
MIT Open Access Articles

An adaptive routing approach for personal rapid transit

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Schüpbach, Kaspar, and Rico Zenklusen. “An Adaptive Routing Approach for Personal
Rapid Transit.” Mathematical Methods of Operations Research 77.3 (2013): 371–380.

As Published: http://dx.doi.org/10.1007/s00186-012-0403-8

Publisher: Springer Berlin Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/105196

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/105196

Math Meth Oper Res (2013) 77:371–380
DOI 10.1007/s00186-012-0403-8

ORIGINAL ARTICLE

An adaptive routing approach for personal rapid transit

Kaspar Schüpbach · Rico Zenklusen

Published online: 11 September 2012
© Springer-Verlag 2012

Abstract Personal Rapid Transit (PRT) is a public transportation mode, in which
small automated vehicles transport passengers on demand. Central control of the vehi-
cles leads to interesting possibilities for optimized routings. The complexity of the
involved routing problems together with the fact that routing algorithms for PRT
essentially have to run in real-time often leads to the choice of fast greedy approaches.
The most common routing approach is arguably a sequential one, where upcoming
requests are greedily served in a quickest way without interfering with previously
routed vehicles. The simplicity of this approach stems from the fact that a chosen
route is never changed later. This is as well the main drawback of it, potentially lead-
ing to large detours. It is natural to ask how much one could gain by using a more
adaptive routing strategy. This question is the main motivation of this article. In this
paper, we first suggest a simple mathematical model for PRT, and then introduce a new
adaptive routing algorithm that repeatedly uses solutions to an LP as a guide to route
vehicles. Our routing approach incorporates new requests in the LP as soon as they
appear, and reoptimizes the routing of all currently used vehicles, contrary to sequen-
tial routing. We provide preliminary computational results that give first evidence of
the potential gains of an adaptive routing strategy, as used in our algorithm.

Keywords Personal rapid transit · Adaptive routing · Online algorithms ·
Decision support models

K. Schüpbach
ETH Zurich, Institut für Operations Research, HG E 65.1, Rämistrasse 101, 8092 Zurich, Switzerland
e-mail: kaspar.schuepbach@ifor.math.ethz.ch

R. Zenklusen (B)
MIT, Department of Mathematics, Room 2-332, Cambridge, MA 02139, USA
e-mail: ricoz@math.mit.edu

123

372 K. Schüpbach, R. Zenklusen

1 Introduction

Personal Rapid Transit (PRT) is a rather novel mode of public transportation, where
small automated vehicles, called pods, transport passengers on demand on a track
network. Passengers can choose the destination of the ride when entering the pod at
a station. Then a central automatic system guides the pod through the network to the
desired destination. PRT is intended to complement public transportation systems,
as subways and trains, by offering a quick means of transportation for short dis-
tances, thus addressing the well-known last mile problem. The goal of PRT is hence to
improve public transportation in general and increase its share, also by providing an
alternative to the automobile. Even though the general idea of PRT is several decades
old [see Fichter (1964)], only recently first PRT projects were deployed and many
more entered concrete planning and decision phases [see Request for proposal for San
José automated transit network FFRDC development services (2009), Feasibility of
PRT in Ithaca, New York—executive summary (2010), Sukayna (2011), Heathrow T5
(2011)].

The fact that the routing can be done centrally in a PRT system is a major advan-
tage compared to road traffic, and opens up exciting new possibilities. However, the
central routing comes with two major challenges. First, the resulting routing prob-
lems are likely to be computationally hard. In particular, it was shown in Schüpbach
and Zenklusen (2011) that even a simple offline model for automated vehicle routing
[a slight variation of which was previously considered in Krishnamurthy et al. (1993),
Spenke (2006), Stenzel (2008)], already leads to NP hard problems even on a network
consisting of a single path. For the same model, only very recently approximation
algorithms were found with sublinear approximation guarantee with respect to the
number of vehicles to be routed (Schüpbach and Zenklusen 2011). Second, online
routing algorithms for PRT must be real-time, to avoid that vehicles stand idle while
waiting for routing instructions.

The arguably most common routing paradigm for similar online routing problems is
a sequential scheme, that we simply call sequential routing. Here, whenever a request
is revealed, a quickest way to fulfill it is determined (avoiding conflicts with previously
fixed routes for requests revealed earlier). In particular, once a routing for a particu-
lar request is fixed, it is never changed later. The simplicity of sequential routing is
appealing for applications and, despite its simplicity, it performs very well in a variety
of settings (Kim and Tanchoco 1991; Möhring et al. 2005; Rivera-Vega et al. 1990;
Stenzel 2008).

Nevertheless, the policy of never changing a fixed route in the future is a restriction
of sequential routing that comes at its price. Pods routed later might have to take large
detours, even though it may be possible that a slight rerouting of previously routed
pods could free the desired tracks for new requests. In this paper, we are interested in
addressing this potential drawback.

First, we introduce a simple model for PRT capturing some central features of the
problem. The introduced model is deadlock-free, i.e., no matter how pods are routed
up to some time τ , it is always still possible to fulfill all requests. We then suggest
an online routing algorithm, that iteratively re-optimizes the routing choices of all
involved pods. Our algorithm first solves an LP relaxation, corresponding to a node

123

An adaptive routing approach for personal rapid transit 373

capacitated multi-commodity flow problem on a time-expanded graph, and then locally
(in terms of time) rounds the obtained solution. Finally, we provide preliminary com-
putational results to compare our algorithm against the sequential routing approach.

2 The model

The PRT model we suggest is essentially a directed online version of the offline model
to route automated guided vehicles presented in (Schüpbach and Zenklusen 2011). We
are given a directed graph G = (V, A) representing the track network and consider a
discretisation of the time into time steps. Pods reside on nodes, and at each time step
each pod can either remain on its current node or move along an arc to an adjacent
node. No two pods are allowed to reside at the same node during the same time step.

The unit travel time between any two adjacent nodes in G is obtained by subdivid-
ing physical tracks with higher travel times through the introduction of extra nodes.
The fact that any two pods in our model must be separated by at least one time step is
used to ensure that pods keep some minimum temporal separation for safety reasons.
This is a typical requirement in many conflict-free routing applications. Hence, the
time unit would be chosen to be roughly this desired headway time. Our model does
not deal with precise acceleration patterns for pods, but essentially assumes that the
speed of any pod depends only on its location. The faster a pod can move on some
track, the less often the track is subdivided to obtain the desired headway time.

At each time step, new requests may appear. Each request π is described by a triple
(sπ , tπ , τπ), where sπ , tπ ∈ V, sπ �= tπ are the start point and end point (or origin
and destination) of the request, and τπ ∈ Z+ is the release time of the request. In
other words, (sπ , tπ , τπ) is a request that was filed at time τπ by passengers who want
to go from sπ to tπ . We do not impose any hard constraints on how many requests
can appear at any time step, but only assume that the total number of requests will
be finite. For the computational results in Sect. 4, we discuss a probabilistic model
for the appearances of request. For any time τ , a request π is open if τπ ≤ τ , and
the request was not served yet to completion. We make a rather strong assumption
about the availability of empty pods. Namely, whenever a new request (sπ , tπ , τπ)

appears, we assume that there is an empty pod immediately available at sπ at time
step τπ . The main reason for this assumption is that we are primarily interested in the
problem of finding strong routes between origin-destination pairs. The above assump-
tion allows us to isolate this question from other challenges interesting in their own
right, like a possible shortage of pods, or the navigation of spare empty pods to places
where they are ready to quickly serve upcoming requests (see Lees-Miller (2011) and
references therein for more information). Essentially, our setting can be loosely inter-
preted as having no shortage of pods, and such that at any time there is only very little
time needed to navigate an empty pod to any fixed node. Due to this assumption, we
call—with slight abuse of notation—the pod serving request (sπ , tπ , τπ) simply π .

As a relaxation of the conflict definition at a node, we assume that pods can only
be conflicting while in transit, i.e., a pod π cannot cause a conflict before departure
and after arrival. The departure time of π is the last time step that the pod is still at its
origin sπ , and the arrival time is the earliest time when π is at its destination tπ . We

123

374 K. Schüpbach, R. Zenklusen

call this relaxation, which was as well used in Schüpbach and Zenklusen (2011), the
parking assumption. The motivation for the parking assumption stems from the fact
that in typical PRT settings, the stations are on separate side tracks, and thus do not
interfere with the remaining network. We call a pod/request π active if it is open and
π is not anymore at its parking position at the origin.

To simplify the exposition we concentrate on one natural objective function, namely
the average delay of the requests. Once a pod π arrives at its destination at some time
step τ , we define its delay delπ —or the delay of the corresponding request—as

delπ := τ − τπ − d(sπ , tπ),

where d(sπ , tπ) is the length of a shortest path (in number of arcs) from sπ to tπ .
Hence, the delay is the difference between the time needed to complete a request
and the shortest possible time to fulfill the request if there were no other pods on the
network which could cause conflicts. Our goal is thus to minimize 1

|Π |
∑

π∈Π delπ ,
where Π is the set of all requests, which will be revealed online.

Due to the parking assumption it is obvious that there always exists a feasible way
to route the pods to their destinations: one could simply serve the requests one-by-one,
thus only having a single pod on the tracks at any time, while the pods for all other
active requests are waiting at the corresponding start points. However, the parking
assumption (at the destinations) implies something much stronger, namely that it is
impossible to create deadlocks, no matter how one routes the pods. A deadlock is a
constellation of pods and corresponding requests such that it is not anymore possible
to route all pods to their destinations since pods on the tracks block each other.

Theorem 1 No deadlocks are possible in the suggested PRT model, i.e., for any time
τ , any set of open requests and position of pods serving the open requests, it is possible
to fulfill all requests.

Proof It clearly suffices to show that it is always possible to serve all active requests,
since one can wait with serving non-started and future requests until the active ones are
completed, and then use e.g. a simple serial one-by-one routing strategy as mentioned
above. Hence, let Π all active requests, and for π ∈ Π let vπ ∈ V be the current
position of pod π . We prove the theorem by showing that during the next time step,
the current pods can be routed such that they reach positions v′

π ∈ V for π ∈ Π

satisfying

∑

π∈Π

d(v′
π , tπ) <

∑

π∈Π

d(vπ , tπ), (1)

i.e., the total distance of the current pods to their destinations strictly decreases. For
each π ∈ Π we fix an arbitrary arc aπ outgoing of vπ that would bring pod π closer
to its destination. Let AΠ = {aπ | π ∈ Π}. Consider the subgraph (V, AΠ) of G.
In (V, AΠ) each vertex has at most one outgoing arc, since each vertex contains at
most one pod. If Aπ contains a directed cycle C , then we can move each pod π on
a vertex of C along its arc aπ , without moving any other pods. This clearly does not
create a conflict and fulfills (1). Otherwise, if (V, AΠ) does not contain any directed

123

An adaptive routing approach for personal rapid transit 375

cycle, then each pod π ∈ Π can simultaneously be moved along aπ without creating
a conflict and by bringing them closer to their destinations.

3 Online algorithms for the PRT problem

In this section, we give a short summary of sequential routing and introduce our new
routing approach. Both algorithms do not assume any particular distribution describ-
ing how new requests appear, and therefore base their routing decisions at each time
step only on the currently open requests.

Time-expanded graphs, a well-known algorithmic tool to deal with network prob-
lems with an inherent time component that was already studied by Ford and Fulkerson
(1958), are used for both sequential routing and our approach. We therefore start by
introducing time-expanded graphs as used in our context, before discussing sequential
routing and our routing approach.

3.1 Time-expanded graphs

A time-expanded graph can be used to describe all routing possibilities during a given
time frame. To describe all routing options for the open requests Π at some time step τ ,
we construct a time-expanded graph H = (W, F) for the time frame {τ , τ +1, . . . , T },
where T ∈ N is a sufficiently large value ensuring that all open requests can be
served. The nodes and arcs of H = (W, F) can each be partitioned into two groups
W = W1 ∪ W2 and F = F1 ∪ F2, where

W1 = {vτ | v ∈ V, τ ∈ {τ , τ + 1, . . . , T }},
F1 = {(vτ

1 , vτ+1
2) | v1, v2 ∈ V, v1 = v2 or (v1, v2) ∈ A, and τ ∈ {τ , . . . , T − 1}},

W2 = {sπ | π ∈ Π} ∪ {tπ | π ∈ Π},
F2 = {(sπ , sτ

π) | τ ∈ {τ , . . . , T }} ∪ {(tτπ , tπ) | τ ∈ {τ , . . . , T }}

The nodes and arcs given by W1 and F1 give a representation for each vertex in V at
each time step in {τ , . . . , T }, and how vehicles can move between them. The extra
nodes and arcs W2 and F2 are used to model the parking assumptions. A routing for
a pod in Π can now simply be represented by a single path in H . If a pod π ∈ Π is
still at its parking position at time step τ , then a routing of π corresponds to a path
from aπ = sπ to tπ . Otherwise, if π is active and its current position is vπ , then a
routing of π corresponds to a path from aπ = vτ

π to tπ . One can easily observe that
a simultaneous conflict-free routing of all vehicles in Π corresponds to choosing for
each π ∈ Π , a path Pπ from aπ to tπ in H such that the paths {Pπ | π ∈ Π} are
node-disjoint. Furthermore, the delay of a vehicle π ∈ Π only depends on the last arc
on Pπ , which is of the form (tτπ , tπ), and τ then corresponds to the arrival time of π

when using the routing given by Pπ .
As a simple means to associate the corresponding delay when routing π over a

path Pπ in H , we assign costs c to the arcs F . Namely, all arcs in F1 and arcs of
the form (sπ , sτ

π) have a cost of 0. Furthermore, an arc f = (tτπ , tπ) has a cost of

123

376 K. Schüpbach, R. Zenklusen

c(f) = τ − τπ − d(sπ , tπ), which is precisely the delay of any routing for π given
by a path Pπ in H which uses (tτπ , tπ) as its last arc. Therefore, the delay of π is
equal to c(Pπ), the cost of the path Pπ with respect to c. In particular, when assuming
that no new requests appear, finding the optimal way to route the open requests Π

corresponds to finding node-disjoint paths between aπ and tπ for π ∈ Π of minimum
total length with respect to c.

3.2 Sequential routing

Sequential routing is a standard routing paradigm for vehicle routing problems [see
e.g. Kim and Tanchoco (1991), Möhring et al. (2005)]. In sequential routing, once a
request π appears, a routing is fixed for π that will not be changed later, no matter
what other requests are revealed in the future. For a time step τ , the routing of the
requests Πτ revealed to τ is determined as follows. We go through the requests Πτ in
any order, determining routings one-by-one. The routing of a pod π is chosen to be
the quickest possible without creating conflicts with previously fixed routes, i.e., this
includes requests with reveal time <τ and those considered before π at time step τ .
Such a quickest route can be obtained by computing a shortest aπ —tπ path in H over
all nodes not used by any previously fixed routes.

3.3 An adaptive LP-based routing approach

To describe our approach we consider an arbitrary constellation of open requests Π

at some time step τ and specify how to route the pods between τ and τ + 1. Based on
the time-expanded graph H = (W, F), we consider an LP relaxation for the best way
to complete all open requests, assuming that no new requests appear. More precisely,
H = (W, F) spans the time steps from τ up to some sufficiently large time T . We
will explain soon what “sufficiently large” means and how the choice of the right T
can be handled implicitly. For each open request π ∈ Π , let aπ ∈ W be the node
corresponding to the current position of pod π at time step τ . Our goal is to solve a
minimum cost multicommodity flow on H with unit node capacities and costs given
by c, where each request π ∈ Π corresponds to a different commodity, and the goal
is to send for each π ∈ Π a unit-flow from aπ to tπ . Unit node capacities enforce that
no node has more than one unit of flow entering nor leaving.

Notice that since no deadlocks are possible in our PRT model due to Theorem 1,
there is a time T such that all open pods can be routed to their destinations, and hence
also the multicommodity LP will be feasible for T = T . Furthermore, by choosing
T to be larger than the minimum value which leads to LP feasibility, LP solutions of
smaller cost may result. However, it is also not hard to argue that there is a sufficiently
large value T̃ such that the LP solution for T = T̃ does not get even cheaper for
any T > T̃ . We are interested in finding a minimum cost multicommodity flow for
some T ≥ T̃ . Since the way we find such a minimum cost multicommodity flow uses
a combination of rather standard procedures, we only give a brief overview of the
details.

123

An adaptive routing approach for personal rapid transit 377

More precisely, the way we deal with the issues of not knowing T̃ and the poten-
tially large resulting LP, is by using a column generation approach to solve the LP.
We use the classical path formulation of the multicommodity flow problem [see e.g.
Korte and Vygen (2008)], and generate new paths step by step, by finding for each
commodity π ∈ Π a minimum weighted aπ -tπ path, whose weight is the sum of
node weights given by the dual variables of the LP and arc weights given by c [see
Schrijver (2003) for more details on this standard column generation technique]. With
this approach, we can use Dijkstra’s algorithm on a time-expanded graph to find new
paths for π ∈ Π . Notice that for Dijkstra’s algorithm, we do not have to fix a precise
value of T , but we can just add additional time layers during the algorithm as needed
until Dijkstra’s algorithm reaches tπ . After having added new paths to the LP, we use
CPLEX 12.3 to solve the LP with the extended set of variables1. Once an optimal
multicommodity flow is obtained, we are only interested in flow between time step τ

and τ + 1. Let

V = V ∪ {sπ | π ∈ Π} ∪ {tπ | π ∈ Π},
i.e., V represents all possible locations where pods can be (at time τ + 1), where
sπ , tπ correspond to the pod π ∈ Π being parked at the start and end, respectively.
For π ∈ Π and v ∈ V , let xπ (v) ∈ [0, 1] be the flow value of commodity π through
location v at time step τ + 1. E.g., if v ∈ V , then xπ (v) is the total flow in H of com-
modity π going through the node vτ ; furthermore xπ (sπ), xπ (tπ) is the total amount
of flow in H of commodity π that is at time step τ at node sπ and tπ , respectively,
i.e., this corresponds to the amount of flow of commodity π that will leave the parking
position after τ or reached the destination until time τ , respectively. Hence, for each
request π ∈ Π we have a distribution xπ ∈ [0, 1]V over V .

Based on xπ , we want determine through a randomized rounding approach to which
vertex uπ ∈ V pod π will be sent in time step τ +1. The rounding has of course to sat-
isfy that no conflicts occur, i.e., it must hold uπ �= uπ ′ for any π, π ′ ∈ Π with π �= π ′.
Furthermore, we want to round such that the marginal probabilities are preserved, i.e.,
Pr[uπ = v] = xπ (v) ∀v ∈ V . Our problem can easily be translated into the well-
known problem of rounding fractional matchings in bipartite graphs. More precisely,
the vectors xπ for π ∈ Π can be represented as a fractional matching in a (com-
plete) bipartite graph (Π, V), where the weight of the edge {π, v} is equal to xπ (v).
We thus seek to round this fractional matching to an integral matching by preserving
marginal probabilities, a well-studied setting discussed e.g. in Gandhi et al. (2006),
Chekuri et al. (2010). A conceptually simple rounding technique would be to use a
constructive version of Carathéodory’s theorem to express the fractional matching as
a convex combination of integral matchings, and then pick randomly one of the inte-
gral matchings with probability equal to the corresponding coefficient in the convex
combination. However, we use the specialized technique as presented e.g. in Gandhi
et al. (2006), since it provides a very efficient way to round the fractional matching
by doing simple local rounding steps on fractional cycles. After having obtained the

1 As a feasible starting solution to the multicommodity LP, we introduced very expensive arcs from each
origin to each destination and sent flow only over those arcs.

123

378 K. Schüpbach, R. Zenklusen

locations uπ for π ∈ Π through the rounding, we send pod π to location uπ between
time step τ and τ + 1. Next time step, the same procedure is repeated to determine
how to send the pods between τ + 1 and τ + 2, and so on.

4 Preliminary computational results

We present some preliminary computational results in this section. As a simple first
setting, we consider a grid topology, as used in similar contexts for analyzing the
routing of automated guided vehicles (Stenzel 2008). More precisely, we consider a
grid of size 8 × 8, whose edges are oriented in an alternating way as shown in Fig. 1.
Requests are randomly generated as follows. Over 1, 000 time steps, the number of
new requests at each time step is an independent Poisson random variable with some
parameter λ, which we call release rate. Hence, a release rate of e.g. λ = 3 means that
three new requests appear at each of the first 1, 000 time steps in average. For each
request, origin and destination is chosen uniformly at random among all pairs of two
different vertices.

The left plot of Fig. 2 shows, on this grid instance, the average delay for the sequen-
tial approach and our adaptive approach depending on the release rate. As expected,
for low release rates the two approaches perform similarly, since due to the low traffic
there are many good routes to handle new requests, even if conflicts with previously
routed pods have to be avoided. However, for higher release rates this restriction of
the sequential algorithms turns out to be a serious issue and the adaptive approach is
considerable stronger.

The right plot of Fig. 2 shows the number of open requests at each time step for the
four release rates 5.4, 5.5, 6.2, 6.3. These release rates were chosen such that one can
observe when the routing algorithms reach an unstable mode, i.e., in average more

Fig. 1 Topology of the grid
instance we use for
computational results

123

An adaptive routing approach for personal rapid transit 379

Fig. 2 Left average delay per request for different release rates for sequential routing (Seq) and our adaptive
approach (Adap). Right number of open requests over time for four different release rates: 5.4, 5.5, 6.2, 6.3

new requests appear than the number of requests served. For each algorithm, plots
further on top correspond to higher release rates. In this example, sequential routing is
stable for a release rate of 5.4 and starts to accumulate open requests for release rates
from 5.5 on. Our approach is stable for release rates up to roughly 6.2 and becomes
unstable for release rate 6.3. One can also observe that the adaptive approach leads to
a much more efficient use of the infrastructure for the same release rate.

For the above instance, the runtime of the proposed approach was in the range of
about 10 seconds per time step for release rates around 6, and considerable lower
for smaller release rates. The computations were performed on a computer with an
Intel Core i7 2.7 GHz dual-core processor and 4GB RAM. Whereas these preliminary
computational results are obviously limited, they provide good reason to hope that
also in more general settings an adaptive route choice as in our routing approach can
lead to considerable shorter delays.

5 Concluding remarks

We introduced a simple model for PRT routing, and presented an LP-based adaptive
routing algorithm. Our goal was to suggest an alternative to sequential routing—a
standard routing approach used in many similar settings—that does not suffer from
bad routing choices that cannot be adapted at a later point in time. At each time step
our algorithm locally rounds an LP solution to determine how to route pods from this
time step to the next one. First computational results show potential gains that can be
achieved with this more adaptive routing approach, and within reasonable computa-
tional time.

A natural direction for further research would be to extend our preliminary computa-
tional results in general, but in particular by considering different network topologies.
Also a more general PRT model could be of interest for cases where the parking
assumption does not holds, and where only a limited number of pods is considered,

123

380 K. Schüpbach, R. Zenklusen

such that the movement of empty pods becomes relevant. Furthermore, we believe
that the study of alternative objective functions is of interest. In particular, instead
of minimizing average delay, one could try to reach a particular well-defined service
level that penalizes more strongly very high delays.

Acknowledgments Both authors wish to express their gratitude to Prof. Hans-Jakob Lüthi, former head
of the Institute for Operations Research at ETH Zurich, whose commitment and vision for interdisciplinary
research was a strong inspiration for the authors, and in particular led to this article. The second author was
supported by NSF grants CCF-1115849 and CCF-0829878, and by ONR grants N00014-11-1-0053 and
N00014-09-1-0326.

References

Chekuri C, Vondrák J, Zenklusen R (2010) Dependent randomized rounding via exchange properties of
combinatorial structures. In: Proceedings of the 51st IEEE symposium on foundations of computer
science (FOCS), pp 575–584

Fichter D (1964) Individualized automatic transit and the city. B. H. Sikes, 1430 East 60th Place, Chicago,
IL 60637

Ford LR, Fulkerson DR (1958) Constructing maximal dynamic flows from static flows. Oper Res 6(3):419–
433

Gandhi R, Khuller S, Parthasarathy S, Srinivasan A (2006) Dependent rounding and its applications to
approximation algorithms. J. ACM 53(3):324–360 doi:10.1145/1147954.1147956

Kim CW, Tanchoco JMA (1991) Conflict-free shortest-time bidirectional AGV routing. Int J Prod Res
Korte B, Vygen J (2008) Combinatorial optimization, theory and algorithms. 4. Springer, Berlin
Krishnamurthy NN, Batta R, Karwan MH (1993) Developing conflict-free routes for automated guided

vehicles. Oper Res 41(6):1077–1090
Lees-Miller JD (2011) Empty vehicle redistribution for personal rapid transit. Ph.D. thesis, University of

Bristol
Möhring RH, Köhler E, Gawrilow E, Stenzel B (2005) Conflict-free real-time AGV routing. In: Proceedings

of operations research, pp 18–24
Rivera-Vega P, Varadarajan R, Navathe S (1990) Scheduling data redistribution in distributed databases. In:

Proceedings of sixth international conference on data engineering, pp 166–173. doi:10.1109/ICDE.
1990.113466

Request for proposal for San José automated transit network FFRDC development services (2009) Tech.
rep., Department of Transportation of the City of San José

Feasibility of PRT in Ithaca, New York—executive summary (2010) Tech. rep., New York State Department
of Transportation

Schrijver A (2003) Combinatorial optimization, polyhedra and efficiency. Springer, Berlin
Schüpbach K, Zenklusen R (2011) Approximation algorithms for conflict-free vehicle routing. In: Proceed-

ings of the 18th Annual European Symposium on Algorithms (ESA), pp 640–651
Spenke I (2006) Complexity and approximation of static k-splittable flows and dynamic grid flows. Ph.D.

thesis, Technische Universität Berlin
Stenzel B (2008) Online disjoint vehicle routing with application to agv routing. Ph.D. thesis, Technische

Universität Berlin
Sukayna S (2011) Gurgaon eyes elevated pods. Times of India, Mumbai
Heathrow T5. Website (2011). http://www.ultraglobalprt.com/wheres-it-used/heathrow-t5/

123

http://dx.doi.org/10.1145/1147954.1147956
http://dx.doi.org/10.1109/ICDE.1990.113466
http://dx.doi.org/10.1109/ICDE.1990.113466
http://www.ultraglobalprt.com/wheres-it-used/heathrow-t5/

	An adaptive routing approach for personal rapid transit
	Abstract
	1 Introduction
	2 The model
	3 Online algorithms for the PRT problem
	3.1 Time-expanded graphs
	3.2 Sequential routing
	3.3 An adaptive LP-based routing approach

	4 Preliminary computational results
	5 Concluding remarks
	Acknowledgments
	References

