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ABSTRACT

A probabilistic methodology to examine the impact of satellite system task automation on
cost and availability is described. The methodology uses a functional representation of the
system and discrete levels of automation are defined for the human to ground computer
and ground station to satellite interfaces for each function. The level of automation in turn
affects development and operations costs, the likelihood of successfully managing an
event, and the processing time required. A Markov model is used to determine the
resulting availability of each function and ultimately the ability of the satellite system to
carry out its mission objectives. The methodology has been implemented in an interactive
software tool called SOCRATES which facilitates the construction of satellite system
architectures and the analysis of different operational concepts. SOCRATES was then
used to investigate automation trades for three case studies. The first study determined
the effects of automating the tracking function of a single satellite through the use of an
on-board GPS receiver. For the inputs used, it was shown that full automation of the
tracking function resulted in the minimum life cycle costs for the system. A second case
study illustrated the automation trade for a constellation. The payload function was
automated, and for the model inputs used, it was shown that a low level of automation
was optimal for small constellations, while high automation was optimal for large
constellations due to economies of scale. Automation was applied to a deep space
satellite in the third case study. It was shown that the delay time for distant missions made
it necessary to automate functions which require frequent interaction.
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1. Introduction

1.1 Background

Current levels of automation in satellite systems reflect an incremental evolution that is
based on a high level of human involvement. Historically, this has been a result of the
desire to reduce risk and due to limited technological capabilities. Due to the dependence
on humans to perform tasks, operations costs can make up a significant portion of the life
cycle costs for a satellite system.! In addition, human error continues to be a major cause
of spacecraft anomalies and failures." With the introduction of large constellations or
clusters of satellites, some automation of operations will be required to reduce costs while

maintaining avaiiability (the probability of meeting system requirements at a given time).>*

Despite the recognition of the need for automation, there is reluctance to do so. The large
investments and high risks involved in space ventures has lead to a conservative industry.
In addition, the desire to reduce cycle times for new programs also favors significant re-
use of proven technologies and thus, low levels of automation. A methodology which can
be used to predict the effects of automation on a satellite system would help reduce risk
and may enable more cost efficient systems to be considered. The definition of
performance metrics, such as the system availability (probability of meeting system
requirements) and life cycle costs (sum of development, operations, and opportunity costs)

would enable operations concepts to be quantitatively compared.

16



Figure 1.1 illustrates a typical sztellite system and communications links among the
system’s decision makers (shown in gray). The system consists of a space segment
(satellites) as well as a ground segment (control centers) which in turn consist of
computers and human operators. The satellite contains sensors which measure the status
of the satellite and pass that data to an on-board processor (OBP). The OBP may
interpret the data and generate commands to control actuators used to keep the satellite
operating as intended. Or, the data may be sent to the ground computer through a
communications link. The ground computer, using the downlinked data and/or
information from ground-based sources such as radar may then command the satellite
actuators through the link to the OBP. Additionally, the data may be sent to an operator
through a human machine interface. The human operator must then determine when znd
what command action is to be taken. This may or may not also require interaction with
additional engineering support staff. The operator then commands the satellite through
the ground computer and OBP. Thus, three types of processors can be involved in the

decision making process: the OBP, ground computers, or the human operator.

The measure of automation in a system depends on the degree to which each processor
(OBP, ground processor, human) is involved with controlling the spacecraft. This level of
automation can vary along a continuum ranging from fully-manual human control, to
human supervisory control, to a fully automated {no human) system.® In general, as the
level of automation is increased, fewer tasks need to be performed by the human operator
and operational costs decrease.* In addition, when properly applied, automation can result
in a reduction in the rate of human-caused errors (e.g., miss-typed commands). However,
because an automated system may not be as flexible as a human operator in managing
unanticipated situations, availability could decrease. Finally, the increased development
costs associated with a highly-automated system may outweigh any operational cost
benefits. Thus, the appropriate degree of automation requires a careful trade study
between three factors: operating costs (personnel), development costs (design and

infrastructure), and availability.
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Figure 1.1: Block Diagram of a Typical Satellite System

There is also a trade concerning the degree to which automation is resident on the OBP
vs. the ground computer. The OBP has the advantage of being on the spacecraft which
eliminates communications problems with sensors and actuators. However, the GBP must
be specially designed to withstand the space environment. As a result, spacecraft
processors tend to be several years behind terrestrial technology. This limits the OBP in
both memory and throughput relative to ground computers. Also, the ground computer
may be replaced if it fails or be upgraded to become more effective. This makes ground

computers more flexible and reliable.
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1.2 Notional Effects of Automation

Figure 1.2 qualitatively represents the cost and availability characteristics of a hypothetical
satellite system with respect to an increasing level of automation. As low levels of
automation are introduced into the system, the operating costs decrease, principally due to
a decrease in the number of human cperators (Figure 1.2A). At some point, however, the
increase in design and development costs (due to software development) may outweigh

the decrease in operation costs.

As shown in Figure 1.2B, availability may decrease, increase, or be unaffected by the levei
of automation. For tasks that are simple, well understood, or periodic (such as routine
stationkeeping on a geostationary satellite), availability may increase with increasing
automation (Task A in Figure 1.2B). This trend results when human errors are more
likely than software errors and the impact of unanticipated situations is negligible. For
complex, rare, or unexpected functions, availability may decrease as humans are removed
from the loop (Task C in Figure 1.2B). This can occur when the automation is unable to
resolve problems that could have been resolved by a human or when the automation fails
to accurately inform the human of the situation. Alternatively, there may be some
functions for which the availability is nearly independent of the level of automation (Task

B).

o)
g .2‘ a-A Task A gl
g0 = S
0 = Task B
E g 9 2
a 0 — 2
2 g 3 Task C O
O >
()
> O < -
£ 5 3
(e} > . >
Low High Low High Low High
Automation Automation Automation
A B C

I'igure 1.2: Effect of Automation on Cost and Availability
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An increase in system availability translates into an increase in revenues for a commercial
system, or an increased ability to perform an objective for science or military systems.
Thus, the potential for failure can be represented by an opportunity cost which represents
revenues forgone as a result of increased system down-time. For science or military
applications, the definition of an opportunity cost may be difficult. In such cases, the
development and operations cost would be compared against the availability metric
without attempting to define the life cycle cost. However, for commercial systems, the
opportunity cost can be added to the development and operations costs to form the life
cycle cost metric. Determination of opportunity costs requires additional data such as the
relationship between a particular function and revenue. The combination of the two
curves from Figure 1.2A and Figure 1.2B are represented in Figure 1.2C, showing the
overall life cycle cost. In its simplest form, the life cycle cost metric, LCC, is therefore

calculated as:

LCC = DC +0OC + OPC(R, A) (1.1)

where DC is the development cost, OC is the operations cost, and OPC(R, A) is the

opportunity cost as a functicn of revenue and availability.

In the example in Figure 1.2, there exists an optimal level of automation at which life cycle
cost is minimized. Due to the complexity of the satellite system, a methodology is needed
that can model the effect that automation has on costs and system availability. Such tools
would enable system engineers to identify those functions that should be automated. The
primary focus of the methodology presented here is to develop a model of a satellite

system to aid in quantifying the curves in Figure 1.2.

1.3 Roadmap

This thesis presents a methodology by which the cost and availability effects of satellite
automation can be modeled. A discussion of the general concepts and an outline of the

approach is contained in Chapter 2. The methodology has been implemented in a detailed
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model. The availability portion of this model is described in Chapter 3, and the cost
portion in Chapter 4. The software tool, SOCRATES, which is based upon the model is
outlined in Chapter 5. Examples of how the model can be used in systems studies are
shown using case studies in Chapter 6. Chapter 7 contains a summary of the work and

points out the capabilities and limitations of the model.
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2. Methodology

2.1 Overview

While Figure 1.1 illustrates a block diagram of the physical system, one may also think of
the system in a more abstract manner. One such representation of the system is based
upon the functions it performs, as shown in Figure 2.1. These functions represent actions
which make up the operations of a space system. Automation is introduced to the system
by automating, to varying degrees, the separate functions of the system. Typical functions
include stationkeeping, attitude control, payload operation, power, and so on. Ground
functions such as archiving or command generation are also included since automation
may be applied to these tasks as well as to satellite functions. At any given time, there is
some probability that a function is fully operational (not degraded). This operational
probability is defined as the function’s availability at that time.

2.2 Mission Objectives

The overall system has been designed to perform one or more mission objectives. These
mission objectives are top leve! goals which provide some value to the system’s users. For
commercial systems, such as a TV broadcasting system, there may only be one mission
objective: to provide a TV signal to the intended areas on the surface of the Earth. A
scientific satellite may have multiple mission objectives, each of which may result from the

data received by multiple payload sensors.
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Each satellite or control center in the system may have objectives of its own, namely,
satellite objectives (S.0.) and control center objectives (C.0.). These objectives are the
goals which the individual satellites or control centers must achieve. Mission objectives
are met through a combination of satellite and contro! center objectives. For example, the
science system may have a mission objective which is to record and store infra-red
signatures of the Pacific Ocean. This would be accomplished through a combination of
satellite objectives, such as the infra-red data collection and orbit contrr', as well as
control center objectives such as data archiving. Mission objectives require certain
satellite and control center objectives to be functional. If any of these lower level

objectives are not available at a given time, the mission objective is not met.

Satellite and control center objectives are achieved through the action of space and ground
functions as shown in Figure 2.1. For example, the data archiving control center objective
may require the telemetry function on the satellite to be operational. Thus, a space
function is required to perform a control center objective. Functions are elemental tasks
which the system must perform to achieve lower level objectives, and hence mission

objectives.

Mission Objectives

Control
Center
(co.n

Satellite

Space Functions Ground Functions

Figure 2.1: Example Functional Representation of System
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The level of detail of the model is reflected by the number of functions which are defined.
For example, one approach may be to define attitude control as a function of the system.
Another might further decompose this function by defining roll angle control, yaw angle
control, and pitch angle control as separate functions of the system. Neither approach is
more correct, but one may be more appropriate for certain applications of the

methodology.

2.3 Approach

The main goal of the methodology is to determine the effects that automation has on the
life cycle cost of the entire system. As was indicated in Figure 1.2, automation is expected
to impact development costs, operations costs, and the system’s availability. The system’s
availability is measured by the system’s mission objective availabilities. In order to model
these impacts, sub-models for the availability, operations costs, and development costs are

needed, as shown in Figure 2.2.

Re]lablllty Cost
Inputs Inputs

Availability Development
Model Cost
Model

System ] Operations Development
Availability ] Costs Costs

Figure 2.2: Sub-Model Components
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Reliability inputs such as human and computer processor task reliabilities, hardware
reliabilities, and task execution times, are used by the availability model to calculate the
availability of each function. These are used, along with satellite, control center, and
mission objective requirements, to calculate each mission objective’s availability. The
details of this model are discussed in Chapter 3. Cost inputs such as production, launch,
administrative costs, and operator salaries are used by the development and operations
cost models to calculate the development and operations costs. The details of the cost

models are included in Chapter 4.

The operations costs are affected by the number of operators required to perform each
function. This, in turn, is affected by the workload imposed by failures and other
operations, which is captured in the system availability model. Therefore, in addition to
cost inputs, the operations model also requires an estimate of the system’s availability in

order to determine the staffing requirements (Figure 2.3).

The availability can also be converted into an opportunity cost representing forgone
revenues. This is then combined with the development and operations costs to derive a
life cycle cost metric. The life cycle cost was defined by Eq. 1.1, restated below, and is
equal to the sum of the present worth values of development, operations, and opportunity
costs. The opportunity costs are a function of the potential mission objective revenues
and their availabilities. This relationship may also include the impact of system availability
on the consumers’ demand on the service provided, as well as expected variations in the
demand for the service as a function of time. Therefore, a market model (as shown in

Figure 2.3) is required to calculate the opportunity cost function OPC(R,A).

LCC = DC +OC + OPC(R,A) (1.1)
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An integrated cost model is required to convert availability to opportunity cost, and to
combine the costs as the present worth value of the life cycle costs. This is shown in

Figure 2.3.

Reliability Cost
Inputs Inputs

Operations
Cost
Model

Auvailability
Model

System

[ Operations ] [Development ]
Availability

Costs Costs

Market
Model

{ Integrated
Cost Model

Life Cycle
Costs

Figure 2.3: Sub-Model Interactions

2.4 Availability Modeling

The foundation for the caiculation of the mission objective availabilities rests in the
calculation of each function’s availability. Figure 2.4 shows a basic state representation

for a function. The function is in the nominal state when it is fully operational and there is
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no immediate need for action by an operator or computer. The function transitions to the
action required state when action is required by an operator. The transition back to the
nominal state represents such a recovery action. In addition, the function may
permanently fail with no ability to recover, which may result from a hardware failure or

the total consumption of a non-replenishable resource such as propellani.

. Action
Nominal Required

ermanent
Failure

Figure 2.4: Functional Availability Model

The transitions to the permanent failure state are based upon hardware reliabilities. The
transition to the action required state is based upon repairable failure rates, and scheduled
operations frequencies. The transition back to the nominal state is determined by the

human and/or computer repair rates and reliabilities.

2.5 Cost Modeling

As shown in Figure 2.3, the life cycle costs attributed to automation a:¢ separated into
two main branches. development and operating costs; and opportunity costs which
depend on the system availability. As automation is introduced, there is in general a need
for additional software and possiblv additional or different hardware. This will generally
increase the development costs. However, as system functions are automated, the need
for human interaction may decrease. This in turn would reduce the operations costs. Not
only is the number of operators reduced, but there is also a reduction in support staff and
overhead associated with these operators. However, if the software that has been

implemented is unreliable, humans will be needed to resolve processor deficiencies.
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2.6 Levels of Automation

A great deal of attention has been paid in recent years concerning the interfaces between
machines and their human operators.® Of specific interest in the space community is the
problem of remote operation. Despite the popularity of the topic, however, most of the
efforts have been involved in isolating failure modes of the combined system and providing
insight into control issues. The idea that automation can be introduced gradually is
recognized, but definitions of discrete levels tend to be fuzzy.® The following section
describes a more rigorous definition for discrete levels of automation, and what they mean
in terms of task sharing between any two processors. These processors may be a human

and a computer, or two computers.

Figure 2.5 illustrates the interaction among processors to perform a task or function. In
general, each of threz processors (human, ground computer, or OBP) may be involved in
the completion of the task. The task or function to be performed is recognized by the
space processor through sensors located throughout the spacecraft. The OBP may act
upon this data, or may relay it to the ground computer. This computer may take action, or
inform the human operator of the spacecraft status. If action is to be taken, the decision
maker (human, ground computer, or OBP, depending on the level of automation) sends
commands back up the chain to the OBP which then routes the command to the

appropriate actuators.

Space Segment : Ground Segment
Task or On-Board[ ™| Ground ™ Human
Function Processor ||| Processorlg | Processor

I
I
Figure 2.5: Processor Interactions to Perform a Task

Increasing the level of automation shifts responsibility from the human operator to the

ground processor or spacecraft processor. As can be seen in Figure 2.5, there are two
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processor interfaces to which automation may be applied. One such interface exists
between the human and the ground computer processor. Automation may also be applied
to the interface between the control center and the spacecraft processor. Therefore, the
overall level of automation for a given task or function must be defined by each of the

levels of automation at the two interfaces.

Regardless of the level of automation, one of the processors is generally responsible for
performing the task, and is termed the primary processor. There may, in general, be cases
during which the primary processor is unable to complete the task. This may be due to a
hardware or software failure, human error, or to a state of the system for which the
software was not designed. There also may be cases where the software has been
designed to not attempt to perform the function under certain conditions. The inability of
the primary processor to perform the task is termed a processor deficiency. A secondary
processor may be defined to take over the function once a processor deficiency has
occurred. A fertiary processor may also be defined to recover from a secondary

processor deficiency.

One possible relationship among the primary, secondary and tertiary processors may be
made more clear through an example. Suppose that a low Earth orbiting (LEO) satellite
uses an Earth-Moon-Sun triangularization to determine its orbital parameters. Software
has been written to do this on board the spacecraft, and thus the OBP is the primary
processor for this function. Certain positions of the Sun, Moon, and Earth with respect to
the satellite produce ambiguous results. In this case, a warning message is sent to the
control center. The ground computer usually can resolve the ambiguity using recent
telemetry and 2 model of the spacecraft dynamics. This software may be too complex and
large to be run in space, and so it is kept on the ground. The ground computer attempts
to resolve any situations which the space processor cannot. Thus, the ground computer is
the secondary processor. Suppose that there are some situations for which the ambiguity
cannot be resolved by the ground processor. In these cases, a waming light on the

operator’s display may be illuminated, and the human operator is then responsible for
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resolving the problem. The human is then the tertiary processor. Only after both the
space computer and ground computer are unable to determine the orbital parameters is the

human operator brought into the loop to resolve the problem.

Automation of satellite systems may be accomplished by placing the responsibility for
tasks on space or ground based computers rather than on a human operator. However,
there are many cases where even in an “automated” system, the human is not completely
out of the loop, but may monitor the computer processor. In order to preserve generality
in the model, it is important to capture this subtlety of adding automation. To this end,
discrete levels of automation have been defined which can describe the application of
automation in an incremental manner. This allows a gradual transition from fully un-
automated (human control) to fully automated (no human intervention). Each level of
automation defines the degree to which each processor (human or computer) is

responsible for the completion of a task.

The following sections describe the levels of automation associated with the satellite -
control center interface (remote interface) as shown in Figure 2.6. The definitions for the
levels corresponding to the control center - human interface are analogous to those for the

remote interface.

Space Segment : Ground Segment
On-Board "1 Control
Processor |4 | Center

I
I

Figure 2.6: Remote Link

There are six levels of automation defined, ranging from fully automated to no
automation. Each level represents a variation in the responsibilities and information

passed between the space processor and control center. Thus, the assignment of primary
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and secondary processors varies with the level of automation. Figure 2.8 shows the
information flow and the processor assignments for the six levels, which are discussed in
more detail below. A grayed-out processor indicates that for that level of automation, the

processor is not used.

Space Segment Ground Segment Space Segment Ground Segment
Primary Primary : Sec
——>OnBoxd Control ——®>{ On-Bord ‘——5:%—5 Control
<@—— Processor " Center <@—— Proccmor |[@——E<—  Center
Fully Automated Paging
Space Segment Ground Segment Space Segment Ground Segment
m'ﬂ Status Secondary Primary Suggestions Sccondary
On-Board '—m Control —{ On-Board —um_——“ rw— Control
<@§— Processor Center <@ ——| Proccssur [«@——————  Center
Supervision Cueing
Space Segment Ground Segment Space Segment Ground Segment
Prim : Primary
B[ G porgPoetamd Dain g — — > CnBowd 2 g™ Control
<@— Processor -‘M Center <@— Processor [eg-Sommands 1 oop,
Data Filtering No Automation

Figure 2.8: Levels of Automation

2.6.1 Fully Automated

Full automation implies that the space processor is the primary processor, and performs
the function with no intervention from the ground control center. Since information
regarding the task is not shared with the ground, if the space processor fails to correctly
perform the task, the ground would not be notified. An example of a fully automated
system is a “fire and forget™ air to air missile. Once fired, not only is the missile fully
responsible for finding and destroying the target, but the pilct is unable to enter the loop

to ensure that the mission is accomplished.
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2.6.2 Paging

With paging, the task is performed by the space processor, but the control center is
notified at the occurrence of any failure or processor deficiency. Thus, the OBP is the
primary processor, and the control center is the secondary processor. The major
advantage of paging is that the control center is informed of problems as they occur, but
dedicated ground computers or personnel do not continuously monitor the satellite. An
example of a system with paging would be a modern automobile’s computer diagnostics
system. The computer checks and adjusts variables such as fuel-air mixture to compensate
for poor performance, as indicated through the car’s oxygen sensor. If the on-board
system is unable to bring the oxygen reading within desired bounds by itself, the “service
engine soon” light on the dashboard will light up. The mechanic must be paged, or, in this
case, the car itself is “paged” and brought into the shop. Notice that until the car had

trouble, the mechanic in the shop was fully unaware of the car’s status.

2.6.3 Supervision

As with the levels of automation previously discussed, with supervision the task is
nominally executed by the space processor (primary processor). However, the space
processor’s actions are monitored continuously by the control center (secondary
processor). The ground may also be informed through an alarm if a primary processor
deficiency should occur. The ground station may at any time assume responsibility for the
task. When the human is the secondary processor, supervision effectively increases the
probability of a timely response by the ground processor over the paging level of
automation since the human would already be monitoring the control center. Also, since
the ground is continuously monitoring the task, humans would be able to watch the
evolution of events unfold, and therefore may be more likely to correctly interpret the
reason the primary processor could not perform the task. Examples of a system operating
under supervision might be an aircraft flight management system, or a nuciear power
plant. Although a computer is responsible for maintaining the safe operation of the
system, human operators are required to closely watch for deviations. This analogy also

reinforces the idea that supervision may reduce the response time to a takeover once the
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primary processor is unable to perform the task. Safety in a nuclear environment demands
this response time to be small, and therefore supervision is used rather than a level of
automation such as paging. With supervision, the secondary processor implicitly agrees

with each of the primary processor’s actions.

2.6.4 Cueing

At the cueing level, the system may require ground intervention at various points during
the task’s execution. The satellite would still attempt the task by itself, and therefore
remains the primary processor, but must first obtain authorization from the ground. This
is analogous to a PC prompting the user to verify any delete actions. Although this
decreases the probability of incorrectly performing the function, it may also increase the
time required to perform the task relative to the time which would be required if the task
was more automated. Thus, increased availability may come at the cost of a more time
consuming process. With cueing, the secondary processor must explicitly agree with the

primary processor’s actions.

2.6.5 Data Filtering

At this level of automation, the remote system is not responsible for performing the task,
but aids the ground by filtering the downlinked information. Therefore, the control center
is the primary processor. During a failure of the function (e.g. flight hardware failure), the
sateilite could send a more detailed set of data to the ground. This could tend to lessen
the data load the ground must deal with, and hopefuily improve the ease in which failures
are identified and analyzed. The actual implementation of the function may still be done
on the satellite because the function may require reconfiguration of hardware or software
mounted on the satellite. A good example of data filtering can be found in many modern
satellite operations systems (for example Integral System’s Epoch 2000, or FIXIT 7).
Rather than scrolling raw telemetry to the screen, as was done in the past, some newer
systems present the data in a graphical format such as system block diagrams which allow

the data to be interpreted much more easily and accurately by a human operator.
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2.6.6 No Automation

For this level, there is no pre-sorting of data before transmission to the ground. The data
must be interpreted by the ground in raw form, and the task is fully performed by that
processor. This may result in some development cost savings relative to a more
automated system due to less software, but may increase operations costs due to the

required operator workloads which may result from sorting the data on the ground.

2.7 Qualitative Effects of Automation

Ultimately, automation can impact the system through either its cost or its availability.
Automation affects availability through the processor (software or human) reliabilities.
The processor’s reliability in performing a task is also affected by the characteristics of the
processor and task complexity. Humans have different strengths than software in solving
problems. While humans are generally more flexible, they may be less consistent. The
reliability of a processor (human or software) is also dependent to some extent on the cost
expended during its development. The following paragraphs present a discussion of such

issues in a qualitative sense.

Figure 2.9 shows the qualitative relationship among software reliability, task complexity,
and software development cost. Given a software provider and production methodology,
the software’s reliability can be increased mainly through increased testing which results in
an increase in the development costs (as well as an increase in the delivery time). The
reliability is also affected by the task complexity. For a given software cost, the software

reliability will decrease as the task complexity increases.
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Figure 2.9: Qualitative Relationships Among Software Reliability,
Task Complexity, and Software Cost

In general, the evaluation of software reliability will be a function of its development cost,
task complexity, and level of autornation as shown in Figure 2.10. Qualitatively, as the
level of automation varies, the actual goals of the software may change, therefore
impacting its cost and reliability. However, this variation is dependent on the overall
operational strategy. For example, with Cueing, the flight code may be expected to obtain
a suggested solution for every possible failure mode. Another approach might be to
design the flight code to provide a suggestion only for certain failure modes, and to pass
responsibility to a human for more complex or critical medes. Each approach will result in
different cost and reliability characteristics because the “task™ is actually changing slightly.
The software model of Figure 2.10 may vary from one software provider to another, and

may change as a function of the process used to develop the software.

Cost

Task Complexity

. Software

Model
Level of Automation /

Figure 2.10: Software Reliability Drivers

Software Reliability
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The cost-reliability relationship for humans, shown in Figure 2.11, is similar to that of
software. The human’s training cost is analogous to the development cost associated with
testing in software. This may be an increased salary required to hire more qualified
personnel, or may represent an increase in training costs or improved facilities to enhance
the performance of existing persornel. Human reliability as a function of the task
complexity is also schematically shown in Figure 2.11. Unlike computers, human
performance may decrease for very simple tasks.® Humans tend to become bored,
inattentive, or careless for simple tasks. As the complexity increases, the human’s
attention sharpens, and fewer errors are made. At some level, however, the problem
becomes complex enough that human reliability begins to decrease. The variation of
human reliability with the level of automation is highly dependent on how the automation
interfaces with the human. The display can affect the human’s performance. In addition,
environmental factors such as shift duration and lighting can alter the human’s
performance. An estimate of human reliability may require an experimental study of the

proposed interfaces and may be case-specific.

Reliability
Reliability

Training Cost for a - Complexity for a
Given Task Complexity Given Training Cost

Figure 2.11: Qualitative Relationship Among Human Reliability,
Training Costs, and Task Complexity

Note that the curves in Figure 2.9 and Figure 2.11 represent general trends. More formal

models are needed to accurately estimate human and software performance and it is likely

that such models will be highly dependent on the specific implementation.
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This section illustrates the main drivers for human and software reliability. Thus, for a
given task and level of automation, the cost and reliability are dependent primarily on each
other. The costs and reliabilities for scftware and humans are then used as inputs to the
methodology which determines the impact on the overall system through the mission

objective availabilities and life cycle cost.
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3. Availability Models

3.1 Events, False Events, Failures and Permanent Failures

Satellite operations are focused mainly upon two types of occurrences: events and failures

as shown in Figure 3.1.

Unavailable Available States
States \

Figure 3.1: Events, False Events, Failures and Permanent Failures

The system transitions from a nominal state into the event state whenever action is needed
(or perceived to be needed) to be taken in order to maintain the system’s availability
status. The corrective action, if successful, results in the system transitioning back into the
nominal state. Some events result from planned actions, such as stationkeeping, or battery

charging. These occurrences, termed frue events, require some type of system action, but
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do not result in the degraded performance of the system, and therefore do not directly
impact availability. False events occur whenever sensor elements wrongly indicate an
event has occurred and action must be taken, or when a processor performs an action
when it is not needed. Presumably, if the false event is not recognized as a false event,
some action will be taken. This action may be inconsequential, resulting in a transition
back into the nominal state, or may result in a true event, or a failure, which is discussed
below. Although the false event may not directly result in system uravailability, it may

increase the operator workload.

Failures and permanent failures represent the second type of occurrence. A failure is an
occurrence which degrades the performance of the system, but is repairable, and therefore
requires some system action. The degraded performance means that the function is
unavailable. Failures include anomalies, planned down-time of the system, or failures of
primary units for which a backup exists. A separate failure mode may be defined to model
each specific failure since different failure modes may be more severe than others. A
permanent failure is one which results in the permanent loss of the function. This would
include losses due to failure of both backup and primary units, and typically can be defined
by the hardware reliability (including any redundancies). Since permanent failures occur
due to natural hardware failures, transition into this state is possible from every other
state. By definition, a permanent failure cannot be repaired, and the function will remain

in this state forever.

3.2 Markov Medeling

The state representation of each function as shown in Figure 3.1, with probabilistic
transitions among them, provides a basis for stochastic models. Since satellites are
typically designed to be very reliable and contain redundant systems, it is desirable to
choose a model that captures the characteristics of all probable failure modes without
requiring extensive computation. Markov models not only capture the behavior of highly
reliable systems, but can do so with significant savings in computational time compared to

other modeling techniques such as Monte Carlo Simulations.” Run times can be large,
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however, if the system model requires many states, although some techniques are available
to reduce the number of states needed.>'® Additionally, Markov models are well suited to
problems in which events occur sequentially (e.g., a failure event, followed by recovery
steps to return to normal operation). Further discussion of Markov modeling can be

found in Appendix A.

3.3 Functional Availability Model

The end goal of the functional availability model is to provide an estimate of each
function’s availability over time. The calculation accounts for planned and unplanned
operations (event and failure recoveries) and includes failures and events induced by
operations on other functions (functional interdependencies). To do this, a Markov model

such as that of Figure 3.1 is defined for each function.

In general, each state transition in the model consists of two parameters: the success
probability and the mean time to transition. Two parameters are used because there is
some probability that the transition will be successful (success probability), and whether
the transition occurs or not, there is some mean time for the transition to take place. The
existence of the success probability in the recovery transition results from two possible
outcomes of the recovery attempt. If the recovery is successful, the function transitions to
the nominal state. If not, it remains in the failure or event state. For failures, there is no
such option. Only a mean time to failure (failures are inevitable) is required. The success
probability and transition time are combined to form the transition probability, P(tx), as

shown in Eq. 3.1
P(tx) = P(success)- [1 - e-(m):] (3.1)

where P(success) is the success probability, dt is the time step, and mtix is the mean time

to transition. For failures and events, P(success) is assumed to be 1, and the transition



probability is then a function only of the time step and the mean time to failure or mean

time to event.

The transition to permanent failure is assumed to be caused by hardware failures (age),
and therefore is assumed to be independent of the current state. Since the permanent
failure state can be entered, but not exited, it acts as a sink in the model. In the absence of
this state, the model, after a transitory stage, would stabilize upon a steady state
probability vector where the net flow into each state is equal to the net flow out.
Therefore, the availability model can be solved first for the steady state value, which
determines the relative state probabilities. The probability of permanently failing is

modeled as an exponential distribution:

P(perm. fail.) = [ — ¢/~"/=%) (3.2)

The remaining state probabilities are then determined by “diluting” the steady s:ate values
by the probability that a permanent failure has occurred. This method greatly simplifies
the calculations since the steady state value can be determined shortly after the system
beginning of life, and the probability of experiencing a permanent failure up to time t is

given by Eq. 3.2,
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Figure 3.2 shows the functional Markov model without the permanently failed state, and

with multiple failure modes.

\
Unavailable Available
\ Naominal
Failures Events
NG e
3e\\ A
Failure \ o —
Modes \ \
: 4
\ Falso
\ Event

Figure 3.2: 4-State Functional Availability Markov Model

3.3.1 Over\(iew

The model in Figure 3.2 uses the function’s mean time to event, mean time to false event,
mean time to failure for each failure mode, and mean time to permanent failure to calculate
transitions from the nominal state. The level of automation, along with human and
computer processor reliabilities and execution times are used to estimate mean times to

repair for events and failures.

3.3.2 Recovery Process

The transitions to the nominal state in Figure 3.2 are called recovery transitions, and
represent a recovery from an event or failure. These transitions may be further broken
down into a string of states or recovery processes shown in Figure 3.3. Once the event
has been detected, it must be communicated to a decision maker. This decision maker
must determine the actions that must be taken to bring the system back into its

performance envelope and then implement this action.
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The probabilities and times to transition from one state to another in Figure 3.3 may differ
for each type of recovery (failure, event, or false event). The overall recovery transition

may be derived from the individual recovery process transitions as shown in Appendix B.

Event or Recovery Processes
Failure
i Occurs ventFailu EventFailure Solution Solution
omnin P Detected Communicated Determined ~\_Implemented
Recovery

Figure 3.3: Event/Failure Recovery Process

The probability that an event occurs, as well as the transition probabilities and transition
times from one state to the next in the Recovery Process, are dependent on the level of
automation. For example, whether or not a human is in the loop will affect the probability
that a solution is determined. In general, each transition in the process requires a processor
element and, if automated, software or hardware. Depending on the level of automation,
the transition probabilities can be determined using statistical data on human reliability and

fault trees to determine the probability that all the required components are functioning.
3.3.3 Analysis Neglecting Dependencies

The Markov model transition probabilities are calculated based upon the level of
automation as described in AAppendix C. Once the transition probabilities have been
determined, a reduced Markov model is generated by “collapsing™ the larger models which
may contain multiple failure modes. This information is then used to determine the
function’s independent steady state probability vector as well as the overall mean times to

recovery from failures or events.

Each transition is calculated from knowledge of the performance of the processors
involved (operators and computers) as well as the level of automation governing the
recovery process. The equations contained in Appendix C are used to calculate the

overall transition success probabilities as well as the transition times. The logic underlying
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the transition equations is discussed in the following paragraphs. Although the
explanations refer to the space processor and ground processor for each level of

automation, an analogous relationship exists for the ground levels of automation.

3.3.3.1 Recovery Process Transitions

Table 3.1 provides the general form of the success probability and transition time
equations for the various levels of automation. The equations of Table 3.1 assume that
the software performing the interface tasks (e.g. paging, data filtering, etc.) are perfectly
reliable and instantaneous. Also, they refer to only the remote level of automation.
Appendix C contains the detaiied equations including interface task performance. I« the
equations of Table 3.1, P represents a success probability, mtt represents a transition time,
and the subscripts s and g represent the space processor and ground processor

respectively.

Table 3.1: Basic Form of Transition Equations

Level of Automation Success Probability Transition Time
Fully Automated P, mitt,
Paging 1
P, + (1-P,)P, [ p (l—P) i
s 4 s

Supervision 1
P, + (1-P,)P, o (%) _
8 + 8
mtt, (mtt‘ + mttg)
Cueing P, + {1-P,)P, mtt, + mtt,
Data Filtering P, mtt,
No Automation P, mttg

The following paragraphs describe the logic behind the equations of Table 3.1 for each

level of automation.

The fully automated system relies solely on the space processor to perform the recovery

tasks. Therefore, the success probability for the transition is the success probability for
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the space processor, and the mean time to transition is the mean time to cornpletion for the

Space processor.

Paging allows the ground processor to be informed of the progress of the space processor.
Therefore, the system will correctly perform the task if either the space processor is
successful, or, in the case of a space processor failure, if the ground processor is
successful. Success is then defined by either the space processor alone or both the remote
interface software and ground processor succeeding. The transition time will be a
weighted combination of the time required if the space processor is successful and the time
required if the space processor is not successful (fails). The details of such a weighted

combination of transition times is included in the Appendix C.

The supervision level of automation follows the same general algorithm as paging, but the

ground processor success probability and transition time may not be the same as with

paging.

Cueing requires the space processor to complete the task, and the ground processor
(human or computer) to authorize the action. This assumes that the ground actually
checks the results of the processing, which may take some time, but this may not be as
much as if the ground processor were to complete the task alone. Nevertheless, oniy one

processor need be correct.

For Data Filtering, the space processor is no longer responsible for the determination of
the solution for the rucovery (although it may be required for sensor detection,
communication of the failure or event, or implementation of the solution as well as the
automation tasks (in this case data filtering). The ground processor performs the function,

but is provided pertinent information by the space processor.

With No Automation, only the ground processor is required to perform the task. Since

there is no automation aiding in data reduction, the mean time to completion for the task
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may be greater if the human is performing the recovery. However, the absence of
automation also removes a potential source of failure during the recovery process, and
therefore may increase success reliability. The converse may also be true, however, if the

data are so complex or ambiguous that humans often misinterpret them.

3.3.3.2 Accounting for Multiple Failure Modes

One or more failure modes may be defined for each function. However, by the definition
of a failure in section 3.1, ail failure modes are assumed to result in the unavailability of
the function. Therefore, for the purpose of calculating the function’s availability, they may
be combined together to a generalized failure state as shown in Figure 3.4. Once the
failure modes have been combined, all functioas can be represented by the same 4 state

Markov model.

Figure 3.4: Collapse of Multiple Failure Modes

The total mean time to failure is determined by the aggregation of transitioning into each

failure mode, and is given by Eq. 3.3,

1 1

mtf B Z mmtf, (3.3)

where mtf'is the overall mean time to failure and mmtf; is the mean time to failure of the i
failure mode. The derivation of Eq. 3.3 follows from the same logic of the derivation of

weighted transition times as given in Appendix D.
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Eq. 3.3 is used to calculate the an overall mean time to failure to any failure mode.
Therefore, it is desirable to calculate an overall mean time to recovery from any mode.
This will allow the states representing the separate failure modes to be collapsed into a
single state in the Markov model. However, an expression such as Eq. 3.3 cannot be used
to combine recovery rates. This is because the overall recovery time is dependent on how
often each mode must be recovered from. The overall mean time to recovery must then

be derived from the steady state probability vector and the overall mean time to failure.

The Markov analysis which includes all failure modes results in a steady state probability
vector with elements representing the probability of being in each failure mode as well as
the probabilities of being in the event, false event, and nominal states. The overall failure
state probability can then be calculated by the sum of the state probabilities over all failure
modes. The state probabilities for the nominal, event, and false event states remain
unchanged between the full and collapsed models. Since the mean time to failure is
independent of the state, the three operational states (nominal, event, and false event) may
be combined to form an available state as shown in Figure 3.5. As with the collapse of the
failure mode states, the state probability for the available state can be determined by the
sum of the state probabilities for the nominal, event, and false event states. The

unavailable state is the collapsed failure state.

mtf

Available <Unavailable
/. mtr

Figure 3.5: 2 State Collapsed Functional Markov Model

As pointed out in section 3.1, with the absence of permanent failures in the model, the
probability state vector will reach a steady state value after a transitory period. The steady

state probability vector is known from the Markov analysis of the un-collapsed model.
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Also known is the mean time to failure from Eq. 3.3. Thus, the overall mean time to

recovery from a failure can be calculated by Eq. 3.4,

mtr _ P(Unavailable)

= 34
mtf  P(Available) (34)

where mitr is the overall mean time to recovery, mtf is the overall mean time to failure,
P(Unavailable) = 1 - P(Available) and is the steady state probability of the function being
unavailable, and P(Available) is the steady state probability of the function being available.
Further details regarding the derivation of Eq. 3.4 can be found in Appendix E.

3.3.4 Including Dependencies Among Functions

Dependencies among functions (functional interdependencies) arise whenever the
operation of one function depends on the current state of another. Figure 3.6 shows a

system with dependencies depicted as arrows from one function to another.

More Independent

)

Most Dependent

Figure 3.6: Dependencies Among Functions

As an exampie of dependency, the communications function of a satellite may transition to
a failed state more quickly if the attitude control function is currently in a failed state than

if it were in a nominal (available) state. The failure transition for the model in Figure 3.7
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would use mtfl if the attitude control function were in an available state, and mtf2 if it
were in a failed state. Functional interdependencies of this type are usually represented in
Markov models by creating a single model containing the states for each function as well
as combinations (e.g., function A failed, and function C nominal) as shown in Figure 3.8.
For systems with a large number of functions, this can lead to huge, complex Markov

models which need to be truncated for practical computations.

Eunction A Function C
Attitude Control Communications

mtf1 or mtf2

mtfa
Available @ Available @
mtra mtrc

Figure 3.7: Communications Function's Dependency

on the Attitude Control Function

ACS & Comm.
Nominal

0 Failure Level

mtfa

ACS Failed
Comm. Nominal

ACS Nomina!}
Comm. Failed

1 Failure Level

mtf2
ACS & Comm.
Failed

Figure 3.8: Conventional Multi-Function Markov Model Showing Dependency of

mtfa
2 Failure Level

Communications Function on Attitude Control Function
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An alternative to this approach assumes that the mean time to failure is either the
“nominal” mtf, or is set to zero. In such a case, as long as the attitude control function
was in the available state, the communications function’s mtf would be the nominal mtf
(mtfl). As soon as the attitude control function transitioned to the failed state, however,
the communications function would instantaneously transition into a failed state. Such a
dependency implies that the communications function requires the attitude control
function to be available in order to itself be available. If such requirements only exist in
one direction (function A requires function B, but function B does not require function A),

the dependency is unidirectional.

If all of the functional interdependencies in a system are unidirectional, each function may
be modeled separately. This allows a hierarchy to be constructed with the functions at the
top being independent of those below them. Thus, dependency flows up in the hierarchy,
with each function only being dependent on functions which lie above them. This concept

is explained further in this section.

Functional interdependencies are grouped into four types. Each type represents how the
current state of an independent function can trigger a transition of the dependent function.
Thus, an event or failure of the independent function (function A) always results in an

event or failure of the dependent function (function B). This is shown in Figure 3.9.

B

Independent Function Dependent Function

Figure 3.9: Example Functional Dependency
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Figure 3.9 iliustrates a functional dependency. In this case, the failure of the independent
function results in the failure of the dependent function. This is a “type 4 dependency as
defined in Table 3.2. The following paragraphs describe each type of dependency in more
detail in terms of some occurrence of the independent function causing an occurrence of

the dependent function.

Table 3.2 summarizes the dependency types along with their definitions. The implication
of each dependency type is discussed in the following paragraphs. Functions with very
weak dependencies (the transition probabilities do not change much with the independent
function’s state) may be assumed to be independent. If there is sufficient doubt of the
degree of dependency, the system may be modeled with no dependency and with one of
the dependency types and the results compared. This may give some indication to the

implications of the assumption of no dependency.

Table 3.2: Functional Dependency Types

Type | Occurrence in Independent Function Result in Dependent Function
1 Failure Unavailability
2 Event Event
3 Failure Event
4 Failure Failure

A type 1 dependency is a “soft” dependency in that as long as the independent function is
in a failed state, the dependent function will not be available to perform an objective.
However, when the failure of the independent function is resolved, the dependent function
immediately becomes available with no operator or processor intervention. The
relationship between the lights and power supply in a building is an example of a type 1
dependency. Without power to the building, the lights will not go on. However, as soon

as power is reinstated, the lights which were on before the failure will be back on.
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Type 2 dependencies are “hard” dependencies. Each occurrence of the event of the
independent function causes an event in the dependent function. This type of dependency
may exist for the stationkeeping and ephemeris determimnation functions of a satellite.
Each time a stationkeeping maneuver is executed, the ephemeris buffer of the spacecraft
must be updated. Both functions are available since the satellite is still within its orbital

slot, and the ephemeris buffer always contains data.

In a Type 3 dependency, an event in the dependent function is triggered by a failure in the
independent function. This type of dependency is common in failures which require
reconfiguration of the system. The failure of a primary unit would cause the secondary
unit to be switched on (failure of the independent function), but a ground-maintained
database may need to be updated to reflect the changes (event of the dependent function).
Here the independent function is defined by the operation of the primary unit while the
dependent function is the database maintenance function. Note that until the redundant
unit is switched on, the function it is responsible for is unavailable, while the database is

available throughout the process.

In a type 4 dependency, a failure of the independent function causes a failure in the
dependent function. This may result from a power regulation failure (failure of the
independent function) blowing an amplifier which has a backup (dependent function).
Until the power regulation function is fixed, the backup will not be available.

The functional interdependencies impact the overall model in two ways. The
interdependencies which cause unavailabilities either by soft dependencies or by causing
failures impact the availability of each function by adding additional failure modes to the
dependent function. All hard dependencies affect the operations of the system by
increasing operator workloads due to additional events and failures which only occur as a
result of the system interdependencies. This section will only deal with the availability

effects. Operations effects of dependencies are discussed in section 3.5.
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All dependencies are assumed to be unidirectional. A bi-directional absolute dependency
would cause both functions to become permanently unavailable upon the failure of either.
Function A’s failure would cause function B to fail as well, but as soon as function A was
repaired, it would fail since function B was still failed. Bi-directional dependencies may
result from trying to model two or more highly coupled functions separately. If their
failures are all dependent on each other, and their recoveriecs must take place
simultaneously, they probably can be modeled as a single function. An example may be
the coupling among attitude control axes. If each axis affects the others, it would be more

appropriate to model them with a single function rather than one for each axis of control.

The unidirectional assumption results in a hierarchy of dependence as shown in Figure
3.10. Note that Functions A, B, and C in the figure are independent of all other functions.
Functions D - G are only dependent on Functions A, B, or C, and Functions H and I are

Dependent on Functions A - G.

More Independent

Function A Function C

Most Dependent

Figure 3.10: Functional Interdependence Hierarchy
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Type 1 and type 4 dependencies result in the unavailability or failure of the dependent
function. Therefore, the failure of the independent function is effectively an additional
mode of failure for the dependent function. Therefore, the dependency can be
incorporated into the dependent function’s Markov model by adding a new failure mode.
The mean time to failure for the new mode is equal to the overall mean time to failure of
the independent function. With a type 1 dependency, the mean time to recovery for the
new mode is equal to the mean time to recovery of the independent function alone since
no failure of the dependent function has occurred (only its unavailability). For type 4
dependencies, the dependent function actually fails, and therefore the inean time to

recovery for the new mode is the sum of recovery times for both functions.

The hierarchy of type 4 and type 1 dependencies is used with the independent analysis
results to determine the actual functional availabilities accounting for the dependencies.
For those functions on the top (independent) level of the hierarchy, the independent results
still hold since these functions are not dependent on any others, and therefore have no
additional failure modes due to dependencies. For those functions in the next level,
additional failure modes are added to the dependent functions’ Markov models, and the
Markov analysis described in section 3.3.3 is redone. This results in a “corrected” overall
mean time to failure and probability state vector. As the correction process moves down
the hierarchy, the corrected results of higher (more independent) functions are used to add

failure modes to those functions on the current level.

Note that the dependencies must be carefully defined. Refer to Figure 3.10. The
calculation for Function I would begin with the addition of two new failure modes, one
which results from a Function C failure, and another which results from a Function F
failure. However, this is not correct. The failure rate of function F already accounts for
Function C failures, so adding both failure modes would account for failures of function C
twice. For such cases, only a single failure mode would be added to Function I’s model,
which accounts for failures of Function F. This can be made more clear by Figure 3.11

which shows a Venn diagram for the failure states of I, C, and F. I failures consist of I
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alone (independent failures), and Failures caused by F (I and F). F failures consist of
independent failures (which also cause I to fail) and those caused by C (I, F, and C). C
failures onlv consist of independent failures (which also cause I and F to fail). Since the
set of F failures includes all failures caused by C, the caiculation of I failures does not need

to explicitly account for the C failures.

Figure 3.11: Venn Diagram of the Failure States of Functions C, F, and |

Several assumptions have been made in this section. One is that the bi-directional failures
have been removed. This is most appropriately done during the functional decomposition
before any analysis is completed. For example, if the roll angle control function and pitch
angle control function’s failures cause failures in the other, the two should be combined as
a single function (rell/pitch control) with failure modes corresponding to roll failures and
pitch failures. The second assumption is that the probability of two functions with an
interdependency being independently failed is small. In other words, for every two
functions with an interdependency, the product of their independent failure state
probabilities is very small (negligible). This is essentially the same assumption which
governs the definition of the multi-failure mode model in the first place. If the
probabilities of being in each failure mode are small, the probability of being in both
simultaneously is negligible, and the probability of being in any failure mode is essentially

the sum of the probabilities of being in each mode. This assumption is essentially forced
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since the probability of transitioning from one failure mode to another directly is assumed

to be zero.

3.4 Objective Availability Models

The satellite / control center availability model uses the results of the independent
functional availability analysis, the functional dependencies, and definitions of the satellite
objectives and control center objectives. These lower level objectives combine to meet the
mission objectives of the system. The satellite / control center objective level is a useful

initial step in defining mission objectives which require several satellites.

3.4.1 Satellite and Control Center Objective Availability Model

The inputs to the model inchide the function independent availabilities, interdependencies,
each satellite objective’s functional requirements, and each control center objective’s
functional requirements. The model uses this information to calculate each satellite

objective’s availability and each control center objective’s availability.

The model requires that the satellite and control center objective fiinctional requirements
are defined by a set of functions which are required to be available in order for the
objective to be available. In general, a satellite or control center objective may be met
through several sets of functions. This results from functional redundancy in the system,
and is shown schematically in Figure 3.12. In this example, the objective can be met either
by functions A, B, C, and D, or by functions E and F. These groupings of functions,
characterized by the AND gate, are called redundancy strings. The OR gate means that
any one string can provide ihe objective availability and represents some degree of

functional redundarcy in the system..
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Satellite / Control
Center Objective

Function A

Function B Function F

0

Function C

Function D

oy

Figure 3.12: Functional Redundancy in Satellite / Control Center Objectives

The functions which make up each string is a set of “required” functions. When defining
this set of required functions, functions which cause type 1 and 4 dependencies (which
result in the dependent function’s unavailability) of the required functions should also be
included. For example, suppose that one string requires functions A and B. Also,
functions A and B have a type 4 dependency on function C, and function C has a type 1
dependency on function D. The redundancy string should then include functions A, B, C,
and D. The independent availability results are then used to calculate the overall

availability of the redundancy string.

By retracing the dependencies of functions A and B to include all functions upon which

they depend, a list of functions which can cause the unavailability of the objective is
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created. This is similar to defining independent failure modes, but now for an objective
rather than another function. The complete list of functions includes all functional failure

modes which can result in the objective’s unavailability.

Once the satellite and control center objective functional redundancy strings are expanded
to include all functions upon which the original required functions were dependent, and
the strings are checked for repeated functions, the calculation of the objective availability
foilows naturally. The AND operator means that all functions under it are required to be
available. Thus, the availability of each functional redundancy string is determined by Eq.
3.5

A(RS;) = ] A(func;) (3.5)

where A(RS)) is the availability of the j* redundancy string, and func; is the i required
function of that redundancy string. Because dependencies are accounted for in the
redundancy strings, A(func) is the function’s independent availability including permanent
failures. Up to this point, the analysis had neglected permanent failures. This has resulted
in the calculation of independent and dependent steady state availabilities. These

availabilities must be modified to include permanent failures, as shown in Eq. 3.6

A(func;,t) = A (func,)- e_(“’T") (3.6)

where A(func;, t) is the true availability of function i at time t, Ag(func;) is the steady state
availability of function i, t is the time elapsed since the beginning of life, and mtpf is the
mean time to permanent failure for function i. Eq. 3.6 can be used with either the
independent or dependent steady state availability, yielding the corresponding actual

availability.
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An OR operator means that one or more of the redundancy strings needs be available to
meet the objective’s availability requirements. This is more easily stated mathematically as
one minus the probability that all redundancy strings are unavailable, as shown in Eq. 3.7
where A(Oy) is the availability of objective k, and A(RS;) is the j* redundancy string’s
availability.

A(0)=1- {H[l - A(st)]} 3.7)

3.4.2 Mission Objective Availability Model

The mission objective availability model uses the satellite objective, control center
objective, and functicn availabilities, along with the satellite objective and control center

objective availabilities to calculate each mission objective’s availability.

Figure 3.13 shows an example system’s mission, satellite, and control center objectives as

well as the functions that support them.

M.O. #1) Mission Objectives

Satellite

Space Functions Ground Functions

Figure 3.13: Mission Objective Requirements
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The lower portion of the figure is similar to Figure 3.12. The satellite and control center
objectives are met through some required functions. The mission objectives are then met
through satellite and control center objectives. Thus, the mission objective availabilities
are defined by the product of the availabilities of its required satellite and control center
objectives. Thus, the mission objective availability, A(MO) is defined by Eq. 3.8. As with
the definition of the satellite / control center objectives through redundancy strings, the
satellite and control center objectives must be independent for the calculation of the

mission objective to be correct.

AMO)=[TA(0,) (3.8)

3.5 Operations Staff Requirements

The functional availability model resulted in the calculation of each function’s independent
and dependent steady state probabiiity vector, as well as the availabilities including
permanent failures as was defined by Eq. 3.6. The calculation of objective availabilities
used the true independent availabilities to avoid common failure modes being accounted
for more than once. Operations requirements are calculated at the functional level, and
therefore rely on the dependent availabilities. Since permanent failures reduce the
probabilities of being in the other 4 states, the steady state availabilities are used to
calculate the maximum operational requirements (once the function is permanently failed,
events and recoverable failures will not occur, and therefore will require no operations).
This model neglects operations due to work-arounds once a function has permanently
failed.

Figure 3.14 shows the operations requirement inputs. The total operations requirements
are due to event recovery (events and false events), supervisory requirements, and failure
recovery. The dependent availability results already include failure-causing dependencies,
and therefore can be used directly. However, event causing dependencies, (type 2 and

type 3) were not included in the dependent analysis results since they do not affect the
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function’s availabilities and therefore the mission objective availabilities. The supervisory
requirements account for operators performing monitoring roles required for lower levels
of automation (below paging). During this time, the function is in a nominal state and
does not require an operator to be actively doing anything, except monitoring the
function’s health to ensure all is well. This supervisory workload is independent of the

function’s failure and event rates and is provided as a model input.

Independent Events Causcd by Events Caused by
(Natural) Events Type 2 Dependencies Type 3 Dependencies

Each Failure
Mode’s Recovery

|

Operators for Operators for
Supervisory Roles Failure Recovery

False Event
Recovery

Operators for
Event Recovery

Total Numter

of Operators

Figure 3.14: Sources of Operations Requirements for Fach Function

Based upon the level of automation, the probability of a human operator being involved in
each recovery (event, false event, or failure) at any given point in time can be calculated
based upon the probability of the function being in the event recovery state (see Appendix
F). In addition to availability data, the user must supply for each function’s event
recovery, false event recovery, and failure mode recoveries the overall time required for
the human to complete the task, and the logged time to complete the task. The logged
time is the actual time that the operator spends to complete the task. The overall time is
the total elapsed time required for the human to complete the task and is equal to the sum
of the logged time and any “dead” time during which the recovery is still ongoing, but the
human is not actively involved. For practical purposes, logged time is that time during

which the operator cannot perform any other duty except the recovery process.
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3.5.1 Operations Requirements for Failurc Recovery

Since functional interdependencies have already been incorporated into thie model, the
steady state probability of being in each failure mode is already known from the availability
analysis. The number of operators required to support each failure mode’s recovery

operations, Ngq, is then given by Eq. 3.9,
LT
N, = (——) -H 39
rm OT ( )

where H is the probability that a human is performing a recovery process, and is calculated
based upon the level of automation, the failure mode state probability, and the equations
of Appendix F. LT represents the total logged time in man-hours, and OT represents the
overall time in hours. The total number of operators for failure recovery of each function

is then calculated by the sum over all failure modes as given by Eq. 3.10.

Ne=>Np (3.10)

3.5.2 Operations Requirements for Event Recovery

The probability of each function being in an event recovery or false event recovery state
has also been calculated in the availability analysis. Therefore, the number of operators
required to perform independently occurring events and false events (not including

dependencies), Ngj, is determined by Eq. 3.11,

(LT A,
Ng, _kﬁ)'H.(A_) (3.11)

which is similar to Eq. 3.9, but with a correction factor, where Ay is the function’s
availability accounting for dependencies, and A; is the availability assuming functional
independence. The calculation of H in Eq. 3.11 uses the event recovery level of
automation and event recovery human operator performance. The ratio of the function’s

62



dependent availability to the independent availability accounts for the fact that the
probability of being in an event state had been calculated from the independent analysis,
and up to now has not been adjusted for interdependencies, but dependency-induced
failures decrease this probability in reality. The ratio assumes that the relative state
probabilities for un-failed states (nominal, event, false event) should remain unchanged
with an increase in the failure state probability. The ratio of dependent availability to
independent availability reflects this by adjusting the probability of being in an event state
(contained in the H variable) such that the relative probabilities of un-faiied states remains
constant, while the sum of state probabilities remains equal to unity. This is shown
graphically in Figure 3.15. Notice that the relative magnitudes of the un-failed states
remains the same, while their absolute magnitudes are adjusted for the increased failed

state with dependencies accounted for.

Independent Availability Results

Nominal Event False Failure
Event

Dependent Availability Results

Nominal Event |False Failure
Event

Figure 3.15: Adjustment of Non-Failed States to Account for Dependent Availability

In addition to naturally occurring events, some events occur whenever an event of another
function occurs, as defined by a type 2 dependency described in section 3.3.4. It is
assumed that the mean time to recovery for the event is the same no matter what caused it,
so the probability of being in an event recovery state due to a type 2 dependency is given
by Eq. 3.12 where mtel is the mean time to event for the dependent function, mte2 is the

mean time to event for the independent function, PE1 is the probability of being in an
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V
event recovery state due to natural events, and PE2 is the probability of being in an event

due to the independent function’s events.

PE2 = PEl-("”"]) (3.12)
mte2

Equation 3.12 simply states that the probability of being in an event recovery state due to
each mode is inversely proportionai to the mean time to event of that mode, given that the
mean times to recovery are the same for both modes. This assumes that the probability of
being in an event state is small. The number of operators is then used by substituting PE2
from Eq. 3.12 for the failure probability used in the equations of Appendix F to calculate
H, and then substituting this into Eq. 3.13. The contribution from each function j with a
type 2 dependency is added. Thus, Eq. 3.13 yields the number of operators required for

event recovery caused by a type 2 dependency for a single function.

Ng, =Z(%)-H-(%J (3.13)

The probability of being in an event recovery due to the failure of another function (type 3
dependency) is calculated in the same manner as that due to another finction’s event.
However, mte2 of Eq. 3.12 which represents the independent function’s mean time to
event is replaced by the overall mean time to failure for the independent function. The
PE2 then is the probability of the dependent function experiencing an event due to a
failure of the independent function. The procedures for the calculation of the number of
operators is then identical to that of type 2 dependencies, and the contribution from each

function k with a type 3 dependency is added as shown in Eq. 3.14.

Ng, =Z(%)-H-(%) (3.19)



The total number of operators required for a function’s event recovery is then given by
Eq. 3.15.

N =Ng +Ng, + N, (3.15)

In addition to calculating the operations requirements for failure and event recovery, the
contribution due to normal, non-contingency operations must be included. Even when a
function is fully operational, the level of automation may dictate some operator task load
due to supervision, or other tasks which are dependent on the level of automation. This is
entered into the model as a number of operators required continuously to perform such

monitoring tasks, Ns.
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4. Cost Models

4.1 Development Costs

In general, the development costs may be defined as encompassing the sub-costs shown in
Figure 4.1. The cost breakdown is meant to illustrate the costs which are typically
incurred at or before the operational stage of the program, and indicates the cost areas
which are likely to be affected by automation. The model does not require that costs be
broken down in such a manner, however, and any development cost model which

incorporates the sub-costs of Figure 4.1 may be used.

Development
Engineering Faciliti Integration Launch &
Costs Hes Hardware Software & Test Insurance

Figure 4.1: Development Costs

The sub-cost categories are self-explanatory. It is important to note however, that both
ground segment and space segment costs must be included, as well as program-level costs.
Also, the facilities costs included as development costs should only include the direct cost
of buildings (construction or lease costs). Overhead costs such as administration and
maintenance are included in the model as operations costs since they are incurred

throughout the operational lifetimne of the system.
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Development costs are required to take place at the system beginning of life. If
development costs are paid throughout the life cycle, this does not reclassify them as
operations costs, but rather, the costs are entered into the model as a cash flow of monthly
expenditures over the life of the system, and a discount rate is supplied to bring all future

expenditures back to the present value for combination with other costs.

4.2 Operations Costs

The operations costs (Figure 4.2) are defined as those costs that are incurred over the
operational lifetime of the system. Staff requirements can result from the basic system
design, such as facilities maintenance costs, or may vary depending on the system’s
inherent availability and the level of automation. Operations costs are a function of the
system availability since increased failures may result in an increased operations staff. The
following sections refer to Figure 4.2, and describe the model inputs required for each
operations sub-cost. These inputs are used in combination with the availability results to

estimate both the staffing requirements and the operations cost.

Operations
Costs
I | | [
Administration Maintenance Training Ogergor
ta

Figure 4.2: Operations Costs

4.2.1 Administration

Administration costs include all salaries to persons not responsible for training, direct
operations, or maintenance. Such costs are typically grouped as overhead, and some
organizations use rules of thumb for estimating overhead costs as a function of the
operator staffing level. In such cases, non-operatcr personnel costs may be provided as a

per-operator cost of support staff.
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4.2.2 Maintenance Costs

Maintenance costs are defined mainly by the size and complexity of the ground facilities.
These costs include all hardware and software maintenance for the system. Software
maintenance may be required for the space segment as well, but this is usually in response
to an event or failure of the spacecraft, and therefore would be the responsibility of the
satellite operator. Such costs are counted separately since they depend on the probability
of such events occurring. However, any planned upgrades should be included as part of

maintenance costs.

4.2.3 Training Costs

Training of operators may result from operator turn-over, or from continuing training
sessions to maintain a desired level of readiness for critical failures. As with non-operator
costs, training costs may be strongly correlated with the operations staff, and therefore

may be entered into the model on a per-operator basis.

4.2.4 Operations Staff Costs

Operations staff costs are determined based upon the skill level of the operator, which
determines each operator’s salary, and the number of operators required at each skill level.
The calculation of the number of operators was described in section 3.5. The operator
costs are calculated by multiplying the number of operators at each skill level by the salary
paid to those operators. The sum of all operator salaries is the operator cost as shown by

Eq. 4.1

OC, =N, S, +N,-S_ +N;-S, (4.1)

where OC; is the operations cost for function i, Nr is the number of operators required for
function i’s failure recoveries, Sg is the salary paid to those operators, Ng and Sg
correspond to event recoveries for function i, and Ns and Ss account for supervisory
workloads for function i. The total operations cost is then calculated by the sum over all

functions.



The simple sum of functional operations cost represents a total annual operations cost
assuming that each operator works 24 hours per day, 365 days per week. To account for
a 40 hour work week, the operations costs need to be multiplied by 4.2 (40 x 4.2 =

number of hours in a week):
0C=)42-0C, 4.2)

4.3 Opportunity Costs

In order to unambiguously compare systems, a metric combining the worth of availability
and cost savings must be created. This metric, the life cycle cost, uses the concept of an
opportunity cost to convert the system’s availability to constant dollars so that a single life
cycle cost may be calculated which accounts for both direct costs and availability issues.
The relationship between the opportunity cost and each mission objective availability is
subjective in nature, and should be used carefully. The following sections describe the

general formulation of the opportunity cost function for two major classes of systems.

4.3.1 Commercial Systems

For commercial systems, mission objectives directly produce revenues. The opportunity

cests arise from any lost revenue which results from the system’s unavailability.

Most systems do not reach a state of full resource usage (saturation) immediately. There
is often a period during which the number of subscribers is less than the maximum number
the system is capabie of supporting, often referred to as the system capacity. Therefore,
even if the system is 100% available, there will be some loss of potential revenue due to
the development of the market. This can be represented by a market factor, M which is
the fraction of the total system capacity which is expected to be used at a given point in
time (thus, 0 < M < 1). As the time on orbit increases, the market factor may tend
towards unity, indicating that the market demand is high enough that the system will
saturate. Rnax represents the maximum revenue generated by the mission objective when

M = 1. The expected system revenue, ER, is given by Eq. 4.3. Remember that M is a
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function of time, so Eq. 4.3 can be used to calculate the expected revenue at any point in

the entire system life.

ER(t)= M(t)-R__ @.3)

The expected revenue defines a baseline from which opportunity costs may be calculated.
Any decrease in the system availability will result in revenues less than those expected.
The difference between the expected revenue and the actual revenue is the opportunity
cost. There are two mechanisms which reduce revenues with decreasing availability of the
mission objective. The most obvious is the direct loss of revenue which may result if
customers are not charged during times for which the mission objective does not provide
service to them. The other mechanism results from the fact that most commercial systems
provide a service for which there is another provider.f This elasticity factor, o, includes
all losses due to the mission objective’s unavailabilities, and can be combined with the
expected revenue to define the actual revenue, AR. Thus, with the expected revenue
defined as a function of time t, and the elasticity factor, o, defined as a function of the
availability, A(t), the actual revenue becomes a function of both parameters as given by
Eq. 4.4.

AR(t) = ER(t)-a(A(t)) (4.4)

The opporturity cost cash flow rate, OPC(t), is then shown in Eq. 4.5.

" In such cases, the availability of the system can be a factor in the determination of the market demand,
As the mission objective becomes less available, more customers will go to other providers, or the price
charged for the service may be reduced to maintain the desired level of system saturation. Thus, there is
a second factor which is a function of the availability, therefore also a function of time, which accounts
for the loss of revenues as the availability is reduced.

70



OPC(t) = ER(t) - AR(t) = (1- a(A(t)))- ER(t) (4.5)

The life cycle costs are then defined as the sum of development, operations, and

opportunity costs as shown in Eq. 4.6, resiated below.

LCC = DC +0C + OPC(t) (4.6)

4.3.2 Scientific / Government Systems

For non-commercial systems, it mav not be possible to define an opportunity cost in
dollars. Subjective factors such as value of scientific data or the value of performance for
a military system are difficult to measure. For scientific satellites, the worth of science
may be estimated by dividing some measure of the desired scientific return by allowable
cost of the system. The scientific return might be measured by area mapped for a remote
mapping satellite, or by time of data collection for other missions. Utils may also be

defined to measure the relative value of mission availability.

Assuming that a value of the mission objective can be defined, this can be used in place of
Rmax in Eq. 4.5 with the market coefficient set to unity. For military systems, there may be
no real opportunity cost, but rather a system availability which must be met to meet
system requirements (this may also be true with other systems). It therefore may not make
sense to try to define an opportunity cost, but rather to look at the system availability and

cost as separate metrics.

4.4 Life Cycle Costs

Once the opportunity costs have been estimated as a function of time for each mission
objective, they are combined with the development and operations cash flows to define a
life cycle cost. In order to compare systems which may have different cash flows, the
present worth value of the life cycle cost cash flow is calculated using a discount rate.""

The discount rate for commercial systems would be set equal to the desired system rate of
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return, and for other systems would be set depending on the interest rate applied to

borrowed funds, or another appropriate rate.

For the case where no meaningful opportunity costs can be derived, the system availability
and present worth value of just the development and operations costs would be used
separately. The lowest cost system which meets the availability requirements would
represent the optimal system by this method. Also, the incremental cost of attaining
improved availability is presented clearly, and this may result in a different choice for the

“optimal” level of automation.
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S. SOCRATES

5.1 Overview

SOCRATES (Satellite Operations Cost and Reliability Analysis Toolkit for the Evaluation
of Systems) is a software tool developed by MIT and the Charles Stark Draper Laboratory
that links a graphical user interface with the modeling approach described in chapters 3
and 4. Through SOCRATES, the user is able to interactively define the system in detail,
perform the functional decomposition, and specify the levels of automation for each
function. Software performance and human reliability and performance estimates for
event and failure recovery are entered into the model by the user. The user must also
enter operations cost data, and development costs can be provided through one of several
options. The functional interdependencies are also defined, as well as satellite, control
center, and mission objective requirements through the use of a GUI (Graphical User
Interface). Revenues are provided for each mission objective. The market and availability
factors used to define opportunity costs are provided via a fifth order polynomial curve fit

to the actual functions.

Figures 5.1 and 5.2 show the SOCRATES GUI. Figure 5.1 illustrates the functional
decomposition for a typical satellite, and Figure 5.2 shows the level of automation
definition for a space function. The level of automation is changed with slide buttons, and
the labeled arrows in the diagram display the information flow for that particular level of
automation. The GUI also allows objects such as satellites or functions to be saved

independently. This allows new system definition to build upon earlier systems. Rather
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than re-entering all of the data again, a saved satellite or series of saved functions may be

loaded, and then modified as needed.

Figure 5.1: SOCRATES Screen Showing Functional Decomposition
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Figure 5.2: SOCRATES Screen Showing Level of Automation Definition
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In addition to allowing the system variables to be entered, parameters governing the
Markov calculations are also provided by the user. The time step may be varied to adapt
to systems with different dynamics. The user is also able to specify output file names for
cost and availability data which the model generates. These files provide cost and
availability data in a comma delimited format to allow data viewing through many
common commercial plotting packages. In addition, SOCRATES has a plotting tool
which allows plotting of one or more variables as a function of time. Currently, the tool is
implemented on a Sun workstation using C++ for the Markov engine, and tcl/tk to run the

graphical user interface.

5.2 Data Flow

Figure 5.3 is a more detailed representation of Figure 2.3. The inputs and models have
been divided into smaller elements. This has been done to more clearly describe the data
requirements at each stage in the methodology. The letters labeling the arrows between
blocks represent data flow. Table 5.1 lists the information represented by each letter.
Further information regarding the algorithms and data requirements for SOCRATES can
be found in the SOCRATES User Manual.'> The details of this model are included in
Appendix H.
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Table 5.1: Model Data Flow

Label | Data

A Functional decomposition, failure rates, event rates, permanent failure rates, false
event rates, levels of automation, human operator performance characteristics,
computer processor performance, functional interdependencies.

Satellite and control center functional requirements.

Mission objective’s requirements of satellite and control center objectives.

Software execution times, and reliability or test data.

Development cost inputs (cost drivers, cost breakdowns).

mm|ic|o|w

Operator salaries, non-operator related operations costs (admirn., training,
maintenance).

Mission objective opportunity costs as a function of availability, discount rate.

Software reliabilities and execution times.

i)

Independent and dependent functional availabilities, steady state probability
vectors.

Satellite and control center objective availabilities.

Mission objective availabilities

C (R |[=

Functional steady state probabilities of being in a recovery state, functional
interdependencies.

Mission objective availabilities

Development costs cash flow

Operations costs cash flow

Life cycle costs (cash flow and present worth value)

lell-lel-4K<

Market Function (Market demand as a function of time)

5.3 Flexibility

SOCRATES has been written in a way that facilitates customization. The GUI has been
written separately from the actual computational engine. The interface between the two
takes place through a set of data files. This allows independent customization of the GUI
or engine. As long as each adheres to the same data file format, there are no other

additional inierface concemns.

Within the GUI, the development cost model allows a customer specific model to be
chosen. The default external model is based upon the US Air Force’s Unmanned
Spacecraft Cost Model, Version 7. The GUI’s internal processing has been written in a
separate file from the external development cost model. The file is called if the external

model option is chosen within the main GUI, and returns a total system cost cash flow.
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Figure 6.1: Functional Block Diagram

The trade to be studied involves the automation of the tracking function, which is a
ground function in the baseline system definition. Tracking was chosen since it is a fairly
simple tunction under current consideration for automation. The automation of satellite
navigation has been demonstrated by Microcosm’s MANS experiment' which suggests
that such automation is both technically possible and useful in reducing operations costs.’
It is assumed that this baseline system uses a radar tracking system at the control center to
determine the spacecraft’s position. Increasing the level of automation will involve
allowing the ground computer to perform tasks normally done by the human operator.
For higher levels of automation, the function itself will be moved from the contro! center

to the satellite, and tracking will be performed on board through a GPS receiver.
Tables 6.1 and 6.2 list the baseline levels of automation for event and failure recovery for

each of the 12 functions. The effects of the levels on the modeling inputs are discussed in

detail in Appendix G-1.
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Table 6.1: Baseline Levels of Automation for Event Recovery

Function Level of Remote Level of Ground
Automation Automation

Archiving - Paging
Tracking - Data Filtering
Control Center Comm, - Cueing
Attitude Control Supervision Data Filtering
Power Generation Paging No Automation
Power Distribution Paging Data Filtering
Telemetry Fully Automated -
Command Handling Cueing No Automation
Orbit Control No Automation Data Filtering
Payload Receive No Automation No Automation
Payload Transmit No Automation No Automation
Thermal Control Paging Cueing

Table 6.2: Baseline Levels of Automation for Failure Recovery

Function Level of Remote Level of Ground
Automation Automation

Archiving - No Automation

Tracking - No Automation

Control Center Comm. - No Automation

Attitude Control No Automation No Automation

Power Generation

Paging

No Automation

Power Distribution

No Automation

No Automation

Telemetry

No Automation

No Automation

Command Handling

No Automation

No Automation

Orbit Control

No Automation

No Autoemation

Payload Receive

No Automation

No Automation

Payload Transmit

No Automation

No Automation

Thermal Control

No Automation

No Automation

80




The transition rates (mean time to event, false event, failure and permanent failure) for the
functions are given in Table 6.3. The event and false event rates are engineering
estimates, but are not based upon any specific system. The failure rates are based upon an
Air Force report on reliability prediction for spacecraft.'* Functions for which a transition
cannot occur have a mean time to transition set to infinity. In addition, the ground
function permanent failures were assumed to never occur since equipment on the ground
can always be replaced. The permanent failure rates were estimated based upon satellites
from Project Renaissance (an MIT graduate space systems design course).”> Note that the
large permanent failure times result from high end of life reliabilities. For example, a 756

year mean time to permanent failure corresponds to a reliability of 0.987 afier 10 years.

Table 6.3: Tramsition Times for Single Satellite

Function Mean Time to | Mean Time to | Mean Time to | Mean Time to
Event False Event Failure Perm. Failure
Archiving 4 min. °° 4 yrs. >
Tracking 1 day ® 3 yrs. =
Control Center Comm. 6 hrs. © 10 mo. *
Attitude Control 10 min. 1 wk. 6 yrs. 195 yrs.
Power Generation 30 min. 1 wk. 1yr. 328 yrs.
Power Distribution 30 min. 1 wk. 4 yrs. 328 yrs.
Telemetry 4 min. © 6 yrs. 195 yrs.
Command Handling 6 hrs. ® 7.5 yrs. 251 yrs.
Orbit Control 1 mo. 1yr. 6 yrs. 328 yrs.
Payload Receive 1 mo. = 1 mo. 756 yrs.
Payload Transmit 1 wk. = 1 mo. 756 yrs.
Thermal Control 12 hrs. 2 mo. 4 yrs. 1995 yrs.

Table 6.4 shows the basic characteristics of the tracking function at each level of
automation investigated. For the lower two levels of automation, a ground tracking
station is the primary processor. For the next three levels, a GPS receiver on-board the
satellite provides an estimate of the spacecraft ephemeris. The cases differ in the

workload of each processor, and the ability to recovery from processor deficiencies.
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There is an assumption here that the development cost for the radar station is linked to
how often it is used. This is really only appropriate if the usage of the radar station is
shared among several systems and the development cost is distributed based upon the time
requirements of the systems. It is also appropriate if the usage of a radar station is bought

as a service from the owner of the radar station.

Table 6.4: Tracking Function Characteristics

Level of Automation Responsibilities
Remote | Ground | Tracking Human Ground Satellite
Equipment Computer Computer
None None | Radar Set-up each - -
Station pass manually
None Data Radar Uses data from | Filters Data
Filtering | Station computer to -
set-up each
_pass
Cueing Data On-board | Verification of | Filters Data Estimate of
Filtering | GPS, satellite’s ephemeris
Radar estimate
Station
Paging Data On-board | Occasional Filters Data Ephemeris
Filtering | GPS, Radar to determination,
occasional | determine pages ground if
Radar ephemeris when unable
required
Fully Aut. - On-board - - Ephemeris
GPS determination
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Figure 6.2 shows the variation in the development cost with increasing automation. As
the level of ground automation is increased from none to data filtering, the development
cost rises mainly due to an increase in software requirements. There is a jump in
development costs at cueing due to the requirement of a GPS receiver on board the
satellite along with its accompanying sofiware. However, the development cost then
decreases with increasing automation. For a cueing level of automation, the radar
equipment must be used as a check during each position check, and thus the development
cost reflects both the usage of the radar station and the GPS receiver. Once the level of
remote automation is increased to paging, the radar station is only needed in the event of a
failure of the on board position determination system. Therefore, the radar station usage
decreases considerably. The slight decrease in development cost at the full automation

point is due to the lack of any paging software.

;

3

Lifespan ($M)
8

Present Worth Value of
Development Costs over 10 Year

f
t

Rcmolcl None I None I Cueing | Paging I Full
Ground | None | Data Filtering | Data Filtering | Data Filtering | N/A

Level of Automation

Figure 6.2: Development Costs vs. Level of Automation (Single Satellite)

83

T oww omm ) m o e mew

—— —— —— —— == = =

-



Figure 6.3 shows the variation of operations costs for the levels of automation, and
indicates that the function is sufficiently simple to allow high levels of automation. Once
the human is eliminated from the loop to the extent that an operator is only needed when
the flight code fails to correctly perform the function, the operations costs reach a constant
value which reflects the total sum of operations costs due to the rest of the system. The
variation of operations costs which results from software deficiencies is too small to be

noticed on the plot, which is consistent with the assumption of a simple tracking function.

Present Worth Value of
Operations Costs over 10 Year

_Rgmg@l Nong | None | Cueing I Pagin | Full

Ground | None | DataFiltering | DataFiltering | Data Filtering | N/A
Level of Automation

Figure 6.3: Operations Costs vs.
Level of Automation of the Tracking Function (Single Satellite)

The opportunity costs do not vary with the level of automation. This is because tracking
failures were assumed to occur very rarely. Therefore, the life cycle cost changes are due
only to variations in development and operations costs. Operations costs were driven
mainly by events rather than failures since events occurred once per day and failures wese

rare (once per 3 years).

4



Figure 6.4 shows the combined development, operations and opportunity costs brought to

the present worth value for the levels of automation studied. It was assumed that the E
reliability of the human and automation were high for simple functions. In such cases, the b
system unavailability is dom‘nated by the permanent failures rather than down time during i
operations. The life cycle cost curve shows that the decrease in operations costs are high .
enough for a highly automated system to justify the increased development costs. Thus, E
the optimal level of automation for the tracking function is to be fully automated. .
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Figure 6.4: Life Cycle Costs vs. the Level of Automation of the Tracking Function
(Single Satellite)

The curves in Figure 6.5 have been normalized by the baseline system costs to show
relative changes. Automating the tracking function does not greatly affect the opportunity
costs or development costs, but produces a 13% savings in operations costs. However,
since operations costs make up only a small portion of the life cycle costs, the relative

changes in life cycle costs are only a few percent.
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Remember that this case study only concerned automating one of 12 system functions.
Therefore, the small changes in costs are not surprising. Applying the methodology to all

system functions might greatly increase the effect on the total costs.

6.1.1 Sensitivity to Development Cost Inputs

The results of Figure 6.3 hold only for the assumed inputs. Since the tracking function
was assumed to be relatively unimportant in meeting the mission objective, the
opportunity costs do not vary significantly with the level of automation for this function.
However, automation of the tracking function does impact both the development and
operations cost. Since the development and operations cost inputs may be estimated, it is
of interest to determine the sensitivity of the results to the inputs so that the validity of the

results can be determined.

Based upon the general trend shown in Figure 6.3, it is expected that if the devclopment
costs related to tracking automation are sufficiently high, the optimal level of automation

will shift from Fully Automated to one of the lower levels. Figure 6.6 shows the system
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development costs which result from multiplying the tracking automation costs by a factor
of three. This results in the adjusted life cycle cost curve shown in Figure 6.7. As can be
seen, the increased development cost (which is characteristic of a more complex function)
are high enough to outweigh any savings from operations costs which result as the level of
automation is increased. Thus, the optimal level of automation is no automation. The
break-even point for the development costs where the life cycle costs for no automation

and full automation are equal occurs at 2.3 times the baseline development costs.

N
[=]
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Development Costs over 10 Year
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Level of Automation

Figure 6.6: Development Cost with 3x Increase in Automation Costs Relative io Baseline
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Figure 6.7: Life Cycle Costs with 3x Baseline Automation Costs
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6.1.2 Sensitivity to Operations Cost Inputs

As an alternative to varying the development cost inputs, the operations costs may also be
varied. Figure 6.8 shows the updated operations cost curves. It has been assumed that
the operations costs for the tracking function are a third of the original estimate. Not
surprisingly, decreasing the operations cost by a third has a similar effect as increasing the
development cost by a factor of three as shown in Figure 6.9, except that the overall life
cycle costs have been reduced. Thus, again it is more effective to use no automation.
Note that the original development cost estimate has been used in this case. The break-
even point for the operations costs where the life cycle costs for no automation and full

automation are equal occurs at 0.43 times the baseline operations costs.

Present Worth Value of
Operations Costs over 10 Year
Lifespan ($M)

| poging | pu

Ground | None Data Filtering | Data Filtering | Data Filtering | N/A
Level of Automation

Figure 6.8: Operations Costs 1/3 that of Baseline
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Figure 6.9: Life Cycle Costs with 1/3 Baseline Operations Costs

6.2 Automation Applied to Constellations of Commercial

Communications Satellites

Although applying automation to a single satellite may be useful, one of the main drivers
for the development of the methodology is the high operations cost which results from
large constellations of satellites. This example shall use the methodology to determine
how the automation trade changes as a function of the number of satellites in a
constellation. The constellation is assumed to be constructed of identical communications
satellites described in section 6.1. The input parameters are thus the same and are
provided in Appendix G-1. The automation is applied to the two payload functions
(Payload Transmit and Payload Receive) of Figure 6.1. The inputs regarding the
automation of the payload functions are included in Appendix G-2. It is assumed that the
payload functions, unlike the tracking function, are complex enough that automation will
require a significant increase in development costs. Under this assumption, high levels of

automation are not expected to be feasible for a single satellite.
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It is assumed that a 90% learning curve was applied to the system. The learning curve is
defined by Eq. 6.1,

TPC=C,,-L (6.1)

where TPC is the total production cost, Cry is the first unit cost, and L is defined by,

In2

L=N®, B=1- (6.2)

where N is the number of units (satellites), and S is the learning curve (90% here). The
learning curve accounts for the economies of scale which result from the production of
multiple “identical” units. Figure 6.10 shows the total production cost as the number of
units increases for a 90% learning curve, as a fraction of the first unit cost. At 2 units, the
total cost is nearly twice the first unit cost (actually 1.8). By 20 units, the total cost is just

under 13 times the first unit cost.
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Figure 6.10: Total Production Costs as Fraction of First Unit Cost vs.
the Number of Units Produced (90% Learning Curve)
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The development costs per unit decrease with increasing size of the constellation. As the
system grows, it is assumed that the operations costs and opportunity costs scale linearly
with the constellation size while the development costs lag a linear relationship due to the
learning curve effect. At some point, the savings in operations costs, multiplied by the
number of satellites, outweighs the increase in development costs, and higher levels of

automation may become optimal for that constellation size.

Figure 6.11 shows the results for the single satellite case. It is somewhat similar to \he
plot for the tracking automation trade (Figure 6.4), but the opportunity costs are more
accentuated, and the lower levels of automation provide the lowest life cycle cost. The
effect is that high levels of automation, which for the complex payload operations result in
a decreased availability, are more “expensive” in a life cycle cost sense. Also, for the
tracking trade, the increased development costs associated with data filtering were not
offset by any operations or opportunity cost benefit. With the payload functions,
however, the increased speed in which a human can detect and repair errors with data
filtering results in decreased down-time once a failure occurs, which results in a decrease
in opportunity costs. Since revenues are much more dependent on the payload than

tracking, this opportunity cost savings is high enough to justify data filtering.
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Figure 6.11: Life Cycle Costs per Satellite vs. Level of Automation (1 Satellite)

The results of the single satellite case hold for small constellations. However, the
difference in the life cycle costs between the data filtering level of automation and the
higher levels of automation decreases steadily as shown in Figure 6.12, which is for a 10
satellite constellation. Comparison of the per satellite life cycle cost with Figure 6.11

clearly illustrates the economies of scale which affect the development costs.
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Although the data filtering level of automation remains the local optimum, the high levels
of automation become less expensive than the no automation case for a constellation of 15

satellites as shown in Figure 6.13. This is also true for much larger constellations.
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Figure 6.13: Life Cycle Costs per Satellite vs. Level of Automation
(15 Satellite Constellation)
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At a constellation size of 60 satellites (Figure 6.14), the benefits of decreased operations
cost overcomes the higher development costs for the higher levels of automation. Even
so, the fully automated case has a higher life cycle cost than the paging case due to the
decreased system availability since processor deficiencies cannot be recovered from. The
trend does not stop at 60 satellites. Even larger constellations would result in a larger

benefit to automation relative to the data filtering case.
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Figure 6.14: Life Cycle Costs per Satellite vs. Level of Automation
(60 Satellite Constellation)

Figure 6.15 shows the life cycle cost per satellite as a function of the constellation size.
The curves are normalized by the ground data filtering level of automation. Figure 6.15
clearly illustrates the effect of the learning curve. The cost per satellite for systems with
automation gradually approach that of the un-automated system until, at 60 satellites, the

system with paging has the lowest life cycle cost per satellite.
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6.3 Automation for a Deep Space Mission

The above case studies showed how automation can reduce life cycle costs primarily
through a reduction in operations costs. However, automation is often applied to remote
systems because the delay times associated with the remote operations are large enough to
make control of the spacecraft difficult or impossible. This is especially true for functions
which require operator intervention often, and require that the recovery take place within
a short period of time. Automation may also be used to increase flexibility, allowing the
spacecraft to adapt to the changing environment and unforeseen anomalies. Such

automation has been tested during the Clementine mission in 1994.'6

This case study investigates the effect of time delay on a two-function deep space probe.
The functions corresponding to the bus are assumed to be lumped into one function, and
those corresponding to the payload are lumped into another. The functional block
diagram is shown in Figure 6.16. Automation is applied to each function separately to

determine how the optimal level of automation changes as the distance from Earth
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increases. The four missions are: solar, Mars, Saturn, and a geostationary mission to
form a basis of comparison. The delay times for each mission are shown in Table 6.5.
Note that for the planetary missions, the worst case delay is assumed where the planet is

opposite the Earth relative to the Sun.

Satellite

Bus Paylaod

Figure 6.16: Deep Space Satellite Functional Block Diagram

Table 6.5: Range and Round Trip Communications Times for

Various Destinations within the Solar System

Destination Maximum Range From Earth | Round-Trip Communications
(meters) Time (min.)
Geosynchronous Orbit 3.58 x 10’ 0.004
Sun 1.49 x 10" 16.6
Mars 3.78 x 10" 42
Saturn 1.58 x 10" 176

The delay times are added to the recovery time once a failure or event has occurred. For
human operators performing the recovery, the delay time is added to the total elapsed
time, but the logged time remains the same. That is, a failure requires the same operator
workload regardless of the round trip communications time, but the time to recovery for

the function increases according to Table 6.5.

Rather than defining an opportunity cost, the life cycle cost was assumed to be the sum of
development and operations costs alone. The availability was used to determine an

expected value for the number of hours of data which would be collected over a 2 year
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mission span. The metric used to determine the optimum was the life cycle cost divided

by the expected hours of data collection (cost per hour data collection).

The missions were assumed to all have identical development costs (for the same levels of
automation) regardless of the target. This cost was baselined at $150 million which is

consistent with a NASA New Millennium mission."”

6.3.1 Bus Automation

Automation was first introduced to the bus function while holding the payload automation
constant. The bus was assumed to be a simple function with failures occurring on the

order of twice per month. Other inputs are contained in Appendix G.3.

Figure 6.17 shows the life cycle cost (development + operations) as a function of the level
of bus automation for each mission. The life cycle costs follow similar patterns as shown
in the previous case studies. Because of the above assumptions, the cost is not dependent
on the mission (and therefore delay time). The operations costs are the same regardless of
the mission because the delay time was not assumed to affect the failure rates. Therefore,

the operations requirements remain unchanged regardless of the mission.
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Figure 6.17: Life Cycle Costs vs. Bus Level of Automation
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The increased delay time does, however, affect the bus function availability. The
availability integrated over time results in an expected time of data collection. Figure 6.18
shows this as a percentage of the total possible data collection over the two year mission
life. The effects of the increasing delay time with mission duration are very clear, resulting
in increased down-time due to the longer elapsed times for failure recovery. However, the
data yield does not vary rmuch with the level of automation except for the fully automated
case. This results from the assumptions that the bus function is simple, and failures are
relatively rare. Thus, the trends of the Tracking automation case discussed in section 6.1
are again seen. The avaiiability is not greatly affected by the level of automation if the
function is simple, and if failuies do not occur often. However, the fully automated case
shows a decrease in the data yield. Since the bus function is fully automated, any failure
which the automation cannot fix results in a permanent loss of the bus. Thus, the fully
automated case has a slightly lower mean time to permanent failure than the other cases,

which results in a decreased data yield.

IIGEO @Sun g|mMars [pSatumn

Percentage of Maximum Possible Data
Collection '

Remote | None | None | Cueing | Paging | Full
Ground | None I Paging IData Filtering | Paging I N/A
Level of Bus Automation

Figure 6.18: Percentage of Maximum Possible Hours of Data Collection vs.

Level of Bus Automation
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It should be noted that even though the data yield is affected by the mission, the changes
are only on the order of 0.5%. This is a result of a low failure rate. Since failures do not
occur often, the increased delay times do not have many opportunities to reduce the time

of data collection.

The cost per hour of data collection is shown in Figure 6.19. Since the life cycle costs are
identical for each mission, and the data yield varies by approximately one percent, it is not
surprising that the cost per hour metric does not vary much from one mission to another.
Note that the slight decrease in the data yield for the fully automated case (Figure 6.18)

was not enough to outweigh the decreased life cycle cost at this level (Figure 6.17).
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{
Ground| None l Paging I Data Filtcn'ng|

Level of Bus Automation

Figure 6.19: Cost per Hour of Data Collection vs. Level of Bus Automation

For the bus function, use of no automation minimizes the cost per hour data collection
metric. This is due to the assumption that bus failures only occur twice per month.
Therefore, the operations savings are too small compared to the development costs to

justify automation. This low failure rate also led to a small impact in the data yield. This
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holds for all missions because the 15 day mean failure time is large compared to the delay

time ( < 176 minutes).

6.3.2 Payload Automation

The payload function was automated assuming the optimal level of bus automation (i.e.,
no bus automation). Again, the development costs were assumed only to be a function of
the level of automation and not the mission. However, it was assumed that the payload
function was more complex than the bus function, and failures occurred more often (once
every 4 hours). Remember that the definition of a failure is any occurrence that results in
the unavailability of the function. It is assumed that for this case study, instrument
scheduling is dynamic and requires updating every four hours. It is expected that this
increased operations requirement will have a larger impact on the availability of the

system, and therefore the data yield. Other input parameters are given in Appendix G-3.

The life cycle costs are shown in Figure 6.20. As with the bus automation, the payload life
cycle costs are only a function of the level of automation. However, since the payload
failure recovery was assumed to be more complex, the development cost increases with

automation are higher than those for the bus.

250 e
EGEO BSun HMars nSatum] -

8

g

100 -

Fresent Worth Value of Life Cycle
Costs over a 2 Year Life ($M)

0 :
Remote | | None Cueing I Paging Full
Ground | Paging Data Filtering l Paging N/A

Level of Payload Automation

Figure 6.20: Life Cycle Costs vs. Level of Payload Automation
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The percentage of maximum possible hours of data collection is shown in Figure 6.21.
For the lower three levels of automation, the data yield is both a function of the level of
automation and the mission. This is because the payload failures occur often enough to
make the delay time significant. The increased speed of the ground computer over the
human is also shown as an increased data yield for the ground paging case over the no
automation case. The re-introduction of the human in the loop during all operations for
the cueinig case results in a decreased recovery time from the ground paging case. For the
last two levels of automation in Figure 6.21, the satellite is the primary processor. The

data yield is increased, but seems to be independent of the mission.
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Figure 6.21: Percentage of Maximum Possible Data Collection vs.

Level of Payload Automation

The cost per hour of data collection is shown in Figure 6.22. Here, the effects of the large
payload failure rate are shown. Although the general trend for the GEO case remains the
same as for the bus automation, this is not so for the farther missions. In fact, even for
GEO, the ground paging case results in the minimization of the cost per hour of data

collection. This is because the payload function’s failure rate is high enough to make
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operations costs a significant portion of the life cycle costs. Thus, the savings with
automation are large enough to balance the increased development costs. However, since
ground software is less expensive than flight seftware, it is more expensive for the GEO

case to further automate.

The solar mission case also is optimized for ground paging. The increased delay time, and
therefore decreased data yield is not yet enough to outweigh the difference in software
costs between the ground and space. However, for the Mars and Saturn missions, the
delay times are great enough to justify the higher cost in flight code, and the remote

paging case results in the minimum cost per hour of data collection.
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Figure 6.22: Cost per Hour of Data Collection vs. Level of Payload Automation

Figure 6.23 shows the dependence of the cost per hour metric on the round-trip
communications time for low automation (ground processing) and high automation (space
processing) of the payload function. The break-even point is clearly evident at just under
40 minutes. The curve a'so shows, &s expected, that the performance of a highly
automated system is not dependent on the deiay time, but is for a system with a low level

of automation. The cost per hour is nearly linearly dependent on the delay time, especially
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for short delay times relative to the mean time to failure. This relationship is driven (in
this case) by the availability. The deep space mission case study shows that for functions
requiring frequent operations, automation will be required as the range (and therefore

delay time) is increased in order to minimize the cost per data yield.
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Figure 6.23: Cost per Hour of Data Collection vs. Round Trip Communications Time
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7. Conclusions

7.1 Overview

A methodology has been presented that quantifies the effects of automation through an
availability-based approach that captures both direct and opportunity costs in the
calculation of life cycle costs. The end-to-end system is decomposed into functions,
where each function’s event and failure recovery processes are represented through
Markov models. Each transition in the Markov model is linked to processor reliabilities
and mean times to completion of tasks, as well as the reliability of the hardware
components and the level of automation. The independent reliabilities of the functions are
calculated, and the results are modified to account for dependencies among functions.
From these availabilities, the overall system’s mission objective availabilities are
determined, thus producing the opportunity costs which are added to production,

development, and operating costs.

A software tool (SOCRATES) has been written to allow system engineers to enter cost
and reliability data and to specify a fault tree representation of the system architecture
through a graphical user interface. The tool allows the user to interactively vary the levels
of automation for each function, and resulting costs and reliabilities can be plotted for
comparison. As more advanced human and software reliability and cost models are made
available, they can be incorporated into SOCRATES since the tool has been written in a

modular manner. This will allow the tool to mature during later stages of refinement.
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7.2 Capabilities

As stated above, the methodology allows system engineers to estimate the effects that
automating any function will have on the overall system availability and life cycle cost.
This in turn will lead to more confidence in making decisions in an industry that is
traditionally conservative as a result of the high risks and costs involved. The
methodology is also general enough to allow the analyst to mode! the system at various
levels. This allows the tool to be used to perform automation trade studies at various

stages in the system design, and to varying levels of detail.

The case studies of Chapter 6 have demonstraied the use of SOCRATES to look at
system-level trades associated with automating various systems. The model was used to
investigate the automation of a simple function of a single satellite in order to minimize the
life cycle cost metric. Automation was shown to be beneficial in this case. A second
study investigated how the optimal level of automation for a complex function can vary
with the number of satellites in a constellation. A critical constellation size was found
above which automation resulted in the minimum life cycle costs. Below that point,

automation did not pay off.

The final case study investigated the effects of increased delay times in satellite operations.
A new metric was defined, the cost per hour of data collection, which was used for a
scientific deep space mission. The levels of automation of the bus and payload were
varied independently, and the delay time was varied from 0.25 minutes (GEO) to 176
minutes (Saturn). The study showed that it does not benefit to automate functions with
mean times to failure much larger than the delay time. However, as the mean time to
failure was reduced to be on the order of the delay time, automation reduced the cost per
hour of data collection. Thus, for the bus function (large mean time to failure), no
automation was optimal, while for the payload function (small mean time to failure), no
automation was appropriate for near Earth missions, but more automation was optimal for

more distant missions.
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Future versions of the software tool will make extensive use of databases to allow baseline
systems to be modified with little additional effort. In addition, the software tool has been
written in a modular manner that allows for modification of the cost model as well as
human and software reliability models. This will allow the basic backbone of the tool to

be re-used and adapted as higher-fidelity models become available.

7.3 Limitations

Although some functional interdependence has been included which accounts for failures
in one function creating failures/events in other functions, a deeper level of dependence is
not yet modeled. Cases where one function’s current state changes another’s transition
probabilities (but not to 1 or 0) cannot be handled by the model. Also, the dependencies
need to be unidirectional. That is, if Function A depends on Function B, the converse

cannot be true as currently modeled.

Another limitation to the SOCRATES implementation is that objective availability
redundancy strings are required to be fully independent of each other. Each function of
each string must be independent of the functions of any other redundancy string of that

objective.

The methodology also assumes that permanent failures are independent of the current
state of the system. This precludes cases where hardware fails as a result of a functional
failure, as would be the case if an attitude control failure pointed a sensitive instrument
into the sun, or if a thermal failure (prolonged) caused certain components to prematurely

fail.

The methodology also ignores certain political and timing constraints related to adding
automation. Although the technical feasibility of the automation can be captured through
the development costs, there is no direct way to model the impact that increased

automation may have on the system timeline. Also, subjective constraints such as a desire
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to automate to demonstrate technical superiority are noi captured through the life cycle
cost metric. Therefore, the metric would need to be used in addition to these subjective
considerations when ultimately making any decision regarding the level of automation that

should be applied to the system’s functions.

The current version of SOCRATES also has the limitation of being somewhat
cumbersome. The large amount of data required to define the system at the required
fidelity is time consuming, and many inputs may not be known with confidence. The
linking of historical databases will no Goubr improve this limitation, but some amount of
uncertainty in inputs will be inevitable since highly autonomous systems are rare, and thus
the database will be limited. The use of sensitivity analyses can also help overcome the
difficulties of predicting model inputs for futuristic systems that are outside the range of

historical experience.

The model presented in this thesis represents a framework to investigate automation of
satellite systems. Much effort has been made to keep the model as general as possible to
accommodate the broad variety of space missions and operations concepts. The
methodology attempts to focus on operations fundamentals rather than on any specific
type of system. This has resulted in a general model which can be widely used, but which
requires significant effort in terms of input definition. This may be improved by
performing parametric studies of current and past systems to identify key drivers of cost
and availability. Such studies can simplify the methodology by focusing on these drivers

rather than on the entire system.
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Appendix A: Markov Modeling

Markov modeling can provide a powerful tool when analyzing a stochastic process. It has
advantages over other modeling techniques such as fault tree analysis and Monte Carlo
simulations for large systems or very dependable systems. Fault trees are difficult to
generate for complex systems, while Monte Carlo simulations require large run times for
dependable systems. As with other techniques, Markov modeling starts with a definition
of the system in terms of a state diagram. For the purposes of this appendix, a weather
example will be used. Three states will be defined to simplify the problem. The states will
represent clear weather, cloudy but dry weather, and precipitation. Figure A.1 shows a
diagram of the weather model. The arrows between states represent transitions from one
state to another. A transition probability is assigned to each arrow representing the
probability of the transition taking place. Note that these probabilities are conditional
probabilities since they assume the current state and represent the probabilities of
transitioning from that state to the others (and the probability of not transitioning to
another state). These transition probabilities are defined over a period of time. For this
example, a day will be used for the time step. Therefore, p12 would be the probability of
tomorrow being cloudy given that today was clear. There is an assumption with Markov
modeling that the state probabilities are dependent only on the current state, and not on
the past. Therefore, the probability of tomorrow being cloudy does not depend on

yesterday’s weather, but only on today’s.

Example transition probabilities for the model of Figure A.1 are given in Table A.1.
Notice that the sum of the probabilities leaving a state is equal to one (including the
probability of leaving and arriving at the same state). These state probabilities may be
used to derive the discrete state equations for the Markov model. The state equations can

be written in matrix form as in Eq. A.1.
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P(1) pll p21 p31] PQ)

P(2)] =|pl2 p22 p32|P(2) (A1)
P(3)/,,, [p13 p23 p33\P(3)/,

Once the state probability vector has been defined for the initial condition, Eq. A.1 can be
used repetitively to calculate the state probability vector for future time steps. This is fine
if the model is small, and the time step is not very small compared to the total time spar to
be studied. However, this is not always the case. The matrix squaring technique can be
used to deal with this computational problem. Applying Eq. A.1 twice gives Eq. A.2
where S represents the state probability vector, and T represents the state transition
matrix. Thus, by calculating T2, the state probability vector at time t+2 can be found
directly. Likewise, squaring T gives T* which can be used to directly calculate S at time
t+4. Squaring this leads to S..s, and so on. Thus, rather than performing a matrix
multiplication, the matrices are squared using the last “squared” matrix for the next step.
This can lead to a calculation of S for times t+2" where n represents the n" squaring of a

matrix.
S... =TS, =T«(T-S,)=T"-S, (A2)

Matrix squaring can greatly reduce the calculation times, but when implemented by a
digital computer can also lead to numerical problems. This arises if the state probabilities
are very small or very close to unity for many time steps. Roundoff error increases until
the probability of leaving a state no longer exactly equals one. This error then blows up
very quickly. This can be countered by adding a routine after each squaring which re-
calculates the probability of staying in a state as 1 - the sum of probabilities of leaving that

state. This helps to keep the roundoff error in bounds.
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Table A.1: Transition Probabilities for the Weather Model

pl1=0.6 p2l =2 p31=.5
pl12=03 p22=.3 p32=.1
pl3=0.1 p23=.5 p33=.4
pll
Clear
pl2/ ) pl3
p21 p31
p23
- Cloudy ={ Precip.
p32
p22 p33

Figure A.1: Markov Model of Weather



Appendix B: Calculation of Mean Time to

Transition From a Series Combination of Events

The collapse of the discrete recovery process Markov model into the 4-State model is
accomplished by representing a string or chain of transitions by a single transition. Each
transition in general is described by a probability of transitioning at all (probability of
correctly performing the task) and a probability of doing so within a given time step.
Clearly, the probability of successfully transitioning from state 1 to state 4 is the product
of the individual transition probabilities. If the probability of successfully transitioning
from state i to state j is represented by s;;, then the success probability from state 1 to
state 5 is given by Eq. B.1.

(B.1)

Sis = 812752,3 7834 " S45

The calculation of the overall transition rate is not as straightforward. Figure B.1 shows
the discrete recovery processes in the top figure being reduced to a two state model
below. The 6°s represent the mean times to transition for each step. However, the mean
time to transition from state 1 to state 5 is not exactly the sum of the mean times to failure
for each transition. In fact, the probability distribution function for the total transition
from state 1 to state 5 does not even follow an exponential distribution since the recovery

processes must occur sequentially.

In order to take advantage of Markov mbdeling techniques, past independence must be
preserved. This effectively limits the probability distribution of transitions to the
exponential distribution. Thus, the goal is to find a mean time to transition © which
accurately predicts the transition from state 1 to state 5. The collapse to the 4 state model

is essentially based upon collapsing such chains into single transitions. What follows is a
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derivation of the actual distribution of the transition time and a comparison of this with the

approximate exponential distribution.

S,

Figure B.1: Collapse of a Markov Chain

In words, the probability that a transition occurs in time t is the probability that all four
transitions take place in time t, but sequentially. If the first transition takes t1 seconds, the
next three transitions must take place in (t-t1) seconds. This is shown graphically in
Figure B.2. The transition from state 1 to state 2 takes place in (t - t1) seconds leaving t1
seconds for the next three transitions. Likewise, the transition from state 2 to 3 takes place
in (t1 - t2) seconds lcaving t2 seconds for the remaining two transitions. In general, the
probability of transitioning from state 1 to state 5 in time t is the sum of probabilities of
the four transitions taking place such that the sum of their individual transition times is

exactly t.
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Figure B.2: Transition Time Breakdown

The graphical representation of Figure B.2 is characteristic of a convolution. The
probability distribution function for the exponential distribution is given by Eq. B.2 where

0, is the mean time to transition for the n'™ transition.

p(t) = el-e_[a) (B.2)

The probability of transitioning within time t is then calculated by integrating Eq. B.2 with
respect to time. Both the probability distribution function (pdf) and the transition
probability (P(t)) are plotted in Figure B.3. The time axis has been normalized by 6,.
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Figure B.3: The Exponential Distribution

Assuming the transitions all follow the exponential distribution of Figure B.3, the

transition probability from state 1 to 5 is given by the multiple convolution integrals of

Eq.B.3.
P(t) = j ie‘e_fiee_fie" —!—e“t’_idr dr,dt (B.3)
0 94 [} 93 0 e2 1 T |

The result is given by
1 1

— |t -—t

e’) [ e’) +c,e (B.4)

P(t)= c,e( ) +c,e

with the parameters defined by:
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However, the resulting probability distribution function of Eq. B.4 does not lend itself
readily for use in a Markov model. Markov models assume past independence. In effect,
they imply a purely exponential distribution. The actual distribution more closely
resembles the geometric distribution. The following plots compare the actual transition
probability with an approximate exponential distribution (Eq. B.5) with a mean time to

transition calculated as the sum of the individual transitions as indicated in Figure B.1.

0=0,+0,+0,+0, (B.5)

The goodness of the approximation depends on the relative magnitudes of the transitions
0, - 65. Figure B.4 shows the probability distribution function for the actual case as well
as the exponential approximation which results when the transitions are of similar size.
The general behavior is captured by the approximation, but there is a significant
discrepancy for small times. This is because the actual process requires a chain of four
events to take place in order. The probability that this occurs instanily is zero. The

exponential distribution allows for the entire process to occur very quickly. This error will
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manifest itself in the transition probabilities of the Markov model.

The exponential

distribution results in the definition of a mean time to transition. Any deviation from the

exponential distribution introduces a time variance of the transition rate. Figure B.5 plots

the probability of transitioning in a time t.

Probability Distribution Function For Actual and Exporentiai
Approximation (theta = 385, t1 = 100, {2 = 90, 3 = 110, t4 = 85)
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Figure B.4: Probability Distribution Functions when Transition Times are Similar
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Transition Probability for Approximate Exponential and Achual
Distributions (theta = 385, t1 = 100, 2= 90, t3 = 110, t4 = 85)
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Figure B.5: Transition Probabilities when Transition Times are Similar

However, it is not obvious what the effect of assuming a time varying transition as
constant will have on the system availability, which is the useful output of the functional
availability model. Figure B.2 shows the calculated availability for both a discrete
recovery process model and a single model with a mean time to recovery set to the sum of
the individual recovery process transition times. The plot shows that the single transition
model initially overestimates the availability due to the overestimate of the recovery
transition probability. However, as time passes, and the system reaches steady state, the
effects of the approximation decrease, and the curves approach each other with a very
small error. Since the Markov models in this methodology are only used to determine the
steady state value for the functional availabilities, the collapse of the recovery processes
into a single transition actually introduces no error, even though some error occurs during

the transitory period.
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Figure B.6: Comparison of the FFunction Availability for the Discrete Recovery Process
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Appendix C: Transition Probability Equations

The following sections include an algorithm for the equations, an equation for the

calculation of the success probability, and an equation for the mean time to transition

using the variable definitions in Table C.1.

Table C.1: Variables for the Determination of Transition Probabilities

P The transition state probability mttx The overall mean time to trans.
Ps Space processor success prob. mtts Space processor transition time
Ps Ground processor success prob. mttg Ground processor transiti. .a time
Py Human operator success preb. mtty Human operator transition time
Psr | Remote automation success prob. mttag | Remote automation transition time
P, | Ground automation success prob. mttyg | Ground automation transition time
LOA = (1, NA): Full Remote Automation
Recovery requires only the space processor.

P=P

mttx = mtt,

S

(C.1)

LOA = (2, 1): Remote Paging, Full Ground Automation

Recovery requires the space processor or both the ground processor and the remote

automation.

P=1-[(1-P}1-Pg-

1

P

mttx =

P
+
mtf;  (mttg +

1-P,
mtt ,, + mitty)

(C2)
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LOA = (2, 2): Remote Paging, Ground Paging
Recovery requires the space processor or (ground processor and remote automation) or

(human operator and remote automation and ground automation)

P=1-[(1- P 1- P - Pag {1- Py - Pog - Py )] (C.3)
1
mitx =
P, (1-P)-Pu-F . (1-P)-(1-Py - P5)
mttg (mttG + mttg +mttAR) (mtts + mtt,, +mtt; +mtt,, +mttH)

LOA = (2, 3): Remote Paging, Ground Supervision
Recovery requires the space processor or (ground processor and remote automation) or

(human operator and remote automation and ground automation)

P=1-[(1-P (1= Py - Py {1 - Py - Py - Pos)] (C.4)
mttx = !
P, (1-P5)-Pyg - Pg .\ (1-P)-(1-Pyg - Pg)
mity (mttg +mitg +mtt,,) (mttg + mit,, +mtt; +mtt,; +mtt,)

LOA = (2, 4): Remote Paging, Ground Cueing
Recovery requires the space processor or the remote automation and the ground

automation and either the human operator or the ground processor.

P=1-{(1-P,)-[1- Py -Pag (1-(1-P5)-(1-P))]} (C.5)
mttx = !
P, | (i-P)-Pw-Ps (1-P)-(1-Py - P;)
mity (mtt; +mtt,, +mttg) (mttg +mtt,, +mtt; +mtt,; +mtt,)
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LOA = (2, 5): Remote Paging, Ground Data Filtering
Requires the space processor or (the remote automation and the ground automation and

the human operator).
P =1-[(1-Py)-(1- P ProPy)]

P )
e |

mtty  (mttg + mtt,, +mtt,; +mtt,)

mttx =

(C.6)

LOA = (2, 6): Remote Paging, No Ground Automation

Requires the space processor or both the remote automation and the human operator.

P=1-[(1-Py)-(1- Py - Py)

mttx = (C.7)

1
I: Py + (1 - PS) }
mtt;  (mttg +mtt,, +mtt,)

LOA = (3, 1): Remote Supervision, Full Ground Automation

Requires the space processor or both the remote automation and the ground processor.

P=1-[(1-B)-(1-Pyy P5)]

mttx =

(C.8)

P, 1(1 -P,)
B |

mttg  (mttg + mtt ,, +mit)
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LOA = (3, 2): Remote Supervision, Ground Paging
Requires the space processor or both the remote automation and ground processor or

both the remote automation, the ground automation, and the human operator.

P=1-[(1-P,)- (1= Py - Ps)-(1- Py - )] (C.9)
1

P, . Py -Pg-(1-P) . (1-Py -P5)-(1-PBy)
mttg (mtt5 + mtt +mttG) (mtts +mtt,, + mtt; + mtt,; + mttH)

mttx =

LOA = (3, 3): Remote Supervision, Ground Supervision
Requires the space processor or both the remote automation and ground processor or

both the remote automation, the ground automation, and the human operator.

P=1-[(1-P,)-(1— Py - P5)-(1-Pos - Py)| (C.10)
mttx = !

P, . PuPo-(1-F) | (1-Pue -P5)-(1-Py)

mttg (mtts + mtt .o +mtt0) (mtts +mtt,; +mtt; + mitt +mttH)

LOA = (3, 4): Remote Supervision, Ground Cueing
Requires space processor or (remote automation and ground automation and either

ground processor or human operator)

P= 1_{(1—Ps)'{1—PAR 'PAG '[l_(l—PG)'(l_Pl{)]}}

mttx = (C.11)

P, 1(1 ~F)
B |

mity  (mttg +mtt,, +mtt, +mit,; +mit,)
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LOA = (3, 5): Remote Supervision, Ground Data Filtering

Kequires space processor or (remote automation and ground automation and human

operator).
P=1-[(1-P;)-(1- Py - Py - Py
1
mttx = (C.12)
Py 4 (1 - PS)
mit, (mttg +mtt,, +mtt, +mtt,,)
LOA = (3, 6): Remote Supervision, No Ground Automation
Reyuires space processor or both the remote automation and human operator.
P= 1_[(1_ Ps)'(l—PAR 'PH)]
mttx = (C.13)

1
Ps + (I_PS)
mtty  (mttg +mtt,, +mtty)

LOA = (4, 1): Remote Cueing, Full Ground Automation

Requires remote automation and either the space processor or the ground processor.

P=P, [1-(1-P)-(1-P)]

mttx = mttg + mtt,; + mtt, (C.14)
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LOA = (4, 2): Remote Cueing, Ground Paging
Requires remote automation and (space processor or ground processor or both ground

automation and human operator).

p=Rmﬁ-ﬁ-g)@-h-ﬁ—nﬂ{b4mfngﬂ} (C.15)

1
mttx =

P, N (1-P)
(mttg +mtt,;)  (mttg + mit,, +mttg +mit,g +mtt,)

LOA = (4, 3): Remote Cueing, Ground supervision
Requires remote automation and (space processor or ground processor or both ground

automation and human operator).

P=mmb—0—g)@—p—0;%)0—pm-mnn (C.16)
1

mttx =

Py + (I_PS)
(mttg +mtt,,)  (mttg +mit, +mtt; +mit,; +mtt,,)

LOA = (4, 4): Remote Cueing, Ground Cueing
Requires remote automation and (space processor or (ground automation and either

ground processor or human operator)).

P =Py -{1-(1-P)- {1-Ppo [1-(1-Pc)- (- P} (C.17)

1

mttx =

Py + (l — PS)
(mttg +mit,) (mttg +mit,, +mtt, +mtt,, +mit,,)
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LOA = (4, 5): Remote Cueing, Ground Data Filtering

Requires remote automation and either space processor or both ground automation and

human operator.

P=Py [1-(1-B)-(1-Ps - Py)]

mttx = mtt, + mtt ,, +mtt,; +mtt,,

LOA = (4, 6): Remote Cueing, No Ground Automation

Requires remote automation and either space processor or human operator.

P=P, '[1"(1"Ps)'(1_PH)]

mttx = mttg + mtt,, +mtt,

LOA = (5, 1): Remote Data Filtering, Fuli Grourd Automation

Requires remote automation and ground processor.

P=P, P,

mttx = mtt,,, +mtt

LOA =(5, 2): Remote Data Filtering, Ground Paging

(C.18)

(C.19)

(C.20)

Requires (remote automation and ground processor) or (remote automation and ground

automation and human operator)

P= 1—[(1 - PARPG)'(I - PARPAGPH)]

|
mttx =

Ps + (I_PG)
(mtt,z +mttg) (mit, +mtt; +mitt, +mit, )

(C.21)
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LOA = (5, 3): Remote Data Filtering, Ground Supervision
Requires (remote automation and ground processor) or (remote automation and ground

automation and human operator)

P=1 —[(l - PARPG)'(I - P“‘PAGPH)]

mttx = L (C.22)

P, (l - PG) ]

+
(mtt,e +mttg)  (mtt,g +mtt, +mtt,g +mit,,) |

LOA = (5, 4): Remote Data Filtering, Ground Cueing
Requires remote automation, ground automation and either the ground processor or the

human operator.

P = PuaPfi~(1-Pa)-(1-Py)]

mttx = mtt,, +mtt; +mtt,; +mtt,, (C.23)

LOA = (5, 5): Remote Data Filtering, Ground Pata Fiitering

Requires remote automation, ground automation, and the human operator.

P=PPrPy

mttx = mtt,, + mtt, . + mtt C24
AR AG H

LOA = (5, 6): Remote Data Filtering, No Ground Automation

Requires remote automation and the human operator.

P=P,P,

mttx = mtt,; +mit (C.25)
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LOA = (6, 1): No Remote Automation, Full Ground Automation

Requires the ground precessor.

P=P,
mttx = mit; (C.26)

LOA = (6, 2): No Remote Automation, Ground Paging

Requires the ground processor or both the ground automation and human operator.
P=1-(1-P;)-(1-P,.P,)

[PG+ ](I—PG) ]

mit; (mttg +mtt,g +mtt,)

mttx =

(C.27)

LOA = (6, 3): No Remote Automation, Ground Supervision

Requires the ground processor or both the ground automation and human operator.

P=1-(1-P;)-(1-P,cPy)

mtix =

(C.28)

[ P 1(1—1>G) ]

mtt; (mtt; +mtt,g +mtty)

LOA = (6, 4): No Remote Automation, Ground Cueing

Requires ground automation and either the ground processcr or human operator.

P=P, -[1—(1—PG)'(1—PH)]

mttx = mtt; + mtt,; + mtt, (C.29)

129



LOA = {6, 5): No Remote Automation, Ground Data Filtering
Requires the ground automation and the human operator.
P=P,Py

mttx = mtt ,; + mtt (C.30)

LOA = (6, 6): No Remote Automation, No Ground Automation
Requires the human operator.
P=P,
mttx = mtt (C.31)
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Appendix D: Weighted Combination of

Transition Times

This appendix provides the calculation of a mean time to completion of a task from a
weighted combination of the mean times to completion of several modes by which the task
may be completed. In practice, this is useful in determining the mean time to completion
of a task which is nominally completed by a primary processor, but may alternatively (such

as when the primary processor fails) be completed by a secondary processor.

The mean time to completion, mttc, can be converted into a transition probability during a

time step, dt, by Eq. D.1.

P, =1- e_(E) (D.1)

The exponential term may be expanded by Eq. D.2 **.

w© xn xZ
=Y —=l+x+—+--- D.2
Zon! 2! (02)

Substitution of Eq. D.2 into Eq. D.1 yields Eq. D.3 which, for small dt reduces to Eq.
D.A4.

2 3
P= dt _l( dt) +l(_dt._) ... (D.3)
mttc 2 \mttc 6 \mtic
dt
Em_ttg (D4)
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Figure D.1 shows a diagram of the recovery modes once a failure has occurred. The left
path has a success probability of P1 and a mean time to completion of mttcl. This
corresponds to the path of the primary processor. In the event that the primary processor
fails (1 - P1), the mean time to completion is the sum of the primary processor (it takes
time to fail), and the mean time to completion of the secondary processor. The probability
of transitioning from failed to non-failed is then the probability of successfully taking either
path. The success probability is then given by Eq. D.5.

Pe! ‘{(' - :n::J '(‘ - ((mdt:cl( ]+_mPt:<):2)]” ©3)

Expanding Eq. D.5 gives Eq. D.6.

dt dt P1.-dt Pl.dt (l’l2 - Pl)-dt2

P= = + - +
mitc  (mttcl + mttc2) mittcl (mttc]+mtt02) mttcl - (mttcl + mttc2)

(D-6)

Returning to the assumption that dt << mttcl and dt << mttc2, the last term drops off.

Combining terms with like denominators and solving for mttc gives

mttc =

[ Pl 1(1—P1)

+
mttcl  (mttcl + mttc2)

} (D.7)

The structure of Eq. D.7 is evident in the transition probability equations.
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mttcl (mttcl + mtic2)

Recovered

Figure D.1: Completion Modes for a Failure
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Appendix E: Calculation of the Overall Mean
Time to Recovery from the State Probability

Veetor and the Overall Mean Time to Failure

It is assumed that a Markov process has been computed to calculate the steady state
probability vector for a function. Since the probability of transitioning to the failed state is
independent of the current non-failed state, the model may be collapsed to a two state

model as shown in Figure E. 1.

mtf
>,
Unfailed @
mtr

Figure E.1: Collapsed Two State Markov Model

From this model, the state equations may be written by Eq. E.1. It is assumed that the
step time, dt, is small compared to the mean time to failure and mean time to failure, so

the exponentials may be reduced to 1/transition time.

d d
(¥)- (l_d_'f':f) (- d_) (¥ .
mtf mtr

At steady state, the time variable vanishes from Eq. E.1, and the first equation may be
used to define the steady state relationship among the spate probabilities and the transition

rates.
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dt
0 =(1——)-o +
p =) 0p

m

dt
mtr

F (E.2)
Rearranging Eq. E.2 to solve for the mean time to recovery yields Eq. E.3.

mtr = mtf-(i] (E.3)
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Appendix F: Equations Converting Functional
Failure Probabilities to Probabilities of the

Human Performing the Recovery

F.1 Equation Derivations

The information required to determine the probability that a human is involved in a
recovery process at a given point in time has already been calculated in the functional
availability model. However, no state had been defined as such, and therefore, this
information must be extracted from the steady-state availability results. This is done by
creating a Markov model including the new states, the knowledge of the transition
probabilities, and the steady state probability vector. The 2 state model of Figure 3.5
forms the baseline, with the “failure” state being expanded to isolate the probability that
each processor is working on the recovery process. The equations for the probability of a
human performing the recovery differ depending on the level of automation, but the form
of the equation only reflects two cases. One case where all three processors (space,
ground, and human operator) are in the loop, and one case where only one computer
processor (space or ground) and the human operator are in the loop. The case where only
the human in the loop is a trivial case, and the probability of the human being in a recovery
state is equal to that of the function being in the recovery state. The first two cases are a
little more complicated. Note that what follows is valid for event recovery as well as

failure recovery.

F.1.1 Two Processor Case

For the case where there are two processors, a computer and a human, the failure state is
split into two states, one which represents the computer processor attempting the
recovery, and one which represents the human attempting the recovery. The resulting

Markov model is shown in Figure F.1, and Table F.1 lists the variables used in the model.
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Table F.1: Two Processor Markov Model Variable Definitions

txf Probability of transition “F” = failure.

tx1 Probability of transition “1” = computer processor recovery
tx2 Probability of transition “2” = human recovery

tx3 Probability of transition “3” = computer failure to recover

Op State probability of function being available

F State probability of function being in failure recovery

CR State probability of function being in a computer recovery state
HR State probability of function being in a human recovery state

Operational

Human
Recovering

Computer
Recovering

Figure F.1: Two Processor Markov Model

The Markov model of Figure F.1 is represented by the matrix equation of Eq. F.1.
However, at steady state, the state vector at time t+1 is identical to the vector at time t, so

the subscripts can be dropped.

Op (1- txf) tx1 x2 | Op
CR| =| &xf (I-x1-x3) 0 |CR (F.1)
HR/ 0 tx3 (1-x2) \HR/
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From the functional availability model, the steady state availability (Op) is known. Also,
the probability of being in a failure state is known (F = 1 - Op). The transition
probabilities can be calculated from the processor inputs to the model, and the level of
automation. Such relationships are given in section 0. What needs to be determined is the
probability that the function is in a human recovery state since this is the state which
results in human operations. The state equation for the Op state, along with the

relationship: F = CR + HR, yields Eq. F.2.
Op = Op-(1- txf) + (F - HR)- tx1 + HR - tx2 (F.2)

Rearranging Eq. F.2 to solve for HR yields Eq. F.3. It should be noted that txf is the
failure transition probability, which is given by Eq. F.4 for a time step of dt. The state
probabilities Op and F are obtained directly from the functional availability results, and the

transitions tx1 and tx2 are given in section 0 as functions of the level of automation.

HR = Op-txf - F- x1

F.3
tx2 — tx1 F3)

xf=1- e_(ﬁ) (F.4)

F.1.2 Three Processor Case
For the case where both computer processors and the human operator are in the loop, the
failure state is divided into three separate states as shown in Figure F.2. The definitions

for the model are given in Table F.2.
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Table F.2: Variable Definitions for the Three Processor Markov Model

txf Probability of transition “F” = failure.

tx4 Probability of transition “4” = space computer processor recovery
x5 Probability of transition “5” = space computer failure to recover

tx6 Probability of transition “6” = ground computer processor recovery
tx7 Probability of transition “7” = ground computer failure to recovery
tx8 Probability of transition “8” = human recovery

Op State probability of function being available

F State probability of function being in failure recovery

S State probability of function being in a space computer recovery state
G State probability of function being in a ground computer recovery state
H State probability of function being in a human recovery state

Operational

Space
Processor
Recov.

Human
Recovery

Ground
Processor
Recov.

Figure I.2: Three Processor Markov Model

Again, the steady state matrix equations are generated directly from the model.
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Op) [(1-txf) tx4 tx6 x8 |(Op

S| | w&f (1-txd4-tx5) 0 0 S E5)
G| | o x5 (1-x6-x7) 0 | G ‘
H) | o 0 (1-x8) \H

There are now three unknowns: S, G, and H. The relationship F=S+G+H provides one
equation. The operational state equation from Eq. F.5 provides a secend. The third may
come from any of the remaining three state equations. Here, the last equation is used

since it has the simplest terms. Rearranging the last state equation to relate G to H yields

o-n ()

tx7 (F.6)

Substituting Eq. F.6 into the first equation of Eq. F.5, and using the relationship among F,
S, G, and H, and then rearranging to solve for H yields Eq. F.7.

Op- txf - F- tx4 : 7

=[('x—1—:775ﬂ—b(4+tx8J

F.2 Equations

The equations are dependent on the level of automation, and are as follows. As with the
transition equations, the formulae for ground functions may be found by setting the level
of remote automation to 6 (No Remote Automation). Rather than providing the formulae
from the basic variables in Table C.1, the variables defined in section O are used, and their
definitions in terms of the variables of Table C.1 are given along with the reference to
which equation of section 0 which is to be used. Table F.3 restates those variables from

Table C.1 which are used along with new variable definitions.
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Table F.3: Variable Definitions

Op The function’s availability F The function’s probability of being failed
S The space processor prob. of being in a | G The ground processor probability of being
recovery state. in a recovery state.
H The human operator probability of being | dt Time step
in a recovery state.
Pg Space processor success prob. mtts | Space processor transition time
P Ground processor success prob. mttg | Ground processor transition time
Py Human operator success prob. mtty | Human operator transition time
Pra Remote automation success prob. mttg | Remote automation transition time
A
Pga Ground automation success prob. mttg | Ground automation transition time
A

LOA = (1, NA): Full Remote Automation

H=0, no human in the loop.

LOA =(2,1): Remote Paging and Full Ground Automation

H=0, no human in the loop.

LOA = (2, 2): Remote Paging and Ground Paging

Use Eq. F.7 with the following definitions.

tx6=P,, -P;-|1-¢e

tx4 = Ps .(1 _ e—(dllmus))

{ )

tx8= P, - Py -

1-e

o5 = (1-By)-(1- ")

tx7 =(1-Py - Ps)-|1-¢

_( dt )
mitr, g +mbrg

{ J]

/
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LOA = (2, 3): Remote Paging and Ground Supervision
Use Eq. F.7 with the following definitions.

x4 =Py -(1- &) x5 = (1-P;)- (1 - e'(‘“’““"))

_(__L_] _[ dt )
X6 =Py - Pg '(1 —¢ (mmro) ] tx7 = (1 — Py - PG)'(I —g Miatmio ]

_( dt )
tx8 =P, - P, {1 g \mare ]
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LOA = (2, 4): Remote Paging and Greund Cueing
Use Eq. F.3 with the following definitions.

tx1 =P, -(l—e_("%’)} tx3=(1- Ps)'(l—e—("f_':’)J

X2 =Py -[1-(1-P;)-(1- P,m)]-{l —e(Wm‘T—F}]

LOA = (2, 5): Remote Paging and Ground Data Filtering
Use Eq. F.3 with the following definitions.

mzps.(l_e-(:—.:,JJ m:(l-psy[l-e(ﬁ]

(& )
tx2 = PAR -P},LG .PH {1_ e [mﬂm+mm+mk.,J]

LOA = (2, 6): Remote Paging and No Ground Automation
Use Eq. F.3 with the following definitions.

tx1 = P .[1 - e(ﬁ)] 63 =(1-B,) {1 i e(&)]

d
tx2 =P, - Py .(1_ e—(mzm:muu)]

LOA = (3, 1): Remote Supervision and Full Ground Automation

H=0, no human in the loop.



LOA = (3, 2): Remote Supervision and Ground Paging
Use Eq. F.7 with the following definitions.

x4 = Py -(1- 7)) x5 = (1- ;) (1- )

_( dt ) _( d )
x6 =Py - Py -[l—e (et om0 ] tx7 =(1—PAR ‘PG)-[I—C A F il J

_ a
tx8 = P, - Py -[1 ~e ("“"“)]

LOA = (3, 3): Remote Supervision and Ground Supervision

Use Eq. F.7 with the following definitions.

tx4 = P, .(1 — e-(a:m:-)) x5 = (1 _ Ps) _(1 _ e—(dl/mns))

_[L) _( dt )
X6 = Pyg - Py -[l—e (it ) J tx7 = (1~ Pyg -Pc)'[l—e mitgs it J

(ke
tx8=P,; Py 'Ll — e TotmiH 1
/

LOA = (3, 4): Remote Supervision and Ground Cueing
Use Eq. F.3 with the following definitions.

oxl=Fs '["e_(&]] o3 = (1 ps).[, _e‘(ﬁ)]

x2 =P, -[1 ~(1-P,)-(1- pm)].(l_ e'(mom:lom:]J
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LOA = (3, 5): Remote Supervision and Ground Data Filtering
Use Eq. F.3 with the following definitions.

tx1=P, -{1 - e(“’dT]] tx3 = (1-B,)- (1 _ e(i)]

dt
tx2 = PAR . PAG . PH .{1_ e [MM+MA0+MH)J

LOA = (3, 6): Remote Supervision and No Ground Automation
Use Eq. F.3 with the following definitions.

tx1 = P, -{1 - e(‘:_t)] ox3=(1- P, )-[1 B e(:IJJ

_ d
2P, [1 (m..n:..,...,)]

LOA = (4, 1): Remote Cueing and Full Ground Automatien

H=0, no human in the loop.

LOA = (4, 2): Remecte Cueing and Grournd Paging
Use Eq. F.3 with the following definitions.

tx1=[l—(l—Ps)-(l—PAR-P-G)]-[l—e_(m—'"%:”m—"“)]

dt
2 = PAG . PH . [1 _ e—(m"ﬂ"‘m"m)]

x3=(1- Ps).(l -P 'Pc)'[l _e_(mﬂsm::nmuo)]

145



LOA = (4, 3): Remote Cueing and Ground Supervision
Use Eq. F.3 with the following definitions.

tx1 = [1-(1-B;)-(1- Py -P-G)]{l—e—(“’"‘T—t"““:)J

~ d
x2 = PAG 'PH (1 —€ (mH+mA°JJ

tx3=(1-P;)-(1-Pyg -PG)-{I _e_(;’_k;"’“‘::n*ma)]

LOA = (4, 4): Remote Cueing and Ground Cueing

H =F, human always in loop.

LOA = (4, 5): Remote Cueing and Ground Data Filtering

H =F, human always in loop.

LOA = (4, 6): Remote Cueing and No Ground Automation

H =F, human always in loop.

LOA = (5, 1): Remote Data Filtering and Full Ground Automation

H=0, no human in the loop.
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LOA = (5, 2): Remote Data Filtering and Ground Paging
Use Eq. F.3 with the following definitions.

txl =P -[l - e(ﬁ'_] ] 03 = (1- PG){I - e_(;‘::)]

B dt
x2=P,; P, Py .{]_ e (mﬂmmﬂmmn.,)J

LOA = (5, 3): Remote Data Filtering and Ground Supervision
Use Eq. F.3 with the following definitions.

tx1=Pg -[l—e{‘%")) 3= (1- PG)-[l—e_(;%)]

dt
tx2=Pyg - Py - Py '{1 —-e ("""*‘“""Aa’fmu)J
LOA = (5, 4): Remote Data Filtering and Ground Cueing
H =F, human always in loop.

LOA = (5,5): Remote Data Filtering and Ground Data Filtering

H = F, human always in loop.

LOA = (5, 6): Remote Data Fiitering and No Ground Automation

H =F, human always in loop.

LOA = (6, 1): No Remote Automation and Full Ground Automation

H=0, no human in the loop.
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LOA = (6, 2): No Remote Automation and Ground Paging
Use Eq. F.3 with the following definitions.

[ at

tx1 =P, -(1—({(@]) tx3=(]_P6).L1_e—(Fa]J

(&
x2 = PAG 'PH (] —-e (m'fm"'mﬂu)]

LOA = (6, 3): No Remote Automation and Ground Supervision
Use Eq. F.3 with the following definitions.

tx1 =P, -[l—e—(“’%‘]J 3 =(1—PG)-[1—e—(“‘%’JJ

dt
x2=P,;-Py- {1 — e-(mmmmuﬂ)]

LOA = (6, 4): No Remote Automation and Ground Cueing

H =F, human always in loop.

LOA =(6,5): No Remote Automation and Ground Data Filtering

H =F, human always in loop.

LOA = (6, 6): No Remote Automation and Ne Ground Automation

H =F, human always in loop.
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Appendix G: Case Study Data Tables

G.1 Tracking Automation of Single Satellite

The mission life for both the single geostationary satellite and the constellation was

assumed to be 10 years with a 10% discount rate.

Table G.1: Tracking Function Development Costs

Level of Equipment Flight Software Ground Software | Tracking Function
Automation Required (lines of code) (lines of code) Costs
No Remote or Radar (100% 0 2750 $1,371,750
Ground Aut. usage)
No Rem. Aut., Radar (100% 0 2500 $1,292,500
Ground Data usage)
Filtering
Remote Cueing, | Radar (100% 2750 250 $3,250,750
Ground Data usage), On-board
Filtering navigation equip.
Remote Paging, | Radar (10% 2750 250 $2,800,750
Ground Data usage), On-board
Filtering nav. equip.
Remote Paging, | Radar (10% 2750 250 $2,800,750
Groand Cueing | usage), On-board
nav. equip.
Remote Paging, | Radar (10% 2750 250 $2,800,750
Ground Paging | usage), On-board
nav. equip.
Fully Automated | On-board nav. eq. 2750 0 $2,721,500

* Flight Software = $626 per line; Ground Software = $317 per line

Table G.2: Operations Costs

Operator Base Salary

$50,000 per year

Operator Overhead (Admin., etc.)

2.4 x Base Salary per operator per year

Maintenance Costs

$30,000 per ground function per year

Training Costs

$10,000 per operator per year
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Table G.3: Single Satellite Interdependency Matrix

Inderendent
Function

Dependent
Function

= >

~ -

o B

o

Z -

i@

oNe)

Tx

ol

Archiving

Tracking

Control Center Comm.

Attitude Control

Power Generation

Power Distribution

Telemetry

Command Handling

Orbit Control

Payload Receive

Payload Transmit

Thermal Control

(=} =] ] {}ie] o} o] (o} (o] lo] (o) fo)

[« =] =] PN [«] [«] (o} e} {a] [} (o} {o)

OO0 |CO|I=|m=|O|C|O|o|O |

Wl = OO (O|O|W|OC|IO|C O

—|=lo|olo|~|olo|lolo|lolel @™

ek | | et |yt [t [t [ | O = O | OO

[=ll=] o} le}le} o] (o] (o] o} {o) fol L

—t et [ = O O OO OO OO

(=R I (=] =] o} [«] (=] [} [} [=) [«

ololojolo|o|o|o|olo|o|lel £

CIC|IQC|IC|IC|Q|C|C|O|O|C|O

O|m=|m= OO0 |0 |O|O|O|O|C|O

* Dependency Types:
Type 0: No dependency

Type 2: Failure of independent function causes unavailability of dependent function

Type 1: Event of independent function causes event of dependent function
Type 3: Failure of independent function causes event of dependent function
Type 4: Failure of independent function causes failure of dependent function
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Table G.4: Objective Requirements for Single Satellite

Objective Requirements

Archiving (CC obj.) Archiving, CC. Comm., Command Handling, Power
Distribution, Telemetry

Tracking (CC obj.) Tracking

Downlink (Sat. obj)

CC Comm., Payload Transmit, Orbit Control,
Command Handling, Power Distribution, Power

Generation, Attitude Control, Thermal Control

Uplink (Sat. obj)

CC Comm, Payload Receive,
Command Handling, power Distribution, Power
Generation, Attitude Control, Thermal Control

Orbit  Control,

Communications Link (M.O.)*

Uplink, Downlink

*Communications Link Revenue = $38 Million per month

Table G.5: Software and Human Task Reliabilities

Task Complexity Description Software Human Reliability
Reliability
Simple Flown before 0.9999 0.98
Moderately Simple Easy, not flown before 0.999 0.999
Moderately Complex | Hard but predictable 0.99 0.999
Complex Hard, unpredictable 0.9 0.99

Table G.6: Automation Task Software Parameters and Human Supervisory Loads

Level of Automation | Code Reliability Execution Human Supervisory
Time (min) Load (persons)

Fully Automated N/A N/A 0

Paging 0.9999 1 0
Supervision 0.99999 1 0.33

Cueing 0.9999 2 0.5

Data Filtering 0.9999 2 0.5

No Automation N/A N/A 0.5
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Table G.7: Task Complexity and Completion Times for Event Recovery

Function Complexity Space Ground Human
Processor Processor Operator
Completion Completion Completion
Time (min.) Time (min.) Time (min.)
Archiving Mod. Simple N/A 1 30
Tracking Simple N/A N/A 5
Control Center Comm. | Mod. Simple N/A N/A 2
Attitude Control Mod. Simple 2 N/A 60
Command Handling Simple N/A 1 10
Telemetry Simple 1 N/A N/A
Power Distribution Mod. Simple 1 N/A 20
Power Generation Mod. Simple 1 N/A 30
Orbit Control Complex N/A N/A 60
Payload Receive Complex N/A N/A 60
Payload Transmit Complex N/A N/A 60
Thermal Control Simple 3 2 10

Table G.8: Task Complexity and Completion Times for Failure Recovery

Function Complexity Space Ground Human
Processor Processor Operator
Completion Completion Completion
Time (min.) Time (min.) Time (min.)
Archiving Mod. Simple N/A 2 60
Tracking Simple N/A N/A 10
Control Center Comm. | Mod. Simple N/A N/A 10
Attitude Control Mod Complex N/A N/A 60
Command Handling Mod. Simple N/A N/A 30
Telemetry Mod. Simple N/A N/A 20
Power Distribution Mod. Simple N/A N/A 30
Power Generation Simple 1 N/A 20
Orbit Control Complex N/A N/A 120
Payload Receive Complex N/A N/A 240
Payload Transmit Complex N/A N/A 240
Thermal Control Mod Complex N/A N/A 20
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Table G.9: Tracking Function Human Operator Times to Completion for Event and

Failure Recovery with Level of Autr ation

LOA (Remote, | Event Recovery | Event Recovery | Fail. Recovery | Fail. Recovery
Ground)* Logged Time Elapsed Time Logged Time Elapsed Time
(min.) (min.) (min.) (min.)

(6,6) 20 20 5 10
(6,5) 5 5 5 i0
(4,5) 5 5 10 10
(2,5) 20 20 30 30
(2,4) 5 5 25 25
(2,2) 30 30 30 30

*LOA 1 = fully automated, 2 = paging, 3 = supervision ” -= cueing, 5 = data filtering, 6 =

no automation

G.2 Payload Automation of Constellation

All parameters not shown in section G.2 are assumed to be the same as defined in section

G.1.
Table G.10: Payload Automation Marginal Development Cost (relative to baseline)
Level of Automation Flight Software Ground Software Marginal Payload
(lines of code) (lines of code) Developiment Cost
No Remote or 0 0 $0
Ground Automation
No Rem. Aut., 0 2500 $792,500
Ground Data Filter.
Remote Cueing, 12500 2500 $8,617,500
Ground Data Filter.
Remote Supervision, 17500 25060 $10,955,000
Ground Data Filter.
Remote Paging, 17500 2500 $10,955,000
Ground Data Filter.
Remote Paging, 17500 2500 $10,955,000
Ground Cueing
Remote Paging, 17500 2500 $10,955,000
Ground Paging
Fully Automated 18750 0 $11,737,500

* Flight Software = $626 per line; Ground Software = $317 per line
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Table G.11: Paylcad Event and Failure Execution Times

LOA Human Human Flight Flight Ground Ground
(Remote, Event Failure Software | Software | Software | Software
Ground) | Recovery | Recovery Event Failure Event Failure
Time** Time** | Recovery | Recovery | Recovery Recovery
Time Time Time Time
(6,6) 60 240 N/A N/A N/A N/A
(6,5) 30 120 N/A N/A N/A N/A
(4,5) 15 60 10 10 N/A N/A
(3.5) 15 60 10 10 N/A N/A
(2,5) 60 240 10 10 N/A N/A
(2,4) 45 180 10 10 5 5
(2,2) 60 240 10 10 5 5
(1,N/A) N/A N/A 10 10 N/A N/A

* LOA’s: 1 = Fully Automated, 2 = Paging, 3 = Supervision, 4 = Cueing, 5 = Data
Filtering, 6 = No Automation
** Human elapsed time and logged time are identical for this study.

*** All times in minutes.

G.3 Deep Space Mission

For the deep space mission, both the bus and payload functions are required to meet the

mission objective requirements. The bus is assumed to be independent of the payload, and

the payload has a type 2 dependency on the bus. The mission life was assumed to be 24

months with a discount rate of 10%. The automation task reliabilities were the same as

for section G.1. The operations cost parameters were also assumed to be the same as for

section G.1.
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Table G.12: Deep Space Mission Bus and Payload Development Costs

Level of Automation Bus Dev. Costs ($M) Payload Dev. Costs ($M)
No Remote or Ground 75 75
Automation
No Remote Automation, 77 78
Ground Data Filtering
No Remote Automation, 89 98
Ground Paging
Remote Cueing, Ground 112 136
Data Filtering
Remote Paging, Ground 103 122
Cueing
Remote Paging, Ground 103 122
Paging ’
Fully Automated 101 119

¥

Table G.13: Processor Reliabilities for Bus and Payload Event and Feailure Recovery

Bus Event Bus Failure Payload Payload
Event Failure
Space Processor (Cueing or 0.999 0.99 0.99 0.9
Data Filtering)
Space Processor (Paging or 0.9999 0.999 0.999 0.99
Supervision)
Space Processor (Fully 0.99999 0.9999 0.9999 0.999
Automated)
Ground Processor {Cueing 0.999 0.99 0.99 0.9
or Data Filtering)
Ground Processor (Paging 0.9999 0.999 0.999 0.99
or Supervision)
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Table G.14: Processor Execution Times for Bus and Payload Event

and Failure Recovery
Bus Event | Bus Failure Payload Payload
Event Failure
Space Processor (Cueing or 0.25 1 0.25 I
Data Filtering)
Space Processor (Paging or 0.5 2 0.5 2
Supervision)
Space Processor (Fully 0.5 2 0.5 2
Automated)
Ground Processor (Cueing 0.1 0.5 0.1 0.5
or Data Filiering)
Ground Processor (Paging 0.2 1 0.2 1
or Supervision)

Table G.15: Human Task Execution Times

LOA No Data Cueing Supervision Paging
Automation Filtering
Bus Event (Rel. = 0.98) 10 5 5 20 50
Bus Failure, Payload 15 7 5 30 60
Event (Rel. = 0.999)
Payload Failure 20 10 5 40 920
(Rel. =0.999)

* Table G.15 provides the human logged time. The execution time is calculated by the
sum of the logged time and the round trip communications time which is dependent on the
mission destination.

Table G.16: Human Supervisory Times for Deep Space Mission

Level of Supervisory Time
Automation (persons)

Fully Automated 0
Paging 0
Supervision 3
Cueing 5
Data Filtering 8
No Automation 8
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Table G.17: Mean Times to Event, Failure, and Permanent Failure

Mean Time to Event Mean Time to Mean Time to Perm.
(min.) Failure (min.) Failure (min.)
Bus 720 274080 5429863
Payload 60 260 37733100
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Appendix H: Software Meodel

There exists several approaches to the calculation of software reliabilities [Dhillon]. Most
such methods utilize the software’s failure rate during code testing to estimate the
probability of failure during operation. One such model, the Shooman Model [Dhillon],
assumes that software errors are initially at some value. As errors are detected during
testing, they are removed, and no new errors are introduced. The number of residual
errors is defined as the difference between the number of initial errors and the number of
errors found, and the failure rate is assumed to be proportional to the number of residual
errors. Therefore, a knowledge of the error rate during testing, along with the number of

errors found can lead to a calculation of the expected error rate during operation.

The software mcdel proposed here represents a modification of existing models. Rather
than treating the code as continuously running, with errors occurring on a time basis, the
errors are assumed to occur on an execution basis, defining probabilities of experiencing
an error per execution of the code. This treats the code as a rule-based decision maker. If
the input parameters are the same, the rules wil! produce the same answer. Thus, once a
set of inputs have been tested, the code should not fail if the same inputs are experienced.
This allows the probability distribution of the inputs to be used to estimate the code’s

reliability in an actual environment where some inputs are more likely than others.

As with other software models, this software model provides an estimate of the software’s
reliability based upon software test data. It is based upon the premise that soflware is first
debugged as well as possible, and then tested systematically to uncover deeper bugs. It
also assumes that most software is essentially a black box which takes inputs (a state
vector). Based upon the values of the inputs, certain sections of the code are executed,
and generate outputs. Within this context, testing of the code is performed by feeding the
code as many unique input state vectors as practical. Much of the time, all possible
combinations of the inputs cannot be tested within a reasonable amount of time. In such

cases, those inputs which are most likely to occur are tested, and those which are unlikely
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