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Coherent feedback control of a single qubit in diamond

Masashi Hirose1 and Paola Cappellaro1

1Research Laboratory of Electronics and Department of Nuclear Science and Engineering,
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Engineering desired operations on qubits sub-
jected to the deleterious effects of their envi-
ronment is a critical task in quantum informa-
tion processing, quantum simulation and sens-
ing. The most common approach is to rely on
open-loop quantum control techniques, includ-
ing optimal control algorithms, based on ana-
lytical [1] or numerical [2] solutions, Lyapunov
design [3] and Hamiltonian engineering [4]. An
alternative strategy, inspired by the success of
classical control, is feedback control [5]. Be-
cause of the complications introduced by quan-
tum measurement [6], closed-loop control is less
pervasive in the quantum settings and, with ex-
ceptions [7, 8], its experimental implementations
have been mainly limited to quantum optics ex-
periments. Here we implement a feedback control
algorithm with a solid-state spin qubit system as-
sociated with the Nitrogen Vacancy (NV) centre
in diamond, using coherent feedback [9] to over-
come limitations of measurement-based feedback,
and show that it can protect the qubit against in-
trinsic dephasing noise for milliseconds.
In coherent feedback, the quantum system is con-
nected to an auxiliary quantum controller (an-
cilla) that acquires information about the sys-
tem’s output state (by an entangling operation)
and performs an appropriate feedback action (by
a conditional gate). In contrast to open-loop dy-
namical decoupling (DD) techniques [10], feed-
back control can protect the qubit even against
Markovian noise and for an arbitrary period of
time (limited only by the ancilla coherence time),
while allowing gate operations. It is thus more
closely related to Quantum Error Correction
schemes [11–14], which however require larger
and increasing qubit overheads. Increasing the
number of fresh ancillas allows protection even
beyond their coherence time.
We can further evaluate the robustness of the
feedback protocol, which could be applied to
quantum computation and sensing, by exploring
an interesting tradeoff between information gain
and decoherence protection, as measurement of
the ancilla-qubit correlation after the feedback al-
gorithm voids the protection, even if the rest of
the dynamics is unchanged.

To demonstrate coherent feedback with spin qubits, we
choose two of the most common tasks for qubits, imple-
menting the no-operation (NOOP) and NOT gates, while
cancelling the effects of noise. A simple, measurement-

based feedback scheme, exploiting one ancillary qubit,
was proposed in [16]. The correction protocol (Fig. 1a)
works by entangling the qubit-ancilla system before the
desired gate operation. By selecting an entangling oper-
ation Uc appropriate for the type of bath acting on the
system, information about the noise action is encoded in
the ancilla state. After undoing the entangling operation,
the qubit coherence can be restored by a feedback action,
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FIG. 1. Feedback algorithm and experimental imple-
mentation. (a) NV centre in diamond and (b) relevant
energy levels of the spin system, showing polarisation pro-
cesses under optical illumination [15]. (c) Quantum circuit.
Hadamard gates prepare and read out a superposition state
of the qubit, |φ〉q = 1√

2
(|0〉 + |1〉). Amid entangling gates

between qubit and ancilla, the qubit is subjected to noise
(and possibly unitary gates U). We assume the ancilla is
not affected by the bath, yielding 11a⊗Uqb(τ), with Uqb(τ)
the qubit-bath joint evolution. Given a dephasing bath, we
set the entangling gate to Uc = σx (conditional-NOT gate).
More generally, upon undoing the entangling operation, the
system is left in the state |Ψ(τ)〉 = 1√

2
(|0〉aK

+ |φq, ξb〉 +

|1〉aK
− |φq, ξb〉), with K± = Uqb ± UcUqbU

†
c . The entan-

gling gate Uc is designed such that K+ = 11q ⊗ χ+
b and

K− = U†q ⊗ χ−b , where χ±b act on the bath only, and Uq
on the qubit. After measuring the ancilla, we could use a
feedback operation Uq to restore the correct qubit state. The
ancilla measurement is replaced by coherent feedback (shaded
region) obtained by a controlled-correction gate (here Uq = σz
for dephasing noise). The final state of the combined system
is then 1√

2
(|0〉a χ

+
b + |1〉a χ

−
b ) |φ〉q |ξ〉b, which reveals how the

qubit is now decoupled from the bath.
(d) Experimental implementation. The laser excitation po-
larises both spins. Black sinusoidal lines refer to selective
MW pulses acting only in the mI = 1 manifold (thus mim-
icking controlled-NOT gates), while solid bars indicate non-
selective pulses. The RF excitation describes selective pulses
in the ms = 0 manifold. We use π/2 rotations about x to ap-
proximate Hadamard gates. To implement a nonselective RF
π/2 gate on the nuclear spin we embed a nonselective MW
π pulse into two consecutive RF π/2 pulses. The controlled-
correction gate is implemented by free evolution (tZ) under
hyperfine coupling.
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FIG. 2. Experimental demonstration of the feedback-based protection algorithm. (a) The signal –normalised
Photoluminescence (PL) intensity– oscillates at the hyperfine coupling frequency, A = −2.15 MHz. The initial coherent
superposition state of the qubit is preserved for a time τ > 1 ms at 390 G (red dots), while we observe a sharp decrease in the
signal amplitude at 514 G (black squares), where correlations between the qubit and ancilla states are partly measured. This
is evident in the lower panels, where we compare the fidelity at short (b), and long (c) times, for B =390 G and 514 G. To
highlight the differences while taking into account different PL intensities at the two fields, we normalised all the data so that
at short times the signal has the same (maximum) contrast. (d) Protected NOT gate (red circles). Here we show that the
coherence of the qubit is protected for a time longer than the dephasing time, τ > T ?2e, even when a NOT gate is applied. We
compare the dynamics to the NOOP dynamics (black squares), clearly showing that the NOT gate inverts the state of the qubit,
as signalled by the out-of-phase oscillations. (e) Weak measurement of the ancilla: normalised PL signal after a protection
time τ = 8µs, as a function of the ancilla measurement strength. In the experiment, we vary the ancilla measurement strength
by changing the angle of the last controlled phase rotation gate. Error bars of all experimental data in the panels represent
the signal standard deviation, calculated by error propagation from the PL intensity of the signal and of reference PL curves
acquired for each data point for ms = {0,−1}.

that is, measuring the ancilla and applying a correction
operation Uq on the qubit, based on the measurement re-
sult. While this scheme applies to a broad class of envi-
ronments, in the case of dephasing noise Ref. [16] proved
the existence of the appropriate unitaries, Uc = σx and
Uq = σz. The principle of deferred measurements [17]
allows postponing measurements until the end of a quan-
tum algorithm. Here it enables replacing the ancilla mea-
surement and classical feedback by coherent conditional
gates. The final qubit state is then completely decoupled
from the bath effects, which are instead imposed on the
ancilla. Since the scheme is compatible with any gate
that commutes with Uc, it is more flexible than DD tech-
niques. Another advantage over DD techniques is that
the scheme is valid independently of the characteristic
time scale of the bath and thus it can be used even in the
presence of a Markovian bath where DD fails. These two
advantages enable using the feedback scheme for sensing,
e.g., to detect transverse magnetic fields or, by a sim-
ple modification of the algorithm, to protect the sensing
qubit from bit-flip errors while detecting fields aligned
with the z quantisation axis [18–20].

We demonstrated experimentally this feedback-based
protection algorithm with a spin system associated with
a single Nitrogen Vacancy (NV) centre in diamond. This
system has emerged as a good candidate for quantum
information processing, as its electronic spin-1 can be

optically polarised and measured, and presents long co-
herence times even at room temperature. Here we use
an auxiliary qubit associated with the NV’s 14N nuclear
spin-1, to protect the coherence of the NV electronic
spin against dephasing noise. The Hamiltonian of the
electronic-nuclear spin system is given by

H = ∆S2
z +ωeSz+QI2

z +ωnIz+ASzIz+B(SxIx+SyIy),

where S and I are the electron and nuclear spin operator
respectively, ∆ = 2.87 GHz is the electronic zero-field
splitting and Q = −4.95 MHz the nuclear quadrupolar
interaction. The two spins are coupled by an isotropic hy-
perfine interaction with A = −2.16 MHz and a transverse
component B = −2.62 MHz [21] that can be neglected to
first order. A magnetic field is applied along the NV crys-
tal axis [111] to lift the degeneracy of the ms = ±1 level,
yielding the electron and nuclear Zeeman frequencies ωe
and ωn. In the experiment we only use a subspace of the
total system representing a two-qubit system. For con-
venience, we choose the space spanned by the four levels
{|ms,mI〉 = |0, 1〉 , |0, 0〉 , |−1, 1〉 , |−1, 0〉}. The effective
Hamiltonian can then be rewritten by using spin-1/2 op-
erators and simplified by transforming to a rotating frame
at the resonant frequency of the qubit (∆− ωe) and the
ancilla (ωn +Q): H′ = A

4 (−σez + σnz − σezσnz ).
In our high-purity diamond sample, decoherence pro-

cesses of the electronic spin can be mainly attributed to
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FIG. 3. Partial measurement of the ancilla. Comparison of the fidelity signal with (grey) and without (black) a π-pulse
on the qubit, revealing the amount of information acquired about the ancilla qubit state. (a, b) show signals measured at
short protection time, τ < T ?2e (0− 2µs), while (c, d) at longer times, τ > T ?2e (20− 22µs). Error bars are the signal standard
deviation (see Fig. 2.) The data is fitted (solid lines) with the model described in Methods. At the lower magnetic field
(B = 390G, (a, c)), the average of signals (red lines, obtained from the data fits) presents only weak oscillations, indicating
that at this field the measurement only carry very little information about the ancilla state. For magnetic field close to the
level anti-crossing (B = 514G, (b, d)), the oscillation of the average signal is more pronounced and can be observed until
τ < T ?2e while it disappears at longer times. This is an indication that the ancillary spin effectively decoheres on the T ?2e scale
as a result of the feedback algorithm .

a bath of spin-1/2 13C nuclei in the lattice (1.1% natural
abundance), yielding a short dephasing time T ?2e ∼ 4µs.
We can neglect the interaction between the bath and the
ancillary spin, which couples very weakly to any source
of magnetic field noise; indeed the much longer coherence
time of the 14N spin, T ?2n ≈ 3 ms, is limited by the NV
electronic spin relaxation and not by the 13C bath.

In the experiment, the electronic spin qubit is ini-
tialised into the ms = 0 state by optical excitation at
532 nm. At the chosen magnetic field strengths (390G-
510G), optical pumping also polarises the nuclear spin
into the mI = +1 state, thanks to resonant polarisation
exchange with the electronic spin in the excited state [15].
After initialising the qubit in the superposition state
|φ〉q = (|0〉e+|1〉e)/

√
2, we implement the feedback-based

protection algorithm using the control operations shown
in Fig. (1b). Gate operations on the qubit and ancillary
spins are performed by external microwave (MW) and ra-
dio frequency (RF) fields [22], respectively (see Methods).
Because the noise is dephasing in nature, the feedback-
based protection algorithm requires the entangling gate
to be a controlled-NOT gate, Uc = σx, while the coher-
ent feedback gate is implemented by a controlled Pauli-Z
gate, Uq = σz (see Fig. 1a and Methods). Finally, the
qubit state can be optically read out by monitoring spin-
state dependent fluorescence.

We measure the fidelity of the NOOP and NOT gates
while varying the protection time τ . As shown in Fig. 2a,
the feedback algorithm protects the qubit coherence
against the noise created by the 13C nuclear spin bath for
times τ > 1 ms, much longer than the dephasing time.
While the spin-bath in this experimental system is non-
Markovian and thus DD techniques have reached simi-
lar protection times [23], unlike DD this method would

also be effective in the Markovian noise regime, with its
ultimate limit set only by the coherence time of the an-
cillary spin and the qubit relaxation. These limits could
be overcome by re-initialising the ancilla or, if additional
ancillas (such as nearby 13C spins) are available, by re-
peating the algorithm with fresh ancillas, or by concate-
nating layers of protections against multi-axis noise (see
Methods). Moreover, our scheme is more flexible than
other protection schemes, including coherent transfer to
the ancilla qubit [24], as it still allows applying some gate
operations on the qubit [16]. For example, in our imple-
mentation the qubit was still evolving under the action
of the hyperfine coupling, as indicated by the coherent
oscillations of the fidelity (these oscillations could be re-
moved e.g. by an adequate timing choice). In addition,
we can for example implement a NOT gate on the qubit
during the feedback-protection algorithm (Fig. 2d), with-
out degrading the protection, even at times much longer
than the gate itself and independent of the time at which
the gate is performed (see Methods).

The success of the feedback-based protection algorithm
rests on the fact that the increased qubit entropy, due to
the coupling to the environment, is dumped on the an-
cilla. This could be revealed by measuring the state of the
ancilla, which would yield information about the noise,
while preserving the qubit state. If instead information
about the ancilla is collected by a correlated qubit-ancilla
measurement, the protection fails [25], as it would hap-
pen in a measurement-based feedback for an imperfect
ancilla readout. Here, we investigate this tradeoff be-
tween the protection power and information gain on the
ancilla in two different experiments. First, we transfer
a part of the ancilla entropy back to the qubit by em-
ploying a conditional gate that maps the state of the an-
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cilla onto the qubit, correlating the two qubit states. By
changing the angle of rotation of the conditional gate we
can vary the strength of the ancilla measurement, from a
weak measurement to a strong one. As more information
about the ancilla is acquired, the fidelity of the protec-
tion gate decreases (Fig. 2b). Note that we can combine
the conditional gate performing the weak measurement
of the ancilla state with the last conditional Z-gate of
the algorithm, thus in practice performing a conditional
phase-shift gate. The qubit fidelity is maximised when
the conditional gate performs the required π-rotation on
the qubit, whereas it decreases when a different phase
rotation is employed.

While this experiment clearly shows that the effec-
tiveness of the protection is lost when a measurement
of the ancilla-qubit correlation is performed, we can
show that similar results also arise naturally from non-
ideal experimental measurement conditions. We thus
repeated the experiment at a different magnetic field,
where our signal, the fluorescence intensity, carries in-
formation about the state of both the qubit and the an-
cilla, and their correlation. While at low magnetic field
we can approximate the normalised measurement opera-
tor by M0 = |0〉〈0| ⊗ 11, for magnetic fields close to the
excited-state level anti-crossing (B ≈ 500G, such that
Zeeman energy ωe = γeB is close to the excited-state
zero-field splitting, ∆e ≈ 1.4GHz) the normalised ob-
servable is M0 − (ε |10〉〈10| + η |00〉〈00|), where ε and η
take into account that each electronic-nuclear spin level
considered has a different fluorescence emission intensity
due to the excited state dynamics [26].

Because at this magnetic field the measurement ob-
servable contains partial information about correlations
between the qubit and ancilla states, the qubit fidelity
at long times is reduced (Fig. 2a), reflecting the effects
of the noise acting on the qubit. We thus reveal a trade-
off between the amount of information acquired about
the ancillary system and the protection that it provides
to the qubit. In addition, we can single out a measure-
ment of the ancilla alone, without qubit-ancilla correla-
tions, by comparing the signal acquired so far with the

signal after the qubit is rotated by a π pulse just prior
to detection. If the measurements were independent of
the state of the ancilla, the average of the two experi-
ments should not vary in time (since it corresponds to
measuring the identity operator). Indeed, this is what is
observed in experiments performed at the lower magnetic
field (Fig.3a, 3c); for a magnetic field close to the level
anti-crossing, instead, oscillations indicate that we can
extract information about the ancilla. However, at times
longer than the qubit dephasing time, the state of ancilla
has completely decohered (Fig. 3b, 3d), thus quenching
these oscillations.

In conclusion, we performed coherent feedback control
on a single solid-state qubit associated with the NV cen-
tre in diamond. The feedback algorithm was applied to
protect the qubit coherence, while performing two es-
sential qubit gates, NOOP and NOT gates, during the
protection time. We showed that this feedback-based
protection algorithm can protect the qubit coherence far
beyond the dephasing time of the qubit, even if no active
control is applied to decouple it from the noise. The algo-
rithm can be extended to applications in quantum infor-
mation processing and quantum sensing, and it could be
implemented in many other hybrid spin systems, such as
phosphorus [27] or antimony [28] donors in silicon, defects
in silicon carbide [29] or quantum dots [30]. As we ap-
plied a coherent feedback protocol, thus avoiding measur-
ing the state of the ancilla, the decoherent effects of the
bath are effectively stored in the ancilla. We were thus
able to explore an interesting compromise between the
amount of information gained about the ancilla and the
effectiveness of the protection algorithm. These results
contribute towards elucidating the robustness of feedback
control and paving the way for a more widespread adop-
tion of close-loop control strategies for solid-state qubit
systems.
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METHODS

Measurement-based vs. coherent feedback

In feedback protocols, the goal is to control an open system (the plant) so that it undergoes a desired evolution or it
reaches a desired state. To achieve this goal, feedback protocols engineer a second system (the controller) connected
to the plant. In quantum feedback there are two possible strategies: in the first one, we measure the plant output
and engineer a classical controller that manipulates the plant according to the measurement result (this is called a
measurement-based feedback protocol). In the second strategy, the controller is a second quantum system, coherently
coupled to the plant. This strategy, called coherent feedback [9], allows avoiding measurements. The controller can
gain information about the plant state by coherent operations, sharing information about the state via entangling
operations. Then, the controller can manipulate the plant based on this information to achieve the desired plant
dynamics, by performing conditional operations on the plant.

While the first strategy is more intuitive and closer to the classical scenario, coherent feedback is more intriguing,
both from a theoretical point of view, for its relation to information and entanglement theory, and from an experimental
one, as avoiding measurements often simplifies the experimental implementation. We also note that coherent feedback
formally encompasses measurement-based feedback and, as we did in this work, one can transform a measurement-
based protocol into a coherent one. To clarify the two strategies, we present the feedback protocol we considered [16]
using both strategies.

In both protocols, the ancillary qubit is first prepared in a superposition state, so that the initial state of the
combined system is |Ψ0〉 = 1√

2
(|0〉a + |1〉a) |φ〉q |ξ〉b, where |ξ〉b and |φ〉q are the initial state of the bath and qubit,

respectively. The qubit and the ancilla are then entangled by a controlled operation Uc, |Ψ1〉 = 1√
2
(|0〉a |φ〉q +

|1〉a Uc |φ〉q) |ξ〉b. The choice of Uc depends on the type of noise one wishes to refocus. As explained in details in

Ref.[16], Uc can be chosen so that it transforms the qubit-bath interaction into a block-diagonal form. This in turns will
allow to perform appropriate correction operations in each sub-manifold of the qubit. More intuitively, if the action
of the bath can be represented by a random unitary operator Uqb = eiϕr~σ·~n, with φr random and ~n a unit vector, Uc
should invert the action of the bath, that is, U†cUqbUc = U†qb. After the system evolves under the action of the bath (and

possibly of a desired gate) the entangling operation is undone, |Ψ2〉 = 1√
2
(|0〉a Uqb |φ〉q |ξ〉b + |1〉a U†cUqbUc |φ〉q |ξ〉b).

Owing to the entanglement, information about the action of the bath is encoded in the state of the ancilla. Thus, in the
measurement-based feedback algorithm, the ancilla state is measured (in the x-basis) and depending on the outcome
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FIG. 1. Feedback Circuit (see e.g. [37] for explanation of the notations). (a) Measurement-based and (b) coherent feedback
algorithms. In the shaded regions we highlight the differences between the two strategies. The measurement-based protocol
requires a measurement of the ancilla and subsequence classically-controlled operation (double lines indicate a classically wire).
The coherent feedback protocol instead does not perform a measurement but requires a coherent controlled operation. (c)
Re-initializing the ancilla or using multiple fresh ancillas can extend the feedback protection beyond the ancilla’s coherence
time. (d) A concatenated feedback algorithm with two ancillas can protect the qubit from general noise (applied along any
axis).
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a classical control operation is applied to the qubit. Indeed we can rewrite the state just before the measurement as

|Ψ2〉 =
1

2
[|+〉 (Uqb + U†cUqbUc) + |−〉 (Uqb − U†cUqbUc)] |φ〉q |ξ〉b ,

where |±〉 are eigenstates of σax. With an appropriate choice of Uc, K
± = Uqb ± UcUqbU†c reduce to K+ = 11q ⊗ χ+

b

and K− = U†q ⊗ χ−b , where χ±b are operators acting on the bath only and Uq is a unitary acting on the qubit. If
the measurement of the ancilla yields the negative eigenstate, we then apply the correction operation Uq, which is a
unitary that depends on the type of bath that affects the qubit. In the simple noise model we considered above (a
unital noise with a stochastic Hamiltonian generator Hr ∝ ~σ · ~n), the correction operation is Uq = i~σ · ~n.

In the experimental implementation, the main source of decoherence is dephasing noise, thus we fixed Uc = σx
and Uq = σz. In a magnetometry scenario, when we want to correct for bit-flip errors while measuring longitudinal
external fields, the gates would be Uc = σz and Uq = σx.

In the coherent feedback strategy, the measurement and classical correction operation are replaced by a coherent
conditional operation (see Extended Data Fig. 1.a-b). Indeed the measurement (that is, conveying information to an
external observer) is not needed for the ancilla to be able to perform a correction operation, since the ancilla already
encodes the necessary information about the qubit state and the action of the noise.

At the end of the feedback protocol, the ancilla can be recycled to perform a second round of protection, thus
allowing to extend the protection beyond the ancilla’s coherence time. In the current experiment, one could achieve
the first strategy by using coherent polarization exchange between the NV and 14N spins at lower (or much higher)
magnetic field, where optical polarization leaves the nuclear spin untouched. After a first run of the algorithm (for a
protection time τ < T ?2n) one could swap the state of the NV electronic and nuclear spins, re-polarize the NV center
and swap back the state from the nuclear spin to the NV, before applying the feedback protection for another stretch
of time. Alternatively, if the ancilla cannot be re-initialized, one could use additional fresh ancillas (see Extended
Data Fig. 1.c), for example other 13C nuclear spins in the lattice. If two ancillas are available, one can construct a
concatenated feedback algorithm (see Extended Data Fig. 1.d) that protects the qubit against multi-axis noise. The
qubit is then protected against e.g. both dephasing (T2) and depolarizing (T1) noise. More broadly, the feedback
protection algorithm could provide a first layer of protection against the strongest noise source, and be combined with
more advanced quantum error-correcting codes (even on the ancilla itself) with the goal of achieving fault tolerance.

Modeling of the time evolution of the qubit-ancilla system

We study the time evolution of the qubit during the algorithm under the effects of a bath, to better understand
the action of the feedback-based protection algorithm and obtain insight of its limits. While in the experiment noise
emerges from a spin bath with non-Markovian character, we can employ a simpler model with a Markovian bath to
find an analytical solution, since it yields the same result up to a different form of the exponential decays.

In the model, we consider dephasing of the qubit and ancilla, and the lattice relaxation of the qubit, characterized
by the time scales T ?2e, T

?
2n and T1e respectively. Letting ρ be a state of the qubit and the ancilla, the time evolution

under the Markovian environment is determined by the Lindblad equation [31]:

d

dt
ρ = i[ρ,H] +

∑
k

(LkρL
†
k −

1

2
ρL†kLk −

1

2
L†kLkρ), (1)

where L1 =
√

1
2T?2e

σez, L2 =
√

1
T1e

σe+, L3 =
√

1
T1e

σe− and L4 =
√

1
2T?2n

σen. Given an initial state ρ0 = |0〉 〈0|e⊗|1〉 〈1|n,

the state after the NOOP gate for a protection time τ is given by

ρ(τ) = 1
411− 1

4e
− τ
T1e cos2(Aτ2 )

[
e
−( 1

4T?2e
+ 1

4T?2n
)τ
σnz + e

− τ
4T?2n σez + e

− τ
4T?2e σezσ

n
z

]
+

1
8e
−( 1

T1e
+ 1

4T?2e
+ 1

4T?2n
)τ

sin(Aτ)(σnx − σexσnx ) + 1
8e
−( 1

T1e
+ 1

4T?2n
)τ

sin(Aτ)(−σey + σeyσ
n
y )+

1
4e
− τ
T1e sin2(Aτ2 )

[
e
−( 1

4T?2e
+ 1

4T?2n
)τ
σexσ

n
z + e

− τ
4T?2n σezσ

n
y + e

− τ
4T?2e σeyσ

n
x

]
.

(2)

The effectiveness of the feedback-based protection algorithm can be evaluated by measuring the probability of
retaining the initial qubit state. The fidelity is then given by the ideal normalised measurement operator M0 = |0〉〈0|e:

S(τ) = Tr[ρ(τ)M0] =
1

2
− 1

2
cos2

(
Aτ

2

)
exp

[
−
(
τ

T1e
+

τ

4T ?2n

)]
. (3)
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FIG. 2. Protected Gate: The feedback algorithm is compatible with application of NOT gates at any point during the
protection time. (a) Rabi oscillations embedded in the feedback-based protection algorithm. (b) When the NOT gate is
applied in the middle of the protection time, it reduces by half the period of oscillations due to the hyperfine coupling (See
Eq. 5). (c) More complex evolution is obtained when inserting the NOT gate at other times. Here we show the behavior for
τπ = τ/4. Black dots are experimental data with error bars representing their standard deviation (see Fig. 2) and the solid
lines are fittings to Eq. (5).

This result clearly indicates that the fidelity is not limited by the dephasing of the qubit T ?2e, but by that of the
ancillary spin and the T1e relaxation time of the qubit.

If instead we measure the normalised observable at the magnetic field corresponding to the excited state level
anticrossing, we gather some information about the ancilla, resulting in a degradation of the protection:

S(τ) = Tr[ρ(τ)M ] = 1
2 − 1

4 (ε+ η)− 1
2e
−( 1

T?1e
+ 1

4T?2n
)τ

cos2
(
Aτ
2

)
+

1
4e
− τ
T1e cos2

(
Aτ
2

) [
(ε− η)(e

− τ
4T?2e + e

− τ
4T?2n )− (ε+ η)e

−( 1
4T?2e

+ 1
4T?2n

)τ
] (4)

While the first line still indicates that the state is protected by the presence of the ancilla, terms in the second line,
which decay at the rate of T ?2e, originate from the measurement of the ancilla spin and can be observed as a reduction
of the oscillations of signal in the experiment.

In the main text we showed how it is possible to perform a NOT gate during the protection time. As the gate
time is typically short (58ns in our experiments), we studied the subsequent evolution of the qubit, to show that its
coherence is preserved for times longer than the dephasing time, T ?2e ≈ 4µs. In addition, it is possible to insert the
NOT gate at any point during the protected evolution. Due to the coupling with the ancilla qubit, the resulting signal
is given by

Sπ(τ, τπ) = Tr[ρπ(τ, τπ)M0] =
1

2
+

1

4
[cos (Aτ −Aτπ) + cos (Aτπ)] exp

[
−
(
τ

T1e
+

τ

4T ?2n

)]
, (5)

where τπ is the time at which the NOT gate is applied (with τ the total protection time). This expression was used
to fit the experimental results obtained in the main paper and the data presented in Extended Data Fig. (2).
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Z(π) Z( )θY( )π2 Y( )π2X(φ)

θ=π/2−φ

FIG. 3. Weak measurement circuit. (a) After the feedback algorithm is completed, a controlled-X rotation entangles the
qubit with the ancilla, allowing us to perform a partial measurement of the ancilla: |ψ〉e (α |1〉n +β |0〉n)→ α cos(φ) |ψ〉e |1〉n +
β sin(φ)(σx |ψ〉e) |0〉n. The strength of the measurement can be adjusted by the angle φ. (b) The control sequence in (a) can
be simplified by combining the partial measurement gates with the preceding gates of the feedback algorithm. As a result,
to implement the weak correlated measurement in the experiment, we simply perform a controlled-phase rotation gate with
θ = π/2− φ, instead of the controlled-Z (θ = π) rotation required for the feedback algorithm.

Weak measurement of the ancilla-qubit correlation

In order to observe the compromise between protection and information gained on the ancillary qubit, we perform
a weak measurement of the nuclear-electronic spin correlation, by applying a conditional gate after the feedback
algorithm and prior to the detection of the NV electronic spin by optical readout. As shown in Fig. 3.(a), the weak
measurement could be obtained by applying a conditional rotation of the NV electronic spin, after that spin has been
rotated back to its population state by a π/2 pulse. The rotation angle φ determines the strength of the measurement.

These additional gates can however be avoided, by noting that the circuit is equivalent to replacing the conditional
π Z-gate with a conditional θ Z-gate, where θ = π/2− φ sets the measurement strength, see Fig.3-(b).

The state after the feedback algorithm is given by

ρθ(τ) = 1
411− 1

4e
− τ
T1e cos2(Aτ2 )

[
e
−( 1

4T?2e
+ 1

4T?2n
)τ
σnz + e

− τ
4T?2n σez + e

− τ
4T?2e σezσ

n
z

]
+

1
8e
− τ
T1e (e

− τ
T?2n − e−

τ
T?2e ) cos2(Aτ2 )α(θ)(σez + σezσ

n
z ) + ...

(6)

where α(θ) = 1 + cos(Aτ/2+θ)
cos(Aτ/2) . Assuming no contrast of the measurement of the nuclear spin (ε = η = 0), the signal

is then given by

Sθ(τ) =
1

2
− 1

2
e
−( 1

T?1e
+ 1

4T?2n
)τ

cos2

(
Aτ

2

)
+

1

2
e−

τ
T1e (e

− τ
T?2n − e−

τ
T?2e ) cos2

(
Aτ

2

)
α(θ). (7)

While for θ = π (α = 0) we recover the ideal fidelity, protected against the electron dephasing noise, when θ 6= π we
perform a partial measurement of the ancilla, but the signal now decays at the time constant T ?2e.

Experimental setup

Experiments were performed using an electronic grade single crystal diamond plate provided by Element 6, with
[100] orientation and a nominal nitrogen concentration less than 5 ppb. A home-built confocal microscope was used
to scan the sample (scanning piezo stage Nano-3D200, Mad City Labs) and measure a single naturally occurring
Nitrogen Vacancy (NV) centre situated ∼ 10µm from the surface of the diamond. The NV centre is coherently
excited by a optical pulse at 532 nm provided by a diode-pump laser (Coherent Compass 315M) and shaped by a
acoustic optical modulator (AOM) with rise time ≤ 7ns (1250C-848, Isomet), and then delivered by means of a 100x,
NA = 1.3 oil immersion objective lens (Nikon Plan Fluor). The fluorescence by the NV centre is collected by the
same objective lens and then sent to a single-mode broadband fiber of NA = 0.12 (Font Canada), being connected to
a single photon detector (SPCM-AQRH-13-FC, Perkin Elmer). An Arbitrary Waveform Generator (AWG) with 1.2
GS/s (AWG5014B, Tektronix) plays a central role in generating microwave (MW) pulses and radio frequency (RF)
pulses, as well as timing the AOM and the single photon detector. MW pulses are shaped by mixing the signal from
the AWG with a carrier MW field provided by a signal generator (N5183A-520, Agilent) with the aid of an I/Q mixer
(IQ-0318L, Marki Microwave) and then cleaned up by a switch (ZASWA-2-50DR+, Mini-Circuits) while RF pulses
are directly generated by the AWG. The MW pulse and RF pulses are combined after amplification (GT-1000A,
Gigatronics for MW and LZY-22+, Mini-Circuits for RF) and delivered to the sample via a thin copper wire with a
diameter of 25 µs (Alfa Aesar).



10

Dynamics and control of the two-qubit system

1. Hamiltonian of the NV-14N system

The NV centre spin system consists of the electronic spin (S = 1) and the nitrogen nuclear spin (I = 1) that interact
strongly via the hyperfine coupling (A ≈ −2.15 MHz). A static magnetic field is applied to lift the degeneracy of the
electronic ms = ±1 and nuclear spin mI = ±1 levels, thus yielding the Hamiltonian

H = ∆S2
z + ωeSz +QI2

z + ωnIz +ASzIz, (8)

where S and I are the electron and nuclear spin operator respectively, ∆ = 2.87 GHz is the electronic zero-field
splitting and Q = −4.95 MHz the nuclear quadrupolar interaction.

We define one qubit in the electronic spin subspace as |ms = 0〉 ≡ |1〉q and |ms = −1〉 ≡ |0〉q. A second, ancillary

qubit is defined in the subspace of the nuclear spin as |mI = +1〉 ≡ |1〉a and |mI = 0〉 ≡ |0〉a. Both spins are driven
on-resonance on these selected transitions; we can thus neglect other parts of the Hilbert space and only express the
Hamiltonian in the rotating frame in the subspace of interest. We then rewrite the Hamiltonian in terms of spin-1/2
operators σe,nx,y,z defined by the basis above as follows,

H =
A

4
(−σez + σnz − σezσnz ). (9)

The hyperfine interaction induces a frequency shift, thus enabling to adjust the selectivity of the MW pulse by tuning
the transition rate (Ωe). A strong driving, Ωe = 20MHz � A, is employed to drive the qubit non-selectively for any
ancilla state, while Ωe = 500kHz � A is used to drive the qubit selectively on the ancilla state, thus engineering
conditional gates. The RF frequency is on resonance with the transition between |0, 1〉 and |0, 0〉. The transition rate
is around Ωn = 20− 40 kHz, which already reflects an enhancement due to electronic virtual transitions mediated by
the transverse component of the hyperfine coupling [21]. Since the nuclear Rabi transition rate is always smaller than
the detuning given by the hyperfine interaction (Ωn � A), only selective driving of the ancillary spin is available and
unconditional gates need to be engineered with composite pulses.

2. Coherent control of the nuclear spin

The 14N nuclear spin is coherently controlled by employing a resonant RF field. In general, the nuclear spin state
cannot be directly measured optically with high fidelity. Thus, after driving the nuclear spin, we apply a gate to
map the nuclear spin state to the NV electronic spin [Fig.4-(a)]. In order to calibrate quantum gates required for the
feedback-based protection algorithm (π/2-rotation), we first characterize the nuclear spin, by measuring the resonance
frequency of the transition |1〉q |1〉a ↔ |1〉q |0〉a [Fig.4-(b)] and the nuclear Rabi oscillations [Fig.4-(c)]. We note that

despite the small gyromagnetic ratio of the nitrogen (γn = 0.308 kHz/G) its Rabi oscillations are significantly enhanced
due to the transverse hyperfine coupling with the NV spin (we achieve an enhancement factor of about 20 over the
bare Rabi frequency around 500 G [21]). To further characterize the nuclear spin ancillary qubit, we measured the
dephasing time, T ?2n, by performing a Ramey experiment [Fig.4-(d] and obtained T ?2n ≈ 3.2 ms.

While the dynamics of the 14N spin under RF driving is relatively simple when the NV electronic spin is in one of
the population states, further complications arise when the NV qubit is in a superposition state, that stem from the
electronic spin decoherence, its evolution due to the RF driving, and due to the hyperfine interaction.

For a typical nuclear spin gate, such as the π/2 rotation required for the algorithm, we need to consider decoherence
process of the electronic spin, which progresses at a faster rate (T ?2e ∼ 4µs) than the gate operation (tπ ∼ 30µs). In
addition, we need to engineer unconditional gates, even when the driving field can only rotate the nuclear spin in
one of the electronic spin manifolds. In order to protect the qubit state during the gate operation, a MW π pulse
is inserted in the middle of the RF pulse and is then compensated by adding a second MW -π pulse at the end of
the RF pulse. This procedure simultaneously also solves the second issue, as it produces a non-selective gate. The
Hamiltonian under the RF driving in the rotating frame is given by H = H+HRF with

HRF(t) = −1

2
Ωeσ

e
z cos(ωRFt+ φ) +

√
2Ωnσ

n
x . (10)

Here Ωe,z and Ωn are the coupling strength of the electronic spin and the nuclear spin with the longitudinal and
transverse component of the RF field respectively. We can neglect the coupling of the nuclear spin with the longitudinal
component of the RF field as well as the transverse component of the RF effects on the electronic field, since at most
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FIG. 4. Control and coherence of the nitrogen nuclear spin. (a) Typical control sequence: The first laser pulse
initialises the spins into the |0, 1〉 state. After a nuclear spin gate (RF driving), to detect the nuclear spin state we employ a
MW selective π-pulse that maps the nuclear spin state onto that of the NV spin, which is subsequently detected by the second
laser pulse. (b) Nuclear magnetic resonance at ∼ 390 G. We sweep the RF frequency at fixed pulse length. The spectrum
dip indicates the resonant frequency of the |0, 1〉 ↔ |0, 0〉 transition. (c) Nuclear Rabi oscillations. We drive resonantly the
|0, 1〉 ↔ |0, 0〉 transition. The measured nutation rate (Rabi frequency) is Ωn ≈ 26.3 kHz [21]. (d) Nuclear Ramsey fringes
under the sequence π/2−τ−π/2, where τ is the free evolution time. We measure a dephasing time of the nuclear spin T ?2n = 3.2
ms, which is limited by the NV electronic spin lattice relaxation process (T1 = 4.5 ms, red circles and dashed line). Error
bars in (c-d) represent the signal standard deviation, calculated by error propagation from the PL intensity of the signal and
reference PL curves acquired for each data point for ms = {0,−1}.

it induces a resonance shift (Bloch-Siegert shift [32]) that is however refocused by the MW π pulses embedded in the
RF pulse. The longitudinal driving imposes an additional, quite large, phase modulation Θ(τ) on the NV spin, even
in the presence of the spin echo π pulses:

Θ(τ) = −Ωe
4

(∫ τ

0

cos(ωRFt+ φ)dt+

∫ 2τ

τ

cos(ωRFt+ φ)dt
)

=
2Ωe
ωRF

cos(ωRFτ + φ) sin(
ωRFτ

2
)2. (11)

While in principle one can remove this phase by a proper selection of the timing, in practice this often clashes with
other time requirements set by the need to refocus effects due to the hyperfine couplings (explained below).

In our experiment, we used a more flexible strategy to remove this undesired modulation, by employing time-
proportional phase incrementation [33] (TPPI) of the RF phase φ(τ). Θ(τ) in Eq. 11 can indeed be canceled at
any time by selecting φ(τ) = −ωRF τ . Unlike stroboscopic detection with time interval δτ = 2π/ωRF, TPPI enables
continuous measurement of the 14N spin Rabi driving and it is also of great use when the time resolution of experiment
system is limited and one cannot select δτ with enough precision. Defining U(τ) = exp(−iHτ) and R±π = exp(∓iπσex),
the two-spin propagator V (τ) under TPPI conditions is given by

V (τ) = R−πU(τ)RπU(τ) = e−i[
A
4 (σez+σnz+σezσ

n
z )+
√

2Ωnσ
n
x ]τe−i[

A
4 (−σez+σnz−σ

e
zσ
n
z )+
√

2Ωnσ
n
x ]τ

= cos
(√

2Ωnτ
) [

cos
(
At
2

)
11− i sin

(
At
2

)
σnz
]
− i sin

(√
2Ωnτ

) [
cos
(
At
2

)
σnx + sin

(
At
2

)
σezσ

n
x

]
,

(12)

where we took the limit A � Ωn to neglect off-resonance driving. We note that due to the combination of the
hyperfine coupling Aσezσ

n
z /4 and the RF driving 1

2ΩnB1xσ
n
x , the propagators of the nuclear spin before and after the

MW π pulse do not commute and the nuclear spin evolves about non-parallel axes in the two time intervals. This
can be directly observed as a modulation of the electronic spin echo, similar to the more common ESEEM [34] for
anisotropic hyperfine coupling. In order to avoid the effects of the hyperfine, we can set Aτ = 2π. Since A� Ωn, we
can choose a timing τ fulfilling both the above condition and the desired RF pulse time, yielding V (τ) = σnx .
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FIG. 5. Electronic and nuclear-spin dependent fluorescence at different magnetic field strengths. At the lower
magnetic field (left, B= 390G), the fluorescence intensity shows only a weak dependence on the nuclear spin state in the
ms = −1 manifold, whereas at B=514 G, which is very close to the ESLAC, a strong dependence on the nuclear spin state
is observed in both manifolds (right panel). From these fluorescence measurements, we obtained the parameters (ε, η) used
to model the measurement operator. In the experiments, the detection time delay and window were optimised to obtain the
maximum contrast of the state at each magnetic field.

3. Measurement model and nuclear-spin dependent fluorescence intensity

Measurement of the NV spin state is achieved by monitoring the photoluminescence (PL) under laser excitation at
532 nm. Thanks to spin-dependent photodynamics in the excited state, the PL intensity is correlated with the NV
electronic spin population. In an addition, at magnetic fields close to the excited state level anticrossing (ESLAC), the
PL intensity becomes modulated by the nuclear spin state as well, due to the strong hyperfine coupling between the
electronic and the nuclear spins in the excited state [15, 35]. Thus the observable in the experiment can be modelled
by the operator:

M = n1,1 |1, 1〉 〈1, 1|+ n1,0 |1, 0〉 〈1, 0|+ n0,1 |0, 1〉 〈0, 1|+ n0,0 |0, 0〉 〈0, 0| , (13)

where nmq,ma are stochastic variables denoting the total number of photons [36] detected during the measurement time
(300 ns) from the state being initially |mq,ma〉. In writing the observable, we neglected the ms = +1 and mI = +1
states, which are never populated in the experiment. In order to reduce the photon shot noise, all measurements
are repeated 5 × 105 times. The raw PL signal S at each measured point of the sequence is normalised by the PL
collected from two fiducial states |1, 1〉 and |0, 1〉. These states are prepared at each average from optical polarisation
and optical polarisation followed by adiabatic passage of the electronic spin to the |1, 1〉 state. The raw signal from a
state ρ, is then normalised to yield

S =
Tr {Mρ} − 〈n0,1〉
〈n1,1〉 − 〈n0,1〉

= Tr
{
Mρ

}
, (14)

where we define the normalised measurement operator M :

M =

 1 0 0 0
0 1−ε 0 0
0 0 0 0
0 0 0 −η

 =
1

4
[(2− η − ε)11 + (ε+ η)σnz + (η − ε+ 2)σez + (ε− η)σezσ

n
z ] . (15)

Here ε = (〈n1,1〉 − 〈n1,0〉)/(〈n1,1〉 − 〈n0,1〉) and η = (〈n0,1〉 − 〈n0,0〉)/(〈n1,1〉 − 〈n0,1〉) describe the optical distin-
guishability of the nuclear spin states in each electronic manifold. Usually, the nuclear spin state does not affect PL
intensity, i.e., ε = η = 0, since it does not affect the relaxation process of the NV center. However, close to the
ESLAC, dynamics driven by the strong excited-state hyperfine coupling renders the relaxation process of the NV spin
correlated with the nuclear spin state [26], leading to a optical contrast among the nuclear spin states. Thus, the
strength of measurement of the nuclear spin can be varied by changing the static magnetic field. In our experiments
we choose two working conditions that, while still allowing nuclear spin polarisation (P > 0.9) by optical pumping,
could highlight differences due to partial measurement of the ancilla spin. We thus performed the experiment at two
different magnetic field (390G and 514 G) characterised by different strengths of the nuclear spin optical contrast
(ε = 0.14, η = 0.16 at B = 390G and ε = 0.86, η = 0.25, for B = 514G). These values were estimated by measuring
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the PL intensity for all four states (see Fig. 5).
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