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ABSTRACT
We interpret several dynamical system verification questions,
e.g., region of attraction and reachability analyses, as data
classification problems. We discuss some of the tradeoffs be-
tween conventional optimization-based certificate construc-
tions with certainty in the outcomes and this new date-
driven approach with quantified confidence in the outcomes.
The new methodology is aligned with emerging computing
paradigms and has the potential to extend systematic verifi-
cation to systems that do not necessarily admit closed-form
models from certain specialized families. We demonstrate
its effectiveness on a collection of both conventional and un-
conventional case studies including model reference adaptive
control systems, nonlinear aircraft models, and reinforce-
ment learning problems.

1. INTRODUCTION
Certification of safety-critical systems is the procedure

of demonstrating compliance with often a large collection
of criteria to an authority. For example, MilSpecs [1] and
DO-178 [2] provide guidelines for flight control applications.
While linear stability, performance and robustness metrics
have been regarded as satisfactory certification criteria in
these guidelines for relatively conventional applications, in-
creasingly adaptable and autonomous systems necessitate
new quantitative criteria.

Consider an example in which the system operates at a
nominal condition xnom (e.g., a trim condition of an air-
craft) in a state space X ⊆ Rn. For simplicity, assume that
the system is stationary at this nominal condition xnom. An
analyst, who has identified a set G of perturbations to which
the system may be subject while operating at xnom, queries
whether the system can recover (i.e., returns to xnom) from
all possible perturbed configurations in G. Given a mathe-
matical model of the system, a number of methods seek an-
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swers to similar analysis queries. We consider two of them:
extensive simulations (or testing) and deductive methods.

Extensive simulations emanating from initial conditions
sampled from G constitute a data-driven approach which is
widely applicable as long as there exist a simulation model
and an oracle that labels the sampled initial conditions as
“yes, the nominal condition is recovered from the sampled
initial condition” or ”no, it is not.” Such simulations are in-
formative yet unable to cover all possible perturbations.

If a model is given in a closed-form as differential (or differ-
ence) equations, then it may be possible to construct certifi-
cates that witness affirmative answers to the queries. Exam-
ples of such certificates include the so-called Lyapunov, bar-
rier and storage functions. For example and quite roughly
speaking, consider a smooth and positive definite function V
that decreases along all trajectories—except for the station-
ary trajectory at xnom—emanating from the set Ω in which
V is less than or equal to 1 and attains its minimum value at
xnom [3]. If such a V exists, then an affirmative answer to the
above query can be predicted by checking whether G ⊆ Ω.
Essentially, the boundary of the set Ω separates the states
in X into two categories: the initial conditions from which
the system is known to recover to xnom and those initial
conditions from which the system is not known to recover.
Equipped with a certificate V and the corresponding set Ω,
responding to the above query boils down to predicting to

G

“V  1”

“V̇ < 0”

Figure 1: Schematic

of a Lyapunov-type

proof of G is con-

tained in Ω.

which side of the boundary of
Ω the set G belongs.

While existence of certifi-
cates provides unambiguous
answers to system analysis
queries, their applicability is
limited by whether such certifi-
cates can be automatically con-
structed for given system mod-
els. While system models ex-
pressed as differential equations
that are linear or polynomial
in the state variables—though
only in modestly sized state
spaces—are amenable to automated construction [4, 5, 6],
deductive methods cannot be directly applied to a broad
range of practically interesting models utilized in simulation-
based analysis.

We showcase a data-driven approach to respond to a large
collection of system analysis queries. This approach com-
bines the applicability and scalability of simulation-based



analysis1 with the end use of a certificate to conveniently
predict answers to queries. Specifically, we interpret system
analysis queries as data classification problems [7]. The con-
structed classifier—as appropriate sublevel sets of Lyapunov-
like functions do—separates the set of initial conditions into
two categories. It can be used to predict which category a
priori unseen (sets of) initial conditions belong along with
quantified confidence in the form of generalization errors.

We present a candidate setup for interpreting a sample
of system analysis queries as data classification problems.
This interpretation in turn opens up dynamical system veri-
fication to a wide range of methods from statistical learning
theory [7]. We overview a particular classification method
and demonstrate the effectiveness of the approach on con-
ventional examples (for comparison with optimization-based
proof construction techniques) as well as on systems includ-
ing those for which the loop is closed by an adaptive con-
troller and by a logic obtained through a prior reinforcement
learning phase, hence with no closed-form models.

2. TECHNICAL APPROACH
We now discuss a candidate setup for data-driven veri-

fication. For ease of presentation, we focus on region of
attraction analysis around a stationary trajectory of an au-
tonomous system. That is, we are interested in characteriz-
ing the extent of the set of initial conditions from which the
system approaches a fixed stationary trajectory.

2.1 Setup
Suppose that the system is represented by a finite collec-

tion S of signals (or sequences) φ(·;x0) over the time horizon
[0, Tx0 ] and setX ⊆ Rn parametrized by the initial condition
x0 ∈ X. The signal φ(·;x0) may represent the evolution of
the state, if evident from the underlying model, of a dynami-
cal system from the initial state x0. If the state of the system
is not evident, then φ(·;x0) may simply represent the evolu-
tion of the variables in the model that can be monitored by
an observer. The latter is often the case for software-based
simulation models (e.g., those in Simulink).

Suppose that xnom is a stationary signal, and we are in-
terested in estimating the extent of the region of attraction
{x ∈ Rn : φ(t;x)→ xnom as t→∞} of xnom. If x is the state
in a closed-form model for the system, it may be possible to
construct Lyapunov certificates that witness affirmative an-
swers to the query. Roughly speaking, a Lyapunov function
V that decreases along all nonstationary trajectories ema-
nating from the set {x ∈ Rn : V (x) ≤ 1} and attains its min-
imum value at xnom [3]. Essentially, {x ∈ Rn : V (x) = 1}
separates the states in X (Figure 1): the initial conditions
from which the system is known to recover to xnom and those
from which the system is not known to recover. While the
existence of certificates provides unambiguous answers, au-
tomated construction is possible only for limited family of
models with a small-to-modest number of states.

In order to combine the scalability of simulations and the
end-use flexibility of analytical certificates, we now interpret
the system analysis query as a data classification problem.
To this end, consider that we are equipped with an oracle

1That is, conducting numerical simulations with a dynami-
cal system model is typically computationally less demand-
ing than constructing algebraic proof certificates using the
same model.

that labels a given initial condition (more specifically the
trajectory through the initial condition) as converging (i.e.,
the trajectory through the initial condition converges to x =
0) vs. non-converging (i.e., the trajectory through the initial
condition does not converge to x = 0). Call the set of initial
conditions labeled as converging as SC and those labeled as
non-converging as SD. Given a collection of converging and
non-converging initial conditions, computation of a classifier
can be formulated as a supervised learning problem [7].

Remark 1. The collection SC ∪ SD of initial conditions
(possibly in the space of observed variables) may be obtained
through simulations or come from the monitoring of the ac-
tual system operation. The sets SC and SD may be extended
by including finitely many points along the trajectories em-
anating from the initial conditions in the corresponding set.

Remark 2. The construction of an oracle is beyond the
scope of the paper. In most cases, an oracle will be based on
an expert’s judgment or a somewhat automated version of
such judgment. For example, by limiting the execution over
finite windows, one can label the executions that result in
undesirable behavior within the window as −1 and all other
executions as “practically” +1. We also refer the reader to
[6] for preliminary ideas in the context of simulation-based
proof construction.

2.2 Classification
Naively, consider the classifier with an affine form wTx+b

such that wT x̄+ b > 0 for all initial conditions x̄ ∈ SC and
wT x̄ + b < 0 for all x̄ ∈ SD. Then one can efficiently com-
pute w and b that satisfy the conditions imposed at the given
initial conditions, for example, by forming a linear program.
While the utility of this naive approach vanishes if the data
sets are not separable by the level sets of affine functions,
richer parameterizations with nonlinear basis functions can
be used instead. Given a vector Φ(x) ∈ Rm of basis func-
tions, note that the constraints wTΦ(x̄)+b > 0 for all x̄ ∈ SC
and wTΦ(x̄) + b < 0 for all x̄ ∈ SD remain affine in the pa-
rameters w and b. Therefore, the search for a classifier of the
form of wTΦ(x) + b admits an encoding similar to an affine
classifier. Note that depending on the expressivity of the ba-
sis functions in Φ, the hyperplane {x ∈ Rn : wTΦ(x)+b = 0}
(for fixed w and b) may still be quite complicated. Due to
this modest increase (note that typically m > n) in com-
putational cost yet potentially enhanced expressivity, this
transformation of the search for classifiers from the data
space Rn to the feature space Rm of Φ is often used in the
machine learning literature [7].

The support vector machine (SVM) algorithm computes
an optimal, separating linear hyperplane in the feature space
Rm to separate the sample data [7]. Suppose that the points
in one set, say SC , are labeled as −1 and those in the other
set SD as 1. Let ȳ denote the label for x̄ ∈ SC ∪ SD and
enumerate the points by 1, . . . , N . Then, the soft-margin
SVM algorithm solves the following quadratic program for
fixed integer k ≥ 1 and positive constant C > 0:

minimizew,b
1
2
‖w‖2 + C(

∑N
i=1 ξi)

k

subject to yi(w
TΦ(xi) + b) ≥ 1− ξi, i = 1, · · · , N.

ξi ≥ 0, i = 1, · · · , N
(1)

Here, the non-negative slack variables ξi are introduced to
accommodate possible inseparability of the dataset while
minimizing the degree of misclassification.
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Figure 2: Data samples (SC – red; SD – blue), a
classifier, and the contour of the decision surface
with the support vectors circled.

If m is too large, then computing the map wTΦ(x) + b
(and solving for w using the formulation in (1)) becomes
computationally demanding. In such cases, the so-called
“kernel trick” is used to avoid the computation of the map
wTΦ(x) + b. To this end, consider the Lagrangian dual of
(1) for k = 1 (for simplicity):

maximizeα
∑N
i=1 αi −

∑N
i,j=1 αiαjyiyj(Φ(xi)

TΦ(xj))

subject to
∑N
i=1 αiyi = 0

0 ≤ αi ≤ C i = 1, · · · , N. (2)

Now define a kernel function k : Rn × Rn → R such that
k(x, x̄) = Φ(x)TΦ(x̄). The dual problem and introduction
of the kernel function allow the solution of the dual prob-
lem without having to evaluate map Φ with potentially high
dimensional feature space. For example, while k(x, x̄) =
(xT x̄ + 1)2 is a compact representation of a kernel func-
tion, the corresponding basis function vector Φ(x1, x2) =
[x21, x

2
2,
√

2x1x2,
√

2x1, x2, 1]T requires a larger representa-
tion.

Finally, a classifier can be constructed from the solution
of the dual problem in the following manner. At the opti-
mal solution, a dual variable αi is non-zero only when the
corresponding primal constraint yi(w

TΦ(xi) + b) ≥ 1 − ξi
holds with equality. Similarly, the slack variable ξi of the
primal problem is zero when αi is strictly less than then up-
per bound C [8]. The solution to the primal problem, i.e., a
classier, can be constructed as

N∑
j=1

αjyjk(xj , x) + b. (3)

The elements xj with non-zero αj are the “support vectors”.
In practice, often only a small number of αi’s are non-zero
and the classifier admits a simple representation. Figure 2
shows a trained classifier with the training data where the
support vectors are emphasized.

2.3 Error Analysis
Once a classifier is constructed, it can be used to respond

to verification inquiries. However, it is constructed based on
only a finite set of randomly selected data points that repre-
sent the underlying dynamical system over a continuous (or
partly continuous) state space. Therefore, it is critical to
provide an assessment of how correctly it would predict the

responses of verification inquiries that involve a priori un-
seen configurations of the system. Statistical learning theory
offers a number of metrics to evaluate the potential errors
in classification.

Generalization error describes a classifier’s accuracy when
applied to arbitrary test data. It represents the expected
probability of misclassification and is commonly used as a
performance measure for classification algorithms. We use
two approaches to calculate the generalization error in the
case studies in Section 3.

The first error metric is empirical: construct a grid of
fixed spacing across the set of state or observed variables,
determine the true class of each sample, and compare that
to the class predicted by the classifier. The generalization
error is taken as the fraction of samples for which the two
differ out of all samples. The level of accuracy of this error
metric depends on the granularity of the discrete grid.

The second error metric in based on so-called κ-fold cross-
validation, which is a commonly practiced approximation to
leave-one-out cross-validation [9, 10]. Leave-one-out proce-
dure removes an element from the training set and attempts
to classify the removed element with a classifier trained on
the incomplete set. This procedure is repeated for each ele-
ment and the fraction of misclassified samples estimates the
expected probability of error. The complete leave-one-out
cross-validation is computationally intensive with large data
sets. κ-fold cross-validation is an abbreviated approach.
The training data S = Sc ∪ SD is separated into κ disjoint
sets S1, S2, · · · , Sκ. For each i ∈ {1, 2, · · · , κ}, a classifier is
trained on S \ Si and tested on Si. The accuracy of each
iteration is the number of classification errors over the size
of the training set. The generalization error is obtained by
taking the average iteration accuracy.

Remark 3. The soft-margin SVM formulation allows mis-
classfication errors. On the other hand, depending on the
application, false positives (e.g., classified as safe while not)
and false negatives (e.g., classified as unsafe while safe) may
not be equally critical. For example, for verification in safety-
critical applications, one may prefer reduce the possibility of
false positives at the expense of larger number of false nega-
tives (i.e., safe yet possibly conservative classification). This
effect can be achieved by using non-homogenous weights in-
stead of the same weight C in the penalization of possible
classification errors in (1)[11].

3. CASE STUDIES
We now demonstrate the method on several case stud-

ies ranging from the commonly used Van der Pol oscillator
to multi-dimensional aircraft controllers and reinforcement-
learning-based controllers. These cases cover a wide range of
dynamics and evaluation criteria. For instance, an unstable
oscillator is judged as “safe” if the system reaches the stable
equilibrium point while an adaptive control system is con-
cerned with minimizing deviation from a separate reference
trajectory. We use the Matlab Machine Learning library
for the SVM implementation and a 3.4 GHz dual-core/8GB
RAM Windows machine. The implementations for the case
studies are available at http://tinyurl.com/z8hyfrf. In
the case studies, we refer to certain Lyapunov-like functions
that we either draw from literature (e.g., from [5, 6, 12]) or
compute using sum-of-squares optimization for comparison
of the results. We use the sampling method discussed in



Figure 3: 2nd(dashed) and 4th(solid) order classi-
fiers for Van der Pol dynamics.

[6] in the context of simulation-based search for polynomial
Lyapunov functions. For ease of comparison, we often use
polynomial kernels in classification unless noted otherwise.

3.1 Van der Pol Oscillator
The first test case is a Van der Pol oscillator ẋ1 = −x2

and ẋ2 = x1 +(x21−1)x2 with an unstable limit cycle and an
asymptotically stable equilibrium at the origin. This prob-
lem has been widely used in previous nonlinear analysis and
verification procedures [6, 13]. As such, the Van der Pol dy-
namics provide a baseline for data-driven verification as its
region of attraction.

We trained two classifiers usingsimulated data (600 sam-
ples) with 2nd- and 4th-order polynomial kernels and both
with homogenous misclassification costs. The results are
shown in Figure 3. The 4th-order classifier separates the
training data with 3 errors (2 false positives) and closely fol-
lows the limit cycle. The generalization error is calculated
empirically as 0.48% on a test set of 75,000 samples. κ-fold
cross-validation with 10 folds estimates the expected prob-
ability of error at 0.015. Average runtimes for sampling,
training, and cross-validation in both cases were 27.78, 0.6,
and 1.1 seconds respectively. The test set was generated in
14 minutes.

When compared to the results from traditional Lyapunov-
based methods [6] shown in Figure 4, the classification-based
results offer an improvement. The coverage provided by the
estimate from the classifier using basis functions up to 4th-
degree polynomials is comparable with that from the 6th-
degree Lyapunov function. This example demonstrates the
flexibility of the classification-based method, though it is
critical to emphasize that this flexibility is at a cost. While
the Lyapunov-based estimate comes with certainty, the clas-
sification-based estimate allows classification errors. There-
fore, the results from the classification-based method must
be interpreted with their quantified confidence.

3.2 Adaptive Controllers
We now apply the method to estimate the region of attrac-

tion for multiple systems with recently developed adaptive
controllers [14] that challenge the conventional Lyapunov-
based barrier certificate methods. First, consider the follow-
ing second order uncertain system with unknown parameters

Figure 4: 2nd, 4th, and 6th order Lyapunov-based
estimates [6] for Van der Pol dynamics.

W ∗
1 , W ∗

2 and initial conditions x1(0), x2(0):

ẋ1 = x2, (4)

ẋ2 = (−0.2 +W ∗
1 )x1 + (−0.2 +W ∗

2 )x2 + u.

A concurrent learning model reference adaptive controller is
used to estimate the unknown parameters and compute con-
trol inputs u to force the system to track a desired reference
system ẋm(t) = Amxm(t) + Br(t), where Am is a Hurwitz
matrix [14]. Because of online parameter estimation, the
adaptive system has 4 states covering x1, x2,W

∗
1 ,W

∗
2 . For

ease of discussion, we fixed the initial values x1(0) and x2(0),
resulting in a 2-dimensional problem over W ∗

1 ,W
∗
2 . The suc-

cess or failure of the system (i.e., the classification criterion)
is based upon the ability of the controller to maintain x1(t)
within ±1.0 of xm1(t) for all t ≥ 0.

We generated a training dataset of 10000 different (W ∗
1 ,W

∗
2 )

pairs in roughly 2.9 hours. We trained a set of 8th-order
polynomial classifiers. In order to observe the effect of non-
homogenous weighting on the decrease in unsafe errors, we
swept the false-negative to false-positive ratio from 1:1 to
100:1 and evaluated on an independent testing set of over
30000 data points that span the entire feasible (W ∗

1 ,W
∗
2 )

space. The average time required for training and testing
the classifiers were 164.17 and 0.229 seconds, respectively.
The results are shown in Figure 5 and in Table 1. Note
that Figure 5 also includes an independently obtained bar-
rier certificate [12], labeled as “Lyapunov”.

Table 1: Error rates for the system in (4). The
weighting ratio of false negatives to false positives is
increased from 1:1 to 100:1.

Data Set Error (frac.) False Neg. False Pos.

Training 0.0402 54 of 3000 357 of 7222
Testing 0.0332 90 of 13263 986 of 19098

Training 0.0826 844 of 3000 0 of 7222
Testing 0.0704 2275 of 13263 3 of 19098

As seen in Figure 5, the SVM classifiers are able to much
less conservatively estimate the ROA than previous Lyapunov-
based barrier certificate methods [6]. If the lack of false-
positive errors is important, the cost weighting in Remark
3 offers a viable way of reducing unsafe errors, as seen for
the 100:1 training and testing data. While the total num-
ber of false negatives increases, the weighting does reduce
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probability of unsafe false positives to 1.57× 10−4.
As the number of variables considered increases, the sam-

pling, training, and testing times will increase. We provide
an additional, more complex example along with the imple-
mentation details at http://tinyurl.com/z8hyfrf.

3.3 Aircraft Reversionary Safety Controller
Another example is on an aircraft reversionary controller.2

The reversionary control is intended as a safety check that
takes over for the advanced controller in the case of fail-
ure. We are interested in estimating the set of perturbed
states from which the reversionary controller can recover to
a particular nominal condition. The underlying simulation
model has 10 states and is highly nonlinear. While the sim-
ulations are performed on this 10-dimensional model, the
verification inquiry (hence the classification) involves only a
3-dimensional subspace (i.e., the system behavior is moni-
tored in these 3 dimensions).

We trained two 4th-order polynomial classifiers with 4000
and 16000 data points. As this reversionary controller is
used as a safety-critical component of the flight control sys-
tem, the classifier should feature a smaller rate of false-
positive predictions (unsafe states labeled as safe) poten-
tially at the cost of an increased number of false-negative
predictions. To this end, we increased the weighting ratio of
false positives to false negatives gradually from 1:1 to 100:1
with false positive errors going to zero.

Table 2: Error rates for the example in section 3.3
with 100:1 weight ratio.

Data Set Error (%) False Pos. False Neg.

N = 4000 7.90 0 of 1604 316 of 2396
N = 16000 7.74 0 of 6497 1238 of 9503

Table 2 summarizes the results. A 10-fold cross-validation
estimates the mean probability of error at 3.4×10−3 for the
small set and 2.6×10−3 for the large test dataset. Observed
runtimes for sampling, training, and cross-validation were
222, 13, 137 seconds with 4000 samples and 884, 174, 1818
seconds with 16000 samples. The weighted classifiers show
better optimized estimates of the safety region by allowing

2Obtained based on personal communication with J. Schier-
man and M. Devore of Barron Associates.

no false-positives while correctly classifying a greater num-
ber of safe samples.

3.4 Reinforcement Learning-Based Controller
We now consider an example in which a two-link robot,

the acrobot, is controlled by a logic from a prior reinforce-
ment learning step using Sarsa(λ) [15]. The controller deter-
mines the torque applied at the second joint which is most
efficient at achieving the goal of raising the end of the sec-
ond link a full link length above the top of the first link,
simulating a gymnast swinging on a high bar. The system
dynamics [15] are

θ̈1 = −d−1
1 (d2θ̈2 + φ1)

θ̈2 = (
5

4
− d22
d1

)−1(τ +
d2
d1
φ1 −

1

2
θ̇21 sin θ2 − φ2)

d1 =
7

2
+ cos θ2

d2 =
5

4
+

1

2
cos θ2 (5)

φ1 = −1

2
θ̇2 sin θ2(θ̇2 − 2θ̇1) +

3

2
g cos(θ1 − π/2) + φ2

φ2 =
1

2
g cos(θ1 + θ2 − π/2),

where g is gravity. The velocities are limited to θ̇1 ∈ [−4π, 4π]

and θ̇2 ∈ [−9π, 9π] while the positions are not bounded. The
learning process refines an eligibility trace and converges to
a sequence of torque selections (τ ∈ {−1, 0, 1}) that guides
the controller toward its goal from the current state.

The controller is trained from a single initial condition
over a finite grid of the state space and the control in-
puts applied at points other than these finitely many grid
points are determined through interpolation. At the initial
conditions, the robot is stationary with its links fully ex-
tended as a pendulum, (θ1, θ2) = (θ̇1, θ̇2) = (0, 0). Hence,
the question of interest here analogous to stability is for
which initial conditions will the trained controller still ac-
complish its objective. The criterion for a successful sample
is that the robot achieves the goal in less than 1000 simula-
tion steps (in integration with a uniform increment of 0.05
units of time) after which the episode terminates as a failed
attempt. Initial conditions are sampled from the state sub-
space: θ1 ∈ [−π/2, π/2], θ2 ∈ [−π/2, π/2], θ̇1 ∈ [−2π, 2π],

and θ̇2 ∈ [−2π, 2π].
Table 3 shows the observed classifier results with 4000

samples using 4th order polynomial kernel. The expected
probability of error is estimated at 0.075 by 10-fold cross-
validation. Runtimes for initial learning, SVM training, and
cross-validation are 208, 3.6, and 26.5 seconds respectively.

Table 3: Error rates for the example in section 3.4.

Data Set Error (%) False Pos. False Neg.

Training 0.75 0 of 134 30 of 3866
Testing 1.35 12 of 118 42 of 3882

4. CRITIQUE
The data-driven verification approach connects the clas-

sical systems analysis questions to a vast range of concepts
and techniques: (i) The method requires only a notion of ob-
servable variables and an oracle that generates labels. Hence,



it can be directly applied on datasets without even a model
or with high-fidelity simulation models for a range of system
analysis questions, including safety, reachability, and more
sophisticated temporal logic verification [16]. (ii) Statistical
learning literature offers metrics to quantify the possibility
of error in predictions (i.e., our confidence in the results)
with respect to the amount of data used in classification.
It remains open to understand the utility of these metrics
in informing system designers. (iii) Regardless of the sys-
tem representation, classification can be formulated as con-
vex optimization. Rigorous sensitivity analysis and different
weights used in the underlying optimization can guide sub-
sequent, informative data collection (or generation) and help
adjust the relative levels of prediction errors to meet certain
criteria, e.g., false positives may be more tolerable than false
negatives in safety-critical systems.

Though the method we presented makes, for the first time
(to the best of our knowledge), connections between deduc-
tive dynamical system verification and statistical learning
theory, it has similarities with several other methods dis-
cussed in the literature. The closest connection is perhaps
with statistical model checking [17] of finite-state models.
Smoothed model checking [18], a variation on statistical
model checking, fits Gaussian process models to sampled
data based on probabilistic results. Simulations—or signal-
based view—have also been central in the verification tech-
niques in [12, 19, 20, 21] and in the complementing view
of falsification [22]. Finally, unlike Monte-Carlo-based ap-
proaches, the proposed method computes an algebraic map
that can be used for future predictions of set membership
and inclusion (e.g., prediction of the label for a new, unseen
set of initial conditions).
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