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S 1088-4165(2014)00455-2

DISTINGUISHED CONJUGACY CLASSES AND ELLIPTIC
WEYL GROUP ELEMENTS

G. LUSZTIG

ABSTRACT. We define and study a correspondence between the set of distin-
guished GC-conjugacy classes in a fixed connected component of a reductive
group G (with GO almost simple) and the set of (twisted) elliptic conjugacy
classes in the Weyl group. We also prove a homogeneity property related to
this correspondence.

INTRODUCTION

0.1. Let k be an algebraically closed field of characteristic p > 0 and let G be a
(possibly disconnected) reductive algebraic group over k. Let W be the Weyl group
of GY. (For an algebraic group H, H® denotes the identity component of H.) We
view W as an indexing set for the orbits of GV acting diagonally on B x B where B
is the variety of Borel subgroups of G°; we denote by O,, the orbit corresponding
tow € W. Note that W is naturally a Coxeter group; its length function is denoted
by [ : W — N. Let I be the set of simple reflections of W; for any J C I let W
be the subgroup of W generated by J.

Now any 6 € G/G° defines a group automorphism es : W — W preserving
length, by the requirement that

(B,B/) c (’)w,g cd — (939_1793/9_1) = Oeé(w).

The orbits of the W-action wy : w — wl_lweg(wl) on W are said to be the ¢g-
conjugacy classes in W. Let W be the set of ep-conjugacy classes in W. We say
that C' € W is elliptic if for any J G I such that ep(J) = J we have CNW; = 0.
For any C' € W let Cyip be the set of elements of C' where the length function
I : C' — N reaches its minimum value. Let ¢ be a G°-conjugacy class of G. Let 6
be the connected component of G that contains ¢ and let C' € W be elliptic. For
any w € Cipin We set

BE = {(9,B) € cx B;(B,gBg™ ") € O,}.

Note that G° acts on BE by z : (g, B) — (xgz~!,zBxr~1). We write Céec if the
following condition is satisfied: for some/any w € Cyuin, BE is a single GP-orbit
for the action above (in particular it is nonempty). The equivalence of “some” and
“any” follows from [L5], 1.15(a)] (which is based on results in [GP]).
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0.2. For an algebraic group H we denote by Zg the center of H; for h € H we
denote by Zg(h) the centralizer of h in H. An element g € G or its G’-conjugacy
class is said to be distinguished if Zg(9)°/(Zq0oNZg(g))? is a unipotent group. The
notion of distinguished element appeared in [BC] in the case where g is unipotent
and G = GO.

The following is the main result of this paper.

Theorem 0.3. Assume that G° is almost simple and that |G/G°| < 2. If G° is
of exceptional type assume further that G = G° and that p is either 0 or a good
prime for G. Then for any distinguished G°-conjugacy class ¢ in G contained in a
connected component 0 of G, there exists an elliptic C € W5 such that Céec.

In the case where c is unipotent the theorem is known from [L1 Theorem 0.2].
In particular, the theorem holds when p = 2. Thus we may assume that p # 2. We
may also assume that G/G® — Aut(W), § — €5 is injective. It is enough to verify
the theorem assuming that G° is simply connected (the theorem then automatically
holds without that assumption). If G is of type A and G = G, then ¢ must be a
regular unipotent class times a central element and we can take C to be the Coxeter
class. The case where G = G° is of type B or C is treated in §1. The case where G°
is of type D is treated also in §1. (In this case we may assume that |G/G°| = 2.)
The case where G is of type A and |G/G°| = 2 is treated in §2. (In this case we
may assume that ¢ ¢ G°.) The case where G is of exceptional type is treated in §3.

We will show elsewhere that C' in the theorem is unique (in the case where c is
unipotent this is known from [L1]).

0.4. The results of this paper have applications to the study of character sheaves.
We will show elsewhere how they can be used to prove that an irreducible cuspidal
local system on ¢ (a distinguished G°-conjugacy class in a connected component §
of G), extended by 0 on d — ¢, is (up to shift) a character sheaf on 4. In the case
where § = GY this gives a new, constructive proof of a known result, but in the
case where § # G, it is a new result.

0.5. For any integers x, y such that y > 0 we set (Z) =z(z—1)...(z—y+1)(y) L.
Thus (3) = 1.

1. ISOMETRIES

1.0. In this section we assume that p # 2. Let € € {1, —1}. Let V be a k-vector
space of finite dimension n with a given nondegenerate bilinear form (,) : VxV — k
such that (z,y) = e(y, x) for all x, y; we then say that (,) is e-symmetric. Let Is(V)
be the group of isometries of (,).

Assume that we are given g € Is(V). For any z € V and i € Z we set z; = g’z €
V. Similarly, for any line L in V and i € Z we set L; = gL C V. For any 2,2’ in
V and any 4,7,k € Z we have

(a) (ZiJrka Z§+k) = (Ziv Z;)
Let a1 > as > ..., by > by > ... be two sequences in N such that
if 4 > 1, A; = Qj41, then Aij4+1 = O,
if 4 > 1, b'i = bi+1, then bi+1 = O,
if a; > 0, then (—1)% = —e,
if b; > 0, then (—1)% = —e.
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It follows that a; = 0 for large i and b; = 0 for large i. Thus, (a;), (b;) are strictly
decreasing sequences of integers > 0 of fixed parity as long as they are nonzero. We
assume that

n=(a+a+...)+ (b1 +bs+...).

Define k € {0,1} by n — x € 2N. Note that if e = —1 we have x = 0. Define & > 0
by {i > 1;a;b; > 0} = [1,k]. For i > 1 we set ¢; = a; +b;. We have ¢y > co > ....
We define p; € N for ¢ > 1 as follows.

If e = —1 we have ¢; € 2N and we set p; = ¢;/2 for i > 1.

If e=1 and ¢ € [1, k] we again have ¢; € 2N and we set p; = ¢;/2.

Ife=1and i >k we have ¢; € 2N + 1 or ¢; = 0 and we define p; by requiring
that for s =1,3,5,... we have:

(Phtss Prts+1) = ((Chrs — 1)/2, (Chrst1 +1)/2) if cpps > 1, cppsir > 1,
(Prts Prts+1) = ((crys — 1)/2,0) if cys > 1, chysp1 =0,
(Phts» Prts+1) = (0,0) if chps =0, Chgsg1 = 0.

We define o as follows. We have p; > ps > -+ > p, where p; € Ny fori € [1,0],
p; = 0if i > 0. This defines 0. If n =0 or n = 1 we have 0 = 0. We set p}, = p; if
tel,o],p,=1/2if k=1,t =0 + 1. We have

2p1+pet -+ pe)HE=2001 +p5+ - +p,,,) =n

Let C;/*’b* be the set of all g € Is(V) such that g?> : V — V is unipotent and such
that on the generalized 1-eigenspace of g, g has Jordan blocks of sizes given by the
nonzero numbers in ag, ag, ... and on the generalized (—1)-eigenspace of g, —g has
Jordan blocks of sizes given by the nonzero numbers in bq,bs,.... (Note that the
union of the sets C(‘l/*)b* where a4, b, as above vary is exactly the set of elements of
Is(V) which are distinguished in the sense of 0.2.)

For g € C) . let é;fa*’b* be the set consisting of all L', L?,..., L°T" where
Li(t € [1,0 + k]) are lines in V' (the upper scripts are not powers) such that for
1,7 € Z we have:

(LivL;) =0 if |Z_]| <pta(L'f7L§) #O lf]—Z:pt(te [170+K’])a
(Lf,L;):O ifi—jel-p2p—pr-—1 and 1 <t<r<o+xk.

Here L! = g'L*. We then have:

(b) V= @te[l,a+n],i€~[0,2p;—l] Lﬁ-

(See [L3, 1.3].) Let C(Y*’b* be the set of all (g, L', L?,..., L°T*) such that g €
CY , and (L', L% ... Lotr)eCl, .

Now Is(V) acts on C; , by y:g~ (vgy~") and on éxm by

(C) v (g7L17L2’ N "LO'JFN) — (’79771,’7(L1),7(L2), o 7")/(LU+H)),

Let I' = [ ;11,51 {1, —1}. fe=—11let T=7". If e = 1 let T be the subgroup of
T’ consisting of all (w)¢e[1,044) Such that wy = wyy for any ¢ such that {t,t+1} C
[k+1,0+k|,t =k+1 mod 2. Thus Z is a finite elementary abelian 2-group. The
following is the main result of this section.
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Theorem 1.1. (a) Ci‘;)zu is nonempty;

(b) the action 1.0(c) of Is(V') on CN(K”b* is transitive;

(c) the isotropy group in Is(V') at any point of C~(‘I/Mb* is canonically isomorphic
to 1.

The proof (by induction on n) is given in 1.2-1.20.

1.2. We start with the case where a,, b, have a single nonzero term. Let a € N, b €
N,p € N+ be such that a + b = 2p. We set —e = (—=1)* = (=1)*. For e € N we
define n, € Z by (1-T)%(1 +T)* = Y een eI We have ng = 1, ngp—; = —en;
for i € 0,2p], n. = 0 if e > 2p. We define 2. € Z for e € N by 29 = 1 and
NoTe + N1Te—1 + -+ +Nexp =0 for e > 1.

1.3. In the setup of 1.2, let V' be a k-vector space with basis {w;;i € [0,2p — 1]}.
Define g € GL(V') by

gw; = wiy1 if i € [0,2p — 2], gwgp_1 =€ Z ;W
i€[0,2p—1]

We have the identity (1 — ¢)%(1 +g)® = 0 : V — V, that is (setting 7 =
2ie(0,2p] nig' : V. — V), we have 7 = 0. Define a bilinear form (,) on V by

(wi,wj) =0 1f’L,j € [O,QP_ 1]7 |Z_j| <p,

(ws,w;) =a5if 1, €[0,2p—1],j—i=p+s5,5>0,

(wi,w;) =exsifi,j€[0,2p—1],i—j=p+s,s>0.

Clearly (z,y) = €(y, ) for all z,y and (,) is nondegenerate; the determinant of

the matrix ((w;,w;)) is £1. We show that g is an isometry of (,). It is enough to
show that

(gws, gw;) = 0if |i — j| < p,
(gwi, gw;) = a5 if j—i=p+s,5>0,
(gwi, gw;) =exsifi—j=p+s,s>0.

This is obvious except if one or both 4, j are 2p—1. If i = 2p—1,p—1 < j < 2p—1,
we must check that

(6 Z ni’wi’,wj+1):0a

i'€[0,2p—1]

E Ny Tjy1—il—p = 0,

i’€[0,j+1—p]
which is true since j+1—p>0. If i =2p—1,0 < j < p— 1, we must check that

that is,

(€ E Ny Wir, Wjt1) = €T2p—1—j—p,
i’€[0,2p—1]

that is,
§ Ny Ti'—j—1—p = €ELp—1—j,
i'€[j+1+p,2p—1]
that is,

—€ E N2p—i'Ti' —j—1—p = €Lp—1—j,
i €[j+1+p,2p—1]
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that is,
Z Nap—irTir—j—1—p = 0,
i’ €[j+1+p,2p]
which is true since p —j — 1 > 0.
Ifi=2p—1,j =p—1, we must check that

(6 E N Wi ’LUp) = €Xq,
i'€[0,2p—1]

that is, ngxy = xg, which is obvious. The case where j = 2p — 1,7 < 2p — 1 is
entirely similar. It remains to show (in the case where i = j = 2p — 1) that

(6 Z N4 Wi, € Z ni/wi/) =0.

i’€[0,2p—1] i’€[0,2p—1]
If e = —1 this is obvious since (x,2) = 0 for any z. Now assume that e = 1. We
must show
2 ) Y nunugprewe =0,
i'€[0,p—1] uel0,p—1-7']
that is,

E m E Np—u—i' Tyt = 0.

u€[0,p—1] i'€[0,p—1—u]
‘We have Zi’e[o,pfu] Np—y—i Ty = 0 if p > u hence it is enough to show that

E NyNoTp—y = 0,

u€[0,p—1]
that is,
Z Ny Tp—qy = 0.

u€[0,p—1]

We have
Z NyTp—y = 0
u€[0,p]

since p > 0. Hence it is enough to show that n, = 0. This follows from n, = —en,,.

(We use that € = 1.)

Now g € GL(V) is regular in the sense of Steinberg and satisfies (g—1)%(g+1)" =
0on V. Hence V = V™ ® V™~ where g acts on VT as a single unipotent Jordan
block of size a and —g acts on V'~ as a single unipotent Jordan block of size b. Note
that if e = 1 we have det(g) = (—1)® = —1. Tt follows that, if L is the line spanned
by wg and a. = (a,0,0,...),b. = (b,0,0,...), then (g,L) € ég;z:; In particular,

é(‘z/*,b* # 0.

1.4. In the setup of 1.2, let V,(,) be as in 1.0. (Recall that —e = (—1)® = (—1)°.)
Let g € Is(V). We assume that dimV = 2p and that on the generalized 1-
eigenspace of g, g is a single unipotent Jordan block of size a or is 1 (if a = 0)
and on the generalized (—1)-eigenspace of g, —g is a single unipotent Jordan block
of size b or is 1 (if b = 0). Moreover, we assume that we are given w € V such that
(with notation of 1.0) we have for 4, j € Z:

(Wi, wy) = 0if |i — j| < p; (wi,w;) = 1if j —i=p.
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We show:

(a) The following equalities hold for any i,j in Z:
(al) (wi,w;) = 0if i —j| <p,

(a2) (w;,wj) =xsif j—i=p+s,s>0,

(a3) (w;,w;) =exsif i—j=p+s,s>0.

Note that (a3) follows from (a2). In (al) and (a2) we can assume that ¢ = 0. (We
use 1.0(a).) Since (wo,w;) = e(wp, w—;) for any j we can also assume in (al) that
j > 0so that j € [0,p — 1] and (al) holds. We prove (a2) with i = 0,j = p+ s
by induction on s > 0. If s = 0 the result is already known. Assume now that
s > 1. Applying (1 — g)*(g + 1)® = 0 to ws_, we obtain ZeG[O,Qp] NeWs—pte = 0.
Taking (wp,) we obtain Zee[O,Qp] Ne(wWo, Ws—pye) = 0. For e in the sum we have
s—p+e > —p+1; hence by (al) we can assume that we have s —p+ e > p. Thus
Zee[o,Qp};s—erezp Ne(wWo, Ws—pte) = 0. By the induction hypothesis this implies

E Nels—2pte + (wO, wSJrP) =0.
e€[0,2p—1];s—p+e>p

It is then enough to show that
Z NeXs—2pte + Ts = 0
e€[0,2p—1];s—p+e>p
or that

§ N2p—els—2pte = 0
e€[0,2p];s—p+e>p

Z Nprp = 0.

R>0,h/>0;h+h/=s
But this holds by the definition of x. since s > 1.

or that

1.5. Let p > 0. For e > 0 we set
Ne = (—1)e<

so that (1 —T)**t =37 n.T¢. For e > 1 we set z. = 2(p +¢)(2p + 1)(2p +
2)...(2p+e—1)e!™! (note that z; = 2p +2). We set o = 1 if p > 0 and zo = 2
if p=20. If p > 0, then for any u > 2 we have
(a) Z njxy—; = 0.
J€l0y]

(See [L3| line 4 of p. 134]) This shows by induction on e that ., € N for any e > 0.

For v € Z we set fp(u) =0if [u] < p and f,(u) = z. if |u| = p+ e with e > 0.
For u € Z we have
(b) fo(u) =2(2p)!I~1 H (u? — k?).

kel0,p—1]

For example, fo(u) =2. Also, f,(p) =11if p > 1.

Setting A, = > 5o fp(p+e)T¢ =3 52T (where T is an indeterminate) we
have, by (a), (1 —T)?P*1A, =1+ T hence

(c) Ay =(1—-T)2P" 11+ T).

2p+1
e
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1.6. In the setup of 1.5 let E be a k-vector with basis wg, w1, ..., wsp. We define
a symmetric bilinear form (,) : E x E — k by (w;,w;) = (=1)?f,(i — j) for i,j €
[0, 2p]. We define g € GL(E) by gw; = w1 if i € [0,2p—1], gwap = 3= (0,9, M W5-

We have (g — 1)?P™! = 0 hence g : E — F is unipotent (with a single Jordan
block). We show that g is an isometry of (,). We can assume that p > 0. It is enough
to show that (w;y1, gwap) = (w;, wap) for i € [0,2p —1] and (gwap, gwsp) = 0. Thus
we must show that

(a) > njze = 0if i € [0,2p — 1]
J€[0,2p+1],e>0,|i+1—j|=e+p

(b) Z nn; xe = 0.
J,3'€[0,2p],e>0,[j—j’|=e+p
Now (a) for ¢ is equivalent to (a) for 2p — 1 — i (we use the substitution j +—
2p+1—j); hence it is enough to prove (a) for i € [p,2p—1]|. Now (a) for i = p reads
x1— (2p+ 1)z — 29 = 0, that is, 1 = 2p+ 2, which is true. For i € [p+1,2p — 1],
(a) reads 3 cioopi1]it1—jop MiTit1—j—p = 0, that is (setting u = i +1 — p),
> jefo,u) MiTu—j = 0. This follows from 1.5(a) since u > 2. This proves (a).
We prove (b). The left hand side of (b) equals

E Uz E N;Te

37€[0,2p] J€10,2p],e>0,|j—j’|=e+p

= Z N;Te + Z Ty Z N;jTe

j€[0,2p],e>0,|j|=e+p J'€[1,2p] J€[0,2p],e>0,|7—j'|=e+p
= E n;Te + E N g N;Te
J€[0,2p],e>0,|j|=e+p J'€[1,2p] J€[0,2p+1],e>0,|j—j|=e+p

— E g E Nop+1TLe-

J'€[1,2p] e>0,[2p+1—j'|=e+p

In the last expression the second sum over j is zero by (a) and the second sum over
j’ becomes (setting j =2p + 1 — j')

S Y ow
JE[1,2p] e>0,|j|=e+p
Hence the left hand side of (b) equals
I SRR DI D
J€10,2p],e>0,|j|=e+p Jell2p]  ex0ljl=e+p €>0,0|=e+p

and this is zero since e +p > 0. Thus (b) holds.
For any i € Z we set w; = g'wg. This agrees with the earlier notation when
i € [0,2p]. We show:

(c) (wi,w;) = (—1)Pf, (i — j) if i,j € Z.

If p = 0 there is nothing to prove since g = 1; thus we can assume that p > 1. We
will prove (c) assuming only the identities

(d1) (wp—1,w;) = 0if j € [0,2p — 2],
(d2) (wp*17w2p71) = (_1)p_
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If |i — j| < p, then (c) follows from (d1); if |i — j| = p, then (c) follows from (d2).
Thus we can assume that |i — j| > p+ 1. We can also assume that ¢ =0 and j >0
(hence j > p+1). We must only prove that

(wo, w;) = (=1)Pzj—p if j = p.
We argue by induction on j. For j = p the result is known. Assume that j > p+ 1.
From (g — 1)?P"lw;_5, 1 = 0 we deduce Zh€[0,2p+1] npWj—op—14n = 0. Hence
Pnef,2pr) M Wi—n =0 and Yy i 0,0 (W, wj—p) = 0. If j = p+ 1 we can
assume that h =0,h =1 or h = 2p+ 1 (the other terms are zero); thus,
no(wo, wp+1) + 11 (wo, wp) + nopy1(wo, w—p) = 0.
We see that (wg, wpt1) —(2p+1)(—1)?—(=1)? = 0 so that (wo, wpt1) = (—1)P(2p+
2) as required. Now assume that j > p + 2. We have
Z nh(wo,wj,h) =0.
hel0,2p+1];5—h>p
Using the induction hypothesis this implies

> nn(=1)Pxj—p—p + (wo, w;) =0
he[1,2p+1];5—h>p

E NhTj—h—p = O,

hel0,2p+1];5—h>p

E NMhTj—h—p = 0.

hel0,5—p]
This follows from 1.5(a) with u = j — p since j — p > 2.

hence it is enough to show that

that is,

1.7. We preserve the setup of 1.6. The subspace E’ of FE spanned by {w;;i €
[0,2p — 1]} is clearly nondegenerate for (,) hence there exists w € E such that
(w, w) = 0 for i € [0,2p — 1] and (w,w) = 2. Moreover, @ is unique up to
multiplication by +1. We have @ ¢ E’. We can write & = ZiE[O,Zp] c;w; where
¢; € k are uniquely defined and ¢, := cg), # 0. Taking (wy,, ) and setting &; = ¢;/c.
we obtain

(%) > @fpli—h)=0for he0,2p—1].

i€[0,2p]

We show (setting 1; = (** +1)

= (
=(-1)"Mlo+ Ui+ +1)ifie0,p—1],
(=1 (o + b o by i € 2],

We can assume that p > 1. Clearly () has a unique solution ¢;(i € [0,2p — 1]).

Note that ¢y, = 1. If h = p, then (%) is¢o+1=0. If h € [p+1,2p — 1], then () is

Yicoh—p Cifpi —h) = 0. If h € [0,p — 1], then (x) is >=,c(44p.0p Cifo(i —h) = 0.

It is enough to show:

(a) S (=)Mot h)ath—i—p)=0if he[p+1,2p—1],
i€[0,h—p]
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(b) > (=Dt +lopi)r(i—h—p)=0if h e [0,p—1].
i€[h+p,2p]

We rewrite equation (b) (using i — 2p —i and h — 2p — h) as

(c) Z (-1)*(lo+---+l)x(h—i—p)=0.
i€[0,h—p]

Here h € [p+ 1,2p]. Note that (c) contains (a) as a special case. Thus it is enough
to prove (c). We prove (c¢) by induction on h. If h = p + 1, then equation (c) is
lox1 — (lo + 11)xo = 0, that is, 2p + 2 — (2p + 2) = 0, which is correct. If h > p + 2
we have Zie[O,h—p](_l)ilix(h — 4 —p) = 0. Hence in this case (c) is equivalent to
Zie[l,h—p](_l)i(lo + -+ 1l;—1)x(h —i—p) = 0 which is the same as equation (c)
with h replaced by h — 1 (this holds by the induction hypothesis). This proves (c)
hence (a),(b).

We show:
(d) (wap, W)ew = 2.
Indeed, we have
2= () =( » ciwi,b) = cp(wy, @),
1€[0,2p]

as desired. We show:

(© 2 =2
We have
2 = (wap, W)cx = (Wap, Z Ciw; ) = Z ci(=1)Pfp(2p —i)cs
i€[0,2p] 1€[0,2p]
Thus

2c;% = > e(—1)"f,(2p — i)
i€[0,p]
If p = 0, this reads 2¢;2 = Eofo( ) = 2 hence (e) follows. If p > 1, we have
(wo, w) = 0 hence 0=}, 5, Gi(—1) fp(i) hence 0 =3", 1, ) & (1),

is,
0= Z Cop—i(—1)P fp(2p — 9).
i€[0,p]
Adding to

2¢,% = Y a(=1)"fp(2p — )
i€[0,p]
we get

2,7 = > (G + Capi) (—1)Pfo(2p — 9).
i€[0,p]
Now ¢; + ¢2p—; = 0 if ¢ € [0, p — 1] hence
2c, 2 =2(=1)P¢, = 2(lg + 1y +--- +1,) = 2%F!
and (e) follows.
From (e) we see that, by replacing if necessary, @ by —@ we can assume that
(f) ce =27P,

This condition determines w uniquely.
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We show that for h € Z:

(&) (wn, @) = 27+1 (2’; >

We must show that for h € Z:

D a(=0Pfyi —h) =20+ <2leo)

i€[0,2p]

> G(=1)Pfpli — h) = 22T (2];)

i€[0,2p]

or that

It is enough to prove this equality in Z. The left hand side is a polynomial in A
with rational coefficients of degree < 2p which vanishes for h € [0,2p — 1] in which
the coefficient of h?? is

> a(=1r2(2p)! " = (-1)76,2(2p)!
1€[0,2p]

=(lo+11+ - +1,)2(2p)! 1 = (=1)P2%P2(2p)!*

Hence it is equal to the right hand side.
For any h € Z, wy, is defined as in 1.0. We show:

(h) (o, wp) =2(=1)"if h € [0,p]; (o, Wpy1) = 2(—1)PTL 4 (=1)P22P+2,
We can assume that h > 1. We have

(1o, ) E ciw;, Wn) E ci(Wi—n, Wo) E 2( )

1€[0,2p] 1€[0,2p] 1€(0,2p]

= > 2=DT'o+- 41 <Z ;ph> + 0npr12(=1)"(lo + -+ 1p) (p;ph>

i€[0,h—1];i#p
= 2(-1)"" o+ + 1) t—p + 205 p 1 2(=1)P(lo + -+ - + 1)
i€[0,h—1] 2p

Now 4(—=1)P(lg + - - +1,) = (—1)P22P*2_ It remains to show that

> <—1>i1<zo+---+zi>("‘”2p‘ 1) (1)

1€[0,h—1] 2p
for h € [1,p+1], or setting B’ =h—1,u=h"—i:
u+ 2 ’
> o)UY = -y
i>0,u>0,i+u=h' P

for b’ € [0,p]. We shall actually show that this holds for any A’ > 0. It is enough
to show that for an indeterminate 7" we have

2 / !’

gt + )T (TP o = ST (1) h
2

i>0,u>0 P h'>0

or that

S=Dilo+ -+ )T (A -T) > =(1+T)"
>0
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or that
(1—T+T* . )+ L(-T+T*-TH+.. ) A-T)* ' =1+T7)"
or that
A+T) g —WT +1L,T?—..)A1-T) P =1+T)""

This is obvious.

1.8. We preserve the setup of 1.7. For h € Z we show
(a) (Wo,wp) = ZTE[O,p](_]‘)T22Tf""(h)' In particular, (Wo, wy,) € 27Z.
We must prove the equality

_(i—h ro2r
() ¥ ()= X cornm
i€[0,2p] rel0,p]
in k. It is enough to prove that (a’) holds in Z. Let F},(h) be the left hand side of
(a"). Tt can be viewed as a polynomial with rational coefficients in h of degree < 2p
in which the coefficient of h2? is

> 2ei(2p)! 7 =26, (2p)! T =2(=1)P (lo + -+ + 1) (2p)! 7 = 2(—1)P2%(2p)!
i€[0,2p]
(We have used that & + ¢2,—; = 0 if i # p.) Thus
Fy(h) = (=1)P22PT1(2p)1 = h* + lower powers of h.

In the case where p = 0 this implies that F,(h) = 2 so that (a’) holds. We now
assume that p > 1. Note that F,(—h) = F,(h) for h € Z; an equivalent statement
is that (wo,wr) = (W, w—p), which follows from the definitions. We see that
F,(—h) = F,(h) as polynomials in h. Now Fj, — F,,_; is a polynomial of degree
2p in h whose value at h € [0,p — 1] is 2(=1)" — 2(=1)" = 0. Using this and
F,(—h) = F,(h) we see that

Fy(h) = Fyor(h) = (1722 (2p)1 7 W2 (02 = 1) ... (W2 = (p — 1)?).

From this we see by induction on p that (a’) holds.
It follows that, if L is the line spanned by wg, L’ is the line spanned by wo and
a. = (2p+1,0,0,...),b. = (0,0,0,...), then (¢9,L,L’) € C¥ , . In particular,

CE 4. #0.

1.9. In the setup of 1.5, we consider a k-vector space F of dimension 2p + 1 with
a given nondegenerate symmetric bilinear form (,) : F x F — k and a unipotent
isometry g : E — F of (,) such that g is a single unipotent Jordan block (of size
2p + 1). Moreover, we assume that we are given @ € E and (if p > 1) w € F such
that (with notation of 1.0) for ¢, j € Z we have:

(wi,wy) = 0if [i — j| < p; (wi,wy) = (=17 if i — j| = p (with p > 1),
(ws, ;) = 0if i — 5 € [0,2p — 1],
(@3, @) = 2 if i = j.

We show:

(a) After possibly replacing w by —w, the following equalities hold for any i,h
in Z:
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(wiswn) = (=1)P fp(i = h) if p =1,
(wp, W) = 2P h(h —1)(h —=2)...(h—2p+ 1)(2p)! " if p>1,
(

Now the proof of (al) is exactly as in 1.6. We show:

(b) if p > 1, then {w;;i € [0, 2p]} is linearly independent.

Assume that this is not true. Then ws, belongs to E’, the span of {w;;i €
[0,2p—1]}; hence E’ is a g-stable hyperplane. Note that g acts on E’ as a unipotent
linear map with a single Jordan block (of size 2p). By (al), (, )’ is nondegenerate.
Hence g : F — FE has a Jordan block of size 2p and one of size 1; this contradicts
our assumption that g has a single Jordan block of size 2p 4+ 1. This contradiction
proves (b).

By (b) we can write uniquely (assuming p > 1) wo = ;¢ o, Ciwi where ¢; € k.
Note that cg, # 0. (Otherwise, wo would be contained in E’; on the other hand, @
is perpendicular to E’ contradicting the nondegeneracy of (,)|g.) We set ¢, = cap,
¢ = cic; ' (i €[0,2p]). By repeating the arguments in 1.7 we see that c, = 4277,
Replacing if necessary w by —@ we can assume that ¢, = 27P. Now (a2) and (a3)
are proved exactly as in 1.7 and 1.8. If p = 0, then wy, = wy for any h € Z hence
(o, W) = (Wo, Wo) = fo(0) = 2. Thus (a3) holds again.

1.10. We fix two integers p1, p2 such that p; > py > 1. Let V', V" be two k-vector
spaces of dimension 2p; + 1,2py — 1, respectively. Let V = V' & V", Assume that
V’ has a given basis zg, 21, . . ., 2z2p, and that V" has a given basis vg, v1, . .., V2p,—2.
We define a symmetric bilinear form (,) on V' by
(Zi7zj) = (_1)p1fp1 (Z _]) for 1,J € [0,2])1],

(Ui’vj) = (_1);0271]0;02—1(2. _.7) for ] € [072p2 - 2}7

(Zi,’l}j) = (Uj,Zi) =0forz € [0, Zpﬂ,j S [0,2])2 — 2].
(Notation of 1.5.) We define g € GL(V') by

g9z; = Zi11 ifi e [0, 2p1 — ].],

(2p1 +1
9z2p, = Z (_1)j<p1- )Zja

J€[0,2p1] J
gu; = vipq if 1 € [0, 2py — 3],

Jo2p—2= ) (—1)j(2p2._1)®j'

J€[0,2p2—2] J
Note that g : V' — V is unipotent and that V', V" are g-stable (¢ has a single
Jordan block on V' and a single Jordan block on V”). By 1.6, g : V. — V is an
isometry. For i € Z we set z; = g'zg € V', v; = g*vo € V”. This agrees with our
earlier notation. By 1.6 we have for i, j € Z:

(zi:25) = ()P fpu (i = ), (viv3) = (1) 7 1 (i — ).

As in 1.7, 1.8, there is a unique vector Zy € V'’ and a unique vector 99 € V" such
that for any h € Z we have

(zn,20) = 2P T h(h — 1)(h — 2) ... (h — 2py + 1)(2p1)! 1,
(Go.2n) = D (=1)"2% f,(h),

ref0,p1]
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(v, Do) = 2P2h(h — 1)(h —2) ... (h — 2pa + 3)(2p2 — 2)!" 1,
(B0, Tn) = Y (=12 fo(h).
ref0,p2—1]

For i € Z we set Z; = g'Zg € V', 9; = g'tp € V. By 1.7 we have

(%0, 2n) = 2(=1)" if h € [0, p1],
(20, Zpy 1) = 2(=1)P1 1 4 (=) 2242
(0, 5n) = 2(=D)" if h € [0, pa — 1],
(50, 5pa) = 2(— 1) + (1172,

We fix ¢ € k such that (? = —1. We set
§=2""(2_p, + (o) € V.
Let h € Z. We have
h
(21, &) = 2772 (2, F—py) = 27P* (2hpy, F0) = 2p1p2+1< 2+P2>.
P1
In particular, we have (zp, &) € 2Z; moreover,
(Chag) =0ifh c [_p272p1 — P2 — 1}
Let h € Z. We set &, = g"¢. Using the definitions we see that
(507§h) = 2721)2((205 gh) - (505 6h))

From this we deduce using the formulas above that
(€0,€n) =0if h € [=p2 + 1,p2 — 1],
(§0,6n) = (=1)* if h = po,
(o) = 3 (“1)722 2 f,(n) for h e Z.

r€[p2,p1]
It follows that, if L is the line in V' spanned by zp, L’ is the line in V' spanned by
¢ and a, = (2p1 + 1,2p2 — 1,0,0,...),b. = (0,0,...), then (g,L,L') € C;/;’b*. In
particular, C?zi,b* £ (.

1.11. Let py,p2 be as in 1.10; let Ve, (,) be as in 1.0. Let g € Is(V). We assume
that ¢ = 1,dimV = 2p; + 2p, and that ¢ is unipotent with exactly two Jordan
blocks: one of size 2p; + 1 and one of size 2p, — 1. Moreover, we assume that we
are given z € V,£ € V such that (with notation of 1.0) we have for 4, j € Z:
(2i,2;) = 0if i = j| <p1, (20, 25) = (=) if i = j| = pu,
(&, &) = 0if |i — j| < p2, (&, &) = (=) if i — j| = pa,
(2i,€) = 0if i — j € [=p2, 2p1 — p2 — 1].
We show:
(a) After possibly replacing & by —&, the following equalities hold for any u € Z
and any 1,5 € Z such that i — j = w:
(al) (zi;2) = (= )plf;{l(g
. — +1 (urp2
(a2) (z;,x;) = 2P17P2 (2 o )

(a3) (£ €5) = Xrefpapu) (17227722 fr(u).
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(Notation of 1.5.) Let au,Yu, By be the left hand side of (al), (a2), (a3), re-
spectively. (These are well defined by 1.0(a).) Note that a, = a—y, Sy = B-u-
When z;, & are replaced by the vectors with the same name in 1.10, the quantities
Ay, Bus Yu become B9 40 (which were computed in 1.10). Then (al)-(a3) are
equivalent to the equalities a,, = a2, 8, = B9, v, = 70.

We prove (al). (See also the proof of 1.6(c).) If |u| < pi, then (al) is clear.
Thus we can assume that |u| > p; + 1. We can also assume that v > 0 (hence
u > p1 +1). We must only prove that (29, 2,) = (—=1)P @y_p, if w > p; where z, is
as in 1.5 (with p = p1). As in the proof of 1.6(c) we argue by induction on u. For
u = pp the result is known. Assume that u > p; + 1. We have (g — 1)?P**1 =0 on
V hence (g — 1)?P1H1z, o, 1 =0, that is,

E NhZu—2p, —14+h = 0.

h€[0,2p1+1]
Hence
Z Ny Zy—h' = 0
h'€[0,2p1+1]
and

Z np(20, Zu—n) = 0.

he[0,2p1+1]

If u =p; + 1 we can assume that h = 0,h =1 or h = 2p; + 1 (the other terms are
zero); thus,

n0(205 2py+1) + 11 (20, 2p, ) + N2p, +1(20, 2—p, ) = 0.
We see that (20, 2p,+1) — (—1)P*(2p1 + 1) — (—1)P* = 0 so that
(ZO? Zlerl) = (_1)1)1 (2]91 + 2);
as required. Now assume that u > p; + 2. We have
Z nn(20, 2u—n) = 0.
hel0,2p1+1);5—h>p1
Using the induction hypothesis this implies
Z nh(_l)plx’u*h*;ﬂl + (207 Zu) =0,
hell,2p1+1];u—h>p1
hence it is enough to show that
Z NpTy—p—p; = 0,
hel0,2p1+1f;u—h>p1

that is,
Z NMhTy—h—p; = 0.
he0,u—p1]

This follows from 1.5(a) with u replaced by u — py since u — p; > 2.
The proof of (a2) and (a3) will be given in 1.12-1.16 where the setup of this
subsection is preserved.
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1.12. We show:

(a) the set {z;;i € [0,2p1]} is linearly independent.

Assume that this is not true. Then 25, € FE, the span of {z;i € [0,2p; — 1]}.
Hence FE is g-stable and its perpendicular E- is g-stable. By assumption we have
¢, € EL. Since E* is g-stable we see that & € E+ for all i € Z. Thus E’, the
span of {&;;4 € [0,2ps — 1]}, is contained in E+. By assumption, E’ has dimension
2ps which is the same as dim E+. Hence E' = E+. Since V = E @ E’, we see that
V = E @ E+ with both summands being g-stable. Now g acts on E as a single
unipotent Jordan block of size 2p;. Thus g : V' — V has a Jordan block of size 2p;.
This contradicts the assumption that the Jordan blocks of g : V' — V have sizes
2p1 + 1,2py — 1. This proves (a).

We set N = g — 1,e = p; — pa. Let £ be the span of {N'zq;i € [2p2,2p;1]} or
equivalently the span of {N?P2z;;i € [0,2¢]}. We show:

(b) dim £ = 2e + 1.

Let £’ be the span of {N'z;i € [2p2,2p1 — 1]}. We have dim £’ = 2e since
{Nizy;i € [0,2p1 — 1]} is a linearly independent set. If (b) is false we would have
N?P2z5 € £'. Then the span of {N'zp;i € [0,2p; — 1]} is N-stable. Hence the span
of {g%20;i € [0,2p1 — 1]} is g-stable. This contradicts the proof of (a).

We show:

(c) N?P2¢, € L.

From the structure of Jordan blocks of N : V' — V we see that dim N?2V = 2e+1.
Clearly, £ C N?P2V. Hence using (b) it follows that £ = N?P2V so that (c) holds.
Using (c) we deduce

(d) N?P2gy = Z ciN?22;
i€[0,2¢]

where ¢; € k (i € [0,2¢]) are uniquely determined.

1.13. For j € N we set m; = (—1)j(2§2) so that N2Pz = 2 je0,2ps] mjg’. From
1.12(d) we deduce
(a) Z mjfj = Z CiMjZi4j-

§€[0,2p2] i€[0,2¢],5€[0,2ps]

Taking (, z,) with u € Z, we deduce

(b) Z miYu—j = Z CiMjQly—j—j-

J€[0,2p2] i€[0,2€],5€[0,2p2]
‘We show:

(cl) If u € [p2, 2p1 — p2 — 1], then the left hand side of (b) is 0.

(c2) If u = 2p; — po, then the left hand side of (b) is Yap, —p,-

For (c1) it is enough to show: if w is as in (c1) and j € [0, 2ps], then u — j+ps €
[0,2p; — 1]. (Indeed, we have uw — j + p2 < 2p; —pa — 1+ py = 2p; — 1 and
u—j—+py > p2—2ps+ ps = 0.) For (c2) it is enough to show: if j € [1,2ps],
then 2p; — po — j + p2 € [0,2p; — 1]. (Indeed, we have 2p; — j < 2p; — 1 and
2p1 —j >2e>0.)
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If u € [p2,p1 — 1], then in the right hand side of (b) we have u — i — j < p1; we
can assume then that u —¢ — 7 < —p; hence i > u —j +p1 > p2 — 2p2 +p1 = €.
Thus in this case (b) becomes (using (c1) and setting u = p; — ¢):

Z cimjap, —1—i—; =0 for t € [1,e].
i€(e,2e],j€[0,2p2]
Setting ¢}, = cae—p, for h € [0,€] and with the change of variable j — 2ps — 7,
1 — 2e — i we obtain
(d) Z mja_p, —11iy; = 0 for t € [1,€].
i€[0,e],5€[0,2p2]
In the last sum we have —p; —t 417+ 7 < p;. Indeed, we have
—p1—t+i+j< —pr—14+p1—p2+2p2=p2—1<ps.
Hence we can restrict the sum to indices such that —p; —t 417+ 7 < —pq, that is,
—t+1i+j = —s where s > 0. Thus we have
Z gmia_p, _s =0for t € [1,e].
i€[0,e],j>0,5>0;i+s+j=t

Hence
AT m;TI 1+ 8)T%) = ¢/, + terms of degree > ¢ in 7.
(> 4 j (D A g
i€[0,€] Jj=>0 520
Thus

ATH(1 —T)*2 A, = ¢} + terms of degree > ¢ in T,
v P1 0 g
1€[0,€]

where A, is as in 1.5. Using 1.5(c) we obtain

( Z ATH(1—T)*#2(1+T)(1 —T) ?~! = ¢, + terms of degree > e in T

1€[0,€]
hence

Z AT = (1+T)7 (1 — T)*%(c} + terms of degree > e in T).
i€[0,€]

We have (1 — T)2¢t+!

Zj6[072e+1](_1)jlej where [; = (26;”). Hence

A+T) (1 -T)% ! = Z (=1 (lo+13 +- - +1;)T? + terms of degree > e in T.
J€[0se]

We see that
(e) ci = (=1)'ch(lo+ 1y 4 - +1;) for i € [0, €].
In the remainder of this subsection we assume that e > 0. If u = p;, then in the
right hand side of (b) we have u—i—j € [—p1, p1]; we can then assume that u—i—j
is —py or p;. Hence i 4 j is 2p; or 0 and (4, 7) is (2e,2p2) or (0,0). Thus in this
case (b) becomes (using (c1)) ¢o + c2. = 0, that is, ¢ = —c¢{, (to apply (c1) we use
that e > 0).

If u € [p1+1,2p; —p2—1], then in the right hand side of (b) we have u—i—j > —py;
we can assume then that u — ¢ — 7 > p; hence

t<u—j—p1<2pp—p2—1l—-pr=e—1L
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Using this and (c1) we see that (b) becomes (setting u = p; +t):
Z Cim;op, 4—i—; =0 for t € [1,e —1].
i€[0,e—1],5€[0,2ps]

Note that in the sum we have p; +t — i — 7 > —p;. Indeed, we have
ptt—i—jzpr+1l-—pi+p2+1-2p2=-p2+2>—pi.

Hence we can restrict the sum to indices such that p; +t —¢ — j > p1, that is,
p1+t—1i—j=p; + s where s > 0. Thus we have

E cimjop, +s =0 fort € [1,e —1].
i€[0,e—1],j>0,5>05i+s+j=t
For such t we have also
/ _
E cmia_p s =10
i€[0,e—1],5>0,s>05i+s+j=t

as we have seen earlier; the index i cannot take the value e since ¢ < t. Adding the
last two equations and using oy, +s = a—,, —s We obtain

Z (i +c)ymja_p, s =0for t € [1,e—1].
i€[0,e—1],j>0,5>0;i+s+j=t

Thus,

( Z (ci + cg)Ti)(Z ijj)(Z Jpi (1 + 8)T°) = ¢ + terms of degree > e in T,
i€l0,e—1] >0 5>0

where ¢ € k. We see that

( Z (ci +c)TH(1 —T)*2A,, = c+ terms of degree > e in T.
i€[0,e—1]

Using again 1.5(c), we obtain

( Z (ci +e)TH(1=T)?P2(1 +T)(1 —T)?P~! = ¢ + terms of degree > e in T
i€[0,e—1]

hence

Z (ci+ )T = (1+T) (1 —T)***(c + terms of degree > e in T),
i€[0,e—1]
that is,

Z (ci + ¢)T" = ¢ + terms of degree > e in T.
i€[0,e—1]

We see that ¢; + ¢, = 0 for i € [1,e — 1]. Using also (e) we see that
(f) ci = (=1 (lo 4+ +---+1;) for i € [0,e — 1].

(In the case where ¢ = 0 this is just ¢g = —¢{, which is already known.)
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1.14. If u = 2p; — po then, using 1.13(b) and 1.13(c2), we have
(a) V2p1—p2 = Z CiMjQ2p, —py —i—j-
i€[0,2¢],5€[0,2p2]
Taking (,§,,) with 1.13(a) we obtain
Z m;fBp,—j = Z CiMYitj—pa-
7€[0,2p2] 1€[0,2¢],5 €[0,2p2]
In the left hand side only the contribution of 7 = 0 and j = 2ps is # 0; it is
(—=1)P2; in the right hand side we can assume that i + j — pa > 2p; — po (since
i+ j—pa > —p2); hence we have i+ j > 2p; and i = 2e,j = 2po and the right hand
side 1S CoeY2p, —ps = COV2p,—po- Thus
(b) 2(_1)1)2 = Cé)’yQPl —p2-
We see that ¢, # 0 and using (a),(b) we have
2(-1)P2cp 7t = > CiMMj Qp, —py—i—j-
i€[0,2¢],j €[0,2p>]

In the right hand side we have 2p; — ps — ¢ — j > —p1; we can assume then that
either 2p; —ps —i—j = —p; (hence i = 2e, j = 2ps) or 2p; —pa —i—j > p1 (hence
i < e). The first case can arise only if e = 0, hence it is included in the second case.
Thus

(c) 2=y = > cmjonp,—p,—ij.
i€[0,€],5€[0,2p2]
Assume now that e > 0. From 1.13(d) with ¢t = e, we have
(d) 0= Z Cémja72p1+p2+z‘+j-
i€[0,e],j€[0,2p2]

We now add (c) and (d) and use that ¢; + ¢, =01if i € [0,e — 1] and ¢, = ¢,. We
get,

2—1)P2chy "t =2, Y myay, .
J€[0,2p2]

If j € [1,2py] we have p; —j € [—p1 + 1, p1 — 1] hence oy, —; = 0. Thus

2(=1)P2ch ! = 2clay,, = 2(—-1)Prcl.
By 1.13(e) we have ¢, = (=1)%c{(lo + 11 + -+ + 1) = (—1)%c{2%¢ hence

2(=1)P2eh ™t = 2(=1)P (1) 2%
so that ¢)? = 272¢ and ¢, = £27°. Changing if necessary £ by —¢ we can therefore
assume that
(e) ch=2"°.
Assume now that e = 0. We have ¢, = ¢y and (c) becomes

2(—1)p2C0_1 = Z Com;Qip, —j,

J€[0,2p2]

that is, 2(—1)P2cy ! = 2¢o(—1)P* hence ¢Z = 1 and ¢g = 1. Changing if necessary
¢ by —& we can therefore assume that ¢cp = 1. Thus (e) holds without the assumption
e>0.
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Using (e) we rewrite 1.13(e), 1.13(f) as follows:
(f) Coe—i = (—1)7;276(10 +l 4+ lz> for i € [0, 6],

(g) ci=(=1)"27%(lg+ 1y +---+1;) fori € [0,e — 1].

When z;,&; are replaced by the vectors with the same name in 1.10, the quantities
¢; become the quantities ¢?. (Here i € [0,2¢].) We show that

(h) c; = for i € [0,2¢].

By the analogue of (b) we have 2(—1)P> = ). ~9, . By results in 1.10 we have
Vopy —py = 2°T1. Hence ¢3, = (—1)P227¢. Using this and the analogues of 1.13(e),

1.13(f), we see that ¢ are given by the same formulas as ¢; in (e) and (f). This
proves (h).

1.15. Let C =3 <o V2p1—pats T CO =3 o ’ngl—p2+sTs- Ifu=2p —pa+t,t>
0, then for any j that contributes to the left hand side of 1.13(b) we have u—7j > —py
(indeed, u — j > 2p; — pa — 2p2 > —p2) hence we can assume that in the left hand
side of 1.13(b) we have u — j > 2p; — pa. Muliplying both sides of 1.13(b) by T*
and summing over all ¢ > 0 we thus obtain

Z Z mMj72p, —p2+t—jTt = Z Z CiMnjQop, —p2+t—i—jTt'
>0 j€[0,2p2]5t—5>0 >0 i€[0,2¢],5€[0,2p2]
The left hand side equals
( Z ijj)(Z ’72101*P2+t’Tt )=(1- T)szc-
j€[0,2ps)] >0
Thus
C=(1-T)"()" > Cimj Qap, —py+t—i—5T").
>0 $€[0,2¢],j€[0,2ps]
Similarly we have
C'=(1-T) % (Z Z c?mjagpl_ert_i_jTt).
t>0 i€[0,2¢],5€[0,2p2]
By 1.14(h) we have ¢; = . By 1.11(al) we have agp, —p,t1—ij = @3, o0y i
for any i, j, t. It follows that C = C°. Hence

_ .0
(a) Y2p1—p2+s = V2p;—pots

for any s > 0. We set C' = 3, o y—po—1-¢T", C"° = 3,207, 1 T" Hu=
p2 — 1 —t,t >0, then for any j that contributes to the left hand side of 1.13(b) we
have u—j <2p; —ps — 1 (indeed u —j < ps—1—75 < py—1 < 2p; —ps — 1) hence
we can assume that in the left hand side of 1.13(b) we have u — j < —py — 1. With
the substitution j — 2py — j the previous inequality becomes j —¢ < 0 and the left
hand side of 1.13(b) becomes

Z MjYu—2po+j = Z MY —pe—1+j—t-
7€[0,2p2] J€[0,2p2]
Muliplying both sides of 1.13(b) by T* and summing over all ¢ > 0 we thus obtain

t t
> M Ypo—1+j—T" =) > CiMjQpy —1—1—i—j 1"

t>0,5>05t—5>0 t>0 i€[0,2¢],5€[0,2p2]
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The left hand side equals
( Z ijj)(Z V—pg—l_t/Tt/) =(1- T)Q;Dzo/.
J€[0,2p2] >0
Thus
C/ = (1 — T)72P2 (Z Z Cimjapz—l—t—i_jTt).

120 i€[0,2€],5€[0,2p2]
Similarly we have

C'%=(1-1)%> (Z Z c?mjag2717t7i7jTt).

t>0 i€[0,2¢],5€[0,2p2]

By 1.14(h) we have ¢; = ¢J. By 1.11(al) we have ap,_1-4—i—; = af) for

pa—l—t—i—j
any 1, j,t. It follows that ¢’ = C'°. Hence

(b) Vepa—i—t =7 py 14

for any ¢ > 0. Clearly (a) and (b) imply 1.11(a2).

1.16. Weset B =3 - Bp,+sT% B =3 50 Bp,4sT% Let t > 1. Taking (,&p,++)
with 1.13(a) we obtain

(a) > mBpi = > CiljYidj—po—t-
7€[0,2p2] 1€[0,2¢],5 €[0,2p2]

For any j that contributes to the left hand side of (a) we have ps +t —j > —py+1
(indeed, po +t—j > pa+ 1 —2py = —p2 + 1) hence we can assume that in the left
hand side of (a) we have py +t — j > po, that is, t > j. Multiplying both sides of
(a) by T* and summing over all ¢ > 1 we thus obtain

Yoo > M T=Y Y amYi—pt T
t>1 je[0,2p2];t>] t>1 i€[0,2¢],5€[0,2p2]
The left hand side equals
~(DP (YD mT(Y B TY) = ~(-1P + (L= T B.
j€[0,2ps] />0
Thus
B=(1-T)7((-1)" + Z Z CiMYitj—py—tT").
t>14€[0,2€e],5€[0,2p2]
Similarly we have

B = (1-T)7((-1)" + ) >, M py—iT)-
t21i€[0,2e],5€[0,2p2]
By 1.14(h) we have ¢; = ¢f. By 1.11(a2) we have ¥iyj p,+ = Vitj_p, ¢ fOr any
i,j,t. It follows that B = B°. Hence f3,,+5 = 622+S for any s > 0. This clearly
implies 1.11(a3).
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1.17. In the setup of 1.1 we show that 1.1(a) holds by induction on n. If n = 0 we
have V =0 and a; = b; = ¢; = p; = 0 for all i. We take g = 0 and (L?) to be the
empty set of lines. We obtain an element of szb*. Now assume that n > 0.

Assume first that either aq > 1,b7 > 1 or that e = —1. We can find a direct sum
decomposition V =V’ & V" such that (V', V") = 0 and dim V' = ay + b; = 2p;.
Let a, be the sequence aq,0,0,...; let b, be the sequence b1,0,0,...; let a? be the
sequence as, as, .. .; let b7 be the sequence bg, b3, . ... By the induction hypothesis
we have CY,*,’:Z,,*, # 0. By 1.3 we have Cy,*',b; # 0. Let (¢',L') € (f;/,*/’b,* and let
(¢", L% L3,...) € CN;/,,/:b,,. Clearly, (¢’ ® ¢, L', L?,...) € CXHb* hence 1.1(a) holds
in this case. Thus we can assume that e = 1 and either

(i) a3 >0 and by =0 or

(ii) a1 =0 and by > 0.

Assume that we are in case (i). We have by = by = --- =0 and ¢ is unipotent. If
az = 0, then 1.1(a) holds by 1.6 with p = (a3 —1)/2. If az > 0 we can find a direct
sum decomposition V = V'@ V" such that (V', V") =0 and dim V' = a1 + as. Let
a’, be the sequence a1, as,0,...; let a? be the sequence as, ay,...; let b, = b/ be
the sequence 0,0, .... By the induction hypothesis we have é;l::bg # 0. By 1.10 we
have ég/*/,b,* # 0. Let (¢/, L', L?) € ég/*/,b,* and let (¢”, L3, L% ...) € CN(‘I/,*//:,);,. Clearly
(g @g' L L% ...) € CN';/;’b* hence 1.1(a) holds in this case. This completes the
proof in case (i).

Assume now that we are in case (ii) so that —g is unipotent. It is easy to check
that (?;/;a*’b* = cYg;b*’a* and the last set is nonempty by the earlier part of the
argument. Hence (f;/;a*’b* # (). This completes the inductive proof of 1.1(a).

In the following result (which is needed in the proof of 1.1(b),(c)) we preserve
the setup of 1.1.

Proposition 1.18. Let (g,L', L?,...,L°"") € C~(¥*7b*. Let f,. be as in 1.5. There
exist vectors z' € L' — {0} for t € [1,0 + k| such that (i), (i), (iii) below hold for
any i,j € 4.

(i) Assume that either t € [L,0],e = —1 ort € [1,k]. Then (z},2}) = 0 if
i =gl < pi, (25,2%) = as if j—i =pi+ 8,5 >0 (x5 as in 1.5 with p = p;);
(zf,zﬁ-/) =0ift' €l,0+ k|t #t.

(ii) Assume that {t,t +1} C[k+ 1,0 +k],t =k+1 mod 2 and e = 1. We set
6=1ifa; >0,5=—-114fb; >0. Then

(Zfa Z;) = (_1)pt5iijfpt (7’ - .])7
(2 =8 3 () (- ),

TE[pr41,p¢]
(Zf, Z;'-+1) = §i—I9Pt—Pe1+l (Z -Jj+ pt+1> 7
2py
(25, 2) =0 if t' € Lo +r],t' & {t,t +1}.

(iii) Assume thate = 1,k = 1,t =c+1. Wesetd =1ifar >0, =—11if
by > 0. (We have pr =0.) Then
(zf,z;f) = 2617,

(24, 28) =0 ift' € [1,0].
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We argue by induction on n. When n = 0 the result is obvious. Now assume
that n > 1.

Case 1. Assume first that either a; > 1,b; > 1 or that ¢ = —1. We have a1 + b; =
2p1. Let V! = @025, 1] L} C V. We show that

(a) gv' =Vv'.
It is enough to show that gL3, , C V', that is, g** Lj C V'. Since ¢'L§ C V’ for
i €[0,2p; —1] and a1 +b; = 2py, it is enough to show that (g— 1) (g+1)* L} = 0.
It is also enough to show that (g — 1) (g + 1)”* = 0 on V. But this follows from
the fact that g € C(‘L/;b*.

Now let V' = @ c(.54nic(0,2p0—1] Li C V. We show that

(b) V" = V'+ (the perpendicular to V') and V =V’ @ V'+,

For t € [2,0],i € [0,2py —1] we have (Lj, L}, ) = 0; thus L, € V'+. Since V'* is g-
stable it follows that Lt C V'L for t € [2,0],i € Z. If K = 1 we have (L}, L) =0
for i € [0,2py — 1]; thus Lt < V/+. Hence V" C V’+. But these two vector
spaces have the same dimension so that V" = V’'+. Since V =V’ @ V" it follows
that V = V' @ V’+. This proves (b).

Let ¢ = g|v/, ¢" = gy». We show:

(¢c) ¢ restricted to the generalized 1-eigenspace of g' is unipotent with a single
Jordan block of size ay1; —g' restricted to the generalized (—1)-eigenspace of g’ is
unipotent with a single Jordan block of size by; ¢ restricted to the generalized
1-eigenspace of g is unipotent with Jordan blocks of sizes given by the nonzero
numbers in as,as,...; —g" restricted to the generalized (—1)-eigenspace of ¢"' is
unipotent with Jordan blocks of sizes given by the nonzero numbers in by, bs, . . ..

As we have seen earlier we have (g —1)%(g+ 1) =0 on V' (even on V). Also
g € GL(V') is regular in the sense of Steinberg and dim V' = a;y + by. This implies

().

Let a!, be the sequence a1,0,0,...; let b, be the sequence b1,0,0,...; let a/ be
the sequence as, as,...; let b” be the sequence b, b3, . ...

Now the proposition holds when (g, L', L2, ...) is replaced by (¢, L?,L3,...) €
C;/,::b,, (by the induction hypothesis) or by (¢/,L') € C;{:V (we choose any z! €
L' — {0} such that (z},zj) = 1 for |i — j| = p1 and we apply 1.4). Hence the
proposition holds for (g, L', L?,...) (since (V', V") = 0).

Case 2. Next we assume that k =0,e=1,a; > 0,a2 > 0. Then by =by=---=0.
We have a; = 2p1 +1,a9 = 2ps — 1. Let V' = @te[1,2],ie[o,2p,,—1] Lt Cc V. We show
that

(d) gV =V,

Let N=g—1. Then V = ®te[l,a+m]7ie[0,2pg
into lines and p; = p} if i € [1,2]. Now N?P2=1(V) contains the lines:

(%) NP2l —0.1,...,2p; —2ps) and N2~ 12

N L} is a direct sum decomposition

(whose number is 2p; — 2ps + 2); moreover, since N has Jordan blocks of sizes
a; = 2p1 + 1,a3 = 2p, — 1 and others of size < ay, we see that dim N?P2~1(V) =
2p1 — 2py + 2 so that N?P2~1(V) is equal to the subspace spanned by (*) and
N?P2=1(V) C V'. Now V' is the subspace of V spanned by the lines N*L} with
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t €[1,2],i € [0,2p, — 1]. It is enough to show that NV’ C V' or that N2’ L} C V'
fort =1,2. Butfort = 1,2 we have N*PtL{ C N?P2=1V C V' since 2p;—2pa+1 > 0.
This proves (d).

Let V" = @ye(3,04n,ic(0,20;—1) Li C V. We show that
(e) V" = V'+ (the perpendicular to V') and V =V’ @ V'+.

For t € [1,2],r € [3,0], i € [0,2p, — 1] we have (L!, L3 ) = 0. Thus L} C V'*
for r € [3,0]. Since V'* is g-stable it follows that LT C V’L for r € [3, U] i€ Z.
If kK = 1 we have (L%, L) = 0 for i € [0,2p; — 1],¢ € [1,2]. Thus L™ € V'L,

Hence V" C V'+. But these two vector spaces have the same dimension so that
V" = V' Since V= V'@ V" it follows that V = V' @ V'L, This proves (e).

Let ¢’ = g|lv/, g = gv. We show:

(f) ¢’ is unipotent with exactly two Jordan blocks of size a1, as. Moreover, g”
unipotent with Jordan blocks of sizes given by the nonzero numbers in as,aq, . . ..

Since V' is the direct sum of the lines N'L}, t € [1,2],i € [0,2p; — 1] and V'
is N-stable, we see that the kernel of N : V/ — V' has dimension < 2. Hence
N : V' — V' has either a single Jordan block of size 2p; + 2ps = a; + a2 or two
Jordan blocks of sizes a} > af, where a} + af, = a1 + a2. The first alternative
does not occur since the Jordan blocks of N : V' — V' have sizes < a; (by
(e)). Thus the second alternative holds. Since af,a) must form a subsequence of

ay > ag > az > ... and a} + ah, = a1 + ay it follows that o} = a1, a, = ag. This
implies (f).

Let a/, be the sequence ay,as,0,...; let a’/ be the sequence as, ay,...; let bl = b
be the sequence 0,0, . ... Now the proposmon holds when (g, L*, L2, ...) is replaced

by (¢", L3, L%, ...) € (f;/,,/:b,, (by the induction hypothesis) or by (¢/, L', L?) € C~(¥,/,b,
(we choose any 2! € L' — {0} such that (z},z}) = (=1)P* for |i — j| = p1 and any
2?2 e L? — {0} Such that (27,27) = (=1)P* for |i — j| = pa and we apply 1.11 by
possibly changing 22 to —z2). Hence the proposition holds for (g, L*, L?,...) (since
V', V") =0).

Case 3. Next we assume that k =0,e=1,a; >0,a0 =0. Then by =bs =---=0
and c=1k =1 We have a; = 2p1 + 1,po = 0,p5 = 1/2. We choose any
el - {0} such that (zf,z}) = (=1)P* for |i — j| = p; and any z* € L? — {0}
such that (22, j) =2 for |i — j| = p» and we apply 1.9 by possibly changing 22 to
—2%. We see that the proposition holds for (g, L, L?,...).

Case 4. Finally assume that k =0, e = 1, by > 0. Then (—g, L}, L?,...) € C‘La*
is as in Case 2 or 3. Let (z') be the corresponding sequence of vectors in V. This
sequence is the desired sequence for (g, L', L?,...). This completes the proof.

1.19. In the setup of 1.1, we show that 1.1(b) holds. We must show that

(a) any two elements (g, L', L?,..., L°V%), (¢/, L't L'?,... L'9T%) of Ci‘l/*’b* are
in the same I's(V)-orbit.

Since Is(V) acts transitively on C(y*,b* we can assume that g = ¢’. Let 2t € L!
(t € [1,0 + k]) be as in 1.18. Let 2’* € L' (t € [1,0 + k]) be the analogous vectors
for (g, L', L'?,...) instead of (g, L', L?,...). By 1.18 we have
(b) (21, 2) = (1, 2'7)

17 (s J
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for any i,j € Z and any t¢,t' € [1,0 + k). Since {z};t € [1,0 + &],i € [0,2p, — 1]}
and {z';t € [1,0+K],i € [0, 2p} — 1]} are bases of V' (see 1.0(b)) we see that there
is a unique v € GL(V) such that v(z}) = 2’¢ for any t € [1,0 + &],i € [0,2p} — 1].
From (b) we see that v € Is(V). We show that

(c) Y(zf ) =2t forany t € [1,0 4+ K],i € [0,2p, — 1].

When i +1 € [0, 2p; — 1] this follows from the definition of . Thus we can assume
that i = 2p; — 1 and we must show that (23, ) = 2}, for any ¢ € [1,0 + &]. Tt is

enough to show that (v (Z2p ), z’zl) = (z’gp ’;l) for any t' € [1,0+k],j € [0,2p,—1]

(we use agaln that {2'%;t € [1,0 + ],i € [0,2p, — 1]} is a basis of V). We have

('y(zépt), Z/E ) = (7(25,,), 'y(zf)) (23, zjl) and this is equal to (2 'ép;,z";) by (b).

Thus (c) holds. From (c) we see that v(g(z!)) = g(y(z!)) for any t € [1,0 + k],i €
[0, 2p} — 1]. Tt follows that vg = g. From the definition it is clear that v(L') = L't
for t € [1,0 + k]. Thus (a) holds (with ¢’ = g). This proves 1.1(b).

1.20. In the setup of 1.1, we show that 1.1(c) holds. Let (g, L', L?,...,L°F") €
CXHb* and let I be the set of all v € Is(V) such that ygy~! = g, v(L!) = L for
t € [1,0 4+ k]. Let 2* eLt(te [1 o+k|) beasin 1.18. Let y € I. If t € [1,0 + K],
we have y(z!) = w/ 2" where w) = +1. If {t,t+1} C [k+1,0+K],t =k+1 mod 2
and € = 1, we have w;' = w;, ;. Indeed, for some ¢ € {1, -1} we have

2Pl = (G0 ALY = (y(28 ), (L)

Y t t+1y _ pt—pt41—1
=Wy Wt+1(z 1’Zpt+1) Wy thr L2

hence w;w/,; = 1 and our claim follows. Thus, v — (w;) is a homomorphism
¥ : I — T (notation of 1.0). Assume that v is in the kernel of ¢. Then ~ restricts
to the identity map L' — L! for ¢t € [1,0 + k]. Since v commutes with g it follows
that + restricts to the identity map on each of the lines g’ Lt (t € [1,0 + k], i € Z).
Since these lines generate V' (see 1.0(b)) we see that y = 1. Thus % is injective. Now
let (w;) € Z. We define v € GL(V) by v(z}) = w2t for t € [1,0 +k],i € [0, 2p, — 1].
From the definitions we see that

(a) (weztswv)) = (4 7))
for any i,j € Z and any t,t' € [1,0 + K]

From (a) we see that v € Is(V). We show that
(b) (2t 1) = w2ty for any t € [1,0 4+ &],i € [0,2p] — 1].
(This is similar to 1.19(c).) When i+ 1 € [0, 2p} — 1] this follows from the definition
of . Thus we can assume that ¢ = 2p; — 1 and we must show that ’y(z;p )= wtzép
for any t € [1, 0+ &]. It is enough to show that (v (22p ), wt/z;»') (wt22p,,wt/z ") for
any t’ € [1,0+k],j € [0, 2p}, —1] (we use again that {z!;t € [1,0+x],i € [0,2p,—1]}
is a basis of V). We have

(V2 ), wrr 2 ) = (V2 7(25)) = (23,25 )

1525 zt") by (a). Thus (b) holds.

From (b) we see that v(g(z!)) = g(v(z}) for any t € [1,0 + &],i € [0,2p} — 1]. Tt
follows that vg = gy. From the definition it is clear that (L) = Lt for ¢t € [1,0+k].
Thus v € I. We see that ¢ is surjective hence an isomorphism. This proves 1.1(c).

and this is equal to (22p
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1.21. In the setup of 1.1, assume that n is even > 2 and € = 1. Let € be the set of
Is(V)%-orbits on the set of (n/2)-dimensional subspaces of V' which are isotropic for
(,); note that |Q| = 2. If (g, L', L?,...,L°) € CV , , then the (n/2)-dimensional
subspace Gate[l,a],ie[ptﬂpt—l} Lt of V is isotropic for (,). Hence we have a partition

Qb

C~(‘z/*,b* = |_| C;/*,b*;o
0en
where for O € Q, ét‘z/*,b*;o is the set of all (g, L', L?,...,L°) € Ci‘l/
@tG[l,o‘],iG[pt,thfl] L; € O. Now
_ (a) the action 1.0(c) of Is(V) restricts for any O € Q to an action of Is(V)° on
Ct‘z/*,b*;O; ~ ~
(b) if v € Is(V) — Is(V)° then the action of v on C(y*,b* maps C;/*,b*;o onto

b such that

C;(Y by 20"
For any O € Q2 we have the following variant of Theorem 1.1:

(C) ét‘l/;,b*;(’) 7é (Z); B

(d) the action (a) of Is(V) on CY , .o is transitive;

(e) the isotropy group in Is(V)° at any point Of(fg*’b*;o is canonically isomorphic
to T.

Now (c) follows immediately from (b) and 1.1(a). We prove (d). Let

(9. L L%,...)€CY 4.0, (¢, L' L ...)eCY , 0

By 1.1(b) we can find v € Is(V) which carries (g, L, L?,...) to (¢, L'1, L'2,...).
By (b) we have automatically v € I's(V)". Hence (d) holds.

To prove (e) it is enough to show that if + is in the isotropy group in Is(V) at
(g9,L', L?,...), then det(y) = 1. Let (w;) = ¥(7) be as in 1.20. From the proof in
1.20 we see that det(y) = [[,e(1,) w?P*. Since w; = 41 we see that det(y) = 1, as
required.

We now show:

(f) If ay > 0, by > 0 and (g,L', L?,...) € C~¢§/;7b*;(97 then there exists v € I’
(the isotropy group in Is(V)Y at (g, L', L% ...)) such that for § € {1,—1}, the
restriction of vy to the generalized 0-eigenspace of g has determinant —1.

Define (w;) by w1y = —1l,w; = 1 for t € [2,0]. In our case we have k > 1
hence (w;) € Z. Let V! =3, ., Li, V" = 2te20]icz Lt By 1.18, V. =V'a V"
(orthogonal direct sum). Define v € I’ by 1(v) = (w;) (notation of 1.20). Then v
acts as identity on V" and as —1 times the identity on V’. It is enough to prove
that the restriction of 7y to the generalized d-eigenspace of gy has determinant —1
or that this generalized d-eigenspace has odd dimension. But this dimension is aq
(if 6 =1) and by (if 6 = —1) and ay, by are odd.

1.22. In the setup of 1.1, assume that n is odd (hence e = 1) and that CX;M C
Is(V)°. We have the following variant of Theorem 1.1:

(a) the restriction of the action 1.0(c) to Is(V)° is transitive on (f;/*ﬁ* ;

(b) the isotropy group in Is(V)° at any point of Cy*,b* s canonically isomorphic
to a subgroup of T of index 2.

Note that if v € Is(V) — Is(V)?, then —y € Is(V)°. Moreover, —1 € Is(V)

acts trivially on C~C‘L/;7b*; hence (a) follows from 1.1(b). Now let v be in the isotropy



248 G. LUSZTIG

group in Is(V) at (g, L', L?,...) and let (w;) = ¥ (7) be as in 1.20. We have

det(y) = wor1 H w?pt = Wgi1.
te(l,o)

Thus the condition that v € Is(V)? is equivalent to the condition that w,1 = 1.
This proves (b).

We now show:

(c) Ifay >0, by > 0and (g, L' L?,...) € CY , with g € Is(V)° then there exists
v € I' (the isotropy group in Is(V)? at (g, L', L% ...)) such that for § € {1,—1},
the restriction of v to the generalized §-eigenspace of g has determinant —1.

Define (wt) by w; = —1,wy = 1 for t € [2,0 + 1]. In our case we have k > 1
hence (wy) € Z. Let V' = 3, Li, V" = 3,15 5i1)iez Li- By 118, we have
V =V’ @& V" (orthogonal direct sum). Define v € I’ by ¥(v) = (w;) (notation of
1.20). Then v acts as identity on V" and as —1 times the identity on V’. It is
enough to prove that the restriction of v to the generalized J-eigenspace of gy has

determinant —1 or that this generalized d-eigenspace has odd dimension. But this
dimension is a; (if 6 = 1) and by (if 6 = —1) and ay, by are odd.

1.23. In the setup of 1.1, assume that n > 3 and € = 1. When n is odd we assume
that C) , C Is(V)? and let 7 : T' — Is(V)? be a surjective morphism of algebraic
groups with kernel of order 2 such that I' is connected and simply connected. When
nisevenlet 7 : I' = Is(V) be a surjective morphism of algebraic groups with kernel
of order 2 such that 7=1(Is(V)?) is connected and simply connected.

Let ¢ be a v°-conjugacy class contained in W_l(C(‘l/Mb* ). (If a1b1 > 0 we have ¢ =
7T71(C;/;7b* ); if a1b; = 0 there are two choices for c.) For n odd let X be the set of all
(g, L', L?,...,L°"1) where § € ¢ and (7 (g), L', L?,...,L°t) € (f;/;’b*. For n even
let X be the set of all (g, L', L?,...,L°) where § € c and (7(g), L', L?,...,L°) €
(,;;/*717*;0. Note that X # (). Now 7° acts on X by

v:(g, LY L2, .. L) e (vgyh w(y) L w(y) L. w(y) L),
‘We show:

(a) This action is transitive.

If a1b; = 0, then (a) follows trivially from 1.21(d), 1.22(a). Assume now that
arby > 0. Let (g, LY, L?,...,L°®) € X and let ¢ be the nontrivial element in ker 7.
Let g = m(g). We define « in terms of (g, L', L?, ..., L°"*) as in 1.21(f) or 1.22(c).
Let ¥ € m~1(v). Since vygy~! = g we see that either G5 ! = § or G5! = cg.
In the first case 7 is in the centralizer in 4 of g, (the semisimple part of §). This
centralizer is a connected algebraic group (by a result of Steinberg). Thus its image
under 7 is connected hence it is contained in the connected centralizer of g, (the
semisimple part of g) in Is(V)Y. Thus v = m(7) is contained in the connected
centralizer of g, in Is(V)?. But then the restriction of y to the 1-eigenspace of g
would have determinant 1, contradicting the choice of y. We see that we must have

(b) 397" = cg.

Using 1.21(d), 1.22(a), we see that any «Y-orbit on X contains either (g, L',
L?,...,L°t%) or (cg, L', L%, ...,L°T%). From (b) and the definition of ¥ we see
that the action of § takes (g, L', L?, ..., L°T*) to (cg, L', L?, ..., L°""). This shows
that (a) holds.
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1.24. Asin LI} §3], [L5, §3] we see that 1.23 (resp. 1.1) implies that Theorem 0.3
holds when G is T in 1.23 (resp. G = Is(V) withn > 2, e = —1).

2. BILINEAR FORMS

2.0. For any subset S of Z we write S” = SN (2Z), S'=SN(2Z+1).

Let V be a k-vector space of finite dimension n. Let (,) : V x V* — k be
the obvious pairing. Let Gy = GL(V) and let G{ be the set of all vector space
isomorphisms V' = V*. Note that an element of G%/ can be viewed as a bilinear
form V x V — k. For v € Gy we define ¥ € Gy« by (v(z),5(§)) = (z,&) for
all z € V,€ € V*. For g € G}, we define § € Gi.. by (§2/,92) = (z,2') for any
z € V,2/ € V*. There is a well-defined group structure on G := Gy U G}, denoted
by * such that for 7,7" in Gy and g,¢’ in G}, we have

vy =y €Gy; vxg =99 €Gy; gxgd =39 €Gyv; gxv =gV €Gy.

Now let g € Gi,. For i € Z let g** be the i-th power of g for the multiplication .
In particular, we have g*2 = g * g = gg. For i € Z"" we have ¢*' € Gy. For i € Z'
we have g** € G},. For any z € V and i € Z we set z; = g*'z; we have z; € V
ifi € Z" and z; € V* if i € Z’'. Similarly, for any line L in V and i € Z we set
L; = ¢g*'L; this is a line in V if i € Z" and a line in V* if i € Z'.

For any z,2z' in V and any i € Z",j € Z', k € Z", we show:

(a) (ziJrkv Z;Jrk) = (Zi7 z;)7

(b) (Zia Z;) = (ziza Z*j)'

Indeed, we have

(c) (Zi,Z}) = (Zi,gz}_l) = (23»_1, (9) 'z) = (z;_l,g(gg)—lzi)
= (Z;‘—17gzi—2) = (Z;’—lvzi—l)-

Repeating this we get (2j_1,2i-1) = (2i-2,2j_5). Combining with (c) we get
(2i,25) = (2i-2,2}_5); hence (2;,2}) = ¢(i — j) where ¢ : Z' — k; by (c) we

have (2,z;) = ¢(j —t) for t € Z",j € Z'. In particular, (a) and (b) hold.

Let a1 > as > ..., by > by > ... be two sequences of integers > 0 in N such
that

if 4 Z 1, A; = Qj41, then A1 = O,
if 4 Z 1, bi = bi+1, then bi+1 = 0;
if a; > 0, then a; € Z';
if b; > 0, then b; € Z";

(ar+az+...)+ (b1 +b2+...)=n.

It follows that a; = 0 for large ¢ and b; = 0 for large i¢. Define & > 0 by
{i > 1;a;b; > 0} = [1,k]. We define p, € N for ¢ > 1 as follows. If i € [1,k], we
have p; = (a; +b; +1)/2. If i > k we define p; by requiring that for s = 1,3,5,...
we have:
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(Prts> Phst1) = (Okgs/2, (ko1 +2)/2) if bpgs > 0,
(Ph+s: Phtst1) = ((ats +1)/2, (aps+1 +1))/2) if agys > 0, ap4511 > 0,
(Prtss Phtst1) = ((arys +1)/2,0) if apps > 0, apq541 = 0,

(pk+3apk+s+1) = (070) if Afts = Qkt54+1 = O

We define o as follows. If n = 0 we set 0 = 0. If n > 1 let o be the largest ¢ such
that p; > 0. We have p; > ps > p, and

Cpr—1)+2p2—1)+---+(2ps—1) =n.

Let C;/*,b* be the set of all g € G}, such that g** € Gy is unipotent and such that
on the generalized 1-eigenspace of g*2, ¢g*2 has Jordan blocks of sizes given by the
nonzero numbers in aj, as, ... and on the generalized (—1)-eigenspace of g*2, —g*?
has Jordan blocks of sizes given by the nonzero numbers in by, by, .... (Note that
the union of the sets C(‘I/Mb* where a,, b, as above vary is exactly the set of elements
of G}, which are distinguished in G in the sense of 0.2.)

For g € C(‘l/*7b* let é;fa*7b* be the set consisting of all L', L2 ... L% where L(t €
[1,0]) are lines in V' (the upper scripts are not powers) such that for i € Z”,j € Z/
we have:

(LL LY =0if i — j € [~2p; +3,2p — 3],
(Li, LS) #0if |i — j| = 2p, — 1 (t € [1,0]),
(Lj, L) =0if j—ie[l—2p.,4p —2p, — 3], 1 <t <r <o
Here L = g**L*. We then have:
(d) V= @te[l,a],ie[o,zpﬁz] Lﬁ-
(See [L5), 4.8(a)].) Let CE/Mb* be the set of all (g, L', L?,..., L?) such that g €
CY ,. and (L',L% ... L7)€CY, .
Note that Gy acts on G, by “twisted conjugation” that is by v : g — Fgy~'.
Also Gy acts on C(‘z/*,b* by

(e) vi(g, LY L2 L) = (g~ (Lh), 9 (L), (L),

Now let Z be the subgroup of [[;¢(; ,{1, —1} consisting of all (w¢)se[1,0] such that
wy = w1 for any ¢ such that {t,t+1} C [k+1,0],t =k+1 mod 2, b, > 0. Thus
7 is a finite elementary abelian 2-group.

The following is the main result of this section.

Theorem 2.1. (a) CV

[

(b) the action 2.0(e) of Gy on (f’;im is transitive;

(c) the isotropy group in Gy at any point of éx7b* is canonically isomorphic
toZ.

18 nonempty;

The proof (by induction on n) follows the same lines as that of Theorem 1.1; it
is given in 2.2-2.20. The numbering of the subsections is such that the material in
2.2, 2.3, ..., 2.20 is analogous to the material in 1.2, 1.3, ..., 1.20, respectively.
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2.2. Let a € N',b € N’ p € Nyg be such that a +b = 2p — 1. For e € N” we
define n, € Z by
(1=TH*(1+T%" = > n.T"
eeN/
We have ng = 1, n4p_2—e = —ne, ne = 0 if e > 4p— 2. We define z. € Z for e € N”
by o =1 and
(a) Noxe + NoZe—o + -+ + nexg = 0 for e > 2.

For h € Z" we set xj, = 0 if |h| < 2p — 1, 2}, = 2||—2p41 if || > 2p — 1. We show:
(b) Z nex, ;=0 for any j € [0,4p —4]".

ceN”/
Assume first that j € [2p,4p — 4]"”. We have

e—j—1<e—-2p—1<4p—-2-2p—-1<2p—3.

Hence we can assume that e — j — 1 < —2p + 1 so that .Z‘éijfl =Tjt1—c—2p+1 and
we must show that
Z NeTjt1—e—2p+1 = 0.
e;e<j+1—2p+1
This holds since j +1 —2p + 1 > 2. Assume next that j € [0,2p — 4]”. We have
e—j—1>e—2p+4—1> —2p—+ 3. Hence we can assume that e—j—1>2p—1
so that x/efjfl = Ze—j_1-2p+1 and we must show that

E NeTe—j_1-2p+1 = 0,
e;e>j+1+2p—1

that is,
E Ndp—2—eTe—j—1-2p+1 = 0,
e;e>j+14+2p—1
that is,
E Ne'Tap—2—e'—j—1-2p+1 = 0,
e/ dp—2—e’>5+14+2p—1
that is,

§ NerTop_2_er—j = 0,

e’;e/<2p—2—j
and this holds since 2p —2 — j > 2. Assume next that j = 2p —2. In the sum over e
we can assume that e—j—1 > 2p—lore—j—1 < —2p+1, thatis, e > 4p—2ore < 0.
Thus e = 0 or e = 4p—2. Thus the sum is noz’ 5, +n4p—275, 1 = no+n4p—2 = 0.

2.3. In the setup of 2.2 let V be a k-vector space of dimension 2p — 1. Assume
that we are given a basis {w;;i € [0,4p —4]"} of V. Let {wy;i € [1,4p — 3]’} be the
basis of V* such that

(wi,wj) =y =af ;ifie0,4p—4])",j € [1,4p - 3]’

Thus (w;,wj) = 0if [i — j| < 2p — 1. We define g € G}, by gw; = w4 for
i €[0,4p —4]”. Let g € Gi.. be as in 2.0. We have

gw; = w1 if 7 € [1,4p — 5)';

we must check that (w;i1,w;y1) = (w;, w;) for i € [1,4p — 3,5 € [0,4p — 4]"; we
use that [i +1— (j+ 1) =[5 — 1l
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We show:
Jwip-s= Y naw,
i€[0,4p—4]"

that is,

Z ni(wia wj+1) = (wj7w4p—3) for a‘HYj € [074]7 - 4]//7

i€[0,4p—4]"’
that is,
Z niT;_;_1 =Ty, s ; for any j € [0,4p —4]",

i€[0,4p—4]"

that is,

Z nix;_; 4 =0 for any j € [0,4p — 4]".
i€[0,4p—2]"

This has been seen in 2.2(b).

We have ¢g*?(w;) = w;4o for i € [0,4p — 6]", g**(wap—4) = > ic(0,ap—a) MiWi-
Hence (g*2 —1)%(g*2 +1)® = 0 on V. Indeed this holds on wy and then it holds
automatically on w;,i € [0,4p — 4]”. Now g¢*?2 € Gy is regular in the sense of
Steinberg and satisfies (g*2 — 1)%(¢*2 +1)> =0 on V. Hence V = V* @&V~ where
g*? acts on V7T as a single unipotent Jordan block of size a and —g*? acts on V~
as a single unipotent Jordan block of size b.

It follows that, if L is the line in V spanned by wy and a, = (a,0,0,...),
by, = (b,0,0,...), then (g,L) € éz‘z/*,b*; in particular, Ci‘l/*’b* # 0.

We now consider a variant of the situation above. Let V'’ be a k-vector space
of dimension 2p — 1 with a given element g € Gy, such that g** = 1, on the
generalized 1-eigenspace of g*2, g*? is a single unipotent Jordan block of size a and
on the generalized (—1)-eigenspace of g*2, —g*? is a single unipotent Jordan block
of size b. Moreover, we assume that we are given w € V' such (with notation of

2.0) we have
(wi,wj)=0ifi € Z",j € Z',]i — j| <2p—1 and
(wi,wj)=1ifie€Z",je€Z]i—j =2p—1

We show:
(a) for anyi € Z",j € Z' we have (w;, w;) = x|_;.
We can assume that ¢ = 0 and j > 1. The equality in (a) is already known if
j < 2p—1. It is enough to show that (wq, wop_142:) = zo¢ for t € N. We argue by
induction on t; for t = 0 the result is already known. Now assume that ¢ > 1. Apply-
ing (¢*2 —1)%(g*? +1)* =0 to Way_op+2 We obtain 286[0’41)72],, NeWat—2p424+e = 0.
Taking (,w;) we obtain

> ne(warspyate,wr) =0,
e€[0,4p—2]"
that is,

E Ne(wo, Wat—2pt+14e) = 0.
e€[0,4p—2]""
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For e in the sum we have 2t — 2p + 1 4+ e > —2p + 3; hence we can assume that we
have 2t —2p+ 1+ e > 2p — 1. Thus

E Ne(wo, Wat—2pt14e) = 0.
e€[0,4p—2]"";2t—2p+1+e>2p—1
By the induction hypothesis this implies
E NeLot—dpta+e — (Wo, Wartop—1) = 0.
e€[0,4p—4]"";2t—2p+1+e>2p—1

It is then enough to show that

E NeX2t—4p42+e — T2t = 0,
e€[0,4p—4]";2t—2p+1+e>2p—1
or that
E N4gp_2_eT2t—4pi2te = 0,
e€[0,4p—2]"";2t—2p+1+e>2p—1
or that

NpTh — 0.
h,h! €N hA-h/ =2t
But this holds by the definition of x. since 2t > 2.

2.4. Let p € Nyo. We define n, for e € N” by n, = (62/”2). We define z,, for e € N”
by zo = 1,29 = —(2p+1), and ngze + noxe—o+ -+ nexg = 0 for e > 4. For e = 2

we have
NOTe + NoZe—g + ++ + NeXo = NoTa + noxo = —(2p+ 1) +2p = —1.

For d € Z' we set ¢,(d) = 0 if [d| < 2p — 1, ¢p(d) = T)g—2p4+1 if |[d] > 2p — 1. We
show for any h € Z’:

(a) > nedple+h)=0

e€[0,4p]”’
Assume that h < —1. We set h = —j — 1 so that j € N”. Assume first that
7>2p+2 Wehavee—j—1<e—2p—2—-1<4p—2p—2—1<2p—3. Hence
we can assume that e — j — 1 < —2p+ 1 so that ¢p(e —j — 1) = zj41-c_2p41 and
we must show

Z NeTjt1—e—2p+1 = 0.

eceN";e<j+1—-2p+1
This holds since j +1—2p+1 > 4.
Assume next that j <2p—4. Wehavee—j—1>e—2p+4—12> —2p+ 3.

Hence we can assume that e —j — 1> 2p —1so that ¢,(e —j — 1) = Te_j_1-9p41
and we must show:

E NeTe—j—1-2p+1 = 0,
e€N";e>j+1+2p—1
that is,
E N4p—eTe—j—1—2p+1 = 0,
e€EN";e>j+1+2p—1
that is,

E Ne'Tap—e’ —j—1—-2p+1 = 0,
e’eN";dp—e’>j+1+2p—1
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that is,

Ne'Top—e'—5 =0
e’eN;e’<2p—j

and this holds since 2p — j > 4.

Assume next that j = 2p — 2. In the sum we can assume that e—j—1>2p—1
ore—j—1<-2p+1thatise>4p—2o0ore<0. Thuse=0ore=4p —2 or
e = 4p. Thus the sum is

n0¢p(_2p+1)+n4p72¢p(2p_1)+n4p¢p(2p+1) = x0+2pxro+T2 = 22+2p+1=0.

Assume next that j = 2p. In the sum we can assume that e —j —1 > 2p — 1 or
e—7—1<—-2p+1, thatis, e > 4p or e < 2. Thus e = 0,2 or 4p. Thus the sum is

no¢p(—2p — 1) + n2dp(—2p+ 1) + nap¢p(2p — 1) =22 +2p + 1 = 0.

Thus the desired formula holds when A < —1. Now assume that A > 1. We have

Z ne¢p(e + h) = Z n4pfe¢p(e + h‘)

eeN"’ e€0,4p]”’

= Z Nepp(dp —e+h) = Z Nnedp(—4p +e —h)

e€[0,4p]”’ e€[0,4p]”’

and this is 0 by the first part of the proof since —4p — h < —1.

‘We have
> n T T =1-1T7
ecN’ jeN"
hence
A+TH> > a1 =117
jeN”
and

>t = (1= 1) = (- s (T T,

FEN k>0
Thus,
2p—1+k 1f(2p—1+Fk—-1
_ _1k _ _1k 1
ma = )< 2p—1 ) 1) ( 2p—1 >
7(_1)k(2p—2+k)!(2p—1+k+k)
N k!(2p — 1)!

=(-D"2p+2k-12p—2+k)2p—2+k—1)...(k+1)(2p— 1) .
We show for any h € Z:
(b) ¢p(h) = (=1)PF2P+D/29p(h 4 2p — 3)(h +2p — 5) ... (h — 2p + 3)(4p — 2)!I 7

where
(dp —2)N:=2x4x...(4p—2) =271 (2p - 1)\.
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Assume first that h = 2d+ 1 > 2p — 1. We have

Op(h) = Todt1—2p+1 = T2d—2p+2
= (-1 P 2p+2d—2p+2-1)(2p—2+d—p+1)
x(2p—2+d—p+1—-1)...(d—p+2)(2p— 1)
= (1) P 2d+1)(p+d—1)(p+d—2)...(d—p+2)(2p— )"
so that the result holds in this case. Now both sides of (b) are invariant under
h+ —h. Hence (b) also holds if h < —2p+ 1. If h € [-2p + 3,2p — 3], both sides

of (b) are zero. Hence (b) holds for any h € Z’.
In particular we have ¢,(2p+ 1) = —(2p + 1).

2.5. In the setup of 2.4, let E be a k-vector space of dimension 2p. Assume that we
are given a basis {w;;i € [0,4p — 2]} of E. We define a basis {w;;i € [1,4p — 1)’}
of E* by
(wi, wy) = ¢p(i — j) = dp(j —4) for i € [0,4p —2]",j € [1,4p — 1]

Thus (w;,w;) = 01if ¢ € [0,4p —2|",j € [1,4p — 1], |i — j| < 2p — 1. We define
g € GL by gw; = w41 for i € [0,4p — 2]”. We have

gw; = w1 if 7 € [1,4p — 3]s
we must check that (w;q1,w;41) = (wj,w;) for i € [1,4p —1]',5 € [0,4p — 2]"; we
use that [i +1— (j+ 1) =[5 — 1l

We show:
f]w4p71 = - Z n;w;.
i€[0,4p—4]"

We must show for any j € [0,4p — 2]” that

= Y milwiwi) = (wy,wap-1),

i€[0,4p—2]"

that is,
— Y migpli—j—1)=p(4p—1—j),
i€[0,4p—2]"
that is,
Y ndyli—j—1)=0;
i€[0,4p]""
note that nyg, = —1. This has been seen in 2.4(a).
We have
g*(w;) = wiyo for i € [0,4p — 4],
9 (wap2) =~ > nawi.
i€[0,4p—2]"

Hence
(a) (¢ +1)*’ =0 on E.

Indeed this holds on wg and then it holds automatically on w;, 7 € [0,4p —2]"”. Now
g*2 € GL(E) is regular in the sense of Steinberg and satisfies (a). Hence —g*? acts
on F as a single unipotent Jordan block of size 2p.
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2.6. For i € Z we write w; instead of (wg);. This agrees with our earlier notation
for w; when i € [0,4p — 1]. We show:

(a) (wi,w;) = ¢p(i —j) = ¢p(j — i) forany i € Z",j € Z'.

By 2.0(a) there exists a function f : Z’ — k such that (w;,w;) = f(i — j) for any
i€ Z'jeZ. We must show that f(h) = ¢,(h) for h € Z'. We set f/'(h) =

h) —¢,(h). We must show that f/(h) = 0 for all h € Z'. This is clearly true when
f( P y
he[-2p+1,2p—1). Applying 266[07417],, neg*® = 0 to w;, i € Z”, we deduce

E NeW;te = 0;

e€0,4p]”’

hence
Z Ne(Wite,w;) =0 forie Z",j € Z'.
e€l0,4p]”

Thus, > ¢ (g ap Mef(i—j+e) =0forie 7' jeZ and S ctoupy ef (h+€) =0
for h € Z". Combining this with 3 (o 4,y Redp(h+e€) = 0 for h € Z" (see 2.4(a)),
we deduce 3 (o 4, nef'(h+¢€) = 0 for h € Z"”. We show that f'(h) = 0 for
h > 2p — 1 by induction on h. For h = 2p — 1 this is already known. Now assume
that h > 2p + 1. We have 3 (g 4 nef'(h+e—4p) = 0. If e € [0,4p — 2]" we
have h + e —4p € [-2p + 1,h — 2] hence f'(h 4+ e — 4p) = 0 and the sum over
e becomes ny,f'(h) = 0 so that f'(h) = 0. This completes the induction. We
now show that f/(h) = 0 for h < —2p + 1 by descending induction on h. For
h = —2p + 1 this is known. Now assume that h < —2p — 1. If e € [2,4p]"” we have
h+e € [h+2,2p—1] hence f'(e+h) = 0 and the equation 3_ (o 4, e f'(h+e€) =0
becomes ngf'(h) = 0 so that f/(h) = 0. This completes the descending induction
and completes the proof of (a).

2.7. We preserve the setup of 2.5. Let @ be a nonzero vector in E such that

(a) (W,w;) =0 for i € [1,4p — 3]".

Note that w is uniquely determined up to a nonzero scalar. Then w; is defined
for any ¢ € Z as in 2.0; in particular, wy = w,w; = gw. We have

(b) (w;,wy) =0 for i € [2,4p — 2]".

Indeed, using 2.0(a),(b) we have (w;,w;) = (W_;,w_1) = (Wo, w;—1) and this is
zero since i — 1 € [1,4p — 3]'.

We show that (wg,w1) # 0. Let E7 be the span of {w;;i € [2,4p — 2]”} and let
E1 be the span of {w;;i € [1,4p — 3]'}. The canonical pairing (,) : E x E* — k
restricts to a nondegenerate pairing E7 x Ef — k (by the formulas for (w;,w;) in
2.5). Since Wy is in the annihilator of E} in E, it follows that wy ¢ E;. Since w; is
in the annihilator of E; in E*, it follows that wg is not in the annihilator of w; in
E. The claim follows.

If 1 is replaced by aw with a € k*, then (1@, @) is replaced by a? (o, ;) which,
for a suitable a, is equal to 1. Thus we can assume that

(c) (g, wq) = 1.
Then wg is uniquely determined up to multiplication by +1. We have

W = E Ciw;

i€[0,4p—2]""
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where ¢; € k are uniquely determined. Since Wy ¢ E1 we see that ¢, := cap—2 # 0.
We set ¢; = cic*_l € k. Note that ¢4p_2 = 1. We have the following result (with n;
as in 2.4):

(d) Ei:—(no—l—nz—i-"-—l-’ni) ifie[0,2p—2]”,

(e) ¢ =(no+na+-+nay_o) ifi € 2p,4p —2]",

(f) o =£27P.

We can rewrite (a) as follows.

(%) > gyli—h)=0for hel,4p—3|.
i€[0,4p—2]"

If h=2p—1, then (x)is ¢y +1=0. If h € 2p+ 1,4p — 3], then (x) is
Z Cidp(i —h) = 0.
i€[0,h—2p+1]"
If h € [1,2p — 3/, then (x) is
S aoli-n=0
i€[h+2p—1,4p—2]"

To prove (d) and (e) it is enough to show:

@) = > (notnat-4n)e(i—h)=0ifhe2p+1,4p—3],
i€[0,h—2p+1]"
(¢') S (notmattnup o )dp(i—h)=0if he[1,2p—3]"

i€[h+2p—1,4p—2]"

We rewrite equation (') using i — 4dp—2—iand h — 4p —2 — h as
> (motnat--Fn)gp(h—i)=0if h€[2p+1,4p 3],

i€[0,h—2p+1]"
which is the same as (d’). Thus it is enough to prove (d’). We argue by induction
on h. If h =2p+ 1, equation (d') is

no¢p(—2p — 1) + (no + n2)dp(—2p+1) = 0,
that is, —(2p 4+ 1) 4+ (1 4+ 2p) = 0, which is correct. If h > 2p + 3 we have
Z NiTh_i—2p+1 =0
i€[0,h—2p+1)""
since h — 2p + 1 > 4. Hence in this case (d') is equivalent to
Y. (no+matHni0)gy(i —h) =0,
i€[2,h—2p+1]"

which is the same as equation (d’) with h replaced by h — 2 (this holds by the
induction hypothesis). This proves (d) and (e).
The equation (g, w1) = 1 can be written as

L=(io, Y. ciwip1)= (do,Cap2wap 1),
i€[0,4p—2]"
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that is,

(8) 1 = ¢, (W0, wap—1)-
We deduce that
l=c, Z ci(wi, wap—1),
i€[0,4p—2]""
that is,
2= Y akp—1-i).
i€[0,4p—2]""
We have 4p — ¢ — 1 > —2p + 3 hence we can assume 4p —¢ — 1 > 2p — 1. Thus

;= D Gdp(dp—1—1i)

1€[0,2p]"’
= - Z (no +n2+ - +n;)gp(dp — 1 —4) +ng +n2 + -+ +n2p_o
i€[0,2p—2]"
=- Z (no +n2 + -+ +n)T2p—i +n0 + N2 + -+ Ngpa.
i€[0,2p—2]"
Thus,
0:22— Z n;Tj+ng+mne+--+ngp o
JEN GENi4j<2p,j>2
== Z niTj + Z ni + (no +mn2 + -+ ngy_2)
i€EN/ GEN"i4j<2p i€N";i<2p
D N SR R o
ke[0,2p]” (€N JEN sitj=k i€N";i<2p
- Y Y et X mermrmtotn
k€[0,2p]"";k=0,24€N" JEN";i+j=k 1€N";i<2p
= —1+noz2 + noxo + Z ni + (no +mn2 + - +ngp_2)
1€N";i<2p
:—1—(n2+1)—|—n2—|— Z ni+(n0+n2+~~~+n2p,2)
i€N";i<2p
= Z ni+ (no +n2 + -+ +n2p-_2)
i€N//5i<2p

=g+ ng+ -+ Nop + Nopo + o+ ngy = 2%,

Thus c; 2 = 227 and (f) follows.
If w is replaced by —w, then ¢, is changed to —c,. Hence w can be chosen
uniquely so that

() c =277,

2.8. We preserve the setup of 2.5. For h € Z’ we show

(a) (g, wp) = (—1)PFD/22P(h —1)(h—3)...(h—4p+ 3)(4p — 2)!I" ! € 2Z.
We have (g, wp,) = Zie[o,4p—2]“ cidp(i—h). Since ¢; = 27P¢; it is enough to prove

(b) > @(=1)" e, (i—h) =2P(h—1)(h=3)...(h—4p+3)(4p—2)!"".
i€[0,4p—2]""
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It is also enough to prove this equality in Z. For fixed ¢, (—1)(’”1)/2@0(@‘ —h)isa
polynomial in h with rational coefficients of degree < 2p — 1. Hence the left hand
side of (b) is a polynomial in h with rational coefficients of degree < 2p — 1. Since
(g, wp) =0 for h € [1,4p — 3], this polynomial is zero for h € [1,4p — 3]’ (that is
for 2p — 1 values of h). It follows that

(=)D N Ggyp(i—h) =a(h—1)(h—3)...(h—4p+3)
i€[0,4p—2]"’

for some rational number a. (The left hand side is (—1)"+1/22P(4g,wy,).) For
h = 4p — 1 we have (o, wp,) = c; ! = 2P (see 2.7(g)), hence

2% = q(4p — 2)(4p —4)...2 = a(4 — 2)!!,
that is, a = 22P(4p — 2)!!~1. It remains to show that
(=1)h=D729P(h — 1) (h — 3)...(h — 4p+ 3)(4p — 2)!1 ! € 2Z.
Setting h = 25 4+ 1 it is enough to show that
2°(25+1—1)(25+1—3)...(2s+1—4dp+3)(dp —2)!I"! € 2Z
or that
Ps(s+1)...(s—2p+2)(2p—1)I"! € 2Z.

This is obvious since p > 1.

2.9. We preserve the setup of 2.5. We will show:

(a) (o, W) = »_ 22%72¢y(h) € k for h € Z;
ke[1,p]

(b) (Wo,wp) =1if h € [-2p+1,2p—1];

(c) (o, Wap41) = 1 — 2°P.

We prove (a). We have

(@o,n) = Y cldo,win) = Y (=)D P03 4 h— 1)
ic[0,ap—2]" i€[0,4p—2)""

(d) x(@+h—=3)...(i+h—4p+3) x (4p—2)I" 1.
Thus, (a) would follow from the equality

> (-D)7e(i+h—1)(i+h=3)...(i+h—4p+3)(dp— 2"
i€[0,4p—2]""

(e) _ Z (—1)(h+1)/222k_2¢k(h)

ke[1,p]

in k. It is enough to prove that (e) holds in Z. We will do that assuming that (b)
holds. Let F,(h) be the left hand side of (e). It can be viewed as a polynomial with
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rational coefficients in h of degree < 2p — 1 in which the coefficient of h?P~! is

p—2t Y a(-1)?

i€[0,4p—2]""
= —(4p -2~ Z (no +na + -+ +n;)(—1)"?
i€[0,2p—2]"
+ (4p —2)11 Z (ﬂo+n2‘|‘"'+”4p—2—i)(—1)i/2
1€[2p,4p—2]""
=—(@p-2"7" > (ngtnat-- ) (=17
i€[0,2p—2]"
+ (4p—2)* Z (o + Nz + - - - + ng)(—1)4p=2-1/2
i€[0,2p—2]"’
=2(4p-217" > (no+ gt +ng)(—1)7
i€[0,2p—2]"’

= —2(4p — 2)!!71(—1)]”71(712,,_2 + N2p—6 + T2p—10 + .. )
= —2(4p — 2)17 1 (—1)P 122
= (=1)P2%P14p — 271 = (—1)P(2p — 1)1

Thus,
Fy(h) = (=1)*(2p — 1)!"'h?’~* + lower powers of h.

Note that F,,(—h) = —F,(h) for h € Z’. An equivalent statement is that
(—1)(h+1)/2(’d}0,’d)h) _ _(_1)(7h+1)/2(w07@_h)

which follows from (g, Wp) = (Wo, W—p); see 2.0. It follows that F,(—h) = —F,(h)
as polynomials in h. Specializing this for h = 0 we see that

(2) F,(0) = 0.

In the case where p = 1, from (f) and (g) we see that Fy(h) = —h so that (e) holds
in this case (we have (—1)**1/2¢,(h) = —h). We now assume that p > 2. Now
F,—F,_, is a polynomial of degree 2p — 1 in h whose value at h € [-2p+3,2p—3]’
is (—=1)(P+0/2 _ (—1)(P+1/2 = ( (we use (b) for p and p — 1) and whose value at
0 is 0 (see (e)); moreover, the coefficient of h?P~! in F, — F,_; is (—1)P(2p — 1)!I7}
(see (f)). It follows that F), — F,_; = (—1)("+1)/222r=2¢ (1), From this we see by
induction on p that (e) holds.

It remains to prove (b) and (¢) (without assuming (a)). To prove (b) we can
assume that h > 1 (we use that (wg,wp) = (W, W—p), see 2.0). Thus it is enough
to prove (b) for h € [1,2p — 1) and (c¢). If h = 1, (b) holds by the definition of
Wo. Assume now that h € [3,2p + 1]'. In the right hand side of (e) the sum over
i can be restricted to those i such that i + h ¢ {1,3,...,4p — 3} hence such that
i+h > 4p—1; for such ¢ we have i > 4p —1—h > (4p — 1) — (2p + 1) hence
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1 > 2p — 2. Moreover, if i = 2p — 2, then we must have h = 2p 4+ 1. Thus we have
(g, @p) = (=)D R (1) P+ h-1)
i€[dp—1—h,dp—2]"
X (i+h—3)...(i+h—4p+3)(4p—2)~*
— (_1)(h+1)/2 Z (_1)i/2(n0 F gt ngp_oy)
i€[dp—1—h,4p—2]"";i>2p
x(@+h=1)G+h—=3)...(i+h—4p+3)4p—2)1~*
— (—1)(h+1)/26h,2p+1(—1)(2”_2)/2(710 + 12+ + ngp_2)
= (_1)(h+1)/2 Z (_1)i/2(n0+n2 Fo o)
i€[dp—1—h,4p—2]"
i+h—1)(i+h—3)...(i+h—4p+3)(4p —2)1*
1P 0p 41 (1P (g + 12+ -+ ngy)
—1)PM6p 0501 (= 1)P g + ng 4+ -+ -+ ngp_2)
— Onapt1(no+na+ - +ngp +nog+ng+ - +ngp_2)

x
=2 — Op2pt1(no +ng + -+ ngp + Ngpra + 0+ Nyp)

X

2
=2 = 0p2pt127F
where

T = (_1)(h+1)/2 Z (_l)z‘/2(n0 ot Napoos)
i€[4p—1—h,4p—2]""

x(i4+h—1)(i+h—=3)...(i+h—4p+3)(4p—2)!I"".
It remains to show that x = 1. Setting h = 2h' + 1,7 = 4p — 2 — 27/ we have

i / 2 —i+h/—1
I_,,e[;hf](_l) +h(”0+”2+"'+n21/)(p 2p—1 )

= Z (=1)%(nog + ng + ... + nair)ry
i >0,u>05i’ +u=h’
where r, = (“;ff;l) Note that
Z (=1)'ngire = e
1>20,u>0;5i+u=e
for any e € N. Hence

T = > (=) 0y,

i>0,7>0,r>0,u>05i' =j+7,i’ +u=h’

= D YT YT (g

r€[0,h’] Ju>0;54+u=h'—r
— Z (_1)h/+r5h’77“ — (_1)h’+h/ —1
re[0,h’]

This completes the proof of (a), (b), (c).
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2.10. We fix two integers p1, p2 such that p; > pa > 1. Let V', V" be two k-vector
spaces of dimension 2pi,2ps — 2, respectively, and let V = V' @ V”. We identify
V* =V'* @ V"* in the obvious way. Let (,) : V x V* — k be the obvious pairing,.
Assume that V’ has a given basis {z;;¢ € [0,4p; — 2]”} and that V" has a given
basis {v;;i € [0,4ps — 6]”}. There is a unique basis {z;;4 € [1,4p1 — 1]’} of V'* and
a unique basis {v;;i € [1,4pa — 5]’} of V"* such that

(Zi,Zj) = ¢P1 (Z _.7) for i € [074]?1 - 2]//7.7 € [1;4]71 - 1]l7

(Vi,v5) = Gpy—1(i — j) for i € [0,4ps — 6]",j € [1,4ps — 5]".
(Notation of 2.4; the basis of V" and V"* is empty when py = 1.) We define g € G3,
by gz; = z;41 for i € [0,4p1 — 2", gv; = v;41 for i € [0,4ps — 6]”. We have

g% (%) = zigo for i € [0,4py — 4], g*Q(vi) = v;42 for i € [0,4ps — 8],
(g2 + 1) =0on V', (¢ +1)**>"2=00nV".

(See 2.5.) Hence —g*? acts on V' as a single unipotent Jordan block of size 2p; and
on V" as a single unipotent Jordan block of size 2py — 2. (When py =1, —¢g*2 =0
on V" =0.)

For i € Z we write z; instead of (zp); (as in 2.0); when py > 2 we write v; instead
of (vg);. This agrees with our earlier notation for z; when ¢ € [0,4p; — 1] and v; for
i € [0,4p2 — 5]. We have

(ziy2j) = ¢p, (1 — j) for i € 2", j € Z';
(Vi,vj) = Ppy—1(i — j) for i € Z", j € Z' (assuming py > 2).
(See 2.6(a).) If po > 2 we clearly we have
(zi,v;) =0, (vi,z;) =0forie Z",j € Z'.
As in 2.7 and 2.8, there is a unique vector Z € V' such that for any h € Z’ we have
(Z0, 2n) = 2P (—=1)PH/2(h — 1) (h — 3) ... (h — 4py + 3)(4py — 2)1171,

Similarly, if ps > 2, there is a unique vector © € V" such that for any h € Z' we
have

(B0, vp) = 2P2~H(=1)PFTD/2(h — 1) (h — 3)...(h — 4pa + T)(4py — 6)11 7L,
(Notation of 2.0.) If p; =1 we set 9; = 0 for all ¢ € Z. As in 2.9, we have

(a) (Zo:2n) = Y 2% 2g(h),

ke[l,p1]
(b) (B0, 0n) = > 2%72¢u(h), (if p2 > 2),
ke[l,p2—1]
(c) (%0,2n) = Lif h € [=2p1 + 1,2p1 = 1)'; (%0, Z2p, 1) = 1 — 2°71,

(d) (o, 9n) = Lif h € [=2pa +3,2p2 — 3]'s (Do, Dop,—1) = 1 — 227272 (if py > 2).
Let ¢ € k be such that (2 = —1. We set

E=2"P2tlz o 427G € V.
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Let h € Z'. We show:
(€0, 21,) = 2P P2 (1) (42024 1)/2(h 4 o) 1) (h+2py — 3) ...
X (h+ 2py —4py + 3)(4p1 — 2)!!7! € 2Z.
Indeed,
(b0, 2n) = 2772 H N (Zgp,, 2n) = 2772 M (20, 22py4n) = 2772 T 2P (—1) BP2th i)/
X (2pa+h—1)(2p2 +h —3)...(2pa +h —4p; + 3)(4py — 2)!I7 1,
as desired. In particular, we have
(&0, 2n) = 0if h € [1 — 2pa,4p1 — 2py — 3.

Let h € Z'. From the definitions we have (£o,&p,) = 272P272((2y, 21,) — (o, 0n)).
From this we deduce using (a)—(d) that

(Co.6n) = > 22¢7gp(h)eZfor heZ,

k€[p2,p1]

(fo,fh) =0ifhe [ 2ps + 3, 2ps — 3] (50752112 1)
It follows that, if L is the line in V spanned by zg, L’ is the line in V spanned
by & and a. = (0,0,0,...), b, = (2p1,2p2 — 2,0,...), then (g9,L, L") € Ca b in
particular, CXHb* £ .

2.11. Let py,p2 be integers such that p; > ps > 1. We consider a k-vector space
V of dimension 2p; + 2p> — 2 with a given bilinear form g € Gi, such that (with
notation of 2.0) —g*? € Gy is unipotent with a single Jordan block of size 2p; (if
p2 = 1) or with two Jordan blocks, one of size 2p; and one of size 2ps —2 (if ps > 2).
We assume given two vectors z,€ in V such that (with notation of 2.0), setting for
heZ
an = (2i,2), Bn = (&,&5)s v = (&, 25) where i € Z",j € Z' \h = j — i,

we have

ap,=0if h e [—2]91 +3,2p1 — 3]/,0121,171 =1,

ﬂh = 0 lf h € [_2172 + 3a2p2 - 3]/7/82[)2—1 - 17

v, =01if h € [1 — 2p2,4p1 — 2pg — 3]/.

We show:
(a) After possibly replacing & by —&, the following equalities hold for any h € Z:
(al) an = ¢y, (h) € Z,
(
(

a2) Br = X reipapl 2%k=2r23,.(h) € Z,
a3)

I 2?1*p2+1(_1)(h+2p2+1)/2

27.
(dpr —2)1 €

(¢p as in 2.4.) We prove (al) (see also 2.6). If |h| < 2p; — 1, then (al) is clear.
Thus we can assume that |h| > 2p; + 1. Since aj, = a_p, we can also assume that
h > 1 (hence h > 2p; + 1). We must only prove that

(b) ap = xp_op,+1 if > 2p; — 1 is odd,
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where . is as in 2.4 (with p = p;). We have (¢*2 + 1)?»* =0 on V hence applying
to 29, we havere[o,zpl] rjz2; = 0 where r; = (25’1). Taking (, z2p, +2s—1) We get
Zj>0 TjQop, +2s—1—2; = 0. The coefficient of T° (s € N) in

O TN ap—1420TY)

JEN u€EN
is
ks = Z TjQ2p, —1425—2;-
J€[0,5]
Ifs > 2,5 > 5,7 < 2p1, we have agp, —142s—2; = 0 since 2p; —3 > 2p; —1+25—-25 >
—2p1 + 3; hence ks = ijo Tj0op, —142s—2; for s > 2. We have

TOQ2p, +1 T T1Q2p, —1 + T2p, A_2p, 41 =0
hence agp, 41 = —(2p1 + 1) and
k1 = rooap, 41 + riagp, -1 = —1.

Also, kg = 1. Thus Zszo ksT® =1 —T. The left hand side is

O TN asp,—112uT).
Jj=0 u>0
Thus Y~ @2p—142.T% = (1 = T)(1 + T)~?P*. On the other hand, from the
definition of x5, we have > usoT2u T = (1=T)(1+T)~2P1. This proves (b) hence
(al). -
Note that
(c) {zi;1 € [0,4py — 4]"}) together with {&;;4 € [0,4p2 — 4]”} form a basis of V.

2.12. We show:

(a) {z2:;4 € [0,2p1 — 1]} are linearly independent.

Assume that this is not true. Then z4,, —2 € E, the span of {z;;7 € [0,4p; — 4"}
hence E is g*?-stable and the annihilator (gE)* of gE in V is g*2-stable. For i €
[0, 2p1 — 2] we have (£2,,, 22,41) = 0 hence &3, € (gE)*. Since (gE)* is g*2-stable
we see that & € (gE)* for all i € Z”. Thus E’, the span of {&;;4 € [0,4ps —4]"}, is
contained in (¢F)*. Now E’ has dimension 2p, — 1 which is the same as dim(gE)> .
Hence E' = (gE)*. Since V = E®QE’ (see 2.11(c)) we see that V = E®(gE)* with
both summands g*2-stable. Now —g*? acts on E as a single Jordan block of size
2p; — 1. Thus —¢*? : V — V has a Jordan block of size 2p; — 1. This contradicts
the assumption that the Jordan blocks of —g*? : V' — V have even sizes. This
proves (a).

Weset N = g*?+1,e = p; —pa. Let £ be the span of {Nizp;i € [2p2—1,2p; —1]}
or equivalently the span of {N?P2=12;:4 € [0,4¢]”}. We show that

(b) dim £ = 2¢ + 1.

Let £’ be the span of {N?zg;i € [2p2 — 1,2p; — 2]}. We have dim £' = 2e since
{Niz;i € [0,2p; — 2]} is a linearly independent set. If (b) is false we would have
N2P1=1z € £'. Then the span of {Nizy;i € [0,2p; — 2]} is N-stable. Hence the
span of {g*(?Vzy;4 € [0,2p; — 2]} is g*?-stable. This contradicts the proof of (a).

We show:

(C) N2p2—1§0 eL.
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From the structure of Jordan blocks of N : V — V we see that dim N2P2~1V =
2e + 1. Clearly, £ C N?"2~1V. Hence using (b) it follows that £ = N?P271V so
that (c) holds.

Using (c) we deduce

(d) NZP2lg, = Z i NP2 29,
i€[0,2¢]
where ¢o; € k (i € [0,2¢]) are uniquely determined.

2.13. For j € N we set m; = (2”2]71) so that N?P2=1 = 37, 00 4 m;g*).
From 2.13(d) we deduce

(a) Z m;&a; = Z C2i M j 22425
j€l0,2p2—1] i€[0,2¢],j€[0,2p2 1]
Taking (, z,) with u € Z’ we deduce
(b) Z MjYu—2j = Z €235 Oy —2—25 -
7€[0,2p2—1] i€[0,2¢],j€[0,2p2 —1]
We show:

(c1) If u € [2p2 — 1,4p1 — 2po — 3], then the left hand side of (b) is 0.
(c2) If u = 4p1 — 2po — 1, then the left hand side of (b) is yap, —2p,—1-

For (c1) it is enough to show: if w is as in (c1) and j € [0, 2ps — 1] then u —2j +
2ps € [1,4p1 — 3]. Indeed we have
U—2j+2py <dpy—2py =3+ 2p2 =4dp1 — 3
and
u—2j+2py >2py — 1 —4ps + 2+ 2py = 1.

For (c2) it is enough to show: if j € [1,2py — 1], then 4p; — 2py — 1 — 25 + 2py €
[1,4p1 — 3] or that 4p; — 1 —2j € [1,4p; — 3]. This is clear.

If uw € [2pa — 1,2p; — 3], then in the right hand side of (b) we have u —2i —2j <
2p; — 1; we can assume then that u — 2¢ — 25 < —2p; + 1 hence

20>u—2j4+2p1—1>2p3—1—(4pa—2)+2p; — 1 =2e¢
and ¢ > e. Thus in this case (b) becomes (using (c1) and setting u = 2p; — 1 — 2¢t):
Z C2iMjQ2p, —1—2t—2i—25

i€le,2e],j€[0,2p2—1]
for t € [1,€e]. Setting ¢}, = cac—p, for h € [0,2€]” and with the change of variable
J—2py —1— 7,4+ 2e — ¢ we obtain
(d) > Chimja_op, +1-2142i42j = 0 for t € [1,e].

1€[0,e],7€[0,2p2 —1]

In the last sum we have —2p; + 1 — ¢t 4+ 2i + 2j < 2p; — 1. Indeed, we have
21+ 1—-2t4+2i+2j < —-2p; —142p; —2ps +4ps —2=2ps —3 < 2p; — 1.



266 G. LUSZTIG
Hence we can restrict the sum to indices such that —2p; +1—2t+2i+25 < —2p;+1,
that is, —t + i 4+ j = —2s where s > 0. Thus we have

/
E CoiMj_op, 11-2s = 0 for t € [1,€].
i€[0,e],j>0,8>0,i+j+s=t

Hence
( Z c’QzTZ)(Z ijj)(Z a_op +1-sT°) = ¢y + terms of degree > e in 7.
1€[0,€] 3>0 5>0

Using results in 2.11 this can be written as
( Z chTH(14+T)*P271(1 = T)(1 4 T) ?P* = ¢, + terms of degree > e in T,
1€[0,€]
that is,
( Z T +T) 271 —T) = ¢+ terms of degree > e in T,
1€[0,€]
hence
Z o T = (1 —T) Y1+ T)***(c) + terms of degree > e in T).
1€[0,€]

We have (1 + T)%*!t =3 I;T9 where [; = (Qe;rl). Hence

j€[0,2e+1]
1-T)'1+T)% = Z (lo+11+ - +1;)T? + terms of degree > e in T.
7€[0€]
We see that

(e) by =chllo+ 1 +---+1;) for i € [0, ¢].

In the remainder of this subsection we assume that e > 0. If u = 2p; — 1, then
in the right hand side of (b) we have u — 2i — 2j € [-2p; + 1,2p; — 1]; we can then
assume that v —2i —2j is —2p; + 1 or 2p; — 1. Hence i+ j is 2p; — 1 or 0 and (%, j)
is (2e,2p2 — 1) or (0,0). Thus in this case (b) becomes (using (c1)) ¢y + c4e = 0,
that is, co = —c{;. (The left hand side of (b) is 0 by (c1); here we use that e > 0.)

If w € [2p1 + 1,4p1 — 2p2 — 3], then in the right hand side of (b) we have
u — 2t —2j > —2p; + 1; we can then assume that u — 2i — 25 > 2p; — 1 hence

20 <u—27—2p1+1<4p1 —2ps—3—2p1 +1=2e—2
and ¢ < e—1. Using this and (c1) we see that (b) becomes (setting u = 2p; —1+2t):
Z C2iTjQ2p, —142t—2i—25 = 0 for t € [1, e — 1].
i€[0,e—1],57€[0,2p2—1]
Note that in the sum we have 2p; — 1 + 2t — 2i — 25 > —2p; + 1. (Indeed we have
2p1 =142t —20—25 > 2p1 +1—-2p1 +2p2a +2—4pa+2 = —2p2 +5> —2p; +1.)
Hence we can restrict the sum to indices such that 2p; — 142t —2¢ —25 > 2p; — 1,
that is, 2p; — 14+ 2t — 20 — 2§ = 2p; — 1 + 2s where s > 0. Thus we have

E C2iM;jQ2p, 1425 = 0 for t € [1, e — 1].
1€[0,e—1],5>0,5>0;i+s+j=t
For such t we have also

/
E CoiMjO_2p, 4125 =0
i€[0,e—1],j>0,s>0;i+s+j=t
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as we have seen earlier; the index i cannot take the value e since ¢ < t. Adding the
last two equations and using ooy, —142s = Q—2p, +1—25 We obtain

(%) Z (C2i + Ch)mja_op, 11-2s =0 for t € [1,e — 1].
i€[0,e—1],5>0,5>0;i+s+j=t

We show that co; + ¢); = 0 for i € [0,e — 1]. For ¢ = 0 this is already known; the

general case follows from (x) by induction on 4. Using also (e), we see that

(f) Cgi:—cg(lo—Fll—F"'—Fli) foriE[O,e—l].

(In the case where ¢ = 0, this is just ¢g = —¢{, which is already known.)
2.14. If u = 4p; — 2py — 1, then using 2.13(b) and 2.13(c2) we have

(a) Yapy —2py—1 = E C2iMj0lp, —2py —1—2i—2j -
i€[0,2¢],5€[0,2pa —1]

Taking (, £2p,—1) with 2.13(a) we obtain

Z mj62p27172j = Z C2i M 7Y2i 425 —2po+1-
J€[0,2p2 1] i€[0,2€],7€[0,2p2 —1]
In the left hand side only the contribution of j = 0 and j = 2ps — 1 is # 0; it is 1;
in the right hand side we have 2¢ + 25 — 2ps + 1 > —2ps + 1 hence we can assume
that 2¢ + 25 — 2ps + 1 > 4p; — 2py — 3, that is, 2¢ + 25 > 4p; — 2; hence we have
i = 2e,j = 2p2 — 1 and the right hand side is cscVap, —2p,—1. Thus

(b) 2= 06/741)1*21)2*1'
We see that ¢, # 0 and using (a) and (b) we have
27! = Z C2iTj Qlp, —2p, —1—2i—2;-
i€[0,2¢],5€[0,2p2 —1]
In the right hand side we have 4p; — 2ps — 1 — 2i — 25 > —2p; + 1; we can assume
then that either 4p; — 2ps — 1 —2i — 25 = —2p; + 1 (hence i = 2¢,j = 2ps — 1) or
dpy — 2py — 1 — 20 — 2§ > 2p; — 1 (hence i < e). The first case can arise only if
e = 0 hence it is included in the second case. Thus
(c) 25" = Z 23N O, —2p, —1—2i—2j-
i€[0,¢e],j€[0,2p2 —1]
Assume now that e > 0. From 2.13(d) with ¢ = e we have
(d) 0= Z Ch MO dpy +2py+142i+2)
i€[0,e],5€[0,2p2 —1]
We now add (c) and (d) and use that co; + ¢4, =0if i € [0,e — 1] and ¢, = ¢,. We
get
2 =2¢h, Y Moz, 19
J€(0,2p2—1]
If j € [1,2ps — 1] we have 2p; — 1 — 2§ € [-2p1 + 3,2p; — 3] hence asp, —1-; = 0.
Thus 2¢)~! = 2c}, = 2¢{2%¢ and ¢,? = 272¢. Changing if necessary £ by —¢ we can

therefore assume that

(e) ch=2"°.
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Assume now that e = 0. We have ¢, = ¢¢ and (c) becomes
2¢71 — . .
C = Comj2p, —1-25,
J€[0,2p2—1]

that is, 2¢y 1 — 9¢4 hence c2 = 1. Changing if necessary & by —¢ we can therefore
assume that ¢g = 1. Thus (e) holds without the assumption e > 0.
Using (e) we rewrite 2.13(e) and 2.13(f) as follows:

(f) Coe—i = 276(l0 +l 4+ lz) for i € [O, 6],

(g) Ci:—zie(lo—Fll—F"'—Fli) foriE[O,e—l}.

When z;,&; are replaced by the vectors with the same name in 2.10, the quantities
c2; become the quantities ¢J;. (Here i € [0,2¢].) We show that

(h) coi = Cy; for i € [0, 2¢].

By the analogue of (b) we have 2 = .79, 5,, 1. By results in 2.10 we have
Vip, —2p,—1 = 2¢T1. Hence ¢}, = 27¢. Using this and the analogues of 2.13(e),
2.13(f) we see that c3; are given by the same formulas as cp; in (e) and (f). This
proves (h).

2.15. Let C = tho 74p1—2p2—1+2tTta 0 = tho 72p1—2p2—1+2tTt- Ifu=4p —
2py — 1+ 2t,t > 0, then for any j that contributes to the left hand side of 2.13(b)
we have u — 25 > —2ps + 1. Indeed,

U—25>4p1 —2py —1—25>4py —2py — 1 —4py +2 > —2py + 1

hence we can assume that in the left hand side of 2.13(b) we have u — 25 > 4p; —
2ps — 1. Muliplying both sides of 2.13(b) with 7% and summing over all ¢t > 0 we

thus obtain
t
» > MjYap, —2ps—142t—2; 1
>0 j€[0,2p2—1]5t—j>0

= Z Z C2iTNj Oty —2py—142t—2i—2;T".
t>04i€[0,2€],5€[0,2p2 —1]
The left hand side equals
(D M) g2 1420 ) = (14 T)P71C.
7€[0,2pa—1] >0
Thus,
C = (1 + T)72p2+1 Z Z CQimjoz4p1_2p2_1+2t_2i_2jTt.
t20 i€[0,2¢],j€[0,2p2 —1]
Similarly we have
C% = (1+T)" 2! Z Z MmO, —ap,—1420—2i—2;T"
120 i€[0,2¢],5€[0,2p2 —1]

By 2.14(h) we have cg; = ¢3,. By 2.11(al) we have

0
Qdpy —2py—142t—2i—2j = QYp, —2p, —142¢—2i—2j
for all 4, j, t. It follows that C' = C° hence

0
(a) Vapy —2pa—1+2t = Vip, —2p,—1+2¢ fOr any t > 0.
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We set C" =37, Y2pe 3201, C'0 = 30 0V9p, 50 T" I = 2ps —3—2t,¢ >0,
then for any j that contributes to the left hand side of 2.13(b) we have u — 2j <
4py — 2p2 — 3 (indeed, u — 25 < 2ps — 3 — 2§ < 2py — 3 < 4p; — 2p2 — 3) hence we
can assume that in the left hand side of 2.13(b) we have v — 2j < —2p, — 1. With
the substitution j — 2ps — 1 — j the previous inequality becomes j — ¢ < 0 and the
left hand side of 2.13(b) becomes

Z M Yu—dps+2+25 = Z MY —2py—142(j—t)"
J€[0,2p2—1] J€[0,2p2—1]
Muliplying both sides of 2.13(b) with 7% and summing over all ¢ > 0 we thus obtain
Z MY _0p,—142—T" = Z Z C2iMjQap, —3-2t—2i—2jT"
t>0,5>0;t—5>0 t>0 i€[0,2¢],j€[0,2p2 —1]
The left hand side equals
(Y mT)(Y a1 T) = (14 T)P A
j€[0,2pa—1] >0
Thus,
C' = (1+1T)2=H Z Z CoiMj Oy —3—21—2i—2;T".
t>0 i€[0,2¢],j€[0,2p2 —1]
Similarly we have
C"" = (1+1) 2! Z Z cgimja8p27372t72i72jTt'
t>0 i€[0,2€],5€[0,2p2 —1]
By 2.14(h) we have cg; = ¢3,. By 2.11(al) we have
Q2p, —3-2t—2i—2j = agp2—3—2t—2i—2j
for all 4, j, t. It follows that C’ = C'% hence
(b) Vops—3—2t = ygpz_?)_% for any ¢ > 0.
Clearly, (a) and (b) imply 2.11(a3).

2.16. Weset B =" o Bop,—142s1°, B® = 2630 B9, 112sT%. Let t > 1. Taking

(, €2py—1+42¢) With 2.13(a) we obtain

(a) Z M B2p, —1420—25 = Z C2iMNj Y244 2j —2pot1—2t-
§€[0,2py—1] i€[0,2¢],j€[0,2p2—1]

For any j that contributes to the left hand side of (a) we have 2py — 1+ 2t — 25 >

—2ps + 3 (indeed, 2py — 1+ 2t — 25 > 2ps + 1 — 4dps + 2 = —2py + 3) hence we can

assume that in the left hand side of (a) we have 2ps — 1 + 2t — 25 > 2p, — 1, that

is, t > j. Multiplying both sides of (a) by T* and summing over all ¢t > 1, we thus

obtain
> > m;Bap, 14262, T"

t21 j€[0,2p2—1]5t>j

¢
= E E C2iMjY2i42j—2pot1-2¢1 -
t>1i€(0,2¢],j€[0,2p2 —1]
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The left hand side equals

—1 + ( Z m]Tj)(Z /Bngflth’Tt/) =1 + (T + 1)2p2—1B.
j€[0,2p2—1] >0

Thus,

B=(T+1)""'(1+ Z Z CoiMY2it2j—2pst1-20T").
t>1i€[0,2€],5€[0,2p2 —1]

Similarly we have

BY = (T+ 1)1+ Z Z oM Vo142 —2pa 126 1)
t>1i€[0,2¢],5€[0,2p2 —1]

By 2.14(h) we have cg; = ¢3,. By 2.11(a3) we have

o _ 0
V2i42j—2pa+1-2t = V2i+4+2j—2p,+1—2t

for any i, j,t. It follows that B = BY. Hence

0
Paps—1+2s = 621)2 —1+42s

for any s > 0. This clearly implies 2.11(a2).

2.17. We preserve the setup of 2.1. We prove 2.1(a) by induction on n. If n =0
we have V = 0 and a; = b; = p; = 0 for all i. We take g = 0 and (L?) to be the
empty set of lines. We obtain an element of szb*. Now assume that n > 0.

Assume first that a; > 1. We can find a direct sum decomposition V =V’ @ V"
such that dim V'’ = a; + b; = 2p; — 1. We identify V* = V'* & V”* in the obvious
way. Let a), be the sequence ai,0,0,...; let b, be the sequence b1,0,0,...; let
a’! be the sequence as, as, . ..; let b be the sequence bs, b3, .... By the induction
hypothesis we have CN(Y;,/:b,*, # (. By 2.3 we have Cy*lyb,* #10. Let (¢',L') € sz,,b;
and let (¢”, L% L3,...) € C?l/,*,l:b/*,. Here ¢ € G/, g € G Let g=¢' @ g" € Gi,.
Clearly, (g, L', L% ...) € é;/*,b* hence 2.1(a) holds in this case. Thus we may
assume that a; = ag = --- = 0 and b; > 0. We see that —g*? is unipotent.
We can find a direct sum decomposition V = V' @ V" such that dim V' = b; +
by. We identify V* = V'* & V”* in the obvious way. Let b, be the sequence
b1,b2,0,...; let b7 be the sequence bs, by, .. .; let a’. = a’/ be the sequence 0,0, ....
By the induction hypothesis we have é;l,/:b;, # (). By 2.11 we have CN;/,*/’b,* # 0. Let
(¢', LY, L?) € CX*/,,),* and let (¢”, L3, L%, ...) € C:‘;;:by. Here ¢ € Gi,/, ¢" € Gi,.
Clearly, (¢’ ®g", L', L?,...) € Ci‘;)zu hence 2.1(a) holds in this case. This completes
the proof of 2.1(a).

In the following result (which is needed in the proof of 2.1(b),(c)) we preserve
the setup of 2.1.

Proposition 2.18. Let (g, L', L?,...,L%) € C~(‘1/*,b*. Let ¢, be as in 2.4. There
exist vectors z' € L' — {0} for t € [1,0] such that (i) and (ii) below hold for
1e€Z’",jel.

(i) Assume thatt € [1,0],a; > 0. Then (2}, 25) = xj_; (v}, asin 2.2 withp = p;);

177
(24, 20) =0 ift' € [1,0],t' #t.
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(ii) Assume that {t,t+ 1} C [k+1,0],t =k+1 mod 2 and a; =0. Then

(21, 25) = dp, (i = ),
(zf*l,z:;“) = Z 27 g (i — ),
TE[p+1,pt]
(2!, Z§+1) _ 2pt*pt+1+1(_1)(i*j+2p2+1)/2(l' — 4201 - DE—J+2pi1 —3) ...
X (i — j + 2pey1 — 4p + 3)(4p, — 2)11 71,
(24 2)=0if t' € [1,0],t' ¢ {t,t +1}.

79
We argue by induction on n. When n = 0 the result is obvious. Now assume
that n > 1.

Case 1. Assume first that a; > 1. We have a; +b; = 2p; — 1. Let V' =
Dicio,ap, 4w Li C V. We show that

(a) gV =V

It is enough to show that g**Ly, , C V’. Since g*'Lj € V' for i € [0,4p; — 4]
and a; + by = 2p; — 1 it is enough to show that (¢*% — 1) (¢g*2 + )" LE = 0. It
is also enough to show that (¢*2 — 1)?(g*2 + 1)?* = 0 on V. But this follows from
the fact that g € C(‘L/;b*.

Now let V' = @ c(.01,ic(0,2p.—2) Li C V. We show that

(b) V" = (gV")*, the annihilator of gV’ in V. Hence V" is g*?-stable and
V=Vao(gV):t

We have (L5, , Ll ;) =0 for r € [2,0], i € [0,4p1 —4]”. Thus L5, C (gV')*.
Since (gV')* is g*2-stable (we use (a) and 2.0(a)) it follows that LI C (gV’)* for
any i € Z",r € [2,0]. Thus V" C (gV’)1. But these two vector spaces have the
same dimension so that V" = (gV’)1 and (b) follows.

We identify V* = V’*@V"* in the obvious way. From (a),(b) we see that g € G,
restricts to an isomorphism ¢’ : V/ — V’* and to an isomorphism ¢” : V' — V''*.
We show:

(c) g'*2 restricted to the generalized 1-eigenspace of g
Jordan block of size ay; —g'*? restricted to the generalized (—1)-eigenspace of g
unipotent with a single Jordan block of size by (if that eigenspace is # 0). Moreover,
g""*2 restricted to the generalized 1-eigenspace of ¢g"*? is unipotent with Jordan
blocks of sizes given by the nonzero numbers in as,as,...; —g"*? restricted to the
generalized (—1)-eigenspace of g""*2 is unipotent with Jordan blocks of sizes given
by the nonzero numbers in by, bs, . ...

As we have seen earlier we have (g*2 — 1)?1(g*? 4+ 1)®* = 0 on V' (even on V).
Also ¢'*? € GL(V') is regular in the sense of Steinberg and dim V’ = a; + b;. This
implies (c).

Let a!, be the sequence a1,0,0,...; let b, be the sequence by,0,0,...; let a’
be the sequence as, as,...; let b/ be the sequence by, b3, .... Now the proposition
holds when (g, L, L?,...) is replaced by (¢",L?, L3,...) € ég/*,ljb/*/ (by the induction
hypothesis) or by (¢, L) € CN,Z’b; (we choose any z' € L' —{0} such that (z}, z}) =
1forieZ",jeZ,l|i—j| =2p —1 and we apply 2.3). Hence the proposition
holds for (g, L, L?,...) (we use (b)).

'*2 s unipotent with a single

/%2 is
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Case 2. Next we assume that £k = 0, by > 0. Then a; = as = --- = 0. We have
b = 2p1,b2 = 2p2 — 2. Let V' = @,c(1,9),i(0,4p, 41 Lt C V. We show that

(d) gV =V

Let N = g*2+ 1. Then V = ®t€[l,o],i6[0,4pt—4]” N2} is a direct sum decompo-
sition into lines. Now N2P2=2(V) contains the lines

(%) N2P2=2+W/2 L € 0,4p; — 4ps)”) and N2?P2—2[2

(whose number is 2p; — 2py 4 2); moreover, since N has Jordan blocks of sizes by =
2p1, by = 2pa — 2 and others of size < by we see that dim N?P2=2(V) = 2p; — 2py +2
so that N?P272(V) is equal to the subspace spanned by (x) and N?2=2(V) C V'.
Now V" is the subspace of V spanned by the lines N*L} with ¢ € [1,2],i € [0, 2p;—2].
It is enough to show that NV’ C V' or that N?P*=1L{ C V'’ for t = 1,2. But for
t = 1,2 we have N?P¢+~1LL C N?P2=2V C V/ since 2p; — 2po + 1 > 0. This proves
(d).

Let V" = @yc(3.01i€(0,4p, —a)» Li C V. We show that

(e) V" = (gV")t, the annihilator of gV’ in V. Hence V" is g*?-stable and
V=Vea&(@V)t.

We have (Lj, ,Lt, ) =0fort e [1,2],r € [3,0],i € [0,4p, —4]". Thus L}, C
(gV")*t. Since (gV’)* is g*?-stable (we use (d) and 2.0(a)) it follows that L C
(gV')* for any i € Z",r € [3,0]. Thus V" C (gV’)1. But these two vector spaces
have the same dimension so that V" = (gV’)* and (e) follows.

We identify V* = V'* @ V”* in the obvious way. From (d) and (e) we see that
g : V — V* restricts to an isomorphism ¢’ : V' — V’* and to an isomorphism
g’ V" = V" We show:

(f) —g'*? is unipotent with a single Jordan block of size by (if ba = 0) or with two
Jordan blocks of size by, by (if by > 0). Moreover, —g"*? is unipotent with Jordan
blocks of sizes given by the nonzero numbers in bs, by, . ...

Since V' is the direct sum of the lines N'L{, t € [1,2],i € [0,2p; — 2], and V'
is N-stable, we see that the kernel of N : V/ — V' has dimension < 2. Hence
N : V' — V' has either a single Jordan block of size 2p; + 2ps — 2 = by + by or two
Jordan blocks of sizes b] > by where b} + by = by + ba. In the first case we must
have by = 0 (since the Jordan blocks of N : V' — V’ have sizes < by (by (e)). In
the second case, since b}, b, must form a subsequence of by > by > b3 > ... and
by + by = by + bo it follows that by = by, by = by. This implies (f). This completes
the proof.

2.19. In the setup of 2.1, we show that 2.1(b) holds. We must show that

(a) any two elements (g, L', L?,..., L), (¢/, L'*, L'?,...,[/?) of C} , are in the
same Gy/-orbit.

Since G'y acts transitively on C}z/;,b* we can assume that g = ¢’. Let 2t € Lt
(t € [1,0]) be as in 2.18. Let 2/t € L' (t € [1,0]) be the analogous vectors for
(g,L', L'?,...) instead of (g, L', L?,...). By 2.18 we have
(b) (%) = (1, 2"%)
for any ¢ € Z",j € Z' and any t,t' € [1,0]. Since {z};t € [1,0],i € [0,4p; — 4]"}
and {z'l;t € [1,0],% € [0,4p; — 4]"} are bases of V (see 2.0(d)) we see that there

79
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is a unique v € GL(V) such that v(z!) = 2’t for any ¢ € [1,0],i € [0,4p; — 4]. We
show that

(c) Y(zhy ) =24, for any t € [1,0],5 € [0,4p, — 4]".

It is enough to show that (z’f,z’?H) = ('Y, 3(z 2t,1)), that is, (z’ﬁl,z’g-ﬂ) =
(zf/,zhl) for any t,t' € [1,0] and any 4,j € [0,4p; — 4]”. This follows from (b).
From (c) we see that ¥(g(2})) = g(v(2})) for any t € [1,0],j € [0,4p; —4]". T
follows that ¥g = gv. From the deﬁn1t1on it is clear that v(L!) = L't for t € [1,0].
Thus (a) holds (with ¢’ = g). This proves 2.1(b).

2.20. In the setup of 2.1, we show that 2.1(c) holds. Let (g, L', L?,...,L%) € C(‘L/;
and let I be the set of all v € Gy such that gy~ = g, y(L?) = Lt for ¢t € [1,0].
Let 2* € L*(t € [1,0]) be as in 2.18. Let v € I. If t € [1,0] we have y(z') = w]/ 2!
where w; € k — {0}. Since v commutes with ¢g*2, it follows that v(z!) = w; 2! for
i€Z". Fortello],j€Z we have

[
Y(z5) = 3(9(25-1)) = g(v(25 1)) = g(w] 25 1) = Wi 2};

w/ 2% For any t,t' € [1,0],i € Z",j € Z' we have

(2 wi2) = (& (=) = (M), 20) = (@) T e ).

Thus, (w; — (w)) "N (z!, 2 2t) = 0. Taking ¢’ = t,4 —j = 2p; — 1 we deduce that
w — (wy})~! =0 hence w] = 1. Taking ¢’ = t+1 (where {t,t+1} C [k+1,0],t =
k+1 mod 2,a; = 0) and using that

(zf“,z;) = (thiazttl) £ Pt § 2pi41 = —1

thus, §(2}) =

we see that (w] — (wy), ;) 1)2Pr P11 = 0 hence w] — (w) ;) "' =0 and w] = w/, ;.
We see that v — (w]) is a homomorphism ¢ : I — Z (notation of 2.0). Assume
that v is in the kernel of 1. Then ~ restricts to the identity map L — L! for

€ [1,0]. Since v commutes with ¢g*2 it follows that + restricts to the identity map
on each of the lines g*' Lt (t € [1,0], i € Z"). Since these lines generate V (see 2.0)
we see that v = 1. Thus, ¢ is injective. Now let (w;) € Z. We define v € GL(V)
by v(2f) = wez! for t € [1,0],i € [0,4p; — 4]". From the definitions we see that

(a) (wezf wi2f ) = (2, 2))
for any i € Z”,j € Z' and any t,t' € [1,0]. We show that
(b) H(zi11) = wiziyy for any ¢ € [1,0],4 € [0,4p, — 4]".

It is enough to show that (v(2} D, wtzzﬂ) ( ;l,zfﬂ) forany t' € [1,0],j € [0,4py —
4] or that (wt/zj Wizl ) = (z]t ,zf, 1) or that

(wpwe — 1) (2¢ 25, 2i41) = 0.

The second factor is zero unless either ¢ = ¢/ or ¢ = ¢ + 1 (where {¢,¢t + 1} C
[k+1,0],t =k+1 mod 2,a; = 0) in which case the first factor is zero. This proves
(b).

From (b) we see that ¥(g(z!)) = g(v(z})) for any t € [1,0],i € [0,4p, — 4]". Tt
follows that ¥g = gv. From the definition it is clear that y(L!) = L! for ¢t € [1, o].
Thus v € I. We see that ¢ is surjective hence an isomorphism. This proves 2.1(c).
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2.21. We now assume that n > 1. We denote by V (resp. V*) the n-th exterior

*

power of V (resp. V*); we have naturally {}* = ({}) . Any ’y € GV induces an

element 'Y; : ‘7} 5 V; any g € Gi, induces an element g V = V* For any
heV— {0} we denote by 6* the unique element in Ve {0} such that (0,6*) = 1.
We show:
(a) For any g € GY, we have gg € SL(V).
Let (e;) be a basis of V; let (e]) be the dual basis of V*. We have ge; = 3, x;je],
= >, Ykhen where X = (z;),Y = (y;;) are square matrices. Now

Oki = (gex, gei) Zykheh,zxm €)= Yknin.
n

Thus YX? = I where X? is the transpose of X. We have gge; = >}, Tijyjneh-
Thus the matrix of gg is XY. We have

det(XY) = det(X) det(Y) = det(X") det(Y) = det(Y X") =
as required.
We now fix # € V — {0} and we set

I = {g € GV; g takes 6 to 6*}.

If g € T'! then, using (a), we see that 3 takes 0* to 0. We see that I' := SL(V)uT!
is a subgroup of Gy UGY,. Let SL(V) = {I' € Gy;det(I') = £1}.

We show:

(b) Let g,g' € Gi, v € Gy be such that 5gy~* = ¢'. If g,g' € ', then
v € SL(V). Conversely, if g€ Tt and T € SL(V)', then g’ € T'L.

Replacing V' by ‘7} we can assume that n = 1. We have g = 6*, ¢'0 = 6*,
70 = af where a € k — {0}. We have 0* = ygy~ () = Yga=10 = Ja=10* = a=26*
hence a? = 1 and a = +1 proving the first assertion of (b). The second assertion is
proved similarly.

2.22. Assuming that a; > 0 we show:

(a) C; . NT'is a single SL(V)-conjugacy class in T.

Let g, € C(‘l/;b* NT!. From Theorem 2.1(b) we see that ygy~! = ¢’ for some
v € Gy. Using 2.21(b) we see that det(y) = £1. If det(y) = 1, then g,¢" are
in the same SL(V)-conjugacy class, as required. Assume now that det(y) = —1.
We complete g to an element (g, L', L%, ...) € é;/*,b* and we write V. = V' @ V",
V* = V'* @ V"”* as in the proof of 2.18 (Case 1). Let v9 € GL(V) be such that
Yolv: = =1, vlv» = 1. Since dimV” is odd we have det(yg) = —1. We have
Y0975+ = g hence 33097, 7' = ¢’. We have 479 € SL(V) so that g, ¢’ are in the
same SL(V)-conjugacy class, as required.

2.23. Assuming that a; = 0 (hence b; > 0) we show:

(a) C(‘l/*)b* N T is a union of two SL(V)-conjugacy classes in T

Let g € C(y*,b* NI Let C(g) (resp. C'(g)) be the set of elements of the form
ygy~! = ¢’ for some v € Gy such that det(y) = 1 (resp. det(y) = —1). It is

clear that C'(g) and C’(g) are SL(V)-conjugacy classes. As in the proof of 2.22 we
see, using 2.1(b) and 2.21(b), that C;ib* NIt =C(g)UC’(g). It remains to prove
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that C'(g) N C’'(g) = 0. Assume that C(g) N C'(g) # 0. It follows that there exists
Yo € Gy such that ’yogvgl = g and satisfies det(y9) = —1. Let g5 be the semisimple
part of g. Then g is in the centralizer of g, in Gy which is a symplectic group all
of whose elements have necessarily determinant 1. This contradicts det(yy) = —1.

2.24. Let ¢ be an SL(V)-conjugacy class contained in C(‘l/*’b* NTL (See 2.22(a),
2.23(a).) Let X be the set of all (g, L', L?,...,L7) € CY , where g € c. Note that

X # (. Now SL(V)" acts on X by the restriction of the Gy -action on ég*,b* (see
2.21(b)). Using 2.1(b) and 2.21(b), we see that this SL(V)-action is transitive. We

now restrict this action to SL(V).

We show:

(a) This SL(V')-action is transitive.

Let (g, L', L% ...,L°) € X, (¢/, L/}, L'?,...,L'?) € X. We must show that
these two sequences are in the same SL(V)-orbit. As we have seen, we can find
v € SL(V)" which conjugates (g, L*, L?,...,L°) to (¢’, L'*,L’? ..., L’?). Ifa; = 0
this implies by the argument in 2.3 that det(y) = 1 so that in this case (a) holds.
We can thus assume that a; > 0. If det(y) = 1, then the proof is finished. We now
assume that det(y) = —1. Let 79 € Gy be as in 2.22. We have det(y9) = —1 and
Yo conjugates (g, L', L?, ..., L?) to itself. Hence v~y conjugates (g, L', L?,...,L%)
to (¢', L'Y, L'2,...,L'%). We have yy9 € SL(V'). This proves (a).

2.25. Assume that n > 3. As in [L5 §4] we see that 2.24(a) implies that Theorem
0.3 holds for I instead of G.

3. EXCEPTIONAL GROUPS

3.1. In this section we assume that G = G (as in 0.2) is simple of exceptional
type. In the case where c is a distinguished unipotent class this follows from [L3]
where it was proved by a reduction to a computer calculation. In the nonunipotent
case the same method works but it uses instead of [L1l 1.2(c)], the more general
formula [L6l 5.3(a)]. The needed computer calculation was actually done at the
time of preparing [L6]. (I thank Frank Liibeck for providing to me tables of Green
functions for groups of rank < 8 in GAP format. I also thank Gongqin Li for her
help with programming in GAP to perform the computer calculation.)

We will describe below the result in the form of a list of rows in each case; each
row corresponds to an ep-elliptic ep-conjugacy class in W. For example, the row

12; @905 (Es(a2)) gy, (E7(a2) A1) B4, (J11d5) Dg

in type Fg corresponds to the elliptic conjugacy class C in W such that the charac-
teristic polynomial in the reflection representation of any w € C' is the cyclotomic
polynomial ®54 and the length of any element in C,;, is do = 12. The row also
includes the names of the three distinguished conjugacy classes ¢ such that C'dec
(see 0.1); for example, (E7(az2)J2)E,4, is the conjugacy class of su = us where
s is a semisimple element with Zg(s)? of type E;A; (in the subscript) and u is
a unipotent element of Zg(s)? whose E7; component is of type E7(as) (notation
as in [L1l 4.3]) and whose A;-component has a single Jordan block of size 2 in
the standard representation of A;. On the other hand, (Ji1.J5)p, is the conjugacy
class of su = us where s is a semisimple element with Zg(s)? of type Dg and u
is a unipotent element of Z5(s)? with Jordan blocks of sizes 11,5 in the standard
representation of Dsg.
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Type Eg.

8; ®30; (E8) kg, (ErJ2)Eray > (B6J3) Bg Ags (JoJ1J4) Dy ass (J505) Agay,
(J6J3J2) A5 A5415 (J9) Ag» (J3J2) A7 4,5 (J15J1) Dy

10; @245 (Es(a1)) B, (E7(a1)J2) B4y, (Ee(a1)J3) Bg sy (J7J3J4) Ds Ag (J13J3) Dy

12; ®g0; (Es(a2)) gy, (Er(a2)J2) B, 4,5 (J11J5) Dy,
14; @6P1s; (E7A1) By, (E7(a3)J2) B- 4,5 (JoJ7) Dgs
16; @153 (Ds) gg» (E7(a4) J2) Br 4y,
18; ©3P14; (Er(a1) A1) by
20; %53 (Ds(a1)) gg, (J7J5J3J1) Dy
22; D5 P1; (E7(a2) A1) by, (Er(as)J2) 5,4,
24; D%y; (As)
28; @3%9; (Ds(as)) s,
40; Bg; (244) -
Type Er.
7 ©2®15; (E7) By, (J11J1J2) Doy (J6J3) A5 4,5 (Jadad2) 45454, 5 (J8) Ar,
9; @145 (E7(ar)) ey, ((JoJ3) A1) DAy s
115 @9 @6 D19; (E7(a2)) By, (J7J5J2) Do A, 5
13; @9 ®6P10; (Ds A1) B,
17, @2@4Ps; (Ds(a1) A1) B, »
21; @2 ®;; (Dg(a) A1) e,
Type Eg.
6; @3P19; (Fo) 2o, (JoJ2) 454, (J33J3) Ay 4,4,
8; ©o; (E6(a1)) s
12; ®382; (A5 A1) &,
Type Fy.
45 @123 (Fu)pys (JoJ2) s ars (J3J3) s 45, (J1d2) a5 445 (Jo) Bas
6; ®s; (Fu(a1))r,, (JadaJ2)osa,
8; ®F; (Fu(az)) ry, (J5J3J1) B,
12; ®%; (Fu(as))r,
Type Gs.
2;@6; (G2)asy (J3) Az (J2J2) 4, 44

4; @35 (Ga(a1))a,-
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