al. 2013).

7.3. Summary

We presented a simple analytic approach that addresses the
following major points formulated in the introduction and left
unexplained by existing IMF theories:

i. The scale-free distribution of dense cores by mass is
established by the process of preferential attachment
(competitive accretion) of mass onto dense cores.

ii. When the system mass grows, the distribution shape
asymptotically stabilizes.

iii. The power-law exponent depends only on two para-
meters, Dm and Dp, fractal dimensions of the turbulent
ISM and accreting gas, directly connected to their
fundamental physical properties.

Our theory relies on the qualitative description of the
supersonic turbulence that follows from the basic Kolmogorov
theory. The real structure of the supersonic turbulent flow in the
ISM might be different and will potentially affect our results.
However, if the density distribution can still be described as
fractal, it will only affect the power-law slope as suggested by
Equation (8). We explain the bimodality of the Kroupa IMF as
a result of a two-component fitting of the intrinsically unimodal
distribution in the transition region ( < < M M0.08 0.5 )
between a power law at high masses and a declining part at
low masses (Figure 4). By our calculation of the lower bound
on the logarithmic slope, in the transition region it should never
be steeper than that at higher masses, therefore we rule out a
bottom-heavy IMF shape for any single stand-alone star-
forming region.
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