# MIT Libraries DSpace@MIT

## MIT Open Access Articles

## Formation of Alternating trans-A-alt-B Copolymers through Ring-Opening Metathesis Polymerization Initiated by Molybdenum Imido Alkylidene Complexes

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

**Citation:** Jeong, Hyangsoo, Jeremy M. John, and Richard R. Schrock. "Formation of Alternating trans-A-alt-B Copolymers through Ring-Opening Metathesis Polymerization Initiated by Molybdenum Imido Alkylidene Complexes." Organometallics 34.20 (2015): 5136–5145.

As Published: http://pubs.acs.org/doi/full/10.1021/acs.organomet.5b00709

Publisher: American Chemical Society (ACS)

Persistent URL: http://hdl.handle.net/1721.1/105182

**Version:** Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

**Terms of Use:** Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.



## Formation of Alternating *trans*-**A**-*alt*-**B** Copolymers Through Ring-Opening Metathesis Polymerization Initiated by Molybdenum Imido Alkylidene Complexes

Hyangsoo Jeong, Jeremy M. John, Richard R. Schrock\*

Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States email: rrs@mit.edu

#### Abstract

Ring-opening metathesis polymerization (ROMP) is used to prepare *trans*-poly(A-alt-B) polymers from a 1:1 mixture of A and B where A is a cyclic olefin such as cyclooctene  $(A_1)$  or cycloheptene  $(A_2)$  and **B** is a large norbornadiene or norbornene derivative such as 2,3dicarbomethoxy-7-isopropylidenenorbornadiene ( $\mathbf{B}_1$ ) or dimethylspirobicyclo[2.2.1]hepta-2,5diene-2,3-dicarboxylate-7,1'-cyclopropane  $(\mathbf{B}_2)$ . The most successful initiators that were examined are of the type Mo(NR)(CHCMe<sub>2</sub>Ph)[OCMe(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (R = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (1) or 2,6-*i*- $Pr_2C_6H_3$  (2)). The trans configuration of the AB linkages is proposed to result from the steric demand of **B**. Both anti-**MB** and syn-**MB** alkylidenes are observed during the copolymerization, where **B** was last inserted into a Mo=C bond, although anti-MB dominates as the reaction proceeds. Anti-MB is lower in energy than syn-MB, does not react readily with either A or B, and interconverts slowly with syn-MB through rotation about the Mo=C bond. Syn-MB does not readily react with **B**, but it does react slowly with **A** (rate constant ~1  $M^{-1} s^{-1}$ ) to give *anti*-**MA** and one *trans*-AB linkage. Anti-MA then reacts with B (rate constant ~300 M<sup>-1</sup> s<sup>-1</sup> or larger) to give syn-MB and the second trans-AB linkage. The reaction has been modeled using experimental data in order to obtain the estimated rate constants above. The reaction between anti-MA and A is proposed to give rise to AA linkages, but AA dyads can amount to <5%. Several other possible A and B monomers, initiators, and conditions were explored.

#### **INTRODUCTION**

Copolymers in which monomers **A** and **B** are incorporated in a perfectly *alternating* manner (poly(**A**-*alt*-**B**)) are rare.<sup>1</sup> Two examples are alternating **AB** copolymers formed from CO and olefins<sup>1</sup> or CO<sub>2</sub> and epoxides.<sup>1c-f</sup> In each case one monomer (CO or CO<sub>2</sub>) itself is not homopolymerized.

In the last fifteen years ring-opening metathesis polymerization (ROMP) has been employed to make alternating **AB** copolymers.<sup>2</sup> The ideal circumstance for preparing an **AB** copolymer is one in which two monomers that are only slowly homopolymerized undergo cross polymerization. An example is the copolymerization of 1-substituted cyclobutenes and cyclohexene with ruthenium alkylidene initiators;<sup>2a</sup> 1-substituted cyclobutenes are not readily homopolymerized for steric reasons and the free energy for polymerization of cyclohexene is positive, so only one cyclohexene (it is proposed) is incorporated between two units of cyclobutene. Cyclooctene is often partnered with a relatively strained olefin such as a norbornene because "back-biting" to give cyclic oligomers can limit the length of poly(cyclooctene) sequences. Formation of an **AB** copolymer with a single structure via ROMP ideally should also include control of the *cis* or *trans* stereochemistry of the new C=C bonds, but this stereochemical control is rare.<sup>2u</sup> Control of tacticity in an AB copolymer has not been reported. In some variations formation of an **AB** copolymer is a consequence of thermodynamic rather than kinetic control.<sup>2v</sup>

To the best of our knowledge all attempts to prepare **AB** copolymers via ROMP employed Ru-based catalysts<sup>3</sup> before the discovery of the **AB** copolymers formed with molybdenum initiators that are the subject of this paper. An exception is the special case of an alternating copolymer where **A** and **B** are enantiomers.<sup>4</sup> In this case a *racemic* norbornene-like monomer is employed along with an initiator whose four-coordinate metal center inverts with each insertion of each enantiomer of the monomer. The preferential reaction of one configuration of the metal with one enantiomer allows enantiomers to be incorporated alternately to give a polymer with a single, so-called, *cis,syndiotactic,alt* structure. Among the well-defined catalysts, so far only molybdenum initiators yield a polymer with a *cis,syndiotactic,alt* structure. The reason why tungsten analogs of successful molybdenum initiators do not yield *cis,syndiotactic,alt* structures is not yet known.

We recently reported the synthesis of four alternating *trans*-**A**-*alt*-**B** copolymers from one of two large norbornadienes (**B**<sub>1</sub> or **B**<sub>2</sub>, Figure 1) and either cyclooctene (**A**<sub>1</sub>) or cycloheptene (**A**<sub>2</sub>) where Mo(NR)(CHCMe<sub>2</sub>Ph)[OCMe(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (R = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (**1**) or 2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (**2**)) is the initiator.<sup>5</sup> Between 92% and 97% AB dyads are formed in the *trans*-**A**-*alt*-**B** copolymer from a 1:1 mixture of **A** and **B**, depending on the specific reaction and conditions employed. In a



Figure 1. Four monomers used in initial study.



Figure 2. Four copolymers made with initiator 1.



**Figure 3.** The  $\delta$  5.8 to 5.1 ppm region of the <sup>1</sup>H NMR spectra for each **A**-*alt*-**B** copolymer made with **1** as the initiator.

typical experiment **A** and **B** (50 equiv of each, 0.4 M in  $C_6D_6$ ) are consumed to give copolymers after ~2 h. The <sup>1</sup>H NMR spectra of these *trans* **A**-*alt*-**B** copolymers contain two olefinic proton resonances; a doublet of triplets for **H**<sub>A</sub> and a doublet of doublets for **H**<sub>B</sub> (Figures 2 and 3). The large coupling constant between the olefinic protons (<sup>3</sup>J<sub>HAHB</sub> = ~15.5 Hz) together with a strong IR absorption at ~970 cm<sup>-1</sup> confirms the presence of *trans* C=C bonds. The resonances that can be ascribed to **AA** olefinic protons (in both *cis* and *trans* dyads) can be observed at 5.33 and 5.38

ppm in the spectra of  $poly(A_1-alt-B_1)$  and  $poly(A_2-alt-B_1)$ , but are hidden under the  $H_A$  resonance in the spectra of  $poly(A_1-alt-B_2)$  and  $poly(A_2-alt-B_2)$ . Integration of the olefinic resonances suggests that the AA dyads amount to 92%  $(A_1/B_1)$ , 94%  $(A_1/B_2)$ , 94%  $(A_2/B_1)$ , and 97%  $(A_2/B_2)$ , respectively, in the spectra shown in Figure 3. The precise percentage of AA dyads present in a given copolymer varies to some degree with concentration



Figure 4. The proposed mechanism to form *trans*-poly( $A_2$ -*alt*- $B_2$ ).

and temperature. The rate of copolymerization of  $A_1$  and  $B_1$  with 1 is approximately an order of magnitude slower in THF compared to chloroform, benzene, or toluene, as a consequence of competitive binding of THF to *syn* and *anti* propagating species to varying degrees.<sup>5</sup> Polymerizations in THF or other coordinating solvents or in the presence of potential ligands are not discussed in this paper.

Preliminary experiments led us to propose that two propagating species, *syn*-**MB** (in which **B** has inserted last into an M=C bond) and *anti*-**MA** (in which **A** has inserted last into an M=C bond) comprise the core of the mechanism for formation of *trans* **AB** copolymers. The mechanism for copolymerization of  $A_2$  and  $B_2$  is shown in Figure 4. The  $A_2$ -*alt*- $B_2$  copolymer is formed when *syn*-**MB**<sub>2</sub> reacts with  $A_2$  to give *anti*-**MA**<sub>2</sub> and one *trans*  $A_2B_2$  linkage, followed by a reaction between *anti*-**MA**<sub>2</sub> and  $B_2$  to form the other *trans*  $A_2B_2$  linkage and *syn*-**MB**<sub>2</sub>. The *trans* selectivity is proposed to arise as a consequence of the steric demand of  $B_2$ . It is proposed that *anti*-**MB**<sub>2</sub> does not react readily with either  $B_2$  or  $A_2$ . *Syn*-**MB**<sub>2</sub> linkage in one of the two reactions in which *trans*  $A_2B_2$  dyads are formed. No **MA**<sub>2</sub> intermediates are observed.

In this paper we model the reaction to form *trans*-poly( $A_2$ -*alt*- $B_2$ ) in order to obtain the rate constants  $k_{B2}$  and  $k_{A2}$  (Figure 4) and explore other **AB** combinations, catalysts, and conditions.

#### **RESULTS AND DISCUSSION**

#### Modeling the formation of poly(A<sub>2</sub>-*alt*-B<sub>2</sub>)

The reaction between  $\mathbf{B}_2$  and syn-2 in toluene- $d_8$  is convenient to study kinetically because syn-2 reacts with around one equivalent of  $\mathbf{B}_2$  to yield the *trans* first-insertion product,  $\mathbf{MB}_{2t}$ , relatively cleanly; homopolymerization of  $\mathbf{B}_2$  is very slow.  $\mathbf{MB}_{2t}$  can be isolated and characterized;<sup>5</sup> it is primarily (95%) the *anti* isomer at equilibrium. Usually a *syn* alkylidene isomer is more stable than an *anti* isomer in an imido alkylidene complex of Mo or W with  $K_{eq}$ ( $K_{eq} = k_{as}/k_{sa}$  where  $k_{as}$  is the rate constant for conversion of *anti* to syn, and  $k_{sa}$  the reverse) being over a thousand.<sup>6</sup> We ascribe the lower energy of *anti*- $\mathbf{MB}_{2t}$  relative to  $syn-\mathbf{MB}_{2t}$  to the steric demand of the alkylidene substituent derived from  $\mathbf{B}_2$  in  $syn-\mathbf{MB}_{2t}$ . Since the rate of reaction of  $\mathbf{B}_2$  with syn-2 does not depend upon the concentration of  $\mathbf{B}_2$  in the range of 5 - 30 times the concentration of syn-2, it was proposed that only *anti-2* reacts with  $\mathbf{B}_2$ .<sup>5</sup> Monitoring the reaction between syn-2 and 0.4 equiv of  $\mathbf{B}_2$  over a period of ~10,000 s by proton NMR revealed that syn- $\mathbf{MB}_{2t}$  is formed first and then begins to be converted to *anti*- $\mathbf{MB}_{2t}$  as  $\mathbf{B}_2$  is consumed and syn-2 is partially consumed (Figure 5). Therefore, we propose that the mechanism of the reaction between syn-2 and  $\mathbf{B}_2$  is one in which syn-2 must first form *anti-2* through rotation of the alkylidene (eq 1), *anti-2* reacts with  $\mathbf{B}_2$  to yield  $syn-\mathbf{MB}_{2t}$  (eq 2), and  $syn-\mathbf{MB}_{2t}$  then is converted to *anti*-**MB**<sub>2t</sub> through alkylidene rotation (eq 3). The reaction between *anti*-**2** and **B**<sub>2</sub> (eq 2) is a model for the proposed reaction between *anti*-**MA**<sub>2</sub> and **B**<sub>2</sub> in an actual copolymerization. It has been noted in the literature that initiation of *homopolymerization* of 1,7,7-trimethylbicyclo[2.2.1]hept-2-ene (in either *rac* or (-) form) requires a rate-limiting conversion of the *syn* alkylidene isomer of **2** to the *anti* alkylidene isomer.<sup>7</sup>



reaction of *syn-2* with ~0.4 equiv of  $\mathbf{B}_2$ .

The rate constants for interconversion of *syn-2* and *anti-2* were determined in 1993.<sup>6</sup> The rate constant for conversion of *anti-2* to *syn-2* (k<sub>as2</sub>) was found to be 0.10 s<sup>-1</sup> at 22 °C through extrapolation of values obtained at lower temperatures in an Eyring plot. From the equilibrium constant at 22 °C in tol- $d_8$  ( $k_{as2}/k_{sa2} = 1400$ )  $k_{sa2}$  was then estimated to be 7.0x10<sup>-5</sup> s<sup>-1</sup>. These two rate constants are probably accurate to  $\pm 5\%$  at best. The ratio of anti-MB<sub>2t</sub> to syn-MB<sub>2t</sub> at equilibrium can be estimated by proton NMR to be ~95:5. Finally, photolysis of syn-2 at -78 °C yielded a mixture of *anti*-2 (40%) and syn-2, which upon treatment with 0.4 equiv of  $\mathbf{B}_2$  at low temperature produced a mixture of syn-2 and syn-MB<sub>2t</sub>, the latter of which contains a trans C=C bond (see SI). This result proves that *anti*-2 reacts much more readily with  $B_2$  than syn-2 reacts with  $B_2$ , and that exclusively a *trans* C=C bond is formed as a product. Similar results were found in previous studies for 5,6-bistrifluoromethylnorbornadiene.<sup>6</sup> The relatively slow conversion of syn-MB<sub>2t</sub> to anti-MB<sub>2t</sub> was then followed at 22 °C in order to obtain  $k_{saMB2t} =$  $30 \times 10^{-5} \text{ s}^{-1}$ . Therefore,  $k_{asMB2t}$  can be calculated to be  $1.6 \times 10^{-5} \text{ s}^{-1}$ , assuming that the ratio of *anti*- $MB_{2t}$  to syn- $MB_{2t}$  is 95:5 at equilibrium. We ascribe the relatively slow rates of interconversion of syn-MB<sub>2t</sub> and anti-MB<sub>2t</sub> in each direction to the large substituent in the alkylidene derived from  $B_2$ . The only rate constant in equations 1-3 for which no experimental data are available is  $k_{B2}$ , which would appear to be relatively large since the reaction shown in equation 2 is "fast." In fact, to our knowledge no rate constant for a "fast" reaction between an *anti*-alkylidene and a norbornene-like substrate has been measured.

|                                                                                                                              |               | •                |                              | •                   | -            |
|------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|------------------------------|---------------------|--------------|
| $[{\bf B_2}] ({\bf M})$                                                                                                      | $k_{as2}^{b}$ | $k_{sa2}^{ a,b}$ | $k_{asMB2t}^{\qquad \  a,b}$ | $k_{saMB2t}^{ a,b}$ | $k_{B2}^{c}$ |
| initial values                                                                                                               | 0.10          | 7.0              | 1.6                          | 30                  | unknown      |
| 0.4x[ <b>2</b> ]                                                                                                             | 0.10          | 7.50(4)          | 2.00(10)                     | 43.3(2)             | 282(8)       |
| 0.5x[ <b>2</b> ]                                                                                                             | 0.10          | 8.22(13)         | 2.88(24)                     | 42.9(6)             | 264(18)      |
| <sup>a</sup> All x $10^{-5}$ <sup>b</sup> Units are s <sup>-1</sup> . <sup>c</sup> Units are M <sup>-1</sup> s <sup>-1</sup> |               |                  |                              |                     |              |

**Table 1.** The results of modeling the reaction between syn-2 and  $B_2$ .

The experimental data in Figure 5 were fit using the Levenberg-Marquardt method in COPASI, as described in the Supporting Information. An analogous reaction between *syn*-**2** and **B**<sub>2</sub> (0.5 equiv) was similarly followed and modeled (see SI). Four of the values in Table 1 were treated as variables while  $k_{as2}$  was fixed at 0.10 s<sup>-1</sup>. Rate constant  $k_{as2}$  has to be fixed in order to obtain a value for  $k_{B2}$  because  $k_{as2}$  and  $k_{B2}$  are correlated as a consequence of the fact that *anti*-**2** is either converted to *syn*-**2** (eq 1) or reacts with **B**<sub>2</sub> (eq 2). The values obtained for  $k_{sa2}$ ,  $k_{asMB2t}$ , and  $k_{saMB2t}$  in the modeling study are close to the initial values found through the studies described above; they are shown in Table 1 as "initial values". In the modeling study the *minimum acceptable* value for  $k_{B2}$ , the bimolecular rate constant for the reaction between *anti*-**2** and **B**<sub>2</sub>, was found to be ~300 M<sup>-1</sup> s<sup>-1</sup>. Use of larger, fixed values for  $k_{B2}$  led to no changes in the values for  $k_{sa2}$ ,  $k_{asMB2t}$  shown in Table 1. Therefore, we can conclude that  $k_{B2}$  is ~300 M<sup>-1</sup> s<sup>-1</sup> *or larger*. The minimum error in this  $k_{B2}$  could easily be  $\pm$  50 M<sup>-1</sup> s<sup>-1</sup>.

If we treat  $k_{sa2}$  (eq 1) as an unknown in a model in which an irreversible, rate-limiting *syn-2* to *anti-2* conversion is followed by a rapid and irreversible reaction between *anti-2* and **B**<sub>2</sub>, the resulting values that are obtained for  $k_{sa2}$  are the same as those shown in Table 1. An irreversible rate-limiting step followed by a rapid formation of product is the source of the large uncertainty in  $k_{B2}$ .

The proposed mechanism of copolymerization of  $A_2$  and  $B_2$  by initiator 2 is shown in Figure 4. We know that  $k_{B2}$  for the reaction between *anti*-2 and  $B_2 \sim 300^{-1} \text{ s}^{-1}$  or larger (Table 1). The minimum value for  $k_{B2}$  for the reaction between *anti*-MA<sub>2</sub> and  $B_2$  should be significantly greater than 300 M<sup>-1</sup> s<sup>-1</sup> in view of what is likely to be a higher reactivity for a relatively small (near the metal) *anti* alkylidene versus an *anti* neophylidene complex (see Figure 4); therefore we employed (arbitrarily) a fixed value of  $k_{B2} = 700 \text{ M}^{-1} \text{ s}^{-1}$  for modeling the reaction between *anti*-MA<sub>2</sub> and B<sub>2</sub> in an actual copolymerization. In order to account for formation of A<sub>2</sub>A<sub>2</sub> linkages, the four ways to form A<sub>2</sub>A<sub>2</sub> linkages (*cis* or *trans*) plus the equilibrium between *syn*-MA<sub>2</sub> and *anti*-MA<sub>2</sub> were added to the simulation (see SI). The consumption of A<sub>2</sub> (15 or 35

equiv) and  $\mathbf{B}_2$  (15 or 35 equiv) in the presence of  $\mathbf{MB}_{2t}$  as the initiator was followed and fit to the model as described in the SI using the Levenberg-Marquardt method in COPASI. The reaction of anti- $MA_2$  with  $A_2$  to give anti- $MA_2$  or syn- $MA_2$  and cis or trans homopolymer (HP) linkages, respectively, reproduced the experimental results. All rate constants were treated as unknowns except  $k_{B2}$ . The second order rate constant  $(k_{A2})$  for the reaction of syn-MB<sub>2</sub> with A<sub>2</sub> was found to have a value of  $\sim 1 \text{ M}^{-1} \text{ s}^{-1}$  for both runs (see SI for details.) Following only the consumption of  $A_2$  and  $B_2$  is inadequate to determine the number of unknowns in the simulation, in part since the formation of  $A_2A_2$  (HP) linkages is only ~4% in this model (see SI). The time course for consumption of  $A_2$  and  $B_2$  and formation of  $A_2B_2$  (CP) and  $A_2A_2$  (HP) linkages shown in the SI (Figures S5 and S7) is a relatively accurate description of a typical formation of >96% poly(A*alt*-**B**). The main conclusion is that the rate constant (if  $k_{B2} = 700$ ) for the reaction of *anti*-**MA**<sub>2</sub> and  $B_2$  is at least ~700 times the value for the rate constant ( $k_{B2} \sim 1$ ) for the reaction of syn-MB<sub>2</sub> with  $A_2$ . The success of formation of *trans*-poly( $A_2$ -alt- $B_2$ ), and the three other alternating copolymers explored initially clearly depends upon the relatively selective reactions between anti-MA<sub>2</sub> with B<sub>2</sub> to give syn-MB<sub>2</sub> and a trans  $A_2B_2$  linkage and that between syn-MB<sub>2</sub> and A<sub>2</sub> to give anti-MA<sub>2</sub> and a trans  $B_2A_2(=A_2B_2)$  linkage. This model is the simplest possible. It does not include any reversibility of the formation of AA linkages ("back-biting") or the formation of AAA linkages, etc., or ways of forming AA linkages other than in the non-stereoselective reaction of *anti*- $MA_2$  with  $A_2$ .

#### Studies relevant to the formation of poly(A<sub>1</sub>-alt-B<sub>1</sub>)

Initiators 1 and 2 behave similarly in copolymerizations, but 1 reacts differently with  $B_1$  than 2 reacts with  $B_2$ . The differences between 1 and 2 are subtle. (All details can be found in the SI.)

A solution of **1** in toluene- $d_8$  was photolyzed at 350 nm for 3 h at -78 °C. A new resonance at 13.02 ppm ( ${}^{1}J_{CH} = 156 \text{ Hz}$ ; 45%) that was observed in the  ${}^{1}\text{H}$  NMR spectrum at -50 °C was assigned to *anti*-**1** on the basis of the large value for  ${}^{1}J_{CH}$  compared to  ${}^{1}J_{CH}$  for the *syn* isomer (at 12.02 ppm,  ${}^{1}J_{CH} = 122 \text{ Hz}$ ). The conversion of *anti*-**1** to *syn*-**1** above -50 °C was followed versus an internal standard at four temperatures over a 15 °C range to obtain four values for  $k_{as1}$  at those temperatures. An Eyring plot led to values for  $\Delta H^{\ddagger}(17.1 \text{ kcal/mol})$  and  $\Delta S^{\ddagger}(-7.4 \text{ eu})$  and a calculated value for  $\Delta G^{\ddagger}_{298}$  at 22 °C (19.3 kcal/mol) and a  $k_{as1}$  at room temperature of 0.045 s<sup>-1</sup>.  $K_{eq1} (= k_{as1}/k_{sa1})$  was determined to be 1400 through integration of the resonances for *syn* and *anti* at room temperature. These values should be compared with those for **2** ( $\Delta H^{\ddagger} = 18.3 \text{ kcal/mol}$ ),  $\Delta S^{\ddagger} = -2 \text{ eu}$ ,  $\Delta G^{\ddagger}_{298} = 18.3 \text{ kcal/mol}$ ), and  $K_{eq2} = 1400$ , respectively).<sup>6</sup> The value for  $k_{sa2}$  at room temperature was calculated to be 3.2 x 10<sup>-5</sup> s<sup>-1</sup> employing the value for  $K_{eq2}$ . The values for  $k_{as1}$ (0.045 s<sup>-1</sup>) and  $k_{sa2}$  (3.2 x 10<sup>-5</sup> s<sup>-1</sup>) compared to  $k_{as1}(0.10 \text{ s}^{-1})$  and  $k_{sa1}(7 \text{ x } 10^{-5} \text{ s}^{-1})$  suggest that *anti*- 1 and *syn*-1 interconvert at about half the rate that *anti*-2 and *syn*-2 interconvert, but  $K_{eq1}$  and  $K_{eq2}$  are the same (1400).

When 0.7 - 0.8 equivalents of **B**<sub>1</sub> were added to a toluene solution of **1** at room temperature, **B**<sub>1</sub> was fully consumed within 20 minutes. Two doublets ( ${}^{3}J_{HH}$  of 3.3 Hz and 7.6 Hz) were observed in the alkylidene region of the proton NMR spectrum. Two olefinic proton resonances were observed for two isomers having *cis* C=C stereochemistry, *not trans*, according to the value for  ${}^{3}J_{HH}$  (12 Hz). With the aid of  ${}^{1}$ H- ${}^{1}$ H COSY and  ${}^{1}$ H- ${}^{13}$ C HSQC, individual olefinic resonances were found to arise from *syn* and *anti* isomers of the first insertion product. The major isomer ( ${}^{3}J_{HH}$  of 3.3 Hz) was found to have  ${}^{1}J_{CH} = 157$  Hz and therefore was assigned to be *anti*-**MB**<sub>1*cis*</sub>, while the minor isomer ( ${}^{3}J_{HH}$  of 7.6 Hz) was assigned to be *syn*-**MB**<sub>1*cis*</sub>. At room temperature, *anti*-**MB**<sub>1*cis*</sub> and *syn*-**MB**<sub>1*cis*</sub> slowly reached equilibrium and K<sub>eqMB1</sub> (=[*syn*-**MB**<sub>1*cis*</sub>]/[*anti*-**MB**<sub>1*cis*</sub>]) was found to be 5/95, the same as K<sub>eqMB2</sub> (*vide supra*). We propose that *syn*-**MB**<sub>1*cis*</sub> results from the reaction between *syn*-**1** and **B**<sub>1</sub>, while *anti*-**MB**<sub>1*cis*</sub>, the minor product, results from isomerization of *syn*-**MB**<sub>1*cis*</sub> to *trans*-**MB**<sub>1*cis*</sub>. We propose that the smaller imido group in *syn*-**1** is why the major first-insertion product is *syn*-**MB**<sub>1*cis*</sub>.

When **B**<sub>1</sub> (0.45 equiv) in a toluene-*d*<sub>8</sub> solution was added to a mixture of *syn*-1 and *anti*-1 at -50 °C, complete consumption of *anti*-1 was observed after 10 minutes according to <sup>1</sup>H NMR spectra. Approximately 30% of *anti*-1 was converted back to *syn*-1 after 10 minutes at -15 °C, so consumption of *anti*-1 at -50 °C results mainly from the reaction of *anti*-1 with **B**<sub>1</sub>. In the alkylidene region, the *syn*-**MB**<sub>1*trans*</sub> isomer of the first insertion product was formed, as confirmed by the coupling constants of the alkylidene and the olefinic protons. When the temperature was raised to -40 °C, *syn*-1 started to react with **B**<sub>1</sub> to form *syn*-**MB**<sub>1*cis*</sub>. At -10 °C, the two overlapping alkylidene peaks of *syn*-**MB**<sub>1*cis*</sub> and *syn*-**MB**<sub>1*trans*</sub> could be observed in the proton NMR spectrum. All assignments were determined through <sup>1</sup>H-<sup>1</sup>H COSY experiments. All details can be found in the SI.

From the above experiments we conclude that *anti*-1 reacts with  $B_1$  at low temperatures to give *syn*-**MB**<sub>1*trans*</sub> much more rapidly than *syn*-1 reacts with  $B_1$  to give *syn*-**MB**<sub>1*cis*</sub>, consistent with approach of  $B_1$  to both *syn*-1 and *anti*-1 with the cage pointing toward the imido ligand. However, *at 22* °C the opposite is found; *syn*-1 reacts with  $B_1$  to give *syn*-**MB**<sub>1*cis*</sub>. Therefore the reaction of *syn*-1 with  $B_1$  at 22 °C is *not* a good model for a copolymerization reaction of  $A_1$  and  $B_1$  by initiator 1. It should be noted that the crystallographically characterized first-insertion product of the reaction of  $B_1$  with *syn*-Mo(NAr)(CH-*t*-Bu)(O-*t*-Bu)<sub>2</sub> has a *syn*,*trans* geometry,<sup>8</sup> which *suggests* (but does not prove) that the *syn* first-insertion product arises through a reaction between  $B_1$  and *anti*-Mo(NAr)(CH-*t*-Bu)(O-*t*-Bu)<sub>2</sub>.<sup>9</sup> The *syn* first-insertion product derived from Mo(NAr)(CH-*t*-Bu)(O-*t*-Bu)<sub>2</sub> and  $B_1$  does *not* react further with  $B_1$ , even at 50 °C. Initiator 1 *does* polymerize 50 equivalents of  $B_1$  (>96% conversion after 24 h) at 22 °C, but the isolated polymer is not stereoregular. Polymerization of  $B_1$  is slow compared to the timescale of a copolymerization of  $A_1$  and  $B_1$  by *syn*-1, which is why the resulting *trans*-poly( $A_1$ -*alt*- $B_1$ ) has few, if any,  $B_1B_1$  errors. It is important to note that even though *syn*-1 reacts with  $B_1$  to give *syn*- $MB_{1cis}$  at 22 °C (*vide infra*), only *anti*- $MA_1$  is present as an intermediate under catalytic conditions and it is proposed to react with  $B_1$  to give *syn*- $MB_1$  that contains a *trans* C=C linkage before any *syn*- $MA_1$  can form.

# Formation of $A_1$ -*alt*- $B_1/B_2$ , $A_2$ -*alt*- $B_1/B_2$ , $A_1/A_2$ -*alt*- $B_1$ , $A_1/A_2$ -*alt*- $B_2$ and $A_1/A_2$ -*alt*- $B_1/B_2$ copolymers

The initial studies suggest that  $\mathbf{B}_1$  and  $\mathbf{B}_2$  behave similarly and  $\mathbf{A}_1$  and  $\mathbf{A}_2$  behave similarly in forming the four possible stereoregular alternating **AB** copolymers. Therefore three, or even all four monomers, can be employed to make copolymers in which  $\mathbf{A}_1$ ,  $\mathbf{A}_2$ ,  $\mathbf{B}_1$ , and  $\mathbf{B}_2$  are (it is proposed) randomly distributed within the polymer microstructures, but *trans*- $\mathbf{A}_x$ -*alt*- $\mathbf{B}_y$  dyad

relationships are maintained (Figure 6). For example, polymerization of 50 equivalents of  $A_1$  using initiator 1 (0.2 M in CDCl<sub>3</sub>), 25 equivalents of  $\mathbf{B}_1$ , and 25 equivalents of  $\mathbf{B}_2$ produced a CDCl<sub>3</sub>-soluble copolymer within 2h at 22 °C in which both trans copolymer dyads could be observed (Figure 6). The remaining three combinations  $(A_2-alt-B_1/B_2)$ ,  $A_1/A_2$ -alt- $B_1$ , and  $A_1/A_2$ -alt- $B_2$ ) produced similar copolymers (Figure 6). The patterns for  $\mathbf{H}_{A1}$  and  $\mathbf{H}_{A2}$  overlap essentially completely in the spectra for  $A_1/A_2$ -alt- $B_1$ and  $A_1/A_2$ -alt- $B_2$  in Figure 6, but those for  $H_{B1}$  and  $H_{B2}$  are separated. Overlap of  $H_{A1}$ and  $\mathbf{H}_{A2}$  patterns accounts for the slightly lower fidelity in the  $\mathbf{H}_{A1}$  and  $\mathbf{H}_{A2}$  patterns when both  $A_1$  and  $A_2$  are present. An





equimolar mixture of  $A_1:A_2:B_1:B_2$  (0.2 M in CDCl<sub>3</sub>) can be polymerized to yield a polymer whose <sup>1</sup>H NMR spectrum is a combination of those obtained for the  $A_1$ -*alt*- $B_1/B_2$  and  $A_2$ -*alt*- $B_1/B_2$  copolymers (top of Figure 6).

"Sequence editing" in copolymerizations to give alternating **AB** copolymers has been reported in the literature for some ruthenium-initiated copolymerizations, *i.e.*, cyclooctene is largely polymerized first and then "edited" down to some relatively short sequence before the norbornene-like monomer irreversibly reacts with the **MA** alkylidene to form an **AB** linkage.<sup>10,11</sup> **A**<sub>1</sub> (25 equiv) was added **1** to give poly**A**<sub>1</sub>, followed by addition of **B**<sub>1</sub> (25 equiv). Five days later, virtually no high quality (>90%) *trans*-poly(**A**<sub>1</sub>-*alt*-**B**<sub>1</sub>) was observed. Therefore, sequence editing is not a competitive pathway on the time scale of an **A**<sub>1</sub>/**B**<sub>1</sub>/1 copolymerization in this system in toluene-*d*<sub>8</sub>.

#### Synthesis of other *trans* A<sub>1</sub>B<sub>v</sub> copolymers

Other  $A_1B_y$  combinations were found to yield copolymers with  $\ge 80\%$  alternating  $A_1B_y$ linkages, as shown in Figure 7. The most successful were  $B_3$ ,  $B_4$ , and  $B_5$ , which are close relatives of  $B_2$ . Formation of copolymer from  $A_1$  and  $B_6$  was relatively slow, with three days being required to form ~90% *trans*  $A_1B_6$  linkages. Repeating the copolymerization of  $A_1$  and  $B_6$ at 50 °C for 8 h resulted in the total consumption of  $A_1$  with little copolymer formation. Heating this sample (24 h at 50 °C) resulted in polymerization of the remaining  $B_6$ , but still little copolymer was formed. These observations also rule out "editing" of poly(cyclooctene) sequences as the major mechanism of forming  $A_1B_6$  linkages. We ascribe the relatively high percentage of  $A_1A_1$  dyads in *trans*-poly( $A_1$ -*alt*- $B_9$ ) to the slower reaction of  $B_9$  with *anti*- $MA_1$ than  $B_1$  with *anti*- $MA_1$  for electronic reasons.



Figure 7. Proton <sup>1</sup>H NMR spectra between 5.60 and 5.15 ppm of  $A_1$ -alt- $B_x$  prepared using 1 as an initiator.

*Rac-B*<sub>8</sub> (Figure 8) has been copolymerized with cyclooctene by ruthenium initiators to give a copolymer that contains a mixture of *cis* and *trans* double bonds.<sup>2</sup> The copolymer prepared using Grubbs 1<sup>st</sup> generation initiator (82% yield, 73%  $A_1$ -*alt-B*<sub>8</sub>) could be improved to ~90%  $A_1$ -*alt-B*<sub>8</sub> employing a modified Grubbs 2<sup>nd</sup> generation initiator. The polymerization of 100 equivalents of  $A_1$  and  $B_8$  (0.1 M in CDCl<sub>3</sub>) by 1 was complete within 2 h at 22 °C to yield a CDCl<sub>3</sub>-soluble, yellow polymer. The <sup>1</sup>H NMR spectrum of isolated of  $A_1$ -*alt-B*<sub>8</sub> showed four resonances in the olefinic region; a doublet for  $H_{A'}$  at 5.72 ppm, a double doublet for  $H_A$  at 5.64 ppm, and a pair of overlapping multiplets for  $H_B$  and  $H_B'$  at 5.80 and 5.87 ppm, respectively (Figure 9). The coupling between  $H_{A'}$  and  $H_{B'}$  was found to be ~15 Hz characteristic of *trans* C=C bonds. The methine proton resonance in the polymer was located at 4.74 ppm. All assignments were corroborated through <sup>1</sup>H COSY and HSQC NMR experiments. The relatively simple and sharp <sup>1</sup>H and <sup>13</sup>C NMR resonances for poly( $A_1$ -*alt*- $B_8$ ) are consistent with a *trans* head-to-tail polymer having  $A_1B_8$  linkages in excess of 85% and essentially only *trans* C=C



Figure 8. <sup>1</sup>H NMR spectra from 6.0 to 5.4 ppm of  $A_1$ -alt- $B_x$  prepared using 1 as an initiator.



Figure 9. <sup>1</sup>H NMR spectra from 6.0 to 5.4 ppm of  $A_1$ -alt- $B_x$  prepared using 1 as an initiator.

bonds. Copolymerization of  $rac-\mathbf{B}_8$  with cyclooctene was impractically slow under conditions where  $rac-\mathbf{B}_8$  was copolymerized. We assume that the enantiomers of  $\mathbf{B}_8$  are incorporated randomly in poly( $\mathbf{A}_1$ -*alt*- $\mathbf{B}_8$ ) and related copolymers.

Monomer **B**<sub>9</sub> was only slightly more selective towards the formation of **AB** linkages than **B**<sub>8</sub> and **B**<sub>10</sub> (89%, 85% and 83% **A**-*alt*-**B**, respectively). A copolymer with 89% **A**<sub>1</sub>**B**<sub>11</sub> linkages was formed when **B**<sub>11</sub> was employed as a monomer. The <sup>1</sup>H NMR spectrum of poly(**A**<sub>1</sub>-*alt*-**B**<sub>11</sub>) contained resonances for the two **H**<sub>A</sub> protons (**H**<sub>A</sub> and **H**<sub>A'</sub>) at 5.63 ppm and a pair of multiplets for **H**<sub>B</sub> and **H**<sub>B'</sub> at 5.80 and 5.87 ppm, respectively, a proposal that is supported by *g*COSY experiments.

#### **Catalyst screening and other experiments**

Copolymerizations involving equal amounts of  $A_2$  and  $B_2$  were chosen in order to ascertain the efficiently of initiators **3-13** (Figure 10).

Compound  $\mathbf{4}^{12}$  a tungsten analog of  $\mathbf{1}$ , led to no appreciable consumption of  $\mathbf{A}_2$  and  $\mathbf{B}_2$  after 24 h. The polymer that could be observed after several days appeared to be an intractable mixture of copolymer and homopolymer dyads of  $\mathbf{A}_2$  and  $\mathbf{B}_2$ .



Figure 10. Initiators 3 - 13 explored for *alt*-ROMP using A<sub>2</sub> and B<sub>2</sub> as monomers.

Initiators  $3^4$  and 5 were less selective than 1 towards *alt*-ROMP. The  $F_9$  initiator (5) yielded more *cis* linkages, while the  $F_3$  initiator (3) was more *trans* selective and more active towards the homopolymerization of  $B_2$  (Figure 11 and Table 2). Transferring the steric bulk from the *ortho* to the *meta* positions of the *N*-phenyl imido ligand (in the form of a 3,5-dimethylphenylimido ligand in 12) increased the % *cis* dyads (Table 2).<sup>13</sup> A similar effect was observed using mono-*o*-substituted *N*-phenyl imido ligands. The % *trans* dyads increased as the size of the 2-substituent increased from trifluoromethyl to *t*-butyl. These screening results



Figure 11. <sup>1</sup>H NMR spectra from 5.6 to 5.0 ppm of  $A_2$ -alt- $B_2$  copolymers prepared using  $F_3$ ,  $F_6$  and  $F_9$  as initiators.

| Table  | 2. | The con  | nsequence | of | chang | ing | the | alkox | ide | and | imi | do | ligan | ds. <sup>a</sup> |
|--------|----|----------|-----------|----|-------|-----|-----|-------|-----|-----|-----|----|-------|------------------|
| I GOIC |    | 1110 001 | noequenee | ~  | onang |     | une | amon  |     | unu |     |    | ingan | <b>C</b> +D •    |

| Entry | Catalyst                                          | Time | Conversion | AB linkages | cis : trans |
|-------|---------------------------------------------------|------|------------|-------------|-------------|
|       |                                                   | (h)  | (%)        | (%)         | AB linkages |
|       |                                                   |      |            |             | (%)         |
| 1     | $Mo(N-2,6-Me_2C_6H_3)(CHCMe_2Ph)[OC(CF_3)_3]_2$   | 8.5  | 80         | 85          | 15:85       |
| 2     | $Mo(N-2,6-Me_2C_6H_3)(CHCMe_2Ph)[OCMe(CF_3)_2]_2$ | 2    | >99        | 97          | 01:99       |
| 3     | $Mo(N-2,6-Me_2C_6H_3)(CHCMe_2Ph)[OCMe_2CF_3]_2$   | 6    | >99        | 78          | 03:97       |
| 4     | $Mo(N-3,5-Me_2C_6H_3)(CHCMe_2Ph)[OCMe(CF_3)_2]_2$ | 1    | >99        | 99          | 40 : 60     |
| 5     | $Mo(N-2-CF_3C_6H_4)(CHCMe_2Ph)[OCMe(CF_3)_2]_2$   | 1    | >99        | 93          | 26 : 74     |
| 6     | $Mo(N-2-i-PrC_6H_4)(CHCMe_2Ph)[OCMe(CF_3)_2]_2$   | 1    | >99        | 93          | 28:72       |
| 7     | $Mo(N-2-PhC_6H_4)(CHCMe_2Ph)[OCMe(CF_3)_2]_2$     | 1    | >99        | 85          | 34 : 66     |
| 8     | $Mo(N-2-t-BuC_6H_4)(CHCMe_2Ph)[OCMe(CF_3)_2]_2$   | 24   | >99        | 99          | 20:80       |

<sup>a</sup>Conditions: 50 equiv  $A_2$  and  $B_2$  (0.1 M in CDCl<sub>3</sub>) at 22 °C. % Conversion, % AB linkages, *cis:trans* ratio determined from <sup>1</sup>H NMR spectra of isolated polymers.



Figure 12. <sup>1</sup>H NMR spectra from 5.6 to 5.0 ppm of A-alt-B prepared using 13 as the initiator.

comprise a cause and effect that can be traced to the size of the imido ligand, with "smaller" imido ligands allowing more *cis* dyads to form. Replacing the phenylimido ligand with the adamantylimido (in **10**) or NAr<sup>F</sup> ligands (in **11**) led to mixtures of copolymer and homopolymer dyads.

Because monoalkoxide pyrrolide (MAP) initiators generally give high % *cis* polymers, we did not expect Mo(NAr)(CHCMe<sub>2</sub>Ph)(Me<sub>2</sub>Pyr)[OCMe(CF<sub>3</sub>)<sub>2</sub>] (**13**)<sup>14</sup> to be a successful initiator for *alt*-ROMP to give a *trans* alternating copolymer. Table S6 in the SI summarizes the results of the copolymerizations obtained with **B**<sub>1</sub> or **B**<sub>2</sub> plus either cyclooctene or cycloheptene using **13** as initiator. The only copolymers that were formed with >85% AB linkages were **A**<sub>1</sub>-*alt*-**B**<sub>2</sub> and **A**<sub>2</sub>-*alt*-**B**<sub>2</sub> (Figure 12; Table S6, entries 1 and 3). Copolymers made from **B**<sub>1</sub> had 82% and 72% **AB** linkages with **A**<sub>1</sub> and **A**<sub>2</sub>, respectively (Table S6, entries 2 and 4). Initiator **13** was less active towards monomers with lower ring strain (**A**<sub>2</sub>). The fact that **13** does not yield high *cis* copolymers can be ascribed to the preferred formation of *trans* dyads when employing **B**<sub>1</sub> and **B**<sub>2</sub>, i.e., monomer control of *cis/trans* content.

We briefly explored a temperature effect on *cis/trans* selectivity of a reaction involving  $Mo(N-2-i-PrC_6H_4)(CHMe_2Ph)[OCMe(CF_3)_2]_2$  (7) as the initiator. We found that decreasing the temperature from 22 °C to -30 °C slightly increased the percentage of *cis* linkages, but also increased the tendency for the formation of  $A_2A_2$  linkages (Table S7). When the polymerization of  $A_1$  and  $B_1$  by 1 at room temperature, which gives 92% *trans*-poly( $A_1$ -*alt*- $B_1$ ), was carried out at 65 °C, little change was observed (~90%  $A_1A_1$  dyads).

Two polymers were subjected to GPC studies in THF relative to polystyrene. *Trans*-poly( $A_1$ -*alt*- $B_1$ ) (50/50 equiv) prepared with initiator **1** showed a unimodal peak in the GPC with  $M_n = 30.3$  kDa ( $\mathcal{D}_M = 2.04$ ), while *trans*-poly( $A_1$ -*alt*- $B_2$ ) showed a unimodal peak in the GPC with  $M_n = 36.8$  kDa ( $\mathcal{D}_M = 1.74$ ). (See the SI for the GPC traces.) The lowest possible average molecular weight for each is ~18,000, so the observed  $M_n$ , if it is relatively accurate, is approximately double the lowest possible.

#### Synthesis of A<sub>x</sub>B<sub>1</sub> Copolymers that Contain A<sub>3</sub>, A<sub>4</sub>, and A<sub>5</sub>

Three other **A** monomers were explored for forming alternating copolymers with **B**<sub>1</sub> using **1** as initiator (Figure 13). All three monomers gave >75%  $A_xB_1$  linkages (x = 3-5). The results of copolymerizations involving  $A_3$ ,  $A_4$ , and  $A_5$  are summarized in Table S8 and in Figure 13.  $A_4$ -*alt*- $B_1$  is > 85% *trans* with a proton NMR spectrum much like that for  $A_1$ -*alt*- $B_1$  (Figure 3), but shifted slightly downfield. The pattern of  $H_A$  resonances in the spectrum for  $A_3$ -*alt*- $B_1$  is relatively complex as a consequence of two olefin faces being present, and therefore two possible relationships between  $A_3$  and  $B_1$  in a dyad. The pattern for  $H_B$  in  $A_3$ -*alt*- $B_1$  is a relatively simple double doublet. Copolymer  $A_5$ -*alt*- $B_1$  shows a relatively high percentage of  $A_5A_5$  dyads with a resonance at 5.35 ppm. The reaction between *anti*- $MA_5$  and  $B_1$ .



Figure 13. Partial <sup>1</sup>H NMR spectra of  $poly(A_x-alt-B_1)$  prepared using initiator 1.

#### CONCLUSIONS

The work described here suggests that *trans*-poly( $\mathbf{A}$ -*alt*- $\mathbf{B}$ ) polymers are formed through a finely balanced set of two reactions analogous to those shown for *trans*-poly( $\mathbf{A}_2$ -*alt*- $\mathbf{B}_2$ ) in Figure 4 and partially elucidated for *trans*-poly( $\mathbf{A}_2$ -*alt*- $\mathbf{B}_2$ ) through modeling studies. The large size of **B** creates a situation where *anti*-**MB** is *lower* in energy than *syn*-**MB** *and* does not react with *either* **A** or **B** relative to the rate of conversion of *anti*-**MB** to *syn*-**MB**. *Syn*-**MB** then reacts with **A** faster than it reacts with **B** to give *anti*-**MA** and a *trans* **AB** dyad. *Anti*-**MA** reacts with both **A** and **B** competitively before (we propose) any *anti*-**MA** can isomerize to *syn*-**MA**. The rate of the reaction between *anti*-MA and B to give a *trans* AB dyad and *syn*-MB versus the rate of the reaction between *anti*-MA and A to give both *cis* and *trans* AA dyads we propose is essentially equal to the percentage of AB dyads formed. Formation of an all *trans* AB copolymer is "monomer controlled" in that the *anti* alkylidene derived from one monomer (MA) is naturally converted to the *syn* isomer formed from the other monomer (MB) and *vice versa* during formation of the AB copolymer.

#### **EXPERIMENTAL**

General considerations. All air-sensitive manipulations were performed under nitrogen in a glovebox or using Schlenk techniques. All glassware was oven-dried and allowed to cool under vacuum or nitrogen before use. <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained on 500 MHz or 400 MHz spectrometers. <sup>19</sup>F NMR spectra were obtained on 400 MHz spectrometers. All chemical shifts are reported in  $\delta$  (parts per million) and referenced to residual  ${}^{1}\text{H}/{}^{13}\text{C}$  signals of the deuterated solvent ( ${}^{1}H(\delta)$  benzene 7.16, chloroform 7.26, tetrahydrofuran 3.58, toluene 2.08;  ${}^{13}C(\delta)$  benzene 128.06, chloroform 77.16, toluene 20.43;  ${}^{19}F(\delta)$  external PhF standard -113.15). Low temperature <sup>1</sup>H NMR experiments were conducted on a variable temperature 500 MHz spectrometer capable of a temperature range of -100 °C to +150 °C. <sup>1</sup>H-<sup>1</sup>H gCOSY, HSQC, DEPT NMR experiments were conducted on a 500 MHz spectrometer. Pentane was washed with H<sub>2</sub>SO<sub>4</sub>, followed by water and saturated aqueous NaHCO<sub>3</sub>, and dried over CaCl<sub>2</sub> pellets over at least two weeks prior to use in the solvent purification system. HPLC grade diethyl ether, toluene, tetrahydrofuran, pentane, and methylene chloride were sparged with nitrogen and passed through activated alumina. In addition, benzene was passed through a copper catalyst. Organic solvents were then stored over activated 4 Å Linde-type molecular sieves. Deuterated solvents were degassed and stored over activated 4 Å Linde-type molecular sieves. Benzaldehyde was distilled and stored under nitrogen. Monomers  $B_{1,15} B_{2,16} B_{6,17} B_{7,18} B_{8,10} B_{10,19}$  and  $B_{11}^{20}$  were prepared according to published literature procedures. Monomers A1 (95%, Alfa Aesar), A2 (>96%, TCI America), A<sub>3</sub> (>98.5%, Aldrich) and A<sub>5</sub> (>99%, Aldrich) were distilled before use. Monomer  $A_4$  was prepared according to a published literature procedure.<sup>21</sup> Complexes 1,<sup>13</sup> 2,<sup>22</sup>  $3_{12}^{12} 5_{12}^{12} 6_{12}^{12} 7_{12}^{12} 8_{12}^{12} 9_{12}^{12} 10_{12}^{12} 12_{12}^{12}$  and  $13^{13}$  were prepared according to literature procedures. Syntheses of 4 and 11 are reported here. Unless otherwise noted, all other reagents were obtained from commercial sources and used as received. ATR-FT-IR spectra were acquired using a Nicolet 6700 FT-IR with a Ge crystal for ATR and peak locations are reported in cm<sup>-1</sup>.

**Supporting Information.** Experimental details for all syntheses and experiments summarized in the text (33 pages). This material is available free of charge via the Internet at http://pubs.acs.org.

Notes. The authors declare no competing financial interests.

Acknowledgements. R.R.S. thanks the Department of Energy (DE-FG02-86ER13564) for financial support. We thank Dr. Julia Kalow in the group of Professor Timothy M. Swager for measuring the molecular weight of two copolymers. We also thank Dr. Peter E. Sues for useful discussions and Dr. Jonathan C. Axtell for the gift of monomer  $B_7$ .

#### References

<sup>2</sup> (a) Tan, L.; Parker, K. A.; Sampson, N. S. *Macromolecules* **2014**, *47*, 6572-6579. (b) Song, A.; Parker, K. A.; Sampson, N. S. J. Am. Chem. Soc. 2009, 131, 3444-3445. (c) Song, A.; Parker, K. A.; Sampson, N. S. Org. Lett. 2010, 12, 3729-3731. (d) Sutthasupa, S.; Shiotsuki, M.; Masuda, T.; Sanda, F. J. Am. Chem. Soc. 2009, 131, 10546-10551. (e) Nakade, H.; Ilker, M. F.; Jordan, B. J.; Uzun, O.; LaPointe, N. L.; Coughlin, E. B.; Rotello, V. M. Chem. Commun. 2005, 3271-3273. (f) Lichtenheldt, M.; Wang, D.; Vehlow, K.; Reinhardt, I.; Kühnel, C.; Decker, U.; Blechert, S.; Buchmeiser, M. R. Chem. Eur. J. 2009, 15, 9451-9457. (g) Vehlow, K.; Lichtenheldt, M.; Wang, D.; Blechert, S.; Buchmeiser, M. R. Macromol. Symp. 2010, 296, 44-48. (h) Ilker, M. F.; Coughlin, E. B. Macromolecules 2002, 35, 54-58. (i) Bornand, M.; Torker, S.; Chen, P. Organometallics 2007, 26, 3585-3596. (j) Romulus, J.; Tan, L.; Weck, M.; Sampson, N. S. ACS Macro Lett. 2013, 2, 749-752. (k) Daeffler, C. S.; Grubbs, R. H. Macromolecules 2013, 46, 3288-3292. (1) Abbas, M.; Wappel, J.; Slugovc, C. Macromol. Symp. 2012, 311, 122-125. (m) Buchmeiser, M. R.; Ahmad, I.; Gurram, V.; Kumar, P. S. Macromolecules 2011, 44, 4098-4106. (n) Demel, S.; Slugovc, C.; Stelzer, F.; Fodor-Csorba, K.; Galli, G. Macromol. Rapid Commun. 2003, 24, 636-641. (o) Choi, T.-L.; Rutenberg, I. M.; Grubbs, R. H. Angew. Chem. Int. Ed. **2002**, *41*, 3839-3841. (p) Al Samak, B.; Amir-Ebrahimi, V.; Corry, D. G.; Hamilton, J. G.; Rigby, S.; Rooney, J. J.; Thompson, J. M. J. Mol. Catal. A: Chem. 2000, 160, 13-21. (q) Konzelman, J.; Wagener,

<sup>&</sup>lt;sup>1</sup> (a) Odian, G. Principles of Polymerization, Fourth Edition; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2004. (b) Coates, G. W. *Chem. Rev.* **2000**, *100*, 1223-1252. (c) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. *J. Am. Chem. Soc.* **1998**, *120*, 11018-11019. (d) Platel, R. H.; Hodgson, L. M.; Williams, C. K. *Polymer Reviews* **2008**, *48* 11-63. (e) Super, M.; Berluche, E.; Costello, C.; Beckman, E. *Macromolecules* **1997**, *30*, 368-372. (f) Darensbourg, D. J.; Holtcamp, M. W. *Macromolecules* **1995**, *28*, 7577-7579.

K. B. *Macromolecules* 1996, 29, 7657-7660. (r) Wu, Z.; Grubbs, R. H. *Macromolecules* 1995, 28, 3502-3508. (s) Ding, L.; Zheng, X.-Q.; Lu, R.; An, J.; Qiu, J. *Polym. Int.* 2014, 63, 997-1002. (t) Vehlow, K.; Wang, D.; Buchmeiser, M. R.; Blechert, S. *Angew. Chem., Int. Ed.* 2008, 47, 2615-2618. (u) Lee, H.-K.; Bang, K.-T.; Hess, A.; Grubbs, R. H.; Choi, T.-L. *J. Am. Chem. Soc.* 2015, *137*, 9262-9265. (v) Elling, B. R.; Xia, Y. *J. Am. Chem. Soc.* 2015, *137*, 9922-9926. (w) Tan, L.; Li, G.; Parker, K. A.; Sampson, N. S. *Macromolecules* 2015, *48*, 4793-4800.

<sup>3</sup> Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746-1787.

<sup>4</sup> (a) Hamilton, J. G.; Ivin, K. J.; Rooney, J. J. Brit. Polym. J. 1984, 16, 21-33. (b) Hamilton, J. G.; Ivin,

K. J.; Rooney, J. J.; Waring, L. C. *J. Chem. Soc., Chem. Comm.* **1983**, 159-161. (c) Flook, M. M.; Ng, V. W. L.; Schrock, R. R. *J. Am. Chem. Soc.* **2011**, *133*, 1784-1786.

<sup>5</sup> Jeong, H.; John, J. M.; Schrock, R. R.; Hoveyda, A. H. J. Amer. Chem. Soc. **2015**, *136*, 2239-2242.

<sup>6</sup> Oskam, J. H.; Schrock, R. R. J. Am. Chem. Soc. 1993, 115, 11831-11845.

<sup>7</sup> Feast, W. J.; Gibson, V. C.; Ivin, K. J.; Kenwright, A. M.; Khosravi, E. J. Molec. Catal. **1994**, *90*, 87-99.

<sup>8</sup> Bazan, G.; Khosravi, E.; Schrock, R. R.; Feast, W. J.; Gibson, V. C.; O'Regan, M. B.; Thomas, J. K.; Davis, W. M. *J. Am. Chem. Soc.* **1990**, *112*, 8378-8387.

<sup>9</sup> (a) Schrock, R. R.; Lee, Jin-Kyu; O'Dell, R.; Oskam, John H. *Macromolecules* **1995**, 28, 5933-5940.

(b) Schrock, R. R. Acc. Chem. Res. 2014, 47, 2457-2466.

<sup>10</sup> Choi, T.; Rutenberg, I. M.; Grubbs, R. H. Angew. Chem. Int. Ed. **2002**, 41, 3839-3841.

<sup>11</sup> Daeffler, C. S.; Grubbs, R. H. *Macromolecules* **2013**, *46*, 3288-3292.

<sup>12</sup> Bailey B. C.; Schrock, R. R.; Kundu, S.; Goldman, A. S.; Huang, Z.; Brookhart, M. *Organometallics* **2009**, *28*, 355-360.

<sup>13</sup> Oskam, J. H.; Fox, H. H.; Yap K. B.; McConville D. H.; O'Dell, R.; Lichtenstein, B. J.; Schrock, R. R. *J. Organomet. Chem.* **1993**, *459*, 185-198.

<sup>14</sup> Singh, R.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2007, 129, 12654-12655.

<sup>16</sup> Valiulin, R. A.; Arisco, T. M.; Kutateladze, A. G. J. Org. Chem. **2013**, 78, 2012-2025.

<sup>17</sup> Klärner, F-G.; Breitkopf, V. Eur. J. Org. Chem. **1999**, 11, 2757-2762.

<sup>18</sup> Hankinson, B.; Heaney, H.; Price, A. P.; Sharma, R. P. J. Chem. Soc., Perkin Tran. **1973**, *1*, 2569-2575.

<sup>19</sup> Gil, M. V.; Luque-Agudo, V.; Román, E.; Serrano, J. A. Synlett **2014**, 25, 2179-2183.

<sup>20</sup> Nagireddy, J. R.; Carlson, E.; Tam, W. Can J. Chem. **2014**, *92*, 1053-1058.

<sup>21</sup> Hillmyer, M. A.; Laredo, W. R.; Grubbs, R. H. *Macromolecules* **1995**, *28*, 6311-6316.

<sup>22</sup> Fox, H. H.; Lee, J.-K.; Park, L. Y.; Schrock, R. R. Organometallics 1993, 12, 759-768.

<sup>&</sup>lt;sup>15</sup> Alder, K.; Rühmann, R. Ann. Chem. **1950**, 566, 1-27.

## **TOC Graphic for**

Formation of Alternating *trans*-**A**-*alt*-**B** Copolymers Through Ring-Opening Metathesis Polymerization Initiated by Molybdenum Imido Alkylidene Complexes

Hyangsoo Jeong, Jeremy M. John, Richard R. Schrock\*



## **Supporting Information for**

Formation of Alternating *trans*-**A**-*alt*-**B** Copolymers Through Ring-Opening Metathesis Polymerization Initiated by Molybdenum Imido Alkylidene Complexes

Hyangsoo Jeong, Jeremy M. John, Richard R. Schrock\*

Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States email: rrs@mit.edu

#### **Table of Contents**

- 1. Syntheses of monomers and initiators 4 and 11.
- 2. Photolysis experiments involving syn-2 and  $B_2$ .
- 3. Modeling the reaction of syn-2 with  $\mathbf{B}_2$  (0.4 and 0.5 equiv).
- 4. Modeling the copolymerization of  $A_2$  and  $B_2$  with 2.
- 5. Reactions relevant to polymerization of  $B_1$  with 1.
- 6. Screening polymerizations by 13.
- 7. Temperature effects on synthesis of  $poly(A_2-alt-B_2)$
- 8. Polymerization of other A monomers with 1.

9. <sup>1</sup>H NMR spectra on the olefinic region of  $A_2$ -*alt*- $B_2$  copolymers prepared using different imido initiators.

10. Effects of monomer ratio and T on polymerization of  $A_1$  and  $B_1$  by 1.

11. Molecular weight studies of  $A_1B_1$  and  $A_1B_2$ .

#### 1. Syntheses of monomers and initiators 4 and 11.

#### Synthesis of W(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)(OCMe(CF<sub>3</sub>)<sub>2</sub>)<sub>2</sub> (4)

W(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CHCMe<sub>2</sub>Ph)(OTf)<sub>2</sub>(dme) (161.8 mg, 0.196 mmol, 1 equiv) was dissolved in 8 mL diethyl ether. The resulting yellow solution was chilled to -30 °C before adding a cold ether solution of the lithium alkoxide (74.0 mg, 0.393 mmol, 2 equiv). The reaction was stirred for 2 h before removing volatiles *in vacuo*. The residue was extracted with pentane and filtered through a pad of Celite. The resulting solution was dried *in vacuo* to give a yellow solid (113 mg, yield = 72.13%): <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 9.04 (s, 1H, *syn*-W=CH, <sup>2</sup>J<sub>WH</sub> = 15 Hz, <sup>1</sup>J<sub>CH</sub> = 115 Hz), 7.18–7.20 (m, 2H, *Ar*), 7.03–7.06 (m, 2H, *Ar*), 6.92–6.93 (m, 4H, *Ar*), 2.17 (s, 6H), 1.44 (s, 6H), 1.16 (s, 6H). <sup>13</sup>C NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 252.48, 154.41, 150.67, 136.14, 128.47, 128.35, 128.16, 127.97, 127.82, 127.19, 126.37, 125.92, 124.99, 122.71, 81.78, 51.74, 32.04, 18.76, 18.63. <sup>19</sup>F NMR (282 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = -77.62, -77.97. Anal. Calcd for C<sub>26</sub>H<sub>27</sub>F<sub>12</sub>NO<sub>2</sub>W: Theory C, 39.17; H, 3.41; N, 1.76. Found C, 39.36; H, 3.47; N, 1.89.

#### Synthesis of Mo(NC<sub>6</sub>F<sub>5</sub>)(CHCMe<sub>2</sub>Ph)[OCMe(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub>·Et<sub>2</sub>O (11)

Mo(NC<sub>6</sub>F<sub>3</sub>)(CHCMe<sub>2</sub>Ph)(OTf)<sub>2</sub>(dme) (1.41 g, 1.77 mmol, 1 equiv) was dissolved in 100 mL diethyl ether. The yellow solution was chilled to -30 °C before adding a cold 20 mL ether solution of the lithium alkoxide (0.699 g, 3.72 mmol, 2.1 equiv). The reaction mixture was stirred for 3 h before removing all volatiles *in vacuo*. The residue was extracted with pentane and the extract was filtered through a pad of Celite. The solvent was removed from the filtrate *in vacuo* to give a red-orange solid which was recrystallized from ether at -30 °C; yield of combined crops = 45%; <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 9.75 (brs, Mo=CH, 1H), 7.25 (m, 4 aromatic CH), 7.11 (m, 1 aromatic CH) 3.31 (q, <sup>3</sup>J<sub>HH</sub> = 7.03 Hz, 2 CH<sub>2</sub>), 1.53 (s, 6H), 1.28 (s, 6H), 1.10 (t, <sup>3</sup>J<sub>HH</sub> = 7.02 Hz, 2 CH<sub>3</sub>); <sup>13</sup>C NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 313.28 (Mo=CH); <sup>19</sup>F NMR (376 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = -78.27 (m, 12F), -156.13 (d, <sup>3</sup>J<sub>FF</sub> = 25.70 Hz, 2F), -163.30 (t, <sup>3</sup>J<sub>FF</sub> = 24.83 Hz, 2F), -166.66 (t, <sup>3</sup>J<sub>FF</sub> = 23.74 Hz, 1F). Anal. Calcd for C<sub>28</sub>H<sub>28</sub>F<sub>17</sub>MoNO<sub>3</sub>: Theory C, 39.78; H, 3.34; N, 1.66. Found C, 39.80; H, 3.28; N, 1.60.

#### Syntheses of B<sub>3-5</sub>

5-cyclobutylidenecyclopenta-1,3-diene and 5-cyclopentylidenecyclopenta-1,3-diene used in this study were prepared according to a procedure reported by Coşkun and Erden.<sup>1</sup> 5-Cyclohexylidenecyclopenta-1,3-diene was synthesized according to a procedure reported by Reynaud *et al.*<sup>2</sup>

A solution of dimethyl acetylenedicarboxylate (1.0 equiv) and freshly distilled fulvene (1.1 equiv) in 30 mL of benzene was stirred at 80 °C for 24 h. After the reaction was complete, the mixture was allowed to cool to room temperature and the solvent removed using rotatory evaporation. The product was separated from the crude mixture by distillation under high vacuum. Typical yield: 60-80%.

**B**<sub>3</sub>: Yellow oil. Made from (2.73 g, 19.2 mmol) dimethyl acetylenedicarboxylate and (2.50 g, 21.1 mmol) 5-cyclobutylidenecyclopenta-1,3-diene. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 6.99$  (m, 2H), 4.19 (m, 2H), 3.78 (s, 6H), 2.53 (dt, J = 7.8 and 2.8 Hz, 4H), 1.86 (quint, J = 8.1 Hz, 2H). <sup>13</sup>C

NMR (125 MHz, CDCl<sub>3</sub>): δ = 165.04, 157.72, 151.92, 142.38, 107.76, 53.11, 52.19, 28.05, 17.09. HRMS (ESI) calcd for [M+H] 261.1121, found 261.1127.

**B**<sub>4</sub>: Viscous yellow oil. Made from (2.59 g, 18.2 mmol) dimethyl acetylenedicarboxylate and (2.65 g, 20.0 mmol) 5-cyclopentylidenecyclopenta-1,3-diene. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.99 (m, 2H), 4.26 (m, 2H), 3.78 (s, 6H), 2.07 (m, 4H), 1.55 (m, 4H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 165.14, 158.10, 151.77, 142.20, 110.45, 54.44, 52.20, 29.35, 26.65. HRMS (ESI) calcd for [M+H] 275.1278, found 275.1183.

**B**<sub>5</sub>: Viscous yellow oil. Made from (2.46 g, 17.3 mmol) dimethyl acetylenedicarboxylate and (2.79 g, 19.0 mmol) 5-cyclohexylidenecyclopenta-1,3-diene. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 6.99 (m, 2H), 4.44 (m, 2H), 3.79 (s, 6H), 1.94 (m, 4H), 1.43 (m, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  = 165.11, 159.26, 151.97, 142.48, 107.97, 52.99, 52.19, 29.18, 27.20, 26.57. HRMS (ESI) calcd for [M+H] 289.1434, found 289.1436.

#### Synthesis of B<sub>9</sub>

*N*-pentafluorophenyl maleimide prepared by a procedure reported by Ma and coworkers<sup>3</sup> (3.00 g, 11.4 mmol) was dissolved in 15 mL of 2-methylfuran. The resulting solution was heated at reflux for 24 h. The solvent was removed by rotatory evaporation to yield a light yellow solid. This solid was dissolved in a minimal amount of THF and chilled to -30 °C. An equal volume of hexane was then layered onto the solution and the mixture left to recrystallize overnight at -30 °C. A white solid was formed at the interface. **B**<sub>9</sub> was pure after two recrystallizations. Yield = 50%

**B**<sub>9</sub>: White solid. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 6.58$  (d, <sup>3</sup> $J_{HH} = 5.58$  Hz, 1H), 6.40 (d, <sup>3</sup> $J_{HH} = 5.61$  Hz), 5.32 (s, 1H), 3.23 (d, <sup>3</sup> $J_{HH} = 6.43$  Hz, 1H), 2.97 (d, <sup>3</sup> $J_{HH} = 6.42$  Hz, 1H), 1.79 (s, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta = -142.09$  (dm, 2F), -150.95 (m, 1F), -160.73 (dm, 2F). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 173.13$ , 171.93, 143.70 (dm,  $J_{CF} = 255.04$  Hz, C-F), 143.39 (dm,  $J_{CF} = 256.14$  Hz, C-F), 142.26 (dm,  $J_{CF} = 257.57$ Hz, C-F), 140.71, 139.00 (m, C-F), 137.04, 135.41, 88.89, 81.18, 51.32, 50.37, 15.61. HRMS (ESI) calcd for [M+Na] 368.0317, found 368.0324

**Synthesis of** *trans*-poly(A<sub>1</sub>-*alt*-B<sub>1</sub>/B<sub>2</sub>): A stock solution of **1** (5.2 mg, 7.3 µmol, 0.5 mL in CDCl<sub>3</sub>) was added to a stirred mixture of A<sub>1</sub> (40.8 mg, 0.37 mmol, 50 equiv), B<sub>1</sub> (44.7 mg, 0.18 mmol, 25 equiv) and B<sub>2</sub> (42.2 mg, 0.18 mmol, 25 equiv) in 1.5 mL CDCl<sub>3</sub>. The solution was stirred for 2 h. At this point <sup>1</sup>H NMR spectroscopy showed the reaction to be complete. The reaction was quenched by the addition of the solution to MeOH (45 mL) in air. The polymer was isolated by centrifugation and dried *in vacuo* overnight. Yield = 70%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 5.47 (dt, <sup>3</sup>J<sub>HH</sub> = 14.47 and 6.88 Hz, 2H), 5.33 (dt, <sup>3</sup>J<sub>HH</sub> = 13.64 and 6.89 Hz, 2H), 5.27 (dd, <sup>3</sup>J<sub>HH</sub> = 15.22 and 7.9 Hz, 2H), 5.20 (dd, <sup>3</sup>J<sub>HH</sub> = 15.09 and 9.24 Hz, 2H), 4.11 (d, <sup>3</sup>J<sub>HH</sub> = 7.88 Hz, 2H), 3.74 (s, 6H), 3.73 (s, 6H), 3.13 (d, <sup>3</sup>J<sub>HH</sub> = 9.19 Hz, 2H), 1.98 (m, 8H), 1.62 (s, 6H), 1.31(m, 12H), 0.60-0.46 (m, 4H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  = 165.80, 165.69, 141.92, 141.01, 133.39, 133.17, 132.55, 129.08, 128.76, 128.37, 57.46, 53.36, 52.04 (overlapping), 32.57, 32.51, 29.62, 29.61, 29.13, 29.09, 20.50, 15.58, 7.14.





**Synthesis of** *trans*-**poly**( $A_2$ -*alt*- $B_1/B_2$ ): The procedure was repeated as stated above using  $A_2$  (34.6 mg, 0.37 mmol, 50 equiv) instead of  $A_1$ . Yield = 75%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 5.49 (dt,  ${}^{3}J_{HH}$  = 14.63 and 6.87 Hz, 2H), 5.34 (dt,  ${}^{3}J_{HH}$  = 14.89 and 6.84 Hz, 2H), 5.28 (dd,  ${}^{3}J_{HH}$  = 15.23 and 7.96 Hz, 2H), 5.21 (dd,  ${}^{3}J_{HH}$  = 15.14 and 9.93 Hz, 2H), 4.11 (d,  ${}^{3}J_{HH}$  = 9.2 Hz, 2H), 3.75 (s, 6H), 3.74 (s, 6H), 3.13 (d,  ${}^{3}J_{HH}$  = 9.2 Hz, 2H), 1.98 (m, 8H), 1.63 (s, 6H), 1.31 (m, 12H), 0.60–0.46 (m, 4H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  = 165.79, 165.68, 141.91, 140.99, 133.33, 133.13, 132.53, 129.06, 128.82, 128.37, 57.46, 53.37, 52.05 (overlapping), 32.55, 32.47, 29.56, 29.52, 28.80, 28.73, 20.51, 15.57, 7.15.



Synthesis of *trans*-poly( $A_1/A_2$ -*alt*- $B_1$ ): A stock solution of 1 (5.2 mg, 7.3 µmol, 0.5 mL in CDCl<sub>3</sub>) was added to a stirred mixture of  $A_1$  (19.8 mg, 0.18 mmol, 25 equiv),  $A_2$  (17.5 mg, 0.18 mmol, 25 equiv) and  $B_1$  (91.9 mg, 0.37 mmol, 50 equiv) in 1.5 mL CDCl<sub>3</sub>. The solution was stirred for 2 h. At this point <sup>1</sup>H NMR spectroscopy showed the reaction to be complete. The reaction was quenched by the addition of the solution to MeOH (45 mL) in air. The polymer was isolated by

centrifugation and dried *in vacuo* overnight. Yield = 72%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 5.48 (overlapping dt, 4H), 5.27 (overlapping dd, 4H), 4.10 (overlapping d, 4H), 3.74 (overlapping s, 12H), 1.97 (overlapping m, 8H), 1.62 (overlapping s, 12H), 1.36–1.18 (overlapping m, 14H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  = 165.71, 141.03, 133.19, 132.57, 128.79, 128.41, 53.39, 52.07, 32.60, 32.58, 29.65, 29.58, 29.15, 28.82, 20.53.



**Synthesis of** *trans*-poly( $A_1/A_2$ -*alt*- $B_2$ ): The procedure was repeated as stated above using  $B_2$  (86.7 mg, 0.37 mmol, 50 equiv) instead of  $B_1$ . Yield = 75%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  =5.33 (overlapping dt, 4H), 5.19 (overlapping dd, 4H), 3.73 (overlapping s, 12H), 3.13 (overlapping d, 4H), 1.96 (overlapping m, 8H), 1.31 (overlapping m, 14H), 0.65–0.40 (overlapping m, 8H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  = 165.80, 141.92, 133.38, 133.33, 129.08, 57.46, 52.03, 32.51, 32.46, 29.61, 29.51, 29.06, 28.67, 15.59, 7.14.



Synthesis of *trans*-poly( $A_1/A_2$ -*alt*- $B_1/B_2$ ): A stock solution of 1 (5.2 mg, 7.3 µmol, 0.5 mL in CDCl<sub>3</sub>) was added to a stirred mixture of  $A_1$  (19.8 mg, 0.18 mmol, 25 equiv),  $A_2$  (17.5 mg, 0.18 mmol, 25 equiv),  $B_1$  (44.7 mg, 0.18 mmol, 25 equiv) and  $B_2$  (42.2 mg, 0.18 mmol, 25 equiv) in 1.5 mL CDCl<sub>3</sub>. The solution was stirred for 2 h. At this point <sup>1</sup>H NMR spectroscopy showed the reaction to be complete. The reaction was quenched by the addition of the solution to MeOH (45 mL) in air. The polymer was isolated by centrifugation and dried *in vacuo* overnight. Yield = 70%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 5.47 (overlapping dt, 4H), 5.33 (overlapping dt, 4H), 5.27 (overlapping dd, 4H), 5.20 (overlapping dd, 4H), 4.10 (overlapping d, 4H), 3.74 (overlapping s, 12H), 3.73 (overlapping s, 12H), 3.12 (overlapping d, 4H), 1.97 (overlapping m, 16H), 1.62 (overlapping s, 12H), 1.30 (m, 24H), 0.60-0.42 (m, 8H).



#### General Procedure for the Formation of trans-poly(A1-alt-B3-7) copolymers

A stock solution of **1** (1.4 mg, 2.0  $\mu$ mol) was added to a vigorously stirred solution of **B**<sub>x</sub> (**B**<sub>3</sub> = 26.0 mg, **B**<sub>4</sub> = 27.4 mg, **B**<sub>5</sub> = 28.8 mg, **B**<sub>6</sub> = 27.9 mg and **B**<sub>7</sub> = 25.4 mg, respectively, 0.10 mmol, 50 equiv) and **A**<sub>1</sub> (13  $\mu$ L, 0.10 mmol, 50 equiv) in C<sub>6</sub>D<sub>6</sub> (0.5 mL). The solution was stirred for 2-72 h. The conversion was monitored using <sup>1</sup>H NMR spectroscopy. Benzaldehyde (~0.2 mL) was added to quench the polymerizations and the mixture stirred for 1 h. The mixture was poured into MeOH and the precipitated polymer was isolated by centrifugation and dried *in vacuo* overnight. Yield = 70–90%.

**Synthesis of** *trans*-**poly**( $A_1$ -*alt*- $B_3$ ): <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 5.43$  (dt, <sup>3</sup> $J_{HH} = 14.51$  and 6.83 Hz, 2H), 5.21 (dd, <sup>3</sup> $J_{HH} = 15.11$  and 8.26 Hz, 2H), 4.00 (d, <sup>3</sup> $J_{HH} = 8.03$  Hz, 2H), 3.73 (s, 6H), 2.65 (m, 2H), 2.53 (m, 2H), 1.97 (m, 6H), 1.40–1.20 (m, 8H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 165.69, 141.21, 138.31, 132.38, 130.35, 128.10, 52.90, 52.00, 32.46, 29.95, 29.64, 29.13, 17.93.$ 

Synthesis of *trans*-poly( $A_1$ -*alt*- $B_4$ ): <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 5.49$  (dt, <sup>3</sup> $J_{HH} = 14.8$  and 6.8 Hz, 2H, H<sub>2</sub>), 5.20 (dd, <sup>3</sup> $J_{HH} = 14.8$  and 8.4 Hz, 2H, H<sub>1</sub>), 3.98 (d, <sup>3</sup> $J_{HH} = 8$ Hz, 2H, H<sub>3</sub>), 3.75 (s, 6H, H<sub>6</sub>), 2.19 - 1.98 (m, 8H, H<sub>9</sub> and H<sub>11</sub>), 1.62 (m, 4H, H<sub>10</sub>), 1.32 (m, 6H, H<sub>12</sub> and H<sub>13</sub>). <sup>13</sup>C NMR (100

MHz, CDCl<sub>3</sub>):  $\delta = 165.75$ , 141.29, 140.55, 132.79, 129.93, 127.64, 54.43, 52.03, 32.51, 30.48, 29.61, 28.85, 26.54.

Synthesis of *trans*-poly( $A_1$ -*alt*- $B_5$ ): <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 5.48$  (dt, <sup>3</sup> $J_{HH} = 15.2$  and 6.8 Hz, 2H, H<sub>2</sub>), 5.30 (dd, <sup>3</sup> $J_{HH} = 15.2$  and 7.6 Hz, 2H, H<sub>1</sub>), 4.14 (d, <sup>3</sup> $J_{HH} = 7.6$  Hz, 2H, H<sub>3</sub>), 3.74 (s, 6H, H<sub>6</sub>), 2.11 – 1.94 (m, 8H, H<sub>9</sub> and H<sub>12</sub>), 1.54 – 1.25 (m, 14H, H<sub>10</sub>, H<sub>11</sub>, H<sub>13</sub>, H<sub>14</sub>). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 165.73$ , 140.94, 136.61, 132.13, 129.87, 129.05, 52.62, 52.01, 32.58, 30.95, 29.64, 29.13, 27.67, 26.61.

Synthesis of *trans*-poly( $A_1$ -*alt*- $B_6$ ): see assigned <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) spectra below:



Synthesis of *trans*-poly(A<sub>1</sub>-*alt*-B<sub>7</sub>): <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 5.49$  (dt, <sup>3</sup>*J*<sub>HH</sub> = 15.6 and 6.4 Hz, 2H, H<sub>2</sub>), 5.34 (dd, <sup>3</sup>*J*<sub>HH</sub> = 15.2 and 7.2 Hz, 2H, H<sub>1</sub>), 4.49 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.8Hz, 2H, H<sub>3</sub>), 1.97 (m, 4H, H<sub>10</sub>), 1.74 (s, 6H, H<sub>9</sub>), 1.32 – 1.25 (m, 8H, H<sub>11</sub> and H<sub>12</sub>). <sup>19</sup>F NMR (282 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta = -144.45$  (d), -150.26 (d). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 144.93$ , 142.50 (d, <sup>1</sup>*J*<sub>CF</sub> = 245 Hz), 141.14, 138.60 (d, <sup>1</sup>*J*<sub>CF</sub> = 256 Hz), 134.72, 131.61, 129.38, 128.68, 127.48, 49.15, 32.42, 29.52, 29.07, 20.77.

#### General Procedure for the Formation of A1-alt-B8-11 copolymers

A stock solution of **1** (2.8 mg, 4.0  $\mu$ mol, 0.5 mL in CDCl<sub>3</sub>) was added to a stirred mixture of **A**<sub>1</sub> (44.1 mg, 0.40 mmol, 100 equiv) and **B**<sub>x</sub> (**B**<sub>8</sub> = 102.1 mg, **B**<sub>9</sub> = 138.1 mg, **B**<sub>10</sub> = 82.9 mg and **B**<sub>11</sub> = 107.7 mg, respectively, 0.40 mmol, 100 equiv) in 1.5 mL CDCl<sub>3</sub>. The solution was stirred for 2 h. At this point <sup>1</sup>H NMR spectroscopy showed the reaction to be complete. The reaction was quenched by the addition of the solution to MeOH (45 mL) in air. The polymer was isolated by centrifugation and dried *in vacuo* overnight. Typical Yield = 60–80%

The copolymerization of  $A_1$  and  $B_8$  was previously reported by Daeffler and Grubbs.<sup>4</sup>

Synthesis of *trans*-poly( $A_1$ -*alt*- $B_8$ ): see assigned <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) spectra below:





Synthesis of *trans*-poly( $A_1$ -*alt*- $B_9$ ): see <sup>1</sup>H (500 MHz) <sup>19</sup>F (300 MHz) and <sup>13</sup>C (125 MHz) NMR spectra below:





Synthesis of *trans*-poly( $A_1$ -*alt*- $B_{10}$ ): see assigned <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) spectra below:





Synthesis of *trans*-poly( $A_1$ -*alt*- $B_{11}$ ): see assigned <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) spectra below:





#### Procedure for the Formation of *trans*-poly(A<sub>3-5</sub>-alt-B<sub>1</sub>) copolymers

**Synthesis of** *trans*-**poly**( $A_3$ -*alt*- $B_1$ ): A stock solution of **1** (2.5 mg, 3.5  $\mu$ mol) was added to a vigorously stirred solution of  $B_1$  (42.8 mg, 0.172 mmol, 50 equiv) and  $A_3$  (21.4 mg, 0.172 mmol, 50 equiv) in toluene (0.9 mL). The solution was stirred for 14.5 h. At this point, the conversion was >98% by <sup>1</sup>H NMR spectroscopy. Benzaldehyde (~0.2 mL) was added to quench the polymerization and the mixture was stirred for 1 h. The mixture was poured into MeOH and the precipitated polymer (54 mg, 0.145 mmol, 84% yield) was isolated by centrifugation and dried *in vacuo* overnight. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 5.55 - 5.52$  (m, 2H, H<sub>2</sub>), 5.34 (dd, <sup>3</sup>J<sub>HH</sub> = 15 and 8 Hz, 2H, H<sub>1</sub>), 4.11 (d, <sup>3</sup>J<sub>HH</sub> = 7.5Hz, 2H, H<sub>3</sub>), 3.73 (s, 6H, H<sub>9</sub>), 2.90 (s, 2H, H<sub>12</sub>), 2.19 (m, 4H, H<sub>10</sub>), 1.62 - 1.52 (m, 10H, H<sub>9</sub> and H<sub>11</sub>). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta = 165.52$  (C<sub>5</sub>), 140.89 (C<sub>4</sub>), 132.67, 131.69, 130.52, 130.02, 129.30, 128.77, 57.27 (C<sub>12</sub>), 55.89, 53.84 (C<sub>3</sub>), 52.67 (C<sub>6</sub>), 51.50, 50.34, 30.63, 29.58, 27.92, 26.94, 20.20, 19.99.

Synthesis of *trans*-poly( $A_4$ -*alt*- $B_1$ ): A stock solution of 1 (3.1 mg, 4.4  $\mu$ mol) was added to a vigorously stirred solution of 2,3-dicarbomethoxy-7-isopropylidenenorbornadiene ( $B_1$ ) (53.5 mg, 0.215 mmol, 50 equiv) and *cis*-cyclodecene ( $A_4$ ) (34  $\mu$ L, 0.215 mmol, 50 equiv) in CD<sub>2</sub>Cl<sub>2</sub> (0.41 mL). The solution was stirred for 3 h. At this point, the conversion was 70% by <sup>1</sup>H NMR spectroscopy. Benzaldehyde (~0.2 mL) was added to quench the polymerization and the mixture stirred for 1 h. The mixture was poured into MeOH and the precipitated polymer (55 mg, 0.142 mmol, 66% yield) was isolated by centrifugation and dried *in vacuo* overnight. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  5.51 (dt, <sup>3</sup>J<sub>HH</sub> = 15.2 and 6.8 Hz, 2H, H<sub>2</sub>), 5.30 (dd, <sup>3</sup>J<sub>HH</sub> = 15.2 and 8 Hz, 2H, H<sub>1</sub>), 4.12 (d, <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, 2H, H<sub>3</sub>), 3.77 (s, 6H, H<sub>6</sub>), 1.99 (m, 4H, H<sub>10</sub>), 1.67 (s, 6H, H<sub>9</sub>), 1.34 – 1.27 (m, 12H, H<sub>11</sub>, H<sub>12</sub> and H<sub>13</sub>); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  165.70, 140.01, 133.16, 132.58, 128.73, 128.31, 53.34, 52.03, 32.57, 29.66, 29.64, 29.25, 20.49.

#### Synthesis of *trans*-poly(A<sub>5</sub>-*alt*-B<sub>1</sub>):

A stock solution of **1** (2.3 mg, 3.2  $\mu$ mol, 0.1 mL in CDCl<sub>3</sub>) was added to a solution of **B**<sub>1</sub> (39.7 mg, 0.160 mmol, 50 equiv) and **A**<sub>5</sub> (81  $\mu$ L, 0.800 mmol, 250 equiv) in CDCl<sub>3</sub> (0.5 mL). The reaction was allowed to sit for 21 h. At this point, there was completed conversion of **B**<sub>1</sub> by <sup>1</sup>H NMR spectroscopy. Benzaldehyde (~0.2 mL) was added to quench the polymerization and the solution mixed. The mixture was poured into MeOH and the precipitated polymer was isolated by centrifugation and dried *in vacuo* overnight. The <sup>1</sup>H (500 MHz) NMR is shown below:



A 0.5 mL sample of a 26 mM toluene stock solution of **2** (10 mg) was added to a NMR tube in a glove box. The tube was sealed with a rubber septum and irradiated at  $-78^{\circ}$ C using a Rayonet photolysis apparatus at 350 nm for 3h. The sample was kept at  $-78^{\circ}$ C until it was placed in a 500 MHz NMR spectrometer pre-equilibrated to  $-80^{\circ}$ C; 40% of *anti-***2** was observed.

The mixture was then frozen in liquid nitrogen and 0.2 mL of a 6 M toluene solution of  $\mathbf{B}_2$  (1 equiv.) was added using a syringe. The sample was thawed and allowed to mix -78 °C before being refrozen in liquid N<sub>2</sub>. It was then placed into the pre-equilibrated spectrometer at -80 °C. All *anti-2* reacted with  $\mathbf{B}_2$ . The 40:60 mixture of *syn-*MB<sub>2t</sub> and *syn-2* was then warmed 10°C every 10 min. No appreciable change in the <sup>1</sup>H NMR spectra was observed until room temperature (22 °C) was reached. Conversion of *syn-*MB<sub>2t</sub> to *anti-*MB<sub>2t</sub> was then recorded every 5 min. The first 2 data points (*t* = 15 min) were discarded to ensure that the sample had equilibrated to room temperature.

| Table S1 |                                                        |  |  |  |
|----------|--------------------------------------------------------|--|--|--|
| Time (s) | $\ln([syn-\mathbf{MB}_{2t}]/[syn-\mathbf{MB}_{2t}]_0)$ |  |  |  |
| 900      | -0.503022812                                           |  |  |  |
| 1200     | -0.602210186                                           |  |  |  |
| 1500     | -0.716620537                                           |  |  |  |
| 1800     | -0.816671667                                           |  |  |  |
| 2100     | -0.870839469                                           |  |  |  |
| 2400     | -0.964955904                                           |  |  |  |
| 2700     | -1.053256587                                           |  |  |  |
| 3000     | -1.122085645                                           |  |  |  |
| 3300     | -1.25281297                                            |  |  |  |
| 3600     | -1.290984181                                           |  |  |  |
| 3900     | -1.435064525                                           |  |  |  |
| 4200     | -1.540378377                                           |  |  |  |
| 4500     | -1.658103084                                           |  |  |  |
| 4800     | -1.706499625                                           |  |  |  |
| 5100     | -1.818925137                                           |  |  |  |
| 5400     | -1.866914143                                           |  |  |  |



Slope  $(k_{obs}) = 3.0 \text{ x } 10^{-4} \text{ s}^{-1}$ 

#### **3.** Modeling the reaction of *syn-2* with $B_2$ (0.4 and 0.5 equivalents).

The reactions modeled were aI + B -> sMB (equation 2 in text), aMB = sMB (the reverse of equation 3 in text), and aI = sI (the reverse of equation 1 in text). The initial species and concentrations for the "0.4 equiv B<sub>2</sub>" run are aI (*syn*-**2**, 0 M), aMB (*anti*-**MB**<sub>2t</sub>, 0 M), B (**B**<sub>2</sub>, 0.002268 M), sI (*syn*-**2**, 0.005751 M), and sMB (*syn*-**MB**<sub>2t</sub>, 0 M). The value for k<sub>1</sub> for aI = sI (k<sub>as2</sub>) was fixed at 0.1 s<sup>-1</sup>. The parameters estimated were k<sub>2</sub> for aI = sI (k<sub>sa2</sub> = 7.0 x 10<sup>-5</sup> start value), k<sub>1</sub> for aMB = sMB (k<sub>asMB2t</sub> = 1.6 x 10<sup>-5</sup> start value), and k<sub>2</sub> for aMB = sMB (k<sub>saMB2t</sub> = 30 x 10<sup>-5</sup> start value), and k<sub>1</sub> for aI + B (k<sub>B2</sub>, start value 100).

| Table S2. | Experimental | file (tab | delimited) | for 0.4 | equiv | B <sub>2</sub> run |
|-----------|--------------|-----------|------------|---------|-------|--------------------|
|-----------|--------------|-----------|------------|---------|-------|--------------------|

| Time sMB   | sI                 | aMB       | В         |             |           |
|------------|--------------------|-----------|-----------|-------------|-----------|
| 0 0        | 0.0057847          | 0         | 0.0023138 | 0           |           |
| 1260 0.000 | 0382369            | 0.0052681 | 26        | 0.000133627 | 0.0017972 |
| 1410 0.000 | 0417077            | 0.0052189 | 56        | 0.000148667 | 0.0017481 |
| 1560 0.000 | )393938            | 0.0051911 | 90        | 0.000199572 | 0.0017203 |
| 1710 0.000 | 0440216            | 0.0051408 | 63        | 0.000203621 | 0.0016700 |
| 1860 0.000 | 0469139            | 0.0050731 | 82        | 0.000242379 | 0.0016023 |
| 2010 0.000 | 0452364            | 0.0050517 | 79        | 0.000280558 | 0.0015809 |
| 2160 0.000 | 0506740            | 0.0049736 | 85        | 0.000304275 | 0.0015028 |
| 2310 0.000 | 0510211            | 0.0049349 | 28        | 0.000339562 | 0.0014640 |
| 2460 0.000 | 0517731            | 0.0049129 | 46        | 0.000354024 | 0.0014420 |
| 2610 0.000 | 0543762            | 0.0048481 | 57        | 0.000392781 | 0.0013773 |
| 2760 0.000 | 0535085            | 0.0048273 | 32        | 0.000421705 | 0.0013564 |
| 2910 0.000 | 0546076            | 0.0047758 | 48        | 0.000463354 | 0.0013049 |
| 3060 0.000 | 0557645            | 0.0047099 | 03        | 0.000517152 | 0.0012390 |
| 3210 0.000 | 0569793            | 0.0047012 | 26        | 0.000513681 | 0.0012303 |
| 3360 0.000 | 0577892            | 0.0046497 | 42        | 0.000557067 | 0.0011788 |
| 3510.0.000 | )602766            | 0.0045832 | 18        | 0.000598716 | 0.0011123 |
| 3660.0.000 | 0568636            | 0.0045791 | 69        | 0.000636895 | 0.0011083 |
| 3810.0.000 | 0598716            | 0.0045265 | 28        | 0.000659456 | 0.0010556 |
| 3960 0 000 | 0601600            | 0.0043203 | 50        | 0.000702263 | 0.0010094 |
| 4110.0.000 | 001007             | 0.0044345 | 51        | 0.000702203 | 0.0010074 |
| 4260 0 000 | )607077            | 0.0044343 | 18        | 0.000763580 | 0.0009037 |
| 4410 0 000 | 1600120            | 0.0044151 | 13        | 0.000705580 | 0.0009422 |
| 4560 0 000 | 3585000            | 0.0043037 | 13        | 0.000809858 | 0.0008948 |
| 4300 0.000 | 1502022            | 0.0043341 | 44<br>77  | 0.000844300 | 0.0008832 |
| 4710 0.000 | )602766            | 0.0042867 | 00        | 0.000902992 | 0.0008179 |
| 4800 0.000 | 002700             | 0.0042601 | 00        | 0.000901855 | 0.0008092 |
| 5160.000   | JUUJUJ0<br>J500461 | 0.0042407 | 04        | 0.000938278 | 0.0007099 |
| 5100 0.000 | 007072             | 0.0041913 | 94        | 0.001003043 | 0.0007207 |
| 5310 0.000 | J607972            | 0.0041638 | 27        | 0.001021578 | 0.0006929 |
| 5460 0.000 | J588304            | 0.0041273 | 83        | 0.001069013 | 0.0006565 |
| 5610 0.000 | J594667            | 0.0040857 | 34        | 0.001104299 | 0.0006148 |
| 5760 0.000 | J576156            | 0.0040643 | 30        | 0.001143635 | 0.0005934 |
| 5910 0.000 | )582519            | 0.0040209 | 45        | 0.001181236 | 0.0005500 |
| 6060 0.000 | 0555331            | 0.0040307 | 79        | 0.001198590 | 0.0005599 |
| 6210 0.000 | )552439            | 0.0039792 | .95       | 0.001252966 | 0.0005084 |
| 6360 0.000 | 0563430            | 0.0039613 | 63        | 0.001259908 | 0.0004905 |
| 6510 0.000 | 0573264            | 0.0039168 | 20        | 0.001294037 | 0.0004459 |
| 6660 0.000 | 0550125            | 0.0038948 | 39        | 0.001339737 | 0.0004239 |
| 6810 0.000 | 0553017            | 0.0038636 | 01        | 0.001368082 | 0.0003927 |
| 6960 0.000 | 0539713            | 0.0038387 | 27        | 0.001406261 | 0.0003678 |
| 7110 0.000 | )538556            | 0.0038057 | 54        | 0.001440390 | 0.0003349 |
| 7260 0.000 | 0537977            | 0.0037912 | .92       | 0.001455431 | 0.0003204 |
| 7410 0.000 | 0522937            | 0.0037785 | 66        | 0.001483197 | 0.0003077 |
| 7560 0.000 | 0525829            | 0.0037438 | 58        | 0.001515013 | 0.0002730 |
| 7710 0.000 | 0496327            | 0.0037369 | 16        | 0.001551457 | 0.0002660 |
| 7860 0.000 | 0494592            | 0.0037143 | 56        | 0.001575174 | 0.0002435 |
| 8010 0.000 | 0470296            | 0.0037108 | 85        | 0.001603519 | 0.0002400 |
| 8160 0.000 | 0484758            | 0.0036755 | 98        | 0.001624344 | 0.0002047 |
| 8310 0.000 | 0469718            | 0.0036565 | 09        | 0.001658473 | 0.0001856 |
| 8460 0.000 | 0486493            | 0.0036397 | 33        | 0.001658473 | 0.0001688 |

| 8610 0.00 | 0451207   | 0.003644939 | 0.001688554   | 0.0001740       |
|-----------|-----------|-------------|---------------|-----------------|
| 8760 0.00 | 0432117   | 0.003602133 | 0.001749872   | 0.0001312       |
| 8910 0.00 | 0450050   | 0.003584200 | 0.001750450   | 0.0001133       |
| 9060 0.00 | 0425754   | 0.003582465 | 0.001776481   | 0.0001116       |
| 9210 0.00 | 0402037   | 0.003602711 | 0.001779952   | 0.0001318       |
| 9360 0.00 | 0399723   | 0.003571474 | 0.001813503   | 0.0001006       |
| 9510 0.00 | 0393360   | 0.003556434 | 0.001834907   | 0.0000855       |
| 9660 0.00 | 0381790   | 0.003557591 | 0.001845319   | 0.0000867       |
| 9810 0.00 | 0361544   | 0.003546600 | 0.001876557   | 0.0000757       |
| 9960 0.00 | 0352288   | 0.003535030 | 0.001897382   | 0.0000641       |
| 10110     | 0.0003291 | 49 0.003    | 548913 0.0019 | 06637 0.0000780 |



#### Figure S2. Experimental and calculated curves for 0.4 equiv run.

The initial species for the "0.5 equiv **B**<sub>2</sub>" run are aI (syn-2, 0 M), aMB (anti-**MB**<sub>2t</sub>, 0 M),

B (B<sub>2</sub>, 0.002782 M), sI (syn-2, 0.005664 M), and sMB (anti-MB<sub>2t</sub>, 0 M).

### Table S3. Experimental file (tab delimited) for 0.5 equiv B2 run

| 1 ime | SMB   | SI       | aMB      | В        |          |
|-------|-------|----------|----------|----------|----------|
| 0     | 0     | .0057847 | 0        | .0029029 |          |
| 600   | .0003 | 3258     | .0053825 | .0000764 | .0025007 |
| 900   | .0003 | 3954     | .0052695 | .0001198 | .0023877 |
| 1200  | .0004 | 1405     | .0051788 | .0001654 | .002297  |
| 1500  | .0004 | 4748     | .0050785 | .0002314 | .0021967 |
| 1800  | .0005 | 5067     | .0049848 | .0002932 | .002103  |
| 2100  | .0005 | 5436     | .0049089 | .0003322 | .0020271 |
| 2400  | .0005 | 5657     | .0048104 | .0004086 | .0019286 |
| 2700  | .0005 | 5847     | .0047178 | .0004822 | .001836  |
| 3000  | .0005 | 5993     | .0046382 | .0005472 | .0017564 |
| 3300  | .0006 | 6167     | .0045493 | .0006187 | .0016675 |

| 3600.000  | )6290    | .0044741 | .0006816 | .0015923 |
|-----------|----------|----------|----------|----------|
| 3900.000  | 06342    | .0043995 | .0007510 | .0015177 |
| 4200 .000 | 06405    | .0043034 | .0008408 | .0014216 |
| 4500 .000 | )6597    | .0041978 | .0009272 | .001316  |
| 4800 .000 | 06474    | .0041702 | .0009671 | .0012884 |
| 5100.000  | 06523    | .0040414 | .0010910 | .0011596 |
| 5400 .000 | 06502    | .0039921 | .0011424 | .0011103 |
| 5700.000  | 06452    | .0039223 | .0012172 | .0010405 |
| 6000 .000 | 06400    | .0038628 | .0012819 | .000981  |
| 6300 .000 | 06337    | .0037919 | .0013591 | .0009101 |
| 6600 .000 | 06272    | .0037472 | .0014103 | .0008654 |
| 6900 .000 | 06241    | .0036882 | .0014724 | .0008064 |
| 7200 .000 | 06100    | .0036436 | .0015311 | .0007618 |
| 7500.000  | 06129    | .0035598 | .0016120 | .000678  |
| 7800.000  | )5984    | .0034939 | .0016924 | .0006121 |
| 8100 .000 | 05910    | .0035218 | .0016719 | .00064   |
| 8400 .000 | 05712    | .0034250 | .0017885 | .0005432 |
| 8700 .000 | )5525    | .0033974 | .0018348 | .0005156 |
| 9000 .000 | 05433    | .0032968 | .0019446 | .000415  |
| 9300 .000 | )5441    | .0032888 | .0019518 | .000407  |
| 9600.000  | )5225    | .0032231 | .0020391 | .0003413 |
| 9900.000  | 05184    | .0031659 | .0021004 | .0002841 |
| 10200     | .0004993 | .0031675 | .0021179 | .0002857 |
| 10500     | .0004898 | .0031373 | .0021576 | .0002555 |
| 10800     | .0004741 | .0030826 | .0022280 | .0002008 |
| 11100     | .0004500 | .0030605 | .0022742 | .0001787 |
| 11400     | .0004431 | .0029975 | .0023441 | .0001157 |
| 11700     | .0004237 | .0030535 | .0023075 | .0001717 |
| 12000     | .0004093 | .0030002 | .0023752 | .0001184 |
| 12300     | .0003901 | .0029838 | .0024108 | .000102  |
| 12600     | .0003724 | .0029748 | .0024375 | .000093  |
| 12900     | .0003619 | .0028934 | .0025294 | .0000116 |





#### 4. Modeling the copolymerization of A<sub>2</sub> and B<sub>2</sub> with 2.

The equations employed for the copolymerization of  $A_2$  and  $B_2$  are the following: aMA + A -> aMA + HP; aMA + A -> sMA + HP; aMA + B -> sMB + CP;  $sMA + A \rightarrow aMA + CP$ ; aMA = sMA; sMB = aMBThe minimum value for  $k_B$  was fixed at 550 M<sup>-1</sup> s<sup>-1</sup>.

## 15 equiv $A_2/B_2/2$ rxn

The starting concentrations were A = 0.08659; aMA = 0; aMB = 0.004872; B = 0.08753; CP = 0; HP = 0; sMA = 0, sMB = 0.0002.

#### Table S4. Experimental data for 15 equiv A<sub>2</sub>/B<sub>2</sub>/2 rxn

| Time  | [A]       | [B]       |
|-------|-----------|-----------|
| 600   | 0.0812824 | 0.0824845 |
| 1500  | 0.0759856 | 0.0780984 |
| 2400  | 0.0701408 | 0.0732010 |
| 3300  | 0.0647707 | 0.0686081 |
| 4200  | 0.0599711 | 0.0645022 |
| 5100  | 0.0555767 | 0.0606469 |
| 6000  | 0.0518746 | 0.0571960 |
| 6900  | 0.0484637 | 0.0540678 |
| 7800  | 0.0455201 | 0.0515361 |
| 8700  | 0.0430216 | 0.0492413 |
| 9600  | 0.0406380 | 0.0465949 |
| 10500 | 0.0384991 | 0.0445928 |
| 11400 | 0.0365769 | 0.0427490 |
| 12300 | 0.0346712 | 0.0411552 |
| 13200 | 0.0331322 | 0.0393790 |
| 14100 | 0.0316453 | 0.0380769 |
| 15000 | 0.0303402 | 0.0367063 |
| 15900 | 0.0291015 | 0.0353608 |
| 16800 | 0.0279982 | 0.0343497 |
| 17700 | 0.0268338 | 0.0334227 |
| 18600 | 0.0259195 | 0.0320385 |
| 19500 | 0.0248753 | 0.0313530 |
| 20400 | 0.0240663 | 0.0303782 |
| 21300 | 0.0232864 | 0.0293457 |
| 22200 | 0.0225285 | 0.0286760 |
| 23100 | 0.0217088 | 0.0276699 |
| 24000 | 0.0208953 | 0.0271330 |
| 24900 | 0.0203303 | 0.0264921 |
| 25800 | 0.0198669 | 0.0259027 |
| 26700 | 0.0191059 | 0.0252556 |
| 27600 | 0.0186609 | 0.0245211 |
| 28500 | 0.0181208 | 0.0240527 |
| 29400 | 0.0175182 | 0.0236328 |
| 30300 | 0.0170687 | 0.0229905 |
| 31200 | 0.0165738 | 0.0225593 |
| 32100 | 0.0162401 | 0.0222804 |
| 33000 | 0.0157399 | 0.0217561 |
| 33900 | 0.0154318 | 0.0212711 |
| 34800 | 0.0149463 | 0.0208025 |
| 35700 | 0.0145937 | 0.0204004 |
| 36600 | 0.0142956 | 0.0199992 |
| 37500 | 0.0139762 | 0.0197030 |
| 38400 | 0.0136751 | 0.0192039 |
| 39300 | 0.0133516 | 0.0188713 |
| 40200 | 0.0130606 | 0.0186604 |
| 41100 | 0.0127438 | 0.0182201 |
| 42000 | 0.0125408 | 0.0180791 |
| 42900 | 0.0122329 | 0.0176345 |
| 43800 | 0.0119268 | 0.0172429 |
| 44700 | 0.0116592 | 0.0171107 |
| 45600 | 0.0115015 | 0.0167063 |
| 46500 | 0.0111968 | 0.0166349 |
| 47400 | 0.0110266 | 0.0160834 |
| 48300 | 0.0107623 | 0.0159068 |
| 49200 | 0.0105370 | 0.0157740 |
| 50100 | 0.0103848 | 0.0155781 |
| 51000 | 0.0101225 | 0.0154050 |
| 51900 | 0.0100573 | 0.0152333 |
| 52800 | 0.0097950 | 0.0149730 |
| 53700 | 0.0096241 | 0.0147661 |



Figure S4. Experimental and Fit data for 15 equiv A<sub>2</sub>/B<sub>2</sub>/2 rxn





At 50,000 s the amount of CP = 96% of total CP + HP

## Table S5. Experimental data for 35 equiv $A_2/B_2/2$ rxn

The starting concentrations were A = 0.2398; aMA = 0; aMB = 0.00470; B = 0.2439; CP

| -      | r         | (B)        |
|--------|-----------|------------|
| Time   | A         | [B]        |
| 900    | 0.1907662 | 0.1930516  |
| 1800   | 0 1801607 | 0 1927029  |
| 1800   | 0.1601007 | 0.165/956  |
| 2700   | 0.162/130 | 0.1710461  |
| 3600   | 0.1470940 | 0.1582820  |
| 4500   | 0.1331614 | 0 1/175371 |
| 4000   | 0.1331014 | 0.1475571  |
| 5400   | 0.1212/50 | 0.1374547  |
| 6300   | 0.1113995 | 0.1289307  |
| 7200   | 0 1024840 | 0 1204720  |
| 7200   | 0.1024040 | 0.1204729  |
| 8100   | 0.0948932 | 0.1133844  |
| 9000   | 0.0885271 | 0.1079562  |
| 9900   | 0.0824093 | 0 1029694  |
| 10000  | 0.0024075 | 0.102/024  |
| 10800  | 0.0771870 | 0.0976022  |
| 11700  | 0.0727046 | 0.0932987  |
| 12600  | 0.0684274 | 0.0888352  |
| 12500  | 0.0640110 | 0.005552   |
| 13300  | 0.0648119 | 0.0855508  |
| 14400  | 0.0613239 | 0.0819455  |
| 15300  | 0.0582869 | 0.0786830  |
| 16200  | 0.0554990 | 0.0760272  |
| 10200  | 0.0334669 | 0.0700275  |
| 17100  | 0.0528688 | 0.0730079  |
| 18000  | 0.0504311 | 0.0703729  |
| 18000  | 0.0485553 | 0.0685587  |
| 10000  | 0.0463035 | 0.0005507  |
| 19800  | 0.0464035 | 0.0003484  |
| 20700  | 0.0445031 | 0.0646878  |
| 21600  | 0.0426305 | 0.0621580  |
| 22500  | 0.0400100 | 0.0602670  |
| 22300  | 0.0409109 | 0.0002079  |
| 23400  | 0.0392461 | 0.0580969  |
| 24300  | 0.0377514 | 0.0568151  |
| 25200  | 0.0264082 | 0.0550021  |
| 25200  | 0.0304082 | 0.0550921  |
| 26100  | 0.0350131 | 0.0537292  |
| 27000  | 0.0338035 | 0.0522785  |
| 27900  | 0.0327184 | 0.0512784  |
| 20000  | 0.0214679 | 0.0312704  |
| 20000  | 0.0514078 | 0.0497399  |
| 29700  | 0.0306218 | 0.0487675  |
| 30600  | 0.0296662 | 0.0475238  |
| 31500  | 0.0286295 | 0.0466646  |
| 22400  | 0.0200275 | 0.0400040  |
| 32400  | 0.0277746 | 0.0454973  |
| 33300  | 0.0270386 | 0.0448367  |
| 34200  | 0.0261325 | 0.0438464  |
| 25100  | 0.0251796 | 0.0420025  |
| 55100  | 0.0234780 | 0.0429955  |
| 36000  | 0.0247050 | 0.0420759  |
| 36900  | 0.0240312 | 0.0413917  |
| 37800  | 0.0234816 | 0.0405107  |
| 20700  | 0.0237005 | 0.0705157  |
| 38/00  | 0.0227805 | 0.0396438  |
| 39600  | 0.0221059 | 0.0392023  |
| 40500  | 0 0215441 | 0.0382533  |
| 41400  | 0.0210104 | 0.0270425  |
| 41400  | 0.0210104 | 0.0576425  |
| 42300  | 0.0200819 | 0.0362527  |
| 43200  | 0.0200231 | 0.0369622  |
| 44100  | 0.019/716 | 0.0357453  |
| 45000  | 0.0194/10 | 0.0357433  |
| 45000  | 0.0189688 | 0.0353992  |
| 45900  | 0.0185226 | 0.0348183  |
| 46800  | 0.0179224 | 0.0339086  |
| 47700  | 0.0175720 | 0.0220270  |
| 47700  | 0.01/3/20 | 0.0339219  |
| 48600  | 0.0170288 | 0.0334909  |
| 49500  | 0.0167393 | 0.0330151  |
| 50/00  | 0.016/259 | 0.0323763  |
| 51200  | 0.0104239 | 0.0323703  |
| 51300  | 0.0151137 | 0.0323560  |
| 52200  | 0.0156740 | 0.0314626  |
| 53100  | 0.0154065 | 0.0310683  |
| 54000  | 0.01/0/86 | 0.0310513  |
| J TUUU | 0.0177700 | 0.0010010  |

= 0; HP = 0; sMA = 0, sMB = 0.0002.



## Figure S6. Experimental and Fit data for 35 equiv A<sub>2</sub>/B<sub>2</sub>/2 rxn





At 50,000 s the amount of CP = 96% of total CP + HP

## **5.** Reactions relevant to polymerization of B<sub>1</sub> with 1.



## Figure S8. Photolysis of 1

Individual rate constants for *anti* to *syn* conversion for 1 at various temperatures.

| T (°C) | $k_{as1}(s^{-1})$       |
|--------|-------------------------|
| -15    | 4.25 x 10 <sup>-4</sup> |
| -10    | 9.00 x 10 <sup>-4</sup> |
| -5     | 18.0 x 10 <sup>-4</sup> |
| 0      | 27.5 x 10 <sup>-4</sup> |







5.80 5.75 5.70 5.65 5.60 5.55 5.50 5.45 5.40 5.35 5.30 5.25 5.20 5.15 5.10 5.05 5.00 4.95 4.90 4.85 4.80 4.75

Figure S11. Low T addition of  $B_1$  to a mixture of *syn*-1 and *anti*-1 to give a mixture of *syn*-MB<sub>cis</sub> and *syn*-MB<sub>trans</sub> (\* residual  $B_1$  olefin resonance).



6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8

#### 6. Screening polymerizations by 13.

| Entry | Α              | В                     | Time | Conversion | AB linkages | AB linkages: |
|-------|----------------|-----------------------|------|------------|-------------|--------------|
|       |                |                       | (h)  | (%)        | (%)         | cis : trans  |
|       |                |                       |      |            |             | (70)         |
| 1     | $\mathbf{A}_2$ | $\mathbf{B}_2$        | 24   | >99%       | 90          | 08:92        |
| 2     | $\mathbf{A}_2$ | <b>B</b> <sub>1</sub> | 30   | >99%       | 72          | n.d.         |
| 3     | A <sub>1</sub> | <b>B</b> <sub>2</sub> | 15   | >99%       | 89          | 10:90        |
| 4     | A <sub>1</sub> | <b>B</b> <sub>1</sub> | 15   | >99%       | 82          | n.d.         |

Table S6. Each A-alt-B copolymer is made from 13 as the initiator

<sup>a</sup>Conditions: 50 equiv. **A** and **B** (0.1 M in CDCl<sub>3</sub>) at room temperture. % conversion, % AB linkages, *cis:trans* ratio determined from <sup>1</sup>H NMR spectrum of isolated polymer. n.d. = not determined

#### 7. Temperature effects

**Table S7**. Effect of changing the temperature using  $Mo(N-2-i-Pr-C_6H_4)(CHCMe_2Ph)(OCMe(CF_3)_2)_2$  as the initiator<sup>a</sup>

| Entry | Temperature | Time | Conversion | AB linkages | AB linkages: cis : trans |
|-------|-------------|------|------------|-------------|--------------------------|
|       | (°C)        | (h)  | (%)        | (%)         | (%)                      |
| 1     | 22          | 1    | >99        | 93          | 28:72                    |
| 2     | 0           | 2    | >99        | 93          | 28:72                    |
| 3     | -30         | 15   | >99        | 85          | 35 : 65                  |

<sup>a</sup>Conditions: 50 equiv.  $A_2$  and  $B_2$  (0.1 M in CDCl<sub>3</sub>) at stated temperature. % conversion, % AB linkages, *cis:trans* ratio determined from <sup>1</sup>H NMR spectrum of isolated polymer.



**Figure S12.**  $\delta$  5.6 to 5.0 ppm <sup>1</sup>H NMR spectra of **A**<sub>2</sub>-*alt*-**B**<sub>2</sub> copolymer prepared using Mo(N-2-*i*-Pr-C<sub>6</sub>H<sub>4</sub>)(CHCMe<sub>2</sub>Ph)(OCMe(CF<sub>3</sub>)<sub>2</sub>)<sub>2</sub> as initiator at different temperatures

## 8. Polymerization of other A monomers with 1

| Entry          | А              | Concentration                  | Time | Conversion | AB linkages |
|----------------|----------------|--------------------------------|------|------------|-------------|
|                |                | (M)                            | (h)  | (%)        | (%)         |
| 1              | A <sub>3</sub> | $[A_3]_0 = [B]_0 = 0.19$       | 14.5 | >98        | 93          |
|                |                | $[Mo]_0 = 0.0038$              |      |            |             |
| 2              | $A_4$          | $[A_4]_0 = [B]_0 = 0.53$       | 3    | ~70        | 85          |
|                |                | [Mo] <sub>0</sub> =0.0011      |      |            |             |
| 3 <sup>b</sup> | A <sub>5</sub> | $[A_5]_0 = 1.33, [B]_0 = 0.27$ | 20   | >99        | 82          |
|                |                | [Mo] <sub>0</sub> =0.0053      |      |            |             |

Table S8. Screening of A type monomers using 1 as initiator<sup>a</sup>

<sup>a</sup>Conditions:  $[A]_0:[B]_0:[I]_0 = 50:50:1$  at room temperature. % conversion and % AB linkages determined using <sup>1</sup>H NMR spectroscopy. <sup>b</sup> $[A]_0/[B]_0/[I]_0 = 250/50/1$  at room temperature.

**9.** Figure S13. <sup>1</sup>H NMR spectra on the olefinic region of A<sub>2</sub>-*alt*-B<sub>2</sub> copolymers prepared using different imido initiators.





## **10.** Figure S14. Effects of monomer ratio and T on polymerization of A<sub>1</sub> and B<sub>1</sub> by 1.

## **11.** Molecular weight studies of A<sub>1</sub>B<sub>1</sub> and A<sub>1</sub>B<sub>2</sub>.

**11a.** GPC trace (in THF at 23 °C) of *trans*-poly( $A_1$ -*alt*- $B_1$ ) (50/50 equiv) prepared with initiator **1**;  $M_n$  = 30.3 kDa ( $\mathcal{D}_M$  = 2.04).



**11b.** GPC trace (in THF at 23 °C) of *trans*-poly( $A_1$ -*alt*- $B_2$ ) (50/50 equiv) prepared with initiator **1**;  $M_n$  = 36.8 kDa ( $D_M$  = 1.74).



### References

<sup>1</sup> Coşkun, N.; Erden, I. *Tetrahedron* **2011**, *67*, 8607.

<sup>2</sup> Reynaud, C.; Fall, Y.; Feuerstein, M.; Doucet, H.; Santelli, M. *Tetrahedron* **2009**, *65*, 7448.

<sup>3</sup> Chen, H.; Yao, E.; Xu, C.; Meng, X.; Ma, Y. Org. Biomol. Chem. 2014, 12, 5102.

<sup>4</sup> Daeffler, C. S.; Grubbs, R. H. *Macromolecules* **2013**, *46*, 3288.