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DISTINGUISHED CONJUGACY CLASSES AND ELLIPTIC

WEYL GROUP ELEMENTS

G. LUSZTIG

Abstract. We define and study a correspondence between the set of distin-
guished G0-conjugacy classes in a fixed connected component of a reductive
group G (with G0 almost simple) and the set of (twisted) elliptic conjugacy
classes in the Weyl group. We also prove a homogeneity property related to
this correspondence.

Introduction

0.1. Let k be an algebraically closed field of characteristic p ≥ 0 and let G be a
(possibly disconnected) reductive algebraic group over k. Let W be the Weyl group
of G0. (For an algebraic group H, H0 denotes the identity component of H.) We
view W as an indexing set for the orbits of G0 acting diagonally on B×B where B
is the variety of Borel subgroups of G0; we denote by Ow the orbit corresponding
to w ∈ W . Note that W is naturally a Coxeter group; its length function is denoted
by l : W → N. Let I be the set of simple reflections of W ; for any J ⊂ I let WJ

be the subgroup of W generated by J .
Now any δ ∈ G/G0 defines a group automorphism εδ : W → W preserving

length, by the requirement that

(B,B′) ∈ Ow, g ∈ δ =⇒ (gBg−1, gB′g−1) ∈ Oεδ(w).

The orbits of the W -action w1 : w �→ w−1
1 wεδ(w1) on W are said to be the εδ-

conjugacy classes in W . Let W δ be the set of εD-conjugacy classes in W . We say
that C ∈ W δ is elliptic if for any J � I such that εD(J) = J we have C ∩WJ = ∅.
For any C ∈ W δ let Cmin be the set of elements of C where the length function
l : C → N reaches its minimum value. Let c be a G0-conjugacy class of G. Let δ
be the connected component of G that contains c and let C ∈ W δ be elliptic. For
any w ∈ Cmin we set

Bc
w = {(g,B) ∈ c× B; (B, gBg−1) ∈ Ow}.

Note that G0 acts on Bc
w by x : (g,B) �→ (xgx−1, xBx−1). We write C♣c if the

following condition is satisfied: for some/any w ∈ Cmin, B
c
w is a single G0-orbit

for the action above (in particular it is nonempty). The equivalence of “some” and
“any” follows from [L5, 1.15(a)] (which is based on results in [GP]).
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0.2. For an algebraic group H we denote by ZH the center of H; for h ∈ H we
denote by ZH(h) the centralizer of h in H. An element g ∈ G or its G0-conjugacy
class is said to be distinguished if ZG(g)

0/(ZG0 ∩ZG(g))
0 is a unipotent group. The

notion of distinguished element appeared in [BC] in the case where g is unipotent
and G = G0.

The following is the main result of this paper.

Theorem 0.3. Assume that G0 is almost simple and that |G/G0| ≤ 2. If G0 is
of exceptional type assume further that G = G0 and that p is either 0 or a good

prime for G. Then for any distinguished G0-conjugacy class c in G contained in a
connected component δ of G, there exists an elliptic C ∈ W δ such that C♣c.

In the case where c is unipotent the theorem is known from [L1, Theorem 0.2].
In particular, the theorem holds when p = 2. Thus we may assume that p �= 2. We

may also assume that G/G0 → Aut(W ), δ �→ εδ is injective. It is enough to verify
the theorem assuming that G0 is simply connected (the theorem then automatically
holds without that assumption). If G0 is of type A and G = G0, then c must be a
regular unipotent class times a central element and we can take C to be the Coxeter
class. The case where G = G0 is of type B or C is treated in §1. The case where G0

is of type D is treated also in §1. (In this case we may assume that |G/G0| = 2.)
The case where G0 is of type A and |G/G0| = 2 is treated in §2. (In this case we
may assume that c /∈ G0.) The case where G is of exceptional type is treated in §3.

We will show elsewhere that C in the theorem is unique (in the case where c is
unipotent this is known from [L1]).

0.4. The results of this paper have applications to the study of character sheaves.
We will show elsewhere how they can be used to prove that an irreducible cuspidal
local system on c (a distinguished G0-conjugacy class in a connected component δ
of G), extended by 0 on δ − c, is (up to shift) a character sheaf on δ. In the case
where δ = G0 this gives a new, constructive proof of a known result, but in the
case where δ �= G0, it is a new result.

0.5. For any integers x, y such that y ≥ 0 we set
(
x
y

)
= x(x−1) . . . (x−y+1)(y!)−1.

Thus
(
x
0

)
= 1.

1. Isometries

1.0. In this section we assume that p �= 2. Let ε ∈ {1,−1}. Let V be a k-vector
space of finite dimension n with a given nondegenerate bilinear form (, ) : V ×V → k
such that (x, y) = ε(y, x) for all x, y; we then say that (, ) is ε-symmetric. Let Is(V )
be the group of isometries of (, ).

Assume that we are given g ∈ Is(V ). For any z ∈ V and i ∈ Z we set zi = giz ∈
V . Similarly, for any line L in V and i ∈ Z we set Li = giL ⊂ V . For any z, z′ in
V and any i, j, k ∈ Z we have

(a) (zi+k, z
′
j+k) = (zi, z

′
j).

Let a1 ≥ a2 ≥ . . . , b1 ≥ b2 ≥ . . . be two sequences in N such that

if i ≥ 1, ai = ai+1, then ai+1 = 0,
if i ≥ 1, bi = bi+1, then bi+1 = 0,
if ai > 0, then (−1)ai = −ε,
if bi > 0, then (−1)bi = −ε.
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It follows that ai = 0 for large i and bi = 0 for large i. Thus, (ai), (bi) are strictly
decreasing sequences of integers ≥ 0 of fixed parity as long as they are nonzero. We
assume that

n = (a1 + a2 + . . . ) + (b1 + b2 + . . . ).

Define κ ∈ {0, 1} by n− κ ∈ 2N. Note that if ε = −1 we have κ = 0. Define k ≥ 0
by {i ≥ 1; aibi > 0} = [1, k]. For i ≥ 1 we set ci = ai + bi. We have c1 ≥ c2 ≥ . . . .
We define pi ∈ N for i ≥ 1 as follows.

If ε = −1 we have ci ∈ 2N and we set pi = ci/2 for i ≥ 1.
If ε = 1 and i ∈ [1, k] we again have ci ∈ 2N and we set pi = ci/2.
If ε = 1 and i > k we have ci ∈ 2N + 1 or ci = 0 and we define pi by requiring

that for s = 1, 3, 5, . . . we have:

(pk+s, pk+s+1) = ((ck+s − 1)/2, (ck+s+1 + 1)/2) if ck+s ≥ 1, ck+s+1 ≥ 1,

(pk+s, pk+s+1) = ((ck+s − 1)/2, 0) if ck+s ≥ 1, ck+s+1 = 0,

(pk+s, pk+s+1) = (0, 0) if ck+s = 0, ck+s+1 = 0.

We define σ as follows. We have p1 ≥ p2 ≥ · · · ≥ pσ where pi ∈ N>0 for i ∈ [1, σ],
pi = 0 if i > σ. This defines σ. If n = 0 or n = 1 we have σ = 0. We set p′t = pt if
t ∈ [1, σ], p′t = 1/2 if κ = 1, t = σ + 1. We have

2(p1 + p2 + · · ·+ pσ) + κ = 2(p′1 + p′2 + · · ·+ p′σ+κ) = n.

Let CV
a∗,b∗

be the set of all g ∈ Is(V ) such that g2 : V → V is unipotent and such
that on the generalized 1-eigenspace of g, g has Jordan blocks of sizes given by the
nonzero numbers in a1, a2, . . . and on the generalized (−1)-eigenspace of g, −g has
Jordan blocks of sizes given by the nonzero numbers in b1, b2, . . . . (Note that the
union of the sets CV

a∗,b∗
where a∗, b∗ as above vary is exactly the set of elements of

Is(V ) which are distinguished in the sense of 0.2.)

For g ∈ CV
a∗,b∗

let C̃V
g;a∗,b∗

be the set consisting of all L1, L2, . . . , Lσ+κ where

Lt(t ∈ [1, σ + κ]) are lines in V (the upper scripts are not powers) such that for
i, j ∈ Z we have:

(Lt
i, L

t
j) = 0 if |i− j| < pt, (L

t
i, L

t
j) �= 0 if j − i = pt(t ∈ [1, σ + κ]),

(Lt
i, L

r
j) = 0 if i− j ∈ [−pr, 2pt − pr − 1] and 1 ≤ t < r ≤ σ + κ.

Here Lt
i = giLt. We then have:

(b) V =
⊕

t∈[1,σ+κ],i∈[0,2p′
t−1] L

t
i.

(See [L3, 1.3].) Let C̃V
a∗,b∗

be the set of all (g, L1, L2, . . . , Lσ+κ) such that g ∈
CV
a∗,b∗

and (L1, L2, . . . , Lσ+κ) ∈ C̃V
g;a∗,b∗

.

Now Is(V ) acts on CV
a∗,b∗

by γ : g �→ (γgγ−1) and on C̃V
a∗,b∗

by

(c) γ : (g, L1, L2, . . . , Lσ+κ) �→ (γgγ−1, γ(L1), γ(L2), . . . , γ(Lσ+κ)).

Let I ′ =
∏

t∈[1,σ+κ]{1,−1}. If ε = −1 let I = I ′. If ε = 1 let I be the subgroup of

I ′ consisting of all (ωt)t∈[1,σ+κ] such that ωt = ωt+1 for any t such that {t, t+1} ⊂
[k+1, σ+ κ], t = k+1 mod 2. Thus I is a finite elementary abelian 2-group. The
following is the main result of this section.
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Theorem 1.1. (a) C̃V
a∗,b∗

is nonempty;

(b) the action 1.0(c) of Is(V ) on C̃V
a∗,b∗

is transitive;

(c) the isotropy group in Is(V ) at any point of C̃V
a∗,b∗

is canonically isomorphic
to I.

The proof (by induction on n) is given in 1.2–1.20.

1.2. We start with the case where a∗, b∗ have a single nonzero term. Let a ∈ N, b ∈
N, p ∈ N>0 be such that a + b = 2p. We set −ε = (−1)a = (−1)b. For e ∈ N we
define ne ∈ Z by (1 − T )a(1 + T )b =

∑
e∈N neT

e. We have n0 = 1, n2p−i = −εni

for i ∈ [0, 2p], ne = 0 if e > 2p. We define xe ∈ Z for e ∈ N by x0 = 1 and
n0xe + n1xe−1 + · · ·+ nex0 = 0 for e ≥ 1.

1.3. In the setup of 1.2, let V be a k-vector space with basis {wi; i ∈ [0, 2p − 1]}.
Define g ∈ GL(V ) by

gwi = wi+1 if i ∈ [0, 2p− 2], gw2p−1 = ε
∑

i∈[0,2p−1]

niwi.

We have the identity (1 − g)a(1 + g)b = 0 : V → V , that is (setting τ =∑
i∈[0,2p] nig

i : V → V ), we have τ = 0. Define a bilinear form (, ) on V by

(wi, wj) = 0 if i, j ∈ [0, 2p− 1], |i− j| < p,

(wi, wj) = xs if i, j ∈ [0, 2p− 1], j − i = p+ s, s ≥ 0,

(wi, wj) = εxs if i, j ∈ [0, 2p− 1], i− j = p+ s, s ≥ 0.

Clearly (x, y) = ε(y, x) for all x, y and (, ) is nondegenerate; the determinant of
the matrix ((wi, wj)) is ±1. We show that g is an isometry of (, ). It is enough to
show that

(gwi, gwj) = 0 if |i− j| < p,

(gwi, gwj) = xs if j − i = p+ s, s ≥ 0,

(gwi, gwj) = εxs if i− j = p+ s, s ≥ 0.

This is obvious except if one or both i, j are 2p−1. If i = 2p−1, p−1 < j < 2p−1,
we must check that

(ε
∑

i′∈[0,2p−1]

ni′wi′ , wj+1) = 0,

that is, ∑
i′∈[0,j+1−p]

ni′xj+1−i′−p = 0,

which is true since j + 1− p > 0. If i = 2p− 1, 0 ≤ j < p− 1, we must check that

(ε
∑

i′∈[0,2p−1]

ni′wi′ , wj+1) = εx2p−1−j−p,

that is, ∑
i′∈[j+1+p,2p−1]

ni′xi′−j−1−p = εxp−1−j ,

that is,

−ε
∑

i′∈[j+1+p,2p−1]

n2p−i′xi′−j−1−p = εxp−1−j ,
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that is, ∑
i′∈[j+1+p,2p]

n2p−i′xi′−j−1−p = 0,

which is true since p− j − 1 > 0.
If i = 2p− 1, j = p− 1, we must check that

(ε
∑

i′∈[0,2p−1]

ni′wi′ , wp) = εx0,

that is, n0x0 = x0, which is obvious. The case where j = 2p − 1, i < 2p − 1 is
entirely similar. It remains to show (in the case where i = j = 2p− 1) that

(ε
∑

i′∈[0,2p−1]

ni′wi′ , ε
∑

i′∈[0,2p−1]

ni′wi′) = 0.

If ε = −1 this is obvious since (x, x) = 0 for any x. Now assume that ε = 1. We
must show

2
∑

i′∈[0,p−1]

∑
u∈[0,p−1−i′]

nunu+p+i′xi′ = 0,

that is, ∑
u∈[0,p−1]

nu

∑
i′∈[0,p−1−u]

np−u−i′xi′ = 0.

We have
∑

i′∈[0,p−u] np−u−i′xi′ = 0 if p > u hence it is enough to show that∑
u∈[0,p−1]

nun0xp−u = 0,

that is, ∑
u∈[0,p−1]

nuxp−u = 0.

We have ∑
u∈[0,p]

nuxp−u = 0

since p > 0. Hence it is enough to show that np = 0. This follows from np = −εnp.
(We use that ε = 1.)

Now g ∈ GL(V ) is regular in the sense of Steinberg and satisfies (g−1)a(g+1)b =
0 on V. Hence V = V + ⊕ V − where g acts on V + as a single unipotent Jordan
block of size a and −g acts on V − as a single unipotent Jordan block of size b. Note
that if ε = 1 we have det(g) = (−1)b = −1. It follows that, if L is the line spanned

by w0 and a∗ = (a, 0, 0, . . . ), b∗ = (b, 0, 0, . . . ), then (g, L) ∈ C̃V
a∗,b∗

. In particular,

C̃V
a∗,b∗

�= ∅.

1.4. In the setup of 1.2, let V, (, ) be as in 1.0. (Recall that −ε = (−1)a = (−1)b.)
Let g ∈ Is(V ). We assume that dimV = 2p and that on the generalized 1-
eigenspace of g, g is a single unipotent Jordan block of size a or is 1 (if a = 0)
and on the generalized (−1)-eigenspace of g, −g is a single unipotent Jordan block
of size b or is 1 (if b = 0). Moreover, we assume that we are given w ∈ V such that
(with notation of 1.0) we have for i, j ∈ Z:

(wi, wj) = 0 if |i− j| < p; (wi, wj) = 1 if j − i = p.
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We show:

(a) The following equalities hold for any i, j in Z:
(a1) (wi, wj) = 0 if |i− j| < p,
(a2) (wi, wj) = xs if j − i = p+ s, s ≥ 0,
(a3) (wi, wj) = εxs if i− j = p+ s, s ≥ 0.

Note that (a3) follows from (a2). In (a1) and (a2) we can assume that i = 0. (We
use 1.0(a).) Since (w0, wj) = ε(w0, w−j) for any j we can also assume in (a1) that
j ≥ 0 so that j ∈ [0, p − 1] and (a1) holds. We prove (a2) with i = 0, j = p + s
by induction on s ≥ 0. If s = 0 the result is already known. Assume now that
s ≥ 1. Applying (1 − g)a(g + 1)b = 0 to ws−p we obtain

∑
e∈[0,2p] news−p+e = 0.

Taking (w0, ) we obtain
∑

e∈[0,2p] ne(w0, ws−p+e) = 0. For e in the sum we have

s− p+ e ≥ −p+ 1; hence by (a1) we can assume that we have s− p+ e ≥ p. Thus∑
e∈[0,2p];s−p+e≥p ne(w0, ws−p+e) = 0. By the induction hypothesis this implies∑

e∈[0,2p−1];s−p+e≥p

nexs−2p+e + (w0, ws+p) = 0.

It is then enough to show that∑
e∈[0,2p−1];s−p+e≥p

nexs−2p+e + xs = 0

or that ∑
e∈[0,2p];s−p+e≥p

n2p−exs−2p+e = 0

or that ∑
h≥0,h′≥0;h+h′=s

nhxh′ = 0.

But this holds by the definition of xe since s ≥ 1.

1.5. Let p ≥ 0. For e ≥ 0 we set

ne = (−1)e
(
2p+ 1

e

)

so that (1 − T )2p+1 =
∑

e≥0 neT
e. For e ≥ 1 we set xe = 2(p + e)(2p + 1)(2p +

2) . . . (2p+ e − 1)e!−1 (note that x1 = 2p+ 2). We set x0 = 1 if p > 0 and x0 = 2
if p = 0. If p > 0, then for any u ≥ 2 we have

(a)
∑

j∈[0,u]

njxu−j = 0.

(See [L3, line 4 of p. 134]) This shows by induction on e that xe ∈ N for any e ≥ 0.
For u ∈ Z we set fp(u) = 0 if |u| < p and fp(u) = xe if |u| = p + e with e ≥ 0.

For u ∈ Z we have

(b) fp(u) = 2(2p)!−1
∏

k∈[0,p−1]

(u2 − k2).

For example, f0(u) = 2. Also, fp(p) = 1 if p ≥ 1.
Setting Ap =

∑
e≥0 fp(p+ e)T e =

∑
e≥0 xeT

e (where T is an indeterminate) we

have, by (a), (1− T )2p+1Ap = 1 + T hence

(c) Ap = (1− T )−2p−1(1 + T ).



CONJUGACY CLASSES AND ELLIPTIC WEYL GROUP ELEMENTS 229

1.6. In the setup of 1.5 let E be a k-vector with basis w0, w1, . . . , w2p. We define
a symmetric bilinear form (, ) : E × E → k by (wi, wj) = (−1)pfp(i − j) for i, j ∈
[0, 2p]. We define g ∈ GL(E) by gwi = wi+1 if i ∈ [0, 2p−1], gw2p =

∑
j∈[0,2p] njwj .

We have (g − 1)2p+1 = 0 hence g : E → E is unipotent (with a single Jordan
block). We show that g is an isometry of (, ). We can assume that p > 0. It is enough
to show that (wi+1, gw2p) = (wi, w2p) for i ∈ [0, 2p−1] and (gw2p, gw2p) = 0. Thus
we must show that

(a)
∑

j∈[0,2p+1],e≥0,|i+1−j|=e+p

njxe = 0 if i ∈ [0, 2p− 1],

(b)
∑

j,j′∈[0,2p],e≥0,|j−j′|=e+p

njnj′xe = 0.

Now (a) for i is equivalent to (a) for 2p − 1 − i (we use the substitution j �→
2p+1−j); hence it is enough to prove (a) for i ∈ [p, 2p−1]. Now (a) for i = p reads
x1 − (2p+1)x0 − x0 = 0, that is, x1 = 2p+2, which is true. For i ∈ [p+1, 2p− 1],
(a) reads

∑
j∈[0,2p+1],i+1−j≥p njxi+1−j−p = 0, that is (setting u = i + 1 − p),∑

j∈[0,u] njxu−j = 0. This follows from 1.5(a) since u ≥ 2. This proves (a).

We prove (b). The left hand side of (b) equals∑
j′∈[0,2p]

nj′
∑

j∈[0,2p],e≥0,|j−j′|=e+p

njxe

=
∑

j∈[0,2p],e≥0,|j|=e+p

njxe +
∑

j′∈[1,2p]

nj′

∑
j∈[0,2p],e≥0,|j−j′|=e+p

njxe

=
∑

j∈[0,2p],e≥0,|j|=e+p

njxe +
∑

j′∈[1,2p]

nj′

∑
j∈[0,2p+1],e≥0,|j−j′|=e+p

njxe

−
∑

j′∈[1,2p]

nj′
∑

e≥0,|2p+1−j′|=e+p

n2p+1xe.

In the last expression the second sum over j is zero by (a) and the second sum over
j′ becomes (setting j = 2p+ 1− j′)∑

j∈[1,2p]

nj

∑
e≥0,|j|=e+p

xe.

Hence the left hand side of (b) equals∑
j∈[0,2p],e≥0,|j|=e+p

njxe −
∑

j∈[1,2p]

nj

∑
e≥0,|j|=e+p

xe =
∑

e≥0,|0|=e+p

xe

and this is zero since e+ p > 0. Thus (b) holds.
For any i ∈ Z we set wi = giw0. This agrees with the earlier notation when

i ∈ [0, 2p]. We show:

(c) (wi, wj) = (−1)pfp(i− j) if i, j ∈ Z.

If p = 0 there is nothing to prove since g = 1; thus we can assume that p ≥ 1. We
will prove (c) assuming only the identities

(d1) (wp−1, wj) = 0 if j ∈ [0, 2p− 2],
(d2) (wp−1, w2p−1) = (−1)p.
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If |i− j| < p, then (c) follows from (d1); if |i− j| = p, then (c) follows from (d2).
Thus we can assume that |i− j| ≥ p+ 1. We can also assume that i = 0 and j ≥ 0
(hence j ≥ p+ 1). We must only prove that

(w0, wj) = (−1)pxj−p if j ≥ p.

We argue by induction on j. For j = p the result is known. Assume that j ≥ p+1.
From (g − 1)2p+1wj−2p−1 = 0 we deduce

∑
h∈[0,2p+1] nhwj−2p−1+h = 0. Hence∑

h′∈[0,2p+1] nh′wj−h′ = 0 and
∑

h∈[0,2p+1] nh(w0, wj−h) = 0. If j = p + 1 we can

assume that h = 0, h = 1 or h = 2p+ 1 (the other terms are zero); thus,

n0(w0, wp+1) + n1(w0, wp) + n2p+1(w0, w−p) = 0.

We see that (w0, wp+1)−(2p+1)(−1)p−(−1)p = 0 so that (w0, wp+1) = (−1)p(2p+
2) as required. Now assume that j ≥ p+ 2. We have∑

h∈[0,2p+1];j−h≥p

nh(w0, wj−h) = 0.

Using the induction hypothesis this implies∑
h∈[1,2p+1];j−h≥p

nh(−1)pxj−h−p + (w0, wj) = 0

hence it is enough to show that ∑
h∈[0,2p+1];j−h≥p

nhxj−h−p = 0,

that is, ∑
h∈[0,j−p]

nhxj−h−p = 0.

This follows from 1.5(a) with u = j − p since j − p ≥ 2.

1.7. We preserve the setup of 1.6. The subspace E′ of E spanned by {wi; i ∈
[0, 2p − 1]} is clearly nondegenerate for (, ) hence there exists w̃ ∈ E such that
(wi, w̃) = 0 for i ∈ [0, 2p − 1] and (w̃, w̃) = 2. Moreover, w̃ is unique up to
multiplication by ±1. We have w̃ /∈ E′. We can write w̃ =

∑
i∈[0,2p] ciwi where

ci ∈ k are uniquely defined and c∗ := c2p �= 0. Taking (wh, ) and setting c̄i = ci/c∗
we obtain

(∗)
∑

i∈[0,2p]

c̄ifp(i− h) = 0 for h ∈ [0, 2p− 1].

We show (setting lj =
(
2p+1

j

)
):

c̄i = (−1)i−1(l0 + l1 + · · ·+ li) if i ∈ [0, p− 1],

c̄i = (−1)i(l0 + l1 + · · ·+ l2p−i) if i ∈ [p, 2p].

We can assume that p ≥ 1. Clearly (∗) has a unique solution c̄i(i ∈ [0, 2p − 1]).
Note that c̄2p = 1. If h = p, then (∗) is c̄0 +1 = 0. If h ∈ [p+1, 2p− 1], then (∗) is∑

i∈[0,h−p] c̄ifp(i− h) = 0. If h ∈ [0, p− 1], then (∗) is
∑

i∈[h+p,2p] c̄ifp(i− h) = 0.

It is enough to show:

(a)
∑

i∈[0,h−p]

(−1)i−1(l0 + · · ·+ li)x(h− i− p) = 0 if h ∈ [p+ 1, 2p− 1],
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(b)
∑

i∈[h+p,2p]

(−1)i(l0 + · · ·+ l2p−i)x(i− h− p) = 0 if h ∈ [0, p− 1].

We rewrite equation (b) (using i �→ 2p− i and h �→ 2p− h) as

(c)
∑

i∈[0,h−p]

(−1)i(l0 + · · ·+ li)x(h− i− p) = 0.

Here h ∈ [p+1, 2p]. Note that (c) contains (a) as a special case. Thus it is enough
to prove (c). We prove (c) by induction on h. If h = p + 1, then equation (c) is
l0x1 − (l0 + l1)x0 = 0, that is, 2p+ 2− (2p+ 2) = 0, which is correct. If h ≥ p+ 2
we have

∑
i∈[0,h−p](−1)ilix(h − i − p) = 0. Hence in this case (c) is equivalent to∑

i∈[1,h−p](−1)i(l0 + · · ·+ li−1)x(h− i − p) = 0 which is the same as equation (c)

with h replaced by h− 1 (this holds by the induction hypothesis). This proves (c)
hence (a),(b).

We show:

(d) (w2p, w̃)c∗ = 2.

Indeed, we have

2 = (w̃, w̃) = (
∑

i∈[0,2p]

ciwi, w̃) = c2p(w2p, w̃),

as desired. We show:

(e) c2∗ = 2−2p.

We have

2 = (w2p, w̃)c∗ = (w2p,
∑

i∈[0,2p]

ciwi)c∗ =
∑

i∈[0,2p]

ci(−1)pfp(2p− i)c∗.

Thus
2c−2

∗ =
∑

i∈[0,p]

c̄i(−1)pfp(2p− i).

If p = 0, this reads 2c−2
∗ = c̄0f0(0) = 2 hence (e) follows. If p ≥ 1, we have

(w0, w̃) = 0 hence 0 =
∑

i∈[0,2p] c̄i(−1)pfp(i) hence 0 =
∑

i∈[p,2p] c̄i(−1)pfp(i), that
is,

0 =
∑

i∈[0,p]

c̄2p−i(−1)pfp(2p− i).

Adding to

2c−2
∗ =

∑
i∈[0,p]

c̄i(−1)pfp(2p− i)

we get

2c−2
∗ =

∑
i∈[0,p]

(c̄i + c̄2p−i)(−1)pfp(2p− i).

Now c̄i + c̄2p−i = 0 if i ∈ [0, p− 1] hence

2c−2
∗ = 2(−1)pc̄p = 2(l0 + l1 + · · ·+ lp) = 22p+1

and (e) follows.
From (e) we see that, by replacing if necessary, w̃ by −w̃ we can assume that

(f) c∗ = 2−p.

This condition determines w̃ uniquely.
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We show that for h ∈ Z:

(g) (wh, w̃) = 2p+1

(
h

2p

)
.

We must show that for h ∈ Z:∑
i∈[0,2p]

ci(−1)pfp(i− h) = 2p+1

(
h

2p

)

or that ∑
i∈[0,2p]

c̄i(−1)pfp(i− h) = 22p+1

(
h

2p

)
.

It is enough to prove this equality in Z. The left hand side is a polynomial in h
with rational coefficients of degree ≤ 2p which vanishes for h ∈ [0, 2p− 1] in which
the coefficient of h2p is∑

i∈[0,2p]

c̄i(−1)p2(2p)!−1 = (−1)pc̄p2(2p)!

= (l0 + l1 + · · ·+ lp)2(2p)!
−1 = (−1)p22p2(2p)!−1.

Hence it is equal to the right hand side.
For any h ∈ Z, w̃h is defined as in 1.0. We show:

(h) (w̃0, w̃h) = 2(−1)h if h ∈ [0, p]; (w̃0, w̃p+1) = 2(−1)p+1 + (−1)p22p+2.

We can assume that h ≥ 1. We have

(w̃0, w̃h) = (
∑

i∈[0,2p]

ciwi, w̃h) =
∑

i∈[0,2p]

ci(wi−h, w̃0) =
∑

i∈[0,2p]

2c̄i

(
i− h

2p

)

=
∑

i∈[0,h−1];i�=p

2(−1)i−1(l0 + · · ·+ li)

(
i− h

2p

)
+ δh,p+12(−1)p(l0 + · · ·+ lp)

(
p− h

2p

)

=
∑

i∈[0,h−1]

2(−1)i−1(l0 + · · ·+ li)

(
i− p

2p

)
+ 2δh,p+12(−1)p(l0 + · · ·+ lp).

Now 4(−1)p(l0 + · · ·+ lp) = (−1)p22p+2. It remains to show that

∑
i∈[0,h−1]

(−1)i−1(l0 + · · ·+ li)

(
h− i+ 2p− 1

2p

)
= (−1)h

for h ∈ [1, p+ 1], or setting h′ = h− 1, u = h′ − i:

∑
i≥0,u≥0,i+u=h′

(−1)i(l0 + · · ·+ li)

(
u+ 2p

2p

)
= (−1)h

′

for h′ ∈ [0, p]. We shall actually show that this holds for any h′ ≥ 0. It is enough
to show that for an indeterminate T we have∑

i≥0,u≥0

(−1)i(l0 + · · ·+ li)T
i

(
u+ 2p

2p

)
Tu =

∑
h′≥0

(−1)h
′
Th′

or that ∑
i≥0

(−1)i(l0 + · · ·+ li)T
i(1− T )−2p−1 = (1 + T )−1
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or that

l0(1− T + T 2 − . . . ) + l1(−T + T 2 − T 3) + . . . )(1− T )−2p−1 = (1 + T )−1

or that

(1 + T )−1(l0 − l1T + l2T
2 − . . . )(1− T )−2p−1 = (1 + T )−1.

This is obvious.

1.8. We preserve the setup of 1.7. For h ∈ Z we show

(a) (w̃0, w̃h) =
∑

r∈[0,p](−1)r22rfr(h). In particular, (w̃0, w̃h) ∈ 2Z.

We must prove the equality

(a′)
∑

i∈[0,2p]

2c̄i

(
i− h

2p

)
=

∑
r∈[0,p]

(−1)r22rfr(h)

in k. It is enough to prove that (a′) holds in Z. Let Fp(h) be the left hand side of
(a′). It can be viewed as a polynomial with rational coefficients in h of degree ≤ 2p
in which the coefficient of h2p is∑
i∈[0,2p]

2c̄i(2p)!
−1=2c̄p(2p)!

−1=2(−1)p(l0 + · · ·+ lp)(2p)!
−1 = 2(−1)p22p(2p)!−1.

(We have used that c̄i + c̄2p−i = 0 if i �= p.) Thus

Fp(h) = (−1)p22p+1(2p)!−1h2p + lower powers of h.

In the case where p = 0 this implies that Fp(h) = 2 so that (a′) holds. We now
assume that p ≥ 1. Note that Fp(−h) = Fp(h) for h ∈ Z; an equivalent statement
is that (w̃0, w̃h) = (w̃0, w̃−h), which follows from the definitions. We see that
Fp(−h) = Fp(h) as polynomials in h. Now Fp − Fp−1 is a polynomial of degree
2p in h whose value at h ∈ [0, p − 1] is 2(−1)h − 2(−1)h = 0. Using this and
Fp(−h) = Fp(h) we see that

Fp(h)− Fp−1(h) = (−1)p22p+1(2p)!−1h2(h2 − 1) . . . (h2 − (p− 1)2).

From this we see by induction on p that (a′) holds.
It follows that, if L is the line spanned by w0, L

′ is the line spanned by w̃0 and
a∗ = (2p + 1, 0, 0, . . . ), b∗ = (0, 0, 0, . . . ), then (g, L, L′) ∈ C̃E

a∗,b∗
. In particular,

C̃E
a∗,b∗

�= ∅.

1.9. In the setup of 1.5, we consider a k-vector space E of dimension 2p+ 1 with
a given nondegenerate symmetric bilinear form (, ) : E × E → k and a unipotent
isometry g : E → E of (, ) such that g is a single unipotent Jordan block (of size
2p+ 1). Moreover, we assume that we are given w̃ ∈ E and (if p ≥ 1) w ∈ E such
that (with notation of 1.0) for i, j ∈ Z we have:

(wi, wj) = 0 if |i− j| < p; (wi, wj) = (−1)p if |i− j| = p (with p ≥ 1),

(wi, w̃j) = 0 if i− j ∈ [0, 2p− 1],

(w̃i, w̃j) = 2 if i = j.

We show:
(a) After possibly replacing w̃ by −w̃, the following equalities hold for any i, h

in Z:
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(a1) (wi, wh) = (−1)pfp(i− h) if p ≥ 1,
(a2) (wh, w̃0) = 2p+1h(h− 1)(h− 2) . . . (h− 2p+ 1)(2p)!−1 if p ≥ 1,
(a3) (w̃0, w̃h) =

∑
r∈[0,p](−1)r22rfr(h).

Now the proof of (a1) is exactly as in 1.6. We show:

(b) if p ≥ 1, then {wi; i ∈ [0, 2p]} is linearly independent.

Assume that this is not true. Then w2p belongs to E′, the span of {wi; i ∈
[0, 2p−1]}; hence E′ is a g-stable hyperplane. Note that g acts on E′ as a unipotent
linear map with a single Jordan block (of size 2p). By (a1), (, )E′ is nondegenerate.
Hence g : E → E has a Jordan block of size 2p and one of size 1; this contradicts
our assumption that g has a single Jordan block of size 2p+ 1. This contradiction
proves (b).

By (b) we can write uniquely (assuming p ≥ 1) w̃0 =
∑

i∈[0,2p] ciwi where ci ∈ k.

Note that c2p �= 0. (Otherwise, w̃0 would be contained in E′; on the other hand, w̃0

is perpendicular to E′ contradicting the nondegeneracy of (, )|E′ .) We set c∗ = c2p,
c̄i = cic

−1
∗ (i ∈ [0, 2p]). By repeating the arguments in 1.7 we see that c∗ = ±2−p.

Replacing if necessary w̃ by −w̃ we can assume that c∗ = 2−p. Now (a2) and (a3)
are proved exactly as in 1.7 and 1.8. If p = 0, then w̃h = w̃0 for any h ∈ Z hence
(w̃0, w̃h) = (w̃0, w̃0) = f0(0) = 2. Thus (a3) holds again.

1.10. We fix two integers p1, p2 such that p1 ≥ p2 ≥ 1. Let V ′, V ′′ be two k-vector
spaces of dimension 2p1 + 1, 2p2 − 1, respectively. Let V = V ′ ⊕ V ′′. Assume that
V ′ has a given basis z0, z1, . . . , z2p1

and that V ′′ has a given basis v0, v1, . . . , v2p2−2.
We define a symmetric bilinear form (, ) on V by

(zi, zj) = (−1)p1fp1
(i− j) for i, j ∈ [0, 2p1],

(vi, vj) = (−1)p2−1fp2−1(i− j) for i, j ∈ [0, 2p2 − 2],

(zi, vj) = (vj , zi) = 0 for i ∈ [0, 2p1], j ∈ [0, 2p2 − 2].

(Notation of 1.5.) We define g ∈ GL(V ) by

gzi = zi+1 if i ∈ [0, 2p1 − 1],

gz2p1
=

∑
j∈[0,2p1]

(−1)j
(
2p1 + 1

j

)
zj ,

gvi = vi+1 if i ∈ [0, 2p2 − 3],

gv2p2−2 =
∑

j∈[0,2p2−2]

(−1)j
(
2p2 − 1

j

)
vj .

Note that g : V → V is unipotent and that V ′, V ′′ are g-stable (g has a single
Jordan block on V ′ and a single Jordan block on V ′′). By 1.6, g : V → V is an
isometry. For i ∈ Z we set zi = giz0 ∈ V ′, vi = gzv0 ∈ V ′′. This agrees with our
earlier notation. By 1.6 we have for i, j ∈ Z:

(zi, zj) = (−1)p1fp1
(i− j), (vi, vj) = (−1)p2−1fp2−1(i− j).

As in 1.7, 1.8, there is a unique vector z̃0 ∈ V ′ and a unique vector ṽ0 ∈ V ′′ such
that for any h ∈ Z we have

(zh, z̃0) = 2p1+1h(h− 1)(h− 2) . . . (h− 2p1 + 1)(2p1)!
−1,

(z̃0, z̃h) =
∑

r∈[0,p1]

(−1)r22rfr(h),
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(vh, ṽ0) = 2p2h(h− 1)(h− 2) . . . (h− 2p2 + 3)(2p2 − 2)!−1,

(ṽ0, ṽh) =
∑

r∈[0,p2−1]

(−1)r22rfr(h).

For i ∈ Z we set z̃i = giz̃0 ∈ V ′, ṽi = giṽ0 ∈ V ′′. By 1.7 we have

(z̃0, z̃h) = 2(−1)h if h ∈ [0, p1],

(z̃0, z̃p1+1) = 2(−1)p1+1 + (−1)p122p1+2,

(ṽ0, ṽh) = 2(−1)h if h ∈ [0, p2 − 1],

(ṽ0, ṽp2
) = 2(−1)p2 + (−1)p2−122p2 .

We fix ζ ∈ k such that ζ2 = −1. We set

ξ = 2−p2(z̃−p2
+ ζṽ0) ∈ V.

Let h ∈ Z. We have

(zh, ξ) = 2−p2(zh, z̃−p2
) = 2−p2(zh+p2

, z̃0) = 2p1−p2+1

(
h+ p2
2p1

)
.

In particular, we have (zh, ξ) ∈ 2Z; moreover,

(ζh, ξ) = 0 if h ∈ [−p2, 2p1 − p2 − 1].

Let h ∈ Z. We set ξh = ghξ. Using the definitions we see that

(ξ0, ξh) = 2−2p2((z̃0, z̃h)− (ṽ0, ṽh)).

From this we deduce using the formulas above that

(ξ0, ξh) = 0 if h ∈ [−p2 + 1, p2 − 1],

(ξ0, ξh) = (−1)p2 if h = p2,

(ξ0, ξh) =
∑

r∈[p2,p1]

(−1)r22r−2p2fr(h) for h ∈ Z.

It follows that, if L is the line in V spanned by z0, L
′ is the line in V spanned by

ξ and a∗ = (2p1 + 1, 2p2 − 1, 0, 0, . . . ), b∗ = (0, 0, . . . ), then (g, L, L′) ∈ C̃V
a∗,b∗

. In

particular, C̃V
a∗,b∗

�= ∅.

1.11. Let p1, p2 be as in 1.10; let V, ε, (, ) be as in 1.0. Let g ∈ Is(V ). We assume
that ε = 1, dimV = 2p1 + 2p2 and that g is unipotent with exactly two Jordan
blocks: one of size 2p1 + 1 and one of size 2p2 − 1. Moreover, we assume that we
are given z ∈ V, ξ ∈ V such that (with notation of 1.0) we have for i, j ∈ Z:

(zi, zj) = 0 if |i− j| < p1, (zi, zj) = (−1)p1 if |i− j| = p1,

(ξi, ξj) = 0 if |i− j| < p2, (ξi, ξj) = (−1)p2 if |i− j| = p2,

(zi, ξj) = 0 if i− j ∈ [−p2, 2p1 − p2 − 1].

We show:
(a) After possibly replacing ξ by −ξ, the following equalities hold for any u ∈ Z

and any i, j ∈ Z such that i− j = u:

(a1) (zi, zj) = (−1)p1fp1
(u),

(a2) (zi, xj) = 2p1−p2+1
(
u+p2

2p1

)
,

(a3) (ξi, ξj) =
∑

r∈[p2,p1]
(−1)r22r−2p2fr(u).
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(Notation of 1.5.) Let αu, γu, βu be the left hand side of (a1), (a2), (a3), re-
spectively. (These are well defined by 1.0(a).) Note that αu = a−u, βu = β−u.
When zi, ξi are replaced by the vectors with the same name in 1.10, the quantities
αu, βu, γu become α0

u, β
0
u, γ

0
u (which were computed in 1.10). Then (a1)–(a3) are

equivalent to the equalities αu = α0
u, βu = β0

u, γu = γ0
u.

We prove (a1). (See also the proof of 1.6(c).) If |u| ≤ p1, then (a1) is clear.
Thus we can assume that |u| ≥ p1 + 1. We can also assume that u ≥ 0 (hence
u ≥ p1 +1). We must only prove that (z0, zu) = (−1)p1xu−p1

if u ≥ p1 where xh is
as in 1.5 (with p = p1). As in the proof of 1.6(c) we argue by induction on u. For
u = p1 the result is known. Assume that u ≥ p1 + 1. We have (g − 1)2p1+1 = 0 on
V hence (g − 1)2p1+1zu−2p1−1 = 0, that is,

∑
h∈[0,2p1+1]

nhzu−2p1−1+h = 0.

Hence ∑
h′∈[0,2p1+1]

nh′zu−h′ = 0

and ∑
h∈[0,2p1+1]

nh(z0, zu−h) = 0.

If u = p1 + 1 we can assume that h = 0, h = 1 or h = 2p1 + 1 (the other terms are
zero); thus,

n0(z0, zp1+1) + n1(z0, zp1
) + n2p1+1(z0, z−p1

) = 0.

We see that (z0, zp1+1)− (−1)p1(2p1 + 1)− (−1)p1 = 0 so that

(z0, zp1+1) = (−1)p1(2p1 + 2),

as required. Now assume that u ≥ p1 + 2. We have∑
h∈[0,2p1+1];j−h≥p1

nh(z0, zu−h) = 0.

Using the induction hypothesis this implies∑
h∈[1,2p1+1];u−h≥p1

nh(−1)p1xu−h−p1
+ (z0, zu) = 0,

hence it is enough to show that∑
h∈[0,2p1+1];u−h≥p1

nhxu−h−p1
= 0,

that is, ∑
h∈[0,u−p1]

nhxu−h−p1
= 0.

This follows from 1.5(a) with u replaced by u− p1 since u− p1 ≥ 2.
The proof of (a2) and (a3) will be given in 1.12–1.16 where the setup of this

subsection is preserved.
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1.12. We show:

(a) the set {zi; i ∈ [0, 2p1]} is linearly independent.

Assume that this is not true. Then z2p1
∈ E, the span of {zi; i ∈ [0, 2p1 − 1]}.

Hence E is g-stable and its perpendicular E⊥ is g-stable. By assumption we have
ξp2

∈ E⊥. Since E⊥ is g-stable we see that ξi ∈ E⊥ for all i ∈ Z. Thus E′, the
span of {ξi; i ∈ [0, 2p2 − 1]}, is contained in E⊥. By assumption, E′ has dimension
2p2 which is the same as dimE⊥. Hence E′ = E⊥. Since V = E ⊕E′, we see that
V = E ⊕ E⊥ with both summands being g-stable. Now g acts on E as a single
unipotent Jordan block of size 2p1. Thus g : V → V has a Jordan block of size 2p1.
This contradicts the assumption that the Jordan blocks of g : V → V have sizes
2p1 + 1, 2p2 − 1. This proves (a).

We set N = g − 1, e = p1 − p2. Let L be the span of {N iz0; i ∈ [2p2, 2p1]} or
equivalently the span of {N2p2zi; i ∈ [0, 2e]}. We show:

(b) dimL = 2e+ 1.

Let L′ be the span of {N iz0; i ∈ [2p2, 2p1 − 1]}. We have dimL′ = 2e since
{N iz0; i ∈ [0, 2p1 − 1]} is a linearly independent set. If (b) is false we would have
N2p2z0 ∈ L′. Then the span of {N iz0; i ∈ [0, 2p1 − 1]} is N -stable. Hence the span
of {giz0; i ∈ [0, 2p1 − 1]} is g-stable. This contradicts the proof of (a).

We show:

(c) N2p2ξ0 ∈ L.
From the structure of Jordan blocks of N : V → V we see that dimN2p2V = 2e+1.
Clearly, L ⊂ N2p2V . Hence using (b) it follows that L = N2p2V so that (c) holds.

Using (c) we deduce

(d) N2p2ξ0 =
∑

i∈[0,2e]

ciN
2p2zi

where ci ∈ k (i ∈ [0, 2e]) are uniquely determined.

1.13. For j ∈ N we set mj = (−1)j
(
2p2

j

)
so that N2p2 =

∑
j∈[0,2p2]

mjg
j . From

1.12(d) we deduce

(a)
∑

j∈[0,2p2]

mjξj =
∑

i∈[0,2e],j∈[0,2p2]

cimjzi+j .

Taking (, zu) with u ∈ Z, we deduce

(b)
∑

j∈[0,2p2]

mjγu−j =
∑

i∈[0,2e],j∈[0,2p2]

cimjαu−i−j .

We show:

(c1) If u ∈ [p2, 2p1 − p2 − 1], then the left hand side of (b) is 0.
(c2) If u = 2p1 − p2, then the left hand side of (b) is γ2p1−p2

.

For (c1) it is enough to show: if u is as in (c1) and j ∈ [0, 2p2], then u− j+ p2 ∈
[0, 2p1 − 1]. (Indeed, we have u − j + p2 ≤ 2p1 − p2 − 1 + p2 = 2p1 − 1 and
u − j + p2 ≥ p2 − 2p2 + p2 = 0.) For (c2) it is enough to show: if j ∈ [1, 2p2],
then 2p1 − p2 − j + p2 ∈ [0, 2p1 − 1]. (Indeed, we have 2p1 − j ≤ 2p1 − 1 and
2p1 − j ≥ 2e ≥ 0.)
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If u ∈ [p2, p1 − 1], then in the right hand side of (b) we have u− i− j < p1; we
can assume then that u − i − j ≤ −p1 hence i ≥ u − j + p1 ≥ p2 − 2p2 + p1 = e.
Thus in this case (b) becomes (using (c1) and setting u = p1 − t):∑

i∈[e,2e],j∈[0,2p2]

cimjαp1−t−i−j = 0 for t ∈ [1, e].

Setting c′h = c2e−h for h ∈ [0, e] and with the change of variable j �→ 2p2 − j,
i �→ 2e− i we obtain

(d)
∑

i∈[0,e],j∈[0,2p2]

c′imjα−p1−t+i+j = 0 for t ∈ [1, e].

In the last sum we have −p1 − t+ i+ j < p1. Indeed, we have

−p1 − t+ i+ j ≤ −p1 − 1 + p1 − p2 + 2p2 = p2 − 1 < p1.

Hence we can restrict the sum to indices such that −p1 − t+ i+ j ≤ −p1, that is,
−t+ i+ j = −s where s ≥ 0. Thus we have∑

i∈[0,e],j≥0,s≥0;i+s+j=t

c′imjα−p1−s = 0 for t ∈ [1, e].

Hence

(
∑

i∈[0,e]

c′iT
i)(

∑
j≥0

mjT
j)(

∑
s≥0

fp1
(p1 + s)T s) = c′0 + terms of degree > e in T.

Thus

(
∑

i∈[0,e]

c′iT
i)(1− T )2p2Ap1

= c′0 + terms of degree > e in T,

where Ap1
is as in 1.5. Using 1.5(c) we obtain

(
∑

i∈[0,e]

c′iT
i)(1− T )2p2(1 + T )(1− T )−2p1−1 = c′0 + terms of degree > e in T

hence ∑
i∈[0,e]

c′iT
i = (1 + T )−1(1− T )2e+1(c′0 + terms of degree > e in T ).

We have (1− T )2e+1 =
∑

j∈[0,2e+1](−1)j ljT
j where lj =

(
2e+1

j

)
. Hence

(1+T )−1(1−T )2e+1 =
∑

j∈[0,e]

(−1)j(l0+ l1+ · · ·+ lj)T
j +terms of degree > e in T.

We see that

(e) c′i = (−1)ic′0(l0 + l1 + · · ·+ li) for i ∈ [0, e].

In the remainder of this subsection we assume that e > 0. If u = p1, then in the
right hand side of (b) we have u−i−j ∈ [−p1, p1]; we can then assume that u−i−j
is −p1 or p1. Hence i + j is 2p1 or 0 and (i, j) is (2e, 2p2) or (0, 0). Thus in this
case (b) becomes (using (c1)) c0 + c2e = 0, that is, c0 = −c′0 (to apply (c1) we use
that e > 0).

If u ∈ [p1+1, 2p1−p2−1], then in the right hand side of (b) we have u−i−j > −p1;
we can assume then that u− i− j ≥ p1 hence

i ≤ u− j − p1 ≤ 2p1 − p2 − 1− p1 = e− 1.
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Using this and (c1) we see that (b) becomes (setting u = p1 + t):

∑
i∈[0,e−1],j∈[0,2p2]

cimjαp1+t−i−j = 0 for t ∈ [1, e− 1].

Note that in the sum we have p1 + t− i− j > −p1. Indeed, we have

p1 + t− i− j ≥ p1 + 1− p1 + p2 + 1− 2p2 = −p2 + 2 > −p1.

Hence we can restrict the sum to indices such that p1 + t − i − j ≥ p1, that is,
p1 + t− i− j = p1 + s where s ≥ 0. Thus we have

∑
i∈[0,e−1],j≥0,s≥0;i+s+j=t

cimjαp1+s = 0 for t ∈ [1, e− 1].

For such t we have also ∑
i∈[0,e−1],j≥0,s≥0;i+s+j=t

c′imjα−p1−s = 0

as we have seen earlier; the index i cannot take the value e since i ≤ t. Adding the
last two equations and using αp1+s = α−p1−s we obtain

∑
i∈[0,e−1],j≥0,s≥0;i+s+j=t

(ci + c′i)mjα−p1−s = 0 for t ∈ [1, e− 1].

Thus,

(
∑

i∈[0,e−1]

(ci + c′i)T
i)(

∑
j≥0

mjT
j)(

∑
s≥0

fp1
(p1 + s)T s) = c+ terms of degree > e in T,

where c ∈ k. We see that

(
∑

i∈[0,e−1]

(ci + c′i)T
i)(1− T )2p2Ap1

= c+ terms of degree > e in T.

Using again 1.5(c), we obtain

(
∑

i∈[0,e−1]

(ci + c′i)T
i)(1− T )2p2(1 + T )(1− T )−2p1−1 = c+ terms of degree > e in T

hence ∑
i∈[0,e−1]

(ci + c′i)T
i = (1 + T )−1(1− T )2e+1(c+ terms of degree > e in T ),

that is, ∑
i∈[0,e−1]

(ci + c′i)T
i = c+ terms of degree > e in T.

We see that ci + c′i = 0 for i ∈ [1, e− 1]. Using also (e) we see that

(f) ci = (−1)i+1c′0(l0 + l1 + · · ·+ li) for i ∈ [0, e− 1].

(In the case where i = 0 this is just c0 = −c′0 which is already known.)
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1.14. If u = 2p1 − p2 then, using 1.13(b) and 1.13(c2), we have

(a) γ2p1−p2
=

∑
i∈[0,2e],j∈[0,2p2]

cimjα2p1−p2−i−j .

Taking (, ξp2
) with 1.13(a) we obtain∑

j∈[0,2p2]

mjβp2−j =
∑

i∈[0,2e],j∈[0,2p2]

cimjγi+j−p2
.

In the left hand side only the contribution of j = 0 and j = 2p2 is �= 0; it is
(−1)p2 ; in the right hand side we can assume that i + j − p2 ≥ 2p1 − p2 (since
i+ j−p2 ≥ −p2); hence we have i+ j ≥ 2p1 and i = 2e, j = 2p2 and the right hand
side is c2eγ2p1−p2

= c′0γ2p1−p2
. Thus

(b) 2(−1)p2 = c′0γ2p1−p2
.

We see that c′0 �= 0 and using (a),(b) we have

2(−1)p2c′0
−1 =

∑
i∈[0,2e],j∈[0,2p2]

cimjα2p1−p2−i−j .

In the right hand side we have 2p1 − p2 − i − j ≥ −p1; we can assume then that
either 2p1− p2− i− j = −p1 (hence i = 2e, j = 2p2) or 2p1− p2− i− j ≥ p1 (hence
i ≤ e). The first case can arise only if e = 0, hence it is included in the second case.
Thus

(c) 2(−1)p2c′0
−1 =

∑
i∈[0,e],j∈[0,2p2]

cimjα2p1−p2−i−j .

Assume now that e > 0. From 1.13(d) with t = e, we have

(d) 0 =
∑

i∈[0,e],j∈[0,2p2]

c′imjα−2p1+p2+i+j .

We now add (c) and (d) and use that ci + c′i = 0 if i ∈ [0, e − 1] and ce = c′e. We
get

2(−1)p2c′0
−1 = 2c′e

∑
j∈[0,2p2]

mjαp1−j .

If j ∈ [1, 2p2] we have p1 − j ∈ [−p1 + 1, p1 − 1] hence αp1−j = 0. Thus

2(−1)p2c′0
−1 = 2c′eαp1

= 2(−1)p1c′e.

By 1.13(e) we have c′e = (−1)ec′0(l0 + l1 + · · ·+ le) = (−1)ec′02
2e hence

2(−1)p2c′0
−1 = 2(−1)p1(−1)ec′02

2e

so that c′0
2 = 2−2e and c′0 = ±2−e. Changing if necessary ξ by −ξ we can therefore

assume that

(e) c′0 = 2−e.

Assume now that e = 0. We have c′0 = c0 and (c) becomes

2(−1)p2c0
−1 =

∑
j∈[0,2p2]

c0mjαp1−j ,

that is, 2(−1)p2c0
−1 = 2c0(−1)p1 hence c20 = 1 and c0 = ±1. Changing if necessary

ξ by−ξ we can therefore assume that c0 = 1. Thus (e) holds without the assumption
e > 0.
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Using (e) we rewrite 1.13(e), 1.13(f) as follows:

(f) c2e−i = (−1)i2−e(l0 + l1 + · · ·+ li) for i ∈ [0, e],

(g) ci = (−1)i+12−e(l0 + l1 + · · ·+ li) for i ∈ [0, e− 1].

When zi, ξi are replaced by the vectors with the same name in 1.10, the quantities
ci become the quantities c0i . (Here i ∈ [0, 2e].) We show that

(h) ci = c0i for i ∈ [0, 2e].

By the analogue of (b) we have 2(−1)p2 = c02eγ
0
2p1−p2

. By results in 1.10 we have

γ0
2p1−p2

= 2e+1. Hence c02e = (−1)p22−e. Using this and the analogues of 1.13(e),

1.13(f), we see that c0i are given by the same formulas as ci in (e) and (f). This
proves (h).

1.15. Let C =
∑

s≥0 γ2p1−p2+sT
s, C0 =

∑
s≥0 γ

0
2p1−p2+sT

s. If u = 2p1−p2+t, t ≥
0, then for any j that contributes to the left hand side of 1.13(b) we have u−j ≥ −p2
(indeed, u− j ≥ 2p1 − p2 − 2p2 ≥ −p2) hence we can assume that in the left hand
side of 1.13(b) we have u − j ≥ 2p1 − p2. Muliplying both sides of 1.13(b) by T t

and summing over all t ≥ 0 we thus obtain∑
t≥0

∑
j∈[0,2p2];t−j≥0

mjγ2p1−p2+t−jT
t =

∑
t≥0

∑
i∈[0,2e],j∈[0,2p2]

cimjα2p1−p2+t−i−jT
t.

The left hand side equals

(
∑

j∈[0,2p2]

mjT
j)(

∑
t′≥0

γ2p1−p2+t′T
t′) = (1− T )2p2C.

Thus

C = (1− T )−2p2(
∑
t≥0

∑
i∈[0,2e],j∈[0,2p2]

cimjα2p1−p2+t−i−jT
t).

Similarly we have

C0 = (1− T )−2p2(
∑
t≥0

∑
i∈[0,2e],j∈[0,2p2]

c0imjα
0
2p1−p2+t−i−jT

t).

By 1.14(h) we have ci = c0i . By 1.11(a1) we have α2p1−p2+t−i−j = α0
2p1−p2+t−i−j

for any i, j, t. It follows that C = C0. Hence

(a) γ2p1−p2+s = γ0
2p1−p2+s

for any s ≥ 0. We set C ′ =
∑

t≥0 γ−p2−1−tT
t, C ′0 =

∑
t≥0 γ

0
−p2−1−tT

t. If u =

p2 − 1− t, t ≥ 0, then for any j that contributes to the left hand side of 1.13(b) we
have u− j ≤ 2p1 − p2 − 1 (indeed u− j ≤ p2 − 1− j ≤ p2 − 1 ≤ 2p1 − p2 − 1) hence
we can assume that in the left hand side of 1.13(b) we have u− j ≤ −p2 − 1. With
the substitution j �→ 2p2 − j the previous inequality becomes j − t ≤ 0 and the left
hand side of 1.13(b) becomes∑

j∈[0,2p2]

mjγu−2p2+j =
∑

j∈[0,2p2]

mjγ−p2−1+j−t.

Muliplying both sides of 1.13(b) by T t and summing over all t ≥ 0 we thus obtain∑
t≥0,j≥0;t−j≥0

mjγ−p2−1+j−tT
t =

∑
t≥0

∑
i∈[0,2e],j∈[0,2p2]

cimjαp2−1−t−i−jT
t.
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The left hand side equals

(
∑

j∈[0,2p2]

mjT
j)(

∑
t′≥0

γ−p2−1−t′T
t′) = (1− T )2p2C ′.

Thus

C ′ = (1− T )−2p2(
∑
t≥0

∑
i∈[0,2e],j∈[0,2p2]

cimjαp2−1−t−i−jT
t).

Similarly we have

C ′0 = (1− T )−2p2(
∑
t≥0

∑
i∈[0,2e],j∈[0,2p2]

c0imjα
0
p2−1−t−i−jT

t).

By 1.14(h) we have ci = c0i . By 1.11(a1) we have αp2−1−t−i−j = α0
p2−1−t−i−j for

any i, j, t. It follows that C ′ = C ′0. Hence

(b) γ−p2−1−t = γ0
−p2−1−t

for any t ≥ 0. Clearly (a) and (b) imply 1.11(a2).

1.16. We set B =
∑

s≥0 βp2+sT
s, B0 =

∑
s≥0 β

0
p2+sT

s. Let t ≥ 1. Taking (, ξp2+t)

with 1.13(a) we obtain

(a)
∑

j∈[0,2p2]

mjβp2+t−j =
∑

i∈[0,2e],j∈[0,2p2]

cimjγi+j−p2−t.

For any j that contributes to the left hand side of (a) we have p2 + t− j ≥ −p2 +1
(indeed, p2 + t− j ≥ p2 + 1− 2p2 = −p2 + 1) hence we can assume that in the left
hand side of (a) we have p2 + t − j ≥ p2, that is, t ≥ j. Multiplying both sides of
(a) by T t and summing over all t ≥ 1 we thus obtain

∑
t≥1

∑
j∈[0,2p2];t≥j

mjβp2+t−jT
t =

∑
t≥1

∑
i∈[0,2e],j∈[0,2p2]

cimjγi+j−p2−tT
t.

The left hand side equals

−(−1)p2 + (
∑

j∈[0,2p2]

mjT
j)(

∑
t′≥0

βp2+t′T
t′) = −(−1)p2 + (1− T )2p2B.

Thus

B = (1− T )−2p2((−1)p2 +
∑
t≥1

∑
i∈[0,2e],j∈[0,2p2]

cimjγi+j−p2−tT
t).

Similarly we have

B0 = (1− T )−2p2((−1)p2 +
∑
t≥1

∑
i∈[0,2e],j∈[0,2p2]

c0imjγ
0
i+j−p2−tT

t).

By 1.14(h) we have ci = c0i . By 1.11(a2) we have γi+j−p2−t = γ0
i+j−p2−t for any

i, j, t. It follows that B = B0. Hence βp2+s = β0
p2+s for any s ≥ 0. This clearly

implies 1.11(a3).
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1.17. In the setup of 1.1 we show that 1.1(a) holds by induction on n. If n = 0 we
have V = 0 and ai = bi = ci = pi = 0 for all i. We take g = 0 and (Lt) to be the

empty set of lines. We obtain an element of C̃V
a∗,b∗

. Now assume that n > 0.
Assume first that either a1 ≥ 1, b1 ≥ 1 or that ε = −1. We can find a direct sum

decomposition V = V ′ ⊕ V ′′ such that (V ′, V ′′) = 0 and dimV ′ = a1 + b1 = 2p1.
Let a′∗ be the sequence a1, 0, 0, . . . ; let b

′
∗ be the sequence b1, 0, 0, . . . ; let a

′′
∗ be the

sequence a2, a3, . . . ; let b
′′
∗ be the sequence b2, b3, . . . . By the induction hypothesis

we have C̃V ′′

a′′
∗ ,b

′′
∗

�= 0. By 1.3 we have C̃V ′

a′
∗,b

′
∗
�= ∅. Let (g′, L1) ∈ C̃V ′

a′
∗,b

′
∗
and let

(g′′, L2, L3, . . . ) ∈ C̃V ′′

a′′
∗ ,b

′′
∗
. Clearly, (g′ ⊕ g′′, L1, L2, . . . ) ∈ C̃V

a∗,b∗
hence 1.1(a) holds

in this case. Thus we can assume that ε = 1 and either

(i) a1 > 0 and b1 = 0 or
(ii) a1 = 0 and b1 > 0.

Assume that we are in case (i). We have b1 = b2 = · · · = 0 and g is unipotent. If
a2 = 0, then 1.1(a) holds by 1.6 with p = (a1 − 1)/2. If a2 > 0 we can find a direct
sum decomposition V = V ′⊕V ′′ such that (V ′, V ′′) = 0 and dimV ′ = a1+a2. Let
a′∗ be the sequence a1, a2, 0, . . . ; let a′′∗ be the sequence a3, a4, . . . ; let b′∗ = b′′∗ be

the sequence 0, 0, . . . . By the induction hypothesis we have C̃V ′′

a′′
∗ ,b

′′
∗
�= ∅. By 1.10 we

have C̃V ′

a′
∗,b

′
∗
�= ∅. Let (g′, L1, L2) ∈ C̃V ′

a′
∗,b

′
∗
and let (g′′, L3, L4, . . . ) ∈ C̃V ′′

a′′
∗ ,b

′′
∗
. Clearly

(g′ ⊕ g′′, L1, L2, . . . ) ∈ C̃V
a∗,b∗

hence 1.1(a) holds in this case. This completes the

proof in case (i).
Assume now that we are in case (ii) so that −g is unipotent. It is easy to check

that C̃V
g;a∗,b∗

= C̃V
−g;b∗,a∗

and the last set is nonempty by the earlier part of the

argument. Hence C̃V
g;a∗,b∗

�= ∅. This completes the inductive proof of 1.1(a).

In the following result (which is needed in the proof of 1.1(b),(c)) we preserve
the setup of 1.1.

Proposition 1.18. Let (g, L1, L2, . . . , Lσ+κ) ∈ C̃V
a∗,b∗

. Let fr be as in 1.5. There

exist vectors zt ∈ Lt − {0} for t ∈ [1, σ + κ] such that (i), (ii), (iii) below hold for
any i, j ∈ Z.

(i) Assume that either t ∈ [1, σ], ε = −1 or t ∈ [1, k]. Then (zti , z
t
j) = 0 if

|i − j| < pt, (zti , z
t
j) = xs if j − i = pt + s, s ≥ 0 (xs as in 1.5 with p = pt);

(zti , z
t′

j ) = 0 if t′ ∈ [1, σ + κ], t′ �= t.
(ii) Assume that {t, t+ 1} ⊂ [k + 1, σ + κ], t = k + 1 mod 2 and ε = 1. We set

δ = 1 if at > 0, δ = −1 if bt > 0. Then

(zti , z
t
j) = (−1)ptδi−jfpt

(i− j),

(zt+1
i , zt+1

j ) = δi−j
∑

r∈[pt+1,pt]

(−1)r22r−2pt+1fr(i− j),

(zti , z
t+1
j ) = δi−j2pt−pt+1+1

(
i− j + pt+1

2pt

)
,

(zti , z
t′

j ) = 0 if t′ ∈ [1, σ + κ], t′ /∈ {t, t+ 1}.
(iii) Assume that ε = 1, κ = 1, t = σ + 1. We set δ = 1 if at > 0, δ = −1 if

bt > 0. (We have pt = 0.) Then

(zti , z
t
j) = 2δi−j ,

(zti , z
t′

j ) = 0 if t′ ∈ [1, σ].
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We argue by induction on n. When n = 0 the result is obvious. Now assume
that n ≥ 1.

Case 1. Assume first that either a1 ≥ 1, b1 ≥ 1 or that ε = −1. We have a1 + b1 =
2p1. Let V

′ =
⊕

i∈[0,2p1−1] L
1
i ⊂ V . We show that

(a) gV ′ = V ′.

It is enough to show that gL1
2p1−1 ⊂ V ′, that is, g2p1L1

0 ⊂ V ′. Since giL1
0 ⊂ V ′ for

i ∈ [0, 2p1−1] and a1+b1 = 2p1, it is enough to show that (g−1)a1(g+1)b1L1
0 = 0.

It is also enough to show that (g − 1)a1(g + 1)b1 = 0 on V . But this follows from
the fact that g ∈ CV

a∗,b∗
.

Now let V ′′ =
⊕

t∈[2,σ+κ],i∈[0,2pt−1] L
t
i ⊂ V . We show that

(b) V ′′ = V ′⊥ (the perpendicular to V ′) and V = V ′ ⊕ V ′⊥.

For t ∈ [2, σ], i ∈ [0, 2p1−1] we have (L1
i , L

t
pt
) = 0; thus Lt

pt
∈ V ′⊥. Since V ′⊥ is g-

stable it follows that Lt
i ⊂ V ′⊥ for t ∈ [2, σ], i ∈ Z. If κ = 1 we have (L1

i , L
σ+1
0 ) = 0

for i ∈ [0, 2p1 − 1]; thus Lσ+1
0 ⊂ V ′⊥. Hence V ′′ ⊂ V ′⊥. But these two vector

spaces have the same dimension so that V ′′ = V ′⊥. Since V = V ′ ⊕ V ′′ it follows
that V = V ′ ⊕ V ′⊥. This proves (b).

Let g′ = g|V ′ , g′′ = gV ′′ . We show:
(c) g′ restricted to the generalized 1-eigenspace of g′ is unipotent with a single

Jordan block of size a1; −g′ restricted to the generalized (−1)-eigenspace of g′ is
unipotent with a single Jordan block of size b1; g′′ restricted to the generalized
1-eigenspace of g′′ is unipotent with Jordan blocks of sizes given by the nonzero
numbers in a2, a3, . . . ; −g′′ restricted to the generalized (−1)-eigenspace of g′′ is
unipotent with Jordan blocks of sizes given by the nonzero numbers in b2, b3, . . . .

As we have seen earlier we have (g − 1)a1(g + 1)b1 = 0 on V ′ (even on V ). Also
g′ ∈ GL(V ′) is regular in the sense of Steinberg and dim V ′ = a1+ b1. This implies
(c).

Let a′∗ be the sequence a1, 0, 0, . . . ; let b
′
∗ be the sequence b1, 0, 0, . . . ; let a

′′
∗ be

the sequence a2, a3, . . . ; let b
′′
∗ be the sequence b2, b3, . . . .

Now the proposition holds when (g, L1, L2, . . . ) is replaced by (g′′, L2, L3, . . . ) ∈
C̃V ′′

a′′
∗ ,b

′′
∗
(by the induction hypothesis) or by (g′, L1) ∈ C̃V ′

a′
∗,b

′
∗
(we choose any z1 ∈

L1 − {0} such that (z1i , z
1
j ) = 1 for |i − j| = p1 and we apply 1.4). Hence the

proposition holds for (g, L1, L2, . . . ) (since (V ′, V ′′) = 0).

Case 2. Next we assume that k = 0, ε = 1, a1 > 0, a2 > 0. Then b1 = b2 = · · · = 0.
We have a1 = 2p1 + 1, a2 = 2p2 − 1. Let V ′ =

⊕
t∈[1,2],i∈[0,2pt−1] L

t
i ⊂ V . We show

that

(d) gV ′ = V ′.

Let N = g−1. Then V =
⊕

t∈[1,σ+κ],i∈[0,2p′
t−1] N

iLt
0 is a direct sum decomposition

into lines and pi = p′i if i ∈ [1, 2]. Now N2p2−1(V ) contains the lines:

(∗) N2p2−1+iL1
0(i = 0, 1, . . . , 2p1 − 2p2) and N2p2−1L2

0

(whose number is 2p1 − 2p2 + 2); moreover, since N has Jordan blocks of sizes
a1 = 2p1 + 1, a2 = 2p2 − 1 and others of size < a2, we see that dimN2p2−1(V ) =
2p1 − 2p2 + 2 so that N2p2−1(V ) is equal to the subspace spanned by (∗) and
N2p2−1(V ) ⊂ V ′. Now V ′ is the subspace of V spanned by the lines N iLt

0 with
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t ∈ [1, 2], i ∈ [0, 2pt − 1]. It is enough to show that NV ′ ⊂ V ′ or that N2ptLt
0 ⊂ V ′

for t = 1, 2. But for t = 1, 2 we haveN2ptLt
0 ⊂ N2p2−1V ⊂ V ′ since 2pt−2p2+1 ≥ 0.

This proves (d).

Let V ′′ =
⊕

t∈[3,σ+κ],i∈[0,2p′
t−1] L

t
i ⊂ V . We show that

(e) V ′′ = V ′⊥ (the perpendicular to V ′) and V = V ′ ⊕ V ′⊥.

For t ∈ [1, 2], r ∈ [3, σ], i ∈ [0, 2pt − 1] we have (Lt
i, L

r
pr
) = 0. Thus Lr

pr
⊂ V ′⊥

for r ∈ [3, σ]. Since V ′⊥ is g-stable it follows that Lr
i ⊂ V ′⊥ for r ∈ [3, σ], i ∈ Z.

If κ = 1 we have (Lt
i, L

σ+1
0 ) = 0 for i ∈ [0, 2pt − 1], t ∈ [1, 2]. Thus Lσ+1

0 ∈ V ′⊥.
Hence V ′′ ⊂ V ′⊥. But these two vector spaces have the same dimension so that
V ′′ = V ′⊥. Since V = V ′ ⊕ V ′′ it follows that V = V ′ ⊕ V ′⊥. This proves (e).

Let g′ = g|V ′ , g′′ = gV ′′ . We show:

(f) g′ is unipotent with exactly two Jordan blocks of size a1, a2. Moreover, g′′ is
unipotent with Jordan blocks of sizes given by the nonzero numbers in a3, a4, . . . .

Since V ′ is the direct sum of the lines N iLt
0, t ∈ [1, 2], i ∈ [0, 2pt − 1] and V ′

is N -stable, we see that the kernel of N : V ′ → V ′ has dimension ≤ 2. Hence
N : V ′ → V ′ has either a single Jordan block of size 2p1 + 2p2 = a1 + a2 or two
Jordan blocks of sizes a′1 ≥ a′2 where a′1 + a′2 = a1 + a2. The first alternative
does not occur since the Jordan blocks of N : V ′ → V ′ have sizes ≤ a1 (by
(e)). Thus the second alternative holds. Since a′1, a

′
2 must form a subsequence of

a1 > a2 > a3 > . . . and a′1 + a′2 = a1 + a2 it follows that a′1 = a1, a
′
2 = a2. This

implies (f).
Let a′∗ be the sequence a1, a2, 0, . . . ; let a

′′
∗ be the sequence a3, a4, . . . ; let b

′
∗ = b′′∗

be the sequence 0, 0, . . . . Now the proposition holds when (g, L1, L2, . . . ) is replaced

by (g′′, L3, L4, . . . ) ∈ C̃V ′′

a′′
∗ ,b

′′
∗
(by the induction hypothesis) or by (g′, L1, L2) ∈ C̃V ′

a′
∗,b

′
∗

(we choose any z1 ∈ L1 − {0} such that (z1i , z
1
j ) = (−1)p1 for |i − j| = p1 and any

z2 ∈ L2 − {0} such that (z2i , z
2
j ) = (−1)p2 for |i − j| = p2 and we apply 1.11 by

possibly changing z2 to −z2). Hence the proposition holds for (g, L1, L2, . . . ) (since
(V ′, V ′′) = 0).

Case 3. Next we assume that k = 0, ε = 1, a1 > 0, a2 = 0. Then b1 = b2 = · · · = 0
and σ = 1, κ = 1. We have a1 = 2p1 + 1, p2 = 0, p′2 = 1/2. We choose any
z1 ∈ L1 − {0} such that (z1i , z

1
j ) = (−1)p1 for |i − j| = p1 and any z2 ∈ L2 − {0}

such that (z2i , z
2
j ) = 2 for |i− j| = p2 and we apply 1.9 by possibly changing z2 to

−z2. We see that the proposition holds for (g, L1, L2, . . . ).

Case 4. Finally assume that k = 0, ε = 1, b1 > 0. Then (−g, L1, L2, . . . ) ∈ C̃V
b∗,a∗

is as in Case 2 or 3. Let (zt) be the corresponding sequence of vectors in V . This
sequence is the desired sequence for (g, L1, L2, . . . ). This completes the proof.

1.19. In the setup of 1.1, we show that 1.1(b) holds. We must show that

(a) any two elements (g, L1, L2, . . . , Lσ+κ), (g′, L′1, L′2, . . . , L′σ+κ) of C̃V
a∗,b∗

are

in the same Is(V )-orbit.
Since Is(V ) acts transitively on CV

a∗,b∗
we can assume that g = g′. Let zt ∈ Lt

(t ∈ [1, σ + κ]) be as in 1.18. Let z′t ∈ L′t (t ∈ [1, σ + κ]) be the analogous vectors
for (g, L′1, L′2, . . . ) instead of (g, L1, L2, . . . ). By 1.18 we have

(b) (zti , z
t′

j ) = (z′ti, z
′t′
j )
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for any i, j ∈ Z and any t, t′ ∈ [1, σ + κ]. Since {zti ; t ∈ [1, σ + κ], i ∈ [0, 2p′t − 1]}
and {z′ti; t ∈ [1, σ+ κ], i ∈ [0, 2p′t − 1]} are bases of V (see 1.0(b)) we see that there
is a unique γ ∈ GL(V ) such that γ(zti) = z′ti for any t ∈ [1, σ + κ], i ∈ [0, 2p′t − 1].
From (b) we see that γ ∈ Is(V ). We show that

(c) γ(zti+1) = z′ti+1 for any t ∈ [1, σ + κ], i ∈ [0, 2p′t − 1].

When i+ 1 ∈ [0, 2p′t − 1] this follows from the definition of γ. Thus we can assume
that i = 2p′t − 1 and we must show that γ(zt2p′

t
) = z′t2p′

t
for any t ∈ [1, σ + κ]. It is

enough to show that (γ(zt2p′
t
), z′t

′

j ) = (z′t2p′
t
, z′t

′

j ) for any t′ ∈ [1, σ+κ], j ∈ [0, 2p′t−1]

(we use again that {z′ti; t ∈ [1, σ + κ], i ∈ [0, 2p′t − 1]} is a basis of V ). We have

(γ(zt2p′
t
), z′t

′

j ) = (γ(zt2p′
t
), γ(zt

′

j )) = (zt2p′
t
, zt

′

j ) and this is equal to (z′t2p′
t
, z′t

′

j ) by (b).

Thus (c) holds. From (c) we see that γ(g(zti)) = g(γ(zti)) for any t ∈ [1, σ + κ], i ∈
[0, 2p′t − 1]. It follows that γg = gγ. From the definition it is clear that γ(Lt) = L′t

for t ∈ [1, σ + κ]. Thus (a) holds (with g′ = g). This proves 1.1(b).

1.20. In the setup of 1.1, we show that 1.1(c) holds. Let (g, L1, L2, . . . , Lσ+κ) ∈
C̃V
a∗,b∗

and let I be the set of all γ ∈ Is(V ) such that γgγ−1 = g, γ(Lt) = Lt for

t ∈ [1, σ + κ]. Let zt ∈ Lt(t ∈ [1, σ + κ]) be as in 1.18. Let γ ∈ I. If t ∈ [1, σ + κ],
we have γ(zt) = ωγ

t z
t where ωγ

t = ±1. If {t, t+1} ⊂ [k+1, σ+κ], t = k+1 mod 2
and ε = 1, we have ωγ

t = ωγ
t+1. Indeed, for some ι ∈ {1,−1} we have

ι2pt−pt+1−1 = (zt−1, z
t+1
pt+1

) = (γ(zt−1), γ(z
t+1
pt+1

))

= ωγ
t ω

γ
t+1(z

t
−1, z

t+1
pt+1

) = ωγ
t ω

γ
t+1ι2

pt−pt+1−1

hence ωγ
t ω

γ
t+1 = 1 and our claim follows. Thus, γ �→ (ωγ

t ) is a homomorphism
ψ : I → I (notation of 1.0). Assume that γ is in the kernel of ψ. Then γ restricts
to the identity map Lt → Lt for t ∈ [1, σ + κ]. Since γ commutes with g it follows
that γ restricts to the identity map on each of the lines giLt (t ∈ [1, σ + κ], i ∈ Z).
Since these lines generate V (see 1.0(b)) we see that γ = 1. Thus ψ is injective. Now
let (ωt) ∈ I. We define γ ∈ GL(V ) by γ(zti) = ωtz

t
i for t ∈ [1, σ+κ], i ∈ [0, 2p′t− 1].

From the definitions we see that

(a) (ωtz
t
i , ωt′z

t′

j ) = (zti , z
t′

j )

for any i, j ∈ Z and any t, t′ ∈ [1, σ + κ].
From (a) we see that γ ∈ Is(V ). We show that

(b) γ(zti+1) = ωtz
t
i+1 for any t ∈ [1, σ + κ], i ∈ [0, 2p′t − 1].

(This is similar to 1.19(c).) When i+1 ∈ [0, 2p′t−1] this follows from the definition
of γ. Thus we can assume that i = 2p′t− 1 and we must show that γ(zt2p′

t
) = ωtz

t
2p′

t

for any t ∈ [1, σ+κ]. It is enough to show that (γ(zt2p′
t
), ωt′z

t′

j ) = (ωtz
t
2p′

t
, ωt′z

t′

j ) for

any t′ ∈ [1, σ+κ], j ∈ [0, 2p′t−1] (we use again that {zti ; t ∈ [1, σ+κ], i ∈ [0, 2p′t−1]}
is a basis of V ). We have

(γ(zt2p′
t
), ωt′z

t′

j ) = (γ(zt2p′
t
), γ(zt

′

j )) = (zt2p′
t
, zt

′

j )

and this is equal to (zt2p′
t
, zt

′

j ) by (a). Thus (b) holds.

From (b) we see that γ(g(zti)) = g(γ(zti) for any t ∈ [1, σ + κ], i ∈ [0, 2p′t − 1]. It
follows that γg = gγ. From the definition it is clear that γ(Lt) = Lt for t ∈ [1, σ+κ].
Thus γ ∈ I. We see that ψ is surjective hence an isomorphism. This proves 1.1(c).
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1.21. In the setup of 1.1, assume that n is even ≥ 2 and ε = 1. Let Ω be the set of
Is(V )0-orbits on the set of (n/2)-dimensional subspaces of V which are isotropic for

(, ); note that |Ω| = 2. If (g, L1, L2, . . . , Lσ) ∈ C̃V
a∗,b∗

, then the (n/2)-dimensional

subspace
⊕

t∈[1,σ],i∈[pt,2pt−1] L
t
i of V is isotropic for (, ). Hence we have a partition

C̃V
a∗,b∗ =

⊔
O∈Ω

C̃V
a∗,b∗;O

where for O ∈ Ω, C̃V
a∗,b∗;O is the set of all (g, L1, L2, . . . , Lσ) ∈ C̃V

a∗,b∗
such that⊕

t∈[1,σ],i∈[pt,2pt−1] L
t
i ∈ O. Now

(a) the action 1.0(c) of Is(V ) restricts for any O ∈ Ω to an action of Is(V )0 on

C̃V
a∗,b∗;O;

(b) if γ ∈ Is(V ) − Is(V )0 then the action of γ on C̃V
a∗,b∗

maps C̃V
a∗,b∗;O onto

C̃V
a∗,b∗;Ω−O.
For any O ∈ Ω we have the following variant of Theorem 1.1:
(c) C̃V

a∗,b∗;O �= ∅;
(d) the action (a) of Is(V )0 on C̃V

a∗,b∗;O is transitive;

(e) the isotropy group in Is(V )0 at any point of C̃V
a∗,b∗;O is canonically isomorphic

to I.
Now (c) follows immediately from (b) and 1.1(a). We prove (d). Let

(g, L1, L2, . . . ) ∈ C̃V
a∗,b∗;O, (g′, L′1, L′2, . . . ) ∈ C̃V

a∗,b∗;O.

By 1.1(b) we can find γ ∈ Is(V ) which carries (g, L1, L2, . . . ) to (g′, L′1, L′2, . . . ).
By (b) we have automatically γ ∈ Is(V )0. Hence (d) holds.

To prove (e) it is enough to show that if γ is in the isotropy group in Is(V ) at
(g, L1, L2, . . . ), then det(γ) = 1. Let (ωt) = ψ(γ) be as in 1.20. From the proof in

1.20 we see that det(γ) =
∏

t∈[1,σ] ω
2pt
t . Since ωt = ±1 we see that det(γ) = 1, as

required.
We now show:
(f) If a1 > 0, b1 > 0 and (g, L1, L2, . . . ) ∈ C̃V

a∗,b∗;O, then there exists γ ∈ I ′

(the isotropy group in Is(V )0 at (g, L1, L2, . . . )) such that for δ ∈ {1,−1}, the
restriction of γ to the generalized δ-eigenspace of g has determinant −1.

Define (ωt) by ω1 = −1, ωt = 1 for t ∈ [2, σ]. In our case we have k ≥ 1
hence (ωt) ∈ I. Let V ′ =

∑
i∈Z L1

i , V
′′ =

∑
t∈[2,σ],i∈Z Lt

i. By 1.18, V = V ′ ⊕ V ′′

(orthogonal direct sum). Define γ ∈ I ′ by ψ(γ) = (ωt) (notation of 1.20). Then γ
acts as identity on V ′′ and as −1 times the identity on V ′. It is enough to prove
that the restriction of γ to the generalized δ-eigenspace of gV ′ has determinant −1
or that this generalized δ-eigenspace has odd dimension. But this dimension is a1
(if δ = 1) and b1 (if δ = −1) and a1, b1 are odd.

1.22. In the setup of 1.1, assume that n is odd (hence ε = 1) and that CV
a∗,b∗

⊂
Is(V )0. We have the following variant of Theorem 1.1:

(a) the restriction of the action 1.0(c) to Is(V )0 is transitive on C̃V
a∗,b∗

;

(b) the isotropy group in Is(V )0 at any point of C̃V
a∗,b∗

is canonically isomorphic
to a subgroup of I of index 2.

Note that if γ ∈ Is(V ) − Is(V )0, then −γ ∈ Is(V )0. Moreover, −1 ∈ Is(V )

acts trivially on C̃V
a∗,b∗

; hence (a) follows from 1.1(b). Now let γ be in the isotropy
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group in Is(V ) at (g, L1, L2, . . . ) and let (ωt) = ψ(γ) be as in 1.20. We have

det(γ) = ωσ+1

∏
t∈[1,σ]

ω2pt

t = ωσ+1.

Thus the condition that γ ∈ Is(V )0 is equivalent to the condition that ωσ+1 = 1.
This proves (b).

We now show:

(c) If a1 > 0, b1 > 0 and (g, L1, L2, . . . ) ∈ C̃V
a∗,b∗

with g ∈ Is(V )0 then there exists

γ ∈ I ′ (the isotropy group in Is(V )0 at (g, L1, L2, . . . )) such that for δ ∈ {1,−1},
the restriction of γ to the generalized δ-eigenspace of g has determinant −1.

Define (ωt) by ω1 = −1, ωt = 1 for t ∈ [2, σ + 1]. In our case we have k ≥ 1
hence (ωt) ∈ I. Let V ′ =

∑
i∈Z L1

i , V
′′ =

∑
t∈[2,σ+1],i∈Z Lt

i. By 1.18, we have

V = V ′ ⊕ V ′′ (orthogonal direct sum). Define γ ∈ I ′ by ψ(γ) = (ωt) (notation of
1.20). Then γ acts as identity on V ′′ and as −1 times the identity on V ′. It is
enough to prove that the restriction of γ to the generalized δ-eigenspace of gV ′ has
determinant −1 or that this generalized δ-eigenspace has odd dimension. But this
dimension is a1 (if δ = 1) and b1 (if δ = −1) and a1, b1 are odd.

1.23. In the setup of 1.1, assume that n ≥ 3 and ε = 1. When n is odd we assume
that CV

a∗,b∗
⊂ Is(V )0 and let π : Γ → Is(V )0 be a surjective morphism of algebraic

groups with kernel of order 2 such that Γ is connected and simply connected. When
n is even let π : Γ → Is(V ) be a surjective morphism of algebraic groups with kernel
of order 2 such that π−1(Is(V )0) is connected and simply connected.

Let c be a γ0-conjugacy class contained in π−1(CV
a∗,b∗

). (If a1b1 > 0 we have c =

π−1(CV
a∗,b∗

); if a1b1 = 0 there are two choices for c.) For n odd let X be the set of all

(g̃, L1, L2, . . . , Lσ+1) where g̃ ∈ c and (π(g̃), L1, L2, . . . , Lσ+1) ∈ C̃V
a∗,b∗

. For n even

let X be the set of all (g̃, L1, L2, . . . , Lσ) where g̃ ∈ c and (π(g̃), L1, L2, . . . , Lσ) ∈
C̃V
a∗,b∗;O. Note that X �= ∅. Now γ0 acts on X by

γ : (g̃, L1, L2, . . . , Lσ+κ) �→ (γg̃γ−1, π(γ)L1, π(γ)L2, . . . , π(γ)Lσ+κ).

We show:

(a) This action is transitive.

If a1b1 = 0, then (a) follows trivially from 1.21(d), 1.22(a). Assume now that
a1b1 > 0. Let (g̃, L1, L2, . . . , Lσ+κ) ∈ X and let c be the nontrivial element in kerπ.
Let g = π(g̃). We define γ in terms of (g, L1, L2, . . . , Lσ+κ) as in 1.21(f) or 1.22(c).
Let γ̃ ∈ π−1(γ). Since γgγ−1 = g we see that either γ̃g̃γ̃−1 = g̃ or γ̃g̃γ̃−1 = cg̃.
In the first case γ̃ is in the centralizer in γ0 of g̃s (the semisimple part of g̃). This
centralizer is a connected algebraic group (by a result of Steinberg). Thus its image
under π is connected hence it is contained in the connected centralizer of gs (the
semisimple part of g) in Is(V )0. Thus γ = π(γ̃) is contained in the connected
centralizer of gs in Is(V )0. But then the restriction of γ to the 1-eigenspace of gs
would have determinant 1, contradicting the choice of γ. We see that we must have

(b) γ̃g̃γ̃−1 = cg̃.

Using 1.21(d), 1.22(a), we see that any γ0-orbit on X contains either (g̃, L1,
L2, . . . , Lσ+κ) or (cg̃, L1, L2, . . . , Lσ+κ). From (b) and the definition of γ̃ we see
that the action of g̃ takes (g̃, L1, L2, . . . , Lσ+κ) to (cg̃, L1, L2, . . . , Lσ+κ). This shows
that (a) holds.
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1.24. As in [L1, §3], [L5, §3] we see that 1.23 (resp. 1.1) implies that Theorem 0.3
holds when G is Γ in 1.23 (resp. G = Is(V ) with n ≥ 2, ε = −1).

2. Bilinear forms

2.0. For any subset S of Z we write S′′ = S ∩ (2Z), S′ = S ∩ (2Z+ 1).
Let V be a k-vector space of finite dimension n. Let (, ) : V × V ∗ → k be

the obvious pairing. Let GV = GL(V ) and let G1
V be the set of all vector space

isomorphisms V
∼→ V ∗. Note that an element of G1

V can be viewed as a bilinear
form V × V → k. For γ ∈ GV we define γ̌ ∈ GV ∗ by (γ(x), γ̌(ξ)) = (x, ξ) for
all x ∈ V, ξ ∈ V ∗. For g ∈ G1

V we define ǧ ∈ G1
V ∗ by (ǧz′, gz) = (z, z′) for any

z ∈ V, z′ ∈ V ∗. There is a well-defined group structure on G := GV �G1
V denoted

by ∗ such that for γ, γ′ in GV and g, g′ in G1
V we have

γ ∗ γ′ = γγ′ ∈ GV ; γ ∗ g′ = γ̌g′ ∈ G1
V ; g ∗ g′ = ǧg′ ∈ GV ; g ∗ γ′ = gγ′ ∈ G1

V .

Now let g ∈ G1
V . For i ∈ Z let g∗i be the i-th power of g for the multiplication ∗.

In particular, we have g∗2 = g ∗ g = ǧg. For i ∈ Z′′ we have g∗i ∈ GV . For i ∈ Z′

we have g∗i ∈ G1
V . For any z ∈ V and i ∈ Z we set zi = g∗iz; we have zi ∈ V

if i ∈ Z′′ and zi ∈ V ∗ if i ∈ Z′. Similarly, for any line L in V and i ∈ Z we set
Li = g∗iL; this is a line in V if i ∈ Z′′ and a line in V ∗ if i ∈ Z′.

For any z, z′ in V and any i ∈ Z′′, j ∈ Z′, k ∈ Z′′, we show:

(a) (zi+k, z
′
j+k) = (zi, z

′
j),

(b) (zi, z
′
j) = (z′−i, z−j).

Indeed, we have

(zi, z
′
j) = (zi, gz

′
j−1) = (z′j−1, (ǧ)

−1zi) = (z′j−1, g(ǧg)
−1zi)(c)

= (z′j−1, gzi−2) = (z′j−1, zi−1).

Repeating this we get (z′j−1, zi−1) = (zi−2, z
′
j−2). Combining with (c) we get

(zi, z
′
j) = (zi−2, z

′
j−2); hence (zi, z

′
j) = φ(i − j) where φ : Z′ → k; by (c) we

have (z′i, zj) = φ(j − i) for i ∈ Z′′, j ∈ Z′. In particular, (a) and (b) hold.

Let a1 ≥ a2 ≥ . . . , b1 ≥ b2 ≥ . . . be two sequences of integers ≥ 0 in N such
that

if i ≥ 1, ai = ai+1, then ai+1 = 0;
if i ≥ 1, bi = bi+1, then bi+1 = 0;
if ai > 0, then ai ∈ Z′;
if bi > 0, then bi ∈ Z′′;

(a1 + a2 + . . . ) + (b1 + b2 + . . . ) = n.
It follows that ai = 0 for large i and bi = 0 for large i. Define k ≥ 0 by

{i ≥ 1; aibi > 0} = [1, k]. We define pi ∈ N for i ≥ 1 as follows. If i ∈ [1, k], we
have pi = (ai + bi + 1)/2. If i > k we define pi by requiring that for s = 1, 3, 5, . . .
we have:
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(pk+s, pk+s+1) = (bk+s/2, (bk+s+1 + 2)/2) if bk+s > 0,

(pk+s, pk+s+1) = ((ak+s + 1)/2, (ak+s+1 + 1))/2) if ak+s > 0, ak+s+1 > 0,

(pk+s, pk+s+1) = ((ak+s + 1)/2, 0) if ak+s > 0, ak+s+1 = 0,

(pk+s, pk+s+1) = (0, 0) if ak+s = ak+s+1 = 0.

We define σ as follows. If n = 0 we set σ = 0. If n ≥ 1 let σ be the largest i such
that pi > 0. We have p1 ≥ p2 ≥ pσ and

(2p1 − 1) + (2p2 − 1) + · · ·+ (2pσ − 1) = n.

Let CV
a∗,b∗

be the set of all g ∈ G1
V such that g∗4 ∈ GV is unipotent and such that

on the generalized 1-eigenspace of g∗2, g∗2 has Jordan blocks of sizes given by the
nonzero numbers in a1, a2, . . . and on the generalized (−1)-eigenspace of g∗2, −g∗2

has Jordan blocks of sizes given by the nonzero numbers in b1, b2, . . . . (Note that
the union of the sets CV

a∗,b∗
where a∗, b∗ as above vary is exactly the set of elements

of G1
V which are distinguished in G in the sense of 0.2.)

For g ∈ CV
a∗,b∗

let C̃V
g;a∗,b∗

be the set consisting of all L1, L2, . . . , Lσ where Lt(t ∈
[1, σ]) are lines in V (the upper scripts are not powers) such that for i ∈ Z′′, j ∈ Z′

we have:

(Lt
i, L

t
j) = 0 if i− j ∈ [−2pt + 3, 2pt − 3]′,

(Lt
i, L

t
j) �= 0 if |i− j| = 2pt − 1 (t ∈ [1, σ]),

(Lr
i , L

t
j) = 0 if j − i ∈ [1− 2pr, 4pt − 2pr − 3]′, 1 ≤ t < r ≤ σ.

Here Lt
i = g∗iLt. We then have:

(d) V =
⊕

t∈[1,σ],i∈[0,2pt−2] L
t
i.

(See [L5, 4.8(a)].) Let C̃V
a∗,b∗

be the set of all (g, L1, L2, . . . , Lσ) such that g ∈
CV
a∗,b∗

and (L1, L2, . . . , Lσ) ∈ C̃V
g;a∗,b∗

.

Note that GV acts on G1
V by “twisted conjugation” that is by γ : g �→ γ̌gγ−1.

Also GV acts on C̃V
a∗,b∗

by

(e) γ : (g, L1, L2, . . . , Lσ) �→ (γ̌gγ−1, γ(L1), γ(L2), . . . , γ(Lσ)).

Now let I be the subgroup of
∏

t∈[1,σ]{1,−1} consisting of all (ωt)t∈[1,σ] such that

ωt = ωt+1 for any t such that {t, t+ 1} ⊂ [k+ 1, σ], t = k+ 1 mod 2, bt > 0. Thus
I is a finite elementary abelian 2-group.

The following is the main result of this section.

Theorem 2.1. (a) C̃V
a∗,b∗

is nonempty;

(b) the action 2.0(e) of GV on C̃V
a∗,b∗

is transitive;

(c) the isotropy group in GV at any point of C̃V
a∗,b∗

is canonically isomorphic
to I.

The proof (by induction on n) follows the same lines as that of Theorem 1.1; it
is given in 2.2–2.20. The numbering of the subsections is such that the material in
2.2, 2.3, . . . , 2.20 is analogous to the material in 1.2, 1.3, . . . , 1.20, respectively.
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2.2. Let a ∈ N′, b ∈ N′′, p ∈ N>0 be such that a + b = 2p − 1. For e ∈ N′′ we
define ne ∈ Z by

(1− T 2)a(1 + T 2)b =
∑
e∈N′′

neT
e.

We have n0 = 1, n4p−2−e = −ne, ne = 0 if e > 4p− 2. We define xe ∈ Z for e ∈ N′′

by x0 = 1 and

(a) n0xe + n2xe−2 + · · ·+ nex0 = 0 for e ≥ 2.

For h ∈ Z′ we set x′
h = 0 if |h| < 2p− 1, x′

h = x|h|−2p+1 if |h| ≥ 2p− 1. We show:

(b)
∑
e∈N′′

nex
′
e−j−1 = 0 for any j ∈ [0, 4p− 4]′′.

Assume first that j ∈ [2p, 4p− 4]′′. We have

e− j − 1 ≤ e− 2p− 1 ≤ 4p− 2− 2p− 1 ≤ 2p− 3.

Hence we can assume that e− j − 1 ≤ −2p+ 1 so that x′
e−j−1 = xj+1−e−2p+1 and

we must show that ∑
e;e≤j+1−2p+1

nexj+1−e−2p+1 = 0.

This holds since j + 1 − 2p + 1 ≥ 2. Assume next that j ∈ [0, 2p − 4]′′. We have
e− j − 1 ≥ e− 2p+4− 1 ≥ −2p+3. Hence we can assume that e− j − 1 ≥ 2p− 1
so that x′

e−j−1 = xe−j−1−2p+1 and we must show that∑
e;e≥j+1+2p−1

nexe−j−1−2p+1 = 0,

that is, ∑
e;e≥j+1+2p−1

n4p−2−exe−j−1−2p+1 = 0,

that is, ∑
e′;4p−2−e′≥j+1+2p−1

ne′x4p−2−e′−j−1−2p+1 = 0,

that is, ∑
e′;e′≤2p−2−j

ne′x2p−2−e′−j = 0,

and this holds since 2p−2− j ≥ 2. Assume next that j = 2p−2. In the sum over e
we can assume that e−j−1 ≥ 2p−1 or e−j−1 ≤ −2p+1, that is, e ≥ 4p−2 or e ≤ 0.
Thus e = 0 or e = 4p−2. Thus the sum is n0x

′
−2p+1+n4p−2x

′
2p−1 = n0+n4p−2 = 0.

2.3. In the setup of 2.2 let V be a k-vector space of dimension 2p − 1. Assume
that we are given a basis {wi; i ∈ [0, 4p− 4]′′} of V . Let {wi; i ∈ [1, 4p− 3]′} be the
basis of V ∗ such that

(wi, wj) = x′
i−j = x′

j−i if i ∈ [0, 4p− 4]′′, j ∈ [1, 4p− 3]′.

Thus (wi, wj) = 0 if |i − j| < 2p − 1. We define g ∈ G1
V by gwi = wi+1 for

i ∈ [0, 4p− 4]′′. Let ǧ ∈ G1
V ∗ be as in 2.0. We have

ǧwi = wi+1 if i ∈ [1, 4p− 5]′;

we must check that (wi+1, wj+1) = (wj , wi) for i ∈ [1, 4p − 3]′, j ∈ [0, 4p − 4]′′; we
use that |i+ 1− (j + 1)| = |j − i|.
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We show:

ǧw4p−3 =
∑

i∈[0,4p−4]′′

niwi,

that is, ∑
i∈[0,4p−4]′′

ni(wi, wj+1) = (wj , w4p−3) for any j ∈ [0, 4p− 4]′′,

that is, ∑
i∈[0,4p−4]′′

nix
′
i−j−1 = x′

4p−3−j for any j ∈ [0, 4p− 4]′′,

that is, ∑
i∈[0,4p−2]′′

nix
′
i−j−1 = 0 for any j ∈ [0, 4p− 4]′′.

This has been seen in 2.2(b).
We have g∗2(wi) = wi+2 for i ∈ [0, 4p − 6]′′, g∗2(w4p−4) =

∑
i∈[0,4p−4]′′ niwi.

Hence (g∗2 − 1)a(g∗2 + 1)b = 0 on V . Indeed this holds on w0 and then it holds
automatically on wi, i ∈ [0, 4p − 4]′′. Now g∗2 ∈ GV is regular in the sense of
Steinberg and satisfies (g∗2 − 1)a(g∗2 + 1)b = 0 on V . Hence V = V + ⊕ V − where
g∗2 acts on V + as a single unipotent Jordan block of size a and −g∗2 acts on V −

as a single unipotent Jordan block of size b.
It follows that, if L is the line in V spanned by w0 and a∗ = (a, 0, 0, . . . ),

b∗ = (b, 0, 0, . . . ), then (g, L) ∈ C̃V
a∗,b∗

; in particular, C̃V
a∗,b∗

�= ∅.
We now consider a variant of the situation above. Let V ′ be a k-vector space

of dimension 2p − 1 with a given element g ∈ G1
V ′ such that g∗4 = 1, on the

generalized 1-eigenspace of g∗2, g∗2 is a single unipotent Jordan block of size a and
on the generalized (−1)-eigenspace of g∗2, −g∗2 is a single unipotent Jordan block
of size b. Moreover, we assume that we are given w ∈ V ′ such (with notation of
2.0) we have

(wi, wj) = 0 if i ∈ Z′′, j ∈ Z′, |i− j| < 2p− 1 and

(wi, wj) = 1 if i ∈ Z′′, j ∈ Z′, |i− j| = 2p− 1.

We show:
(a) for any i ∈ Z′′, j ∈ Z′ we have (wi, wj) = x′

i−j.
We can assume that i = 0 and j ≥ 1. The equality in (a) is already known if

j ≤ 2p− 1. It is enough to show that (w0, w2p−1+2t) = x2t for t ∈ N. We argue by
induction on t; for t = 0 the result is already known. Now assume that t ≥ 1. Apply-
ing (g∗2 − 1)a(g∗2 + 1)b = 0 to w2t−2p+2 we obtain

∑
e∈[0,4p−2]′′ new2t−2p+2+e = 0.

Taking (, w1) we obtain

∑
e∈[0,4p−2]′′

ne(w2t−2p+2+e, w1) = 0,

that is, ∑
e∈[0,4p−2]′′

ne(w0, w2t−2p+1+e) = 0.
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For e in the sum we have 2t− 2p+ 1+ e ≥ −2p+ 3; hence we can assume that we
have 2t− 2p+ 1 + e ≥ 2p− 1. Thus∑

e∈[0,4p−2]′′;2t−2p+1+e≥2p−1

ne(w0, w2t−2p+1+e) = 0.

By the induction hypothesis this implies∑
e∈[0,4p−4]′′;2t−2p+1+e≥2p−1

nex2t−4p+2+e − (w0, w2t+2p−1) = 0.

It is then enough to show that∑
e∈[0,4p−4]′′;2t−2p+1+e≥2p−1

nex2t−4p+2+e − x2t = 0,

or that ∑
e∈[0,4p−2]′′;2t−2p+1+e≥2p−1

n4p−2−ex2t−4p+2+e = 0,

or that ∑
h,h′∈N′′;h+h′=2t

nhxh′ = 0.

But this holds by the definition of xe since 2t ≥ 2.

2.4. Let p ∈ N>0. We define ne for e ∈ N′′ by ne =
(
2p
e/2

)
. We define xe for e ∈ N′′

by x0 = 1, x2 = −(2p+1), and n0xe+n2xe−2+ · · ·+nex0 = 0 for e ≥ 4. For e = 2
we have

n0xe + n2xe−2 + · · ·+ nex0 = n0x2 + n2x0 = −(2p+ 1) + 2p = −1.

For d ∈ Z′ we set φp(d) = 0 if |d| < 2p − 1, φp(d) = x|d|−2p+1 if |d| ≥ 2p − 1. We
show for any h ∈ Z′:

(a)
∑

e∈[0,4p]′′

neφp(e+ h) = 0

Assume that h ≤ −1. We set h = −j − 1 so that j ∈ N′′. Assume first that
j ≥ 2p+ 2. We have e− j − 1 ≤ e− 2p− 2− 1 ≤ 4p− 2p− 2− 1 ≤ 2p− 3. Hence
we can assume that e− j − 1 ≤ −2p+ 1 so that φp(e− j − 1) = xj+1−e−2p+1 and
we must show ∑

e∈N′′;e≤j+1−2p+1

nexj+1−e−2p+1 = 0.

This holds since j + 1− 2p+ 1 ≥ 4.
Assume next that j ≤ 2p − 4. We have e − j − 1 ≥ e − 2p + 4 − 1 ≥ −2p + 3.

Hence we can assume that e− j − 1 ≥ 2p− 1 so that φp(e− j − 1) = xe−j−1−2p+1

and we must show: ∑
e∈N′′;e≥j+1+2p−1

nexe−j−1−2p+1 = 0,

that is, ∑
e∈N′′;e≥j+1+2p−1

n4p−exe−j−1−2p+1 = 0,

that is, ∑
e′∈N′′;4p−e′≥j+1+2p−1

ne′x4p−e′−j−1−2p+1 = 0,
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that is, ∑
e′∈N;e′≤2p−j

ne′x2p−e′−j = 0

and this holds since 2p− j ≥ 4.
Assume next that j = 2p− 2. In the sum we can assume that e− j − 1 ≥ 2p− 1

or e − j − 1 ≤ −2p + 1 that is e ≥ 4p − 2 or e ≤ 0. Thus e = 0 or e = 4p − 2 or
e = 4p. Thus the sum is

n0φp(−2p+1)+n4p−2φp(2p−1)+n4pφp(2p+1) = x0+2px0+x2 = x2+2p+1 = 0.

Assume next that j = 2p. In the sum we can assume that e − j − 1 ≥ 2p − 1 or
e− j − 1 ≤ −2p+ 1, that is, e ≥ 4p or e ≤ 2. Thus e = 0, 2 or 4p. Thus the sum is

n0φp(−2p− 1) + n2φp(−2p+ 1) + n4pφp(2p− 1) = x2 + 2p+ 1 = 0.

Thus the desired formula holds when h ≤ −1. Now assume that h ≥ 1. We have∑
e∈N′′

neφp(e+ h) =
∑

e∈[0,4p]′′

n4p−eφp(e+ h)

=
∑

e∈[0,4p]′′

neφp(4p− e+ h) =
∑

e∈[0,4p]′′

neφp(−4p+ e− h)

and this is 0 by the first part of the proof since −4p− h ≤ −1.

We have ∑
e∈N′′,j∈N′′

neT
exjT

j = 1− T 2,

hence

(1 + T 2)2p
∑
j∈N′′

xjT
j = 1− T 2

and

∑
j∈N′′

xjT
j = (1− T 2)(1 + T 2)−2p = (1− T 2)(

∑
k≥0

(−1)k
(
2p− 1 + k

2p− 1

)
T 2k).

Thus,

x2k = (−1)k
(
2p− 1 + k

2p− 1

)
− (−1)k−1

(
2p− 1 + k − 1

2p− 1

)

= (−1)k
(2p− 2 + k)!(2p− 1 + k + k)

k!(2p− 1)!

= (−1)k(2p+ 2k − 1)(2p− 2 + k)(2p− 2 + k − 1) . . . (k + 1)(2p− 1)!−1.

We show for any h ∈ Z′:

(b) φp(h) = (−1)(h+2p+1)/22h(h+ 2p− 3)(h+ 2p− 5) . . . (h− 2p+ 3)(4p− 2)!!−1

where

(4p− 2)!! := 2× 4× . . . (4p− 2) = 22p−1(2p− 1)!.
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Assume first that h = 2d+ 1 ≥ 2p− 1. We have

φp(h) = x2d+1−2p+1 = x2d−2p+2

= (−1)d−p+1(2p+ 2d− 2p+ 2− 1)(2p− 2 + d− p+ 1)

× (2p− 2 + d− p+ 1− 1) . . . (d− p+ 2)(2p− 1)!−1

= (−1)d−p+1(2d+ 1)(p+ d− 1)(p+ d− 2) . . . (d− p+ 2)(2p− 1)!−1

so that the result holds in this case. Now both sides of (b) are invariant under
h �→ −h. Hence (b) also holds if h ≤ −2p+ 1. If h ∈ [−2p+ 3, 2p− 3]′, both sides
of (b) are zero. Hence (b) holds for any h ∈ Z′.

In particular we have φp(2p+ 1) = −(2p+ 1).

2.5. In the setup of 2.4, let E be a k-vector space of dimension 2p. Assume that we
are given a basis {wi; i ∈ [0, 4p− 2]′′} of E. We define a basis {wi; i ∈ [1, 4p− 1]′}
of E∗ by

(wi, wj) = φp(i− j) = φp(j − i) for i ∈ [0, 4p− 2]′′, j ∈ [1, 4p− 1]′.

Thus (wi, wj) = 0 if i ∈ [0, 4p − 2]′′, j ∈ [1, 4p − 1]′, |i − j| < 2p − 1. We define
g ∈ G1

E by gwi = wi+1 for i ∈ [0, 4p− 2]′′. We have

ǧwi = wi+1 if i ∈ [1, 4p− 3]′;

we must check that (wi+1, wj+1) = (wj , wi) for i ∈ [1, 4p − 1]′, j ∈ [0, 4p − 2]′′; we
use that |i+ 1− (j + 1)| = |j − i|.

We show:

ǧw4p−1 = −
∑

i∈[0,4p−4]′′

niwi.

We must show for any j ∈ [0, 4p− 2]′′ that

−
∑

i∈[0,4p−2]′′

ni(wi, wj+1) = (wj , w4p−1),

that is,

−
∑

i∈[0,4p−2]′′

niφp(i− j − 1) = φp(4p− 1− j),

that is, ∑
i∈[0,4p]′′

niφp(i− j − 1) = 0;

note that n4p = −1. This has been seen in 2.4(a).
We have

g∗2(wi) = wi+2 for i ∈ [0, 4p− 4],

g∗2(w4p−2) = −
∑

i∈[0,4p−2]′′

niwi.

Hence

(a) (g∗2 + 1)2p = 0 on E.

Indeed this holds on w0 and then it holds automatically on wi, i ∈ [0, 4p−2]′′. Now
g∗2 ∈ GL(E) is regular in the sense of Steinberg and satisfies (a). Hence −g∗2 acts
on E as a single unipotent Jordan block of size 2p.
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2.6. For i ∈ Z we write wi instead of (w0)i. This agrees with our earlier notation
for wi when i ∈ [0, 4p− 1]. We show:

(a) (wi, wj) = φp(i− j) = φp(j − i) for any i ∈ Z′′, j ∈ Z′.

By 2.0(a) there exists a function f : Z′ → k such that (wi, wj) = f(i − j) for any
i ∈ Z′′, j ∈ Z′. We must show that f(h) = φp(h) for h ∈ Z′. We set f ′(h) =
f(h)−φp(h). We must show that f ′(h) = 0 for all h ∈ Z′. This is clearly true when
h ∈ [−2p+ 1, 2p− 1]′. Applying

∑
e∈[0,4p]′′ neg

∗e = 0 to wi, i ∈ Z′′, we deduce
∑

e∈[0,4p]′′

newi+e = 0;

hence ∑
e∈[0,4p]′′

ne(wi+e, wj) = 0 for i ∈ Z′′, j ∈ Z′.

Thus,
∑

e∈[0,4p]′′ nef(i− j + e) = 0 for i ∈ Z′′, j ∈ Z′ and
∑

e∈[0,4p]′′ nef(h+ e) = 0

for h ∈ Z′′. Combining this with
∑

e∈[0,4p]′′ neφp(h+e) = 0 for h ∈ Z′′ (see 2.4(a)),

we deduce
∑

e∈[0,4p]′′ nef
′(h + e) = 0 for h ∈ Z′′. We show that f ′(h) = 0 for

h ≥ 2p− 1 by induction on h. For h = 2p− 1 this is already known. Now assume
that h ≥ 2p + 1. We have

∑
e∈[0,4p]′′ nef

′(h + e − 4p) = 0. If e ∈ [0, 4p − 2]′′ we

have h + e − 4p ∈ [−2p + 1, h − 2] hence f ′(h + e − 4p) = 0 and the sum over
e becomes n4pf

′(h) = 0 so that f ′(h) = 0. This completes the induction. We
now show that f ′(h) = 0 for h ≤ −2p + 1 by descending induction on h. For
h = −2p+ 1 this is known. Now assume that h ≤ −2p− 1. If e ∈ [2, 4p]′′ we have
h+e ∈ [h+2, 2p−1] hence f ′(e+h) = 0 and the equation

∑
e∈[0,4p]′′ nef

′(h+e) = 0

becomes n0f
′(h) = 0 so that f ′(h) = 0. This completes the descending induction

and completes the proof of (a).

2.7. We preserve the setup of 2.5. Let w̃ be a nonzero vector in E such that

(a) (w̃, wi) = 0 for i ∈ [1, 4p− 3]′.

Note that w̃ is uniquely determined up to a nonzero scalar. Then w̃i is defined
for any i ∈ Z as in 2.0; in particular, w̃0 = w̃, w̃1 = gw̃. We have

(b) (wi, w̃1) = 0 for i ∈ [2, 4p− 2]′′.

Indeed, using 2.0(a),(b) we have (wi, w̃1) = (w̃−i, w−1) = (w̃0, wi−1) and this is
zero since i− 1 ∈ [1, 4p− 3]′.

We show that (w̃0, w̃1) �= 0. Let E1 be the span of {wi; i ∈ [2, 4p− 2]′′} and let
E′

1 be the span of {wi; i ∈ [1, 4p − 3]′}. The canonical pairing (, ) : E × E∗ → k
restricts to a nondegenerate pairing E1 × E′

1 → k (by the formulas for (wi, wj) in
2.5). Since w̃0 is in the annihilator of E′

1 in E, it follows that w̃0 /∈ E1. Since w̃1 is
in the annihilator of E1 in E∗, it follows that w̃0 is not in the annihilator of w̃1 in
E. The claim follows.

If w̃ is replaced by aw̃ with a ∈ k∗, then (w̃0, w̃1) is replaced by a2(w̃0, w̃1) which,
for a suitable a, is equal to 1. Thus we can assume that

(c) (w̃0, w̃1) = 1.

Then w̃0 is uniquely determined up to multiplication by ±1. We have

w̃0 =
∑

i∈[0,4p−2]′′

ciwi
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where ci ∈ k are uniquely determined. Since w̃0 /∈ E1 we see that c∗ := c4p−2 �= 0.
We set c̄i = cic

−1
∗ ∈ k. Note that c̄4p−2 = 1. We have the following result (with ni

as in 2.4):

(d) c̄i = −(n0 + n2 + · · ·+ ni) if i ∈ [0, 2p− 2]′′,

(e) c̄i = (n0 + n2 + · · ·+ n4p−2−i) if i ∈ [2p, 4p− 2]′′,

(f) c∗ = ±2−p.

We can rewrite (a) as follows.

(∗)
∑

i∈[0,4p−2]′′

c̄iφp(i− h) = 0 for h ∈ [1, 4p− 3]′.

If h = 2p− 1, then (∗) is c̄0 + 1 = 0. If h ∈ [2p+ 1, 4p− 3]′, then (∗) is∑
i∈[0,h−2p+1]′′

c̄iφp(i− h) = 0.

If h ∈ [1, 2p− 3]′, then (∗) is ∑
i∈[h+2p−1,4p−2]′′

c̄iφp(i− h) = 0.

To prove (d) and (e) it is enough to show:

(d′) −
∑

i∈[0,h−2p+1]′′

(n0 + n2 + · · ·+ ni)φp(i− h) = 0 if h ∈ [2p+ 1, 4p− 3]′,

(e′)
∑

i∈[h+2p−1,4p−2]′′

(n0 + n2 + · · ·+ n4p−2−i)φp(i− h) = 0 if h ∈ [1, 2p− 3]′.

We rewrite equation (e′) using i �→ 4p− 2− i and h �→ 4p− 2− h as∑
i∈[0,h−2p+1]′′

(n0 + n2 + · · ·+ ni)φp(h− i) = 0 if h ∈ [2p+ 1, 4p− 3]′,

which is the same as (d′). Thus it is enough to prove (d′). We argue by induction
on h. If h = 2p+ 1, equation (d′) is

n0φp(−2p− 1) + (n0 + n2)φp(−2p+ 1) = 0,

that is, −(2p+ 1) + (1 + 2p) = 0, which is correct. If h ≥ 2p+ 3 we have∑
i∈[0,h−2p+1]′′

nixh−i−2p+1 = 0

since h− 2p+ 1 ≥ 4. Hence in this case (d′) is equivalent to∑
i∈[2,h−2p+1]′′

(n0 + n2 + · · ·+ ni−2)φp(i− h) = 0,

which is the same as equation (d′) with h replaced by h − 2 (this holds by the
induction hypothesis). This proves (d) and (e).

The equation (w̃0, w̃1) = 1 can be written as

1 = (w̃0,
∑

i∈[0,4p−2]′′

ciwi+1) = (w̃0, c4p−2w4p−1),
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that is,

(g) 1 = c∗(w̃0, w4p−1).

We deduce that
1 = c∗

∑
i∈[0,4p−2]′′

ci(wi, w4p−1),

that is,

c−2
∗ =

∑
i∈[0,4p−2]′′

c̄iφp(4p− 1− i).

We have 4p− i− 1 ≥ −2p+ 3 hence we can assume 4p− i− 1 ≥ 2p− 1. Thus

c−2
∗ =

∑
i∈[0,2p]′′

c̄iφp(4p− 1− i)

= −
∑

i∈[0,2p−2]′′

(n0 + n2 + · · ·+ ni)φp(4p− 1− i) + n0 + n2 + · · ·+ n2p−2

= −
∑

i∈[0,2p−2]′′

(n0 + n2 + · · ·+ ni)x2p−i + n0 + n2 + · · ·+ n2p−2.

Thus,

c−2
∗ = −

∑
i∈N′′,j∈N′′;i+j≤2p,j≥2

nixj + n0 + n2 + · · ·+ n2p−2

= −
∑

i∈N′′,j∈N′′;i+j≤2p

nixj +
∑

i∈N′′;i≤2p

ni + (n0 + n2 + · · ·+ n2p−2)

= −
∑

k∈[0,2p]′′

∑
i∈N′′,j∈N′′;i+j=k

nixj +
∑

i∈N′′;i≤2p

ni + (n0 + n2 + · · ·+ n2p−2)

= −
∑

k∈[0,2p]′′;k=0,2

∑
i∈N′′,j∈N′′;i+j=k

nixj +
∑

i∈N′′;i≤2p

ni + (n0 + n2 + · · ·+ n2p−2)

= −1 + n0x2 + n2x0 +
∑

i∈N′′;i≤2p

ni + (n0 + n2 + · · ·+ n2p−2)

= −1− (n2 + 1) + n2 +
∑

i∈N′′;i≤2p

ni + (n0 + n2 + · · ·+ n2p−2)

=
∑

i∈N′′;i≤2p

ni + (n0 + n2 + · · ·+ n2p−2)

= n0 + n2 + · · ·+ n2p + n2p+2 + · · ·+ n4p = 22p.

Thus c−2
∗ = 22p and (f) follows.

If w̃ is replaced by −w̃, then c∗ is changed to −c∗. Hence w̃ can be chosen
uniquely so that

(f′) c∗ = 2−p.

2.8. We preserve the setup of 2.5. For h ∈ Z′ we show

(a) (w̃0, wh) = (−1)(h+1)/22p(h− 1)(h− 3) . . . (h− 4p+ 3)(4p− 2)!!−1 ∈ 2Z.

We have (w̃0, wh) =
∑

i∈[0,4p−2]′′ ciφp(i−h). Since ci = 2−pc̄i it is enough to prove

(b)
∑

i∈[0,4p−2]′′

c̄i(−1)(h+1)/2φp(i−h) = 22p(h−1)(h−3) . . . (h−4p+3)(4p−2)!!−1.
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It is also enough to prove this equality in Z. For fixed i, (−1)(h+1)/2φp(i− h) is a
polynomial in h with rational coefficients of degree ≤ 2p− 1. Hence the left hand
side of (b) is a polynomial in h with rational coefficients of degree ≤ 2p− 1. Since
(w̃0, wh) = 0 for h ∈ [1, 4p− 3]′, this polynomial is zero for h ∈ [1, 4p− 3]′ (that is
for 2p− 1 values of h). It follows that

(−1)(h+1)/2
∑

i∈[0,4p−2]′′

c̄iφp(i− h) = a(h− 1)(h− 3) . . . (h− 4p+ 3)

for some rational number a. (The left hand side is (−1)(h+1)/22p(w̃0, wh).) For
h = 4p− 1 we have (w̃0, wh) = c−1

∗ = 2p (see 2.7(g)), hence

22p = a(4p− 2)(4p− 4) . . . 2 = a(4− 2)!!,

that is, a = 22p(4p− 2)!!−1. It remains to show that

(−1)(h−1)/22p(h− 1)(h− 3) . . . (h− 4p+ 3)(4p− 2)!!−1 ∈ 2Z.

Setting h = 2s+ 1 it is enough to show that

2p(2s+ 1− 1)(2s+ 1− 3) . . . (2s+ 1− 4p+ 3)(4p− 2)!!−1 ∈ 2Z

or that

2ps(s+ 1) . . . (s− 2p+ 2)(2p− 1)!−1 ∈ 2Z.

This is obvious since p ≥ 1.

2.9. We preserve the setup of 2.5. We will show:

(a) (w̃0, w̃h) =
∑

k∈[1,p]

22k−2φk(h) ∈ k for h ∈ Z′;

(b) (w̃0, w̃h) = 1 if h ∈ [−2p+ 1, 2p− 1]′;

(c) (w̃0, w̃2p+1) = 1− 22p.

We prove (a). We have

(w̃0, w̃h) =
∑

i∈[0,4p−2]′′

ci(w̃0, wi+h) =
∑

i∈[0,4p−2]′′

(−1)(i+h+1)/2ci2
p(i+ h− 1)

× (i+ h− 3) . . . (i+ h− 4p+ 3)× (4p− 2)!!−1.(d)

Thus, (a) would follow from the equality

∑
i∈[0,4p−2]′′

(−1)i/2c̄i(i+ h− 1)(i+ h− 3) . . . (i+ h− 4p+ 3)(4p− 2)!!−1

=
∑

k∈[1,p]

(−1)(h+1)/222k−2φk(h)(e)

in k. It is enough to prove that (e) holds in Z. We will do that assuming that (b)
holds. Let Fp(h) be the left hand side of (e). It can be viewed as a polynomial with
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rational coefficients in h of degree ≤ 2p− 1 in which the coefficient of h2p−1 is

(4p− 2)!!−1
∑

i∈[0,4p−2]′′

c̄i(−1)−i/2

= −(4p− 2)!!−1
∑

i∈[0,2p−2]′′

(n0 + n2 + · · ·+ ni)(−1)i/2

+ (4p− 2)!!−1
∑

i∈[2p,4p−2]′′

(n0 + n2 + · · ·+ n4p−2−i)(−1)i/2

= −(4p− 2)!!−1
∑

i∈[0,2p−2]′′

(n0 + n2 + · · ·+ ni)(−1)i/2

+ (4p− 2)!!−1
∑

i∈[0,2p−2]′′

(n0 + n2 + · · ·+ ni)(−1)(4p−2−i)/2

= −2(4p− 2)!!−1
∑

i∈[0,2p−2]′′

(n0 + n2 + · · ·+ ni)(−1)i/2

= −2(4p− 2)!!−1(−1)p−1(n2p−2 + n2p−6 + n2p−10 + . . . )

= −2(4p− 2)!!−1(−1)p−122p−2

= (−1)p22p−1(4p− 2)!!−1 = (−1)p(2p− 1)!−1.

Thus,

Fp(h) = (−1)p(2p− 1)!−1h2p−1 + lower powers of h.

Note that Fp(−h) = −Fp(h) for h ∈ Z′. An equivalent statement is that

(−1)(h+1)/2(w̃0, w̃h) = −(−1)(−h+1)/2(w̃0, w̃−h)

which follows from (w̃0, w̃h) = (w̃0, w̃−h); see 2.0. It follows that Fp(−h) = −Fp(h)
as polynomials in h. Specializing this for h = 0 we see that

(g) Fp(0) = 0.

In the case where p = 1, from (f) and (g) we see that F1(h) = −h so that (e) holds
in this case (we have (−1)(h+1)/2φ1(h) = −h). We now assume that p ≥ 2. Now
Fp−Fp−1 is a polynomial of degree 2p−1 in h whose value at h ∈ [−2p+3, 2p−3]′

is (−1)(h+1)/2 − (−1)(h+1)/2 = 0 (we use (b) for p and p − 1) and whose value at
0 is 0 (see (e)); moreover, the coefficient of h2p−1 in Fp − Fp−1 is (−1)p(2p− 1)!−1

(see (f)). It follows that Fp − Fp−1 = (−1)(h+1)/222p−2φp(h). From this we see by
induction on p that (e) holds.

It remains to prove (b) and (c) (without assuming (a)). To prove (b) we can
assume that h ≥ 1 (we use that (w̃0, w̃h) = (w̃0, w̃−h), see 2.0). Thus it is enough
to prove (b) for h ∈ [1, 2p − 1]′ and (c). If h = 1, (b) holds by the definition of
w̃0. Assume now that h ∈ [3, 2p + 1]′. In the right hand side of (e) the sum over
i can be restricted to those i such that i + h /∈ {1, 3, . . . , 4p − 3} hence such that
i + h ≥ 4p − 1; for such i we have i ≥ 4p − 1 − h ≥ (4p − 1) − (2p + 1) hence
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i ≥ 2p− 2. Moreover, if i = 2p− 2, then we must have h = 2p+ 1. Thus we have

(w̃0, w̃h) = (−1)(h+1)/2
∑

i∈[4p−1−h,4p−2]′′

(−1)i/2c̄i(i+ h− 1)

× (i+ h− 3) . . . (i+ h− 4p+ 3)(4p− 2)!!−1

= (−1)(h+1)/2
∑

i∈[4p−1−h,4p−2]′′;i≥2p

(−1)i/2(n0 + n2 + · · ·+ n4p−2−i)

× (i+ h− 1)(i+ h− 3) . . . (i+ h− 4p+ 3)(4p− 2)!!−1

− (−1)(h+1)/2δh,2p+1(−1)(2p−2)/2(n0 + n2 + · · ·+ n2p−2)

= (−1)(h+1)/2
∑

i∈[4p−1−h,4p−2]′′

(−1)i/2(n0 + n2 + · · ·+ n4p−2−i)

× (i+ h− 1)(i+ h− 3) . . . (i+ h− 4p+ 3)(4p− 2)!!−1

− (−1)p+1δh,2p+1(−1)p−1(n0 + n2 + · · ·+ n2p)

− (−1)p+1δh,2p+1(−1)p−1(n0 + n2 + · · ·+ n2p−2)

= x− δh,2p+1(n0 + n2 + · · ·+ n2p + n0 + n2 + · · ·+ n2p−2)

= x− δh,2p+1(n0 + n2 + · · ·+ n2p + n2p+2 + · · ·+ n4p)

= x− δh,2p+12
2p

where

x = (−1)(h+1)/2
∑

i∈[4p−1−h,4p−2]′′

(−1)i/2(n0 + n2 + · · ·+ n4p−2−i)

× (i+ h− 1)(i+ h− 3) . . . (i+ h− 4p+ 3)(4p− 2)!!−1.

It remains to show that x = 1. Setting h = 2h′ + 1, i = 4p− 2− 2i′ we have

x =
∑

i′∈[0,h′]

(−1)i
′+h′

(n0 + n2 + · · ·+ n2i′)

(
2p− i+ h′ − 1

2p− 1

)

=
∑

i′≥0,u≥0;i′+u=h′

(−1)u(n0 + n2 + ...+ n2i′)ru

where ru =
(
u+2p−1
2p−1

)
. Note that

∑
i≥0,u≥0;i+u=e

(−1)in2ire = δe,0

for any e ∈ N. Hence

x =
∑

i′≥0,j≥0,r≥0,u≥0;i′=j+r,i′+u=h′

(−1)h
′+j+rn2jru

=
∑

r∈[0,h′]

(−1)h
′+r

∑
j,u≥0;j+u=h′−r

(−1)jn2jru

=
∑

r∈[0,h′]

(−1)h
′+rδh′−r = (−1)h

′+h′
= 1.

This completes the proof of (a), (b), (c).



262 G. LUSZTIG

2.10. We fix two integers p1, p2 such that p1 ≥ p2 ≥ 1. Let V ′, V ′′ be two k-vector
spaces of dimension 2p1, 2p2 − 2, respectively, and let V = V ′ ⊕ V ′′. We identify
V ∗ = V ′∗ ⊕ V ′′∗ in the obvious way. Let (, ) : V × V ∗ → k be the obvious pairing.
Assume that V ′ has a given basis {zi; i ∈ [0, 4p1 − 2]′′} and that V ′′ has a given
basis {vi; i ∈ [0, 4p2 − 6]′′}. There is a unique basis {zi; i ∈ [1, 4p1 − 1]′} of V ′∗ and
a unique basis {vi; i ∈ [1, 4p2 − 5]′} of V ′′∗ such that

(zi, zj) = φp1
(i− j) for i ∈ [0, 4p1 − 2]′′, j ∈ [1, 4p1 − 1]′,

(vi, vj) = φp2−1(i− j) for i ∈ [0, 4p2 − 6]′′, j ∈ [1, 4p2 − 5]′.

(Notation of 2.4; the basis of V ′′ and V ′′∗ is empty when p2 = 1.) We define g ∈ G1
V

by gzi = zi+1 for i ∈ [0, 4p1 − 2]′′, gvi = vi+1 for i ∈ [0, 4p2 − 6]′′. We have

g∗2(zi) = zi+2 for i ∈ [0, 4p1 − 4], g∗2(vi) = vi+2 for i ∈ [0, 4p2 − 8],

(g∗2 + 1)2p1 = 0 on V ′, (g∗2 + 1)2p2−2 = 0 on V ′′.

(See 2.5.) Hence −g∗2 acts on V ′ as a single unipotent Jordan block of size 2p1 and
on V ′′ as a single unipotent Jordan block of size 2p2 − 2. (When p2 = 1, −g∗2 = 0
on V ′′ = 0.)

For i ∈ Z we write zi instead of (z0)i (as in 2.0); when p2 ≥ 2 we write vi instead
of (v0)i. This agrees with our earlier notation for zi when i ∈ [0, 4p1 − 1] and vi for
i ∈ [0, 4p2 − 5]. We have

(zi, zj) = φp1
(i− j) for i ∈ Z′′, j ∈ Z′;

(vi, vj) = φp2−1(i− j) for i ∈ Z′′, j ∈ Z′ (assuming p2 ≥ 2).

(See 2.6(a).) If p2 ≥ 2 we clearly we have

(zi, vj) = 0, (vi, zj) = 0 for i ∈ Z′′, j ∈ Z′.

As in 2.7 and 2.8, there is a unique vector z̃ ∈ V ′ such that for any h ∈ Z′ we have

(z̃0, zh) = 2p1(−1)(h+1)/2(h− 1)(h− 3) . . . (h− 4p1 + 3)(4p1 − 2)!!−1,

Similarly, if p2 ≥ 2, there is a unique vector ṽ ∈ V ′′ such that for any h ∈ Z′ we
have

(ṽ0, vh) = 2p2−1(−1)(h+1)/2(h− 1)(h− 3)...(h− 4p2 + 7)(4p2 − 6)!!−1.

(Notation of 2.0.) If p2 = 1 we set ṽi = 0 for all i ∈ Z. As in 2.9, we have

(a) (z̃0, z̃h) =
∑

k∈[1,p1]

22k−2φk(h),

(b) (ṽ0, ṽh) =
∑

k∈[1,p2−1]

22k−2φk(h), (if p2 ≥ 2),

(c) (z̃0, z̃h) = 1 if h ∈ [−2p1 + 1, 2p1 − 1]′; (z̃0, z̃2p1+1) = 1− 22p1 ,

(d) (ṽ0, ṽh) = 1 if h ∈ [−2p2 + 3, 2p2 − 3]′; (ṽ0, ṽ2p2−1) = 1− 22p2−2 (if p2 ≥ 2).

Let ζ ∈ k be such that ζ2 = −1. We set

ξ = 2−p2+1z̃−2p2
+ 2−p2+1ζṽ0 ∈ V.
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Let h ∈ Z′. We show:

(ξ0, zh) = 2p1−p2+1(−1)(h+2p2+1)/2(h+ 2p2 − 1)(h+ 2p2 − 3) . . .

× (h+ 2p2 − 4p1 + 3)(4p1 − 2)!!−1 ∈ 2Z.

Indeed,

(ξ0, zh) = 2−p2+1(z̃−2p2
, zh) = 2−p2+1(z̃0, z2p2+h) = 2−p2+12p1(−1)(2p2+h+1)/2

× (2p2 + h− 1)(2p2 + h− 3) . . . (2p2 + h− 4p1 + 3)(4p1 − 2)!!−1,

as desired. In particular, we have

(ξ0, zh) = 0 if h ∈ [1− 2p2, 4p1 − 2p2 − 3]′.

Let h ∈ Z′. From the definitions we have (ξ0, ξh) = 2−2p2+2((z̃0, z̃h) − (ṽ0, ṽh)).
From this we deduce using (a)–(d) that

(ξ0, ξh) =
∑

k∈[p2,p1]

22k−2p2φk(h) ∈ Z for h ∈ Z′,

(ξ0, ξh) = 0 if h ∈ [−2p2 + 3, 2p2 − 3]′; (ξ0, ξ2p2−1) = 1.

It follows that, if L is the line in V spanned by z0, L
′ is the line in V spanned

by ξ0 and a∗ = (0, 0, 0, . . . ), b∗ = (2p1, 2p2 − 2, 0, . . . ), then (g, L, L′) ∈ C̃V
a∗,b∗

; in

particular, C̃V
a∗,b∗

�= ∅.

2.11. Let p1, p2 be integers such that p1 ≥ p2 ≥ 1. We consider a k-vector space
V of dimension 2p1 + 2p2 − 2 with a given bilinear form g ∈ G1

V such that (with
notation of 2.0) −g∗2 ∈ GV is unipotent with a single Jordan block of size 2p1 (if
p2 = 1) or with two Jordan blocks, one of size 2p1 and one of size 2p2−2 (if p2 ≥ 2).
We assume given two vectors z, ξ in V such that (with notation of 2.0), setting for
h ∈ Z′:

αh = (zi, zj), βh = (ξi, ξj), γh = (ξi, zj) where i ∈ Z′′, j ∈ Z′, h = j − i,

we have

αh = 0 if h ∈ [−2p1 + 3, 2p1 − 3]′, α2p1−1 = 1,

βh = 0 if h ∈ [−2p2 + 3, 2p2 − 3]′, β2p2−1 = 1,

γh = 0 if h ∈ [1− 2p2, 4p1 − 2p2 − 3]′.

We show:

(a) After possibly replacing ξ by −ξ, the following equalities hold for any h ∈ Z′:
(a1) αh = φp1

(h) ∈ Z,
(a2) βh =

∑
k∈[p2,p1]

22k−2p2φk(h) ∈ Z,

(a3)

γh = 2p1−p2+1(−1)(h+2p2+1)/2

× (h+ 2p2 − 1)(h+ 2p2 − 3) . . . (h+ 2p2 − 4p1 + 3)

(4p1 − 2)!!
∈ 2Z.

(φp as in 2.4.) We prove (a1) (see also 2.6). If |h| ≤ 2p1 − 1, then (a1) is clear.
Thus we can assume that |h| ≥ 2p1 + 1. Since αh = α−h we can also assume that
h ≥ 1 (hence h ≥ 2p1 + 1). We must only prove that

(b) αh = xh−2p1+1 if h ≥ 2p1 − 1 is odd,



264 G. LUSZTIG

where xe is as in 2.4 (with p = p1). We have (g∗2 + 1)2p1 = 0 on V hence applying
to z0, we have

∑
j∈[0,2p1]

rjz2j = 0 where rj =
(
2p1

j

)
. Taking (, z2p1+2s−1) we get∑

j≥0 rjα2p1+2s−1−2j = 0. The coefficient of T s (s ∈ N) in

(
∑
j∈N

rjT
j)(

∑
u∈N

α2p1−1+2uT
u)

is

ks =
∑

j∈[0,s]

rjα2p1−1+2s−2j .

If s ≥ 2, j > s, j ≤ 2p1, we have α2p1−1+2s−2j = 0 since 2p1−3 ≥ 2p1−1+2s−2j ≥
−2p1 + 3; hence ks =

∑
j≥0 rjα2p1−1+2s−2j for s ≥ 2. We have

r0α2p1+1 + r1α2p1−1 + r2p1
α−2p1+1 = 0

hence α2p1+1 = −(2p1 + 1) and

k1 = r0α2p1+1 + r1α2p1−1 = −1.

Also, k0 = 1. Thus
∑

s≥0 ksT
s = 1− T . The left hand side is

(
∑
j≥0

rjT
j)(

∑
u≥0

α2p1−1+2uT
u).

Thus
∑

u≥0 α2p1−1+2uT
u = (1 − T )(1 + T )−2p1 . On the other hand, from the

definition of x2u we have
∑

u≥0 x2uT
u = (1−T )(1+T )−2p1. This proves (b) hence

(a1).
Note that
(c) {zi; i ∈ [0, 4p1 − 4]′′}) together with {ξi; i ∈ [0, 4p2 − 4]′′} form a basis of V .

2.12. We show:

(a) {z2i; i ∈ [0, 2p1 − 1]} are linearly independent.

Assume that this is not true. Then z4p1−2 ∈ E, the span of {zi; i ∈ [0, 4p1− 4]′′}
hence E is g∗2-stable and the annihilator (gE)⊥ of gE in V is g∗2-stable. For i ∈
[0, 2p1 − 2] we have (ξ2p2

, z2i+1) = 0 hence ξ2p2
∈ (gE)⊥. Since (gE)⊥ is g∗2-stable

we see that ξi ∈ (gE)⊥ for all i ∈ Z′′. Thus E′, the span of {ξi; i ∈ [0, 4p2 − 4]′′}, is
contained in (gE)⊥. Now E′ has dimension 2p2−1 which is the same as dim(gE)⊥.
Hence E′ = (gE)⊥. Since V = E⊕E′ (see 2.11(c)) we see that V = E⊕(gE)⊥ with
both summands g∗2-stable. Now −g∗2 acts on E as a single Jordan block of size
2p1 − 1. Thus −g∗2 : V → V has a Jordan block of size 2p1 − 1. This contradicts
the assumption that the Jordan blocks of −g∗2 : V → V have even sizes. This
proves (a).

We set N = g∗2+1, e = p1−p2. Let L be the span of {N iz0; i ∈ [2p2−1, 2p1−1]}
or equivalently the span of {N2p2−1zi; i ∈ [0, 4e]′′}. We show that

(b) dimL = 2e+ 1.

Let L′ be the span of {N iz0; i ∈ [2p2 − 1, 2p1 − 2]}. We have dimL′ = 2e since
{N iz0; i ∈ [0, 2p1 − 2]} is a linearly independent set. If (b) is false we would have
N2p1−1z0 ∈ L′. Then the span of {N iz0; i ∈ [0, 2p1 − 2]} is N -stable. Hence the
span of {g∗(2i)z0; i ∈ [0, 2p1 − 2]} is g∗2-stable. This contradicts the proof of (a).

We show:

(c) N2p2−1ξ0 ∈ L.
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From the structure of Jordan blocks of N : V → V we see that dimN2p2−1V =
2e + 1. Clearly, L ⊂ N2p2−1V . Hence using (b) it follows that L = N2p2−1V so
that (c) holds.

Using (c) we deduce

(d) N2p2−1ξ0 =
∑

i∈[0,2e]

c2iN
2p2−1z2i

where c2i ∈ k (i ∈ [0, 2e]) are uniquely determined.

2.13. For j ∈ N we set mj =
(
2p2−1

j

)
so that N2p2−1 =

∑
j∈[0,2p2−1] mjg

∗(2j).

From 2.13(d) we deduce

(a)
∑

j∈[0,2p2−1]

mjξ2j =
∑

i∈[0,2e],j∈[0,2p2−1]

c2imjz2i+2j .

Taking (, zu) with u ∈ Z′ we deduce

(b)
∑

j∈[0,2p2−1]

mjγu−2j =
∑

i∈[0,2e],j∈[0,2p2−1]

c2imjαu−2i−2j .

We show:

(c1) If u ∈ [2p2 − 1, 4p1 − 2p2 − 3]′, then the left hand side of (b) is 0.
(c2) If u = 4p1 − 2p2 − 1, then the left hand side of (b) is γ4p1−2p2−1.

For (c1) it is enough to show: if u is as in (c1) and j ∈ [0, 2p2 − 1] then u− 2j +
2p2 ∈ [1, 4p1 − 3]. Indeed we have

u− 2j + 2p2 ≤ 4p1 − 2p2 − 3 + 2p2 = 4p1 − 3

and

u− 2j + 2p2 ≥ 2p2 − 1− 4p2 + 2 + 2p2 = 1.

For (c2) it is enough to show: if j ∈ [1, 2p2 − 1], then 4p1 − 2p2 − 1 − 2j + 2p2 ∈
[1, 4p1 − 3] or that 4p1 − 1− 2j ∈ [1, 4p1 − 3]. This is clear.

If u ∈ [2p2 − 1, 2p1− 3]′, then in the right hand side of (b) we have u− 2i− 2j <
2p1 − 1; we can assume then that u− 2i− 2j ≤ −2p1 + 1 hence

2i ≥ u− 2j + 2p1 − 1 ≥ 2p2 − 1− (4p2 − 2) + 2p1 − 1 = 2e

and i ≥ e. Thus in this case (b) becomes (using (c1) and setting u = 2p1 − 1− 2t):∑
i∈[e,2e],j∈[0,2p2−1]

c2imjα2p1−1−2t−2i−2j

for t ∈ [1, e]. Setting c′h = c4e−h for h ∈ [0, 2e]′′ and with the change of variable
j �→ 2p2 − 1− j, i �→ 2e− i we obtain

(d)
∑

i∈[0,e],j∈[0,2p2−1]

c′2imjα−2p1+1−2t+2i+2j = 0 for t ∈ [1, e].

In the last sum we have −2p1 + 1− t+ 2i+ 2j < 2p1 − 1. Indeed, we have

−2p1 + 1− 2t+ 2i+ 2j ≤ −2p1 − 1 + 2p1 − 2p2 + 4p2 − 2 = 2p2 − 3 < 2p1 − 1.
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Hence we can restrict the sum to indices such that −2p1+1−2t+2i+2j ≤ −2p1+1,
that is, −t+ i+ j = −2s where s ≥ 0. Thus we have∑

i∈[0,e],j≥0,s≥0,i+j+s=t

c′2imjα−2p1+1−2s = 0 for t ∈ [1, e].

Hence

(
∑

i∈[0,e]

c′2iT
i)(

∑
j≥0

mjT
j)(

∑
s≥0

α−2p1+1−sT
s) = c′0 + terms of degree > e in T.

Using results in 2.11 this can be written as

(
∑

i∈[0,e]

c′2iT
i)(1 + T )2p2−1(1− T )(1 + T )−2p1 = c′0 + terms of degree > e in T,

that is,

(
∑

i∈[0,e]

c′2iT
i)(1 + T )−2e−1(1− T ) = c′0 + terms of degree > e in T,

hence ∑
i∈[0,e]

c′2iT
i = (1− T )−1(1 + T )2e+1(c′0 + terms of degree > e in T ).

We have (1 + T )2e+1 =
∑

j∈[0,2e+1] ljT
j where lj =

(
2e+1

j

)
. Hence

(1− T )−1(1 + T )2e+1 =
∑

j∈[0,e]

(l0 + l1 + · · ·+ lj)T
j + terms of degree > e in T.

We see that

(e) c′2i = c′0(l0 + l1 + · · ·+ li) for i ∈ [0, e].

In the remainder of this subsection we assume that e > 0. If u = 2p1 − 1, then
in the right hand side of (b) we have u− 2i− 2j ∈ [−2p1 +1, 2p1 − 1]; we can then
assume that u− 2i− 2j is −2p1 +1 or 2p1− 1. Hence i+ j is 2p1− 1 or 0 and (i, j)
is (2e, 2p2 − 1) or (0, 0). Thus in this case (b) becomes (using (c1)) c0 + c4e = 0,
that is, c0 = −c′0. (The left hand side of (b) is 0 by (c1); here we use that e > 0.)

If u ∈ [2p1 + 1, 4p1 − 2p2 − 3]′, then in the right hand side of (b) we have
u− 2i− 2j > −2p1 + 1; we can then assume that u− 2i− 2j ≥ 2p1 − 1 hence

2i ≤ u− 2j − 2p1 + 1 ≤ 4p1 − 2p2 − 3− 2p1 + 1 = 2e− 2

and i ≤ e−1. Using this and (c1) we see that (b) becomes (setting u = 2p1−1+2t):∑
i∈[0,e−1],j∈[0,2p2−1]

c2imjα2p1−1+2t−2i−2j = 0 for t ∈ [1, e− 1].

Note that in the sum we have 2p1 − 1 + 2t− 2i− 2j > −2p1 + 1. (Indeed we have
2p1 − 1+ 2t− 2i− 2j ≥ 2p1 + 1− 2p1 + 2p2 + 2− 4p2 + 2 = −2p2 + 5 > −2p1 + 1.)
Hence we can restrict the sum to indices such that 2p1 − 1+2t− 2i− 2j ≥ 2p1 − 1,
that is, 2p1 − 1 + 2t− 2i− 2j = 2p1 − 1 + 2s where s ≥ 0. Thus we have∑

i∈[0,e−1],j≥0,s≥0;i+s+j=t

c2imjα2p1−1+2s = 0 for t ∈ [1, e− 1].

For such t we have also ∑
i∈[0,e−1],j≥0,s≥0;i+s+j=t

c′2imjα−2p1+1−2s = 0
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as we have seen earlier; the index i cannot take the value e since i ≤ t. Adding the
last two equations and using α2p1−1+2s = α−2p1+1−2s we obtain

(∗)
∑

i∈[0,e−1],j≥0,s≥0;i+s+j=t

(c2i + c′2i)mjα−2p1+1−2s = 0 for t ∈ [1, e− 1].

We show that c2i + c′2i = 0 for i ∈ [0, e − 1]. For i = 0 this is already known; the
general case follows from (∗) by induction on i. Using also (e), we see that

(f) c2i = −c′0(l0 + l1 + · · ·+ li) for i ∈ [0, e− 1].

(In the case where i = 0, this is just c0 = −c′0 which is already known.)

2.14. If u = 4p1 − 2p2 − 1, then using 2.13(b) and 2.13(c2) we have

(a) γ4p1−2p2−1 =
∑

i∈[0,2e],j∈[0,2p2−1]

c2imjα4p1−2p2−1−2i−2j .

Taking (, ξ2p2−1) with 2.13(a) we obtain∑
j∈[0,2p2−1]

mjβ2p2−1−2j =
∑

i∈[0,2e],j∈[0,2p2−1]

c2imjγ2i+2j−2p2+1.

In the left hand side only the contribution of j = 0 and j = 2p2 − 1 is �= 0; it is 1;
in the right hand side we have 2i+ 2j − 2p2 + 1 ≥ −2p2 + 1 hence we can assume
that 2i + 2j − 2p2 + 1 > 4p1 − 2p2 − 3, that is, 2i + 2j ≥ 4p1 − 2; hence we have
i = 2e, j = 2p2 − 1 and the right hand side is c4eγ4p1−2p2−1. Thus

(b) 2 = c′0γ4p1−2p2−1.

We see that c′0 �= 0 and using (a) and (b) we have

2c′0
−1 =

∑
i∈[0,2e],j∈[0,2p2−1]

c2imjα4p1−2p2−1−2i−2j .

In the right hand side we have 4p1 − 2p2 − 1− 2i− 2j ≥ −2p1 + 1; we can assume
then that either 4p1 − 2p2 − 1− 2i− 2j = −2p1 + 1 (hence i = 2e, j = 2p2 − 1) or
4p1 − 2p2 − 1 − 2i − 2j ≥ 2p1 − 1 (hence i ≤ e). The first case can arise only if
e = 0 hence it is included in the second case. Thus

(c) 2c′0
−1 =

∑
i∈[0,e],j∈[0,2p2−1]

c2imjα4p1−2p2−1−2i−2j .

Assume now that e > 0. From 2.13(d) with t = e we have

(d) 0 =
∑

i∈[0,e],j∈[0,2p2−1]

c′2imjα−4p1+2p2+1+2i+2j .

We now add (c) and (d) and use that c2i + c′2i = 0 if i ∈ [0, e− 1] and ce = c′e. We
get

2c′0
−1 = 2c′2e

∑
j∈[0,2p2−1]

mjα2p1−1−2j .

If j ∈ [1, 2p2 − 1] we have 2p1 − 1 − 2j ∈ [−2p1 + 3, 2p1 − 3] hence α2p1−1−j = 0.
Thus 2c′0

−1 = 2c′2e = 2c′02
2e and c′0

2 = 2−2e. Changing if necessary ξ by −ξ we can
therefore assume that

(e) c′0 = 2−e.
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Assume now that e = 0. We have c′0 = c0 and (c) becomes

2c−1
0 =

∑
j∈[0,2p2−1]

c0mjα2p1−1−2j ,

that is, 2c−1
0 = 2c0 hence c20 = 1. Changing if necessary ξ by −ξ we can therefore

assume that c0 = 1. Thus (e) holds without the assumption e > 0.
Using (e) we rewrite 2.13(e) and 2.13(f) as follows:

(f) c2e−i = 2−e(l0 + l1 + · · ·+ li) for i ∈ [0, e],

(g) ci = −2−e(l0 + l1 + · · ·+ li) for i ∈ [0, e− 1].

When zi, ξi are replaced by the vectors with the same name in 2.10, the quantities
c2i become the quantities c02i. (Here i ∈ [0, 2e].) We show that

(h) c2i = c02i for i ∈ [0, 2e].

By the analogue of (b) we have 2 = c04eγ
0
4p1−2p2−1. By results in 2.10 we have

γ0
4p1−2p2−1 = 2e+1. Hence c04e = 2−e. Using this and the analogues of 2.13(e),

2.13(f) we see that c02i are given by the same formulas as c2i in (e) and (f). This
proves (h).

2.15. Let C =
∑

t≥0 γ4p1−2p2−1+2tT
t, C0 =

∑
t≥0 γ

0
4p1−2p2−1+2tT

t. If u = 4p1 −
2p2 − 1 + 2t, t ≥ 0, then for any j that contributes to the left hand side of 2.13(b)
we have u− 2j ≥ −2p2 + 1. Indeed,

u− 2j ≥ 4p1 − 2p2 − 1− 2j ≥ 4p1 − 2p2 − 1− 4p2 + 2 ≥ −2p2 + 1

hence we can assume that in the left hand side of 2.13(b) we have u− 2j ≥ 4p1 −
2p2 − 1. Muliplying both sides of 2.13(b) with T t and summing over all t ≥ 0 we
thus obtain ∑

t≥0

∑
j∈[0,2p2−1];t−j≥0

mjγ4p1−2p2−1+2t−2jT
t

=
∑
t≥0

∑
i∈[0,2e],j∈[0,2p2−1]

c2imjα4p1−2p2−1+2t−2i−2jT
t.

The left hand side equals

(
∑

j∈[0,2p2−1]

mjT
j)(

∑
t′≥0

γ4p1−2p2−1+2t′T
t′) = (1 + T )2p2−1C.

Thus,

C = (1 + T )−2p2+1
∑
t≥0

∑
i∈[0,2e],j∈[0,2p2−1]

c2imjα4p1−2p2−1+2t−2i−2jT
t.

Similarly we have

C0 = (1 + T )−2p2+1
∑
t≥0

∑
i∈[0,2e],j∈[0,2p2−1]

c02imjα
0
4p1−2p2−1+2t−2i−2jT

t.

By 2.14(h) we have c2i = c02i. By 2.11(a1) we have

α4p1−2p2−1+2t−2i−2j = α0
4p1−2p2−1+2t−2i−2j

for all i, j, t. It follows that C = C0 hence

(a) γ4p1−2p2−1+2t = γ0
4p1−2p2−1+2t for any t ≥ 0.
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We set C ′ =
∑

t≥0 γ2p2−3−2tT
t, C ′0 =

∑
t≥0 γ

0
2p2−3−2tT

t. If u = 2p2−3−2t, t ≥ 0,

then for any j that contributes to the left hand side of 2.13(b) we have u − 2j ≤
4p1 − 2p2 − 3 (indeed, u− 2j ≤ 2p2 − 3− 2j ≤ 2p2 − 3 ≤ 4p1 − 2p2 − 3) hence we
can assume that in the left hand side of 2.13(b) we have u− 2j ≤ −2p2 − 1. With
the substitution j �→ 2p2 − 1− j the previous inequality becomes j − t ≤ 0 and the
left hand side of 2.13(b) becomes∑

j∈[0,2p2−1]

mjγu−4p2+2+2j =
∑

j∈[0,2p2−1]

mjγ−2p2−1+2(j−t).

Muliplying both sides of 2.13(b) with T t and summing over all t ≥ 0 we thus obtain∑
t≥0,j≥0;t−j≥0

mjγ−2p2−1+2(j−t)T
t =

∑
t≥0

∑
i∈[0,2e],j∈[0,2p2−1]

c2imjα2p2−3−2t−2i−2jT
t.

The left hand side equals

(
∑

j∈[0,2p2−1]

mjT
j)(

∑
t′≥0

γ−2p2−1−2t′T
t′) = (1 + T )2p2−1C ′.

Thus,

C ′ = (1 + T )−2p2+1
∑
t≥0

∑
i∈[0,2e],j∈[0,2p2−1]

c2imjα2p2−3−2t−2i−2jT
t.

Similarly we have

C ′0 = (1 + T )−2p2+1
∑
t≥0

∑
i∈[0,2e],j∈[0,2p2−1]

c02imjα
0
2p2−3−2t−2i−2jT

t.

By 2.14(h) we have c2i = c02i. By 2.11(a1) we have

α2p2−3−2t−2i−2j = α0
2p2−3−2t−2i−2j

for all i, j, t. It follows that C ′ = C ′0 hence

(b) γ2p2−3−2t = γ0
2p2−3−2t for any t ≥ 0.

Clearly, (a) and (b) imply 2.11(a3).

2.16. We set B =
∑

s≥0 β2p2−1+2sT
s, B0 =

∑
s≥0 β

0
2p2−1+2sT

s. Let t ≥ 1. Taking

(, ξ2p2−1+2t) with 2.13(a) we obtain

(a)
∑

j∈[0,2p2−1]

mjβ2p2−1+2t−2j =
∑

i∈[0,2e],j∈[0,2p2−1]

c2imjγ2i+2j−2p2+1−2t.

For any j that contributes to the left hand side of (a) we have 2p2 − 1 + 2t− 2j ≥
−2p2 + 3 (indeed, 2p2 − 1 + 2t− 2j ≥ 2p2 + 1− 4p2 + 2 = −2p2 + 3) hence we can
assume that in the left hand side of (a) we have 2p2 − 1 + 2t − 2j ≥ 2p2 − 1, that
is, t ≥ j. Multiplying both sides of (a) by T t and summing over all t ≥ 1, we thus
obtain ∑

t≥1

∑
j∈[0,2p2−1];t≥j

mjβ2p2−1+2t−2jT
t

=
∑
t≥1

∑
i∈[0,2e],j∈[0,2p2−1]

c2imjγ2i+2j−2p2+1−2tT
t.
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The left hand side equals

−1 + (
∑

j∈[0,2p2−1]

mjT
j)(

∑
t′≥0

β2p2−1+t′T
t′) = 1 + (T + 1)2p2−1B.

Thus,

B = (T + 1)2p2−1(1 +
∑
t≥1

∑
i∈[0,2e],j∈[0,2p2−1]

c2imjγ2i+2j−2p2+1−2tT
t).

Similarly we have

B0 = (T + 1)2p2−1(1 +
∑
t≥1

∑
i∈[0,2e],j∈[0,2p2−1]

c02imjγ
0
2i+2j−2p2+1−2tT

t).

By 2.14(h) we have c2i = c02i. By 2.11(a3) we have

γ2i+2j−2p2+1−2t = γ0
2i+2j−2p2+1−2t

for any i, j, t. It follows that B = B0. Hence

β2p2−1+2s = β0
2p2−1+2s

for any s ≥ 0. This clearly implies 2.11(a2).

2.17. We preserve the setup of 2.1. We prove 2.1(a) by induction on n. If n = 0
we have V = 0 and ai = bi = pi = 0 for all i. We take g = 0 and (Lt) to be the

empty set of lines. We obtain an element of C̃V
a∗,b∗

. Now assume that n > 0.

Assume first that a1 ≥ 1. We can find a direct sum decomposition V = V ′ ⊕V ′′

such that dimV ′ = a1 + b1 = 2p1 − 1. We identify V ∗ = V ′∗ ⊕ V ′′∗ in the obvious
way. Let a′∗ be the sequence a1, 0, 0, . . . ; let b′∗ be the sequence b1, 0, 0, . . . ; let
a′′∗ be the sequence a2, a3, . . . ; let b′′∗ be the sequence b2, b3, . . . . By the induction

hypothesis we have C̃V ′′

a′′
∗ ,b

′′
∗
�= ∅. By 2.3 we have C̃V ′

a′
∗,b

′
∗
�= ∅. Let (g′, L1) ∈ C̃V ′

a′
∗,b

′
∗

and let (g′′, L2, L3, . . . ) ∈ C̃V ′′

a′′
∗ ,b

′′
∗
. Here g′ ∈ G1

V ′ , g′′ ∈ G1
V ′′ . Let g = g′ ⊕ g′′ ∈ G1

V .

Clearly, (g, L1, L2, . . . ) ∈ C̃V
a∗,b∗

hence 2.1(a) holds in this case. Thus we may

assume that a1 = a2 = · · · = 0 and b1 > 0. We see that −g∗2 is unipotent.
We can find a direct sum decomposition V = V ′ ⊕ V ′′ such that dimV ′ = b1 +
b2. We identify V ∗ = V ′∗ ⊕ V ′′∗ in the obvious way. Let b′∗ be the sequence
b1, b2, 0, . . . ; let b

′′
∗ be the sequence b3, b4, . . . ; let a

′
∗ = a′′∗ be the sequence 0, 0, . . . .

By the induction hypothesis we have C̃V ′′

a′′
∗ ,b

′′
∗
�= ∅. By 2.11 we have C̃V ′

a′
∗,b

′
∗
�= ∅. Let

(g′, L1, L2) ∈ C̃V ′

a′
∗,b

′
∗
and let (g′′, L3, L4, . . . ) ∈ C̃V ′′

a′′
∗ ,b

′′
∗
. Here g′ ∈ G1

V ′ , g′′ ∈ G1
V ′′ .

Clearly, (g′⊕g′′, L1, L2, . . . ) ∈ C̃V
a∗,b∗

hence 2.1(a) holds in this case. This completes

the proof of 2.1(a).
In the following result (which is needed in the proof of 2.1(b),(c)) we preserve

the setup of 2.1.

Proposition 2.18. Let (g, L1, L2, . . . , Lσ) ∈ C̃V
a∗,b∗

. Let φr be as in 2.4. There

exist vectors zt ∈ Lt − {0} for t ∈ [1, σ] such that (i) and (ii) below hold for
i ∈ Z′′, j ∈ Z′.

(i) Assume that t ∈ [1, σ], at > 0. Then (zti , z
t
j) = x′

i−j (x
′
h as in 2.2 with p = pt);

(zti , z
t′

j ) = 0 if t′ ∈ [1, σ], t′ �= t.
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(ii) Assume that {t, t+ 1} ⊂ [k + 1, σ], t = k + 1 mod 2 and at = 0. Then

(zti , z
t
j) = φpt

(i− j),

(zt+1
i , zt+1

j ) =
∑

r∈[pt+1,pt]

22r−2pt+1φr(i− j),

(zti , z
t+1
j ) = 2pt−pt+1+1(−1)(i−j+2p2+1)/2(i− j + 2pt+1 − 1)(i− j + 2pt+1 − 3) . . .

× (i− j + 2pt+1 − 4pt + 3)(4pt − 2)!!−1,

(zti , z
t′

j ) = 0 if t′ ∈ [1, σ], t′ /∈ {t, t+ 1}.

We argue by induction on n. When n = 0 the result is obvious. Now assume
that n ≥ 1.

Case 1. Assume first that a1 ≥ 1. We have a1 + b1 = 2p1 − 1. Let V ′ =⊕
i∈[0,4p1−4]′′ L

1
i ⊂ V . We show that

(a) g∗2V ′ = V ′.

It is enough to show that g∗2L1
4p1−4 ⊂ V ′. Since g∗iL1

0 ∈ V ′ for i ∈ [0, 4p1 − 4]′′

and a1 + b1 = 2p1 − 1 it is enough to show that (g∗2 − 1)a1(g∗2 + 1)b1L1
0 = 0. It

is also enough to show that (g∗2 − 1)a1(g∗2 + 1)b1 = 0 on V . But this follows from
the fact that g ∈ CV

a∗,b∗
.

Now let V ′′ =
⊕

t∈[2,σ],i∈[0,2pt−2] L
t
i ⊂ V . We show that

(b) V ′′ = (gV ′)⊥, the annihilator of gV ′ in V . Hence V ′′ is g∗2-stable and
V = V ′ ⊕ (gV ′)⊥.

We have (Lr
2pr

, L1
i+1) = 0 for r ∈ [2, σ], i ∈ [0, 4p1 − 4]′′. Thus Lr

2pr
⊂ (gV ′)⊥.

Since (gV ′)⊥ is g∗2-stable (we use (a) and 2.0(a)) it follows that Lr
i ⊂ (gV ′)⊥ for

any i ∈ Z′′, r ∈ [2, σ]. Thus V ′′ ⊂ (gV ′)⊥. But these two vector spaces have the
same dimension so that V ′′ = (gV ′)⊥ and (b) follows.

We identify V ∗ = V ′∗⊕V ′′∗ in the obvious way. From (a),(b) we see that g ∈ G1
V

restricts to an isomorphism g′ : V ′ → V ′∗ and to an isomorphism g′′ : V ′′ → V ′′∗.
We show:

(c) g′∗2 restricted to the generalized 1-eigenspace of g′∗2 is unipotent with a single
Jordan block of size a1; −g′∗2 restricted to the generalized (−1)-eigenspace of g′∗2 is
unipotent with a single Jordan block of size b1 (if that eigenspace is �= 0). Moreover,
g′′∗2 restricted to the generalized 1-eigenspace of g′′∗2 is unipotent with Jordan
blocks of sizes given by the nonzero numbers in a2, a3, . . . ; −g′′∗2 restricted to the
generalized (−1)-eigenspace of g′′∗2 is unipotent with Jordan blocks of sizes given
by the nonzero numbers in b2, b3, . . . .

As we have seen earlier we have (g∗2 − 1)a1(g∗2 + 1)b1 = 0 on V ′ (even on V ).
Also g′∗2 ∈ GL(V ′) is regular in the sense of Steinberg and dim V ′ = a1 + b1. This
implies (c).

Let a′∗ be the sequence a1, 0, 0, . . . ; let b′∗ be the sequence b1, 0, 0, . . . ; let a′′∗
be the sequence a2, a3, . . . ; let b′′∗ be the sequence b2, b3, . . . . Now the proposition

holds when (g, L1, L2, . . . ) is replaced by (g′′, L2, L3, . . . ) ∈ C̃V ′′

a′′
∗ ,b

′′
∗
(by the induction

hypothesis) or by (g′, L1) ∈ C̃V ′

a′
∗,b

′
∗
(we choose any z1 ∈ L1−{0} such that (z1i , z

1
j ) =

1 for i ∈ Z′′, j ∈ Z′, |i − j| = 2p1 − 1 and we apply 2.3). Hence the proposition
holds for (g, L1, L2, . . . ) (we use (b)).
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Case 2. Next we assume that k = 0, b1 > 0. Then a1 = a2 = · · · = 0. We have
b1 = 2p1, b2 = 2p2 − 2. Let V ′ =

⊕
t∈[1,2],i∈[0,4pt−4]′′ L

t
i ⊂ V . We show that

(d) g∗2V ′ = V ′.

Let N = g∗2 + 1. Then V =
⊕

t∈[1,σ],i∈[0,4pt−4]′′ N
i/2Lt

0 is a direct sum decompo-

sition into lines. Now N2p2−2(V ) contains the lines

(∗) N2p2−2+(i/2)L1
0(i ∈ [0, 4p1 − 4p2]

′′) and N2p2−2L2
0

(whose number is 2p1− 2p2+2); moreover, since N has Jordan blocks of sizes b1 =
2p1, b2 = 2p2−2 and others of size < b2 we see that dimN2p2−2(V ) = 2p1−2p2+2
so that N2p2−2(V ) is equal to the subspace spanned by (∗) and N2p2−2(V ) ⊂ V ′.
Now V ′ is the subspace of V spanned by the linesN iLt

0 with t ∈ [1, 2], i ∈ [0, 2pt−2].
It is enough to show that NV ′ ⊂ V ′ or that N2pt−1Lt

0 ⊂ V ′ for t = 1, 2. But for
t = 1, 2 we have N2pt−1Lt

0 ⊂ N2p2−2V ⊂ V ′ since 2pt − 2p2 + 1 ≥ 0. This proves
(d).

Let V ′′ =
⊕

t∈[3,σ],i∈[0,4pt−4]′′ L
t
i ⊂ V . We show that

(e) V ′′ = (gV ′)⊥, the annihilator of gV ′ in V . Hence V ′′ is g∗2-stable and
V = V ′ ⊕ (gV ′)⊥.

We have (Lr
2pr

, Lt
i+1) = 0 for t ∈ [1, 2], r ∈ [3, σ], i ∈ [0, 4pt − 4]′′. Thus Lr

2pr
⊂

(gV ′)⊥. Since (gV ′)⊥ is g∗2-stable (we use (d) and 2.0(a)) it follows that Lr
i ⊂

(gV ′)⊥ for any i ∈ Z′′, r ∈ [3, σ]. Thus V ′′ ⊂ (gV ′)⊥. But these two vector spaces
have the same dimension so that V ′′ = (gV ′)⊥ and (e) follows.

We identify V ∗ = V ′∗ ⊕ V ′′∗ in the obvious way. From (d) and (e) we see that
g : V → V ∗ restricts to an isomorphism g′ : V ′ → V ′∗ and to an isomorphism
g′′ : V ′′ → V ′′∗. We show:

(f) −g′∗2 is unipotent with a single Jordan block of size b1 (if b2 = 0) or with two
Jordan blocks of size b1, b2 (if b2 > 0). Moreover, −g′′∗2 is unipotent with Jordan
blocks of sizes given by the nonzero numbers in b3, b4, . . . .

Since V ′ is the direct sum of the lines N iLt
0, t ∈ [1, 2], i ∈ [0, 2pt − 2], and V ′

is N -stable, we see that the kernel of N : V ′ → V ′ has dimension ≤ 2. Hence
N : V ′ → V ′ has either a single Jordan block of size 2p1 + 2p2 − 2 = b1 + b2 or two
Jordan blocks of sizes b′1 ≥ b′2 where b′1 + b′2 = b1 + b2. In the first case we must
have b2 = 0 (since the Jordan blocks of N : V ′ → V ′ have sizes ≤ b1 (by (e)). In
the second case, since b′1, b

′
2 must form a subsequence of b1 > b2 > b3 > . . . and

b′1 + b′2 = b1 + b2 it follows that b′1 = b1, b
′
2 = b2. This implies (f). This completes

the proof.

2.19. In the setup of 2.1, we show that 2.1(b) holds. We must show that

(a) any two elements (g, L1, L2, . . . , Lσ), (g′, L′1, L′2, . . . , L′σ) of C̃V
a∗,b∗

are in the
same GV -orbit.

Since GV acts transitively on CV
a∗,b∗

we can assume that g = g′. Let zt ∈ Lt

(t ∈ [1, σ]) be as in 2.18. Let z′t ∈ L′t (t ∈ [1, σ]) be the analogous vectors for
(g, L′1, L′2, . . . ) instead of (g, L1, L2, . . . ). By 2.18 we have

(b) (zti , z
t′

j ) = (z′ti, z
′t′
j )

for any i ∈ Z′′, j ∈ Z′ and any t, t′ ∈ [1, σ]. Since {zti ; t ∈ [1, σ], i ∈ [0, 4pt − 4]′′}
and {z′ti; t ∈ [1, σ], i ∈ [0, 4pt − 4]′′} are bases of V (see 2.0(d)) we see that there
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is a unique γ ∈ GL(V ) such that γ(zti) = z′ti for any t ∈ [1, σ], i ∈ [0, 4pt − 4]. We
show that

(c) γ̌(ztj+1) = z′tj+1 for any t ∈ [1, σ], j ∈ [0, 4pt − 4]′′.

It is enough to show that (z′t
′

i , z
′t
j+1) = (z′t

′

i , γ̌(z
t
j+1)), that is, (z′t

′

i , z
′t
j+1) =

(zt
′

i , z
t
j+1) for any t, t′ ∈ [1, σ] and any i, j ∈ [0, 4pt − 4]′′. This follows from (b).

From (c) we see that γ̌(g(ztj)) = g(γ(ztj)) for any t ∈ [1, σ], j ∈ [0, 4pt − 4]′′. It

follows that γ̌g = gγ. From the definition it is clear that γ(Lt) = L′t for t ∈ [1, σ].
Thus (a) holds (with g′ = g). This proves 2.1(b).

2.20. In the setup of 2.1, we show that 2.1(c) holds. Let (g, L1, L2, . . . , Lσ) ∈ C̃V
a∗,b∗

and let I be the set of all γ ∈ GV such that γ̌gγ−1 = g, γ(Lt) = Lt for t ∈ [1, σ].
Let zt ∈ Lt(t ∈ [1, σ]) be as in 2.18. Let γ ∈ I. If t ∈ [1, σ] we have γ(zt) = ωγ

t z
t

where ωγ
t ∈ k − {0}. Since γ commutes with g∗2, it follows that γ(zti) = ωγ

t z
t
i for

i ∈ Z′′. For t ∈ [1, σ], j ∈ Z′ we have

γ̌(ztj) = γ̌(g(ztj−1)) = g(γ(ztj−1)) = g(ωγ
t z

t
j−1) = ωγ

t z
t
j ;

thus, γ̌(ztj) = ωγ
t z

t
j . For any t, t′ ∈ [1, σ], i ∈ Z′′, j ∈ Z′ we have

(zt
′

i , ω
γ
t z

t
j) = (zt

′

i , γ̌(z
t
j)) = (γ−1(zt

′

i ), z
t
j) = (ωγ

t′)
−1(zt

′

i , z
t
j).

Thus, (ωγ
t − (ωγ

t′)
−1)(zt

′

i , z
t
j) = 0. Taking t′ = t, i − j = 2pt − 1 we deduce that

ωγ
t − (ωγ

t )
−1 = 0 hence ωγ

t = ±1. Taking t′ = t+1 (where {t, t+1} ⊂ [k+1, σ], t =
k + 1 mod 2, at = 0) and using that

(zt+1
i , ztj) = (zt−i, z

t+1
−j ) = ±2pt−pt+1+1 if j − i+ 2pt+1 = −1

we see that (ωγ
t −(ωγ

t+1)
−1)2pt−pt+1+1 = 0 hence ωγ

t −(ωγ
t+1)

−1 = 0 and ωγ
t = ωγ

t+1.
We see that γ �→ (ωγ

t ) is a homomorphism ψ : I → I (notation of 2.0). Assume
that γ is in the kernel of ψ. Then γ restricts to the identity map Lt → Lt for
t ∈ [1, σ]. Since γ commutes with g∗2 it follows that γ restricts to the identity map
on each of the lines g∗iLt (t ∈ [1, σ], i ∈ Z′′). Since these lines generate V (see 2.0)
we see that γ = 1. Thus, ψ is injective. Now let (ωt) ∈ I. We define γ ∈ GL(V )
by γ(zti) = ωtz

t
i for t ∈ [1, σ], i ∈ [0, 4pt − 4]′′. From the definitions we see that

(a) (ωtz
t
i , ωt′z

t′

j ) = (zti , z
t′

j )

for any i ∈ Z′′, j ∈ Z′ and any t, t′ ∈ [1, σ]. We show that

(b) γ̌(zti+1) = ωtz
t
i+1 for any t ∈ [1, σ], i ∈ [0, 4pt − 4]′′.

It is enough to show that (γ(zt
′

j ), ωtz
t
i+1) = (zt

′

j , z
t
i+1) for any t′ ∈ [1, σ], j ∈ [0, 4pt′−

4]′′ or that (ωt′z
t′

j , ωtz
t
i+1) = (zt

′

j , z
t
i+1) or that

(ωt′ωt − 1)(zt
′

j , z
t
i+1) = 0.

The second factor is zero unless either t = t′ or t′ = t + 1 (where {t, t + 1} ⊂
[k+1, σ], t = k+1 mod 2, at = 0) in which case the first factor is zero. This proves
(b).

From (b) we see that γ̌(g(zti)) = g(γ(zti)) for any t ∈ [1, σ], i ∈ [0, 4pt − 4]′′. It
follows that γ̌g = gγ. From the definition it is clear that γ(Lt) = Lt for t ∈ [1, σ].
Thus γ ∈ I. We see that ψ is surjective hence an isomorphism. This proves 2.1(c).
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2.21. We now assume that n ≥ 1. We denote by
n

V (resp.
n

V ∗) the n-th exterior

power of V (resp. V ∗); we have naturally
n

V ∗ = (
n

V )∗. Any γ ∈ GV induces an

element
n
γ :

n

V
∼→

n

V ; any g ∈ G1
V induces an element

n
g :

n

V
∼→

n

V ∗. For any

θ ∈
n

V − {0} we denote by θ∗ the unique element in
n

V ∗ −{0} such that (θ, θ∗) = 1.
We show:

(a) For any g ∈ G1
V we have ǧg ∈ SL(V ).

Let (ei) be a basis of V ; let (e∗i ) be the dual basis of V
∗. We have gei =

∑
j xije

∗
j ,

ǧe∗k =
∑

h ykheh where X = (xij), Y = (yij) are square matrices. Now

δki = (ǧe∗k, gei) = (
∑
h

ykheh,
∑
j

xije
∗
j ) =

∑
h

ykhxih.

Thus Y Xt = I where Xt is the transpose of X. We have ǧgei =
∑

j,h xijyjheh.
Thus the matrix of ǧg is XY . We have

det(XY ) = det(X) det(Y ) = det(Xt) det(Y ) = det(Y Xt) = 1,

as required.

We now fix θ ∈
n

V − {0} and we set

Γ1 = {g ∈ G1
V ;

n
g takes θ to θ∗}.

If g ∈ Γ1 then, using (a), we see that
n
ǧ takes θ∗ to θ. We see that Γ := SL(V )�Γ1

is a subgroup of GV �G1
V . Let SL(V )′ = {Γ ∈ GV ; det(Γ) = ±1}.

We show:
(b) Let g, g′ ∈ G1

V , γ ∈ GV be such that γ̌gγ−1 = g′. If g, g′ ∈ γ1, then
γ ∈ SL(V )′. Conversely, if g ∈ Γ1 and Γ ∈ SL(V )′, then g′ ∈ Γ1.

Replacing V by
n

V we can assume that n = 1. We have gθ = θ∗, g′θ = θ∗,
γθ = aθ where a ∈ k− {0}. We have θ∗ = γ̌gγ−1(θ) = γ̌ga−1θ = γ̌a−1θ∗ = a−2θ∗

hence a2 = 1 and a = ±1 proving the first assertion of (b). The second assertion is
proved similarly.

2.22. Assuming that a1 > 0 we show:

(a) CV
a∗,b∗

∩ Γ1 is a single SL(V )-conjugacy class in Γ.

Let g, g′ ∈ CV
a∗,b∗

∩ Γ1. From Theorem 2.1(b) we see that γ̌gγ−1 = g′ for some

γ ∈ GV . Using 2.21(b) we see that det(γ) = ±1. If det(γ) = 1, then g, g′ are
in the same SL(V )-conjugacy class, as required. Assume now that det(γ) = −1.

We complete g to an element (g, L1, L2, . . . ) ∈ C̃V
a∗,b∗

and we write V = V ′ ⊕ V ′′,

V ∗ = V ′∗ ⊕ V ′′∗ as in the proof of 2.18 (Case 1). Let γ0 ∈ GL(V ) be such that
γ0|V ′ = −1, γ0|V ′′ = 1. Since dimV ′ is odd we have det(γ0) = −1. We have
γ̌0gγ

−1
0 = g hence γ̌γ̌0gγ

−1
0 γ−1 = g′. We have γγ0 ∈ SL(V ) so that g, g′ are in the

same SL(V )-conjugacy class, as required.

2.23. Assuming that a1 = 0 (hence b1 > 0) we show:

(a) CV
a∗,b∗

∩ Γ1 is a union of two SL(V )-conjugacy classes in Γ.

Let g ∈ CV
a∗,b∗

∩ Γ1. Let C(g) (resp. C ′(g)) be the set of elements of the form

γ̌gγ−1 = g′ for some γ ∈ GV such that det(γ) = 1 (resp. det(γ) = −1). It is
clear that C(g) and C ′(g) are SL(V )-conjugacy classes. As in the proof of 2.22 we
see, using 2.1(b) and 2.21(b), that CV

a∗,b∗
∩ Γ1 = C(g) ∪ C ′(g). It remains to prove
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that C(g) ∩ C ′(g) = ∅. Assume that C(g) ∩ C ′(g) �= ∅. It follows that there exists
γ0 ∈ GV such that γ̌0gγ

−1
0 = g and satisfies det(γ0) = −1. Let gs be the semisimple

part of g. Then γ0 is in the centralizer of gs in GV which is a symplectic group all
of whose elements have necessarily determinant 1. This contradicts det(γ0) = −1.

2.24. Let c be an SL(V )-conjugacy class contained in CV
a∗,b∗

∩ Γ1. (See 2.22(a),

2.23(a).) Let X be the set of all (g, L1, L2, . . . , Lσ) ∈ C̃V
a∗,b∗

where g ∈ c. Note that

X �= ∅. Now SL(V )′ acts on X by the restriction of the GV -action on C̃V
a∗,b∗

(see

2.21(b)). Using 2.1(b) and 2.21(b), we see that this SL(V )′-action is transitive. We
now restrict this action to SL(V ).

We show:

(a) This SL(V )-action is transitive.

Let (g, L1, L2, . . . , Lσ) ∈ X, (g′, L′1, L′2, . . . , L′σ) ∈ X. We must show that
these two sequences are in the same SL(V )-orbit. As we have seen, we can find
γ ∈ SL(V )′ which conjugates (g, L1, L2, . . . , Lσ) to (g′, L′1, L′2, . . . , L′σ). If a1 = 0
this implies by the argument in 2.3 that det(γ) = 1 so that in this case (a) holds.
We can thus assume that a1 > 0. If det(γ) = 1, then the proof is finished. We now
assume that det(γ) = −1. Let γ0 ∈ GV be as in 2.22. We have det(γ0) = −1 and
γ0 conjugates (g, L1, L2, . . . , Lσ) to itself. Hence γγ0 conjugates (g, L1, L2, . . . , Lσ)
to (g′, L′1, L′2, . . . , L′σ). We have γγ0 ∈ SL(V ). This proves (a).

2.25. Assume that n ≥ 3. As in [L5, §4] we see that 2.24(a) implies that Theorem
0.3 holds for Γ instead of G.

3. Exceptional groups

3.1. In this section we assume that G = G0 (as in 0.2) is simple of exceptional
type. In the case where c is a distinguished unipotent class this follows from [L3]
where it was proved by a reduction to a computer calculation. In the nonunipotent
case the same method works but it uses instead of [L1, 1.2(c)], the more general
formula [L6, 5.3(a)]. The needed computer calculation was actually done at the
time of preparing [L6]. (I thank Frank Lübeck for providing to me tables of Green
functions for groups of rank ≤ 8 in GAP format. I also thank Gongqin Li for her
help with programming in GAP to perform the computer calculation.)

We will describe below the result in the form of a list of rows in each case; each
row corresponds to an εD-elliptic εD-conjugacy class in W . For example, the row

12; Φ20; (E8(a2))E8
, (E7(a2)A1)E7A1

, (J11J5)D8

in type E8 corresponds to the elliptic conjugacy class C in W such that the charac-
teristic polynomial in the reflection representation of any w ∈ C is the cyclotomic
polynomial Φ20 and the length of any element in Cmin is dC = 12. The row also
includes the names of the three distinguished conjugacy classes c such that C♣c
(see 0.1); for example, (E7(a2)J2)E7A1

is the conjugacy class of su = us where
s is a semisimple element with ZG(s)

0 of type E7A1 (in the subscript) and u is
a unipotent element of ZG(s)

0 whose E7 component is of type E7(a2) (notation
as in [L1, 4.3]) and whose A1-component has a single Jordan block of size 2 in
the standard representation of A1. On the other hand, (J11J5)D8

is the conjugacy
class of su = us where s is a semisimple element with ZG(s)

0 of type D8 and u
is a unipotent element of ZG(s)

0 with Jordan blocks of sizes 11, 5 in the standard
representation of D8.
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Type E8.

8; Φ30; (E8)E8
, (E7J2)E7A1

, (E6J3)E6A2
, (J9J1J4)D5A3

, (J5J5)A4A4
,

(J6J3J2)A5A2A1
, (J9)A8

, (J8J2)A7A1
, (J15J1)D8

,

10; Φ24; (E8(a1))E8
, (E7(a1)J2)E7A1

, (E6(a1)J3)E6A2
, (J7J3J4)D5A3

, (J13J3)D8
.

12; Φ20; (E8(a2))E8
, (E7(a2)J2)E7A1

, (J11J5)D8
,

14; Φ6Φ18; (E7A1)E8
, (E7(a3)J2)E7A1

, (J9J7)D8
,

16; Φ15; (D8)E8
, (E7(a4)J2)E7A1

,

18; Φ2
2Φ14; (E7(a1)A1)E8

,

20; Φ2
12; (D8(a1))E8

, (J7J5J3J1)D8
,

22; Φ2
6Φ12; (E7(a2)A1)E8

, (E7(a5)J2)E7A1
,

24; Φ2
10; (A8)E8

,

28; Φ3Φ9; (D8(a3))E8
,

40; Φ4
6; (2A4)E8

.

Type E7.

7; Φ2Φ18; (E7)E7
, (J11J1J2)D6A1

, (J6J3)A5A2
, (J4J4J2)A3A3A1

, (J8)A7
,

9; Φ2Φ14; (E7(a1))E7
, ((J9J3)A1)D6A1

,

11; Φ2Φ6Φ12; (E7(a2))E7
, (J7J5J2)D6A1

,

13; Φ2Φ6Φ10; (D6A1)E7
,

17; Φ2Φ4Φ8; (D6(a1)A1)E7
,

21; Φ2Φ
3
6; (D6(a2)A1)E7

.

Type E6.

6; Φ3Φ12; (E6)E6
, (J6J2)A5A1

, (J3J3J3)A2A2A2
,

8; Φ9; (E6(a1))E6
,

12; Φ3Φ
2
6; (A5A1)E6

.

Type F4.

4; Φ12; (F4)F4
, (J6J2)C3A1

, (J3J3)A2A2
, (J4J2)A3A1

, (J9)B4
,

6; Φ8; (F4(a1))F4
, (J4J2J2)C3A1

,

8; Φ2
6; (F4(a2))F4

, (J5J3J1)B4
,

12; Φ2
4; (F4(a3))F4

.

Type G2.

2; Φ6; (G2)G2
, (J3)A2

, (J2J2)A1A1
,

4; Φ3; (G2(a1))G2
.
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