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Classical and fluctuation-induced electromagnetic interactions in micronscale systems:
designer bonding, antibonding, and Casimir forces
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Whether intentionally introduced to exert control over particles and macroscopic objects, such as
for trapping or cooling, or whether arising from the quantum and thermal fluctuations of charges in
otherwise neutral bodies, leading to unwanted stiction between nearby mechanical parts, electromag-
netic interactions play a fundamental role in many naturally occurring processes and technologies.
In this review, we survey recent progress in the understanding and experimental observation of
optomechanical and quantum-fluctuation forces. Although both of these effects arise from exchange
of electromagnetic momentum, their dramatically different origins, involving either real or virtual
photons, lead to different physical manifestations and design principles. Specifically, we describe
recent predictions and measurements of attractive and repulsive optomechanical forces, based on
the bonding and antibonding interactions of evanescent waves, as well as predictions of modified
and even repulsive Casimir forces between nanostructured bodies. Finally, we discuss the potential
impact and interplay of these forces in emerging experimental regimes of micromechanical devices.

I. INTRODUCTION

Light can exert a force. Although this statement is
uncontroversial today, its confirmation was a remarkable
triumph a little over a century ago[1], only a couple of
centuries after scientists had finally managed to show
that light moves at all (as opposed to appearing instan-
taneously). Much of the early treatment of this force
was limited to light incident on planar surfaces described
by some absorption and reflection coefficients, in which
the resulting “radiation pressure” can be explained by
intuitive arguments that continue to dominate pedagog-
ical materials. Perversely, this classical force is easiest
to understand through a quantum picture [2]: since a
photon with energy U has relativistic momentum U/c,
a black surface that completely absorbs normal-incident
light with power P should experience a force P/c, cor-
responding to the rate at which it receives momentum.
Similar arguments apparently imply, from conservation
of momentum, that light can only “push” on a flat sur-
face (with a force of at most 2P/c) and can never “pull.”

However, in microstructured systems, the forces in-
duced by electromagnetic waves are complicated by a
number of additional possibilities. One can consider
forces induced by guided waves, resonant modes, and
evanescent waves in addition to forces exerted by inci-
dent waves from vacuum, which can both change the na-
ture of the force and (thanks to spatiotemporal localiza-
tion) greatly enhance its strength. In systems with mul-
tiple components, one component can either pull or push
a neighboring component, since momentum-conservation
restrictions only apply to the net force on all components

∗ corresponding author: arod@princeton.edu; corresponding au-
thor.

rather than to the force on any individual object. Even
for an isolated object, focused beams on a small object
can scatter oblique light forward, a transfer of momen-
tum from the object to the wave that creates an optical
“tractor beam” [3]. We review many of these possibilities
and their applications in Section II.

In addition to these geometric and localization effects,
Section III reviews another consideration that arises for
optical forces at submicron scales: classical optical forces
arise from external sources of electromagnetic fields, but
there are also internal sources, namely thermal and quan-
tum charge oscillations. Most famously, the vibrations of
matter give rise to thermal radiation, the familiar glow
of hot objects [4], but the same fields carry momentum
as well as energy. Intuitively, two hot objects will push
each other apart with their thermal radiation, but this
picture is incomplete because it does not include ambient
radiation, and the effect is dramatically altered for ob-
jects in thermal equilibrium with their environment. For
well-separated objects in thermal equilibrium, the om-
nidirectional radiation from both the objects and their
environment exactly cancels and there is no net force on
any object, but for surfaces at submicron separations the
evanescent coupling and other effects tend to produce an
attractive force. In the limit of zero temperature, this at-
tractive force remains due to quantum fluctuations and is
known as a “Casimir” force [5]. For a single pair of atoms,
the same phenomenon is a van der Waals force known as
the “London-dispersion” force’ (or the “Casimir–Polder”
force once wave effects are included) [6]. (Although such
forces have a sometimes bewildering variety of theoret-
ical descriptions, ranging from zero-point energy sums
to path-integral models, it turns out that all of these
expressions are mathematically equivalent to the forces
of fields produced by vibrating charges in matter [7].)
Casimir forces between parallel metallic surfaces, first
predicted in 1948 and reviewed in Section III B 2, were
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finally observed quantitatively in 1978 [8] and have sub-
sequently been measured in a wide variety of microelec-
tromechanical systems (MEMS) with increasing preci-
sion [9]. However, until the last decade, both theoret-
ical predictions and experiments were limited to planar
or near-planar geometries with the exception of a hand-
ful of theoretical special cases. This has now changed,
thanks to both powerful new computational tools and
rapidly expanding capabilities of micromechanical exper-
iments, enabling an explosion in designer Casimir forces
(reviewed in Section III B) with exotic properties extend-
ing far beyond simple attraction between parallel sur-
faces. Because Casimir forces remain when all other elec-
tromagnetic interactions (external fields, static charges,
and so on) are removed, Section III C explains that they
represent both an ultimate limitation and, potentially,
an opportunity for MEMS devices as they approach the
nanoscale.

II. CLASSICAL OPTICAL FORCES

Researchers have long pursued the use of electromag-
netic waves to induce mechanical motion. Kepler was
the first to hypothesize that solar radiation is responsi-
ble for the deflection of comet tails away from the sun.
By 1903, Lebedew [10] and Nichols and Hull [11] had
proved Maxwell’s hypothesis that light impinging on a
thin metallic disk in vacuum would induce measurable
motion. Over the course of the next century, applica-
tions for harnessing the energy of light were seen in sys-
tems ranging from “Solar Sails” and accelerators [12] to
optical traps and tweezers [3, 13–15]. In the last decade,
interest in near-field optical interactions has steadily in-
creased, as on-chip optical circuitry has presented vi-
able alternatives to slower electronic systems. The initial
single-beam trapping experiment by Ashkin et. al. [3]
was the first to demonstrate the usefulness of optical
gradient forces for the manipulation of macroscopic ob-
jects: a tightly focused laser beam can trap a spherical
dielectric particle in both normal and tangential direc-
tions by balancing the scattering and gradients forces
acting on the particle. Subsequent experiments demon-
strated laser cooling and trapping of ions and neutral
atoms [16–19], leading to breakthroughs in various as-
pects of atomic physics, including the realization of Bose-
Einstein condensates [20, 21], quantum simulation of ar-
rays of atoms trapped in optical lattices, and a new
field of atom optics [22]. The physics of optomechan-
ics has a strong resemblance with Doppler cooling in
atomic/optical physics [23–25], whose groundbreaking
development preceded optomechanics by two decades, ex-
cept that in optomechanical systems the predicted quan-
tum nature is manifested in macroscopic objects. Instead
of the atomic energy levels being dressed due to strong
light–atom interactions, in optomechanics, the photonic
resonant states are dressed due to strong optomechan-
ical interactions. In addition to dynamical effects, op-

tomechanical forces also lead to nano- and micro-meter
mechanical displacements with milliwatts or smaller in-
cident powers. Similar to conventional optical trapping,
optical forces in optomechanical systems can be catego-
rized into radiation, gradient, or photothermal forces. In
the following sections, we briefly review the basic physics
of gradient optical forces in micronscale systems and
survey recent developments paving the way toward des-
ignable interactions in a wide range of optomechanical
systems, where the amplitude, wavelength, and phase of
incident light can be used to obtain tunable attractive
and repulsive forces.

A. Radiation, gradient, and photothermal forces

Radiation pressure involves transfer of momentum via
propagating waves to a compliant object. While a pho-
ton carrying momentum ~ω/c, or alternatively incident
light carrying power P , is bounded by momentum con-
servation to contribute net pressure ≤ 2P/c (assuming
100% of the light is reflected from the object), the small
momentum imparted by the photon can be drastically
enhanced by introducing an optical cavity. Assuming
negligible lossses, the force on any individual part of a
cavity can be many times larger than the net force on
the cavity as the photon continues to exchange momen-
tum with it over the cavity lifetime τ , thereby enhanc-
ing the force by a factor of τ . The canonical example
of such radiation-pressure enhancements in optomechan-
ical systems is a simple Fabry-Perot cavity formed by
two highly reflective mirrors in which one of the mir-
rors is allowed to move, leading to a number of ob-
servable mechanical effects [44]. Demonstrations of ra-
diation pressure enhancement based on this principle
cover a wide spectrum of length scales and designs, from
large-scale mirrors and Fabry-Perot cavities formed by
highly reflective Bragg gratings [Fig. 1(i)] to micron-
scale whispering gallery modes [Fig. 1(j)] of microring
resonators [45], where light circulates along the circum-
ference of the cavities. The increasing demand for com-
pact systems with smaller features has led to designs
with increasing complexity and functionalities, including
omnidirectional photonic-crystal (PhC) waveguides op-
erating near band edges leading to slow group-velocity
modes [46], PhC membranes with ultra-large mechanical
lifetimes [47], parallel metallic-plate systems operating in
the microwave regime [48], electrostrictive forces arising
from strain-dependent refractive index changes [49], and
even situations involving exotic materials such as left-
handed materials [50] and gain media where the force can
pull instead of push objects [51]. Designs tailored for ap-
plications in optomechanical systems often involve struc-
tures with co-localized optical and mechanical modes
[Fig. 1(k)], where the combination of large optical qual-
ity factors Q (dimensionless lifetimes in the range of tens
of thousands or above) and long-lived mechanical modes
(with frequencies in the MHz-GHz) have enabled excit-
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FIG. 1. Selected optomechanical structures actuated by radiation, gradient, and photothermal forces. Gradient-based designs
include: (a) A silicon waveguide acting as a doubly-clamped beam coupling light incident from the underlying buried oxide layer,
exhibiting attractive, lateral gradient forces and Duffing nonlinearities [26]. (b) Coupled silicon waveguides where attractive and
repulsive optical forces are exerted by controlling the relative phase of incoming light via a Mach-Zehnder interferometer [27].
(c) Coupled silicon PhC nanobeam cavities where attractive optical forces are observed in the presence of incident incoherent
light under atmospheric conditions [28]. (d) Coupled silicon-nitride ring resonators and silica microdisks supporting whispering
gallery modes leading to attractive and repulsive forces [29–31]. (f) Dispersive and dissipative reactive forces realized in a
system of silicon waveguides coupled to a silicon microdisk [32]. (g) Gold-coated silicon nitride plasmonic waveguides [33]
and (h) silicon PhC slot-waveguides [34] exhibiting tightly confined electric fields inside the small air gaps. Radiation-based
designs include: (i-1) Fabry–Perot cavities formed by large, kg-scale mirrors suspended by pedulums operating at very high
powers and exhibiting optical instabilities [35]. (i-2) High-finesse Fabry-Perot cavities formed by gold-palladium rectangular
mirrors [36]. (j-1) Silica microspheres supporting optical and acoustical whispering gallery modes where excitation of mechanical
modes is facilitated by stimulated Brillouin scattering [37, 38]. (j-2) Silica microtoroids supporting whispering gallery modes
used to demonstrate coherent quantum coupling [39]. (k-1) Silicon optomechanical crystals with phononic shields that have
been optomechanically cooled to the quantum ground state [40]. (k-2) InP photonic crystal cavities designed to have strong
localization of both optical and mechanical modes [41]. Photothermal-based designs include: (l-1) Silicon cantilevers actuated
by thermal stress induced by absorption of visible HeNe light [42]. Here, the photothermal effect is modulated by a Fabry-
Perot cavity formed by the silicon cantilever and the bottom silicon substrate. (l-2) Combination of radiation pressure and
photothermal effects manifested in an optomechanical system comprised of an optical fiber above a reflective gold-coated silicon
cantilever [43].

ing and novel demonstrations of optical spring effects,
optomechanically induced self-oscillations, on-chip stor-
age and manipulation of light pulses [52] and noise [53],

on-chip accelerometers [54], microfluidic sensors [55], and
cooling of macroscopic objects [23, 25, 56–61].

Gradient forces involve interactions induced by inci-
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dent evanescent or gradient electromagnetic fields. In op-
tomechanical systems, the most explored of these interac-
tions is the force induced on a microcavity by the evanes-
cent field of a nearby waveguide or substrate, where sim-
ilar to radiation pressure, the forces are also greatly en-
hanced by resonances [62]. These include microcavities
coupled to waveguides [59, 63], free-standing slot waveg-
uides leading to wideband tuning and low-power optical
modulation [64–66], PhC nanobeam waveguides coupled
to substrates leading to unusual, non-monotonic attrac-
tive forces [67], zipper-like structures leading to optically
controlled mechanical transparency [68–71], hybrid plas-
monic waveguides leading to deep subwavelength confine-
ment of light [72, 73], and plasmonic nanobeams [33, 74]
or bowtie antennas [75], some of which are illustrated
in Fig. 1. Tunable optomechanical interactions enabled
by large gradient forces [62, 76, 77] are currently be-
ing explored in applications ranging from optical cool-
ing [31], optical buffers [34], re-configurable filters [28],
non-interferometric signal transduction [70, 78], and op-
tical actuators and switches [79–82]. The interaction be-
tween coupled resonances through their evanescent field
can lead to even richer phenomena, such as tunable at-
tractive (bonding) and repulsive (anti-bonding) gradient
forces between nearby optomechanical objects. The abil-
ity to generate repulsive forces and to tune the sign and
magnitude of these interactions by adjusting either the
wavelength or phase of incident light is also poised to
make an impact in future photonic switching [83] and
MEMS devices, where they could be exploited in con-
junction with other forces such as Casimir or electrostatic
forces (as described in Section III C).

Finally, light can lead to mechanical deformations
through photothermal interactions, whereby a movable
structure absorbs part of the incident light that is con-
verted to heat. For instance, thermal stresses can arise in
suspended devices as a result of the difference in thermal
expansion coefficients between the device layer and un-
derlying supporting substrate[84], leading to bending of
the movable structure. Such photothermal deformations
can often be enhanced by the introduction of a micro-
cavity. Examples illustrated in Fig. 1(l) include a gold-
coated silicon cantilever excited by a gold-coated optical
fiber placed in close proximity, forming a Fabry–Perot
cavity [43], and a cavity formed by a cantilever and neigh-
boring substrate, excited with a laser frequency above the
silicon bandgap [42]. While the photothermal effect also
allows for optical spring tuning and dynamic back-action
(mediated by delay due to its finite thermal time con-
stant), the photothermal effect often presents itself as a
competing effect in the demonstration of several optome-
chanical devices [36, 43, 85–89].

B. Designer bonding and antibonding forces

Among the successes of optomechanics is unprece-
dented access to quantum regimes of macroscopic ob-
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FIG. 2. Working principles behind gradient forces in coupled
optomechanical systems. (a) Dispersion diagram for a system
involving two identical, co-planar square waveguides at var-
ious separations s/a = ∞ (black solid), 1 (red dashed) and
0.1 (blue dashed), where a denotes the waveguide width [91].
Insets show the Ey electric-field profile of both bonding (sym-
metric) and anti-bonding (anti-symmetric) modes. As s de-
creases, the bonding and antibonding mode-frequencies expe-
rience red and blue shifts, respectively. (b) Normalized gradi-
ent force per unit length and per incident power for the same
system, as a function of s (for a fixed incident wavevector),
where +/− corresponds to repulsive/attractive forces [92]. In-
sets show the in-plate electric-field vectorial distribution and
total intensity of both bonding and antibonding modes. The
force amplitude of the bonding mode increases monotonically
with decreasing s, whereas the anti-bonding force is only re-
pulsive at separations s/a & 0.03, becoming attractive at
short distances.

jects, most commonly realized in singly resonant optome-
chanical structures [39, 40, 90]. Other endeavors for ex-
panding the optomechanical toolbox are noteworthy as
well. In the next few sections, we present a number of re-
cent theoretical and experimental studies which highlight
the breadth of designs and functionalities in coupled, res-
onant optomechanical systems subject to bonding and
antibonding forces.

1. Theory

To illustrate the origin of optical gradient forces be-
tween resonant optomechanical systems we begin by con-
sidering one of the first proposed optomechanical struc-
tures exhibiting this effect, involving two square dielec-
tric waveguides placed in close proximity [91]. In such a
system, the mutual interaction of degenerate resonances
or guided modes via their evanescent fields can induce a
splitting of the modes into pairs characterized by attrac-
tive and repulsive mechanical forces, analogous to the
well-known bonding and anti-bonding states formed by
the level splitting (avoided crossings) of interacting de-
generate states in quantum systems [93]. The degree of
mode splitting from the initial mode frequencies is con-
trolled by the coupling strength (or proximity) between
the waveguides [91, 94]. The idea is illustrated in the dis-
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persion diagram of Fig. 2(a), which shows changes in the
frequency dispersion of the two waveguide modes as they
approach one another from infinity [91]. The relation-
ship between changes in the frequency and mechanical
energy of the system can in turn be understood from a
simple heuristic quantum-mechanical argument [91]. In
particular, assuming that N photons of frequency ω and
conserved wavevector are coupled into the waveguide sys-
tem, the photonic energy U can be written as,

U = N~ω, (1)

from which it follows that a small change in the separa-
tion will shift ω and result in an optomechanical force,

Fom = −∂U
∂d

= −∂(N~ω)

∂d
= −U

ω

∂ω

∂d
(2)

acting on both waveguides. As expected, the final expres-
sion for the force does not depend on ~ but rather on the
total stored energy in the system and can be derived and
verified via classical arguments [95–97]. A useful figure
of merit present in Eq. 2 is the so-called optomechanical
coupling gom = ∂ω

∂d , which fascilitates direct comparison
of optomechanical forces between different structures.

Mixing between the modes of the isolated waveguides
as they come together causes a splitting in the frequency,
where as expected from a simple tight-binding picture or
from perturbation theory [93], they hybridize into sym-
metric (lower frequency) and anti-symmetric (higher fre-
quency) modes. Typically, when the guided waves are in
phase (a bonding/symmetric mode), the electromagnetic
energy can be reduced by increasing the field intensity
in high-dielectric regions, leading to an attractive optical
force that pushes the waveguides closer to one another.
Conversely, when the guided waves are out of phase (an
anti-bonding/anti-symmetric mode), the energy can be
reduced by increasing the field intensity in low-dielectric
regions, leading to a repulsive force. When mechanical
degrees of freedom are introduced in these coupled struc-
tures, i.e. the waveguides are partially released from the
bottom substrate, these optical forces push the waveg-
uides in an effort to reconfigure the waveguides and hence
lower the total energy. In this particular example, the
polarity of the optical force is predominantly determined
by the relative phases of the electric field in the respec-
tive waveguides, which yields a control parameter to ob-
tain tunable optomechanical effects, even switching the
sign of the force from attractive to repulsive, an effect
that was first observed experimentally in Refs. [27, 98].
Although the simple tight-binding picture above is suf-
ficient to explain the main features of gradient forces at
large separations d � λp, where λp is a characteristic
lengthscale corresponding to the exponential tail of the
modes, at shorter separations d . λp it can fail dramat-
ically and one must therefore rely on exact calculations.
These features are illustrated in Fig. 2(b), which shows
the forces induced by both the bonding and antibond-
ing modes of the waveguides over a wide range of sep-
arations. As observed from Fig. 2(b), the force scales

exponentially with d at large separations and exhibits a
more complicated d-dependence at smaller separations.
In this geometry, non-perturbative effects arising at short
separations lead to a dramatic qualitative change in the
behavior of the anti-symmetric mode, manifested as an
increasingly weaker force with decreasing d which ulti-
mately switches sign (becoming attractive) below some
threshold d . 0.3a.

Generalizations of this phenomenon to other coupled-
cavity systems (e.g. microsphere, microdisk, and pho-
tonic crystal cavities) have paved the way for designable
gradient forces. While most optomechanical structures
often involve some kind of resonant effect, technically
Eq. 2 is only applicable in closed systems comprising
lossless (guided) resonances. In the presence of small
losses, e.g. stemming from either radiation or absorp-
tion, similar formulas can be derived (independent of the
quantum-mechanical picture above) which relate forces
to the frequencies, incident power, and lifetimes of the
corresponding leaky modes [63, 95, 97]. In more general
circumstances where there may not be well-defined reso-
nant modes with negligible loss, or situations where there
are superpositions of resonant modes with other waves
(e.g. light from an external source), modal approaches
become problematic. However, because optical forces are
directly related to the solution of scattering problems, i.e.
electromagnetic fields due to incident currents or fields,
one can also frame the calculation of forces using formu-
lations that do not rely on either mode or energy calcula-
tions and which generalize to other situations of interest,
e.g. non-resonant or broad-bandwidth excitation, and
even optical torques [14]. One such approach involves

computing the force via the integral ~F =
∮
〈~T 〉 ·d~S of the

time-averaged Maxwell stress-tensor,

Tij =
1

2
<

[
ε0

(
EiEj −

1

2

∑
k

|Ek|2
)

+µ0

(
HiHj −

1

2

∑
k

|Hk|2
)]

(3)

around some surface S lying in vacuum [2]. Calcula-
tion of stress tensors between vacuum-separated bodies
sidestep issues relating to evaluation of energy densities
in lossy media 1, and have been performed in a vari-

ety of contexts. For instance, 〈~T 〉 can be directly com-
puted via eigenmode calculations in systems with neg-
ligible loss [100, 101], or more generally by solving a
set of linear equations for the fields in the frequency
domain via finite differences, boundary or finite ele-
ments, and transfer-matrix methods [74, 102–105]. If a

1 Evaluation of either energy or stress tensor in dissipative media
can be problematic [2]. However, since most cases of interest
involve bodies separated by vacuum, these issues can generally
be ignored.
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broad-band force spectrum is desired, one can also com-
pute stress tensors via the Fourier transform of a short
pulse in the time domain, yielding the entire spectrum
at once [94]. Modern numerical methods based on the
surface-integral equation formulation of electromagnetic
scattering sidestep altogether the need to integrate stress
tensors over bounding surfaces (which can lead to nu-
merical problems) or computations of scattered fields,
and instead express the force (or torque) via compact
trace formulas that involve the solution of well-studied
linear systems from the boundary-element method [106].
Ultimately, since incident light is often introduced over
a narrow range of frequencies, calculations can be per-
formed expediently and for arbitrarily complicated struc-
tures. As discussed in Section III A, similar numerical
techniques have been developed for computations of fluc-
tuation forces, where the significantly larger number of
radiating centers and bandwidths complicate matters.

2. Recent developments

Since the first demonstrations of attractive and re-
pulsive optical gradient forces between either a silicon
waveguide and a silica substrate [26] or two silicon waveg-
uides [98], a deluge of optomechanical structures ac-
tuated by resonantly enhanced optical gradient forces
rapidly emerged. Geometries and materials explored
to attain optomechanical transduction and actuation in-
volving coupled resonances range from silica and GaAs
microdisks [30, 45, 107], silicon nitride microrings [29],
and more recently silicon and InGaAsP photonic crystal
(PhC) membranes and cavities [28, 104, 108–112]. Each
coupled system has its own competitive edge depend-
ing on the desired application, e.g. choice of mechanical
modes suitable for atmospheric operations, choice of ma-
terials for thermal power handling, considerations based
on the coupling mechanism or bandwidth requirements,
etcetera, but most designs share the general feature of
frequency-dependent polarity of gradient forces. Similar
to level repulsion in guided modes of coupled waveguides,
resonances with finite lifetime, be they whispering gallery
modes, guided resonances in one and two-dimensional
photonic crystals, or localized modes in PhC cavities,
split into attractive and repulsive force pairs upon evanes-
cent coupling, enabling actuation of devices by choosing
the corresponding excitation frequencies.

A commonality of current demonstrations of coupled
optomechanical devices is the strategy of tailoring and
enhancing optical interactions. Since the strength of
the optical force is related to the change in optical
energy with respect to mechanical deformations, tech-
niques of resonantly enhancing light–atom interactions
in photonic chip-based systems were immediately trans-
lated to boost the coupling and force amplitude of op-
tomechanical systems [113–117]. New directions of en-
hancing the transverse attractive and repulsive gradi-
ent forces, apart from the typical approach of employ-

ing ultrahigh-Q optical modes in microspheres or ring
resonators [30, 95, 107, 118–120], have emerged in re-
cent years. Some of these strategies are illustrated in
Fig. 3 and include: adopting slow-light Bloch modes to
enhance the intra-cavity optical energy [121], designing
more complex morphologies to engineer the field distri-
butions near the interacting surfaces [122, 123], and in-
corporating metamaterials that locally engineer the di-
electric profile experienced by the evanescent field in the
vicinity of the nearby objects [124, 125], or which ef-
fectively reduce the coupling distance perceived by the
fields, thereby ameliorating the challenge of fabricating
free-standing devices with thin sacrificial layers [126].

Forces between coupled waveguides have been studied
in a variety of planar structures [96, 100, 127], including
finite and infinitely thick metal slabs where surface plas-
mons mediate the interaction, but whose magnitudes are
ultimately limited by high losses [101]. Spoof plasmons
involving sub-wavelength corrugations on the surface of
a semi-infinite metal have also been explored, demon-
strating strong gradient forces at lower frequencies where
losses tend to be smaller [128]. However, most of these
systems suffer from limitations similar to those of the
original silicon waveguide geometry of Ref. [91], namely
the strength of the repulsive force is bounded. While
the attractive force of a bonding mode monotonically
increases in strength as the two resonant systems ap-
proach one other, an antibonding mode is not guaranteed
to generate a repulsive force [91]. For the above exam-
ple of two square waveguides, the relatively large cross-
sectional area and the absence of an air gap between the
structures when touching have been identified as primary
reasons for the transition from repulsion to attraction at
short separations [92]. (The absence of an air gap at
short separations means that the anti-bonding mode can-
not continue to increase its frequency indefinitely [129].)
Recent work by Oskooi et. al. demonstrated that other
waveguide cross-sections can reverse this trend, and in
particular they consider waveguides with cylindrical and
semi-circular cross-sections [Fig. 3(a)] whose convex in-
ner surface maximize the presence of air regions as they
come together. Even larger forces can arise in waveguide
systems when operating near the band edge of a guided
mode, e.g. induced by introducing a periodic grating
along the invariant direction [129], due to the smaller
group velocity of these modes. The combination of con-
vex surfaces and slow-light modes induced by periodicity
was shown to lead to orders of magnitude larger repulsive
forces [92], as illustrated in Fig. 3(b).

Other recently studied planar-waveguide structures
include metamaterials comprised of metals and di-
electrics arranged into complex microstructures with sub-
wavelength features [125, 126, 131–133]. For instance,
by employing ideas from transformation optics, Ginis
et. al. describe a structure, a thin layer of double-
negative metamaterial involving a double layer of split-
ring resonators in dielectric on top of a dielectric sub-
strate, which allows significant reduction of the effec-
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FIG. 3. Examples of recent approaches to modifying gradient forces between waveguides. (a) Normalized optical force as a
function of separation s for two waveguide structures consisting of either circular (thin lines) or semi-circular (thick lines) cross
sections [122], showing that in contrast to square waveguides [Fig. 2(b)], repulsive forces increase monotonically with decreasing
s. The explanation comes from continuity conditions and the fact that convex surfaces tend to better concentrate electric fields
in low-dielectric regions, enabling the frequency of anti-bonding modes to continually increase with decreasing s. Insets show
the in-plane electric-field vectorial distribution and total intensity of both bonding and antibonding modes. (b) Normalized
anti-bonding force between coupled PhC waveguides with either square (squares) or semi-circular (circles) cross-sections, as a
function of s. The slow-light characteristic of the modes (small group velocity vg) enhances the force, an effect that is more
prominent for semi-circular cross-sections. (c) Slab waveguides cladded with a thin metamaterial layer composed of split-ring
resonators (top inset), designed to reduce the effective distance perceived by the evanescent field of interacting modes and
leading to force enhancements of more than an order of magnitude [126]. Plot shows the gradient force in the absence (blue
line) and presence (red circles) of the metamaterial layers, designed such that their separation dw = dw/o + 0.5a, where dw/o

and a are the separation and thickness of the bulk (unpatterned) slabs.

tive optical space between two waveguides [126]. The
design and results are presented in Fig. 3(c–d), which il-
lustrate large enhancements in the bonding force between
the two waveguides. Another class of artificial structures
that show great promise are magnetoelastic or optome-
chanical metamaterials, in which gradient forces between
movable elements forming the metamaterial lattice en-
able on-demand changes in the metamaterial structure or
lattice [125, 132]. Such optomechanical interactions be-
tween “microscopic” elements were explored by Lapine
et. al. in an anisotropic magnetic metamaterial struc-
ture involving elastic split-ring resonators, demonstrat-
ing strong nonlinear and feedback effects, e.g. hystere-
sis, arising from optomechanically induced changes to the
bulk metamaterial properties of the system [132]. These
systems present enormous potential for nonlinear, recon-
figurable devices with self-adaptive photonic functionali-
ties [125]. More recently, the effect of non-locality due to
gradient forces mediated by surface-plasmon polaritons
in a wire-based metamaterial medium was explored [133].

Gradient forces can also be greatly enhanced by pla-
nar surfaces nanostructured at the scale of the incident
wavelength, such as those observed in PhC slabs and mi-
crocavities, leading to enhanced gradient forces over sig-
nificantly larger areas compared to similar 1d waveguide
structures. For instance, the force between ultra-thin and
high-Q microcavities in PhC membranes was recently
shown to lead to significant optomechanical wavelength
and energy conversion [108, 109, 134]. Moreover, the in-
plane periodicity of PhC membrane structures gives rise
to leaky resonances [129] that couple to externally inci-
dent radiation and which can lead to strong bonding and

antibonding forces [104, 130]. Another notable approach
of force enhancement can be found in exploiting symme-
try in such extended periodic structures: by breaking pe-
riodicity in PhC gratings or nanobeams (e.g. by perturb-
ing the alignment of periodic holes), ultra-large normal
and lateral forces can be engineered [104, 123, 130, 134].
The idea, first explored by Liu et. al., relies on the exis-
tence of certain leaky modes, or “bright” guided modes of
isolated, unstructured slabs that can couple to external
radiation via the periodicity (band folding), which due
to symmetry cannot couple to external radiation [130].
While such “dark states” have vanishing bandwidths (in-
finite lifetimes) in isolated PhC membranes, they can
acquire finite lifetimes (coupling to external radiation)
when the two PhC slabs come into close proximity, as il-
lustrated in Fig. 4. Specifically, when two such slabs are
evanescently coupled, two interesting phenomena can oc-
cur: First, in the vicinity of certain separations d∞, the
Fabry–Perot-like interference of bright modes can form
high-Q dark states. Second, by breaking the mirror sym-
metry of the system, e.g. via a lateral shift of one of
the slabs relative to the other, dark states that other-
wise could not couple to external radiation by symme-
try are allowed to. As shown in Fig. 4, the presence
of such “nearly dark” modes leads to tunable longitu-
dinal and lateral forces on the slab. The versatility of
actuation and sensitivity of transverse and lateral opti-
cal forces could potentially be employed as an all-optical
three-dimensional accelerometer.

Attractive and repulsive force pairs also arise in highly
asymmetric planar systems, such as in the system consid-
ered by Ref. [94] and shown schematically in Fig. 5(a),
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FIG. 4. Predictions of ultra-large normal and lateral gradi-
ent forces in PhC membranes mediated by dark modes [130].
Transmission spectrum of the system for two different config-
urations of membrane separations d and lateral translations
∆x, (a) d = 0.65a, ∆x = 0 and (b) d = 0.5a, ∆x = 0.15a,
along with the mode profiles of two corresponding high-Q dark
states appearing at ω = 0.63 (2πc/a) and ω = 0.58 (2πc/a),
respectively, where a is the membrane period. The dark
modes arise due to either (a) Fabry–Perot-like interference
effects or (b) broken symmetry. (c) and (d) show the reso-
nance frequency and linewidth of the dark modes in (a) and
(b) as a function of d and ∆x, respectively. As shown, at d∞
the membranes do not couple to external radiation. (e) and
(f) show the corresponding variations in the normal (Fz) and
lateral (Fx) forces, and Q for light incident either on (solid
line) or slightly detuned (dashed line) from resonance (solid
line).

consisting of a silicon PhC membrane coupled to a lay-
ered silicon-on-insulator substrate. Here, in contrast to
symmetric PhC membranes, the periodicity of the PhC
membrane induces coupling between the lossy (finite life-
time) leaky resonances of the membrane and the lossless
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FIG. 5. Working principles behind gradient forces in asym-
metric membrane geometries. (a) Resonant frequencies (units
of 2πc/a) of both symmetric PhC–PhC (dashed lines) and
asymmetric PhC–slab (solid lines) membrane structures of
period a, as a function of membrane separation s. Bond-
ing (red) and anti-bonding (black) modes are excited by nor-
mally incident light from above. Insets show the Ex electric-
field component for a cross-section near resonances at a single
s = 0.3a, delineating the in- and out-of-phase characteristics
of bonding and anti-bonding modes, as well as the asymmetric
concentration of energy in the PhC–slab structure. (b) Force
spectrum of the asymmetric structure for multiple PhC-slab
separations, obtained via the Fourier transform of a short-
pulse excitation in time [94]. Inset shows the corresponding
quality factor Q as a function of s, illustrating the dramati-
cally different behavior of bonding versus anti-bonding modes.

(infinite lifetime) guided modes of the silicon-on-silica
system. As shown in Fig. 5(a), level repulsion arises
even when the non-degenerate modes of the two slabs ap-
proach one another (although degenerate modes can also
be designed), leading to bonding and antibonding forces.
Two interesting features stemming from the asymmetry
are highlighted here: First, from the mode profile illus-
trated in Fig. 5(b), the bonding mode bears more resem-
blance to the slab waveguide mode while the antibonding
mode bears more resemblance to the leaky PhC guided
resonance. Consequently, the bandwidth (lifetime) of the
bonding mode has a significantly stronger dependence on
the slab separation [Fig. 5(b)], going from Q = ∞ at
d = ∞ to a finite value Q ≈ 102 at shorter separations.
Second, as a result of the strong coupling-dependent vari-
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ation in Q of the bonding mode, while the repulsive force
(antibonding mode) increases in strength as the mem-
brane separation decreases, the attractive force (bond-
ing mode) amplitude decreases, as shown in Fig. 5(b), in
contrast to what is normally observed in most mirror-
symmetric systems. A related structure, involving a
nanostructured membrane on top of a substrate, was re-
cently studied in the metamaterial limit where the mem-
brane consisted of a plasmonic metamaterial [124].

A recent experimental demonstration of repulsive
forces that captures many of the design principles dis-
cussed above involves the asymmetric structure shown
in Fig. 6(a–b), featuring a tethered silicon PhC mem-
brane of size 30µm × 30µm suspended above a typical
silicon-on-insulator (SOI) substrate [89, 135]. Specif-
ically, the optomechanical properties of the structure
were probed and actuated with a band-edge dark res-
onance, whose in-plane symmetry and field (phase) pro-
file are illustrated in Fig. 6(b), leading to a repulsive
force in the telecom range. In contrast to approaches
based on mirror-symmetric bodies, experimental access
to the dark mode in the asymmetric system was made
possible due to the finite size effect of the membrane
as well as fabrication-induced inhomogeneities, resulting
in significantly lower lifetimes Q ≈ 4400 than some of
the other recently studied structures, featured in Table I.
For vertically coupled optomechanical devices like those
shown in Fig. 1(d–e), tunability of the optomechanical
coupling strength is not well controlled or would oth-
erwise require a new substrate with different sacrificial
layer thicknesses. As shown in Fig. 6(d), wide-range tun-
ing of the optomechanical coupling strength in the range
gom = −2π × (5, 66) GHz/nm was achieved on the same
substrate by engineering the in-plane compressive stress
of the silicon device layer and the stress-gradient-induced
torque, enabling control of the separation between the
membrane and substrate in the range of 120–300nm. In
addition to exhibiting both optical spring effects and dy-
namic back-action [Fig. 6(e)], the system was shown to
exhibit blue-detuned cooling and red-detuned amplifica-
tion, in contrast to what is normally observed in conven-
tional optomechanical systems. Such unusual effects are
a manifestation of the interplay between photothermal
and optomechanical forces. Moreover, optical bistability
is observed as a result of both optomechanical dispersion
and thermo-optic effects [Fig. 6(f)], occurring whenever
the membrane transitions from one mechanical equilib-
rium to another created by the optical potential.

Generally, photonic structures that support many
resonances, e.g. microdisks, PhC slabs, and micro-
spheres, will exhibit complicated force spectra due to the
coupling-induced frequency-splitting among all modes,
especially in the higher frequency range where the den-
sity of states increases. In combination with the complex
interactions between lossless and leaky resonances aris-
ing in systems such as the asymmetric membranes above,
these features shed light on new strategies for engineer-
ing resonantly enhanced gradient forces. For instance,
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FIG. 6. Experimental demonstration of dark-mode repulsive
forces in PhC membranes [135]. (a) Electron micrograph
of device consisting of a silicon PhC membrane suspended
above a silicon-on-insulator substrate, shown schematically
in (b). The membrane is a 27.6µm × 27.6µm slab of thick-
ness h = 185nm perforated by a 30×30 array of holes with
diameter d = 0.414µm and period p = 0.92µm. Also show is
the Ex electric field profile of an anti-bonding dark mode at
the incident wavelength λ = 1581.55nm. (c) Calculated (solid
lines) and measured (pink circle) resonance wavelength (red)
and optomechanical coupling gom (blue) of the dark mode
as a function of the PhC–slab separation s. (d) Resonance
wavelength λres as a function of incident laser power P and
wavelength λinc, for six values of P . At a certain critical
power Pbis ≈ 1.275mW, the system exhibits bistability stem-
ming from optomechanical and photothermal effects, display-
ing hysteresis beyond a threshold power Phys ≈ 1.525mW as
the laser wavelength is continuously swept backwards (blue
line) and forwards (red line), as evidenced by the theoret-
ical (1) and experimental (2) reflection spectra in (f). (e)
Schematic illustration of the competing optomechanical and
photothermal forces on the membrane, along with the mea-
sured mechanical frequency Ωm and decay rate Γm of the
fundamental mechanical mode across the optical resonance at
incident power P = 6µW. Experimental data is fitted to pre-
dictions from theoretical models based on the coupled-mode
theory framework [135].

it is possible to perform multi-modal excitations to en-
gineer the net optical force exerted on the optomechan-
ical structure and thereby tune the mechanical spring
constant dramatically without perturbing the initial me-
chanical equilibrium [94]. Simultaneous frequency exci-
tations in systems with sub-micron dimensions can also
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Team
Structure – separation

(nm)

Mechanical
frequency
fm (MHz)

Mechanical
quality

factor Qm

Optical
Qopt

Coupling
gom/2π

(GHz/nm)

OM force
(nN/mW)

Amplitude
(nm/mW)

Eichenfield et.
al. 2007 [59]

SiN disk resonator with
tapered fiber – 702nm

1.93× 10−6 - 1.1×106 - -0.02 -324

Li et. al.
2008 [26]

Si waveguide with SiO2
substrate – 360nm

8.87 1850 - - 0.005 2

Li et. al.
2009 [27]

Laterally coupled Si
waveguides – 100nm

17.05 5300 - - -2.2 (1.1) 9.6

Rosenberg et.
al. 2009 [30]

Vertically coupled SiO2 ring
resonator – 138nm

8.3 3.95 (in air) 1.8×106 33 -244 -

Wiederhecker
et. al. 2009 [29]

Vertically coupled SiN ring
resonator – 640nm

0.6 2 (in air)
6.8×104

(2.1×
104)

1.4 (2) - -20 (1)

Eichenfield et.
al. 2009 [61]

Laterally coupled SiN zipper
nanobeam cavity – 120nm

8
11600 (50)

(in air)
3× 105 123 - -

Roh et. al.
2010 [110]

Bilayer InP PhC membranes –
200nm

1.8 2 (in air)
700

(1600)
(44) (-0.83) (-0.26)

Deotare et. al.
2012 [28]

Laterally coupled Si PhC
nanobeam cavities – 70nm

8 17 (in air) 15000 96 -1400 0.025

Woolf et. al.
2012 [89]

Si PhC membrane coupled
with an SOI substrate – 160nm

0.16 2000 3400 -66 1.2 1

TABLE I. Representative optomechanical devices based on gradient forces along with several corresponding figures of merit,
including typical mechanical separations, frequencies fm and quality factors Qm, measured optical quality factors Qopt, op-
tomechanical couplings gom (+/− denotes bonding/anti-bonding modes), optomechanical force amplitudes, and static/dynamic
mechanical amplitudes. Entries marked by hyphens “-” denote missing data. Unless otherwise noted, measurements are as-
sumed to be in vacuum.

create highly localized optical traps [94, 119], opening
up new avenues of optomechanical trapping and even ex-
posing the system’s mechanical nonlinearity as the linear
response is suppressed.

To summarize the various approaches of gradient force
enhancement, Table I highlights some of the recently
studied and representative gradient-force-actuated op-
tomechanical devices, comparing their fundamental me-
chanical frequencies and quality factors, optical life-
times, optomechanical coupling strength, and maximum
force/mechanical amplitudes. One observation is that
various material systems are chosen for considerations
such as photothermal effect, free carrier excitation and
stress management. Another feature is the successful
demonstration of atmospheric operations of these op-
tomechanical devices which circumvent the need for her-
metic vacuum packaging useful in sensing applications.
Finally, we note that the realization of optomechani-
cal structures with greater design complexities demands
more sophisticated fabrication techniques. We anticipate
that micro-fabrication advancements, including the on-
going development and experimental demonstrations of
metamaterials in the micron-scale and multi-layer thin-
film assembly assisted by soft lithography [136–140], will
continue to pave the way toward new demonstrations of
pronounced force enhancements with optimized optical
designs.

C. Technological Impact

The conspicuous expression of the optical force
in nanophotonic devices facilitates new strategies for
achieving reconfigurable and programmable optical de-
vices [28, 30, 64, 82, 142], further advancing the nascent
field of nano-optoelectro-mechanical systems (NOEMS).
Among coupled optomechanical structures, recently
demonstrated reconfigurable passive optical elements in-
clude couplers with a pair of coupled optomechanical slot
waveguides [64], broadband all-optical filters that can be
controlled by incoherent light [28], and optical switches
based on either coupled microdisks [30] or waveguide–
substrate platforms [82] exhibiting switching times on
the order of nanoseconds. Thus far, despite the rela-
tively large degree of actuation achieved by optical forces
in nanophotonic devices, electrostatic actuation still out-
performs optomechanics in the extent of actuation [142–
144]. However in applications where operating environ-
ments are adverse to systems with metallization, an all-
optical platform could still be desirable.

A subtle effect that the optomechanics community has
dealt with in past years is buckling of the optomechanical
devices caused by compressive stress in device layers, e.g.
in typical silicon-on-insulator substrates [145, 146], gal-
lium arsenide [147], and diamond [148]. Such compressive
stresses cause deviations of the fabricated structures from
the desired geometry. On the one hand, solutions to this
problem include resorting to material systems with ten-
sile stress (e.g. silicon nitride) [29, 149], depositing a thin
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FIG. 7. Selected applications of experimentally realized optomechanical systems exploiting gradient forces. (a) Optical waveg-
uide couplers where on-chip tuning is achieved by strong optomechanical coupling in silicon slot waveguides [64]. Plot shows
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effects induced by incident power at 0 (red) and 6mW (blue). (c) Optomechanical switching with timescales on the order of tens
of nanoseconds, where resonance tuning is achieved by controlling the coupling between a silicon resonator and an underlying
buried oxide layer [82]. Plot shows a zoom-in view of the wavelength shift induced by the control light in either the off or on
state. (d) Optomechanical memory involving bistable transitions induced by gradient forces [141]. Plots show the transmission
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layer of materials to compensate the stress [150], or devel-
oping structural stress-relief techniques [54, 146]. On the
other hand, some recent proposals take advantage of the
presence of buckling to create mechanical, bistable states
for switching and sensing which basically eliminate the
consumption of holding power. Examples include demon-
strations of mechanical memory by Bagheri et al. [141],
optical shock sensors [151], and optical switches [152].
The strong optomechanical strength of modern designs
also offers high readout sensitivity of mechanical motion,
even under atmospheric conditions where mechanical sig-
nals could still be detected above the noise floor in the
presence of strong viscous damping. Some of the re-
cent demonstration exploiting readout sensitivity hard to
reach by conventional electromechanical schemes include
broad-bandwidth accelerometry in optomechanical slot
waveguides [54], particle detection with self-oscillating
toroidal resonators in air [153], optical switches [82], op-
tomechanical AFMs [154, 155], and microfluidic optome-
chanical sensing in liquid environments [55, 156]. There
is also strong drive to seek applications of optomechan-
ics in the classical and quantum regimes, particularly in
the radio-frequency window. However, the design of op-
tomechanical devices that operate in the GHz range and
exhibit efficient optomechanical transduction is a highly
non-trivial problem. For instance, there are significant
endeavors to design structures that feature strong colo-
calization of photonic and phononic modes that max-
imize dispersive coupling [157–159] and which enable
wavelength conversion (from telecom to telecom and tele-
com to microwaves) mediated by GHz mechanical modes

in the sideband-resolved regime [108, 160–166]. Self-
oscillating optomechanical oscillators for timing applica-
tions in the radio-frequency window are also explored
with phase-noise suppression schemes incorporated to ri-
val existing technology of crystal oscillators [53, 66, 167–
173]. Finally, the miniaturization of devices based on
optomechanical forces will necessarily lead to other im-
portant considerations stemming from other competing
effects, including electrostatic and fluctuation forces, the
subject of the next sections.

III. FLUCTUATION FORCES

As micromechanical devices enter the sub-micron
regime, fluctuation-induced electromagnetic forces such
as van der Waals or Casimir forces become increasingly
important, leading for example to unwanted “stiction”
between moving parts [174–177]. Unlike their classi-
cal analogue, these interactions have their origins in
the quantum and thermal fluctuation of charges in bod-
ies [5, 9, 176, 178–194] and hence persist even in the
absence of external inputs. The volumetric and broad-
band character of these fluctuations and their usually
small nature makes design, calculations, and measure-
ments of these forces significantly more challenging than
their classical counterparts, although they can reach at-
mospheric pressures at nanometric separations. Theo-
retical calculations and experimental measurements were
until recently limited to planar or nearly-planar struc-
tures, where forces are usually attractive and monotoni-
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cally increasing with decreasing separation. Recent the-
oretical and experimental progress, however, is making
it possible to study the ways in which geometry and
materials affect both the sign and magnitude of these
interactions, paving the way for potentially new design
principles to enter micromechanical and microfluidic de-
vices. In the following sections we review the basic
physics of Casimir forces, describe the similarities and
differences with classical optical forces and discuss re-
cent design principles and experiments that probe the
strong material and geometry dependence of the force,
including predictions of repulsive or unusual interactions
between microstructured surfaces. Finally, we discuss
recent progress toward measuring and designing Casimir
forces in integrated and optomechanical devices in which
classical forces are used to actuate as well as combat stic-
tion. For other recent reviews, the reader is encouraged
to look in Refs. [9, 176, 190–195]

A. Casimir forces

The early studies of EM fluctuation forces dates back
to the pioneering work of Johannes D. van der Waals,
who predicted an attractive force between neutral atoms
or particles stemming from quantum dipolar fluctua-
tions [6, 196–198]. Such an interaction arises whenever a
particle acquires a spontaneous dipole moment, either
from quantum or finite-temperature fluctuations, pro-
ducing a field that can polarize a nearby particle and
lead to a corresponding dipole–dipole interaction [192].
The cumulative effect of such dipolar interactions over all
frequencies are so-called “dispersion” forces that depend
on both the separation and frequency-dependent polar-
izabilities of the particles, and which have come to be
known as van der Waals forces in the near field (interac-
tions dominated by evanescent fields) or Casimir–Polder
forces in the far field (interactions dominated by radia-
tive fields and retardation effects) [199]. Casimir forces
are generalizations of this phenomenon to systems com-
posed of many particles, such as macroscopic media [178],
in which case the single-particle picture fails to capture
important multiple scattering, boundary, and wave ef-
fects that can lead to strong modifications of the force
laws.

In such situations, a different approach is needed, such
as the framework introduced by Hendrik Casimir in 1948.
In particular, rather than summing the energy contribu-
tion of dipoles within the macroscopic bodies, Casimir
showed that it is equivalent to instead consider the energy
stored in the corresponding (induced) electromagnetic
fields. Within this formulation, the quantum-mechanical
zero-point energy of the electromagnetic field can be re-
lated to the sum over modes of the system,

U =
∑
ω

1

2
~ω, (4)

where ~ is the reduced Planck’s constant and ~ω/2 is
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FIG. 8. Spectral decomposition of the Casimir force be-
tween gold plates illustrating the advantages of going into
the imaginary-frequency axis, as well as the overall impact
of propagating and evanescent modes on the force. Casimir
force integrand as a function of (a) real ω and (b) imaginary
ω → iξ frequencies, illustrating the transition from a broad-
bandwidth oscillatory integrand to a smooth, exponentially
decaying one (adapted from Ref. [195]). (c) Casimir energy
E (black line) decomposed into contributions from evanes-
cent/plasmonic Epl (blue line) and propagating/photonic Eph

(red line) modes, as a function of the plate–plate separa-
tion d normalized by the plasma wavelength λp. The plas-
monic energy switches sign from attractive in the near field
(d � λp) to repulsive in the far field (d � λp), peaking at
d ≈ 0.16λp, while the radiative energy leads to attraction at
all distances [200].

the energy of a virtual photon with frequency ω. Ap-
plication of Eq. 4 to Casimir’s simplified model of two
perfect electric-conductor (PEC) plates separated by a
distance d, leads to the well-known formula for the pres-
sure PC = −∂U∂d between the plates [5, 178],

PC = − ~c
240πd4

= 0.013
1

d4
dyn(µm)4cm−2, (5)

where c is the vacuum speed of light. It follows that
the force between the plates is attractive and monotoni-
cally increasing with decreasing d, a result that is often
heuristically explained from the fact that the density of
photonic modes is larger outside than inside the plates.

Because Casimir and classical forces are both related to
the mode frequencies of a system, in principle one can em-
ploy classical ideas from nanophotonics to gain intuition.
However, the similarities between Eq. 4 and Eq. 1 in Sec-
tion II B 1 belie a number of fundamental differences that
lead to dramatically different physics and design princi-
ples. First, we should note that the use of photon num-
ber in the classical energy expression of Eq. 1 is merely a
heuristic and convenient way of relating the energy stored
in a given mode to its corresponding frequency, and of
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course bears no relation to the physical energy stored in
the system, which arises from externally incident light.
(In fact, as mentioned above, one can also derive the clas-
sical force expression without introducing any quantum-
mechanical quantities [95].) In contrast, the contribution
~ω of virtual photons in Eq. 4 has a direct physical in-
terpretation as arising from zero-point charge (and elec-
tromagnetic) fluctuations inside and outside the bodies,
as opposed to any external sources. Hence the quan-
tity ~ appears in the final expression for the pressure
(Eq. 5). Second, since the Casimir energy is a result
of broad-bandwidth electromagnetic fluctuations, from
electrostatic all the way to UV wavelengths where ma-
terials become transparent, Eq. 4 contains a sum over
all frequencies. As a consequence, whereas designs based
on classical forces often focus on resonant effects, looking
at the energy or force contributions within a narrow fre-
quency bandwidth can be very deceptive in the Casimir
case.

To illustrate this point, Fig. 8 shows the Casimir force
integrand as a function of ω for two semi-infinite gold
plates. Note that the expression in Eq. 5 is obtained
only upong taking the idealized limit of a perfect metal
(ε → −∞). 2 Regardless of material considerations one
finds that generally, while certain frequencies give attrac-
tive contributions, others give repulsion, and the over-
all sign is determined by a complicated cancellation be-
tween these effects. The sum-over-modes calculation for
dielectric plates dates back to the original work by Van
Kampen [202], who computed the force in the near field
d � λp, where λp is a characteristic wavelength which
for metals corresponds to the plasma wavelength (typi-
cally in the ultraviolet range). In this quasistatic regime,
the force law scales as 1/d3 whereas at large separations
d � λp, the force again scales as 1/d4. In between, the
d-dependence of the force is determined by the frequency-
dependent permittivity ε of the materials involved. This
transition reveals the increasing contribution of evanes-
cent waves in the near field, as recognized by Van Kam-
pen. More recently, there has been renewed interest in
analyzing the modal contributions at different frequen-
cies and separations, which just as in the classical case,
can be classified as arising from either evanescent (gra-
dient) or propagating (radiative) modes [200, 203, 204].
Such a decomposition was explored in Ref. [205], which
found that evanescent modes not only dominate the inter-
action at small d, but also contribute a significant repul-
sive component at larger separations stemming from the
contribution of antibonding modes, with bonding modes
contributing attraction in analogy with classical forces.

2 Technically U → ∞ in closed PEC structures, a divergence that
this is circumvented in energy calculations by exploiting renor-
malization procedures involving high-frequency cutoffs [5, 193].
Such cutoffs are motivated by the fact that these divergences are
not physical, since real materials such as the gold plates of Fig. 8
become transparent at large ω.

Ultimately, however, the sign and scaling of the force
is determined by a competition between the radiative,
bonding, and antibonding evanescent modes, which lead
to attraction at all separations. Such an interplay is il-
lustrated in Fig. 8 for the example of two gold plates. It
is worth noting that, because incident light in classical
systems is typically introduced over a narrow bandwidth,
the scaling of gradient forces with separation is often ex-
ponential at large separations d � λ, where λ is the
decay length of the corresponding excited mode. In con-
trast, Casimir forces arise from contributions spanning
many such modes, each contributing different exponen-
tial decays, the cumulative effect of which leads to the
usual polynomial scaling. Hence, even if the force contri-
butions seem to be dramatically altered within a narrow
bandwidth, as is often the case in classical systems, this
alteration is usually canceled by contributions at other
frequencies and therefore has little influence on the force.

In addition to posing conceptual challenges, the broad
and oscillatory character of the Casimir spectrum also
imposes severe limitations for theoretical and numeri-
cal calculations, as reviewed in Refs. [7, 195]. The key
to overcoming these problems is a well-known technique
from complex analysis involving extensions of the real-
frequency integrand into the complex plane, on which
practically all modern calculations are based. Specifi-
cally, because the Casimir force integrand is unobservable
and related to causal scattering problems (fields due to
dipole antennas), it is an analytic function in the upper-
half complex frequency plane (Imω > 0), and hence the
integral along real frequency is mathematically equiva-
lent to the integral along the imaginary-frequency axis
ω = iξ [206]. Intuitively, the presence of oscillations and
resonances in the Casimir integrand is linked to the fact
that dipole sources oscillating at real frequencies ω pro-

duce radially propagating spherical waves ∼ exp(iωr/c)
r ,

where r is the distance away from the dipole, which in
turn lead to the sensitive interference and cancellation
effects employed in classical designs. Along imaginary
frequencies iξ, however, dipole sources lead to exponen-

tially decaying fields ∼ exp(−ξr/c)
r , which in turn yields

integrands that are smooth, non-oscillatory and exponen-
tially decaying (decay lenghts ∝ 1

d ) and which are highly
susceptible to efficient numerical integration, e.g. numer-
ical quadrature. The absence of resonances along imag-
inary frequencies extends to material responses as well,
since the permittivity of passive materials ε(iξ) evalu-
ated at imaginary frequencies decays monotonically with
ξ [206]. To illustrate this exponential behavior, Fig. 8(b)
shows the Casimir integrand between gold plates along
the imaginary frequency contour. While this imaginary-
frequency perspective is crucial for numerics, it also sug-
gests that when thinking of modifications to Casimir
forces (in contrast to classical design principles that focus
mainly on resonant phenomena) it is particularly useful
to employ intuition from quasistatics (ω → 0), where the
lack of resonances and interference effects captures the
decaying, non-oscillatory physics at imaginary frequen-
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cies 3.

B. Designer Casimir forces

Unlike classical forces, the study of Casimir forces was
until recently hampered by a lack of theoretical tools.
Accurate experimental measurements were also until re-
cently extremely challenging due to the small magnitude
of these interactions at large separations & µm. The
emergence of new theoretical tools and state-of-the-art
experimental setups is finally enabling synergistic explo-
rations of this phenomenon, and one emerging topic of
interest is the design of structures exhibiting force behav-
iors that differ from the standard attractive 1/d4 power-
law of planar PEC bodies, and which aid in reducing or
altogether switching the sign of the force. As discussed
below, a few of these new theoretical predictions have
been realized in experiments, though the range of poten-
tial effects remains largely unstudied.

1. Theory

The sum-over-modes approach described above pro-
vides a conceptually useful starting point for understand-
ing Casimir forces and has been subject to multiple mod-
ifications to include realistic structures including lossy
materials and finite objects [5, 202–204, 208–211]. How-
ever, it turns out that in practice it is seldom employed
for calculations, which more commonly rely on mod-
ern perspectives and theoretical techniques that lie much
closer to the original picture of fluctuating dipoles in-
troduced by van der Waals and others [179, 180]. In
particular, this intuitive picture provides a direct and
intuitive connection to classical scattering problems by
way of the fluctuation-dissipation theorem of statistical
physics [179, 206, 212], relating the dissipative properties
of bodies to the resulting dipole fluctuations. Although
such a relationship was first derived in the context of
microscopic dipole–current fluctuations within the vol-
umes of the bodies, more recent approaches reduce the
problem to a smaller number of scattering problems in-
volving sources and/or incident electromagnetic waves
only on surfaces around bodies [7]. In fact, the first
generalization of Casimir’s original derivation was car-
ried out by Lifshitz, Dzyaloshinskĭı, and Pitaevskĭı in the
1960s [180] where, rather than summing mode contribu-
tions, they considered instead calculations based on ther-
modynamic Maxwell stress tensors (ensemble average of
Eq. 3) and fluctuation–dissipation theorems of fields at

3 Mathematically, the exponential decay of the Casimir-force con-
tributions at imaginary frequencies ω = iξ tends to make the
total force qualitatively similar to the ξ = 0 contribution, which
dominate in the near-field or van der Waals regime.

equilibrium, which relate expectation values of fluctuat-
ing fields 〈EiEj〉 to the imaginary part of the electro-
magnetic Green’s function (electric field due to a dipole
source) [206]. 4 The stress-tensor approach was originally
employed as a semi-analytical method to obtain predic-
tions in simple geometries, such as planar dielectric bod-
ies and eventually arbitrary multilayer films [214–217].

For the next few decades, virtually all theoretical work
focused on studying ways of altering the magnitude and
sign of the force by employing either semi-analytical
techniques or heuristic approximations involving small
perturbations around known solutions, such as parallel
plates [186, 218] or dilute gases [219–221]. As described
in more detail in Section III B, approaches based on ma-
terials in planar structures relied mainly on narrow reso-
nance effects whose contributions wash out when the full
spectrum is considered [222, 223]. Modification arising
from boundary effects were also studied, albeit using ad-
hoc approximations valid only in the limit of small cur-
vatures. These include pairwise additive approximations
such as the well-known Derjaguin or proximity-force ap-
proximation (PFA) [216, 224, 225], which to lowest order
yield the force between nearly planar bodies by summing
the force per unit area of an equivalent parallel-plate ge-
ometry over all adjacent surfaces, providing an intuitive
way of conceptualizing changes to the force. For instance,
within PFA the zero-temperature Casimir force between
a PEC sphere of radius R and a PEC plate separated by

distances d� R is given by FC = −~cπ3R
360d3 [218]. Similar

closed-form expressions can be worked out for a handful
of high-symmetry structures, including infinite cylinders
above plates [226], in which case the force per unit length

pC = −
√

R
2d

~cπ3

384d3 , with the main result being a change

in the power-law of the interaction. In situations involv-
ing dilute or weakly polarizable media, approximations
based on summation of van der Waals or Casimir–Polder
interactions can be employed [220, 221, 227]. Other per-
turbative approximations include re-normalized Casimir-
Polder [228, 229] or semi-classical interactions [230], mul-
tiple scattering expansions [231–234], classical ray optics
approximations [235, 236], and higher-order PFA correc-
tions [225].

When applied to non-planar structures with separa-
tions d ∼ feature sizes and in non-dilute media, these
approximations fail to capture fundamental non-additive
effects [9, 227] that can only be handled by more so-
phisticated techniques. Mirroring the development of
classical electromagnetic calculations, early approaches
mainly considered semi-analytical methods that expoit
symmetries in specific geometries to expand the field
unknowns in convenient spectral bases, such as Fourier

4 Note that in contrast to classical calculations, there are no am-
biguities when evaluating energy or stress tensors due to fluctua-
tions in dissipative media since in the Casimir case one is dealing
with thermodynamic quantities [257, 395, 396].
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modes or spherical multipoles [211, 219, 231, 233, 237–
242]. It took almost four decades for sophisticated nu-
merical techniques that can capture the full spectrum
of non-additive effects in realistic, microstructures ge-
ometries to be developed [7, 9]. Such general-purpose
methods come in a bewildering variety of flavors, includ-
ing formulations based on the original stress tensor ap-
proach, fundamentally tied to the statistics of fluctua-
tions [206, 243], as well as more modern approaches in
which the force is derived or expressed via path inte-
grals [242, 244–248] or trace formulas involving scatter-
ing matrices [233, 239, 240, 242, 249]. Similar to classical
calculations, numerical implementations vary and include
spectral-basis or eigenmode expansions, e.g. Fourier se-
ries and spherical harmonics) [211, 239], or localized mesh
discretizations, e.g. finite differences [243, 250–253] or
boundary elements [248, 254–258]. Despite their deceiv-
ingly different origins and algebraic structures, the thread
connecting all of these formulation is the underlying rela-
tionship between electromagnetic fluctuations and clas-
sical scattering problems. Because many such scattering
problems must be solved to compute even a single force,
calculations tend to be significantly more computation-
ally demanding than classical force simulations. How-
ever, as discussed further below, despite these complica-
tions the development of exact methods has ushered a re-
naissance of Casimir-force modeling in highly non-planar
structures. For more in-depth discussions of theoretical
methods emphasizing the connection between classical
calculations and Casimir forces, the reader is referred to
Refs. [7, 195].

2. Experiments

The first experimental validations of the Casimir ef-
fect date back to the 1960s, although significant sources
of errors made it difficult to unambiguously confirm the
existence of the force [274]. In early experiments, com-
plications arose from the need to maintain a high de-
gree of parallelism between plates and from the small
force magnitudes present at large separations. Decades
later, advances in instrumentation began making it pos-
sible to place nearby objects in close proximity with
nanometer precision and slow mechanical drifts, facili-
tating measurements with significantly higher precisions
and spatial resolutions. It wasn’t until the experiments of
van Blokland et. al. that the force between metallic sur-
faces was unambiguously measured [8], followed almost
two decades later with the first high-precision measure-
ments of the Casimir force [275], ushering a new era of
Casimir metrology. In order to circumvent alignment is-
sues related to parallelism between planar surfaces, most
Casimir-force measurements have since been conducted
in a related geometry involving a large (tens of microns or
more) sphere in close proximity to a planar body. Among
the few exceptions was the experiment by Bressi et. al. in
2002, which unmambiguously verified the Casimir force

in the original parallel-plate geometry [276]. Readers are
referred to Refs. [186, 188, 193] for a historical overview
of Casimir experiments.

In most experiments, the Casimir effect manifests itself
as a force that shifts the equilibrium position, or alter-
natively which modifies the spring constant of a com-
pliant test body when in close proximity to a surface,
similar to other distance-dependent forces like the afore-
mentioned optical and electrostatic forces. To date, most
observations rely on measuring changes in the equilib-
rium position of the object in question (a static effect)
or force gradients (a dynamic effect) over some range of
separations. Due to difficulties involving large, environ-
mental DC noise, static measurements are less frequent
than dynamic measurements of the force gradient. In
what follows, we briefly describe three common sets of
experimental setups, illustrated in Fig. 9, based on ei-
ther torsional pendulums, dynamic-mode atomic force
microscopy (AFM) or torsional MEMS oscillators.

The torsional pendulum setup developed by the Lam-
oreaux group, shown in Fig. 9(a), was employed in
the first high-precision (5% accuracy) demonstrations of
the Casimir effect and more recently in one of the first
demonstrations of the thermal Casimir force [259–261].
In such an experiment, the static change due to the force
exerted on two bodies (a flat, metal-coated plate and a
large, metal-coated spherical lens) is directly measured
in vacuum and at room temperature. While one end of
the sphere is mounted on the far end of a pendulum,
the other is sandwiched between two nearby compen-
sator electrodes that enable the sphere to move. Specifi-
cally, as these two bodies are brought closer together us-
ing a closed-loop piezoelectric transducer, the attractive
Casimir force exerts a force on the sphere and a corre-
sponding torque on the pedulum, causing an imbalance
in the capacitance of the two compensator electrodes. A
corresponding voltage is sent to one of the electrodes to
counteract the effect of the torque and therefore restore
the capacitance balance with the two electrodes, where
the error signal detected and applied is directly propor-
tional to the static magnitude of the Casimir force. With
this particular apparatus, accurate measurements can of-
ten be made at separations spanning the range 0.7-7µm.

A related scheme involves static and dynamic AFM
measurements of the separation of a sphere attached
to a cantilever from a surface. In the static mode,
the displacement is obtained by measuring the deflec-
tion of the cantilever tip with a position-sensitive detec-
tor [262–265]. For higher detection sensitivities, both the
amplitude- and frequency-modulation modes of AFMs
can be used to detect the frequency shift of the can-
tilever. The amplitude-modulation mode works by driv-
ing the cantilever near a resonance frequency, which leads
to appreciable amplitude changes in the detected signal
even under small frequency shifts. Experiments adopt-
ing this measurement mode include those of Refs. [277–
279]. The frequency-modulation mode of an AFM, on the
other hand, offers higher sensitivity than the amplitude-



16

C
as

im
ir

 f
o

rc
e 

(p
N

)

plate-sphere separation (nm)

(a) (b) (c)

XYZ 
positioner

0

200

400

600

distance (m)

fo
rc

e 
(p

N
)

10-6 10-5 10-4

Ideal dielectric

Experimental data with

residual electrostatic force

substracted 

Capacitance bridge
and PIP DC feedback

network

Force (voltage)
to computer 
ADC

Pivot point
(pendulum grounded
through torsion wire)

Piezoelectric transducer
with strain gauge

Computer
control

d.c. bias voltage
(from computer DAC)

d.c. voltage (V)
0 0.05 0.1 0.15 0.250.2

0.52

0.56

0.6

0.64

0.68

ca
p

ac
it

an
ce

 (
p
F

)

piezo

distance ( m)
0 0.5 1.51 2

an
g
le

 
 (

m
ic

ro
-r

ad
s)

0

10

20

force (pN)

0

1

2

3

FIG. 9. Examples of various experimental setups for detecting Casimir forces, including: (a) Torsional pendulums where the
static change due to the Casimir force between a sphere and a plate is measured as a change in the capacitance between two
compensator electrodes. The setup and corresponding force measurements are taken from Refs. [259–261], and involve forces
between a 1” gold-coated quartz plate and a gold-coated spherical lens with a radius of curvature of 11.3cm. The experimental
data show the Casimir force with the residual electrostatic force subtracted from the total force measurements. (b) AFM setups
where both the static and dynamic modes have been utilized for measuring the deflection and mechanical frequency-shift of a
cantilever [262–272]. The experimental data is taken from Ref. [262], and shows force measurements obtained by calibrating the
cantilever deflection signals. The inset illustrates the corresponding experimental apparatus, involving a metallized polystyrene
sphere with a diameter of 0.2mm attached to an AFM tip. (c) Torsional MEMS oscillators driven capacitively by electrodes,
where the frequency shifts due to the Casimir force can be measured electrically or optically. The setup and measurements are
taken from Ref. [273], involving a doped polysilicon 500µm × 500µm plate anchored to a substrate and acting as a torsional
oscillator. The angular displacement θ of the oscillator is obtained by measuring the capacitance change between the oscillator
and the electrodes below, which involves biasing one of the electrodes and application of a small AC probing signal. The angular
displacement at various sphere-plate separations is then normalized to obtain the force data.

modulation mode and is also more immune to amplitude
noise. In this case, the cantilever is driven on resonance
and the resonant frequency is monitored with a fiber in-
terferometer and tracked with a phase-lock loop, as il-
lustrated in Fig. 9(b). The frequency shift due to short-
range attractive forces can then be obtained by frequency
demodulation: it is brought close to the other test body
by a closed-loop piezoactuator where the test body’s po-
sition is monitored by another fiber interferometer (with
sub-nm resolution). Reported achieved separations in
this setup range from 200nm to 2µm [266–272].

Finally, the torsional MEMS oscillators employed by
the Chan and Decca groups have proven useful for per-
forming measurements at the microscopic scale [273, 280–
284]. As illustrated in Fig. 9, the torsional oscillator
is often a large metal or heavily doped semiconductor
(e.g. polysilicon) plate suspended by thin arms and en-
gineered to carefully tune its mechanical resonance fre-
quency. Attached to the plate lies one of the test bodies,
often a large-diameter sphere, while underneath lie two
electrodes, driven by resonant and modulation signals in
order to detect the capacitance change between the two,
and hence the force gradient. In contrast to other setups,
here calibration of the absolute separation between the
test bodies can be performed by electrostatic or optical
interferometric means [285].

Beyond parallelism, challenges to high precision exper-
iments include electrostatic forces that arise due to either
static potentials between different metals connecting the
two surfaces, or patch potentials [286–289]. Electrostatic
effects can be the dominant interaction between surfaces
at large separations, and hence minmizing and account-
ing for their contribution is crucial for obtaining accu-
rate measurements at µm lengthscales. In measurements
where the Casimir effect reduces the mechanical spring
constant of the test bodies, the typical protocol for cali-
brating these is by measuring the corresponding electro-
static force as a function of the applied voltage. On the
other hand, patch potentials are highly sample dependent
and cannot easily be altered in situ, and thus their im-
pact is often fitted via empirical models [290–293]. These
effects can become even more pronounced in polycrys-
talline metal films [294]. The Tang group recently de-
veloped an in situ scanning Kelvin probe, involving a
1mm × 1mm metallized silicon nitride membrane above
an 8mm gold sphere, which enables measurements of the
spatial distribution of such residual potentials, allowing
in-situ detection of force gradients [289, 295] and pro-
viding a valuable technique to ascertain the role of such
patch potentials on integrated, Casimir force measure-
ments.

Mature nanofabrication and metrology techniques
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have begun to greatly influence force measurements, en-
abling careful control and calibration of material and sur-
face properties. First, while film deposition and micro-
fabrication of MEMS devices are straightforward, eval-
uating the influence of surface roughness to the Casimir
effect at short distances demands care in refining the fab-
rication procedures against typically tolerable imperfec-
tions, including surface roughness and existence of na-
tive oxides [296–300]. The metals used in Casimir ex-
periments are typically prepared by evaporation or sput-
tering in ultrahigh vacuum environment and at low de-
position rates. Recent AFM measurements have been
employed to survey the surface morphology, root-mean-
squared (rms) roughness and peak-to-peak height varia-
tions of various metallic samples, leading to better de-
scriptions of roughness at short lengthscales. For in-
stance, it was found that while typical rms roughness is
on the order 2nm, peak-to-valley height variations could
reach tens of nanometers. Theoretical models that incor-
porate such detailed descriptions of roughness are dis-
cussed in Section III B 3. Accurate comparison between
theory and experiments also requires accurate knowledge
of Im ε over a wide spectral region [266, 301], and vari-
ations and uncertainty among samples used in different
experiments can also prove problematic. Recent efforts
characterizing the dielectric spectral properties of mate-
rials under test by ellipsometry have begun to shed light
on a number of these issues [302–307]. Finally, demon-
strations of switchable Casimir forces with phase-change
material such as Ag5In5Sb60Te30 (AIST), which can turn
from amorphous to single-crystalline state by annealing
[301, 308], are paving the way for the flourishing devel-
opment of versatile operations where the Casimir force
can be controlled in situ with fast response times, and
this is bound to play an impact on the accuracy of future
experiments.

The recent push to measure Casimir forces in uncon-
ventional, complex geometries and the development of
compatible computational tools is also beginning to en-
courage application of more novel fabrication techniques.
Specifically, there has been growing interest in develop-
ing integrated systems for probing and even utilizing the
Casimir force [285, 309, 310]. These on-chip schemes re-
move the need for external instrumentation needed to
bring test bodies together which are often prone to me-
chanical drifts. In fact, microfabrication could provide
a means of eliminating the experimental challenge of at-
taining high degree of parallelism for measurements in
the plate-plate geometry [309, 311]. A particular de-
sign proposed and fabricated by the MEMS community
is a silicon plate tethered by three surrounding electro-
static actuators [312], overcoming the need for direct ac-
tuation of test bodies which otherwise introduces addi-
tional spring effects into the measurement. A more recent
demonstration by the Chan group employed a comb drive
actuator based on a highly doped silicon-on-insulator
platform that was used to indirectly introduce a movable
doubly clamped beam as a force-sensing element [285],

illustrated in Fig. 11(c).

3. Recent developments

In the last two decades, there have been a plethora
of designs and experiments aimed at modifying forces
in microstructured devices, spurred for example by the
desire to reduce stiction in MEMS. A commonality of
current efforts is the search for structures that exhibit
strong deviations from the additivity inherent in pair-
wise approximations such as PFA. Other efforts focus on
discovery of structures/materials exhibiting strong ma-
terial/temperature effects. Recent predictions include
strong interplay between geometry and temperature ef-
fects in sphere–plate geometries, lateral forces between
corrugated plates, non-monotonic forces between waveg-
uides, reduced forces between rough surfaces, and even
repulsive forces arising from geometry alone. A selection
of representative structures and predictions of unusual
behaviors is shown in Fig. 10. Figures 11 and 12 de-
scribe recent experiments exploring force modifications
based on either geometrical or materials approaches.

The first investigations of non-additive or unusual geo-
metric effects considered idealized situations that proved
to be theoretically convenient but experimentally un-
realistic. These include predictions of repulsive or ex-
pansive self-forces in hollow PEC and exotic-dielectric
shells [186, 317–319] or “Casimir pistons” consisting of
two PEC blocks sliding between PEC walls [320–322],
which later proved problematic. For instance, the repul-
sive effect was shown to disappear if the sphere is cut in
half [323] and also goes away when realistic materials are
considered in which case the Casimir energy is highly de-
pendent on artificial, high-frequency cutoffs [193, 324].
Repulsive forces on PEC boxes were also invalidated
when the box expansions were replaced by the rigid mo-
tion of a “piston” sliding through a wall [321]. A second
wave of predictions and experiments considered more re-
alistic structures, starting with the convenient sphere–
plate configuration.

Despite the commonality of sphere– and cylinder–plate
geometries in experiments, exact predictions in these sys-
tems were obtained only recently. A state of the art
calculation in 2006 was a semi-analytical calculation by
Emig. et. al. in which the force between an infi-
nite PEC cylinder above a PEC plate was computed via
path integral techniques [226]. The results [Fig. 10(a)]
demonstrated an unexpectedly weak, logarithmic decay
∼ d−3 log(R/d) at large cylinder–plate separations and
provided the first exact prediction of finite temperature
contributions (beyond quantum fluctuations) in an open
geometry. Ironically, it took a few years for the sphere–
plate geometry to be explored by exact methods [325–
327], demonstrating departures from PFA at unexpect-
edly short separations. Variations of these structures
to include interacting (even eccentric) cylinders, spheres
and ellipsoidal bodies, would eventually be studied as
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FIG. 10. Selected theoretical structures along with predictions of unusual Casimir effects. (a) Energy per unit length of a
PEC cylinder of radius R above a PEC plate as a function of separation H, normalized by the corresponding PFA energy and
decomposed into both transverse-electric (TE, blue line) and transverse-magnetic (TM, red line) solutions [226]. It is found
that the total force (red line) in this configuration has one of the weakest decays ∼ H−3 log(R/H) as H/R→∞. (b) Pressure
between two silicon rectangular gratings, computed by exact (green) and PFA (red) methods. (c) Normalized lateral pressure
between two sinusoidally corrugated PEC surfaces of period λ as a function of their surface–surface separation H, computed
by both exact methods (solid) and pairwise summation (PWS) approximations (dashed) [313]. The lateral force is shown
to be maximized at an optimal periodicity λ ≈ 2.5H, and the PWS is shown to become progressively worse with increasing
H/λ & 0.3. (d) Thermal Casimir force FT between a gold sphere and plate at room temperature, divided by the force at zero
temperature F0, as a function of their separation L. Solid lines from top to bottom correspond to increasing values of sphere
radius R. The dashed curve represents the same force ratio, but as computed by PFA. (e) Force per unit length between two
PEC waveguides adjacent to two PEC plates a distance h apart, normalized by the corresponding PFA force and decomposed
into both TE (blue line) and TM (green line) solutions [314]. It is shown that the competition and opposite behavior of TM
and TE forces with respect to changes in h causes the total force (red line) to have a non-monotonic dependence on h. (f)
Pressure between two interleaved PEC zipper-like structures (with cross-section shown on the inset) involving brackets attached
to plates, decomposed into both TE (blue line) and TM (red line) solutions, as a function of the center–center separation a
between the brackets [315]. The competition between lateral and normal forces leads to a change in the sign of the force,
becoming repulsive at an intermediate separation due to lateral attraction between the brackets. (g) Casimir force between a
small cylindrical particle and a plate with a hole of size W as a function of their center–center separation d, for both gold (blue)
and perfect metal (dashed red) material configurations [316]. The force becomes repulsive at small separations d .W/3, which
is explained from the fact that (by symmetry) the energy of a small z-oriented dipole located at the center of an infinitesimally
thin plate with a hole is equal to the energy of an equivalent, isolated dipole. (h) Thermal Casimir force between a tilted
PEC cone suspended above a PEC plate by a distance of 1µm, as a function of the tilt angle β, for multiple temperatures
T = 300, 80, and 0K (top to bottom).

well [238, 239, 326, 328, 329]. An interesting geothermal
effect involving nontrivial interplay between geometry
and temperature was recently predicted in the sphere–
plate geometry, wherein thermal fluctuations on the scale
of the thermal wavelength lead to strong departures from
PFA and even nonmonotonic behaviors [Fig. 10(d)] be-

low certain critical temperatures [326, 330, 331]. The
interaction between sharp-shaped conductors, such as
wedges and cones or the tip of a scanning tunneling
probe, and planar substrates was also recently explored
[Fig. 10(h)], and shown to lead to significant temperature
corrections [332]. No experiments have yet probed these
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geometric effects.

Calculations and experiments demonstrating non-
additive effects in extended geometries include sinusoidal
corrugated and grating structures, starting with the early
experiments of Roy et. al. [334]. Perturbative expan-
sions in the separation and corrugation depth of the
structures proved useful as they lead to constraints on
the range of validity of PFA in these systems, but soon
had to be extended to capture wavelength-scale features.
Ref. [335] considered PEC gratings beyond PFA by em-
ploying path-integral and scattering matrix techniques,
demonstrating ∼ 20% deviations from PFA predictions
in structures with periods ∼ separations. A recent ex-
periment by Chan et. al. measured forces in a similar,
albeit realistic structure consisting of a gold sphere above
a silicon nanoscale rectangular grating [Fig. 11(b)] [283],
which was subsequently followed up by theoretical cal-
culations [Fig. 10(b)] accounting for changes from the
finite permittivities of the materials [241]. Comparison
of the experimental measurements with the PEC pre-
dictions of Ref. [335] are shown in Fig. 11(b) along with
the experimental setup, which consisted of force-gradient
measurements obtained via shifts in the oscillation fre-
quency of the torsional oscillator on which the sphere was
mounted. Fig. 10(b) shows the theoretical predictions by
Guerout et. al. which include material effects and con-
firm deviations from PFA on the order of 10–20%. Ex-
tensions of these studies to similar and even 2d-periodic
structures [211, 336] have been explored, demonstrating
strong interplay between geometry, material, and tem-
perature effects; there are even recent claims of dramatic
force reductions (on the order of 80%) in gratings with
sub-100nm features [284], although the source of such a
reduction has yet to be clearly identified.

In addition to normal forces, it is also possible to
engineer lateral Casimir forces that act tangentially to
the interacting surfaces, e.g. by breaking translational
symmetry. The lateral force between sinusoidally corru-
gated surfaces was among the first realistic structures to
be studied using exact methods [245, 338, 339], leading
to predictions of optimal modulation lengths at which
lateral forces are maximized [Fig. 10(c)]. Applications
of lateral forces to noise-driven ratchets [340] and non-
contact pinions [341] were subsequently explored due to
their potential impact on MEMS. The first experimen-
tal demonstration of such a lateral force was performed
in 2002 by Chen et. al. using an AFM setup compris-
ing a sphere adjacent to a flat plate with nanoscale si-
nusoidal corrugations of amplitudes ∼ 5–60nm and pe-
riods λ ≈ 1.2µm much larger than the separation be-
tween the bodies. Figure 11(a) shows measurements and
a schematic of a similar setup from a more recent ex-
periment [333] based on structures with smaller periods,
λ ≈ 0.5µm, and larger corrugation depths, in which
larger deviations from PFA and asymmetric dependen-
cies on the lateral displacement between the plates were
observed. Using a related setup, the same authors mea-
sured the dependence of the force as a function of the

angle between the corrugations [265]. A related struc-
ture consisting of Ni-corrugated surfaces, one of which
is hidden under a thin metallic film, has also attracted
recent interest [342] due to predictions of strong varia-
tions in the normal force with the lateral positions of the
surfaces and its corresponding sharp dependence on the
choice of metal. Such a system would allow unambigu-
ous investigations of the role of dissipation on the thermal
Casimir force, a subject of recent controversy [185, 188].

Progress in modeling nanostructured surfaces has also
led to significant breakthroughs in understanding the role
of surface roughness (disordered surfaces) on measure-
ments at nanometric separations. In this regime, rough-
ness and gap distances are on the same scale thereby
obscuring the corresponding distance upon contact be-
tween surfaces (or absolute measurements of the sep-
arations) [343]. While predictions based on pertur-
bative approximations such as PFA played a key role
in early experiments [297, 344–347], the push to ex-
plore Casimir forces at shorter separations has motivated
more nuanced and precise theoretical studies of rough-
ness [298, 299, 348]. For instance, recent Casimir-force
measurement in the sphere–plate geometry demonstrated
that at separations . 100nm, roughness effects manifest
as strong deviations in the power-law scaling of the force,
leading to large discrepancies ∼ 100% between exact and
perturbative theoretical predictions [298]. Application
of brute-force techniques [252, 253] has made it possible
to perform reliable statistical studies of roughness effects
on the force at separations comparable to the root-mean
square of the height fluctuations, where the impact of
shape, size, and contribution of spurious peaks or asper-
ities is non-negligible [299].

The failure of PFA is even more pronounced in com-
plicated, multi-body geometries, such as the structure
shown in Fig. 10(e), involving two metallic co-planar
waveguides suspended above adjacent metal plates. Us-
ing brute-force numerics, Ref. [314] found that the at-
tractive Casimir force per unit length between the waveg-
uides varies non-monotonically as a function of their sep-
aration from the plates, decreasing and then increasing
as the plate separation decreases from infinity to zero.
It was found that the force deviates from PFA by ap-
proximately 40% in the limit of two isolated waveguides
(d → ∞) and is largest when the adjacent plates come
into contact with the waveguides, in which case the struc-
ture approaches the Casimir “piston-like” geometry stud-
ied previously by analytical means [320]. More interest-
ingly, application of simple pairwise, line-of-sight approx-
imations like PFA in which one sums the lateral-force
contribution of the plates to the waveguides, predicts
a monotonically increasing force with increasing plate
separation [349]. Extensions of this structure to cylin-
drical waveguides [328, 350] and exotic materials [253]
have been explored, along with explanations of the non-
monotonicity which arises from non-additive, screening
effects [328]. A recent experiment by Chan et. al. mea-
sured force gradients in a related geometry via the novel,
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FIG. 11. Recent experimental demonstrations of lateral forces, deviations from PFA, and finite-size effects in microstructured
geometries. (a) Schematic of experimental setup used to measure lateral Casimir forces (i), involving an AFM system comprising
two test bodies, a polystyrene sphere of diameter 200µm and a plate, whose surfaces are covered with longitudinal corrugations
of average period Λ ≈ 574.7nm [333]. Also shown are AFM scans (ii,iii) of the corrugated surface of the sphere along with a
cross-section (iv) of the grating surface, where the solid line shows a sine function obtained by fitting. The plot (v) shows the
measured lateral force (black dots) as a function of lateral displacement x for a single separation of 124.7nm, whose asymmetric
pattern shows good quantitative agreement with exact theoretical predictions (red line). (b) Lateral (i) and top (ii) cross-
sections of a rectangular trench structure with periodicity Λ = 400nm and depth t = 0.98µm, suspended above two stacked
silica spheres of diameter 50µm mounted on a movable silicon plate (iii,iv). Plotted is the ratio F ′/F ′PFA of the measured
Casimir force gradient between the top sphere and the grating, normalized by the corresponding PFA force gradient, as a
function of their surface–surface separation d, for samples with 2Λ/t = 1.87 (circles) and 2Λ/t = 0.82 (squares). Also plotted
are theoretical predictions based on exact methods [241], which demonstrate strong deviations from PFA. (c) Schematic of
an integrated experimental setup (i) along with corresponding scanning-electronic micrographs (ii,iii) of a structure involving
a silicon beam (red) and a movable silicon electrode and comb actuator supported by four springs (blue), with electrical
connections [285]. The plot (iv) shows the measured Casimir force gradient between the beam and electrode (black dots) as
a function of separation d, along with exact theoretical calculations in the absence (red line) and presence (purple line) of
electrostatic patch potentials. The inset shows the calculated force normalized by the expected PFA force in the presence (red)
and absence (blue) of the substrate, showing that multi-body effects become appreciable at separations d & 2µm.

integrated setup described in Section III B 2, involving
a silicon beam and an electrode suspended above a sili-
con plate, whose cross-section is shown Fig. 11(c) [285].
Although a significant step in the right direction, the ex-
periment was performed at lengthscales and separations
that precluded significant multi-body effects from being
observed.

Aside from non-monotonicity, one might ask whether
it is possible to significantly reduce or even flip the sign
of the force from attractive to repulsive. Design prin-
ciples for achieving repulsion have eluded theorists and
experimentalists for decades, and currently there are only
a handful of ways of doing so. Materials approaches
date back to the early days of Lifshitz’s theory and com-
monly involve fluids [6, 180, 198, 248, 351–353] and/or
exotic materials [354–358]. In fact, the influence of re-
pulsive Casimir forces on fluid suspensions and on wet-
ting phenomena in thin films [190] motivated much of
the foundational work of Lifshitz, Dzyaloshinskĭı, and

Pitaevskĭı [180], and has since played a crucial role in
colloidal physics and microfluidics [6, 190, 359]. Repul-
sion can arise for instance in situations involving dissim-
ilar bodies immersed in fluids, a phenomenon that was
first predicted in the van der Waals regime of near-field
dipolar interactions. Specifically, the van der Waals force
between two fluctuating dipoles of different polarizabili-
ties can flip sign, becoming repulsive when immersed in
a fluid of intermediate polarizability. Generalizations of
this fluid effect to situations involving macroscopic bod-
ies and retardation were performed in the 1960s [180]
but only recently observed in experiments [337]. As il-
lustrated in Fig. 12(c), measurements by Munday et. al.
reveal that the long-range Casimir force between a gold-
coated sphere and a silicon plate immersed in bromoben-
zene is repulsive; in contrast, the force becomes attrac-
tive when the plate is replaced by a thick gold film. Be-
cause such repulsions depend on the dielectric properties
of materials over a wide range of wavelengths, not all
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tions to Casimir forces due to material effects (all involving
AFM setups). (a) Measured force gradient between a sil-
ica sphere of radius 54µm, coated with 280nm gold film and
suspended above a graphene-coated silicon-on-insulator sub-
strate (black crosses), along with corresponding predictions
from the Lifshitz theory in the absence (solid line) and pres-
ence (dashed line) of the graphene sheet [272]. The graphene
sheet is shown to increase the Casimir force by ≈ 10%. (b)
Measured gradient force between a gold-coated polystyrene
sphere of radius R = 100µm and gold thickness ∼ 100nm
and either a gold-coated (green square) or ITO-coated (red
squares) silica plate, as a function of their surface–surface sep-
aration d [277]. The black lines indicate calculated Casimir
forces with the addition of residual electrostatic forces. The
use of oxides is shown to halve the Casimir force by roughly
50%. (c) Measured attractive (orange) and repulsive (blue)
Casimir forces between a gold sphere and either a silica or gold
plate, respectively, immersed in bromobenzene [337]. Also
plotted are the dielectric permittivities ε of gold (orange),
bromobenzene (gray), and silica (blue) evaluated at imagi-
nary frequencies iξ, whose dielectric arrangement over a wide
range of ξ leads to repulsion [180].

fluid–material combinations lead to repulsion. Current
experimental efforts are shedding light on these issues
by developing tighter bounds on material properties of
common fluids and by exploring broader sets of material
configurations [304, 305]. Recent theoretical works have
also focused on ways of exploiting material dispersion in
addition to nanostructuring to obtain stable fluid suspen-
sions and large temperature corrections [352, 360–364].

It has proven significantly more challenging to pro-
cure unusual effects in vacuum-separated structures, es-
pecially in the original geometry of two semi-infinite half-
spaces where the only degrees of freedom are the choice

of materials. Early attempts to obtain repulsion focused
primarily on exotic materials such as perfect magnetic
conductors [354], and more recently gain media [355]
and Chern insulators [358] 5. One trend in the past
few years has been to study “metamaterials” formed
from metals and dielectrics arranged into complex mi-
crostructures with sub-wavelength (nanometric) features
that lead to exotic effects at infrared wavelengths. Exam-
ples include effective magnetodielectric, chiral and para-
magnetic metamaterials that were initially predicted to
strongly alter Casimir interactions [356, 357, 366, 367].
Unfortunately, while metamaterials have proven useful
in classical-force designs (as described above), they often
rely on narrow-band resonances that turn out to have a
negligible effect on the force once the full spectrum and
realistic microstructures are considered [222, 223, 368].
In fact, general arguments based on the passivity of di-
electric (non-magnetic) materials discount the possibility
of repulsion in general multilayer systems [369]. There
is also growing interest in understanding the influence
of magnetism on the force in realistic materials. For
instance, Ref. [370] recently showed that magnetic ef-
fects in common diamagnetic and paramagnetic materi-
als have little to no impact on the force, in contrast to
ferromagnetic materials such as Co and Fe that can po-
tentially enable temperature-tunable interactions if one
operates near their phase transition temperature [370].
Follow-up experiments with Ni-coated surfaces operating
near room temperature have demonstrated small changes
to the force [271]. Finally, reductions in the force can
also be achieved by modifying material properties at the
atomic and electronic level, such as by varying the dop-
ing [371, 372] or carrier density [373] of semiconductors
like silicon, or by employing aereogels with varying poros-
ity [374].

Structural approaches have only recently begun to be
explored, thanks largely to the emergence of powerful
theoretical techniques. These sophisticated formulations
have also been used to establish general limits on the
kinds of repulsive interactions that can arise through
structural considerations alone. For instance, one can
show that the force between multilayer films [369] or
mirror-symmetric objects [375] separated by vacuum is
always attractive, and also that stable suspensions (local
equilibria) between vacuum-separated metal/dielectric
objects are impossible [376]. There remain however many
other circumstances of interest. In planar systems the
only structural degrees of freedom are the thicknesses of
films, which can be varied to obtain non-negligible re-
ductions in the force [371, 377]. For instance, decreasing
the thickness of a metal film beyond its corresponding
bulk skin-depth in the infrared to ultraviolet regime, i.e.
. 10nm for common metals, causes the film to become

5 Application of Lifshitz theory to non-passive materials like gain
media require care, since such media violate fundamental as-
sumptions of thermodynamic equilibrium [397].
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increasingly transparent (non-reflective) and this results
in a corresponding decrease in the Casimir force. The
first observations of the skin-depth effects were performed
by Lisanti et. al. in 2005 by employing an AFM setup
involving a metal-coated polystyrene sphere positioned
above a micromachined torsional oscillator [378, 379]. A
reduction in the Casimir force on the order of 30% was
obtained with thin ∼ 0.1nm films, in agreement with
theoretical predictions based on the Lifshitz theory. An-
other experiment [Fig. 12(b)] measuring forces between
a 100µm gold-coated sphere and gold-coated silica plate
in the 50–150nm separation range demonstrated a 50%
reduction in the Casimir force when switching from gold
to indium tin oxides (ITO) coatings due to the latter’s
significantly smaller plasma frequency [277]. Other ef-
forts include investigations of forces between graphene
sheets [380], whose unique mechanical, electrical, and op-
tical properties are proving useful in a wide range of ap-
plications. For instance, the experiment of Banishev et.
al. recently demonstrated [Fig. 12(a)] that depositing a
graphene sheet on a silicon/silica substrate can increases
the force by ∼ 10% [272].

Predictions of repulsion in highly non-planar systems
have also emerged in the past few years. For instance,
two interleaved objects such as the zipper-like glide-
symmetric structure shown in Fig. 10(f) involving inter-
leaved metal brackets attached to parallel plates, can re-
pel one another due to a competition between lateral and
normal forces. In particular, depending on the separa-
tion, the attractive lateral force between the brackets can
dominate the interaction and either contribute toward or
act against the attractive plate–plate and plate–bracket
interactions, the net result of which is attraction at large
and short separations and repulsion at intermediate sepa-
rations. Although such an effect can be qualitatively un-
derstood from pairwise interactions, it was recently con-
firmed by exact calculations that also illustrate the dra-
matic, quantitative failure of PFA in highly non-planar
structures [315]. Experimental demonstrations of this ef-
fect are currently being pursued. A more direct and less
ambiguous prediction of geometry-induced repulsion (in
non-interleaved geometries) was recently made by Levin
et. al., demonstrating that the force on a small elon-
gated object centered above a plate with a hole switches
from attractive to repulsive as the object approaches the
plate [Fig. 10(g)]. This effect was explained via a sym-
metry argument in an idealized geometry involving an
infinitesimal particle or dipole above an infinitesimally
thin perfect-metal plate with a hole, and validated via
brute-force calculations in realistic geometries and ma-
terials. Although this was the first demonstration of a
geometry-based repulsive effect that cannot arise from
pairwise attractions, the magnitude of the force is unfor-
tunately too small for current experimental detection and
other alternatives are currently being explored [381, 382].

Finally, in addition to normal and lateral forces, quan-
tum fluctuations can also induced torques on objects that
are free to rotate. For example, torques can arise in
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FIG. 13. Theoretical investigations of the interplay between
Casimir and optical gradient forces in two representative op-
tomechanical structures (shown schematically) [309, 310]. (a)
Optical (solid lines) and Casimir (dashed line) force per unit
length and per mW of incident power between two rectan-
gular silicon waveguides of height 220nm, plotted for multi-
ple configurations of waveguide widths. Because the Casimir
force increases more rapidly than the optical force, increas-
ingly larger powers are required to counteract stiction in this
system. (b) Total force (solid lines) on a 30µm × 30µm
PhC square membrane of 130nm thickness suspended above
a silicon-on-insulator substrate by four deformable arms, as
a function their surface–surface separation d. The total force
includes mechanical (dashed black), Casimir (dashed green)
and anti-bonding gradient forces. The optical force is induced
by normally incident light from above with power P = 10mW
and (variable) wavelength λ. The stable position of the mem-
brane varies depending on the incident wavelength, displaying
bistability as λ is swept from smaller to larger values. The
schematic shows that most of the deformation occurs within
the L = 30µm arms supporting the membrane.

anisotropic or birefringent materials [383–387] or through
geometry [249, 388–390]. To date, however, there have
been no experimental observations of such QED torques.

C. Technological Impact

The unavoidable impact of Casimir forces on MEMS
has been a driving force behind much of the recent
progress discussed above, especially as scaling issues and
additional complexity continue to push devices toward in-
creasingly smaller (nanometric) scales. The adhesion or
stiction of neighboring movable parts in micromachines
from electrostatic or Casimir forces is of special concern,
as described in a number of seminal works [174, 175, 343].
On the other hand, the ability to tune Casimir forces
in MEMS can potentially lead to novel functionalities
and architectures. Examples include driven nonlinear
electromechanical oscillators [273, 280, 391], rack pinions
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based on lateral forces [392], and ultra-sensitive sensors
based on parametric amplifiers [393]. Recent theoretical
predictions even suggest that roughness can have a po-
tentially positive influence on the actuation dynamics of
MEMS at nanometric scales [348]. The experiment by
Chan et. al. in 2001 demonstrated that at short sepa-
rations, the Casimir interaction between a metal sphere
attached to a movable oscillator and a plate adds a non-
linear term to the otherwise linear mechanical restoring
force on the sphere, resulting in a number of interesting
nonlinear dynamical effects such as bistability and hys-
teresis [273, 280]. Meanwhile, experiments such as those
by Zhou et. al. demonstrating in-situ measurements of
Casimir forces in on-chip integrated silicon devices con-
tinue to bring Casimir forces into the forefront of MEMS
technology [285]. Anti-stiction mechanisms based on lat-
eral forces [315] in similar integrated platforms are cur-
rently being explored.

The integration of Casimir forces and optomechanical
devices offers even more degrees of freedom for achiev-
ing designable actuation effects in new generations of
NOEMS. For instance, repulsive optical forces can be
used to combat stiction, bringing to bear the unique
competitive edge of gradient-force designs in optome-
chanical systems [309, 310]. The interplay and expres-
sion of Casimir and gradient forces were recently studied
in systems based on coupled waveguides [310] and PhC
membranes [309]. Simulations reveal [Fig. 13] that all-
optical, anti-bonding forces excited by incident light at
relatively low powers (. 10 mW) can be used to con-
trol the onset of stiction at small separations (. 100nm),
and can also greatly influence the static and dynamical
mechanical state of these systems [309]. The large in-
teraction areas of PhC membranes not only allow strong

Casimir effects to arise at larger separations, relaxing the
signal-to-noise requirements for accurate detection, but
also provide a mechanism for the simultaneous actuation
and detection of Casimir forces. Initial experiments in
a related structure [Fig. 6(b)] demonstrate nanometer-
range pulling (∼ 1nm/1mW) and optomechanically in-
duced optically bistability effects [89, 135]. By combining
the above ingredients, the prospect of real-time monitor-
ing and control of MEMS/NEMS through optomechani-
cal degrees of freedom is becoming increasingly possible.

IV. CONCLUDING REMARKS

Because of the infinite variety of possible geometries,
and the highly nonlinear dependence of electromagnetic
fields and forces on the geometric and material parame-
ters, it is impossible to be certain what the future holds
for optomechanical interactions in nanophotonics. This
is, perhaps, especially true for fluctuation-induced inter-
actions, where both theory and experiment have only just
begun to move past the simplest planar structures of the
past. The combination of optomechanical interactions
with other phenomena, such as nonlinear optics (includ-
ing nonlinear-gain media and lasers), exotic plasmonic
metamaterials, or fluid-mechanical effects, has been only
lightly explored at best. One possible avenue for such ex-
plorations, which has been gaining ground in other areas
of photonic design but is thus far little-used in the regime
of classical and quantum forces, is computational “inverse
design” in which hundreds or thousands of parameters
are explored systematically by optimization techniques
in order to discover new geometries and new regimes of
operation [394].
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