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Second Order Expansion of the t-statistic in AR(1) Models

by Anna Mikusheva 1

MIT, Department of Economics

Abstract

The purpose of this paper is to differentiate between several asymptotically valid meth-

ods for confidence set construction for the autoregressive coefficient in AR(1) models. We

show that the non-parametric grid bootstrap procedure suggested by Hansen (1999) achieves

a second order refinement in the local-to-unity asymptotic approach when compared with

a modified version of Stock’s (1991) and Andrews’ (1993) grid testing procedures. We es-

tablish a second order expansion of the t-statistic in an AR(1) model in the local-to-unity

asymptotic approach, which differs drastically from the usual Edgeworth-type expansions

by approximating the statistic around a non-standard and non-pivotal limit.
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1 Introduction

The paper examines the issue of inferences on the persistence parameter, the autore-

gressive coefficient ρ, in AR(1) models. The classic Wald confidence interval typically

provides low coverage in finite samples, especially if the true value of ρ is close to

unity, as happens for most of macroeconomic time series. The Wald-type interval is

based on classical asymptotic theory, that is, the setup when |ρ| < 1 is considered

to be fixed, and the sample size n converges to infinity. The classical asymptotic

laws (Central Limit Theorem and Law of Large Numbers) do not hold uniformly over

the interval ρ ∈ (0, 1); rather, the convergence becomes slower as ρ approaches 1,

and neither law holds for ρ = 1. An alternative asymptotic approach, local-to-unity

asymptotics, considers sequences of models with ρn = 1 + c/n as n goes to infinity.

1Financial support from the Castle-Krob Career Development Chair and Sloan Research Fellow-

ship is gratefully acknowledged. I am grateful to Jim Stock, Marcelo Moreira, Gary Chamberlain,

Peter Phillips, Denis Chetverikov and three anonymous referees for helpful comments. E-mail for

correspondence: amikushe@mit.edu.
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According to Mikusheva (2007) and Andrews and Guggenberger (2009, 2010) local-

to-unity asymptotics leads to uniform inferences on ρ, whereas classical asymptotics

does not.

There are at least three methods that can be used to construct an asymptotically

correct confidence set for ρ: the method based on the local-to-unity asymptotic ap-

proach (a modification of a procedure suggested in Stock (1991)), the parametric grid

bootstrap (Andrews (1993)) and the non-parametric grid bootstrap (Hansen (1999)).

The validity of these methods was proved in Mikusheva (2007).

This paper compares three methods on the grounds of the accuracy of the asymp-

totic approximations they provide. All three methods are asymptotically first-order

correct, that is, the coverage of the confidence sets uniformly converges to the confi-

dence level as the sample size increases. The question we address here is the speed of

the convergence in the local-to-unity asymptotic approach. We show that the non-

parametric grid bootstrap (Hansen’s method) achieves second-order refinement, that

is, the speed of coverage probability convergence is o(n−1/2), whereas the other two

methods in general guarantee only a O(n−1/2) speed of convergence in the local-to-

unity asymptotic approach. To compare the three methods we establish an asymptotic

expansion of the t-statistic around its limit in local-to-unity asymptotics.

A second-order distributional expansion is an approximation of the unknown dis-

tribution function of the statistic of interest (t-statistic in our case) by some other

function up to the order of o(n−1/2). One example of a second-order distributional

expansion is the first two terms of the well-known Edgeworth expansion.

There are several differences between the expansion obtained in this paper and an

Edgeworth expansion. First of all, an Edgeworth expansion is an expansion around a

normal or χ2 distributions. In our case we expand the t-statistic around its local-to-

unity asymptotic limit, which is a non-normal and non-pivotal distribution. Secondly,

it is known that the first two terms of an Edgeworth expansion do not constitute a

distribution function themselves. In particular, it can be non-monotonic and non-

changing from 0 to 1. One special feature of our expansion is that it approximates

the distribution function of the t-statistic by a cumulative distribution function (cdf),
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which can be simulated easily.

And finally, as opposed to the Edgeworth expansion - which comes from expand-

ing the characteristic function - our expansion comes from stochastic embedding and

a strong approximation principle. The expansion we obtain is a “probabilistic” one.

That is, we construct a random variable on the same probability space as the t-

statistic in such a way that the difference between the constructed variable and the

t-statistic is of the order o(n−1/2) in probability. We also show that under addi-

tional moment assumptions it leads to a second-order “distributional” expansion.

The idea of asymptotically expanding the distribution of the normalized coefficient

in the AR(1) with a unit root was first developed in Phillips (1987b) for a Gaussian

model, and in Phillips (1987a) for a non-stationary VAR. The same idea was used

in Park (2003). He obtained a second-order expansion of the Dickey-Fuller t-statistic

for testing a unit root without assuming normality of error terms.

The distributional expansion allows us to show that Hansen’s grid bootstrap

achieves the second-order improvement in the local-to-unity setting when compared

to the modified version of Stock’s (1991) and Andrews’ (1993) methods. The intuition

for the improvement achieved by the non-parametric grid bootstrap is the classical

one - Hansen’s grid bootstrap uses the information about the distribution of error

terms, while the other two methods do not. We should be clear that the statement of

the second-order superiority of Hansen’s bootstrap has been established in this paper

only in the local-to-unity asymptotic framework, and it remains unknown whether

the derived asymptotic expansion holds uniformly over all values of ρ. It seems that

the full uniformity result cannot be established by the method used in this paper.

The current paper also discusses that the grid bootstrap does not achieve the

asymptotic refinement in a more general AR(p) case, as in such a case, the statistic

becomes asymptotically non-pivotal and depends on the other unknown coefficients

describing short-term dynamics.

The paper contributes to the literature on bootstrapping autoregressive processes

and closes the discussion on making inferences on persistence in an AR(1) model.

Here are some of the known results on bootstrap of AR models: Bose (1988) showed
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in classical asymptotics that the usual bootstrap provides second-order improvement

compared to the OLS asymptotic distribution. However, Basawa et al. (1991) showed

the usual bootstrap fails (is of the wrong size asymptotically) if the true process has

a unit root. Their result can be easily generalized to local-to-unity sequences. Park

(2006) showed that the usual bootstrap achieves greater accuracy than the asymptotic

normal approximation of the t-statistic for weakly integrated sequences (for sequences

with an AR coefficient converging to the unit root at a speed slower than 1/n). The

intuition behind Park’s result is that the ordinary bootstrap uses the information

about the closeness of the AR coefficient to the unit root. His expansion is non-

standard, and the reason for bootstrap improvement is also unusual (usually the

bootstrap achieves higher efficiency due to usage information about the distribution

of the error term).

The rest of the paper is organized in the following way. Section 2 introduces no-

tation. Section 3 obtains a probabilistic embedding of error terms and a probabilistic

expansion of the t-statistic. Section 4 shows that the probabilistic expansion from the

previous section leads to a distributional expansion. Section 5 establishes a similar

expansion for a bootstrapped statistic and obtains the main result of the paper on

the asymptotic refinement achieved by the non-parametric grid bootstrap. Section 6

discusses the behavior of the grid bootstrap in an AR(p) case. All proofs are left to

the Appendix.

2 Notation and preliminary results

Let us have a sample {y1, ..., yn} from an AR(1) process

yj = ρyj−1 + εj, j = 1, ..., n (1)

with y0 = 0 and ρ = ρ0. Let the error terms εj satisfy Assumptions A below.

Assumptions A. Assume that error terms εj are independent and identically

distributed (i.i.d.) random variables with mean zero, variance σ2 and E|εj|r <∞ for

some r > 2.
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We consider testing and confidence set construction procedures based on the t-

statistics. Let

t(y, ρ0, n) =

∑n
j=1(yj − ρ0yj−1)yj−1

σ̂
√∑n

j=1 y
2
j−1

be the t-statistic for testing the true hypothesis H0 : ρ = ρ0 using the sample {yj}nj=1,

here σ̂ = 1
n

∑n
j=1(yj − ρ̂yj−1)

2, and ρ̂ is the OLS estimator of ρ. The classical asymp-

totic approach states that for every fixed |ρ0| < 1 as the sample size, n, increases to

infinity we have

t(y, ρ0, n) ⇒ N(0, 1).

An alternative asymptotic framework, a local-to-unity asymptotic approach, which is

intended to describe the behavior of the statistics when the autoregressive coefficient

ρ0 is very close to the unit root, models the true value of ρ0 as changing with the

sample size, namely, ρ = ρn = exp c/n ≈ 1 + c
n
, c ≤ 0. Under such an assumption,

one can show (see Phillips (1987c)), that

t(y, ρn, n) ⇒
∫ 1

0
Jc(x)dw(x)√∫ 1

0
Jc(x)dx

,

where Jc(x) =
∫ x

0
ec(x−s)dw(s) is an Ornstein-Ulenbeck (OU) process, and w(·) is a

standard Brownian motion.

As was shown in Mikusheva (2007), the classical asymptotic approximation is not

uniform. In particular, if zα is the α-quantile of a standard normal distribution, then

lim
n→∞

inf
|ρ|<1

Pρ{zα/2 < t(y, ρ, n) < z1−α/2} < 1− α.

As a result, the usual OLS confidence set would provide poor coverage in finite samples

if we allow ρ to be arbitrarily close to the unit root. The local-to-unity asymptotic

approach on the contrary is uniform (Mikusheva (2007), Theorem 2). Namely,

lim
n→∞

sup
ρ∈[0,1]

sup
x

|Pρ{t(y, ρ, n) ≤ x} − F c
n,ρ(x)| = 0,

where F c
n,ρ(x) = P{

∫ 1

0
Jc(t)dw(t)/

√∫ 1

0
J2
c (t)dt ≤ x} with c = n log(ρ).

The use of a local-to-unity asymptotic in order to construct a confidence set was

suggested by Stock (1991). It can be implemented as a “grid” procedure. One
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needs to test a set of hypotheses H0 : ρ = ρ0 (in practice the testing could be

performed over a fine grid of values of ρ0). A test compares t-statistic t(y, ρ0, n) with

critical values that are quantiles of the distribution of F c
n,ρ0

(x). The acceptance set

is a uniformly asymptotically valid confidence set. We call this method a modified

Stock’s (1991) method, since the testing procedure stated above slightly differs from

the test originally suggested in Stock (1991). The paper by Stock (1991) uses a

different statistic, namely, Dickey-Fuller t-statistic for a unit root test. As discussed

in Phillips (2012), Stock’s original procedure is poorly centered and has asymptotically

zero coverage when applied to a stationary process, while the modified version of it is

uniformly asymptotically the correct size. Phillips (2012) explains the bad properties

of Stock’s original method as a failure of tightness and the escape of probability mass.

Two alternatives to the procedure described above are Andrews’ parametric grid

bootstrap and Hansen’s non-parametric grid bootstrap. The three methods differ

in their choices of critical values. In particular, in Andrews’ grid bootstrap, critical

values are taken as quantiles of a finite-sample distribution of the t-statistic in a model

with normal errors: FN
n,ρ0

(x) = Pρ0{t(z, ρ0, n) ≤ x}. Here, zt is an AR(1) process with

the AR coefficient ρ0 and normal errors. In Hansen’s grid bootstrap we use quantiles

of F ∗
n,ρ(x), the finite sample distribution of the t-statistic for a bootstrapped model

with the null imposed. More accurately, let y∗j = ρ0y
∗
j−1 + e∗j , where e

∗
j are sampled

from the residuals of the initial OLS regression, then F ∗
n,ρ0

(x) = Pρ0{t(y∗, ρ0, n) ≤ x}.

Previously, Mikusheva (2007) proved that all three methods are uniformly asymp-

totically correct. The goal of this paper is to explore the second-order properties

of the methods using the local-to-unity asymptotic approach. Below we show that

Hansen’s bootstrap provides second-order improvement in the local-to-unity asymp-

totic approach when compared with Andrews’ method and the modification of Stock’s

method. To prove this we establish a second-order expansion of t(y, ρn, n) in a local-

to-unity asymptotic framework.
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3 Stochastic embedding

According to Skorokhod’s embedding scheme (Skorokhod (1965)), the normalized

partial sums of the error terms can be realized as a stopped Brownian motion. Namely,

there exists a Brownian motion w and an increasing sequence of stopping times Tj,n

on an extended probability space such that{
1√
nσ

j∑
i=1

εi

}n

j=1

=d {w (Tn,j)}nj=1 , (2)

where Tn,j = 1
nσ2

∑j
i=1 τi. It is also known that the random variables τi are non-

negative, Eτj = σ2,E|τj|r/2 < KrE|εj|r, where Kr is an absolute constant. Since we

are interested only in finite-sample distributions of statistics generated from {εj}nj=1,

to simplify the notation we assume from now on that
εj
σ
=

√
n (w (Tn,j)− w (Tn,j−1)) .

Let us consider a sequence of random vectors vj =
(

εj
σ
,
τj−σ2

σ2 ,
ε2j−σ2

σ2

)
and Bn(t) =

1√
n

∑[nt]
j=1 vj = (wn(t), Vn(t), Un(t)). Park (2003) proved2 that Bn →d B = (w, V, U),

where B is a Brownian motion with covariance matrix Σ given by

Σ =


1 µ3/3σ

3 µ3/σ
3

µ3/3σ
3 κ/σ4 (µ4 − 3σ4 + 3κ)/6σ4

µ3/σ
3 (µ4 − 3σ4 + 3κ)/6σ4 (µ4 − σ4)/σ4

 . (3)

Here Eε2j = σ2,Eε3j = µ3,Eε4j = µ4,E(τj − σ2)2 = κ. Park (2003) also proved that Bn

andB can be defined on the same probability space in such a way thatBn →a.s. B. Let

N(t) = w(1 + t)−w(1), M(t) be a Brownian motion independent on w. Also denote

U = U(1) and V = V (1). We are ready to introduce the second order probabilistic

expansions of the t-statistic.

Theorem 1 Let ρn = exp{c/n}, c ≤ 0. Assume that the εj satisfy the set of assump-

tions A with r ≥ 8. Then one has the following probabilistic expansions, that is, there

exists a realization of stochastic processes such that:

2We use slightly different notation: our third component
ε2j−σ2

σ2 equals to δi + 2ηi in Park’s

notation. This changes the definition of process U(t), which now corresponds to a process, which in

Park’s notation is referred to as V + 2U .
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(a) the following statement holds uniformly over k ∈ {1, 2, ..., n}

yk
σ
√
n
− Jc(Tn,k) = − c√

n

∫ k/n

0

ec(k/n−s)Jc(s)dV (s) + op(n
−1/2);

(b)

1

nσ2

n∑
k=1

yk−1εk =

∫ 1

0

Jc(x)dw(x) + n−1/4Jc(1)M(V )+

+
1√
n

(
−c
∫ 1

0

∫ t

0

ec(t−s)Jc(s)dV (s)dw(t) + Jc(1)N(V ) +
1

2
M2(V )− 1

2
U

)
+ op(

1√
n
);

(c)

1

n2σ2

n∑
k=1

y2k =

∫ 1

0

J2
c (x)dx−

2c√
n

∫ 1

0

Jc(x)

∫ x

0

ec(x−s)Jc(s)dV (s)dx−

− 1√
n

∫ 1

0

J2
c (x)dV (x) +

1√
n
J2
c (1)V − 2µ3

3
√
nσ3

∫ 1

0

Jc(t)dt+ op(
1√
n
);

(d)

1

n3/2σ

n∑
k=1

yk =

∫ 1

0

Jc(x)dx−
c√
n

∫ 1

0

∫ x

0

ec(x−s)Jc(s)dV (s)dx−

− 1√
n

∫ 1

0

Jc(x)dV (x) +
1√
n
Jc(1)V − µ3

3
√
nσ3

+ op(
1√
n
);

(e)

t(y, ρn, n) = tc + n−1/4f + n−1/2g + op(n
−1/2),

here tc =
∫ 1

0
Jc(x)dw(x)/

√∫ 1

0
J2
c (x)dx, f = Jc(1)M(V )/

√∫ 1

0
J2
c (x)dx,

g = − tc

2
U + 1√∫ 1

0 J2
c (x)dx

{(
−c
∫ 1

0

∫ t

0
ec(t−s)Jc(s)dV (s)dw(t) + Jc(1)N(V ) + 1

2
M2(V )− 1

2
U
)

+ tc

2

(
2c
∫ 1

0
Jc(x)

∫ x

0
ec(x−s)Jc(s)dV (s)dx+

∫ 1

0
Jc(x)dV (x)− Jc(1)V + 2µ3

3σ3

∫ 1

0
Jc(t)dt

)}
.

The expansions from Theorem 1 are probabilistic. Namely, we approximate a

random variable t(y, ρn, n), whose distribution is unknown, by another random vari-

able ξn (whose distribution is known or could be simulated) with accuracy o(n−1/2)

in probability: P{|ξn − t(y, ρn, n)| > ϵn−1/2} → 0. Probabilistic expansions are not

of interest by themselves (since they are abstract constructions); rather, they are

building blocks to achieve the distributional expansions described in the next section.
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The random variables on the right-hand side are functionals of several Brownian

motions B(t) = (w(t), V (t), U(t)) and M(t). The covariance matrix of B(t) depends

only on some characteristics (σ2, µ3, µ4, κ) of the distribution function of εj, namely on

the first four moments of εj and some characterization of non-normality κ (parameters

are defined above). M(t) is independent of B(t). As a result the distribution of the

approximating variable depends only on ψ = (σ2, µ3, µ4, κ, c). The distribution of the

approximating variable can be simulated easily.

Remark 1 If one has an exact unit root (c = 0), then the expansion is exactly equal

to the expansion obtained by Park (2003).

Remark 2 If εj are normally distributed, then V (t) ≡ 0 and w(·) is independent of

U(·). It implies that t = tc + 1
2
√
n

U√∫
J2
c (x)dx

− tc

2
√
n
U + op(n

−1/2), where U is indepen-

dent of w.3 So, according to this probabilistic expansion Andrews’ method and the

modification of Stock’s method are the same up to an independent summand of order

Op(n
−1/2). I show in the next section that they are the same distributionally up to the

order of o(n−1/2).

Remark 3 The statement of Theorem 1 can be easily generalized to the model with a

constant. The corresponding t-statistic would involve de-meaned processes and would

be expanded around its asymptotic limit tcµ =
∫ 1

0
Jµ
c (x)dw(x)/

√∫ 1

0
(Jµ

c )
2 (x)dx, where

Jµ
c (t) = Jc(t) −

∫ 1

0
Jc(s)ds is the de-meaned O-U process. The resulting expansion

has additional terms which are due to estimation of the mean of the process and are

derived in part (d) of Theorem 1.

Remark 4 Theorem 1 can be easily generalized to an AR(1) process with a non-zero

starting point.4 In particular, assume that y0 is some known random variable. Then

yj = ρjy0+xj, where process xj satisfies all assumptions of Theorem 1 and starts from

3Peter C.B. Phillips reported (via private communication) a similar expansion for the normalized

OLS estimator of ρ in a Gaussian mode.
4I am grateful to Peter C.B. Phillips for pointing this out.
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x0 = 0. Probabilistic expansions for process yt have additional terms. In particular,

1

nσ2

n∑
k=1

yk−1εk =
1

nσ2

n∑
k=1

xk−1εk +
1√
n

(
n∑

k=1

eck/n
εk
σ
√
n

)
y0
σ

=

=
1

nσ2

n∑
k=1

xk−1εk +
y0
σ
√
n

∫ 1

0

ecsdw(s) + op(n
−1/2),

1

n2σ2

n∑
k=1

y2k =
1

n2σ2

n∑
k=1

x2k +
2√
n

(
1

n

n∑
k=1

eck/n
yk
σ
√
n

)
y0
σ

+ op(n
−1/2) =

=
1

n2σ2

n∑
k=1

x2k +
2y0
σ
√
n

∫ 1

0

ecsJc(s)ds+ op(n
−1/2).

4 Distributional expansion

For making inferences we need asymptotic theory to approximate the unknown finite-

sample distribution of the t-statistic t(y, n, ρn). In the previous section we established

a probabilistic approximation. In particular, we found a sequence of random variables

ξn with a known distribution that depends on a vector of parameters ψ such that

t(y, n, ρn) = ξn + op(n
−1/2) for ρn = 1 + c/n. That is,

lim
n→∞

Pρn

{
|t(y, n, ρn)− ξn| >

ϵ√
n

}
= 0 for all ϵ > 0.

The goal of this section is to come up with a distributional expansion. By dis-

tributional expansion of the second order we mean a sequence of real-value functions

Gn(·) such that

Pρn {t(y, n, ρn) ≤ x} = Gn(x) + o(n−1/2). (4)

In general, Gn(·) is not required to be a cdf of any random variable.

An example of a distributional expansion is the second-order Edgeworth expan-

sion. Initially, an Edgeworth expansion was stated as an approximation to the distri-

bution of normalized sums of random variables. Nowadays, Edgeworth-type expan-

sions have been obtained for many statistics having a normal or chi-squared limiting

distribution. Traditionally, Edgeworth-type expansions are obtained from expansions

of characteristic functions. It is also known that usually, in Edgeworth expansions,
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function Gn is not a cdf of any random variable. In particular, Gn is not monotonic

in many applications.

In our setup an Edgeworth expansion does not exist since the limiting distribution

is not normal or chi-squared. In this section we show that under some moment condi-

tions our probabilistic expansion corresponds to a distributional expansion. Namely,

sup
x

|Pρn {t(y, n, ρn) ≤ x} − P {ξn ≤ x}| = o(n−1/2),

where ξn = tc + n−1/4f + n−1/2g from part (e) of Theorem 1. That is, in our case

Gn(x) = P {ξn ≤ x} is a cdf and depends on the parameter vector ψ.

Definition 1 (Park(2003)) A random variable X has a distributional order o(n−a)

if P{|X| > n−a} < n−a.

Theorem 2 Let all assumptions of Theorem 1 hold, then all op(n
−1/2) terms in state-

ments (a)-(e) of Theorem 1 are of distributional order o(n−1/2).

Corollary 1 If error terms are i.i.d. with mean zero and 8 finite moments, the

following distributional expansion holds:

sup
x

∣∣P{t(y, ρn, n) < x} − P{tc + n−1/4f + n−1/2g < x}
∣∣ = o(n−1/2).

One can notice there is no “unique” distributional expansion even if we require

that Gn be a cdf. This surprising fact is explained in the remark below.

Remark 5 Let Gn(x) = P{ξn < x} be a cdf and assume that η has a normal dis-

tribution and is independent of σ- algebra A. Let ξn and F be random variables

measurable with respect to A. If Gn satisfies the distributional approximation (4),

then G̃n(x) = P{ξn + F 1√
n
η < x} would also satisfy it. That is, the additional term

(which is of probabilistic order of Op(n
−1/2)) has a distributional impact of order

o(n−1/2). This point was made by Park (2003). The idea is that the characteristic

function for ξn + F 1√
n
η conditional on A is equal to eitξn up to the order O(n−1).
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It might seem strange that the probabilistic expansion of
∑
yj−1εj includes a

term of order Op(n
−1/4). This term has a distributional impact of order O(n−1/2).

The idea of the statement is totally parallel to the remark above. Indeed, M(V ) is

distributionally M(1) ·
√
|V |, where M(1) ∼ N(0, 1) and is independent of B(·) =

(w, V, U).

Remark 6 Combining Remarks 2 and 5 one comes up with the following. If the

error terms are normally distributed then we have a distributional equivalence

P{t(z, n, ρ) < x} = P{tc < x}+ o(n−1/2).

That is, the difference between quantiles constructed in Andrews’ (1993) method and

the modification of Stock’s (1991) method is of the order o(n−1/2). The two methods

achieve the same accuracy up to the second order.

5 Bootstrapped expansion

5.1 Embedding for bootstrapped statistic

In section 4 we assert that the distribution of t-statistic t(y, n, ρn) can be approxi-

mated by a sequence of functions Gn(x) = P{tc + 1
n1/4f + 1√

n
g ≤ x}, where f and g

are functionals of Brownian motions B(·) and M . The covariance structure of B is

described in (3), it depends on ψ = (σ2, µ3, µ4, κ), while M is independent of B.

The grid bootstrapped statistic (as in Hansen (1999)) has the same form, since it

uses the true value (not estimator) of ρ0 (or c). The only difference between the initial

distribution of the t-statistic and the grid bootstrapped distribution of the t-statistic

is a difference in the distribution of the error term. We will show that

P∗
n{t(y∗, n, ρ) ≤ x} = G∗

n(x) + o(n−1/2) P− a.s.,

here P∗
n is the bootstrapped distribution with error terms drawn from n re-centered

residuals, it is conditional on the realization of the initial sample. Function G∗
n(x) =

P{tc + 1
n1/4f

∗ + 1√
n
g∗ ≤ x} is the approximating distribution function, here f ∗ and

12



g∗ are functionals of Brownian motions B∗
n and M∗

n, where M
∗
n is independent of B∗

n.

The only difference with the initial statistic is that the covariance structure of B∗

depends on the sample moments ψ̂n = (σ̂2
n, µ̂3,n, µ̂4,n, κ̂n) rather than true moments

ψ.

The next subsection states that the parameter vector ψ̂n converges almost surely

to ψ at a speed of Op(n
−1/2), which would be enough to say that the second-order

terms in the expansions of the initial and the grid bootstrapped statistics coincide up

to the order of o(n−1/2) almost surely.

Theorem 3 Let us have an AR(1) process (1) with y0 = 0 and error terms satisfying

Assumptions A with r ≥ 8. Assume that ρn = 1 + c/n, c ≤ 0. Let us consider for

every n a process y∗j = ρny
∗
j−1+e

∗
j , y

∗
0 = 0, where e∗j are an i.i.d. sample from centered

and normalized residuals from the initial regression. Then

sup
x

|P{t(y, n, ρn) ≤ x} − P∗
n{t(y∗, n, ρn) ≤ x}| = o(n−1/2) P− a.s.

Theorem 3 states that Hansen’s grid bootstrap provides second-order improvement

when compared with Andrews’ method and the modification of Stock’s method in the

local-to-unity asymptotic approach. The intuition for that improvement is typical for

the bootstrap. The second-order term depends on the parameters of the distribution

of error terms. Those parameters are well approximated by the sampled analogues.

The non-parametric grid bootstrap uses sampled residuals, the parameters of which

are very close to the population values. As a result, the refinement is achieved. The

only parameter (on which the limiting expansion depends) that could not be well

estimated is the local-to-unity parameter c. The grid bootstrap procedure uses the

“true” value of c.

Theorem 3 is a statement obtained using the local-to-unity asymptotic approach.

The statement that Hansen’s grid bootstrap achieves second-order refinement in the

classical asymptotics is easy to make. It could be obtained from an Edgeworth ex-

pansion along the lines suggested in Bose (1988). As a result, we should advise

applied researchers to choose Hansen’s grid bootstrap over Andrews’ method and the

modification of Stock’s method.

13



5.2 Convergence of parameters

This subsection is a part of the proof of Theorem 3 from the previous subsection. Here

we show that the parameter vector ψ = (σ2, µ3, µ4, κ) can be well approximated by a

sample analog (moments of residuals) ψ̂n = (σ̂2
n, µ̂3,n, µ̂4,n, κ̂n). The part of the state-

ment pertaining to the moments of error terms, namely, that vector (σ̂2
n, µ̂3,n, µ̂4,n)

converges to vector (σ2, µ3, µ4) is the standard one and holds if error term εj has

enough moments.

However, one parameter, κ, may potentially depend on the way the Skorokhod

embedding has been realized. There are numerous methods to construct a Brownian

motion w and a stopping time τ in such a way that the stopped process w(τ) has

the same distribution as a given mean-zero random variable ε and Eτ = Eε2. Paper

by Obloj (2004) provides a comprehensive survey of different approaches to realize

the Skorokhod embedding. Since we are free to choose any construction, from now

on I assume that we use the construction stated in Skorokhod (1965). In the proof

of Lemma 1 below, I show that the initial Skorokhod construction published in Sko-

rokhod’s book (1965) leads to κ = Eτ 2 = 5
3
Eε4. This expression ties κ to the fourth

moment of the random variable ε, as a result, as long as µ̂4,n converges to µ4, the

same holds for κ̂n and κ.

Lemma 1 Let error terms εj satisfy the set of Assumptions A. Then there is a Sko-

rokhod’s embedding for which

ψ − ψ̂n = Op(n
−1/2).

6 Some notes about AR(p) processes

A natural question is whether the results about the second order asymptotic refine-

ment of the grid bootstrap can be generalized to the AR(p) models. While asymptotic

expansions analogous to those obtained in Theorems 1 and 2 can be established in

the more general case of AR(p) models5, the result on the second order asymptotic

5This derivation is beyond the scope of the current paper.
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refinement achieved by the grid bootstrap does not hold.

Assume that we have a process written here in the augmented Dickey-Fuller form:

yj = ρyj−1 + β1∆yj−1 + ...+ βp−1∆yj−p+1 + εj. (5)

Denote |µ1| ≤ |µ2| ≤ ... ≤ |µp| to be the autoregressive roots of process (5). A

typical way of modeling a near-unit-root process is to assume that µp = 1 + c
n
while

the other roots µ1, ..., µp−1 are held fixed and strictly separated from the unit circle

(|µp−1| < δ < 1).

There are several ways to characterize the persistence of an AR(p) process. The

two most often used characteristics are the largest autoregressive root µp and the sum

of the autoregressive coefficients ρ. In the case of the unit root testing they coincide:

testing for the presence of a unit root µp = 1 is equivalent to testing that the sum of

autoregressive coefficients is equal to unity (ρ = 1). However, in the case of near unit

roots the two characteristics diverge, in particular:

ρ = 1− (1− µp)(1− µp−1)...(1− µ1) = 1 +
c

n
(1− µp−1)...(1− µ1) = 1 +

c∗

n
,

where c∗ = c(1− µp−1)...(1− µ1).

There are two very insightful discussions by Phillips (1991) and Andrews and

Chen (1994) that provide arguments in favor of using the sum of the autoregressive

coefficients, ρ, as the measure of persistence. In particular, Phillips (1991) points out

that the spectrum at zero is equal to σ2

(1−ρ)2
, while Andrews and Chen (1994) notice

that the cumulative impulse response, that is, the sum of all impulse responses,

is equal to 1
1−ρ

, that is, both these measures of long-run behaviour of a process are

directly linked to the sum of coefficients. Below I mention three additional arguments

as to why one may prefer to use the sum of coefficients ρ rather than the largest root

µp as the characteristic of persistence. First, while an estimator of ρ can be obtained

by the usual OLS regression, an estimator of µp is a very complicated function of the

OLS coefficients; this function cannot be written explicitly analytically for cases with

p ≥ 5. Second, the largest root is not always well defined and potentially may be a

complex number, as with positive probability the two largest (in absolute value) roots
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are complex conjugates. Finally, if the order of the autoregression p is not known and

one estimates the OLS regressions of an increasing order (pn → ∞ as n → ∞), so

called sieve regression, then the roots are not consistently estimated (while the OLS

estimator for ρ is still consistent). In particular, Onatski and Uhlig (2012) showed

that even if the data is generated from the white noise one will find an asymptotically

infinite number of roots concentrated around the unit circle (spurious unit roots).

For the rest of this section we assume that the sum of the AR coefficients, ρ, is the

parameter of interest. The grid bootstrap procedure in such a case was introduced by

Hansen (1999) and was proved to be uniformly asymptotically correct by Mikusheva

(2007). Below is a brief description of the grid bootstrap for AR(p).

Assume that we test the hypothesis H0 : ρ = ρ0 using the corresponding t-statistic

in the regression (5). The finite-sample distribution of the t-statistic depends on ρ0

and n, as well as on the unknown nuisance parameters β1, ..., βp−1. Let us estimate

the following OLS regression:

yj − ρ0yj−1 = β1∆yj−1 + ...+ βp−1∆yt−p+1 + εj,

that is, we regress the quasi-difference yj−ρ0yj−1 on ∆yt−1, ...,∆yt−p+1. Assume that

β̂1(ρ0), ..., β̂p−1(ρ0) are the OLS coefficients from such a regression. The bootstrapped

samples are generated in the following way:

y∗j = ρ0y
∗
j−1 + β̂1(ρ0)∆y

∗
j−1 + ...+ β̂p−1(ρ0)∆y

∗
t−p+1 + ε∗j ,

where ε∗j are simulated from the re-centered residuals. The bootstrapped t-statistic

is obtained by running a regression (5) on the simulated data y∗. By repeating the

simulations many times, one obtains the distribution of the bootstrapped t-statistic,

which she can use to get the critical values for the initial test. These critical values

depend on the value ρ0 tested. To construct a confidence set one has to repeat the

procedure for different values of ρ0, and choose those for which the corresponding

hypothesis is accepted.

Assume that µp = 1 + c/n while µ1, ..., µp−1 are fixed and separated from the

unit circle, and the hypothesis of interest H0 : ρ = ρ0 holds true, that is, ρ0 =
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1− (1− µp)(1− µp−1)...(1− µ1). Then according to Phillips (1987), t(y, ρ0, n) ⇒ tc,

where tc is defined in Theorem 1 (e). Notice that the null hypothesis H0 : ρ = ρ0 pins

down the value of c∗ = n(ρ0− 1), while the limit distribution depends on the value of

c. Obviously, the values of c and c∗ are closely related, but the relation between them

depends on the other coefficients of the AR process, β1, ..., βp−1, which are nuisance

parameters, that is, unknown parameters not specified by the null hypothesis. From

this perspective the t-statistic for ρ is not asymptotically pivotal, and thus, it is

difficult to expect the bootstrap to provide asymptotic refinement. Notice also that

the two cases when the grid bootstrap achieves asymptotic refinement, namely the

AR(1) and testing for the unit root, correspond to the situation when ρ = µp (or

c = c∗) and thus the t-statistic is asymptotically pivotal.
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8 Appendix. Proofs of results

We use the following results from Park (2003):

Lemma 2 (Park (2003), Lemma 3.5(a))

If Assumptions A are satisfied with r ≥ 8, then

1√
nσ

n∑
j=1

εj = w(1) + n−1/4M(V ) + n−1/2N(V ) + op(n
−1/2),

where V = V (1).

Lemma 3 (Park(2003)) If Assumptions A are satisfied with r > 4 then we might

choose Bn and B such that

P
{

sup
0≤t≤1

|Bn(t)−B(t)| > c

}
≤ n1−r/4C−r/2(1 + σ−r)K(1 + E|εj|r)

for any C ≥ n−1/2+2/r.

About convergence of stochastic integrals:

Lemma 4 (Kurtz and Protter (1991)) For each n, let (Xn, Yn) be an Fn
t - adapted

process with sample paths in Skorokhod space D and let Yn be an Fn
t semimartin-

gale. Suppose that Yn = Mn + An + Zn, where Mn is a local Fn
t martingale, An

is Fn
t - adapted finite variation process, and Zn is constant except for finitely many

discontinuities. Let Nn(t) denote the number of discontinuities of process Zn on in-

terval [0, t]. Suppose that Nn is stochastically bounded for each t > 0. Suppose that

for each α > 0 there exist stopping times {ταn } such that P{ταn ≤ α} ≤ 1/α and

supn E[[Mn]t∧ταn + Tt∧ταn (An)] <∞.

If (Xn, Yn, Zn) →d (X, Y, Z) in the Skorokhod topology, then Y is a semimartingale

with respect to a filtration to which X and Y are adapted and (Xn, Yn,
∫
XndYn) →d

(X, Y,
∫
XdY ) in the Skorokhod topology. If (Xn, Yn, Zn) → (X,Y, Z) in probability,

then convergence in probability holds in the conclusion.

Proof of Theorem 1.
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(a) From our stochastic embedding,
εj
σ
=

√
n (w (Tn,j)− w (Tn,j−1)), and the defi-

nition of the O-U process, Jc(t) =
∫ t

0
ec(t−s)dw(s), we have that

yk
σ
√
n
− Jc(Tn,k) =

=
k∑

j=1

ec
k−j
n (w (Tn,j)− w (Tn,j−1))−

k∑
j=1

∫ Tn,j

Tn,j−1

ec(Tn,k−s)dw(s) =

=
k∑

j=1

(
ec

k−j
n − ec(Tn,k−Tn,j)

)
(w (Tn,j)− w (Tn,j−1))+

+
k∑

j=1

∫ Tn,j

Tn,j−1

(
ec(Tn,k−Tn,j) − ec(Tn,k−s)

)
dw(s).

We show below that the first term in the last sum is asymptotically equal to

− c√
n

∫ k/n

0
ec(k/n−s)Jc(s)dV (s) + op(n

−1/2), while the second term is op(n
−1/2). We

start with the first term and notice that |ex − 1 − x − x2| ≤ x3 for all |x| < 1.

According to Breiman (1992) chapter 13.4, we also have

P
{

max
1≤j≤k≤n

∣∣∣∣(Tn,k − Tn,j)−
k − j

n

∣∣∣∣ > 1

}
→ 0.

These two statements imply that

k∑
j=1

(
ec

k−j
n − ec(Tn,k−Tn,j)

)
(w (Tn,j)− w (Tn,j−1)) =

= c
k∑

j=1

ec
k−j
n

(
k − j

n
− (Tn,k − Tn,j)

)
(w (Tn,j)− w (Tn,j−1))+

+c2
k∑

j=1

ec
k−j
n

(
k − j

n
− (Tn,k − Tn,j)

)2

(w (Tn,j)− w (Tn,j−1)) +R1,n,k,

where

|R̃1,n,k| ≤
k∑

j=1

c3ec
k−j
n

∣∣∣∣k − j

n
− (Tn,k − Tn,j)

∣∣∣∣3 |w (Tn,j)− w (Tn,j−1)| =

=
k∑

j=1

c3ec
k−j
n

∣∣∣∣ 1√
n
V (

k

n
)− 1√

n
V (

j

n
)

∣∣∣∣3 ∣∣∣∣ εj
σ
√
n

∣∣∣∣ ≤
≤ 1

n3/2

(
k∑

j=1

c3ec
k−j
n

∣∣∣∣ εj
σ
√
n

∣∣∣∣
)

· sup
0≤t,s≤1

|Vn(t)− Vn(s)|3 = Op(n
−1).
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The last statement holds uniformly over k.

c
k∑

j=1

ec
k−j
n

(
k − j

n
− (Tn,k − Tn,j)

)
(w (Tn,j)− w (Tn,j−1)) =

=
c√
n

k∑
j=1

ec
k−j
n (Vn(k/n)− Vn(j/n)) (w (Tn,j)− w (Tn,j−1)) =

=
c√
n

k∑
j=1

ec
k−j
n

k∑
i=j+1

(Vn(i/n)− Vn((i− 1)/n)) (w (Tn,j)− w (Tn,j−1)) =

=
c√
n

k∑
i=1

i−1∑
j=1

ec
k−j
n (Vn(i/n)− Vn((i− 1)/n)) (w (Tn,j)− w (Tn,j−1)) =

=
c√
n

k∑
i=1

ec
k−i
n (Vn(i/n)− Vn((i− 1)/n))

yi√
n
=

=
c√
n

∫ k/n

0

ec(k/n−s)Jc,n(s)dVn(s) =

=
c√
n

∫ k/n

0

ec(k/n−s)Jc(s)dV (s) + op(n
−1/2).

The last line in the long equality is due to Lemma 4. Here we used that Vn is the

second component of Bn, Jc,n(i/n) =
yi√
n
=
∫ i/n

0
ec(

i
n
−s)dwn(s), and Bn → B a.s.

The next asymptotic statement can be obtained by analogous considerations:

c2
k∑

j=1

ec
k−j
n

(
k − j

n
− (Tn,k − Tn,j)

)2

(w (Tn,j)− w (Tn,j−1)) =

=
c2

n

k∑
j=1

ec
k−j
n (Vn(k/n)− Vn(j/n))

2 (w (Tn,j)− w (Tn,j−1)) = Op(n
−1).

The only statement we are left to prove is

k∑
j=1

∫ Tn,j

Tn,j−1

(
ec(Tn,k−Tn,j−1) − ec(Tn,k−s)

)
dw(s) = op(n

−1/2).

Notice that random variables ξn,j =
∫ Tn,j

Tn,j−1

(
ec(1−Tn,j−1) − ec(1−s)

)
dw(s) are not corre-

lated across j, Eξn,j = 0 and Eξ2n,j ≤ const · n−3. As a result,
∑k

j=1 ξn,j is op(n
−1/2)

both probabilistically and distributionally uniformly over k.

(b) Let An(k/n) =
√
n
(

yk−1

σ
√
n
− Jc(Tn,k−1)

)
. According to Lemma 4 and statement

(a) proved above, we have

√
n

n∑
k=1

(
yk−1

σ
√
n
− Jc(Tn,k−1)

)
εk
σ
√
n
=

∫ 1

0

An(t)dwn(t) →p −c
∫ 1

0

∫ t

0

ec(t−s)Jc(s)dV (s)dw(t).

21



Next consider the following equality:
n∑

k=1

Jc(Tn,k−1)
εk
σ
√
n
−
∫ 1

0

J(s)dw(s) =

=

∫ Tn,n

1

Jc(s)dw(s)−
n∑

k=1

∫ Tn,k

Tn,k−1

(Jc(s)− Jc(Tn,k−1))dw(s). (6)

Here and below we write
∫ Tn,n

1
Jc(s)dw(s) as a short-cut for∫ Tn,n

0

Jc(s)dw(s)−
∫ 1

0

Jc(s)dw(s) =


∫ Tn,n

1
Jc(s)dw(s), if Tn,n > 1;

−
∫ 1

Tn,n
Jc(s)dw(s), if Tn,n < 1.

Consider the second term on the right hand side of equation (6). By definition of

the O-U process J(s) = w(s) + c
∫ s

0
J(t)dt, as a result, we have

n∑
k=1

∫ Tn,k

Tn,k−1

(Jc(s)− Jc(Tn,k−1))dw(s) =
n∑

k=1

∫ Tn,k

Tn,k−1

(w(s)− w(Tn,k−1))dw(s)+

+c
n∑

k=1

∫ Tn,k

Tn,k−1

(D(s)−D(Tn,k−1))dw(s),

where D(s) =
∫ s

0
Jc(t)dt. According to Ito’s lemma and Lemma 3, we obtain the

following statement:∫ Tn,k

Tn,k−1

(w(s)−w(Tn,k−1))dw(s) =
ε2k
2n

−Tn,k − Tn,k−1

2
=

1

2
√
n
(U(1)−V (1))+op(n

−1/2).

Term
∑n

k=1

∫ Tn,k

Tn,k−1
(D(s) − D(Tn,k−1))dw(s) is the sum of uncorrelated identi-

cally distributed random variables with mean zero and variance of asymptotic order

Op(n
−3). As a result, this term is of order o(n−1/2) in probability and distributionally.

Now, consider the first term on the right hand side of equation (6). From Ito’s

lemma we know that d(J2
c (x)) = 2Jcdw + 2cJ2

c dx+ dx, as a result,∫ Tn,n

1

Jc(s)dw(s) =
1

2

(
J2
c (Tn,n)− J2

c (1)
)
−
∫ Tn,n

1

(cJ2
c (x) +

1

2
)dx = (7)

= Jc(1) (Jc(Tn,n)− Jc(1)) +
1

2
(Jc(Tn,n)− Jc(1))

2−

− 1√
n
V ·
(
cJ2

c (1) +
1

2

)
+ op(n

−1/2) = (8)

= Jc(1)

(
w(Tn,n)− w(1) +

c√
n
Jc(1)V

)
+

(w(Tn,n)− w(1))2

2
−

− V√
n

(
cJ2

c (1) +
1

2

)
+ op(n

−1/2) = (9)
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= Jc(1) (w(Tn,n)− w(1)) +
1

2
(w(Tn,n)− w(1))2 − 1

2
√
n
V + op(n

−1/2) = (10)

= n−1/4Jc(1)M(V ) + n−1/2

(
Jc(1)N(V ) +

1

2
M2(V )− 1

2
V

)
+ op(n

−1/2). (11)

Going from equation (7) to equation (8), and from (8) to (9) results in remainder

terms −c
∫ Tn,n

1
(J2

c (x) − J2
c (1))dx and cJc(1)

∫ Tn,n

1
(Jc(x) − Jc(1))dx. Here we used

the same convention regarding integrals of the form
∫ Tn,n

1
as described right after

equation (6). It is easy to see that the both remainder terms are of order o(n−1/2) in

probability and distributionally. Expansion (11) follows from (10) and the statement

of Lemma 2.

Putting everything together we arrive at expansion (b) of Theorem 1.

(c) Using the statement of part (a) we have

1

n

∑(
y2k
nσ2

− J2
c (Tn,k)

)
=

1

n

∑(
yk
σ
√
n
− Jc(Tn,k)

)(
2Jc(Tn,k) +

yk
σ
√
n
− Jc(Tn,k)

)
=

=
1

n

∑(
− c√

n

∫ k/n

0

ec(k/n−s)Jc(s)dV (s) + op

(
1√
n

))(
2Jc(Tn,k) + op

(
1√
n

))
=

= − 2c√
n

∫ 1

0

Jc(x)

∫ x

0

ec(x−s)Jc(s)dV (s)dx+Rn + op(n
−1/2),

whereRn = 1√
n

(
1
n

∑n
k=1 g(k/n)−

∫ 1

0
g(x)dx

)
and g(x) = −cJc(x)

∫ x

0
ec(x−s)Jc(s)dV (s).

It is easy to see that Rn = op(n
−1/2). As a result,

1

n

∑ y2k
σ2n

=
1

n

∑
J2
c (Tn,k)−

2c√
n

∫ 1

0

Jc(x)

∫ x

0

ec(x−s)Jc(s)dV (s)dx+ op(n
−1/2).

1

n

∑
J2
c (Tn,k−1)−

∫ 1

0

J2
c (x)dx =

∑
J2
c (Tn,k−1)

(
1

n
− (Tn,k − Tn,k−1)

)
−

−
∑∫ Tn,k

Tn,k−1

(J2
c (t)− J2

c (Tn,k−1))dt+

∫ Tn,n

1

J2
c (t)dt, (12)

here we use the same convention as when we write
∫ Tn,n

1
as described after equation

(6).

Let us consider each term in (12) separately. Due to Lemma 4 we have:∑
J2
c (Tn,k−1)

(
1

n
− (Tn,k − Tn,k−1)

)
= − 1√

n

∫ 1

0

J2
c,n(x)dVn(x) =

= − 1√
n

∫ 1

0

J2
c (x)dV (x) + op(n

1/2).
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Consider the second summand in equation (12): ∑∫ Tn,k

Tn,k−1

(J2
c (t)− J2

c (Tn,k−1))dt =

= 2
∑

Jc(Tn,k−1)

∫ Tn,k

Tn,k−1

(Jc(t)− Jc(Tn,k−1))dt+
∑∫ Tn,k

Tn,k−1

(Jc(t)− Jc(Tn,k−1))
2dt =

= 2
∑

Jc(Tn,k−1)

∫ Tn,k

Tn,k−1

(Jc(t)− Jc(Tn,k−1))dt+ op(n
−1/2).

The last asymptotic statement holds because
∑∫ Tn,k

Tn,k−1
(Jc(t)−Jc(Tn,k−1))

2dt is a sum

of random variables with mean of order O(n−2) and variances of order O(n−3).∑
Jc(Tn,k−1)

∫ Tn,k

Tn,k−1

(Jc(t)− Jc(Tn,k−1))dt =

=
∑

Jc(Tn,k−1)

∫ Tn,k

Tn,k−1

(w(t)− w(Tn,k−1))dt+ op(n
−1/2).

Lemma A1 part (b) in Park (2003) implies that

E

(∫ Tn,k

Tn,k−1

(w(t)− w(Tn,k−1))dt

)
=

µ3

3σ3
n−3/2.

and E
(∫ Tn,k

Tn,k−1
(w(t)− w(Tn,k−1))dt

)2
= O(n−2). As a result,

2
∑

Jc(Tn,k−1)

∫ Tn,k

Tn,k−1

(w(t)− w(Tn,k−1))dt =

=
2µ3

3σ3
n−3/2

∑
Jc(Tn,k−1) + op(n

−1/2) =
2µ3√
n3σ3

∫ 1

0

Jc(t)dt+ op(n
−1/2).

Now consider the final term in (12). Using the reasoning analogous to that used in

the proof of statement (b) and the convention described after equation (6), we obtain∫ Tn,n

1

J2
c (t)dt =

1√
n
J2
c (1)V + op(n

−1/2).

Putting all terms together leads us to statement (c).

(d) Using the statement of part (a)

1

n

∑(
yk
σ
√
n
− Jc(Tn,k)

)
= − c√

n

1

n

∑∫ k/n

0

ec(k/n−s)Jc(s)dV (s) + op
(
n−1/2

)
.

Lemma 4 implies that

1

n3/2σ

∑
yk =

1

n

∑
Jc(Tn,k)−

c√
n

∫ 1

0

∫ x

0

ec(x−s)Jc(s)dV (s)dx+ op(n
−1/2).
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We know that the asymptotic limit of 1
n

∑
Jc(Tn,k−1) is

∫ 1

0
Jc(x)dx. Consider the

higher order terms in this expansion:

1

n

∑
Jc(Tn,k−1)−

∫ 1

0

Jc(x)dx =
∑

Jc(Tn,k−1)

(
1

n
− (Tn,k − Tn,k−1)

)
−

−
∑∫ Tn,k

Tn,k−1

(Jc(t)− Jc(Tn,k−1))dt+

∫ Tn,n

1

Jc(t)dt (13)

According to Lemma 4, the first summand on the right-hand side in equation (13)

equals to∑
Jc(Tn,k−1)

(
1

n
− (Tn,k − Tn,k−1)

)
= − 1√

n

∫ 1

0

Jc(x)dV (x) + op(n
−1/2).

Consider the second summand in expansion (13):∑∫ Tn,k

Tn,k−1

(Jc(t)− Jc(Tn,k−1))dt =
∑∫ Tn,k

Tn,k−1

(w(t)− w(Tn,k−1))dt+

+c
∑∫ Tn,k

Tn,k−1

∫ t

Tn,k−1

Jc(s)dsdt =
∑∫ Tn,k

Tn,k−1

(w(t)− w(Tn,k−1))dt+ op(n
−1/2).

According to Park (2003) Lemma A1, we have that

E

(∫ Tn,k

Tn,k−1

(w(t)− w(Tn,k−1))dt

)
=

µ3

3σ3
n−3/2,

and the variance of
∫ Tn,k

Tn,k−1
(w(t) − w(Tn,k−1))dt is of order Op(n

−2). So, we have∑∫ Tn,k

Tn,k−1
(w(t)− w(Tn,k−1))dt =

µ3

3
√
nσ3 +Op(n

−1). Finally, the last term in (13) is∫ Tn,n

1

Jc(t)dt = Jc(1)V + op(n
−1/2).

This finishes the proof of statement (d).

Part (e) follows from (a)-(d), a Taylor expansion and from the observation proved

in Park (2003) that

σ̂2 =
1

n

∑
ε2t +Op(1/n) = σ2 +

1√
n
σ2U + op(n

−1/2).

�
Proof of Theorem 2. In the proof of Theorem 1 we showed that many remainder

terms in our expansions are distributionally of order o(n−1/2). The only terms for
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which we are left to show that they are distributionally of order o(n−1/2), are those

terms for which we previously appealed to the convergence of stochastic integrals

(Lemma 4). Here is the comprehensive list of them:

R2,n,k =
c√
n

k∑
i=1

ec
k−i
n (Vn(i/n)− Vn((i− 1)/n)) yi−1 −

c√
n

∫ k/n

0

ec(k/n−s)Jc(s)dV (s);

R3,n = − c√
n

n∑
k=1

∫ k/n

0

ec(k/n−s)Jc(s)dV (s)
εk√
n
+

c√
n

∫ 1

0

∫ t

0

ec(t−s)Jc(s)dV (s)dw(t);

R4,n = − 1√
n

(∑
J2
c (Tn,k−1)(Vn(k/n)− Vn(k − 1/n))−

∫ 1

0

J2
c (x)dV (x)

)
;

R5,n = − 1√
n

(∑
Jc(Tn,k−1)(Vn(k/n)− Vn(k − 1/n))−

∫ 1

0

Jc(x)dV (x)

)
.

All these terms have a form of stochastic integrals 1√
n

∫ 1

0
ξ(t)d(V (t)−Vn(t)) or 1√

n

∫ 1

0
ξ(t)d(w(t)−

wn(t)). Their distributional order would depend on the quadratic variations which

have forms of sup0≤t≤1 |Vn(t)− V (t)|2 and sup0≤t≤1 |wn(t)− w(t)|2. The order of the

last expressions is determined by Lemma 3. �
Proof of Lemma 1.

Let ε be a random variable with Eε = 0 and Eε4 < ∞. Then according to

Skorokhod’s construction as presented in his 1965 book, there exists a Brownian

motion w and a stopping time τ such that the stopped Brownian motion w(τ) has

the same distribution as ε and Eτ = Eε2. In order to prove Lemma 1 we show that

for this specific construction (Skorokhod (1965)) we have Eτ 2 = 5
3
Eε4.

The first step in Skorokhod’s construction is the embedding of a random variable ξ

which takes only two values a and b with probabilities b
b−a

and − a
b−a

correspondingly,

here values a and b have opposite signs, and the probabilities are constructed in such a

way that Eξ = 0. Let τa,b be the smallest root of the equation (w(t)−a)(w(t)−b) = 0.

Then, as shown in Skorokhod (1965, p. 166), w(τa,b) has the same distribution as ξ

and the characteristic function for τa,b is

Ee−λτa,b =
sinh b

√
2λ− sinh a

√
2λ

sinh(b− a)
√
2λ

. (14)

As a result, one can calculate moments of τa,b as

(−1)k
dk

dλk
Ee−λτa,b

∣∣
λ=0

= Eτ ka,b. (15)
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Let F (x) = P{ε ≤ x} be the distribution of variable ε. Let us define function

G(x) as
∫ x

G(x)
ydF (y) = 0. Assume also that a Brownian motion w is independent of

ε, then the Skorokhod’s construction defines τ as

τ = inf{t : (w(t)− ε)(w(t)−G(ε)) = 0} = τε,G(ε).

Skorokhod proves that w(τ) has the same distribution as ε and Eτ = Eε2.

By using formulas (14) and (15), through double differentiation of function (14),

one can obtain the following expression

Eτ 2a,b =
1

3
(−b3a+ 3b2a2 − ba3) = r(a, b).

We can notice that

Eτ 2 = E
(
E
(
τ 2|ε

))
= E [r(ε,G(ε))] =

1

3
E(−G3(ε)ε+ 3G2(ε)ε2 −G(ε)ε3).

Then we make use of the following two facts: G(G(x)) = x and G(x)dF (G(x)) =

xdF (x) to show that all terms in the last expression result in Eε4. For example, we

can show that E[G3(ε)ε] = −Eε4. Indeed,

E[G3(ε)ε] =

∫
G3(x)xdF (x) =

∫
G(x)3G(x)dF (G(x)) = −

∫
u4dF (u) = −Eε4,

the sign has changed due to change of limits of integration, since u = F (x) is a

decreasing function of x. The other terms are done in a similar way. Finally, we

arrive to the formula Eτ 2 = 5
3
Eε4.

Since Eε8 < ∞, by using Chebyshev’s inequality one can arrive at the statement

of the lemma. �
Proof of Theorem 3. Corollary 1 to Theorem 2 states the distributional expan-

sions for the t-statistic:

sup
x

|P{t(y, n, ρn) ≤ x} −Gn(x)| = o(n−1/2), (16)

here Gn(x) = P{tc + 1
n1/4f + 1√

n
g ≤ x}, where f and g are functionals of Brownian

motions B(·). The covariance structure of B is described in (3), it depends on ψ =

(σ2, µ3, µ4, κ).

27



Examine now the bootstrapped distribution. All statements about them are con-

ditional on realizations of the process y and formulated as P− a.s.

First, let us establish the notation. Assume we that have a realization of a sample

of size n of the initial process (y1, ..., yn). Bootstrapped errors are generated as i.i.d.

from the re-centered residuals {e1, ..., en}, that is, from the distribution that has mo-

ments ψ̂n = (σ̂2
n, µ̂3,n, µ̂4,n, κ̂n). Here sub-index n signifies that the sample moments

are estimated from a sample of size n. Let this distribution be described by proba-

bility P∗
n. Assume we draw a sample ε∗1, ..., ε

∗
m of size m from P∗

n and produced the

bootstrapped sample y∗ = (y∗1, ..., y
∗
m). Then Corollary 1 to Theorem 2 establishes

the following asymptotic approximation:

sup
x

∣∣P∗
n{t(y∗,m, ρm) ≤ x} −G∗

n,m(x)
∣∣ = o(m−1/2), P− a.s. (17)

here G∗
n,m(x) = P{tc + 1

m1/4f
∗ + 1√

m
g∗ ≤ x} where f ∗ and g∗ are functionals of

Brownian motions B∗
n and M∗

n as described in Theorem 2. The covariance structure

of B∗
n depends on ψ̂n and M∗

n is independent of B∗
n.

In order to prove Theorem 3 we will obtain and use the following two statements:

sup
x

∣∣P∗
n{t(y∗, n, ρn) ≤ x} −G∗

n,n(x)
∣∣ = o(n−1/2), P− a.s., (18)

and

sup
x

∣∣Gn(x)−G∗
n,n(x)

∣∣ = o(n−1/2), P− a.s. (19)

The latter statement is due to Lemma 1 and the continuity argument. Statements

(16), (18) and (19) imply the validity of Theorem 3.

To prove (18) we refine the statement of Corollary 1. Namely, we claim that for

any process with error terms satisfying Assumption A with r ≥ 8 there exists δ > 0

such that

sup
x

|P{t(y, n, ρn) ≤ x} −Gn(x)| ≤ Const(µ8) · n−1/2−δ, (20)

where Const(µ8) is the constant that depends only on the eights moment of the error

term µ8 = Eε8. Indeed, all remainder terms described in proofs of Theorems 1 and

2 fall into two categories: sums of independent random variables or the remainders
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in the convergence of stochastic integrals (such as R2,n,k, R3,n, R4,n and R5,n). The

refinement of the order of the former comes from a Chebyshev-type inequality. The

distributional order of the latter depends on the distributional order of the quadratic

variations sup0≤t≤1 |Vn(t)− V (t)|2 and sup0≤t≤1 |wn(t)−w(t)|2, that is established in

Lemma 3 with r = 8.

Refinement (20) of Corollary 1 applied to the bootstrapped distributions gives the

following refinement of statement (17):

sup
x

∣∣P∗
n{t(y∗,m, ρm) ≤ x} −G∗

n,m(x)
∣∣ = Const(µ̂8,n) ·m−1/2−δ, P− a.s.

Given that µ̂8,n → µ8 a.s. the last statement evaluated at m = n leads to (18). This

finishes the proof of Theorem 3. �
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