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ABSTRACT. In his 2007 monograph, D. Christodoulou proved a remarkable result giving a detailed descrip-
tion of shock formation, for small Hs-initial conditions (s sufficiently large), in solutions to the relativistic
Euler equations in three space dimensions. His work provided a significant advancement over a large body of
prior work concerning the long-time behavior of solutions to higher-dimensional quasilinear wave equations,
initiated by F. John in the mid 1970’s and continued by S. Klainerman, T. Sideris, L. Hörmander, H. Lindblad,
S. Alinhac, and others. Our goal in this paper is to give an overview of his result, outline its main new ideas,
and place it in the context of the above mentioned earlier work. We also introduce the recent work of J. Speck,
which extends Christodoulou’s result to show that for two important classes of quasilinear wave equations in
three space dimensions, small-data shock formation occurs precisely when the quadratic nonlinear terms fail
the classic null condition.
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willie.wong@epfl.ch.
‡Imperial College London, Department of Mathematics, South Kensington Campus, London, SW7 2AZ, United Kingdom.

g.holzegel@imperial.ac.uk.
∗∗Princeton University, Department of Mathematics, Fine Hall, Washington Road, Princeton NJ, 08544-1000, USA.

seri@math.princeton.edu.
1

ar
X

iv
:1

40
7.

62
76

v1
  [

m
at

h.
A

P]
  2

3 
Ju

l 2
01

4



2 GH, SK, JS, AND WW

2.2. The role of µ 43
3. Generalized energy estimates 45
3.1. The basic strategy for deriving generalized energy estimates 45
3.2. Energy estimates via the multiplier method 47
3.3. Details on the behavior of µ 52
3.4. Details on the top-order energy estimates 54
3.5. Descending below top order 62
4. The Sharp Classical Lifespan Theorem in 3D and Generalizations 63
4.1. The sharp classical lifespan theorem 63
4.2. Extending the sharp classical lifespan theorem to a related class of equations 66
5. The Shock-Formation Theorems and Comparisons 68
5.1. Alinhac’s shock formation theorem 68
5.2. Christodoulou’s results 71
5.3. Comparison of Alinhac’s and Christodoulou’s frameworks 74
5.4. The shock-formation theorem of [64] 76
5.5. Additional connections between the results 77
Acknowledgments 81
Appendix A. Some details on the wave equations studied in [11] 82
References 84

1. INTRODUCTION

1.1. Motivation and background. This project was motivated by our desire to understand the work of
Christodoulou [11] concerning the formation of shocks in compressible, irrotational, relativistic,1 3D flu-
ids, starting from small, smooth initial conditions. His work is a landmark result in the venerable area
of PDE known as Systems of Nonlinear Hyperbolic Conservation Laws. This field originated from con-
siderations concerning the propagation of one-dimensional sound waves through air, by Monge, Poisson,
Stokes, Riemann, Rankine, and Hougoniot and was transformed into a systematic theory by Courant [14],
Friedrichs [14, 16], Lax [43], Glimm [17], Bressan [8], and many others.

1.1.1. Singularities are an unavoidable aspect of the 1D theory. The crucial fact, already well understood
by Riemann and Stokes, which the theory had to deal with from its beginnings, was the observation that
solutions to the equations develop singularities, even when the data are small and smooth. This fact is easy
to exhibit in one space dimension and is well-captured by Burgers’ equation:

∂tΨ + Ψ∂xΨ = 0, (1.1.1)

Ψ(0, x) = Ψ̊(x). (1.1.2)

1The results were later extended to apply to the non-relativistic Euler equations in [9].
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In view of the equation, Ψ must be constant along the characteristic curves x(t, α), which are, in this case,
solutions to the ODE initial value problems

∂

∂t
x(t, α) = Ψ(t, x(t, α)), x(0, α) = α ∈ R. (1.1.3)

Thus, Ψ
(
t, x(t, α)

)
= Ψ̊(α), ∂

∂t
x(t, α) = Ψ̊(α), and ∂2

∂t∂α
x(t, α) = Ψ̊′(α). Hence, we have ∂

∂α
x(t, α) =

1 + tΨ̊′(α). In particular, ∂
∂α
x(t, α) = 0 when 1 + tΨ̊′(α) = 0. It follows that a singularity must form

in any solution launched by nontrivial, smooth, compactly supported initial data Ψ̊. An alternative way to
see the blow-up is to differentiate Burgers’ equation in x and derive the equation

∂t(∂xΨ) + Ψ∂x(∂xΨ) = −(∂xΨ)2,

which is the well-known Riccati equation
d

dt
y = −y2, for y(t) := ∂xΨ(t, x(t, α)). (1.1.4)

Note that the L∞ norm of Ψ is conserved. That is, the blow-up occurs in ∂xΨ, while Ψ itself re-
mains bounded. It is also easy to check that the time of blow up is no later than2 O(1/ε), where ε =

−minα∈R Ψ̊′(α) measures the smallness of the initial data.
Though a bit more difficult to prove, the same blow-up results hold true for general classes of systems

of quasilinear conservation laws (genuinely nonlinear, strictly hyperbolic) in one space dimension. The
first results for 2× 2 strictly hyperbolic systems verifying the genuine nonlinearity condition are due to O.
Oleinik [54] and P. Lax [43]. The results were later extended to general such systems by F. John [22]. In
[39], Klainerman and Majda showed that the genuine nonlinearity condition can be relaxed in the case of
1D nonlinear vibrating string equations.

The great achievement of the 1D theory of systems of conservation laws was the understanding of
how shocks form and how solutions can be extended through shock singularities. This entails a complete
description of the shock boundary, as well as a formulation of the equations capable of accommodating
such singular solutions. Such machinery is available for general classes of hyperbolic conservation laws
(mainly strictly hyperbolic) in one space dimension with general initial data of small bounded variation;
see, for example, [57] and [15].

1.1.2. Present-day limitations of the theory. A primary goal of the field of conservation laws is replicat-
ing the 1D success in higher space dimensions, which entails understanding the mechanism of singularity
formation as well as how to define generalized solutions extending past sufficiently mild singularities. In
higher dimensions, one faces several difficulties including that of finding a suitable definition of general-
ized solutions and corresponding function spaces.

In 1D, the continuation of solutions to conservations laws past shock fronts is comfortably achieved, in
most cases, by considering the equations in a weak formulation for functions with finite spatial bounded
variation (BV) norm.3 In higher dimensions, however, the BV norm is incompatible with the simple

2Throughout the article, we sometimes write A = O(B) and equivalently A . B to indicate A ≤ CB by some universal
constant C; see Footnote 61 on pg. 39 for details.

3The theory of smooth solutions for 1D hyperbolic equations can be easily developed, starting with Monge [52], using the
method of characteristics, in any Lp norm (in particular L∞ and L1; the latter being consistent with the BV norm).
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phenomenon of focusing of perfectly smooth waves, as can be seen for spherically symmetric solutions
to the standard wave equation in R1+n, for any n ≥ 2; see [55]. Instead, the general theory of local well-
posedness for systems of hyperbolic conservation laws in higher dimensions is intimately tied to L2-based
Hs Sobolev spaces.4 This theory has largely been developed using the framework of Friedrichs’ symmetric
hyperbolic systems [16], and with further contributions by many others such as Sobolev, Schauder, Frankl,
and Leray. The theory, however, is quite far from accommodating discontinuous shock fronts5 and their
interactions.

In addition to the problem of defining generalized solutions, one also encounters difficulties with un-
derstanding the mechanism of singularity formation. A subtle point is that in higher dimensions there can,
in principle, be singularities which differ from shocks in that they do not form from compression. For
example, a current venue of investigation is the possibility of vorticity blow-up (the possible mechanism
driving it remains an enigma) for the 3D compressible Euler equations of fluid dynamics. Furthermore, the
phenomenon of dispersion, typical to higher dimensions, may delay or in some cases altogether prevent
the formation of singularities for small initial data.

1.1.3. Quasilinear systems of wave equations. An obvious way to separate the phenomena of compression
and dispersion from the effects of vorticity, in the case of the compressible Euler equations (relativistic or
non-relativistic), is to restrict oneself to irrotational flows. For such flows, the Euler equations reduce to a
quasilinear wave equation for Φ, the fluid potential.6 Since the irrotational Euler equations are derivable
from a Lagrangian L(∂Φ), the wave equation can be written in the following Euler-Lagrange form relative
to standard rectangular coordinates:7

∂α

{
∂L(∂Φ)

∂(∂αΦ)

}
= 0. (1.1.5)

We explain the connection between equation (1.1.5) and (special) relativistic fluid mechanics in more detail
in Subsect. 5.2 and Appendix A. When expanded relative to rectangular coordinates, equation (1.1.5) takes
the form

(g−1)αβ(∂Φ)∂α∂βΦ = 0. (1.1.6)

Remark 1.1. Throughout this article, ∂f = (∂tf, ∂1f, ∂2f, ∂3f) denotes the gradient of f relative to the
rectangular spacetime coordinates.

For physical choices of the LagrangianL(∂Φ), (1.1.6) is a wave equation: (g−1)αβ(·) is a non-degenerate
symmetric quadratic form of signature (−,+,+,+) depending smoothly on ∂Φ. We can always find an
affine change of coordinates on R1+n to obtain the relationship

(g−1)αβ(∂Φ = 0) = (m−1)αβ, (1.1.7)

4The number of derivatives required, s, depends on the number of space dimensions and the strength of the nonlinearity.
5The theory can, however, be adapted (within the Hs framework !) to treat, for a short time, one single shock wave, starting

with an initial discontinuity across an admissible regular hypersurface in higher dimensions; see [49–51].
6Roughly, the gradient of Φ is equal to a rescaled version of the fluid velocity.
7We use Einstein’s summation convention throughout. Lowercase Greek “spacetime” indices vary over 0, 1, 2, 3 and lower-

case Latin “spatial” indices vary over 1, 2, 3.
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where (m−1)αβ = diag(−1, 1, 1, 1) is the standard inverse Minkowski metric; we will assume hence-
forth such a coordinate change has been made. In [11], Christodoulou studied a particular class of scalar
equations of type (1.1.5) that arise in irrotational relativistic fluid mechanics.8 Most of the results that
we discuss in this introduction, especially those concerning almost global existence, can be extended9 to
apply to the more general class of equations

(g−1)αβ(∂Φ)∂α∂βΦ = N (Φ, ∂Φ), (1.1.8)

where (g−1)αβ verifies (1.1.7) andN is smooth in (Φ, ∂Φ) and is quadratic or higher-order in ∂Φ for small
(Φ, ∂Φ); that is, N = O(|∂Φ|2) for small (Φ, ∂Φ).

At the beginning of the 20th century, nonlinear wave equations made another dramatic appearance in
General Relativity. Relative to the wave coordinates10 xα, the Einstein vacuum equationsRµν = 0 (where
Rµν is the Ricci curvature of the dynamic Lorentzian metric g) can be cast as a system of quasilinear wave
equations in the components of g, in the form

(g−1)αβ∂α∂βgµν = N (g)(∂g, ∂g), (µ, ν = 0, 1, 2, 3), (1.1.9)

where N (g)(∂g, ∂g) depends quadratically on ∂g, that is, on all spacetime derivatives of g.
The above considerations have led to the study of general systems of nonlinear wave equations of the

form

(g−1)αβ(Ψ)∂α∂βΨI = N I(Ψ, ∂Ψ), (I = 1, . . . , K), (1.1.10)

where g is a smooth Lorentzian metric depending on the array Ψ = {ΨI}I=1,...,K and N is smooth in
(Ψ, ∂Ψ), at least quadratic in ∂Ψ near (Ψ, ∂Ψ) = (0, 0). Note that (1.1.10) contains equations of type
(1.1.6) by simply differentiating the latter and taking Ψ = ∂Φ. Note also that more general systems of the
form

(g−1)αβ(Ψ, ∂Ψ)∂α∂βΨI = N I(Ψ, ∂Ψ), (I = 1, . . . , K) (1.1.11)

can, by differentiation, also be transformed into systems of type (1.1.10). Thus, the systems of the form
(1.1.10) encompass the equations which arise in the irrotational compressible Euler equations, both rel-
ativistic and non-relativistic under all physically reasonable equations of state, and the Einstein vacuum
equations (1.1.9) relative to wave coordinates. Furthermore, while the equations of nonlinear elasticity do
not fit11 into the form of (1.1.10), the important special case of homogeneous and isotropic materials can
nevertheless be reduced, by a simple separation between longitudinal and transversal waves, to the same
framework; see John’s work [27].

8More precisely, as we explain in Subsect. 5.2 and Appendix A, the solutions considered in [11] differ from solutions to
equations of the form (1.1.5) by choices of normalizations.

9The shock formation results seem to be less stable under modifications of the equation; see Remark 2.15.
10The coordinate functions themselves verify the covariant wave equation �gxα = 0.
11The general form of the equations of elasticity can, upon differentiation, be expressed as a generalization of equation

(1.1.11) of the form (g−1)αβIJ (Ψ)∂α∂βΨJ = N I(Ψ, ∂Ψ) (with summation over J). Such equations give rise to more compli-
cated geometries. In particular the principal part is no longer the geometric wave operator of a Lorentzian manifold.
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1.1.4. Results in 3D prior to Christodoulou’s work. In light of what we know in the one-dimensional
case, it makes sense to ask whether the mechanism of shock formation remains the same in higher dimen-
sions. At first glance, we may expect a positive answer simply by observing that plane wave solutions are
effectively one dimensional. However, plane waves are non-generic and have infinite energy. The latter
flaw can be ameliorated within the past domain of dependence I−(p) of an earliest singular point of the
plane wave: we can simply cut-off the plane wave data outside of the intersection of I−(p) with the initial
Cauchy hypersurface {t = 0} to construct compactly supported initial data that lead to a shock singularity
at p. However, one can show that the cut-off data have large energy and thus do not fit into the framework
of small perturbations of the trivial state. It turns out, in fact, that the large-time behavior of data of small
size12 ε̊, in higher dimensions, is radically different from 1D. This fact was first pointed out by F. John: in
[23,24] he showed for quasilinear wave equations of type (1.1.6) that the dispersion of waves significantly
delays the formation of singularities when the data are small.

Starting with John’s observation, Klainerman [33] was able to show, for a class of equations including
those of form (1.1.8) withN independent of Φ, that the phenomenon of dispersion is sufficiently strong, in
space dimensions greater than or equal to 6, to completely avoid the formation of shocks for small initial
data. John and Klainerman [21, 34] were later able to show the almost global existence result13 that in 3
space dimensions, if the data and a certain number their derivatives are of small size ε̊ the singularities
cannot form before time O(exp(c̊ε−1)), which is significantly larger than the time O(̊ε−1) in dimension
1. The result was significantly simplified and extended in [36] using the geometric vectorfield method.
See also Theorem 1 below for a sharp version of this result, due independently to John and Hörmander.
Moreover, Klainerman [35,37] was later able to identify a structural condition on the form of the quadratic
terms in (1.1.8), called the (classic) null condition (see Definition 1.1), which prevents the formation of
singularities when the data are sufficiently small in 3 space dimensions. Two distinct proofs of the result
were given, one by Klainerman [37] based on the vectorfield method, and the second by Christodoulou
[10] based on the conformal method.14

In the opposite direction, F. John gave [25] a class of examples in 3D of the form15

�mΦ = N (∂Φ, ∂2Φ),

where N is quadratic in its arguments, the classic null condition fails, and such that all nontrivial com-
pactly supported data lead to finite-time breakdown. Note that John’s results are consistent with the almost
global existence result of [21]. Unlike, however, the one-dimensional argument that tracks solutions all
the way to the first singularity, John’s argument shows only that the existence of a global C3 solution

12The relevant energy norm depends on a finite number of derivatives.
13The proof in [21] used some mild assumptions on the structure of the equation (1.1.8). Suitable assumptions are that the

nonlinearity is independent of Φ itself or that the equation can be written in divergence form up to cubic errors.
14One should remark that the geometric vectorfield method also yields a direct extension of Klainerman’s global existence

result [33] to dimensions 4 and 5, while for dimension 2 (where the dispersion is even weaker than in 3D), versions of the null
condition have been identified by Alinhac [1, 2].

15Here and throughout, �m = −∂2
t + ∆ is the standard flat d’Alembertian in R1+n, where n = 3 at present, and more

generally n will be clear from context. John’s class includes equations such as �mΦ = −(∂tΦ)2 and �mΦ = −∂tΦ∂2
t Φ; his

proof crucially uses the sign of the nonlinearity.
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would lead to a contradiction.16 T. Sideris [58] later proved a related but distinct result showing that small
initial data for the full compressible Euler equations in 3D, under some adiabatic equations of state ver-
ifying a convexity assumption, also lead to finite time break-down. Sideris’ proof was based on virial
inequalities and thus provided an explicit upper bound on the solution’s lifetime for small data verifying
an open condition. Later, Guo and Tahvildar-Zadeh gave a similar proof of breakdown in solutions to the
relativistic Euler equations in Minkowski spacetime [18], but their proof required the assumption of large
data. We should mention here that the work [9] (following [11]) shows that the convexity assumptions
used by Sideris are not necessary and that the first singularity is in fact caused by shock formation.

Though for small initial data in 3D, the arguments of John and Sideris complement the global existence
results that hold when the nonlinearities verify the null condition, they fail to provide a satisfactory answer
about the nature of the singularities, an understanding of which is clearly essential if one hopes to continue
the solutions beyond them, as can be done in 1D. The first results in this direction are once more due to F.
John [25], who analyzed spherically symmetric solutions of the model equation

�mΦ = −a2(∂tΦ) ·∆Φ, a(0) = 0, a′(0) 6= 0 (1.1.12)

in 3D, where the final condition in (1.1.12) guarantees the failure of the classic null condition of Defini-
tion 1.1. John’s work showed that solutions corresponding to all sufficiently small nontrivial spherically
symmetric data of compact support necessarily have some second-order derivatives blowing-up near the
wave front, while all first derivatives remain bounded.17 His proof, based on the method of characteristics,
makes essential use of the fact that spherically symmetric solutions of the equation verify a simplified
equation which is effectively one-dimensional. Although the passage from spherical symmetry to the gen-
eral case is difficult, we nevertheless shall see that this simplified case provides the right intuition about
the behavior of general small-data shock-forming solutions.

In the last years of his life, F. John himself tried hard to extend his results to the general case. Although
he came close [30, 31], he never was able to follow the solution all the way to the singularity. The first
results proving shock formation without symmetry assumptions are due to Alinhac; see [2, 4–6]. His re-
sults were highly motivated by John’s earlier work [29] (see also Hörmander’s work [19]) which provided
a lower bound on the solution’s lifespan that, as we take the size of the initial data to zero, converges to
Alinhac’s blow-up time (see Theorem 1 and the right-hand side of (5.1.5)). Alinhac’s results provided a
major advance in our understanding of blow-up away from spherical symmetry. However, they have some
limitations. For example, his proof works only for data that lead to a unique first blow-up point. Hence,
for equations invariant under the Euclidean rotations, his results do not apply to some data containing a
spherically symmetric sector. A more significant limitation is that his results do not extend in an obvi-
ous fashion to provide a complete description of the maximal development of the data; see Subsect. 5.3
for more details. Christodoulou’s work [11] eliminates these limitations, opens the way for obtaining a
sharp understanding of shock formation in dimension 3, and properly sets up the difficult open problem of
continuing the solution beyond the shock.

16For John’s quasilinear equations, any rigorous proof of shock formation would have to establish the precise mechanism for
the blow-up of the second derivatives of Φ while also showing that the first derivatives remain bounded.

17John’s analysis is restricted to a neighborhood of the wave front (the “wave zone”), where one expects (due to dispersion;
see next subsection) the first singularity to form. He does not provide information about the entire maximal development of the
data. See Figure 2 and the discussion below.
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1.2. The dispersion of waves. In this subsection and the next one, we discuss some of the main ideas, es-
pecially the role of dispersion, in the development of the theory of the long-time behavior of small-data so-
lutions to nonlinear wave equations of type (1.1.8) and (1.1.10) in R1+n prior to the work of Christodoulou
[11]. We will especially focus on the case of R1+3. In particular, we sketch in this subsection the proofs of
the almost global existence result18 of [21] and the global existence result of [37] for nonlinearities verify-
ing the null condition (see also [10]). In Subsect. 1.3, we study shock formation in detail for spherically
symmetric solutions.

1.2.1. Local well-posedness. We start by recalling a classical local well-posedness result for the scalar19

quasilinear wave equation (1.1.8); see, for example, [63]. We denote the initial data for Φ, given on the
Cauchy hypersurface Σ0 := {t = 0} ' Rn ⊂ R1+n by

Φ(0, x) = Φ̊(x), ∂tΦ(0, x) = Φ̊0(x). (1.2.1)

Proposition 1.1 (Local well-posedness and continuation criteria). Let s ≥ s0 = bn
2
c+3 be an integer.20

Local well-posedness. Then there exists21 a unique classical solution Φ to the equation (1.1.8) existing
on a nontrivial spacetime slab of the form [0, T ) × Rn for some T > 0. The solution has the following
regularity properties:

‖∂Φ(t, ·)‖Hs−1(Rn) ≤ Cs

(
3∑

a=1

‖∂aΦ̊‖Hs−1(Rn) + ‖Φ̊0‖Hs−1(Rn)

)
eCs

∫ t
0 ‖Φ(τ,·)‖W2,∞dτ, (1.2.2)

where Cs depends only on s and W 2,∞ is the L∞ based Sobolev norm, involving up to two derivatives of
φ.

Continuation criterion. The solution can be extended beyond [0, T )×Rn as long as
∫ T

0
‖Φ(τ, ·)‖W 2,∞dτ <

∞. In particular, the time of existence T has a lower bound depending on ‖Φ̊‖Hs0 (Rn) + ‖Φ̊0‖Hs0−1(Rn).

Remark 1.2. We note that a similar result holds for the larger class of symmetric hyperbolic systems of
Friedrichs [16] and, in particular, for systems of equations of type (1.1.10) relevant to the Einstein field
equations. For this latter type, since the quasilinear term depends only on Ψ and not its derivatives, we can
close with one fewer derivative, that is, we can set s0 = bn

2
c+ 2 instead.

The a priori energy-type estimate (1.2.2) is really at the heart of the proof. It can be derived by
differentiating the original nonlinear equation with respect to ∂

~I , for rectangular coordinate derivative
multi-indices ~I, multiplying the resulting equation by ∂t∂

~IΦ, integrating by parts, and using simple
commutator estimates; see [33] for example. The local existence result can then be proved by first

18We give here a version based on the vectorfield method introduced in [36] and not the original of [21].
19The results can be extended, with minor modifications, to systems of the form (1.1.11) and that of nonlinear elasticity.
20By definition, bn2 c+ 3 is the smallest integer strictly larger than n/2 + 2.
21In reality, for this theorem to hold (both local well-posedness and the breakdown criterion to follow), we need additional

assumptions on the data and the coefficient matrix (g−1)αβ ensuring that the equation is hyperbolic in a suitable sense. For
convenience, we ignore this issue.
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replacing
∫ t

0
‖Φ(τ, ·)‖W 2,∞(Rn) dτ with the quantity t sup0≤τ≤t ‖Φ(τ, ·)‖Hs0 (Rn), 0 ≤ t ≤ T, in view

of the standard Sobolev inequality, and then devising a contraction argument with respect to the norm
sup0≤τ≤T ‖Φ(τ, ·)‖Hs(Rn) for s ≥ s0 and sufficiently small T.

We note in passing that this method is very wasteful and that modern techniques lead to an improved
value of the minimal exponent s0. The new methods avoid the crude use of Sobolev inequalities and rely
instead on spacetime estimates such as Strichartz and bilinear estimates. For example, it was shown in
[62] that when n ∈ {3, 4, 5}, the general22 equation (g−1)αβ(Ψ)∂α∂βΨ = N αβ(Ψ)∂αΨ∂βΨ is locally
well-posed for data (Ψ, ∂tΨ) ∈ Hs × Hs−1 whenever s > (n + 1)/2. The best result in this direction
is the recent resolution of the bounded L2 curvature conjecture, see [32], which for the Einstein-vacuum
equations in 3 space dimensions essentially leads to local well-posedness in H2. That is, for the Einstein
equations, this result further improves those of [62] from s > 2 to s = 2.

1.2.2. Beyond local existence via the vectorfield method. As we saw in Proposition 1.1, to go beyond
local existence, the main step is to obtain control on the integral in the exponent of (1.2.2). In the proof
above, we crudely used the standard Sobolev inequality to bound the integral

∫ t
0
‖Φ(τ, ·)‖W 2,∞dτ and we

therefore did not account for the dispersive decay of solutions to wave equations. If we could prove that
the well-known uniform dispersive decay rate (1+t)−

n−1
2 of solutions to the standard linear wave equation

�mΦ = 0 also holds also for solutions to the nonlinear wave equation (1.1.8) (and their up-to-second-order
derivatives), then the exponential term on the right hand side of (1.2.2) would be integrable for n ≥ 4
and only logarithmically divergent for n = 3. Note that the former estimate implies small-data global
existence,23 while the latter one implies the almost global existence result of [21]. These estimates on
decay rates are true as stated, but are nontrivial to prove. The first results in this direction [21,23,24,26,33]
were based on the explicit fundamental solution for �m and as such were quite cumbersome and difficult
to extend to more complicated situations. The first modern proof, based on the commuting vectorfield
method and generalized energy estimates, appeared in [36], though a related method had previously been
used in linear theory to derive local decay estimates in the exterior of a convex domain24 [53]. We now
provide a short summary of the commuting vectorfield method as it appears in [36]. The idea is to replace
the multi-indexed rectangular spatial derivative operators ∂~I used in the derivation of (1.2.2) with a larger
class of multi-indexed differential operators Z

~I
(Flat) := ZI1

(Flat;1) . . . Z
Ip
(Flat;p) that have good commutator

properties with the Minkowski wave operator �m, where the vectorfields Z(Flat;1), · · · , Z(Flat;p) are the
elements of the following subset of conformal Killing fields25 of m, expressed relative to rectangular

22In the particular case of the Einstein-vacuum equations expressed with respect to wave coordinates, the same result was
proved earlier in [41].

23For n ≥ 5, this argument can be extended to show small-data global existence in the presence of arbitrary nonlinear terms
quadratic in (Φ, ∂Φ, ∂2Φ) in equation (1.1.8). For n = 4, the argument can similarly be extended as long as there are no
quadratic terms of the form Φ2.

24The Minkowskian Morawetz vectorfields (t2 + r2)∂t + 2tr∂r and f(r)∂r, for appropriate functions f(r), also play fun-
damental roles in the modern vectorfield method and have their roots in [53].

25The vectorfield method has also been extended to apply to some equations that are not invariant under the full Lie algebra of
conformal symmetries of Minkowski spacetime, but are instead invariant under only a subalgebra; see, for example, [42,59–61].
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coordinates:

Z(Flat) := {∂t, S(Flat) = t∂t +
n∑
a=1

xa∂a} ∪ {∂i, L(Flat;i) = xi∂t + t∂i}1≤i≤n

∪ {O(Flat;ij) = xi∂j − xj∂i}1≤i<j≤n, (1.2.3)

which forms an R-Lie algebra with the Lie bracket given by the vectorfield commutator. We can then
derive energy-type estimates similar to those in (1.2.2), but with ∂~I replaced by Z

~I
(Flat), and with the Hs

norm on the left-hand side of (1.2.2) replaced by the norm26

‖|Φ|‖T,s := sup
0≤t≤T

(∑
|~I|≤s

‖∂Z ~I
(Flat)Φ(t, ·)‖2

L2(Rn)

)1/2
. (1.2.4)

The norm (1.2.4) controls ∂Φ not only in the standard L∞(Rn) norm (through the Sobolev inequality as
before), but also the weighted version (1+t)

n−1
2 ‖·‖L∞(Rn), which yields the expected uniform (1+t)−

n−1
2

rate of decay of ∂Φ and its lower-order Z(flat) derivatives. A standard way to obtain this control is to use
Klainerman-Sobolev inequality [36]:

sup
0≤t≤T

sup
x∈Rn

(1 + t+ r)
n−1

2 (1 + |t− r|)1/2|∂Φ(t, x)| ≤ C‖|Φ|‖T,(n+2)/2, (1.2.5)

where r =
√∑3

a=1(xa)2.

In addition, from the boundedness of ‖|Φ|‖T,s, we can derive a further refined account of the dispersive
properties of waves which shows that for t ≥ 0, the derivatives of ∂Φ in directions tangent to the outgoing
Minkowski cones {t− r = const} have better decay properties than derivatives in a transversal direction.
To illustrate this fact, we first introduce the standard radial null pair in Minkowski space:

L(Flat) := ∂t + ∂r, L(Flat) := ∂t − ∂r, (1.2.6)

with ∂r = xa

r
∂a the standard Euclidean radial derivative. Note that L(Flat) and L(Flat) are null vectorfields

relative to the Minkowski metric, that is, m(L(Flat), L(Flat)) = m(L(Flat), L(Flat)) = 0, and they satisfy
m(L(Flat), L(Flat)) = −2. The null pair can be completed to a null frame by choosing, at every point in
R1+n, n−1 vectorfields e1, . . . , en−1 orthogonal to en := L(Flat), en+1 := L(Flat) such that m(ei, ej) = δij
for i, j = 1, . . . , n−1. As we sketch below, assuming that we have control over ‖|Φ|‖T,(n+4)/2, we are also
able to obtain uniform control of the following derivatives (a = 1, · · · , n− 1):

sup0≤t≤T supx∈Rn(1 + t+ r)
n+1

2 (1 + |t− r|)1/2|ea(∂Φ)(t, x)|,
sup0≤t≤T supx∈Rn(1 + t+ r)

n+1
2 (1 + |t− r|)1/2|L(Flat)(∂Φ)(t, x)|,

sup0≤t≤T supx∈Rn(1 + t+ r)
n−1

2 (1 + |t− r|)3/2|L(Flat)(∂Φ)(t, x)|.
(1.2.7)

In other words, the derivatives of ∂Φ in the directions e1, . . . , en−1, L(Flat), which span the tangent space
of the outgoing Minkowski cones {t − r = const}, have better uniform decay rates than L(Flat)∂Φ. The
gain of decay rates can be obtained by expressing the vectorfields e1, . . . , en−1, L(Flat), L(Flat) in terms

26 Note that the norm ‖|Φ|‖T,s does not directly control Φ itself or its Z(Flat) derivatives in L2. Various approaches for
controlling these terms are described in [38, 48, 63].
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of the vectorfields in Z(Flat) and estimating the coefficients. The decay estimates for L(Flat)(∂Φ) and
L(Flat)(∂Φ) come from combining (1.2.5) with the algebraic identities

(t+ r)L(Flat) = S(Flat) +
1

r

n∑
i=1

xiL(Flat;i), (1.2.8a)

(t− r)L(Flat) = S(Flat) −
1

r

n∑
i=1

xiL(Flat;i). (1.2.8b)

The decomposition for ea(∂Φ) is similar, but slightly more involved.
The above discussion can also be used to provide clear motivation for the null condition and the cor-

responding small-data global existence results [10, 37] in 3D. The null condition (see Subsubsect. 1.2.3)
is designed to capture the fact that some quadratic terms exhibit better decay properties than others. For
example, we can consider the bilinear forms

Q0(Φ,Ψ) := (m−1)αβ∂αΦ∂βΨ, Qαβ(Φ,Ψ) := ∂αΦ∂βΨ− ∂βΦ∂αΨ. (1.2.9)

If Q is any of the bilinear forms (1.2.9), then by using vectorfield algebra as in (1.2.8a)-(1.2.8b), it is
straightforward to derive the pointwise estimate27

|Q(Φ,Ψ)| ≤ C

1 + t+ r

∑
Z(Flat),Z

′
(Flat)

∈Z(Flat)

∣∣Z(Flat)Φ
∣∣ ∣∣Z ′(Flat)Ψ∣∣ . (1.2.10)

When n = 3, the gain of the critically important factor (1+t+r)−1 helps one avoid logarithmic divergences
in L2 estimates involving Q(Φ,Ψ). In contrast, for a general quadratic form such as, for example, ∂tΦ∂tΨ
or∇Φ · ∇Ψ :=

∑n
a=1 ∂aΦ∂aΨ, the factor (1 + t+ r)−1 in (1.2.10) must be replaced with (1 + |t− r|)−1,

which yields no gain in the wave zone {t ∼ r}.

1.2.3. The classic null condition. The considerations described in Subsubsect. 1.2.2 lead to the classic
null condition for equations of type (1.1.8) and for (1.1.10) in the scalar case, which we will now discuss.
We first consider equation (1.1.8). Since we are studying only the behavior of small solutions, we rewrite
the equation as a perturbation of the linear wave equation �mΦ = 0, that is, in the form

− ∂2
t Φ + ∆Φ +Aαβ(∂Φ)∂2

αβΦ = N (Φ, ∂Φ), (1.2.11)

where Aµν = O(|∂Φ|) and N = O(|∂Φ|2) for small (Φ, ∂Φ). Taylor expanding further A and N , we
have

Aµν(∂Φ) = Aµνσ∂σΦ +O(|∂Φ|2), (1.2.12)

N (Φ, ∂Φ) = N µν∂µΦ∂νΦ +O(|Φ||∂Φ|2 + |∂Φ|3), (1.2.13)

27 If we only used rectangular coordinates derivatives, then we could only derive the weaker estimate Q(Φ,Ψ) ≤
C|∂Φ||∂Ψ|.
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where the constants Aµνσ and N µν are

Aµνσ :=
∂

∂(∂σΦ)
Aµν(∂Φ)|∂Φ=0, (1.2.14)

N µν :=
∂2

∂(∂µΦ)∂(∂νΦ)
N (Φ, ∂Φ)|(Φ,∂Φ)=(0,0). (1.2.15)

Similarly, under the assumptions (g−1)µν(Ψ = 0) = (m−1)µν and thatN (Ψ, ∂Ψ) = O(|∂Ψ|2) for small
(Ψ, ∂Ψ), we can rewrite (1.1.10) as a perturbation of the linear wave equation, whereAµν(∂Φ) in (1.2.11)
is replaced byAµν(Ψ),N (Φ, ∂Φ) is replaced byN (Ψ, ∂Ψ),Aµνσ is replaced byA′µν := d

dΨ
Aµν(Ψ)|Ψ=0,

and N µν is replaced by N µν := ∂2

∂(∂µΨ)∂(∂νΨ)
N (Ψ, ∂Ψ)|(Ψ,∂Ψ)=(0,0).

Definition 1.1 (Classic null condition). We say that the nonlinearities in equation (1.2.11) verify the
classic null condition if for every covector ` = (`0, `1, `2, `3) satisfying (m−1)αβ`α`β := −`2

0 + `2
1 + `2

2 +
`2

3 = 0, we have the identities
Aµνσ`µ`ν`σ = N µν`µ`ν = 0.

Similarly, in the case of (1.1.10) with I = 1 (the case of a single scalar equation), we say that the non-
linearities verify the classic null condition if for every Minkowski-null covector `, we have the identities

A′µν`µ`ν = N µν`µ`ν = 0 . (1.2.16)

Remark 1.3. Definition 1.1 can be extended for systems of wave equations; see Remark 2.12 or [35].

We now provide two standard examples.
• For the scalar equation (1.2.11), it is straightforward to check that the quadratic semilinear term
N µν∂µΦ∂νΦ verifies the classic null condition if and only if it is a constant multiple of the null
form Q0(Φ,Φ) from (1.2.9).
• Similarly, for equation (1.1.10) in the scalar case under the assumption (g−1)µν(Ψ = 0) =

(m−1)µν , one can show that the quadratic quasilinear terms verify the classic null condition if
and only if A′µν is a multiple of (m−1)µν .

The proof of global existence for equations of type (1.2.11) verifying the null condition follows a similar
pattern as the proof of the almost global existence in [21] by taking into account the favorable factor
(1 + t + r)−1 in (1.2.10). Another important feature of the proof, which is by now a familiar aspect of
the literature, is that the highest energy norm is not bounded but is instead allowed to grow like a small
power of t as t→∞. Despite the possible slow top-order energy growth, the resulting global solutions to
equations verifying the classic null condition in fact enjoy the same type of peeling properties (1.2.7) as
solutions to the linear wave equation in Minkowski spacetime (at least as far as the low-order derivatives
of Φ are concerned). In the small-data shock-formation problem, we also encounter a similar top-order
growth phenomenon, but it is much more severe when the characteristic hypersurfaces intersect (in fact,
the top-order energies are allowed to blow-up); see Prop. 3.4.

1.2.4. John’s conjecture and an overview of Alinhac’s proof of it for non-degenerate small data. In 3D,
when the quadratic nonlinearities fail the classic null condition, we expect that small-data global existence
fails to hold (recall that John showed [25] that in many cases, one does have a breakdown, though the
mechanism is not revealed by the proof). Nonetheless, we still have the almost global existence result of
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John and Klainerman mentioned earlier and also a sharper version, due to John and Hörmander, which
we state as Theorem 1. We first recall that the Radon transform of a function f on R3 can be defined for
points q ∈ R, θ ∈ S2 ⊂ R3 as

R[f ](q, θ) :=

∫
Pq,θ

f(y) dσq,θ(y), (1.2.17)

where Pq,θ := {y ∈ R3 | e(θ, y) = q} is the plane with unit normal θ that passes through qθ ∈ R3,
dσ(y) denotes the area form induced on the plane Pq,θ by the Euclidean metric e on R3, and e(θ, y) is the
Euclidean inner product of θ and y. We also introduce the following function z[(Φ̊, Φ̊0)] : R × S2 → R,
which also depends on the initial data pair (Φ|t=0, ∂tΦ|t=0) = (Φ̊, Φ̊0) :

z[(Φ̊, Φ̊0)](q, θ) := − 1

4π

∂

∂q
R[Φ̊](q, θ) +

1

4π
R[Φ̊0](q, θ). (1.2.18)

Remark 1.4 (Friedlander’s radiation field). The function z[(Φ̊, Φ̊0)] from (1.2.18) is Friedlander’s radi-
ation field for the solution to the linear wave equation corresponding to the data (Φ̊, Φ̊0). See Subsect. 5.5
for an extended discussion of the role that z[(Φ̊, Φ̊0)] plays in determining when and where blow-up
occurs.

Theorem 1. [19; 29, John and Hörmander] Consider the initial value problem

(g−1)αβ(∂Φ)∂α∂βΦ = 0,

(Φ|t=0, ∂tΦ|t=0) = λ(Φ̊, Φ̊0)

for a quasilinear wave equation in R1+3 verifying (1.1.7) with compactly supported smooth initial data,
for which the classical null condition does not hold. Then the classical lifespan T(Lifespan);λ of the solution
verifies

lim inf
λ↓0

λ lnT(Lifespan);λ ≥
1

sup(q,θ)∈R×S2
1
2

(+)ℵ(θ) ∂2

∂q2z[(Φ̊, Φ̊0)](q, θ)
, (1.2.19)

where (+)ℵ is the future null condition failure factor for the equation; see (4.2.2) for an explicit formula.

The natural conjecture, which was envisioned by F. John,28 is that Theorem 1 is sharp and that small-
data solutions in fact blow up at times near (1.2.19). Moreover, the blow-up should be due to the crossing
of characteristics, similar to the case of the 1D Burgers’ equation. A restricted version of this conjecture,
applicable to initial data satisfying some non-degeneracy conditions, was first proved by Alinhac; see
Theorem 3 and the discussion in Subsect. 5.3.

It is easy to see that the right-hand side of (1.2.19) must be non-negative for compactly supported data.
The importance of Alinhac’s work is further enhanced by the next proposition, which shows that the right-
hand side of (1.2.19) is strictly positive whenever the data are compactly supported and nontrivial. Thus,
Alihnac’s work shows that in the λ ↓ 0 limit, for nontrivial data verifying his non-degeneracy conditions,
shocks will always form. Moreover, as we describe in Subsect. 5.5.3, Alinhac’s non-degeneracy conditions

28In [30], John also contemplated the possibility that away from spherical symmetry, singularity formation might be avoided.
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on the data turn out to be unnecessary. However, as we describe in Subsect. 5.3, his proof cannot be
extended to recover this fact; the proof requires the full power of Christodoulou’s framework.

Proposition 1.2. [29, pg. 98] Let Φ̊, Φ̊0 ∈ C∞c (R3). Assume that (+)ℵ 6≡ 0 and that

sup
(q,θ)∈R×S2

(+)ℵ(θ)
∂2

∂q2
z[(Φ̊, Φ̊0)](q, θ) = 0. (1.2.20)

Then (Φ̊, Φ̊0) = (0, 0).

1.3. A sharp description of small-data shock formation for spherically symmetric solutions in 3D.
We are now ready to describe, in the simplified setting of spherical symmetry, how failure of the classic
null condition can cause small-data solutions to equations of type (1.2.11) to form shock-type singularities.
It turns out that in the small-data regime, the main mechanism of shock formation is the same both in and
out of spherical symmetry. Hence, in the spherically symmetric case, we provide a detailed proof of
singularity formation in the higher-order derivatives and regularity of the lower-order derivatives within
an appropriate wave zone using the framework29 of Christodoulou [11].

1.3.1. Geometric formulation of the problem. Following F. John [28], we examine the model equation
(1.1.12). In particular, we focus here on the simplest case30 �mΦ = −∂tΦ∆Φ, which takes the following
form relative to standard spherical coordinates on Minkowski spacetime:

∂2
t (rΦ) = (1 + ∂tΦ) ∂2

r (rΦ). (1.3.1)

In (1.3.1), Φ(t, x) = Φ(t, r) and r :=
√∑3

a=1(xa)2. We expect that shock formation corresponds to the
blow-up of some second derivatives of Φ, while Φ itself and its first derivatives remain bounded. Hence,
we can equivalently consider the equation

− ∂2
t (rΨ) + (1 + Ψ) ∂2

r (rΨ) = −r (∂tΨ)2

1 + Ψ
. (1.3.2)

for Ψ := ∂tΦ induced from (1.3.1), and show that Ψ remains bounded while some of its first derivatives
blow up. Our analysis takes place in a small stripMt,U0 (contained in the “wave zone”) defined just below;
see also Figure 1.

29The proof given here is a bit sharper than the one given by John [28] in that it exhibits the precise blow-up mechanism
due to the intersection of the characteristic hypersurfaces, similar to that of Burgers’ equation (see Subsubsect. 1.1.1). The
additional precision afforded by Christodoulou’s framework is essential for extending the result beyond spherical symmetry.

30It is straightforward to see that this equation fails the classic null condition of Definition 1.1.
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Mt,u
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Ctu Ct0

Σt

Σu
0

Σu
t

Ψ ≡ 0

FIGURE 1. Regions of interest, where u ∈ [0, U0]

To define the regionMt,U0 , we note that the initial value problem for (1.3.2) with initial data

Ψ(0, r) := Ψ̊(r), ∂tΨ(0, r) := Ψ̊0(r) (1.3.3)

can be solved using the method of characteristics. The characteristic vectorfields31 are

L := ∂t +
√

1 + Ψ∂r and L := ∂t −
√

1 + Ψ∂r . (1.3.4)

Corresponding to the “outgoing” vectorfield L, we can define an eikonal function u(t, r) satisfying32

Lu(t, r) = 0,

with u = const defining the outgoing characteristics Cu. The function u(t, r) is uniquely determined once
we fix its value along the hypersurface {t = 0}; we initialize u by prescribing

u|t=0 := 1− r. (1.3.5)

Finite speed of propagation [25,31] for the wave equation implies that the solution along Cu only depends
on the data at points r ≥ 1− u.

We assume for convenience that (Ψ̊, Ψ̊0) are supported in {r ≤ 1}. This implies that Ψ ≡ 0 when
u ≤ 0. We thus define, in spherical coordinates, the region of interest

Mt,U0 := {(t′, r) | 0 ≤ t′ < t and 0 ≤ u(t′, r) ≤ U0}. (1.3.6)

31These are the replacements for L(Flat) and L(Flat) defined in (1.2.6), and are adapted to the true quasilinear geometry of
the equation. Note that we chose them to be normalized (see Footnote 32 for notation) Lt = Lt = 1.

32If X is a vectorfield and f a function, we write Xf = Xα∂αf for the X-directional derivative of f.
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OnMt,U0 , the solution depends only on the data belonging to the annulus r ∈ [1−U0, 1]. For convenience
in notation, we also define

Σt := {(t, r) | r ≥ 0}, Σu′

t := {(t, r) | 0 ≤ u(t, r) ≤ u′},
Cu′ := {(t′, r) | 0 ≤ t′ and u(t′, r) = u′}, Ctu′ := {(t′, r) | 0 ≤ t′ ≤ t and u(t′, r) = u′}.

(1.3.7a)

Definition 1.2 (Inverse foliation density). The quantity µ defined by

µ−1 := ∂tu(t, r) = −
√

1 + Ψ∂ru, (1.3.8)

is called the inverse foliation density. It is also known as the null lapse.

By the choice of initial data for u, on Σ0, we see µ = 1 +O(Ψ). The quantity µ−1 plays a fundamental
role in the analysis of shock formation. It measures the density of the leaves33 Cu with respect to the time
coordinate t, and shock formation (intersection of characteristics) corresponds to µ → 0. As long as µ
remains positive, the two functions t, u are independent and form a coordinate system ofMt,U0 . As we
will see, there are advantages to using the “geometric” coordinates (t, u) in place of (t, r). We note that

L =
∂

∂t
|u, µLu = 2. (1.3.9)

Straightforward computations reveal that (1.3.2) can be expressed in the two equivalent forms

LL (rΨ) =
1

4

r

(1 + Ψ)

[
(LΨ)2 + 3(LΨ)(LΨ)

]
− 1

2

1√
1 + Ψ

Ψ(LΨ), (1.3.10a)

LL (rΨ) =
1

4

r

(1 + Ψ)

[
(LΨ)2 + 3(LΨ)(LΨ)

]
+

1

2

1√
1 + Ψ

Ψ(LΨ), (1.3.10b)

which can be used to derive estimates along the characteristic directions. Note that (1.3.10b) follows from
(1.3.10a) and the commutator relations

[L,L] = − ∂tΨ√
1 + Ψ

∂r, [L,L]Ψ =
(LΨ)2 − (LΨ)2

4(1 + Ψ)
.

Remark 1.5. Examining the semilinear terms in equations (1.3.10a)-(1.3.10b), we see that some of the
nonlinearities in equation (1.3.1) fail the classic null condition of Definition 1.1. In particular, both34

(LΨ)2 and (LΨ)2 fail35 the classic null condition of Definition 1.1. However, in view of the forward
peeling properties (1.2.7), we expect that in the relevant future regionMt,U0 , LΨ decays faster than LΨ.
Hence, the only term that behaves poorly, from the point of view of linear decay, is the term 1

4
r

1+Ψ
(LΨ)2

on the right-hand side of (1.3.10a). This term is in fact the source of the small-data shock formation: we
will use the estimate r ≈ t (within Mt,U0) to show that this term drives a Riccati-type blow-up along
the integral curves of L. We rigorously prove a refined version of this claim in Prop. 1.3 and Cor. 1.4.
Furthermore, as we will see, the terms 1√

1+Ψ
Ψ(LΨ) and 1√

1+Ψ
Ψ(LΨ) are negligible error terms.

33Later, we will introduce the eikonal function and the inverse foliation density in full generality, without the assumption of
spherical symmetry. Here it is sufficient to understand them in the context of the method of characteristics.

34Note that in the limit Ψ→ 0 we have L→ L(Flat) and similarly for L.
35As we will see, the remaining terms in (1.3.10a)-(1.3.10b) can be treated as negligible errors.
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1.3.2. Rescaling in the transversal direction. The crucial observation36 of Christodoulou is that we can
derive an equivalent system of equations for new µ-weighted quantities for which the problematic term
(LΨ)2 does not appear. As we show below in Prop. 1.3, the rescaled system can then be treated by
straightforward dispersive-type methods (reminiscent of the peeling properties (1.2.7)), in the spirit of
small-data (spherically symmetric) global existence results. This rescaling by the factor of µ takes place
only in the Cu-transversal direction L and has a simple interpretation, at least in spherical symmetry, in
terms of the method of characteristics. More precisely, it is straightforward to show that relative to the
(t, u) coordinates, we have the identity µL = µ ∂

∂t
+ 2 ∂

∂u
. We note that expressing Ψ as a function of (t, u)

is analogous to our earlier representation of a solution to the Burgers’ equation (1.1.1) in the characteristic
(also known as Lagrangian) coordinates (t, α) (see (1.1.3)). Just as solutions of Burgers’ equation remain
regular37 in the coordinates (t, α), the shock-forming solutions of (1.3.2) remain regular in the coordinates
(t, u); the singularity manifests itself only when we change variables back to the (t, r) coordinates because
the Jacobian of the change of variables map38 contains factors of µ−1.

To reveal the rescaled structure, we first note that from the definition (1.3.8), we have

Lµ−1 = L∂tu(t, r) = ∂tLu(t, r)− [∂t, L]u(t, r).

From this equation and the identities Lu(t, r) = 0, Lu(t, r) = 2µ−1 and [∂t, L] = 1
2

1√
1+Ψ

∂tΨ∂r, we
deduce that

Lµ = −1

4

1

(1 + Ψ)
µ (LΨ + LΨ) . (1.3.11)

Hence, we can rewrite (1.3.10a)-(1.3.10b) as

L (µL (rΨ)) =
1

2

r

(1 + Ψ)
[(LΨ)µLΨ]− 1

2

µ√
1 + Ψ

ΨLΨ, (1.3.12a)

µLL (rΨ) =
1

4

r

(1 + Ψ)

[
µ (LΨ)2 + 3(LΨ)µLΨ

]
+

1

2

1√
1 + Ψ

ΨµLΨ. (1.3.12b)

A key point is that all products on the right-hand sides of (1.3.12a)-(1.3.12b) are expected to decay at an
integrable-in-time rate. In summary, we have formulated a system of equations that on the one hand is
expected to remain regular and exhibit dispersive properties, and on the other hand is tailored to see the
blow-up of precisely the L derivative of the solution as µ→ 0.

1.3.3. A sharp classical lifespan result and proof of shock formation. The rescaling by µ has introduced
a partial decoupling of (1.3.2) into the wave equations (1.3.12a)-(1.3.12b), which we expect to remain
regular, and a transport equation (1.3.11) for the inverse foliation density µ, which we expect to drive the
blow-up of (t, r) coordinate derivatives of Ψ. This allows us to attack the problem of shock formation as a
two-step process, which we now outline.

36F. John implicitly used a similar strategy in his original argument [28] and in his earlier work [22] in 1D. The idea of using
Burgers’ equation as a guide and studying the system in characteristic coordinates is also used, in a somewhat different form,
by Alinhac [1–5].

37Relative to the coordinates (t, α), the solution Ψ to Burgers’ equation (1.1.1) verifies ∂
∂tΨ = 0 and ∂

∂αΨ = Ψ̊′(α), where
Ψ̊ := Ψ|t=0.

38Equivalently, if µLΨ remains non-zero when µ↘ 0, we must have |LΨ| ↗ ∞.
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(1) First, we prove “global-existence-type” estimates and establish a breakdown criterion for the sys-
tem in the small data regime. In particular, we will show that classical solutions can be continued
as long as µ remains away from 0. Furthermore, we will show that when µ → 0, some of the
coordinate derivatives of Ψ must blow-up. We prove these claims in Prop. 1.3.

(2) Next, using the global-existence-type estimates from Step (1), we can rigorously justify our intu-
ition that the (LΨ)2 terms in (1.3.10a) drives a Riccati-type blow-up. To this end, we study the
transport equation (1.3.11) and show that the right hand side has enough positivity to drive µ to
zero in finite time, provided that we sufficiently shrink the amplitude of the initial data. See Figure
2 for a picture illustrating the formation of the shock, and Cor. 1.4 for the statement.

Remark 1.6. Following Christodoulou [11], we will also use this two-step process in the non-spherically
symmetric case. A related approach was also used by Christodoulou to study the formation of trapped
surfaces in general relativity [12]. The main difficulty in the analysis of the full problem is precisely
establishing an analog to the sharp classical lifespan Prop. 1.3 outside of spherical symmetry. Once the
“global-existence-type” estimates (that is, analogs of (1.3.15)-(1.3.17) below) are established, it is rela-
tively easy to prove a version of the shock-formation results of Cor. 1.4.

We now provide the relevant definition of the solution’s lifespan in the shock formation problem.

Definition 1.3 (Outgoing classical lifespan). We define T(Lifespan);U0 , the outgoing classical lifespan of
the solution with parameter U0, to be the supremum over all times t > 0 such that Ψ is a C2 solution
(relative to the coordinates (t, r)) to equation (1.3.2) in the stripMt,U0 (see Definition (1.3.6)).

We now state the main sharp classical lifespan result for spherically symmetric solutions.

Proposition 1.3 (A sharp classical lifespan result for equation (1.3.1)). Let ε̊ := ‖Ψ̊‖C2 + ‖Ψ̊0‖C1

denote the size of the spherically symmetric data (1.3.3), supported in {r ≤ 1}, for the wave equation
(1.3.2). Let 0 ≤ U0 < 1 be a fixed parameter. Then there exists a constant ε0 > 0 such that if ε̊ ≤ ε0, then
we have the following conclusions. First, the outgoing classical lifespan T(Lifespan);U0 of Definition 1.3 is
characterized by

T(Lifespan);U0 = sup{t > 0 | inf
Σ
U0
t

µ > 0}. (1.3.13)

In addition, there exists a constant C(Lower−Bound) > 0 such that

T(Lifespan);U0 > exp

(
1

C(Lower−Bound)̊ε

)
. (1.3.14)

Furthermore, there exists a constant C > 0 such that onMT(Lifespan);U0
,U0 , we have

|r3L2Ψ| ≤ Cε̊, |r2L(µLΨ)| ≤ Cε̊, |r2LΨ| ≤ Cε̊, |rµLΨ| ≤ Cε̊, |rΨ| ≤ Cε̊,

|µ− 1| ≤ Cε̊ ln(e+ t), |1− r + t− u| ≤ Cε̊ ln(e+ t).
(1.3.15)

Finally, there exists a constant c > 0 such that at any point with µ < 1/4, we have

Lµ ≤ −c 1

(1 + t) ln(e+ t)
. (1.3.16)
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and

|µLΨ| ≥ c
1

(1 + t) ln(e+ t)
. (1.3.17)

In particular, it follows from (1.3.17) that LΨ blows up like µ−1 at points where µ vanishes.

Remark 1.7 (The sharp “constant”). As was first shown by John [29] and Hörmander [19] in Theorem 1,
the sharp “constant” C(Lower−Bound) in (1.3.14) depends on the profile of the data and the structure of the
nonlinearities; see also equation (5.1.5).

Remark 1.8. The estimate (1.3.16) is a quantified version of the following rough idea: the only way µ
can shrink along the integral curves of L is for Lµ to be significantly negative. An interesting aspect is the
“point of no return” nature of this estimate: once µ < 1

4
(recall that at t = 0, its value is approximately

1), µ must continue to shrink until it eventually vanishes and a shock forms. The specific value 1
4

is not
significant: the actual point of no return depends on ε0 and 1

4
is just a convenient number.

µ = 0

CU0
C0

Σ0

ΣT(Lifespan);U0

FIGURE 2. Shock formation in spherically symmetric solutions to equation (1.3.2)

Remark 1.9 (A preview on the Heuristic Principle). Later, when investigating the general non-spherically
symmetric case, we will encounter dispersive estimates in the spirit of (1.3.15), complemented with esti-
mates for the angular derivatives. Such expected estimates, which we refer to as the “Heuristic Principle,”
provide the basic intuition behind our approach in the non-symmetric case.
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With the help of Prop. 1.3, we can easily derive the following shock-formation result for spherically
symmetric solutions.

Remark 1.10. For technical reasons, in the corollary, we start with “initial” data at time −1/2 supported
in {r ≤ 1/2}. We will explain this assumption in more detail at the end of the proof of the corollary; see
Footnote 41.

Corollary 1.4 (Shock formation for rescaled spherically symmetric data). Let (Ψ̌, Ψ̌0) ∈ C2 × C1 be
nontrivial spherically symmetric “initial” data on Σ−1/2 that vanish for r ≥ 1/2. Let (Ψ̊ := Ψ|Σ0 , Ψ̊0 :=

∂tΨ|Σ0) denote the data induced on Σ0 by the solution39 Ψ. Note that (Ψ̊, Ψ̊0) vanish for r ≥ 1. Then we
can chose a U0 ∈ (0, 1) such that if we rescale the initial data to be (λΨ̌, λΨ̌0) for sufficiently small λ > 0,

then (Ψ̊, Ψ̊0) is small enough such that the results of Prop. 1.3 apply and furthermore, Ψ has a lifespan
T(Lifespan);U0 <∞ due to µ vanishing in finite time. That is, a shock forms in finite time.

Remark 1.11 (Maximal development of the data). An important merit of the proofs of Prop. 1.3 and
Cor. 1.4 is that with some additional effort, they can be extended to reveal information beyond the hyper-
surface ΣT(Lifespan);U0

. That is, they can be extended to reveal a portion of the maximal development of the
data up to the boundary; see Remark 4.1 and Figure 7.

Remark 1.12. Roughly, the maximal development is the largest possible spacetime domain on which
there exists a unique classical solution determined by completely the data; see, for example, [65].

We now provide the proofs of the proposition and the corollary.

Proof of Prop. 1.3. It suffices to prove (1.3.15)-(1.3.17) onMT(Lifespan),U0 . For by the identity (1.3.4), if µ
remains uniformly bounded from above and from below away from 0, then the estimates (1.3.15) imply
that |Ψ|, |∂tΨ|, and |∂rΨ| remain uniformly bounded; it is a standard fact that such bounds allow us to
extend the solution’s lifespan (in a strip of u-width U0).

Since our analysis is based on integrating along characteristics, we will work relative to the geometric
coordinate system (t, u), where u is the eikonal function constructed above.40 We use a continuity argu-
ment: let B ⊂

[
0, T(Lifespan);U0

)
be the subset consisting of those times T such that the estimates (1.3.15)

of the proposition hold on MT,U0 , but with Cε̊ replaced by
√
ε̊. We remark that for T ∈ B, we have

r ≈ 1 + t onMT,U0 . For ε0 < 1 sufficiently small, B is a connected, non-empty, relatively closed subset
of
[
0, T(Lifespan)

)
. To show that B is relatively open, we improve the bootstrap assumptions with a series

of estimates that we now derive.
First, we insert the bootstrap assumptions into the right-hand side of equation (1.3.12b) to deduce that

|µLL (rΨ)| ≤ Cε̊
1

(1 + t)2
. (1.3.18)

We now integrate inequality (1.3.18) along the integral curves of µL relative to the affine parameter u
(note that µL(u) = 2), back to the initial cone C0, along which the solution vanishes. Hence, since the

39If that data on Σ−1/2 are sufficiently small, then the solution will persist until time 0.
40Note that this “dynamic” coordinate depends on the solution itself; this is a feature of the quasilinear nature of the

equations.
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strip of interest has eikonal function width U0 < 1, since du
dt

= µ−1, and since µ ≤ C ln(e+ t), we deduce
that

|L (rΨ)| ≤ Cε̊
ln(e+ t)

(1 + t)2
. (1.3.19)

Next, integrating inequality (1.3.19) from t = 0 along the integral curves ofL = ∂
∂t

and using the smallness
of the data, we deduce that |rΨ| ≤ Cε̊. In view of the bootstrap assumption corresponding to (1.3.15), we
have r ≈ t inside our region, and therefore

|Ψ| ≤ Cε̊
1

1 + t
(1.3.20)

as desired. Next, inserting the estimate (1.3.20) into (1.3.19) and using that |Lr| =
∣∣√1 + Ψ

∣∣ < 2, we
find that

|LΨ| ≤ Cε̊
1

(1 + t)2
(1.3.21)

as desired. Next, inserting the estimates (1.3.20)-(1.3.21) and the bootstrap assumptions for µ into the
right-hand side of (1.3.12a), we find that

|L (µL(rΨ))| ≤ Cε̊
1

(1 + t)2
. (1.3.22)

Integrating (1.3.22) along Cu from t = 0 and using the small-data assumption, we find that |µL (rΨ)| ≤
Cε̊. Using the bootstrap assumptions, we deduce that µ|Lr| = |µ

√
1 + Ψ| ≤ C ln(e + t) and hence,

thanks to (1.3.20), that

|µLΨ| ≤ Cε̊
1

1 + t
(1.3.23)

as desired. Next, we insert the estimates (1.3.20), (1.3.21), and (1.3.23) and the bootstrap assumption for
µ into the right-hand side of equation (1.3.11), thereby deducing that

|Lµ| ≤ Cε̊
1

1 + t
. (1.3.24)

Integrating (1.3.24) along Cu from t = 0 where |µ− 1| ≤ Cε̊, we establish that

|µ− 1| ≤ Cε̊ ln(e+ t) (1.3.25)

as desired. Next, we note the identity L (1− r + t− u(t, r)) = 1−
√

1 + Ψ. Hence, by (1.3.20), we have

|L (1− r + t− u)| ≤ Cε̊
1

1 + t
. (1.3.26)

Integrating (1.3.26) from t = 0, where u = 1− r, we find that

|1− r + t− u| ≤ Cε̊ ln(e+ t) (1.3.27)

as desired. Next, using the identity

rL(µLΨ) = L (µL(rΨ))− µLΨ +
1

2
µ

1√
1 + Ψ

ΨLΨ + µ
√

1 + ΨLΨ + (Lµ)
√

1 + ΨΨ (1.3.28)
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and the previously proven estimates, we deduce that

|L(µLΨ)| ≤ Cε̊
1

(1 + t)2
(1.3.29)

as desired. We now show that ∣∣µLL2 (rΨ)
∣∣ ≤ Cε̊

1

(1 + t)3
. (1.3.30)

To this end, we commute equation (1.3.12b) with L to derive an equation of the form µLL2 (rΨ) = · · · .
To bound the magnitude of L applied to the right-hand side of (1.3.12b) by ≤ the right-hand side of
(1.3.30), we use the bootstrap assumptions and the previously proven estimates. Similarly, to bound the
commutator term [L,µL]L(rΨ) = −µ 1

4(1+Ψ)
(LΨ)L2(rΨ) − 1

4(1+Ψ)
(µLΨ)L2(rΨ) by ≤ the right-hand

side of (1.3.30), we use the bootstrap assumptions and the previously proven estimates. We have thus
proved (1.3.30). Next, by arguing as in our proof of (1.3.19), we deduce from (1.3.30) that∣∣L2 (rΨ)

∣∣ ≤ Cε̊
ln(e+ t)

(1 + t)3
. (1.3.31)

From the identity rL2Ψ = L2 (rΨ)− 2LΨ and the estimates (1.3.21) and (1.3.31), we deduce that∣∣L2Ψ
∣∣ ≤ Cε̊

1

(1 + t)3
. (1.3.32)

We have thus improved the bootstrap assumptions, having shown that
√
ε̊ can be replaced with Cε̊, as

stated in the estimates (1.3.15) of the proposition.
We now prove inequality (1.3.17). First, we multiply the evolution equation (1.3.11) by r, apply L, and

use the previously proven estimates, including (1.3.24), (1.3.22), and (1.3.32), to deduce that

|L(rLµ)| ≤ Cε̊
ln(e+ t)

(1 + t)2
. (1.3.33)

Integrating (1.3.33) from s to t along the integral curves of L and using r(s, u) = 1−u+s+O(̊ε ln(e+s)),
we find that for 0 ≤ s ≤ t, we have |[rLµ](t, u)− [rLµ](s, u)| ≤ Cε̊ ln(e+ s)(1 + s)−1 and hence that

Lµ(s, u) =
1

r(s, u)
[rLµ](t, u) +O

(
ε̊

ln(e+ s)

(1 + s)2

)
. (1.3.34)

Integrating (1.3.34) from s = 0 to s = t and using |µ(0, u)− 1| ≤ Cε̊, we find that for 0 ≤ s ≤ t, we
have

µ(s, u) = 1 + ln

(
1− u+ s

1− u

)
[rLµ](t, u) +O(̊ε). (1.3.35)

On the other hand, using the previously proven estimates and equation (1.3.11), we deduce that

[rLµ](s, u) = −1

4
[rµLΨ](s, u) +O

(
ε̊

ln(e+ s)

1 + s

)
. (1.3.36)
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Combining (1.3.35) and (1.3.36), we see that

µ(s, u) = 1− 1

4
ln

(
1− u+ s

1− u

)
[rµLΨ](t, u) +O(̊ε). (1.3.37)

It follows from (1.3.37) that if µ(t, u) < 1/4 and ε̊ is sufficiently small, then

µLΨ(t, u) ≥ c
1

(1 + t) ln(e+ t)
, (1.3.38)

which is the desired estimate (1.3.17). The desired estimate (1.3.16) then follows from inserting the
estimate (1.3.17) into (1.3.36).

�

Sketch of a proof of Cor. 1.4. We must show that µ vanishes in finite time along at least one of the charac-
teristics Cu. Throughout most of the proof, we work with the data (Ψ̊, Ψ̊0) induced on Σ1

0 by the solution.
The parameter ε̊ appearing throughout this proof is by definition ε̊ := ‖Ψ̊‖C2 +‖Ψ̊0‖C1 , as in the statement
of Prop. 1.3. We assume that ε̊ is small enough that the results of the proposition apply. As a first step, we
insert the estimates (1.3.15) into the evolution equation (1.3.12a) and integrate along Cu to deduce that

|µL (rΨ) (t, u)− µL (rΨ) (0, u)| ≤ Cε̊2. (1.3.39)

Using the estimate |µLr| ≤ C ln(e+ t), the estimate |Ψ|(t, u) ≤ Cε̊(1+ t)−1, the estimate r(t, u) ≈ 1+ t,
and the fact that at t = 0, µ− 1 = O(̊ε) and L = L(Flat) +O(̊ε)∂r, we deduce from (1.3.39) that

[rµLΨ](t, u) = [L(Flat) (rΨ)](0, u) +O(̊ε2) +O
(
ε̊

ln(e+ t)

1 + t

)
. (1.3.40)

Combining (1.3.40) with equation (1.3.35), we deduce that

µ(t, u) = 1 +O(̊ε) + ln

(
1− u+ t

1− u

)
[L(Flat) (rΨ)](0, u) +O(̊ε2) ln(e+ t) +O

(
ε̊

ln2(e+ t)

1 + t

)
.

(1.3.41)

From (1.3.41), we conclude that if L(Flat) (rΨ) (0, u) is sufficiently negative for some u ∈ (0, U0] to
overwhelm the O(̊ε2) term, then µ will vanish in finite time. The negativity of L(Flat) (rΨ) (0, u) at some
u∗ ∈ (0, 1) is an easy consequence of the assumption that the data given along Σ−1/2 are nontrivial and
compactly supported in the Euclidean ball of radius 1/2 centered at the origin. This fact is roughly a
spherically symmetric analog of Prop. 1.2; see [28] or [64, Lemmas 22.2.1 and 22.2.2] for more details.41

We now run the above analysis with U0 less than one but greater than u∗. By shrinking the amplitude of
the data as stated in the corollary, we can guarantee that O(̊ε2) in (1.3.41) is an “error term” compared to
L(Flat) (rΨ) (0, u∗). This guarantees finite-time shock formation inMT(Lifespan);U0

,U0 . �

41 As can be discerned from [28] or [64, Lemmas 22.2.1 and 22.2.2], if we had started with data on Σ0 supported in {r ≤ 1},
then the shock might “want to form” at a value of u larger than 1, that is, in a region where our eikonal function is not defined.
It is for this reason that we started with the data on Σ−1/2 supported in {r ≤ 1/2}.
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1.4. Systems of equations of the form (1.1.10). As we mentioned earlier, scalar equations of the form
(1.1.8) can be re-expressed in terms of systems of equations of type (1.1.10), where Ψ is the array Ψ = ∂Φ.
Given the fact that the shocks we are studying correspond to singularities of ∂2Φ while Ψ = ∂Φ remains
bounded, it is easy to convince ourselves that for this purpose, the system of the type (1.1.10) is not more
difficult to treat than the simplified case of the scalar equation

(g−1)αβ(Ψ)∂α∂βΨ = N (Ψ, ∂Ψ), (1.4.1)

with g(Ψ) = m + O(|Ψ|) and N (Ψ, ∂Ψ) = O(|∂Ψ|2) in a neighborhood of (Ψ, ∂Ψ) = (0, 0) (and as
usual, m is the Minkowski metric). We shall thus concentrate our attention on this scalar model, even
though some important concepts, such as the “weak null condition” (see just below), are more broadly
applicable to the full system.

In Subsect. 1.3, for F. John’s equation (1.3.2) in spherical symmetry, we saw that the shock formation
is essentially driven by some semilinear terms that lead to a Riccati-type blow-up. A remarkable fact
about scalar equations of type (1.4.1) is that in 3D, small data blow-up cannot occur42 without semilinear
terms. Indeed, as was first pointed out by H. Lindblad, if we drop the nonlinear term on the right-hand
side of (1.4.1) (in the scalar case), then the remaining quasilinear equation admits global solutions (even
in 3D) for all sufficiently small initial conditions. In [44], Lindblad proved this for spherically symmetric
solutions of the model equation

−∂2
t Ψ + c2(Ψ)∆Ψ = 0, c2(0) = 1. (1.4.2)

The result was later extended by S. Alinhac [7] and H. Lindblad [45] to equations of the form43

(g−1)αβ(Ψ)∂α∂βΨ = 0, (1.4.3)

with g(Ψ) = m+O(|Ψ|). This result carries over to systems of the form (1.1.10) for which the nonlinear
termsN I(Ψ, ∂Ψ) verify the classic null condition. In [46], H. Lindblad and I. Rodnianski further extended
the result to a larger class of nonlinearitiesN that verify the weak null condition.44 Moreover, they showed
that the weak null condition is verified by the Einstein vacuum equations in the wave coordinate gauge
[48].

Hence, if we are interested in describing the phenomenon of small-data shock formation, we must
consider either scalar equations of type (1.4.1) with nonlinearities N which do not verify the classic null
condition, or more generally, systems of the type (1.1.10) which do not verify the weak null condition. A
convenient way to generate scalar equations that fail the classic null condition is to rewrite (1.4.1) in the
geometric form

�g(Ψ)Ψ = N (Ψ, ∂Ψ), (1.4.4)

42In contrast, we note that this statement is false for metrics g = g(∂Φ); see Remark 4.2.
43Lindblad considered the general case (1.4.3) while Alinhac addressed the specific equation −∂2

t Ψ + (1 + Ψ)2∆Ψ = 0.
44A system (in 3 space dimensions) verifies the weak null condition if the corresponding asymptotic system admits global

solutions; see [46] for an explanation of how to form the asymptotic system. The weak null condition manifests as a structural
condition on the nonlinearity N for systems of wave equations, allowing, in addition to quadratic terms that verify the classic
null condition, also weakly coupled quadratic terms. For example, systems such as �mΦ = ∂Φ · ∂Ψ, �mΨ = 0 (or even
�mΨ = N (Ψ, ∂Ψ) with N verifying the classic null condition) verify the weak null condition.
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with �g the standard covariant wave operator associated to the metric g = g(Ψ). Note that the term
N (Ψ, ∂Ψ) in (1.4.4) is of course different from the corresponding term in (1.4.1) in view of the difference
between the operators (g−1)αβ∂α∂β and�g.We already stress here that in order to prove a shock formation
result, we must make assumptions on the semilinear term N (Ψ, ∂Ψ) in equation (1.4.4). For example,
one could choose N (Ψ, ∂Ψ) so that (1.4.4) is equivalent to equation (1.4.3), in which case there would
be small-data global existence. In Subsubsect. 2.1.7, we describe some sufficient assumptions on the
nonlinearities that lead to small-data shock formation. Note that in the particular case when the right hand
side of (1.4.4) is trivial, that is, in the case of the equation �g(Ψ)Ψ = 0, the non-geometric form of the
equation (equation (1.4.1)) is such that the corresponding right hand side does not verify, except in trivial
cases, the null condition; see the discussion in Subsubsect. 2.1.6. As a simple example to keep in mind,
consider the equation �g(Ψ)Ψ = 0 in the case of the metric

−dt2 + c2(Ψ)
3∑

a=1

(dxa)2. (1.4.5)

The non-geometric form of the equation is:

(g−1)αβ(Ψ)∂α∂βΨ = −(g−1)αβ(Ψ)∂α ln c(Ψ)∂βΨ + 2∂t ln c(Ψ)∂tΨ. (1.4.6)

The first term on the right-hand side of (1.4.6) verifies the classic null condition, and if not for the second
term, the methods of Alinhac [7] and Lindblad [45] would lead to small-data global existence. However,
the term 2∂t ln c(Ψ)∂tΨ does not verify the classic null condition and causes the finite-time shock forma-
tion. We remark that equation (1.4.6) admits spherically symmetric solutions whose finite time blow-up
can be analyzed by employing essentially the same strategy that F. John used to study equation (1.1.12),
or by using the sharper strategy described in Subsect. 1.3.

Finally, we note, that although one can establish small-data global existence for Lindblad’s equation,
and more generally for systems of type (1.1.10) verifying the weak null condition, the resulting solutions
sometimes verify weaker peeling properties than the ones (1.2.7) corresponding to the linear wave equa-
tion. Alinhac refers to the distorted asymptotic behavior as “blow-up at infinity;” see, for example, [7].
In the case of Lindblad’s scalar equation, this effect can only be generated by the quasilinear (principal)
part of the equation and is in fact due to the nontrivial asymptotic behavior of the null (characteristic)
hypersurfaces, which are levels sets of a solution u to the following eikonal equation45

(g−1)αβ(Ψ)∂αu∂βu = 0. (1.4.7)

Solutions to (1.4.7) are analogs of the coordinate u constructed in Subsect. 1.3 in spherical symmetry.
They will play a major role in all of the remaining discussion in this article.

1.5. Why is the proof of shock formation so much harder in the general case? The short answer is
simply this: because the spherically symmetric problem is truly 1 + 1 dimensional and therefore one can
rely almost exclusively on the method of characteristics, a method which is in itself insufficient in higher
dimensions. After his blow-up work in spherical symmetry [28], F. John tried to extend it by treating the
general case as a perturbation of the spherically symmetric one. In particular, in treating the general case,
he used radial characteristic curves corresponding to the truncated problem in which angular derivatives

45In the next subsection, we discuss the eikonal equation in more detail.
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are set equal to 0, which are not true characteristics for the actual equation. At first glance, this seems
reasonable since, in view of the peeling properties (1.2.7), we may expect that the angular derivatives decay
faster and thus, for large values of t, the radial behavior dominates. The problem with such a strategy is
that it is not so easy to verify that the angular derivatives are indeed negligible. Actually, Christodoulou’s
work [11] and the third author’s work [64] allow for the possibility that the standard angular derivatives of
the solution along the Euclidean spheres are non-negligible at late time and in fact they can blow up when
the shock forms! The reason is that they can contain a small component that is transversal to the actual
characteristic hypersurfaces, and it is exactly this transversal derivative of the solution that blows up.

1.5.1. Eikonal functions in 3D. In Subsect. 1.2, we outlined how to derive the decay properties of solu-
tions to higher-dimensional nonlinear wave equations using a version of the vectorfield method that relies
on the Killing and conformal Killing vectorfields Z(Flat) of Minkowski spacetime. These vectorfields are
well-adapted to u(Flat) := t − r, which is an eikonal function of the Minkowski metric (whose level sets
are characteristics for the linear wave equation). In general, these vectorfields are not suitable for studying
quasilinear wave equations, whose characteristics may be very different from those of solutions to the lin-
ear wave equation. We were able to use the Minkowskian vectorfields Z(Flat) in the proofs of small-data
global and almost-global existence theorems, essentially because we worked within spacetime regions
where we can use a bootstrap procedure based on the peeling estimates (1.2.7) to control the difference
between the actual characteristics and the Minkowskian ones.

In contrast, in the shock formation problem, one is studying spacetime regions where the true char-
acteristics are catastrophically diverging from those of the linear wave equation. Therefore, there is no
reason to hope that we can derive good peeling estimates by commuting with vectorfields in Z(Flat). In the
study of the linear wave equation the peeling estimates (1.2.7) are adapted to the outgoing Minkowskian
null cones. These cones are level sets of the eikonal function u(Flat), which solves the eikonal equation
(m−1)αβ∂αu∂βu = 0. To study shock formation, it is natural then to replace u(Flat) by an appropriate
outgoing solution of the eikonal equation of the dynamic metric g(∂Φ) of equation (1.1.8):

(g−1)αβ(∂Φ)∂αu∂βu = 0 (1.5.1)

or (1.4.7) in the case of equations of type (1.4.4). The hope is that u will serve as a good coordinate, as it
did in Subsect. 1.3 in spherical symmetry.

Note that in the particular case of John’s equation (1.3.2), or the equation �g(Ψ)Ψ = 0 with Lindblad’s
metric (1.4.5), the eikonal equation takes the form

(∂tu)2 = c2(Ψ)|∇u|2. (1.5.2)

Suppose now that u is a solution to the eikonal equation with ∂tu > 0 and such that at each fixed time
t, the level sets are embedded 2-spheres. We say that u is outgoing if the spatial gradient ∇u is inward-
pointing, and incoming otherwise.46 Note that if Ψ is spherically symmetric, then we can also choose a
pair of eikonal functions u and u, respectively outgoing and incoming, to be spherically symmetric, that is,
(∂tu)2 = c2(Ψ)(∂ru)2 and likewise for u. These symmetric eikonal functions are completely determined
by the radial characteristics that played a crucial role in F. John’s work [28] and in our argument in

46In Minkowski spacetime t − r is outgoing and t + r is incoming; the terminology refers to the direction of travel of the
level sets as time flows forward. We typically denote outgoing solutions by u and incoming ones by u.
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Subsect. 1.3. In the general non-spherically symmetric case, we will use a non-degenerate (i.e., ∂u 6=
0) outgoing eikonal function u to construct the adapted vectorfields needed to derive peeling estimates.
Starting in Subsubsect. 1.5.2, we describe the many technical difficulties that accompany the use of an
eikonal function in the general case.

1.5.2. A preview on the vectorfield method tied to an eikonal function u. From now on, we shall primarily
discuss equations of type (1.4.4) under assumptions47 that lead to small-data shock formation. Follow-
ing the strategy described in Subsubsect. 1.3.2, we aim to derive peeling estimates, similar to those in
(1.2.7), for a rescaled problem, with the aid of vectorfields Z adapted to an eikonal function that have
good commuting properties with the covariant wave operator �g. Of course, we cannot expect vanishing
commutators as in the flat case; we can only hope to control the error terms generated by the commutation.

To begin, we note the following general formula for the commutator between �g and an arbitrary
vectorfield Z :

�g(ZΨ) = Z(�gΨ)− (Z)π ·D2Ψ + (D (Z)π) ·DΨ, (1.5.3)

where D denotes the Levi-Civita connection corresponding to the metric g, (Z)π denotes the deformation
tensor of the vectorfield Z, that is,

(Z)παβ := LZgαβ = DαZβ + DβZα, (1.5.4)

where LZ denotes Lie differentiation with respect to Z. The term (D (Z)π) · DΨ schematically denotes
tensorial products between first covariant derivatives of (Z)π and the first derivatives of Ψ, and similarly
for the term (Z)π ·D2Ψ.

In Subsect. 3.1, we will describe the commutator vectorfields Z needed in the shock-formation prob-
lem. For illustrative purposes, we discuss here a subset of the commutators that we use: the rota-
tions O. The simplest way to define good rotation vectorfields O tied to the eikonal function u is to
use Christodoulou’s strategy [11] by projecting, using the metric g, the Euclidean rotation vectorfields48

O(Flat;ij) onto the intersection of the level sets of u with Σt (the hypersurfaces of constant t in Minkowski
space). The projection operator can be constructed with the help of the null geodesic vectorfield L(Geo) :=
−(g−1)αβ(Ψ)∂βu∂α corresponding to u. Thus, the projection operator depends on Ψ and the first rect-
angular derivatives of u. It is then easy to see that the deformation tensor (O)π must depend on the first
derivatives of Ψ and the Hessian H := D2u. Therefore, the term D (O)π appearing on the right hand side
of the equation

�g(Ψ)(OΨ) = O(�g(Ψ)Ψ) + (O)π ·D2Ψ + (D (O)π) ·DΨ (1.5.5)

depends on the second derivatives of Ψ and the third derivatives of u. Hence, to close L2 estimates at a
consistent level of derivatives, we need to make sure that we can estimate the third derivatives of u in terms
of two derivatives of Ψ. Note that by equation (1.4.7), u depends on Ψ. At first glance of equation (1.4.7),
one might believe in the heuristic relationship ∂u ∼ Ψ and hence ∂3u ∼ ∂2Ψ, which is the desired degree
of differentiability. However, as we explain below, only a weakened version, just barely sufficient for our
purposes, of these relationships is true. Furthermore, the weakened version is quite difficult to prove.

47See Subsubsect. 2.1.7.
48 We recall from (1.2.3) that the Euclidean rotations are defined relative to the standard rectangular coordinates.
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To flesh out the difficulty, we first note that one can derive a Riccati-type matrix evolution equation for
H of the schematic form

L(Geo)H +H2 = R, (1.5.6)

whereR depends49 on up-to-second-order derivatives of Ψ and up-to-second-order derivatives of u. Ignor-
ing for now the Riccati-type term H2, which actually plays a crucial role in the blow-up mechanism, we
note that the obvious way to estimate H is by integrating the curvature termR along the integral curves of
L(Geo). The obstacle is that this argument only allows one to conclude that H has the same degree of dif-
ferentiability, in directions transversal to L, asR. In particular, using this argument, we can only estimate
H in terms of two derivatives of Ψ, which makes D (O)π dependent on three derivatives of Ψ. Thus, the
term (D (O)π) ·DΨ is far from being a lower-order term as one would hope. It in fact seems to be an above
top-order term that obstructs closure of the estimates. This appears to make equation (1.5.5) useless and
casts doubt on the desired differentiability ∂3u ∼ ∂2Ψ. This difficulty in deriving good differentiability
properties of u may be the reason that F. John was not able to extend the vectorfield method to study non-
spherically symmetric blow-up. As we explain in Subsubsect. 3.4.3, this loss can be overcome by carefully
exploiting some special tensorial structures present in the components of D (O)π and the components of
equation (1.5.6), and by using elliptic estimates. Some of these special structures are closely tied to the
fact that our commutators Z are adapted to the eikonal function u; see Remark 3.7.

1.5.3. Connections between the proof of shock formation and the proof of the stability of the Minkowski
space. The first successful use of null (characteristic) hypersurfaces in a global nonlinear evolution prob-
lem appeared in the proof of the nonlinear stability of the Minkowski space [13]. The properties of an
exact, carefully constructed eikonal function u were crucial for building approximate Killing and confor-
mal Killing vectorfields to replace50 those appearing in Subsubsect. 1.2.2. These vectorfields were then
used to derive generalized energy estimates and the peeling properties of the Riemann curvature tensor
R of the metric g, much like the linear peeling properties (1.2.7). The non-vanishing nature of the com-
mutation of these carefully constructed vectorfields with Einstein’s field equations is measured by their
deformation tensors (1.5.4), which in turn depend on the properties of various higher-order derivatives of
the eikonal function u. The Hessian H of u verifies an equation of type (1.5.6) and hence its regularity
and decay properties again depends on those of the curvature tensor. The apparently loss of derivatives
mentioned above also appears and is overcome via a renormalization procedure and elliptic estimates. As
we shall see, a similar procedure allows one to avoid derivative loss in the shock formation problem, but
it is more difficult to implement. Although the basic ideas in the proof of [13] are simple and compelling,
the proof required a complicated and laborious bootstrap argument in which one uses51 the expected prop-
erties of the curvature tensor to derive estimates for various derivatives of the eikonal function and, based
on them, precise estimates for the deformation tensors of the adapted vectorfields mentioned above. These

49R is in fact the Riemann curvature tensor of the metric g(Ψ) contracted twice with the vectorfield L(Geo).
50In [47, 48], Lindblad and Rodnianski were able to prove a weaker (based on weaker peeling estimates) version of the

stability of Minkowski space using the Minkowskian vectorfields instead of ones adapted to the dynamic geometry.
51The description given here is vastly simplified. There is another layer of complexity connected to the choice of the time

function t, which like u, is dynamically constructed. Note that unlike the case of general relativity, in [11] and in [64] there is
a preferred physical time function t from the background Minkowski spacetime.
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vectorfields are then used to derive generalized energy estimates for various components of the curvature
tensor, which are L2 analogs of the peeling estimates. The main error terms, which appear in these cur-
vature estimates, are controlled by a procedure similar to, but much more subtle, than the one we have
described in Subsubsect. 1.2.3 for wave equations with nonlinearities that verify the classic null condition.
Just as in the case of these wave equations, in the Einstein equations, the nonlinear terms are such that
the most dangerous error terms that could in principle appear in the generalized energy estimates are not
present due to the special structure of the equations relative to the dynamic coordinates t and u.

2. THE MAIN IDEAS BEHIND THE ANALYSIS OF SHOCK-FORMING SOLUTIONS IN 3D

We now outline some of the new difficulties encountered and the key ingredients that Christodoulou
used to overcome them [11] when extending the proof of shock formation from the spherically symmetry
case (see Subsect. 1.3) to the general case.

(1) (Dynamic geometric objects, dependent on the solution) As in the proof of the stability of
Minkowski spacetime [13], the proof of shock formation uses a true outgoing eikonal function u
corresponding to the dynamic metric and a collection of vectorfields dynamically adapted to it.

(2) (Inverse foliation density and shock formation) As in the case of spherical symmetry, shock
formation is caused by the degeneracy of u as measured by the density of its level surfaces relative
to the Minkowskian time coordinate t, captured by the inverse foliation density µ going to 0 in
finite time (see Definition 2.1 below).

(3) (Peeling and sharp classical lifespan in rescaled frame) At the heart of Christodoulou’s entire
approach lies a sharp classical lifespan result according to which solutions can be extended as long
as µ does not vanish.52 To derive such a result, one needs to re-express the evolution equations as
a coupled system between the nonlinear wave equation, expressed relative to a µ-rescaled vector-
field frame, together with a nonlinear transport equation describing the evolution of the eikonal
function u (and hence, by extension, of µ). In this formulation, the µ-rescaled wave equation no
longer exhibits the dangerous slow-decaying quadratic term analogous to the term (LΨ)2 from
spherical symmetry (see Remark 1.5). To prove the desired sharp classical lifespan result, we
need to show that the lower-order derivatives of the solution behave according to the linear peeling
estimates (1.2.7). To establish such peeling estimates, one needs to rely on appropriate energy esti-
mates for derivatives of the solution with respect to the u-adapted vectorfields. The main technical
difficulty one needs to overcome is that the energy norms of the highest derivatives can degenerate
with respect to µ−1, as we discuss in point (4).

(4) (Generalized energy estimates) To establish the desired energy-type estimates, we need to com-
mute the wave equation a large number of times with the adapted vectorfields,53 a procedure which
not only generates a huge number of error terms, but also seems to lead to a loss of derivatives. To
overcome this apparent loss of derivatives at the top order (see Subsubsect. 1.5.2), Christodoulou

52The reader should keep in mind the simpler case of spherical symmetry discussed above (see Prop. 1.3).
53 Christodoulou did not give explicit bounds on the number of commutations needed to close the estimates in [11]. In [64],

the third author used 24 commutations. This may be further optimized.
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uses renormalizations and 2D elliptic estimates, in the spirit54 of [13]. The price one pays for
renormalizing is the introduction of a factor of µ−1 at the top order. This leads to µ−1-degenerate
high-order L2 estimates; see Prop. 3.4 and Subsubsect. 3.4.3. Establishing these degenerate high-
order L2 estimates and showing that the degeneracy does not propagate down to the lower levels
are the main new advances of [11].

In Sect. 2, we describe the implementation of points (1) and (2). In connection with point (3), we
also state the Heuristic Principle, which is a collection of peeling estimates that play an important role
in controlling error terms in the proof. The proof of the Heuristic Principle is based on the generalized
energy estimates mentioned in point (4) and Sobolev embedding. Because the derivation of generalized
energy estimates is the most difficult aspect of the proof, we dedicate all of Sect. 3 to outlining the central
ideas. This step is where the proof deviates the most from the spherically symmetric case. In Sect. 4, we
summarize the sharp classical lifespan theorem,55 which is the main ingredient needed to show that a shock
actually forms. We also outline its proof and indicate the role of the estimates described in the previous
sections. In Sect. 5, we compare the results of Christodoulou to those of Alinhac and discuss some of the
new results in [64].

2.1. Basic geometric notions and set-up of the problem without symmetry assumptions. Motivated
by the discussion at the beginning of Subsect. 1.4, from now until Subsect. 4.2, we consider the model
scalar wave equation of the form (1.4.4) under the assumption

gαβ(Ψ = 0) = mαβ, (2.1.1)

wheremαβ = diag(−1, 1, 1, 1) denotes the Minkowski metric. Furthermore, we assume that the semilinear
terms on the right-hand side are quadratic in ∂Ψ with coefficients depending on Ψ :

�g(Ψ)Ψ = N (Ψ)(∂Ψ, ∂Ψ). (2.1.2)

Above,�g(Ψ) := (g−1)αβDα∂β denotes the covariant wave operator of g(Ψ) and D denotes the Levi-Civita
connection56 of g(Ψ), given in coordinates by

Dα∂βΨ = ∂α∂βΨ− (Ψ)Γ λ
α β∂λΨ. (2.1.3)

Above, Γ = (Ψ)Γ denotes a Christoffel symbol of g(Ψ),

(Ψ)Γ λ
α β :=

1

2
(g−1)λσ(Ψ) {∂α(gσβ(Ψ)) + ∂β(gασ(Ψ))− ∂σ(gαβ(Ψ))} (2.1.4)

=
1

2
(g−1)λσ {Gσβ∂αΨ +Gασ∂βΨ−Gαβ∂σΨ} ,

where

Gµν = Gµν(Ψ) :=
d

dΨ
gµν(Ψ). (2.1.5)

54In his work [11], Christodoulou recognizes that similar renormalization procedures can be done in the context of nonlinear
wave equations of type (1.1.5) and (2.1.2). A similar observation had previously been used in [40] in the context of quasilinear
wave equations similar to (2.1.2) to derive a low regularity local well-posedness result.

55We state the version of the theorem from [64], which applies to the scalar equations �g(Ψ)Ψ = 0.
56Throughout, (g−1)αβ(Ψ) denotes the inverse metric. That is, gαβ(g−1)βγ = δγα.
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Thus, the left-hand side of (2.1.2) can be written as

�g(Ψ)Ψ = (g−1)αβ∂α∂βΨ− 1

2
(g−1)αβ(g−1)λσ {Gσβ∂αΨ +Gασ∂βΨ−Gαβ∂σΨ} ∂λΨ. (2.1.6)

Without loss of generality57 we make the following assumption, which simplifies some of the calculations:

(g−1)00(Ψ) ≡ −1. (2.1.7)

To state and prove the main theorems, we assume for convenience that the initial data are supported in
the Euclidean unit ball. As in the case of spherical symmetry, we fix a constant U0 ∈ (0, 1). We will study
the solution in a spacetime region that is evolutionarily determined by the portion of the nontrivial part
of the data lying in the region ΣU0

0 , which is the annular subset of Σ0 bounded between the inner sphere
of Euclidean radius 1 − U0 and the outer sphere of Euclidean radius 1. The spacetime region of interest
is bounded by the inner null cone CU0 and the outer null cone C0, where C0 is “flat” (i.e. Minkowskian)
because the solution Ψ completely vanishes in its exterior; see Figure 3. The region is an analog of the
spherically symmetric regionMt,U0 encountered in Subsect. 1.3.

Ψ ≡ 0

ΣU0
0

CU0
C0

FIGURE 3. The region of study at a fixed angle.
To prove that small-data shock formation occurs in solutions to (2.1.2), we must make assumptions on

the structure of Gµν as well as the (g−null) structure of N (Ψ)(∂Ψ, ∂Ψ). We shall give precise conditions
in Subsubsect. 2.1.7, after we introduce some basic notions.

57It is straightforward to see that one component of the metric can always be fixed by a conformal rescaling. This conformal
rescaling generates an additional semilinear term that verifies the future strong null condition of Subsubsect. 2.1.7; as we later
explain, such terms have negligible effect on the dynamics.
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2.1.1. The eikonal function, adapted frames, and the Heuristic Principle. We start with an outgoing
eikonal function, that is, a solution u of the eikonal equation

(g−1)αβ(Ψ)∂αu∂βu = 0, (2.1.8)

with ∂tu > 0, subject to the initial condition

u|t=0 = 1− r, (2.1.9)

where r denotes the Euclidean radial coordinate on R3. We stress that (2.1.8) can be viewed as a nonlinear
transport equation to be solved in conjunction with the wave equation (2.1.2). This uniquely-defined u is
a perturbation of the flat eikonal function u(Flat) = 1 − r + t, where t is the Minkowski time coordinate.
We associate to u its gradient vectorfield

Lν(Geo) := −(g−1)να∂αu. (2.1.10)

Since Dg = 0, it follows that L(Geo) is null and geodesic, that is, g(L(Geo), L(Geo)) = 0 and

DL(Geo)
L(Geo) = 0. (2.1.11)

Relative to the rectangular coordinates xν , (2.1.11) can be expressed as

Lα(Geo)∂αL
ν
(Geo) = − (Ψ)Γ ν

α βL
α
(Geo)L

β
(Geo). (2.1.12)

The level sets of u, which we denote by Cu, are outgoing g−null hypersurfaces. They intersect the
flat hypersurfaces Σt of constant Minkowskian time in topological spheres, which we denote by St,u. We
denote by g/ the Riemannian metric on St,u induced by g.

As in the case of spherical symmetry, shock formation is intimately tied to the degeneration of the
inverse foliation density µ of the null hypersurfaces Cu (as measured with respect to Σt).

Definition 2.1 (Inverse foliation density). We define the inverse foliation density µ by
1

µ
:= −(g−1)αβ∂αt∂βu. (2.1.13)

Remark 2.1. For the background solution Ψ ≡ 0 we have µ ≡ 1.

The proof of shock formation outside of spherical symmetry will follow the same general strategy as
implemented in the proof of Proposition 1.3. In particular, we will prove a sharp lifespan theorem along
with “global-existence-type” estimates. We will derive these latter estimates relative to a frame in which
Cu−transversal directional derivatives are rescaled by µ and the Cu−tangential directional derivatives are
near their Minkowskian counterparts. We summarize this strategy in the following rough statement.

Heuristic Principle I. If we work with properly µ-rescaled quantities we can effectively transform the
shock formation problem into a sharp long-time existence problem in which various rescaled quantities
exhibit dispersive behavior and decay similarly to the peeling properties (1.2.7). See also Remark 2.4.

We remark again here that, as in Christodoulou’s work [11], the Heuristic Principle is only expected to
hold strictly for lower-order derivatives of the solution; it turns out that the argument requires accommo-
dating possible degeneracies, in terms of the L2-norm control, of the higher-order µ-rescaled derivatives,
near the time of first shock formation.
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We introduce the following null vectorfield, which is a rescaled version of (2.1.10):

L := µL(Geo). (2.1.14)

It follows from definitions (2.1.10) and (2.1.13) that Lt = 1 and hence L0 = 1. The vectorfield L is the
replacement of the one of (1.3.4) encountered in spherical symmetry: in the particular case of the metric
associated to John’s equation −∂2

t Φ + (1 + ∂tΦ)∆Φ, for spherically symmetric solutions Ψ := ∂tΦ (see
Subsect. 1.3), the vectorfield µL(Geo) coincides with the vectorfield L = ∂t +

√
1 + Ψ∂r. Consistent with

the Heuristic Principle mentioned above and with our experience in spherical symmetry, we expect that L
remains close to the vectorfield L(Flat) = ∂t + ∂r.

We are now in a position to define a good set of coordinates, in analogy with the coordinates (t, u) that
we used in proving Prop. 1.3 in spherical symmetry. Specifically, to obtain a sharp picture of the dynamics,
we use geometric coordinates

(t, u, ϑ1, ϑ2). (2.1.15)

In (2.1.15), t is the Minkowski time coordinate, u is the eikonal function, and (ϑ1, ϑ2) are local angular
coordinates on the spheres St,u, propagated from the initial Euclidean sphere S0,0 by first solving the
transport equation

−∂rϑA = 0, (A = 1, 2) (2.1.16)

to propagate them to the S0,u and then solving the transport equation

LϑA = 0, (A = 1, 2) (2.1.17)

to propagate them to the St,u. In particular, relative to geometric coordinates, we have

L =
∂

∂t
, (2.1.18)

a relation that we use throughout our analysis.

Remark 2.2 (µ is connected to the Jacobian determinant). We note here another important role played
by µ : it is not too difficult to show that the Jacobian determinant of the change of variables map
(t, u, ϑ1, ϑ2)

Υ→ (t, x1, x2, x3) from geometric to rectangular coordinates is proportional to µ; see [64,
Lemma 2.17.1].

In particular, for small-data solutions, one can show that the Jacobian determinant det dΥ vanishes
precisely at the points where µ vanishes. Hence, solutions that are regular relative to the geometric coor-
dinates can in fact have rectangular derivatives that blow-up at the locations where µ vanishes because of
the degeneracy of the change of variables map.

In addition to the geometric coordinates, we will also use a vectorfield frame adapted to the shock-
forming solutions. Three of the frame vectors are L,X1, X2, where the XA are the angular coordinate
vectorfields along the St,u, that is, X1 = ∂

∂ϑ1 |t,u,ϑ2 , and similarly for X2. These three vectors are tangent
to the Cu. To complete the frame, we introduce the transversal vectorfields

R, R̆ := µR, (2.1.19)
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where R is uniquely defined by requiring it to be tangent to Σt, g−orthogonal to St,u, inward pointing,
and normalized by g(R,R) = 1. The analog of R in Subsect. 1.3 is −

√
1 + Ψ∂r. We are using R as a

convenient replacement for the null vectorfield L from spherical symmetry (see (1.3.4)). Even though R
is not null, it is transversal to the Cu, which is the property of greatest relevance. Under the assumption
(2.1.7) we have

g(R̆, R̆) = µ2, g(L,R) = −1, g(L, R̆) = −µ.

Consistent with the Heuristic Principle, one can show that

R = −∂r + Err,

where Err is small and decaying in time. Hence, the vectorfield R̆ vanishes exactly at the first shock
singularity point, where µ vanishes. Observe further that g(L, R̆) = −µ =⇒ R̆u = 1; hence relative to
the geometric coordinates t, u, ϑ, we have

R̆ =
∂

∂u
+ a small St,u−tangent angular deviation.

Having defined the above vectorfields, we can now define the frame that we use to analyze solutions;
see Figure 4.

Definition 2.2 (Rescaled frame). We define the rescaled frame as follows:{
L, R̆,X1 =

∂

∂ϑ1
, X2 =

∂

∂ϑ2

}
. (2.1.20)

R̆ L

R̆ L

•
X1, X2

•
X1, X2

Cu2
Cu1
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FIGURE 4. The rescaled frame at two distinct points. X1, X2 are orthogonal to the plane
of the page and omitted.

At each point where µ > 0, the frame (2.1.20) has span equal to span{ ∂
∂xα
}α=0,1,2,3. In fact, relative to

an arbitrary coordinate system, we have the following decompositions:

(g−1)αβ = −LαLβ − (LαRβ +RαLβ) + (g/−1)ABXα
AX

β
B (2.1.21)

= −LαLβ − µ−1(LαR̆β + R̆αLβ) + (g/−1)ABXα
AX

β
B,

where g/AB := g(XA, XB), A,B = 1, 2.

In most of our analysis, we find it convenient to work with R̆, but in some of our analysis, it is better to
use instead the following vectorfield:

L̆ := µL+ 2R̆. (2.1.22)

The analog of L̆ in Subsect. 1.3 is µL, where L is defined in (1.3.4). Note that L̆ is the uniquely defined
null vectorfield that is orthogonal to the spheres St,u and verifies

g(L, L̆) = −2µ.

2.1.2. The wave operator relative to the rescaled frame and the St,u tensorfield χ. Now that we have a
good frame for analyzing solutions, it is important to understand how the covariant wave operator looks
when expressed relative to it. Some rather tedious but straightforward calculations reveal that we can
decompose

µ�g(Ψ)Ψ = −L

L̆Ψ︷ ︸︸ ︷
(µLΨ + 2R̆Ψ) +µ∆/Ψ− trg/χR̆Ψ + Err, (2.1.23)

where ∆/ is the Laplacian of the metric g/ on the spheres St,u and the error terms are small and decaying
according to the Heuristic Principle; see [64, Proposition 4.3.1] for more details.

In equation (2.1.23), χ is a symmetric type
(

0
2

)
tensorfield on St,u that verifies

χAB = g(DAL,XB), (2.1.24)

and trg/χ := (g/−1)ABχAB. Equivalently, χAB = LLg/AB = ∂
∂t
|u,ϑg/AB, where LL denotes Lie differentiation

with respect to L. In the case of the background solution Ψ ≡ 0, we have trg/χ = 2r−1, where r is
the Euclidean radial coordinate on Σt. For the perturbed solutions under consideration, we have trg/χ =
2%−1 + Err, where

% := 1− u+ t. (2.1.25)

Since L% = 1, we therefore deduce from (2.1.23) that

%µ�g(Ψ)Ψ = −L
{
µL(%Ψ) + 2R̆(%Ψ)

}
+ %µ∆/Ψ + Err. (2.1.26)

As we will see, the form of the equation (2.1.26) is important for showing that µ can go to 0 in finite time.

Remark 2.3. Note that (2.1.26) corresponds, roughly, to equation (1.3.12a) in the context of John’s spher-
ically symmetric wave equation.
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Remark 2.4 (Rescaling by µ “removes” the dangerous semilinear term). Note that we have brought a
factor of µ under the outer L differentiation in equations (2.1.23) and (2.1.26). We have already seen the
importance of this “rescaling by µ” in spherical symmetry: it removes the dangerous quadratic semilinear
term that decays slowly; see equation (1.3.12a). Although a similar remark applies away from spherical
symmetry, it is more difficult to see that the remaining error terms Err are indeed such that, according to
the Heuristic Principle, they enjoy better time decay. The reason is that they involve, in addition to the first
derivatives of Ψ, the second derivatives of the eikonal function. Hence, to show that these error terms are
negligible with respect to time decay, one must control the asymptotic behavior of eikonal function. For
example, one of the error terms in equation (2.1.26) is %

{
trg/χ− 2

%

}
R̆Ψ. Using the Heuristic Principle

decay estimates, one can show that the sup-norm of the product %
{

trg/χ− 2
%

}
R̆Ψ is ≤ Cε ln(e + t)(1 +

t)−2,which is the same decay rate58 as that of the two error term products on the right-hand side of equation
(1.3.12a) in spherical symmetry.

We also note that, from the definition of the covariant derivative D , we have

χAB = gab(X
c
A∂cL

a)Xb
B +Xa

AX
b
BL

γΓabγ, (2.1.27)

where the lowercase Latin indices are relative to spatial rectangular spatial coordinates, the lowercase
Greek indices are relative to rectangular spacetime coordinates, and the uppercase Latin indices correspond
to the two St,u frame vectors. Hence, (2.1.27) shows that χ is an auxiliary quantity expressible in terms of
the frame derivatives of Ψ and the frame derivatives of the rectangular components Li. However, because
of its importance, to be clarified below, it is convenient to think of χ as an independent quantity.

2.1.3. The evolution equation for µ. We now derive a transport equation for µ, analogous to the equation
(1.3.11) in our analysis in spherical symmetry.

Lemma 2.1 (Transport equation for µ). The quantity µ defined in (2.1.13) verifies the following trans-
port equation:

Lµ =
1

2
GLLR̆Ψ + µErr, GLL := Gαβ(Ψ)LαLβ, (2.1.28)

where the term Err is an error term involving Cu−tangential derivatives of Ψ.

Proof. Recalling that µ = (L0
(Geo))

−1, relative to the rectangular coordinates, we consider the 0 component
of equation (2.1.12):

L(Geo)L
0
(Geo) = −(g−1)0γ (Ψ)Γαγβ L

α
(Geo) L

β
(Geo). (2.1.29)

58If there were a (LΨ)2 term on the right-hand side of (1.3.12a), then, because of the presence of the factor r, its decay rate
would not be integrable in t.
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Multiplying (2.1.29) by µ3, using the definition (2.1.14) of L, the decomposition (2.1.21), the identities
(g/−1)0γ = 0, L0 = 1, R0 = 0, R̆ = µR, and equation (2.1.4), we deduce that

µ2LL0
(Geo) =

1

2

{
µLγ + R̆γ

}
(Gγβ∂αΨ +Gαγ∂βΨ−Gαβ∂γΨ)LαLβ (2.1.30)

=
1

2
µGLLLΨ + µGLRLΨ− 1

2
GLLR̆Ψ.

Equation (2.1.28) now follows from equation (2.1.30), the relation µ2LL0
(Geo) = µ2L( 1

µ
) = −Lµ, and

incorporating the Cu−tangent derivatives into the term Err. �

Remark 2.5 (The coupled system). We stress the following important point: the basic equations that we
need to study are the wave equation (2.1.2) coupled to the evolution equations (2.1.12) for the rectangu-
lar components of L(Geo). Though the standard form (2.1.2) is useful for deriving energy estimates, the
equivalent form (2.1.23) is fundamental for understanding the behavior of the rescaled quantities.

2.1.4. Initial conditions and relevant regions. We start by recalling the basic setup described in Sub-
sect. 2.1, and in particular, gather our notations in one place. Our setup here is closely related to the one
we used in Subsubsect. (1.3.1) in spherical symmetry. We recall that we are studying solutions to the wave
equation (2.1.2) subject to the following small initial conditions on Σ0 = {t = 0} :

Ψ̊ := Ψ|Σ0 , Ψ̊0 := ∂tΨ|Σ0 , (2.1.31)

where (Ψ̊, Ψ̊0) are supported in the Euclidean unit ball {r ≤ 1}, with r =
√∑3

a=1(xa)2 the standard
Euclidean distance to the origin on Σ0. As we mentioned before, U0 is a real number verifying

0 ≤ U0 < 1. (2.1.32)

We study the future-behavior of the solution in the region that corresponds to the portion of the data lying
in an annular region of inner Euclidean spherical radius 1−U0 and outer Euclidean spherical radius 1 (that
is, the thickness of the region is U0):

ΣU0
0 := {x ∈ Σ0 | 1− U0 ≤ r(x) ≤ 1}; (2.1.33)

see Figure 3. The reason that we assume U0 < 1 is simply to avoid potential problems with degeneration
of our coordinates at the origin. We define the size of the data as follows:

ε̊ = ε̊[(Ψ̊, Ψ̊0)] := ‖Ψ̊‖H25(Σ1
0) + ‖Ψ̊0‖H24(Σ1

0). (2.1.34)

In (2.1.34), HN is the standard Euclidean Sobolev space involving order ≤ N rectangular spatial deriva-
tives along Σ1

0. To prove small-data shock formation, we assume that ε̊ is sufficiently small (see Footnote
53 on pg. 29) together with some other open conditions that we explain below.

The following regions of spacetime depend on our eikonal function u and are analogs of regions that
we encountered in Subsubsect. (1.3.1) in spherical symmetry.
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Definition 2.3 (Subsets of spacetime). We define the following spacetime subsets:

Σt′ := {(t, x1, x2, x3) ∈ R4 | t = t′}, (2.1.35a)

Σu′

t′ := {(t, x1, x2, x3) ∈ R4 | t = t′, 0 ≤ u(t, x1, x2, x3) ≤ u′}, (2.1.35b)

Ct′u′ := {(t, x1, x2, x3) ∈ R4 | u(t, x1, x2, x3) = u′} ∩ {(t, x1, x2, x3) ∈ R4 | 0 ≤ t ≤ t′}, (2.1.35c)

St′,u′ := Ct′u′ ∩ Σu′

t′ = {(t, x1, x2, x3) ∈ R4 | t = t′, u(t, x1, x2, x3) = u′}, (2.1.35d)

Mt′,u′ := ∪u∈[0,u′]Ct
′

u ∩ {(t, x1, x2, x3) ∈ R4 | t < t′}. (2.1.35e)

We refer to the Σt and Σu
t as “constant time slices,” the Ctu as “outgoing null cones,” and the St,u as

“spheres.” We sometimes use the notation Cu in place of Ctu when we are not concerned with the truncation
time t.

Remark 2.6. Note thatMt,u is, by definition, “open at the top.”

Mt,u

C0Cu

Ctu Ct0

Σt

Σu
0

Σu
t

Ψ ≡ 0

•
St,u

•
St,0

•
S0,u

•
S0,0

FIGURE 5. Spacetime subsets

Just as in the case of the spherically symmetric shock formation discussed in Subsect. 1.3, all of the
interesting dynamics takes place in the regionMt,u for t sufficiently large.

2.1.5. A more precise version of the Heuristic Principle. We are now ready to give a more precise version
of the Heuristic Principle of Subsubsect. 2.1.1; see [64, Section 11.4] for more details.

Heuristic Principle II. Consider a small-data solution Ψ to equation (2.1.2), where the size of the data
is defined in (2.1.34). Then under the structural conditions on the nonlinearities explained below in Sub-
subsect. 2.1.7, the directional derivatives of a solution Ψ with respect to the rescaled frame {L, R̆,X1, X2}
(see (2.1.20)) decay, in the relevantMt,u region, in a manner analogous to the linear peeling properties
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(1.2.7) all the way to the formation of the first shock. More precisely,59 the following estimates hold:

|LΨ|, |∇/Ψ| ≤ ε

(1 + t)2
, (2.1.36a)

|Ψ|, |R̆Ψ| ≤ ε

1 + t
, (2.1.36b)

where ε is a small constant that is controlled by the size of the data, and |∇/Ψ| is the size of the angular
gradient60 of Ψ as measured by g/, that is, the size of the gradient of Ψ viewed as a function on the St,u.
A similar statement holds for a limited number of higher directional derivatives, where each additional L
and ∇/ differentiation leads to a gain in decay of (1 + t)−1. However, unlike in the linear case, the very
high derivatives are allowed to have degenerate behavior in µ; see Prop. 3.4.

Note that (2.1.36b) is equivalent to the following estimate for RΨ = µ−1R̆Ψ ∼ −∂rΨ :

|RΨ| ≤ 1

µ

ε

(1 + t)
. (2.1.37)

Actually, for the shock-forming solutions of interest, a key ingredient in the proof is showing that for an
open set of data, we have a lower bound of the form61 |R̆Ψ| & ε(1 + t)−1 (see inequality (2.2.1)), so that

|RΨ| & 1

µ

ε

(1 + t)
. (2.1.38)

The inequalities (2.1.37) and (2.1.38) imply that RΨ blows up exactly at the points where µ vanishes.
Note that we have already encountered an analog of the lower bound (2.1.38) in spherical symmetry; see
inequalities (1.3.17) and (1.3.40).

Remark 2.7. The decay estimates (2.1.36a), (2.1.36b) can be used to derive estimates for the components
of the covariant Hessian H = D2u of the eikonal function relative to the rescaled frame.62 Indeed, recall
that H verifies the transport equation (1.5.6), and hence, ignoring for now factors of µ−1, we have the
schematic equation

LH +H2 = R (2.1.39)

where as before, R = R(Ψ) is a curvature component that can be algebraically expressed in terms of the
up-to-second-order derivatives of Ψ and the up-to-second-order derivatives of u. Using the precise decay
estimates for various components ofR(Ψ) relative to the rescaled frame, which follow from (2.1.36a) and
(2.1.36b), together with some bootstrap assumptions on the first derivatives of u, we can derive precise
decay estimates for the rescaled frame components of H. The behavior of some of these components

59Note that terms of the form (1 + |u|)1/2 are omitted in these estimates. These factors are in fact O(1) inside the relevant
Mt,u region.

60Note that the frame vectorfields X1 and X2 span the tangent space of the St,u and hence a bound for |∇/Ψ| also implies a
bound for the directional derivatives |X1Ψ| and |X2Ψ|.

61 We often write A . B whenever there exists a uniform constant C > 0 such that A ≤ CB. Similarly, we often write
A & B whenever there exists a uniform constant C > 0 such that A ≥ CB.

62 Since µ and Li are first derivatives of u, this is essentially equivalent to deriving estimates for the first derivatives of µ
and Li. In practice, we directly estimate the derivatives of µ and Li by studying the transport equations that they verify; see
Remark 2.5.
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(more precisely those involving R̆) differs significantly from that of the corresponding components of the
Hessian of the flat eikonal function 1 + t− r.

2.1.6. The failure of the classic null condition. The classic null condition is defined for scalar equations
of the form (1.1.10) (with I = 1, see Definition 1.1), scalar wave equations of the form (1.1.8), and for
general systems of wave equations of the form (1.1.10) (see Remark 2.12 or [35]). Here we study the
particular case of scalar equations of the form (2.1.2) in detail. For simplicity, we assume in the present
subsubsection that the semilinear termN (Ψ)(∂Ψ, ∂Ψ) on the right-hand side of (2.1.2) is equal to 0. That
is, we discuss here only the equation

�g(Ψ)Ψ = 0.

In Subsubsect. 2.1.7, we will address the case in which N (Ψ)(∂Ψ, ∂Ψ) is non-zero. We now show that
when N (Ψ)(∂Ψ, ∂Ψ) = 0 in (2.1.2), the classic null condition holds if and only if the following scalar-
valued function (+)ℵ completely vanishes.

Definition 2.4. We define the future null condition failure factor (+)ℵ by

(+)ℵ := Gαβ(Ψ = 0)︸ ︷︷ ︸
constants

Lα(Flat)L
β
(Flat), (2.1.40)

where L(Flat) = ∂t + ∂r and Gαβ(Ψ) = d
dΨ
gαβ(Ψ) (see (2.1.5)).

Remark 2.8. Note that relative to standard spherical coordinates (t, r, θ) on Minkowski spacetime, (+)ℵ
can be viewed as a function that depends only on θ.

Remark 2.9. In the region {t ≥ 0}, (+)ℵ is the coefficient of the most dangerous (in terms of linear decay
rate) quadratic terms in the wave equation �g(Ψ)Ψ = 0, when the equation is expressed relative to the
Minkowskian frame (2.1.44) introduced below. Roughly, as in the case of F. John’s equation in spherical
symmetry, these dangerous terms are the ones that drive future shock formation. However, when carrying
out detailed analysis, the correct frame to use is the dynamic one given in (2.1.20).

Remark 2.10 (Connection between (+)ℵ and small-data shock formation). WhenN (Ψ)(∂Ψ, ∂Ψ) ≡ 0,
small-data shock formation occurs whenever (+)ℵ is nontrivial; see Theorem 5.

Remark 2.11 (Past null condition failure factor). We could also study shock formation in the region
{t ≤ 0}. In this case, the relevant function is not (+)ℵ, but is instead the past null condition failure factor
(−)ℵ, defined by replacing the vectorfield L(Flat) in equation (2.1.40) with −∂t + ∂r. Note that −∂t + ∂r is
outward pointing as we head to the past. The point is that quadratic terms that have a slow decay rate as
t → ∞ can have a faster decay rate as t → −∞ and vice versa; the function (−)ℵ is the coefficient of the
slowest decaying quadratic terms as t→ −∞. Note also that (+)ℵ completely vanishes if and only if (−)ℵ
completely vanishes. In fact, the functions (+)ℵ and −(−)ℵ have the same range.

To show that the complete vanishing of (+)ℵ is equivalent to the classic null condition being verified
(see Definition 1.1), we first Taylor expand the right-hand side of (2.1.6) around (Ψ, ∂Ψ, ∂2Ψ) = (0,0,0)
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and find that the quadratic nonlinear terms are, up to constant factors,

Gαβ(0)(m−1)ακ(m−1)βλΨ∂κ∂λΨ, (2.1.41)

Gκλ(0)(m−1)κλ(m−1)αβ∂αΨ∂βΨ, (2.1.42)

Gκλ(0)(m−1)ακ(m−1)βλ∂αΨ∂βΨ. (2.1.43)

Clearly the term (2.1.42) always verifies the classic null condition. By definition, the term (2.1.41) verifies
the classic null condition if and only if Gαβ(0)(m−1)ακ(m−1)βλ`κ`λ = 0 for all Minkowski-null covectors
`. It is straightforward to see that equivalently,63 the term (2.1.41) verifies the classic null condition if and
only if (+)ℵ ≡ 0. Similarly, the term (2.1.43) verifies the classic null condition if and only if (+)ℵ is trivial.

We now discuss three relevant examples.
• It is easy to see that (+)ℵ completely vanishes if and only if the constant tensorfield Gαβ(Ψ = 0) is

proportional to the Minkowski metric mαβ = diag(−1, 1, 1, 1). Thus, for the equations �g(Ψ)Ψ =
0, a necessary and sufficient condition for the nonlinearities to verify the classic null condition is
that up to cubic terms, g(Ψ) = (1 + f(Ψ))m, where f(0) = 0. Consequently, for the equations
�g(Ψ)Ψ = 0, the classic null condition is very restrictive and is satisfied only in trivial cases.
• Consider the equation�g(Ψ)Ψ = 0 in the case of F. John’s metric−(dt)2 +(1+Ψ)−1

∑3
a=1(dxa)2,

as in equation64 (1.3.2). We compute that Gij(Ψ = 0) = −1 if i = j ∈ {1, 2, 3}, and all other
rectangular components of G(Ψ = 0) vanish. Using also that Lα(Flat) = (1, x1/r, x2/r, x3/r)

relative to the rectangular coordinates, where r =
√∑3

a=1(xa)2, we find that (+)ℵ ≡ −1. This
example is a good model of the kinds of equations that Christodoulou studied in [11], where the
analog of (+)ℵ is constant.
• If gαβ(Ψ) = mαβ + Ψ(δ1

αδ
2
β + δ2

αδ
1
β), then65 G12(Ψ = 0) = G21(Ψ = 0) = 1, and all other

rectangular components of G(Ψ = 0) vanish. Hence, we find that (+)ℵ = 2L1
(Flat)L

2
(Flat) =

2x1x2/r2 in this case. Note that (+)ℵ can be viewed as a function on S2 ⊂ R3.

We now discuss the classic null condition for equations �g(Ψ)Ψ = 0 from a slightly different point of
view, one which explains the connection between the non-vanishing of (+)ℵ and the presence of dangerous
quadratic terms and which is connected to our analysis of shock formation outside of spherically symme-
try. Specifically, we will write the equation relative to rectangular coordinates and then decompose the
quadratic parts of the nonlinearities relative to the following Minkowskian frame:

{L(Flat), R(Flat), X(Flat);1, X(Flat);2}, (2.1.44)

where L(Flat) = ∂t+∂r, R(Flat) = −∂r, and the X(Flat);A are angular vectorfields tangent to the Euclidean
spheres of constant r−value in Σt. We stress that we use the frame (2.1.44) for illustrative purposes only.

63Note that given any future-directed Minkowski-null vector `α, there exists a spacetime point such that the Minkowski-null
vector Lα(Flat) in (2.1.40) is parallel to `α.

64It is easy to show that equation (1.3.2) is equivalent to the covariant wave equation �g(Ψ)Ψ = N (Ψ)(∂Ψ, ∂Ψ), where
N (Ψ)(∂Ψ, ∂Ψ) = − 1

2 (1 + Ψ)−1(g−1)αβ∂αΨ∂βΨ. Note that N (Ψ)(∂Ψ, ∂Ψ) verifies the classic null condition. Hence, from
the point of view of investigating failure of the classic null condition, we can study the equation�g(Ψ)Ψ = 0 instead of (1.3.2).

65Here, δ•• denotes the standard Kronecker delta.



42 GH, SK, JS, AND WW

It is not suitable for studying solutions near the shock, where we should instead use the dynamic frame
(2.1.20). Nonetheless, the main idea to keep in mind is that the forward linear peeling properties (1.2.7)
suggest that relative to the frame (2.1.44), the most dangerous quadratic terms in equation �g(Ψ)Ψ = 0 in
the region {t ≥ 0} are the ones proportional to ΨR(Flat)(R(Flat)Ψ) and (R(Flat)Ψ)2; these terms have the
slowest t decay rates. Note that this assertion can be relevant only in the region {t ≥ 0} and should be
altered if it is to apply to the region {t ≤ 0}.

To carry out the decomposition, we first note that in analogy with (2.1.21), relative to the frame (2.1.44),
the inverse Minkowski metric can be decomposed as

(m−1)αβ = −Lα(Flat)L
β
(Flat) − (Lα(Flat)R

β
(Flat) +Rα

(Flat)L
β
(Flat)) + (m/−1)ABXα

(Flat);AX
β
(Flat);B. (2.1.45)

Next, decomposing the quadratic part (2.1.41) of the quasilinear term relative to the frame (2.1.44) and
using in particular (2.1.45), we find that the component proportional to ΨR(Flat)(R(Flat)Ψ), is, up to
constant factors,

(+)ℵΨR(Flat)(R(Flat)Ψ). (2.1.46)

Similarly, decomposing (2.1.42) and (2.1.43), we find that the term proportional to (R(Flat)Ψ)2 is, up to
constant factors,

(+)ℵ(R(Flat)Ψ)2. (2.1.47)

Hence, for the equation �g(Ψ)Ψ = 0, (+)ℵ ≡ 0 is equivalent to the absence, relative to the frame (2.1.44),
of the dangerous quadratic terms ΨR(Flat)(R(Flat)Ψ) and (R(Flat)Ψ)2.

Remark 2.12. In the case of general systems of the form (2.1.2) with Ψ = {ΨI}I=1,...,N , the correct
definition of (+)ℵ has to be changed, in view of possible cancellations between components. For example,
if Φ verifies the scalar equation gαβ(∂Φ)∂α∂βΦ = 0 and Ψ := (Ψ0,Ψ1,Ψ2,Ψ3), where Ψλ := ∂λΦ, then
the relevant definition of (+)ℵ is as follows:

(+)ℵ := mκλG
κ
αβ(Ψ = 0)Lα(Flat)L

β
(Flat)L

λ
(Flat), (2.1.48)

where

Gλ
αβ = Gλ

αβ(Ψ) :=
∂

∂Ψλ

gαβ(Ψ). (2.1.49)

If, for the equation gαβ(∂Φ)∂α∂βΦ = 0, we repeat the Minkowskian frame decomposition carried out
above for the equation 2g(Ψ)Ψ = 0, we find that up to constant factors, (+)ℵ as defined in (2.1.48) is
precisely the coefficient of the dangerous quadratic term (R(Flat)Φ) ·R(Flat)(R(Flat)Φ). We shall return to
this issue in Subsect. 4.2.

2.1.7. Structural assumptions on the nonlinearities in equation (1.4.4). We are now ready to make as-
sumptions on the metric g and the semilinear termN (Ψ)(∂Ψ, ∂Ψ) from equation (2.1.2) for which we can
derive a small-data shock-formation result in the region {t ≥ 0}.

(1) To produce a shock, we assume that the metric g verifies the condition (+)ℵ 6≡ 0 (see Definition
2.4).
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(2) We assume that for Ψ sufficiently small, the semilinear termN (Ψ)(∂Ψ, ∂Ψ) on the right-hand side
of (2.1.2) has the following structure when it is decomposed relative to the non-rescaled dynamic
frame {L,R,X1, X2} :

No terms in the expansion of N (Ψ)(∂Ψ, ∂Ψ) involve the factor (RΨ)2. (2.1.50)

Remark 2.13. A term N (Ψ)(∂Ψ, ∂Ψ) verifying the above assumptions should be viewed as a negligible
error term that does not interfere with the shock formation processes.

Remark 2.14. To further explain the relevance of the condition (+)ℵ 6≡ 0 in the shock-formation problem,
it pays to redo, relative to the non-rescaled dynamic frame {L,R,X1, X2}, the analysis that identified the
dangerous terms (2.1.46) and (2.1.47). In doing so, we find that the dangerous terms are, up to constant
factors, GLLΨR(RΨ) and GLL(RΨ)2, where

GLL := Gαβ(Ψ)LαLβ. (2.1.51)

The connection with (+)ℵ is: the decay estimates of the Heuristic Principle can be used to show that GLL

is well-approximated by (+)ℵ along the integral curves of L. Hence, if (+)ℵ 6≡ 0, then the dangerous terms
have the strength needed to drive shock formation.

Remark 2.15 (Future strong null condition). Note that the condition (2.1.50) forN (Ψ)(∂Ψ, ∂Ψ) cannot
be extended to include arbitrary cubic or higher order terms in ∂Ψ. Though such terms are harmless in the
context of proving small-data global existence (for example, when the classic null condition is verified),
this is no longer the case if we expect RΨ to become singular, since in that case cubic terms can become
dominant whenever RΨ is large. A useful version of the null condition for all higher order terms in ∂Ψ
can only allow terms which are linear with respect to the directional derivative RΨ. Such a condition may
be called the future strong null condition, where we explain the “future” aspect of it in Remark 2.16. We
stress that the future strong null condition is a true nonlinear condition tied to the dynamic metric g, as
opposed to the classic null condition, which is based on Taylor expanding a nonlinearity around 0 and
keeping only the quadratic part.

Remark 2.16 (Asymmetry between the future and the past). Note that N (Ψ)(∂Ψ, ∂Ψ) := (LΨ)2 ver-
ifies the future strong null condition even though the flat analog term (L(Flat)Ψ)2 fails the classic null
condition. Hence, strictly speaking, it is not correct to view the future strong null condition as more re-
strictive than the classic null condition. The relevant point is that as t → ∞, (LΨ)2 is expected to decay
sufficiently quickly, while the same behavior for (LΨ)2 is not expected as t→ −∞. We could also formu-
late a “past strong null condition.” We would simply need to replace the dynamic frame {L,R,X1, X2}
used in the statement (2.1.50) with an analogous dynamic frame whose first vector is g−null and outgoing
as t ↓ −∞.

2.2. The role of µ. Here, we continue our rough description of shock formation and show that µ → 0
precisely corresponds to the formation of a shock and the blow-up of the directional derivative RΨ. For
simplicity, we focus on solutions that are nearly spherically symmetric, at least in the sense of lower-order
derivatives. The argument we give here closely follows the argument given in spherical symmetry in
Subsect. 1.3 (see in particular the proof of Cor. 1.4).
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As a first step, we use the wave equation (2.1.26) to infer the existence of an open set of initial data such
that, for sufficiently large t, a lower bound of the form

R̆Ψ(t, u, ϑ) & ε̊
1

1 + t
(2.2.1)

holds along some integral curve of L (that is, at fixed u and ϑ), with ε̊ the size of the data. Alternatively,
for a different open set of data, we could derive the bound R̆Ψ(t, u, ϑ) . −ε̊(1 + t)−1 (again for fixed
u, ϑ). To derive these bounds, we use the fact that the last two terms on the right-hand side of (2.1.26) are
small error terms that decay at an integrable-in-time rate, thereby deducing that

L
{
µL(%Ψ) + 2R̆(%Ψ)

}
= Err. (2.2.2)

Hence, we can integrate (2.2.2) along the integral curves of L to deduce{
µL(%Ψ) + 2R̆(%Ψ)

}
(t, u, ϑ) ≈ fdata(u, ϑ), (2.2.3)

where fdata(u, ϑ) is equal to µL(%Ψ)+2R̆(%Ψ) evaluated at (0, u, ϑ). Expanding the left-hand side (2.2.3)
via the Leibniz rule and appealing to the Heuristic Principle decay estimates, we see that all terms except
for 2%R̆Ψ decay. Hence, we find that for suitably large times, we have

R̆Ψ(t, u, ϑ) ≈ 1

2

1

%(t, u)
fdata(u, ϑ) ≈ 1

1 + t
fdata(u, ϑ). (2.2.4)

We have therefore derived the desired bounds.

Remark 2.17 (Remarks on the linear term µ%∆/Ψ). The linearly small product µ%∆/Ψ is present in the
term Err in equation (2.2.2) (see equation (2.1.23)). At t = 0, the term µ%∆/Ψ can be large compared to
fdata(u, ϑ). Hence, in order for the above proof of (2.2.4) to work, we must assume that the initial angular
derivatives of Ψ are even smaller than the other derivatives. However, using a more refined argument based
on Friedlander’s radiation field, one can significantly enlarge the set of small data for which it is possible
to prove a lower bound of the form (2.2.1); see Subsect. 5.5.

Next, we insert the bound (2.2.4) into the evolution equation (2.1.28) for µ and ignore the error terms,
which are small and decaying sufficiently fast by the Heuristic Principle. Although the factor GLL in
equation (2.1.28) is not constant along the integral curves of L, the Heuristic Principle decay estimates
can be used to show that GLL is well-approximated (relative to the geometric coordinates) by

(+)̊ℵ(t, u, ϑ) = (+)̊ℵ(ϑ) := (+)ℵ(t = 0, u = 0, ϑ). (2.2.5)

The good feature of (+)̊ℵ is that it (by definition) depends only66 on the geometric angular coordinates ϑ
and hence is constant along the integral curves of L. Hence, for suitably large times, we have

Lµ(t, u, ϑ) ≈ 1

2
(+)̊ℵ(ϑ)R̆Ψ(t, u, ϑ) ≈ 1

2
(+)̊ℵ(ϑ)

1

1 + t
fdata(u, ϑ). (2.2.6)

66Recall that (+)ℵ was defined in (2.1.40) and that at t = 0, u = 1− r and the geometric angular coordinates coincide with
the standard Euclidean angular coordinates. Since (+)ℵ can be viewed as a function depending only on the standard Euclidean
angular coordinates, it follows that indeed, the right-hand side of (2.2.5) depends only on ϑ.



SMALL-DATA SHOCK FORMATION IN 3D WAVE EQUATIONS 45

Integrating (2.2.6) along the integral curves of L and using the small-data assumption that µ is initially
near 1, we deduce that

µ(t, u, ϑ) ≈ 1 +
1

2
(+)̊ℵ(ϑ) ln(1 + t)fdata(u, ϑ). (2.2.7)

Clearly, if the data are such that for some angle ϑ, (+)̊ℵ(ϑ)fdata(u, ϑ) is negative, then (2.2.7) implies that
µ will become 0 at a time of order exp(Cε̊−1).

We now remind the reader of the following simple consequence of the above discussion: in view of
lower bound (2.2.4) and the relation RΨ = µ−1R̆Ψ, where R ∼ −∂r has close to Euclidean-unit-length,
it follows that some rectangular spatial derivative of Ψ blows up precisely when µ vanishes.

In the work [11], Christodoulou studied quasilinear wave equations for which the analog of (+)ℵ was
constant-valued, as in the case of John’s equation, which we discussed in the first example given just below
Definition 2.4. This property simplified some of his analysis and, as we describe in Subsect. 5.5, it played
a central role in his identification of a class of small data that lead to shock formation for his equations.
In general, (+)ℵ can be highly angularly dependent and in particular, there can be angular directions along
which the function (+)̊ℵ from (2.2.5) vanishes. Along the integral curves of L corresponding to such
angular directions, µ is not expected to change very much during the solution’s classical lifespan.

3. GENERALIZED ENERGY ESTIMATES

In this section, we discuss the most difficult aspect of proving small-data shock formation away from
spherical symmetry: the derivation of generalized energy estimates that hold up to top order. Our discus-
sion in this section applies to the nonlinear wave equation �g(Ψ)Ψ = N (Ψ)(∂Ψ, ∂Ψ) (that is, (2.1.2)) in
the region {t ≥ 0} under the structural conditions on N stated in Subsubsect. 2.1.7.

3.1. The basic strategy for deriving generalized energy estimates. The discussion in the previous sec-
tions suggests the following strategy for proving shock formation in solutions to equation (2.1.2).

(1) With the help of the eikonal function u, one should construct commutator vectorfields Z that have
good commuting properties with our nonlinear wave equation (2.1.2). It turns out that a suitable
collection of commutators is the set

Z := {%L, R̆, O(1), O(2), O(3)}, (3.1.1)

which has span equal to span{∂α}α=0,1,2,3 at each spacetime point where µ > 0. The rotational vec-
torfields O(l) are constructed by projecting the standard Euclidean rotation vectorfields Oj

(Flat,l) :=
εlajx

a onto the spheres St,u, where εijk is the fully antisymmetric symbol normalized by ε123 = 1;
see [64, Chapter 5] for more details. Note that all vectorfields in Z depend on the first derivatives
of u.

(2) Derive generalized energy estimates for a sufficiently large number of Z-derivatives of Ψ. The
work of the third author showed (see Prop. 3.4) that it suffices to commute the nonlinear wave
equation (2.1.2) up to 24 times with the commutation vectorfields belonging to Z . Typically,
in the flat case, such estimates are derived by contracting the energy-momentum tensorfield (see
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(3.2.2)) against the following two multiplier vectorfields:

∂t =
1

2

{
L(Flat) + L(Flat)

}
, K̃(Flat) =

1

2

{
(t+ r)2L(Flat) + (t− r)2L(Flat)

}
,

where L(Flat) := ∂t + ∂r and L(Flat) := ∂t − ∂r are the standard radial null pair, as in (1.2.6).
We remark that ∂t is Killing while K̃(Flat) is conformally Killing in Minkowski space. If one is
interested only in the region67 where 0 < u(Flat) < 1, we can replace the Morawetz vectorfield
K̃(Flat) by r2L(Flat). The vectorfields that we use in the shock-formation problem in the region
Mt,u (see (2.1.35e)) are the following dynamic versions, which are essentially the same as the
vectorfields used in [11]:

T := (1 + µ)L+ L̆ = (1 + 2µ)L+ 2R̆, (3.1.2a)

K̃ := %2L. (3.1.2b)

T is a g−timelike vectorfield that is designed to yield generalized energy quantities that are useful
both in regions where µ is large and where it is small. K̃ is a g−null vectorfield whose role we will
explain below. These vectorfields are neither Killing nor conformal Killing,68 even when Ψ ≡ 0.
Nonetheless, the energy estimate error terms corresponding to their deformation tensors (see the
right-hand side of (3.2.7)) are controllable in the regionMt,u. Actually, as we will see in Lemma
3.3, one of the deformation tensor terms corresponding to K̃ has a favorable sign and is important
for controlling other error terms.

(3) As long as we can suitably bound the generalized energy quantities, based on the commutation
vectorfields (3.1.1) and multiplier vectorfields (3.1.2a), (3.1.2b), we can also derive, via Sobolev
embedding, decay estimates for the low-order derivatives of Ψ, consistent with our Heuristic Prin-
ciple; see [64, Corollary 17.2.2] for the details.

(4) The deformation tensors (see (1.5.4)) of the commutator vectorfields Z can be expressed in terms
of the covariant Hessian H = D2u, which verifies a transport equation of the form

LH +H2 = R, (3.1.3)

where, as we have mentioned, R depends on the up-to-second-order derivatives of Ψ and the up-
to-second-order derivatives of u. As we explained in Subsubsect. 1.5.2, every time we commute
�g(Ψ) with a vectorfield Z, we generate terms of the form (D (Z)π) · DΨ which can be traced
back, via the transport equation (3.1.3), to one more derivative of Ψ than we are able to control
by an energy estimate at the same level. However, it is essential to note that even though we
lose a derivative, we do not introduce any factors of µ−1, which would blow-up as we approach
the expected singularity.69 In other words, we can derive estimates for the components of the
derivatives of H relative to the rescaled frame {L, R̆,X1, X2} that are regular with respect to
µ, but only at the expense of losing a derivative. This is key to understanding Christodoulou’s

67Recall that u(Flat) := 1− r+ t is an eikonal function corresponding to the Minkowski metric, so in this regime r ≈ 1 + t.
68That is, their deformations tensors (1.5.4) neither vanish nor are proportion to the metric.
69To see this in detail, one must decompose (3.1.3) relative to the rescaled frame {L, R̆,X1, X2}. At one derivative level

lower, the µ-regular behavior can be seen in the transport equation (2.1.28) for µ, where there are no factors of µ−1 present.
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strategy: at the top level we combat derivative loss through renormalization (see the next item),
which has as a trade-off the introduction of a factor of µ−1; at the lower derivative levels we can
avoid this factor since the derivative loss can be absorbed. This trade-off is where understanding
the dynamic geometry is most important.

(5) To control the top derivatives of Ψ when the loss of a derivative, due to (3.1.3), can no longer be
ignored, we use a renormalization procedure,70 which recovers the loss of derivatives mentioned
above at the expense of introducing a dangerous factor of µ−1; see Subsubsect. 3.4.3. This new
difficulty of having to derive a priori estimates in the presence of the singular factor µ−1 is handled
by Christodoulou with the help of a subtle Gronwall-type inequality, which we provide as Lemma
3.5.

3.2. Energy estimates via the multiplier method. Before specializing to equation (3.4.1), we first recall
the multiplier method for deriving generalized energy estimates for solutions to

µ�gΨ = F. (3.2.1)

3.2.1. A version of the divergence theorem via the multiplier method. One key ingredient is the energy-
momentum tensorfield

Qµν [Ψ] = Qµν := DµΨDνΨ−
1

2
gµνD

αΨDαΨ. (3.2.2)

It is straightforward to check that for solutions to (3.2.1), we have

µDαQ
αν = FDνΨ. (3.2.3)

Furthermore, for any pair of future-directed vectorfields V and W verifying g(V, V ), g(W,W ) ≤ 0, we
have the well-known inequality71 which plays a role in the construction of coercive L2 quantities:

QαβV
αW β ≥ 0. (3.2.4)

The following currents are useful for bookkeeping during integration by parts. Specifically, to any
auxiliary “multiplier” vectorfield X, we associate the following compatible current vectorfield.

Definition 3.1 (Compatible current).
(X)Jν [Ψ] := Qν

α[Ψ]Xα. (3.2.5)

By (3.2.3), for solutions Ψ to (3.2.1), we have

µD (X)
α Jα =

1

2
µQαβ[Ψ](X)παβ + (XΨ)F, (3.2.6)

where (X)παβ = DαXβ + DβXα is the deformation tensor of X, as in (1.5.4)
To derive generalized energy estimates, we apply the divergence theorem on the regionMt,u (see Figure

6) to obtain the following energy-flux identity for solutions to (3.2.1).

70The procedure involves combining (3.1.3) with the wave equation�g(Ψ)Ψ = 0 and using elliptic estimates on the surfaces
St,u. This is similar to the approach taken in [13] and [40].

71In general relativity, inequality (3.2.4) is often referred to as the dominant energy condition.
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Lemma 3.1. [64, Lemma 9.2.1; Divergence theorem] For solutions Ψ to µ�gΨ = F that vanish along72

C0, we have∫
Σut

µQ[Ψ](X,N) d$ +

∫
Ctu
Q[Ψ](X,L) d$ =

∫
Σu0

µQ[Ψ](X,N) d$ (3.2.7)

−
∫
Mt,u

(XΨ)F d$ − 1

2

∫
Mt,u

µQ[Ψ] · (X)π d$,

where Q[Ψ] · (X)π := Qαβ(X)παβ.

In (3.2.7), N = L+R is the future-directed unit-normal to Σu
t , Q(X,N) = g((X)J,N) and Q(X,L) =

g((X)J, L). Furthermore,

d$ :=
√

detg/ dϑdu′, d$ :=
√

detg/ dϑdt′, d$ :=
√

detg/ dϑdu′dt′ (3.2.8)

are rescaled volume forms on Σu
t , Ctu, andMt,u. As before, g/ is the Riemannian metric induced by g on

the spheres St,u and the determinant is taken relative to the geometric angular coordinates (ϑ1, ϑ2). We
call the above volume forms “rescaled” because the canonical volume forms induced by g on Σu

t andMt,u

are µ d$ and µ d$.
Note that by the property (3.2.4), the first two integrands on the left-hand side of (3.2.7) are non-negative

for both of the multiplier vectorfields X = T and X = K̃; see Prop. 3.2 for a more precise account of the
coerciveness of these terms.

Mt,u

N

L

C0Cu

Ctu Ct0

Σt

Σu
0

Σu
t

Ψ ≡ 0

•
St,u

•
St,0

•
S0,u

•
S0,0

FIGURE 6. The divergence theorem onMt,u

Remark 3.1 (Lower-order correction term). Actually, in the caseX = K̃,we need to modify the current
(3.2.5) by adding to it the lower-order current (Correction)Jν [Ψ] := 1

2

{
%2trg/χΨDνΨ− 1

2
Ψ2Dν [%2trg/χ]

}
.We

need this correction current because (K̃)παβ fails to vanish even in the case of Minkowski spacetime, and

72Recall that the vanishing of Ψ along C0 is an easy consequence of our assumptions on the support of the data.
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it turns out that the corresponding error terms are not controllable. The use of lower-order corrections
(“Lagrangian term”) is standard and is often used even in the case of semilinear wave equations; see, for
example, [38].

Remark 3.2. The divergence theorem identity (3.2.7) does not account for the effect of adding the cor-
rection current (Correction)Jν [Ψ] described in Remark 3.1. To adjust (3.2.7) so that it is correct after the
modification, one needs to include some additional integrals in the identity (3.2.7), and in particular, the
last integral needs to be replaced with −1

2

∫
Mt,u

µQαβ
{

(K̃)παβ − %2trg/χgαβ
}
d$.

3.2.2. Energies and fluxes. With the help of the above currents and the corresponding divergence identi-
ties, we can now define the energies and fluxes, which are the main quantities that we use to control Ψ and
its derivatives in L2.

Definition 3.2 (Energies and fluxes). Let N := L + R denote the future-directed unit normal to Σt. We
define the energy E[Ψ](t, u) and the cone flux F[Ψ](t, u) corresponding to the multiplier vectorfield T (see
(3.1.2a)) in terms of the rescaled volume forms (3.2.8) as follows:

E[Ψ](t, u) :=

∫
Σut

µQ[Ψ](T,N) d$, (3.2.9a)

F[Ψ](t, u) :=

∫
Ctu
Q[Ψ](T, L) d$. (3.2.9b)

We can also define similar quantities Ẽ[Ψ](t, u), F̃[Ψ](t, u) corresponding to the Morawetz multiplier K̃
(see (3.1.2a)), but we have to take into account the lower-order terms mentioned in Remark 3.2.

The following proposition reveals the coercive nature of the energies and fluxes. Roughly speaking, its
proof is based on carefully decomposing the energy-momentum tensor (3.2.2) relative to73 the rescaled
frame {L, R̆,X1, X2}.

Proposition 3.2. [64, Lemma 13.1.1; Coerciveness of the energies and fluxes] Under suitable small-
ness bootstrap assumptions, the energies and fluxes from Definition 3.2 have the following coerciveness
properties:

E[Ψ](t, u) ≥ ‖R̆Ψ‖2
L2(Σut ) + C−1‖µ∇/Ψ‖2

L2(Σut ) (3.2.10a)

+ C−1‖Ψ‖2
L2(St,u),+C

−1‖Ψ‖2
L2(Σut ) + C−1‖

√
µLΨ‖2

L2(Σut ) + C−1‖µLΨ‖2
L2(Σut ),

F[Ψ](t, u) ≥ C−1‖LΨ‖2
L2(Ctu) + C−1‖

√
µLΨ‖2

L2(Ctu) + C−1‖
√
µ∇/Ψ‖2

L2(Ctu), (3.2.10b)

73Actually, in the proof, it is convenient to decompose relative to the rescaled null frame {L, L̆,X1, X2}, where L̆ :=

µL+ 2R̆.
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Ẽ[Ψ](t, u) ≥ C−1(1 + t)2

∥∥∥∥√µ(LΨ +
1

2
trg/χΨ

)∥∥∥∥2

L2(Σut )

+
1

2
‖%
√
µ∇/Ψ‖2

L2(Σut ), (3.2.11a)

F̃[Ψ](t, u) ≥ C−1

∥∥∥∥(1 + t′)

(
LΨ +

1

2
trg/χΨ

)∥∥∥∥2

L2(Ctu)

. (3.2.11b)

The L2 norms above are relative to the rescaled volume forms d$, and d$ (see (3.2.8)), which do not
degenerate as µ→ 0. Furthermore, %(t, u) = 1− u+ t.

Remark 3.3. Note that we have provided the explicit constant “1” in the term ‖R̆Ψ‖2
L2(Σut ) on the right-

hand side of (3.2.10a) and similarly for the second term on the right-hand side of (3.2.11a). These con-
stants are important because they affect the number of derivatives we need to close the estimates; see, for
example, the derivation of inequality (3.4.17) from inequality (3.4.16).

3.2.3. The role of µ weights in the energies and fluxes. Observe that the energies E and Ẽ from Prop. 3.2
control only µ−weighted versions of LΨ and ∇/Ψ. Hence, for µ near 0, they provide only very weak
control overLΨ and∇/Ψ.However, when bounding various error integrals on the right-hand side of (3.2.7),
we encounter non µ−weighted factors of LΨ and ∇/Ψ, which cannot be controlled directly by E and Ẽ.
We give an example of such an error term and describe how to handle it in Subsubsect. 3.4.2. To handle
the non µ−weighted factors of LΨ when µ is small, we will need to rely on the null-fluxes F and F̃ from
Prop. 3.2, which provide control over LΨ without any µ weights.

3.2.4. The need for the Morawetz spacetime integral. Note that Prop. 3.2 does not provide any quantity
that yields control of the non µ−weighted factors of∇/Ψ when µ is small. To obtain such control, we use a
much more interesting and subtle estimate, first derived by Christodoulou in [11], which we now discuss.

The main idea is that in the case of the Morawetz multiplier K̃, there is a subtly coercive term hiding
in the last integral on the right-hand side of (3.2.7). That is, a careful decomposition of the integrand
−1

2
µQαβ

{
(K̃)παβ − %2trg/χgαβ

}
(see Remark 3.2) reveals the presence of an important negative spacetime

integral −K̃[Ψ] on the right-hand side of (3.2.7). The corresponding positive spacetime integral has the
following structure.

Definition 3.3 (Coercive Morawetz spacetime integral).

K̃[Ψ](t, u) :=

∫
Mt,u

%2[Lµ]−|∇/Ψ|2 d$. (3.2.12)

Here [Lµ]− = |Lµ| when Lµ < 0 and [Lµ]− = 0 otherwise.

The coerciveness of the Morawetz integral is provided by the following lemma.

Lemma 3.3. [64, Lemma 13.2.1; Quantified coerciveness of the Morawetz spacetime integral] The
Morawetz integral K̃[Ψ] from Definition 3.3 verifies the following lower bound:

K̃[Ψ](t, u) ≥ 1

C

∫
Mt,u

1{µ≤1/4}
1 + t′

ln(e+ t′)
|∇/Ψ|2(t′, u′, ϑ) d$. (3.2.13)
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The main idea behind the proof of Lemma 3.3 is simple: just insert an estimate very similar74 to (1.3.16)
(derived in spherical symmetry) into (3.2.12). The important points concerning K̃[Ψ] are:

• −K̃[Ψ](t, u) appears on the right-hand side of (3.2.7) (see Remark 3.2) and hence we can bring
K̃[Ψ](t, u) to the left and obtain additional spacetime control over |∇/Ψ|2.
• It contains no µ weights, so it is significantly coercive even in regions where µ is near 0.
• The integrand features favorable factors of t′.

3.2.5. Overview of the L2 hierarchy and the µ−1
? degeneracy. We are almost ready to provide an overview

of the main a priori energy-flux estimates. The estimates involve the following important quantity, which
captures the “worst-case” scenario for µ being small along Σu

t .

Definition 3.4 (A modified minimum value of µ). We define the function µ?(t, u) as follows:

µ?(t, u) := min{1,min
Σut

µ}. (3.2.14)

Now that we have defined all of the quantities of interest, we can now state a proposition that provides
the a priori energy-flux-Morawetz estimates that hold on spacetime domains of the formMt,u. There is
no analog of this proposition in spherical symmetry because in the symmetric setting, we did not need to
derive L2 estimates.

Proposition 3.4. [64, Lemma 19.2.3; Rough statement of the hierarchy of a priori energy-flux-
Morawetz estimates] Assume that �g(Ψ)Ψ = 0. Assume that the data are of size ε̊, defined by (2.1.34).
Then there exist large constants C > 0 and A∗ > 0 such that if ε̊ is sufficiently small, then the following
energy-flux-Morawetz estimates hold for the quantities from Definitions 3.2 and 3.3 for 0 ≤M ≤ 7 :

E1/2[Z ≤15Ψ](t, u) + F1/2[Z ≤15Ψ](t, u) ≤ Cε̊, (3.2.15a)

Ẽ1/2[Z ≤15Ψ](t, u) + F̃1/2[Z ≤15Ψ](t, u) + K̃1/2[Z ≤15Ψ](t, u) ≤ Cε̊ ln2(e+ t), (3.2.15b)

E1/2[Z 16+MΨ](t, u) + F1/2[Z 16+MΨ](t, u) ≤ Cε̊µ−.75−M
? , (3.2.15c)

Ẽ1/2[Z 16+MΨ](t, u) + F̃1/2[Z 16+MΨ](t, u) + K̃1/2[Z 16+MΨ](t, u) ≤ Cε̊ ln2(e+ t)µ−.75−M
? (t, u),

(3.2.15d)

E1/2[Z 24Ψ](t, u) + F1/2[Z 24Ψ](t, u) ≤ Cε̊ lnA∗(e+ t)µ−8.75
? (t, u),

(3.2.15e)

Ẽ1/2[Z 24Ψ](t, u) + F̃1/2[Z 24Ψ](t, u) + K̃1/2[Z 24Ψ](t, u) ≤ Cε̊ lnA∗+2(e+ t)µ−8.75
? (t, u).

(3.2.15f)

In the above estimates, Z ≤k denotes an arbitrary differential operator of order ≤ k corresponding to
repeated differentiation with respect to the commutation vectorfields in Z (see (3.1.1)).

Remark 3.4 (The µ−1
? hierarchy). An important feature of Prop. 3.4 to notice is that the top-order quanti-

ties are allowed to blow up like µ−8.75
? as µ? tends to 0. The power−8.75 is a consequence of some delicate

74 Indeed in the small-data regime, the same estimate (1.3.16) holds even in the non-spherical symmetric case (see (3.3.7)).
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structural features of the equations. We explain this below (see in particular Remark 3.9). Another impor-
tant feature is that as we descend below the top-order, we see improvements in the µ−1

? blow-up rate until
we reach a level in which the quantities no longer blow-up. The non-degenerate estimates can be used
to show that the lower-order derivatives of Ψ extend as continuous functions, relative to the geometric
coordinates (t, u, ϑ), to the constant-time hypersurface of first shock formation. The precise features of
this hierarchy play a fundamental role in guiding the analysis.

3.3. Details on the behavior of µ. In order to explain how to derive the energy estimate hierarchy of
Prop. 3.4, we first need to provide some sharp information on the behavior of µ. In the next three lemmas,
we state the most relevant properties of µ and sketch some of their proofs. See [64, Chapter 12] for more
details. We emphasize once more that one needs very detailed control on the blow-up behavior of µ−1 to
close the energy estimates and that this is a major difference from the spherically symmetric case.

The first lemma provides the main Gronwall estimate that leads to the degeneracy of the top-order en-
ergy estimates (3.2.15e)-(3.2.15f). The reader should think that (3.3.1) is the type of inequality appearing
when trying to close the energy estimates at the top order. The lemma is a drastically simplified version of
[64, Lemma 19.2.3].

Lemma 3.5 (A Gronwall estimate used at top order). Let B > 0 be a constant. There exist a small
constant 0 < σ� 1 and large constants C > 0 and A > 0 such that for u ∈ [0, U0], solutions f(t) to the
inequality

f(t) ≤ Cε̊ +B

∫ t

t′=0

(
sup
Σu
t′

∣∣∣∣Lµµ
∣∣∣∣
)
f(t′) dt′ (3.3.1)

verify the estimate

f(t) ≤ Cε̊ lnA(e+ t)µ−(B+σ)
? (t, u). (3.3.2)

The second lemma is used to show that the below-top-order energy estimates are less degenerate than
the top-order ones. The main idea is that we can gain powers of µ? by integrating in time.

Lemma 3.6. [64, Proposition 12.3.1; Gaining powers of µ? by time integration] Let B > 1 be a
constant. Then for u ∈ [0, U0], we have∫ t

t′=0

1

(1 + t′)3/2
µ−B? (t′, u) dt′ ≤ Cµ1−B

? (t, u). (3.3.3)

Furthermore, ∫ t

t′=0

1

(1 + t′)3/2
µ−3/4
? (t′, u) dt′ ≤ C. (3.3.4)

The third lemma plays a supporting role in establishing the previous two lemmas. In addition, the
estimate (3.3.7) is the ingredient used to show that the Morawetz spacetime integral is coercive in the
regions where µ is small; see Lemma 3.3.
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Lemma 3.7. [64, Sections 12.1 and 12.2; Some key properties of µ.] Consider a fixed point (t, u, ϑ)
and let δt,u,ϑ := % (t, u)Lµ(t, u, ϑ). Then for 0 ≤ s ≤ t, we have75

Lµ(s, u, ϑ) ∼ 1

%(s, u)
δt,u,ϑ, (3.3.5)

µ(s, u, ϑ) ∼ 1 + δt,u,ϑ ln

(
%(s, u)

%(0, u)

)
. (3.3.6)

Let [Lµ]− = |Lµ| when Lµ < 0 and [Lµ]− = 0 otherwise. Then at any point (t, u, ϑ) with µ(t, u, ϑ) <
1/4, we have

[Lµ]−(t, u, ϑ) ≥ c
1 + t

ln(e+ t)
. (3.3.7)

Discussion of the proof of Lemma 3.7. Thanks to the decay estimates of the Heuristic Principle (see Sub-
subsect. 2.1.5), Lemma 3.7 can be proved by using essentially the same arguments that we used above in
spherical symmetry; see Prop. 1.3 and its proof. The additional terms present away from spherical symme-
try involve Cu−tangential derivatives of Ψ, and hence they decay very rapidly and make only a negligible
contribution to the inequalities. �

Discussion of the proof of Lemma 3.5. By the standard Gronwall inequality, we deduce

f(t) ≤ Cε̊ exp

(
B

∫ t

s=0

sup
Σus

∣∣∣∣Lµµ
∣∣∣∣
)
ds. (3.3.8)

We now need to pass from (3.3.8) to (3.3.2). The detailed proof is somewhat difficult because of the
presence of the sup on the right.

To reveal the main ideas behind the proof, we first use (3.3.5) and (3.3.6) to deduce that for 0 ≤ s ≤ t,
we have

Lµ

µ
(s, u, ϑ) ∼ δt,u,ϑ

%(s, u)
{

1 + δt,u,ϑ ln
(
%(s,u)
%(0,u)

)} . (3.3.9)

The important point in (3.3.9) is that the same constant δt,u,ϑ appears in the numerator and denominator.
For the sake of illustration, let us simplify the analysis by assuming that δt,u′,ϑ ≤ 0 for u′ ∈ [0, u], ϑ ∈ S2.76

Using the fact that for a fixed a > 0, the function f(x) = x
1+ax

is increasing on the domain x ∈ (−a−1, 0],
we deduce (recall δt,u′,ϑ is non-positive)

Lµ

µ
(s, u, ϑ) ≥

minu′∈[0,u],ϑ∈S2 δt,u′,ϑ

%(s, u)
{

1 + minu′∈[0,u],ϑ∈S2 δt,u′,ϑ ln
(
%(s,u)
%(0,u)

)} + Err. (3.3.10)

We finally set

δt :=

∣∣∣∣ min
u′∈[0,u],ϑ∈S2

δt,u′,ϑ

∣∣∣∣
75The notation A ∼ B indicates, in an imprecise fashion, that A is well-approximated by B.
76This is indeed what holds for some (u′, ϑ) close to the formation of the shock. The fact that in reality it does not hold for

all (u′, ϑ), even close to the time of shock formation, leads to additional technical complications which we suppress here.
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and conclude

sup
Σus

∣∣∣∣Lµµ
∣∣∣∣ ≤ δt

%(s, u)
{

1− δt ln
(
%(s,u)
%(0,u)

)} + Err. (3.3.11)

Note also that, in view of Definition 3.4 and (3.3.6), we deduce that for 0 ≤ s ≤ t, we have

µ?(s, u) ∼ 1− δt ln

(
%(s, u)

%(0, u)

)
. (3.3.12)

We now integrate (3.3.11) ds from s = 0 to t and use (3.3.12) to deduce that∫ t

s=0

sup
Σus

∣∣∣∣Lµµ
∣∣∣∣ ds ∼ ∫ t

s=0

δt

%(s, u)
{

1− δt ln
(
%(s,u)
%(0,u)

)} ds (3.3.13)

= ln

∣∣∣∣1− δt ln

(
%(t, u)

%(0, u)

)∣∣∣∣ ∼ ln
∣∣µ−1

? (t, u)
∣∣

(recall that µ?(t, u) ≤ 1 by definition). The desired estimate77 (3.3.2) now easily follows from (3.3.8).
�

Discussion of the proof of Lemma 3.6. The main idea is that the integrals in (3.3.3) and (3.3.4) are easy to
estimate once we have obtained sharp information about the behavior of µ?. For example, if we assume
for simplicity that δt,u′,ϑ ≤ 0 for u′ ∈ [0, u], ϑ ∈ S2, then the estimate (3.3.12) holds. We can then
estimate the integrals by using (3.3.12), splitting them into a small-time portion and a large-time portion,
and optimizing the splitting time.

�

3.4. Details on the top-order energy estimates. We now explain some of the main ideas behind the
proof of Prop. 3.4. Throughout Subsect. 3.4, ε̊ denotes the small size of the data and ε denotes the small
amplitude size corresponding to the Heuristic Principle estimates of Subsubsect. 2.1.5, which we use as
bootstrap assumptions. For convenience, we focus on only the difficult top-order energy estimate (3.2.15e).
To illustrate the main ideas, we might as well commute the equation with a single rotational vectorfield
O, pretend that we are at the highest level of derivatives, and show how to avoid the derivative loss. We
remark that we must also avoid, using similar arguments, the derivative loss when we commute with R̆ and
%L, though the difficulties are somewhat less severe in the case of %L. To proceed, we consider the wave
equation verified by OΨ. That is, we commute the equation µ�g(Ψ)Ψ = 0 with O ∈ {O(1), O(2), O(3)} to
deduce the equation

µ�g(Ψ)OΨ = (R̆Ψ)Otrg/χ− (Oµ)∆/Ψ + · · · . (3.4.1)

Remark 3.5. On the right hand side of (3.4.1) · · · denotes a long list of additional error terms that turn
out to be much easier to control than the first one that is explicitly listed; see [64, Proposition 6.2.2,
Lemma 8.1.2, Proposition 8.2.1] for more details. A rigorous derivation of (3.4.1) would involve lengthy
computations; in an effort to avoid distracting the reader, we will simply take (3.4.1) for granted. We

77Up to the correction factors σ and lnA(e+ t).
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furthermore remark that related but distinct difficulties arise when we commute with R̆ or %L, but for
simplicity, we discuss only the case of O.

Remark 3.6. Note that in (3.4.1), we are working with the µ−weighted wave operator µ�g(Ψ). It turns
out that µ�g(Ψ) has better commutation properties with the vectorfields in Z (see (3.1.1)) than the un-
weighted operator �g(Ψ). The important property of µ�g(Ψ) is that we do not introduce any factors of
µ−1 when we repeatedly commute it with vectorfields in Z ; generally, we would not be able to control
such factors. The moral reason behind the good properties of µ�g(Ψ) can be discerned from the decom-
position (2.1.23). To see this, we recall that, relative to the geometric coordinates, we have L = ∂

∂t
and

R̆ = ∂
∂u

+ angular error term. We can therefore rewrite (2.1.23) as

µ�g(Ψ)Ψ = − ∂

∂t

{
µ
∂

∂t
Ψ + 2

∂

∂u
Ψ

}
+ µ∆/Ψ + Err. (3.4.2)

The right-hand side of (3.4.2) now suggests that, for example, the differential operator R̆ ∈ Z can be
commuted through the equation without introducing any dangerous factors of µ−1.

Remark 3.7 (On the importance of terms that are not present). One crucial property of the commuta-
tion vectorfield set Z is that after commuting the through the operator µ�g(Ψ) one time, we never produce
terms of the form ∇/ R̆µ or R̆R̆µ. This is important because we have no means to bound the top-order
derivatives of these terms. In contrast, as we will see, there is a procedure based on modified quantities
and elliptic estimates that allows us to bound the top-order derivatives of the term Otrg/χ on the right-hand
side of (3.4.1) (see Subsubsect. 3.4.3). This discrepancy occurs even though ∇/ R̆µ, Otrg/χ, and R̆R̆µ are
all third-order derivatives of the eikonal function u.

Our goal is to show how to estimate solutions to (3.4.1) without losing derivatives. In particular, we
sketch a proof of how to derive a “top-order” estimate for the rotation commutation vectorfields O (de-
scribed at the beginning of Sect. 3) of the form

E1/2[OΨ](t, u) + F1/2[OΨ](t, u) ≤ Cε̊ lnA(e+ t)µ−B? (t, u),

in the spirit of (3.2.15e), and we highlight the role played by Lemma 3.5. To begin, we use (3.4.1), (3.2.7),
(3.2.9a), and (3.2.9b) to deduce that78

E[OΨ](t, u) + F[OΨ](t, u) ≤ Cε̊−
∫
Mt,u

(2R̆Ψ)(Otrg/χ)R̆OΨ d$ +

∫
Mt,u

(Oµ)(LOΨ)∆/Ψ d$ + · · · .

(3.4.3)

To deduce (3.4.3), we have used the divergence identity (3.2.7) with X = T (see (3.1.2a)), OΨ in the role
of Ψ, and F = (R̆Ψ)Otrg/χ − (Oµ)∆/Ψ + · · · from the right-hand side of (3.4.1). Furthermore, we have
replaced the integrand (TOΨ)F from (3.2.7) with the expression

2(R̆Ψ)(R̆OΨ)Otrg/χ− (Oµ)(LOΨ)∆/Ψ + . . .

78The remaining error integrals · · · on the right-hand side of (3.4.3) are easier to estimate than the explicitly indicated ones,
so we ignore them here.
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with . . . denoting terms that are easier to treat.79

Remark 3.8. We have suppressed the error-term
∫
Mt,u

(Oµ)(R̆OΨ)∆/Ψ d$ by relegating it to the . . . term
on the right-hand side of (3.4.3). One might expect that this integral is more difficult to estimate than the
second one written on the right-hand side of (3.4.3) because it involves the transversal derivative factor
R̆OΨ in place of LOΨ. However, the LOΨ−involving error integral is actually slightly more difficult to
estimate because we have to use the cone fluxes and the Morawetz spacetime integral to bound it; see
inequality (3.4.15). In contrast, the arguments given in Subsubsect. 3.4.2 can easily be modified to show
that the R̆OΨ−involving error integral can be bounded in magnitude by

. ε̊

∫ t

t′=0

∫
Σu
t′

ln(e+ t′)

1 + t′
|R̆OΨ||OOΨ| d$ dt′ (3.4.4)

. ε̊

∫ t

t′=0

1

µ
1/2
? (t′, u)

ln(e+ t′)

(1 + t′)2
E[OΨ]Ẽ[OΨ] dt′,

where we have used Cauchy-Schwarz on Σu
t′ and Prop. 3.2 to pass to the final inequality. Thanks to

favorable powers of t′ present in the integrand on the right-hand side of (3.4.4), we can handle the singular
factor µ−1/2

? with inequality (3.3.4), and it is therefore easy to show that the right-hand side of (3.4.4) is
a cubic error term. In contrast, if we tried to handle the LOΨ−involving error integral in the same way,
we would find the worse factor µ−1

? (t′, u) in the integrand. This strategy will fail because µ−1
? (t′, u) is too

singular to be handled by inequality (3.3.4).

3.4.1. Raychaudhuri-type identity. We now highlight the main technical hurdle in proving Prop. 3.4,
which we already mentioned in Subsubsect. 1.5.2: the only way by which we can estimate the factor
Otrg/χ on the right-hand side of (3.4.3) is by exploiting an important transport equation which is the ex-
act analog of the well-known Raychaudhuri equation [56] in General Relativity. The Raychaudhuri-type
equation satisfied by trg/χ is (see, for example, the proof of [64, Corollary 10.2.1])

Ltrg/χ +
1

2
(trg/χ)2 + |χ̂|2 = −RicLL +

Lµ

µ
trg/χ, (3.4.5)

where Ric is the Ricci curvature of g and χ̂ is the trace-free part of χ. The Ricci tensor (see [64, Corollary
10.1.3]) can be decomposed through a tedious but straightforward calculation, which yields RicLL :=
RicαβLαLβ = −1

2
GLL∆/Ψ + · · · . Since the term 1

2
(trg/χ)2 + |χ̂|2 is also lower-order,80 we arrive at the

transport equation

Ltrg/χ =
1

2
GLL∆/Ψ + · · · , (3.4.6)

where · · · denotes easier terms which can be ignored.
The main difficulty is that after we commute (3.4.6) with O, we obtain the equation

LOtrg/χ =
1

2
GLL∆/OΨ + · · · ,

79The remaining terms in T involve Cu−tangential derivatives of Ψ.
80In reality, the analysis is somewhat more complicated. Specifically, we need to use elliptic estimates to bound the top-order

derivatives of |χ̂|2; see Remark 3.10.
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which depends on three derivatives of Ψ, whereas the left-hand side of (3.4.3) only yields control over two
derivatives of Ψ (see Prop. 3.2). Hence, it seems that we are losing derivatives in our estimates for Otrg/χ.
In Subsubsect. 3.4.3, we explain how to overcome this difficulty.

3.4.2. The energy estimates ignoring derivative loss. Before we address how to circumvent the loss in
derivatives mentioned above, we first address how the proof of Prop. 3.4 would work if we did not have
to worry about it. Our discussion will highlight the role of the Morawetz integral (3.2.13) in the proof. To
begin, we imagine that (3.4.1), that is, the equation

µ�g(Ψ)OΨ = (R̆Ψ)Otrg/χ− (Oµ)∆/Ψ + · · · , (3.4.7)

is the top-order equation and that we are trying to bound the right-hand side of (3.4.3) back in terms of the
left so that we can apply Gronwall’s inequality. We will use Prop. 3.2 to connect various L2 norms back
to E, F, etc. For the time being, we ignore the difficult error integral on the right-hand side of (3.4.3) and
instead focus on the second one ∫

Mt,u

(Oµ)(LOΨ)∆/Ψ d$, (3.4.8)

in which we do not have to worry about derivative loss. To bound this integral, we use the following
pointwise estimate:

|Oµ| . ε ln(e+ t). (3.4.9)

The estimate (3.4.9) is easy to derive by commuting the evolution equation (2.1.28) for µ withO, using the
Heuristic Principle estimates (see Subsubsect. 2.1.5) to bound the right-hand side, and then integrating the
resulting inequality along the integral curves of L = ∂

∂t
; see [64, Proposition 11.27.1] for the details. We

also use the following property of our rotation vectorfields, which is familiar from the case of Minkowski
spacetime (see [64, Lemma 11.12.1] for a proof):

|∆/Ψ| . 1

1 + t

3∑
l=1

|∇/O(l)Ψ|. (3.4.10)

In view of (3.4.9) and (3.4.10), we see that the error integral (3.4.8) can be bounded as follows, where we
split it into the region where µ ≤ 1/4 and the region where µ > 1/4 :

. ε

∫
Mt,u

1{µ≤1/4}
ln(e+ t′)

1 + t′
|LOΨ||∇/OΨ| d$ + ε

∫
Mt,u

1{µ>1/4}
ln(e+ t′)

1 + t′
|LOΨ||∇/OΨ| d$. (3.4.11)

The main difficulty is present in the first integral in (3.4.11). Indeed, the first integral lacks a µ weight
and involves the angular derivative term |∇/OΨ|. Hence, the angular derivative coerciveness of the energy-
flux quantities, which is provided by Prop. 3.2, is not sufficient to control it. As in [11], to overcome
the difficulty, we use the strength of the Morawetz integral; see inequality (3.2.13). More precisely, by
dividing the time interval [0, t] into suitable subintervals and using Cauchy-Schwarz, it is not difficult to
show (see the proof of [64, Lemma 19.3.3]) that the first integral on the right-hand side of (3.4.11) is

. ε

∫
Mt,u

1{µ≤1/4}|LOΨ|2 d$ + ε sup
τ∈[0,t)

1

(1 + τ)1/2

∫
Mτ,u

1{µ≤1/4}
1 + t′

ln(e+ t′)
|∇/OΨ|2 d$. (3.4.12)
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Using (3.2.10b), we deduce that the first term on the right-hand side of (3.4.12) is bounded by

ε

∫
Mt,u

1{µ≤1/4}|LOΨ|2 d$ . ε

∫ u

u′=0

F[OΨ](t, u′) du′. (3.4.13)

In addition, the second term on the right-hand side of (3.4.12) is bounded by

ε sup
τ∈[0,t)

1

(1 + τ)1/2

∫
Mτ,u

1{µ≤1/4}
1 + t′

ln(e+ t′)
|∇/OΨ|2 d$ . ε sup

τ∈[0,t)

1

(1 + τ)1/2
K̃[OΨ](τ, u), (3.4.14)

where we have used the key Morawetz estimate (3.2.13).
We then insert these estimates into the right-hand side of (3.4.3), ignore the (difficult) first error integral,

and find that

E[OΨ](t, u) + F[OΨ](t, u) ≤ Cε̊ + ε

∫ u

u′=0

F[OΨ](t, u′) du′ + ε sup
τ∈[0,t)

1

(1 + τ)1/2
K̃[OΨ](τ, u) + · · · .

(3.4.15)

Clearly, the first integral on the right-hand side of (3.4.15) is treatable with Gronwall’s inequality (recall
that 0 < u < 1). Furthermore, the second integral ε supτ∈[0,t)

1
(1+τ)1/2 K̃[OΨ](τ, u) can be treated as a

harmless cubic term, even if the Morawetz integral K̃[OΨ](t, u) grows logarithmically in time, consistent
with (3.2.15b). Hence, assuming data of small size ε̊, we have provided some indication of how to derive
an a priori estimate of the form E1/2[OΨ](t, u) + F1/2[OΨ](t, u) . ε̊ if we did not have to worry about
the dangerous error integral −

∫
Mt,u

(2R̆Ψ)(Otrg/χ)R̆OΨ d$. As we now discuss, this dangerous integral
leads to a much worse a priori estimate.

3.4.3. Avoiding top-order derivative loss via a Raychaudhuri-type identity. We now confront the main
difficulty in deriving the top-order energy estimate (3.2.15e): the potential derivative loss in the Otrg/χ
term in the error integral

−
∫
Mt,u

(2R̆Ψ)(Otrg/χ)R̆OΨ d$

on the right-hand side of (3.4.3). We are still imagining, for the sake of illustration, that the second-order
derivatives of Ψ are top-order. The main point of the procedure outlined below is to replace this error
integral with

−4

∫
Mt,u

Lµ

µ
(R̆OΨ)2 d$ + · · · , (3.4.16)

where the · · · integrals are similar in nature or easier. We can then use the coerciveness property (3.2.10a)
and the co-area formula

∫
Mt,u
· · · d$ =

∫ t
t′=0

∫
Σu
t′
· · · d$dt′ to bound (3.4.16) in magnitude by

≤ 4

∫ t

t′=0

(
sup
Σu
t′

∣∣∣∣Lµµ
∣∣∣∣
)
E[OΨ](t, u) dt′. (3.4.17)
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Thus, recalling (3.4.3), we find that

E[OΨ](t, u) + F[OΨ](t, u) ≤ Cε̊ + 4

∫ t

t′=0

(
sup
Σu
t′

∣∣∣∣Lµµ
∣∣∣∣
)
E[OΨ](t′, u) dt′ + · · · , (3.4.18)

where the constant “4” on the right-hand side of (3.4.18) is a “structural constant,” the · · · terms are similar
and nature or easier, and ε̊ is the size of the data.

We can now appeal to Lemma 3.5 to derive an priori estimate for E[OΨ](t, u) + F[OΨ](t, u), that is,
we have

E1/2[OΨ](t, u) + F1/2[OΨ](t, u) ≤ Cε̊ lnA(e+ t)µ−B? (t, u).

Remark 3.9 (The importance of the structural constants). Note that the structural constant “4” that ap-
pears in (3.4.18) is independent of the number of times that we commute the wave equation with vectorfield
operators. This observation is important, for the structural constant affects the power of µ−1

? appearing in
the top-order energy estimates and hence the number of derivatives we need to close the estimates.

It remains for us to explain the procedure used above, which allowed us to replace the derivative-losing
error integral

−
∫
Mt,u

(2R̆Ψ)(Otrg/χ)R̆OΨ d$

with (3.4.16). The procedure is based on the following renormalized Raychaudhuri equation81 which we
explain below.

3.4.4. Renormalized Raychaudhuri equation. We begin by recalling equation (3.4.6):

Ltrg/χ =
1

2
GLL∆/Ψ + · · · . (3.4.19)

To avoid the derivative loss, we need to take advantage of the wave equation in the form (see (2.1.22) and
(2.1.23))

0 = µ�g(Ψ)Ψ = −LL̆Ψ + µ∆/Ψ + l.o.t.

Hence, using the wave equation, we can replace, up to a crucially important factor of µ−1 and l.o.t., the
term 1

2
GLL∆/Ψ in (3.4.19) with a perfect L derivative of 1

2
GLLL̆Ψ and then bring this perfect L derivative

over to the left-hand side of (3.4.19). Furthermore, one can show that the remaining second derivatives
of Ψ in the · · · terms on the right-hand side of (3.4.19) are also perfect L derivatives, and thus we can
bring those terms to the left as well. In total, at the expense of a factor of µ−1, we can renormalize away
all of the terms in equation (3.4.19) that lose derivatives relative to Ψ, thereby obtaining an equation for a
“modified” version of trg/χ of the form L(Modified) = l.o.t.

Hence, the important structure used by Christodoulou in [11] can be restated as follows: for solutions
to �g(Ψ)Ψ = 0, the RicLL term in the Raychaudhuri equation (3.4.5) is, up to lower-order terms, a perfect
L derivative of the first derivatives of Ψ. To close our estimates, what we really need are higher-order82

versions of this identity. In particular, we can commute the Raychaudhuri-type identity with O to obtain a

81The same idea was also used earlier, in a different context, in [40].
82In fact, we need only top-order versions of the identity.
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transport equation equation for a “modified” version of Otrg/χ that does not lose derivatives relative to Ψ.

We make this precise in the following definition, where (O)X is the “modified” quantity.

Definition 3.5 (Modified version of Otrg/χ). We define the modified quantity (O)X as follows:
(O)X := µOtrg/χ +OX, (3.4.20)

X := −GLLR̆Ψ + µG/ A
L ∇/ AΨ− 1

2
µG/ A

A LΨ− 1

2
µGLLLΨ. (3.4.21)

In (3.4.21), G/ A
L is the St,u−tangent vectorfield formed by projecting the vectorfield with rectangular

components G ν
α L

α onto the St,u.
In total, the strategy described above allows us to show that (O)X verifies a transport equation of the

following delicate form.

Lemma 3.8. [64, Proposition 10.2.3; Transport equation for the modified quantity] The quantity (O)X
defined in (3.4.20) verifies the transport equation

L(O)X −
{

2
Lµ

µ
− trg/χ

}
(O)X =

{
1

2
trg/χ− 2

Lµ

µ

}
OX + Err, (3.4.22)

where Err depends on at most two derivatives of Ψ, is regular in µ, and decaying in t.

We stress again that the advantage of (3.4.22) over the unmodified equation LOtrg/χ = 1
2
GLL∆/OΨ+· · ·

is that the right-hand side of equation (3.4.22) does not depend on the third derivatives of Ψ. Hence,
equation (3.4.22) can be used to derive L2 estimates for (O)X that do not lose derivatives relative to Ψ.

Remark 3.10 (The need for elliptic estimates). Hiding in the terms Err in (3.4.22) lies another technical
headache that we will briefly mention but not dwell on. Specifically, there is a quadratically small term,
roughly of the form µχ̂ · L/Oχ̂, that formally involves the same number of χ derivatives as the modified
quantity (O)X (that is, one) but that cannot be directly estimated back in terms of (O)X . Here, χ̂ is the
trace-free part of the St,u tensor (2.1.24) and L/O denotes Lie differentiation with respect to O followed
by projection onto the St,u. The term L/Oχ̂ involves three derivatives of the eikonal function u and as we
have described, it will lead to derivative loss if not properly handled. To derive suitable L2 estimates for
this term, we have to derive a family of elliptic estimates on the spheres St,u. The main ideas behind this
strategy can be traced back to Christodoulou-Klainerman’s proof of the stability of Minkowski spacetime
[13]. Similar strategies were also employed in [40] and [11]. The main point is that the elliptic estimates
allow us to estimate ‖µL/Oχ̂‖L2(St,u) back in terms of ‖µOtrg/χ‖L2(St,u) plus errors, and that µOtrg/χ can be
controlled in L2 by using the L2 estimates for (O)X and the up-to-second-order L2 estimates for Ψ.

Remark 3.11. In the detailed proof, we must invert the transport equation (3.4.22) and obtain suitable L2

estimates for (O)X . However, this is not an easy task; see the proof of [64, Lemma 19.4.1] for the details.
The main reason is that the factors

{
2Lµ

µ
− trg/χ

}
and

{
1
2
trg/χ− 2Lµ

µ

}
in (3.4.22) have a drastic effect on

the behavior of (O)X and require a careful analysis.

We now return to the question of how to replace the derivative-losing error integral

−
∫
Mt,u

(2R̆Ψ)(Otrg/χ)R̆OΨ d$
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with (3.4.16). We first use the identity Otrg/χ = µ−1(O)X − µ−1OX to replace the derivative-losing term
Otrg/χ with terms that do not lose derivatives. As we described in Remark 3.11, the most difficult analysis
corresponds to the error integral generated by the piece µ−1(O)X . We do not want to burden the reader
with the large number of technical complications that arise in the analysis of this error integral. Instead,
we focus on the error integral generated by the other piece, namely

∫
Mt,u

2(R̆Ψ)µ−1(OX)R̆OΨ d$. The

difficult part of this error integral comes from the top-order part of O applied to the first term −GLLR̆Ψ
on the right-hand side of (3.4.21). That is, we focus on the following error integral:

−2

∫
Mt,u

1

µ
(R̆Ψ)GLL(R̆OΨ)2 d$. (3.4.23)

Though the integral (3.4.23) does not lose derivatives, it is nonetheless difficult to bound. If we were
to try to bound it (3.4.23) by simply inserting the Heuristic Principle-type estimates |R̆Ψ| . ε(1 + t)−1

and |GLL| . 1, then we would not be able to derive the desired a priori energy estimate (3.2.15e); we
would find that there is a loss that spoils the estimates and allows for the power of µ−1

? on the right-hand
side of (3.2.15e) to grow like Cε ln(e + t), thereby completely ruining the L2 hierarchy of Prop. 3.4.
Christodoulou overcame this difficulty by observing the following critically important structure: by using
the transport equation Lµ = 1

2
GLLR̆Ψ + Err (see (2.1.28)), we can rewrite (3.4.23) as

−4

∫
Mt,u

Lµ

µ
(R̆OΨ)2 d$ + · · · , (3.4.24)

which is precisely the integral (3.4.16) that we successfully treated above. We have thus sketched the main
ideas behind the procedure that allows us to avoid losing derivatives.

Remark 3.12 (Difficult top-order error integrals that arise during the Morawetz multiplier esti-
mates). In order to derive the top-order estimate (3.2.15f) corresponding to the Morawetz multiplier
K̃ = %2L, we use Christodoulou’s strategy [11], which is quite different than the one we use to de-
rive the estimate (3.2.15e) corresponding to the timelike multiplier T. The main idea is that since K̃ is
proportional to L, we can integrate by parts in the divergence theorem identity (3.2.7) (see Remark 3.2)
in order to trade, in the analog of the error integral (3.4.3), the O derivative on trg/χ for an L derivative.
The gain is that whenever the top-order derivative of an eikonal function quantity such as trg/χ involves
an L derivative, we do not have to worry about losing derivatives because we have a “direct expression”
for these quantities based on the fact that they verify a transport equation in the direction of L. Hence, for
the Morawetz multiplier estimates, we can avoid working with fully modified quantities such as (3.4.20)-
(3.4.21), and we do not have to invoke any elliptic estimates on St,u (see Remark 3.10). However, moving
the L derivative generates some very difficult Σu

t error integrals that lead to top-order µ−1
? degeneracy,

similar to the degeneracy we encountered in Lemma 3.5. In deriving the Morawetz multiplier estimates,
although we do not need to use fully modified quantities of the form (3.4.20)-(3.4.21), we do need to de-
fine and use related partially modified versions of both trg/χ and∇/µ in order to avoid certain error integrals
that have unfavorable t−growth. We do not want to further burden the reader with these technical details
here, so we do not pursue this issue further.
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3.5. Descending below top order. If we applied the above strategy of Subsubsect. 3.4.3 at all derivative
levels, then all of the energy-flux-Morawetz estimates would degenerate in the same way as (3.2.15e)-
(3.2.15f) with respect to µ−1

? . In particular, we would not recover the non-degenerate estimates (3.2.15a)-
(3.2.15b). This would in turn prevent us from recovering the decay estimates of the Heuristic Principle,
which are based on (3.2.15a)-(3.2.15b) and Sobolev embedding. Hence, we would not be able to show
that the terms we have deemed small errors are in fact small, and the entire proof would break down.

To overcome this difficulty, we note that since we are below top order, we can allow the loss in deriva-
tives in the difficult error integral. In particular, there is no need to use the complicated procedure that
led to the difficult top-order integral (3.4.16). In avoiding this procedure, we are rewarded with a less
degenerate power of µ−1

? , which comes from Lemma 3.6 and the availability of favorable powers of t.
As before, in the following discussion, ε̊ denotes the small size of the data. To illustrate our strategy

in some detail, let us imagine that three derivatives of Ψ in L2 (which corresponds to E[Z 2Ψ], etc.)
represents the top-order. We also imagine, consistent with (3.2.15e) and (3.2.15f), that the top-order
energy-flux-Morawetz quantities are bounded by

E1/2[Z 2Ψ](t, u) + F1/2[Z 2Ψ](t, u) . ε̊ lnA(e+ t)µ−B? (t, u), (3.5.1)

Ẽ1/2[Z 2Ψ](t, u) + F̃1/2[Z 2Ψ](t, u) + K̃1/2[Z 2Ψ](t, u) . ε̊ lnA+2(e+ t)µ−B? (t, u) (3.5.2)

for positive constants A and B. We will use these estimates to show how to derive a bound for the just-
below-top-order quantities E1/2[OΨ](t, u) + F1/2[OΨ](t, u) with a smaller power of µ−1

? .
One important ingredient is that the weighted quantity %2Otrg/χ verifies a transport equation with a good

structure, and this allows us to recover good t−weighted estimates83 for ‖Otrg/χ‖L2(Σut ) at the expense of a
loss of derivatives. More precisely, a careful analysis of equation (3.4.6) reveals that we can commute it
with %2O and use (3.4.10) to deduce∣∣L(%2Otrg/χ)

∣∣ =
∣∣%2∆/OΨ

∣∣+ · · · . (1 + t) |∇/OOΨ|+ · · · , (3.5.3)

where ∇/OOΨ is a top-order term. Using the coerciveness property (3.2.11a) (note the appearance of
another factor of µ−1/2

? (t, u)!), (3.5.3), and the top-order estimate (3.5.2), and ignoring the · · · terms, we
deduce ∥∥L(%2Otrg/χ)

∥∥
L2(Σut )

. µ−1/2
? (t, u)Ẽ[OOΨ](t, u) . ε̊ lnA+2(e+ t)µ−B−1/2

? (t, u). (3.5.4)

Recalling that L = ∂
∂t

and taking into account the fact that the spherical area form inherent in the norm
‖ · ‖L2(Σut ) is, in a pointwise sense, ∼ %2 ∼ (1 + t)2, it is not too difficult (see [64, Lemma 11.30.6]) to
integrate (3.5.4) to deduce∥∥Otrg/χ

∥∥
L2(Σut )

. ε̊
lnA+2(e+ t)

1 + t

∫ t

t′=0

1

1 + t′
µ−B−1/2
? (t′, u) dt′ + · · · . (3.5.5)

Applying Lemma 3.6 to inequality (3.5.5), we gain a power of µ? through the time integration:∥∥Otrg/χ
∥∥
L2(Σut )

. ε̊
lnA+3(e+ t)

1 + t
µ−B+1/2
? (t′, u) + · · · . (3.5.6)

83Recall that %(t, u) ≈ 1 + t in the region of interest.
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We now bound the first integral on the right-hand side of (3.4.3), that is, the integral

−
∫
Mt,u

(2R̆Ψ)(Otrg/χ)R̆OΨ d$,

by using the estimate (3.5.6), the Heuristic Principle estimate (see Subsubsect. 2.1.5) |R̆Ψ| . ε̊(1 + t)−1,
the coerciveness property (3.2.10a), and Cauchy-Schwarz. It therefore follows from (3.4.3) that

sup
s∈[0,t]

E[OΨ](s, u) + F[OΨ](s, u) ≤ Cε̊ + Cε̊2

∫ t

t′=0

1

(1 + t′)3/2
µ−B+1/2
? (t′, u)E1/2[OΨ](t′, u) dt′ + · · ·

(3.5.7)

≤ Cε̊2 sup
s∈[0,t]

E1/2[OΨ](s, u)

∫ t

t′=0

1

(1 + t′)3/2
µ−B+1/2
? (t′, u) dt′.

Using Lemma 3.6 to bound the time integral on the right-hand side of (3.5.7), and in particular taking
advantage of the good time decay in the integrand (3.5.7), we deduce from (3.5.7) that

E1/2[OΨ](t, u) + F1/2[OΨ](t, u) . ε̊µ−B+3/2
? (t′, u) + · · · . (3.5.8)

The inequality (3.5.8) has thus yielded the desired gain in µ? compared to the top-order bound (3.5.1).

Remark 3.13. Inequality (3.5.8) is mildly misleading in the sense that there are some worse error terms
that only allow us to gain a single power of µ?, rather than the 3/2 suggested by (3.5.8).

We have thus explained the main ideas of how to descend one level below the top order in the energy
estimate hierarchy of Prop. 3.4. One can continue the descent, each time using Lemma 3.6 to gain a
power of µ?. Furthermore, the estimate (3.3.4) explains why we can eventually descend to the estimates
(3.2.15a)-(3.2.15b), which no longer degenerate at all, even as a shock forms!

4. THE SHARP CLASSICAL LIFESPAN THEOREM IN 3D AND GENERALIZATIONS

In this section, we provide a detailed statement of the general sharp classical lifespan result from
[64], which applies to equations of the type �g(Ψ)Ψ = 0. The theorem is an analog of the main theorem
from Christodoulou’s work, namely [11, Theorem 13.1 on pg. 888], which applied to a related class of
quasilinear wave equations that arise in relativistic fluid mechanics; see Subsect. 5.2. We also provide
a brief overview of its proof, which complements our discussion of generalized energy estimates from
Sect. 3. We then sketch how to extend the result to apply to equations of the form (g−1)αβ(∂Φ)∂α∂βΦ = 0.
As in the spherically symmetric case, the result is the main ingredient used in proving that a shock actually
forms in solutions launched by an open set of data (see Sect. 5).

4.1. The sharp classical lifespan theorem. The sharp classical lifespan theorem below is a direct analog
of Prop. 1.3, which applied to spherically symmetric solutions.
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Theorem 2. [64, Theorem 21.1.1; Sharp classical lifespan theorem] Let (Ψ̊ := Ψ|Σ0 , Ψ̊0 := ∂tΨ|Σ0) be
initial data for the covariant scalar wave equation84 (in 3 space dimensions)

�g(Ψ)Ψ = 0.

Assume that the data are supported in the Euclidean unit ball Σ1
0. Let ε̊ = ε̊[(Ψ̊, Ψ̊0)] := ‖Ψ̊‖H25(Σ1

0) +

‖Ψ̊0‖H24(Σ1
0) be the size of the data. Let 0 < U0 < 1 be a fixed constant, and Ψ the corresponding

solution restricted to a nontrivial region of the formMT,U0 (see Definition (2.1.35e) and Figure 6). If ε̊ is
sufficiently small, then the outgoing lifespan T(Lifespan);U0 , as defined in Subsubsect. 1.3.3, is determined
as follows:

T(Lifespan);U0 := sup{t | inf
s∈[0,t)

µ?(s, U0) > 0}, (4.1.1)

where µ?(t, u) := min{1,minΣut
µ} (see Definition (2.1.35b)). Furthermore, there exists a constant

C(Lower−Bound) > 0 such that

T(Lifespan);U0 > exp

(
1

C(Lower−Bound)̊ε

)
. (4.1.2)

In addition, the following statements hold true inMT(Lifespan);U0
,U0 .

(1) Energy estimates. The energy estimate hierarchy of Prop. 3.4 is verified for (t, u) ∈ [0, U0] ×
[0, T(Lifespan);U0). A similar L2 hierarchy holds for the scalar-valued functions µ − 1, Li(Small) :=

Li − xi

%
, and Ri

(Small) := Ri + xi

%
, and for the St,u tensorfield χ(Small) := χ− g/

%
, where %(t, u) :=

1− u+ t.
(2) Heuristic Principle. The Heuristic Principle estimates stated in Subsubsect. 2.1.5 are valid for Ψ

and its low-order derivatives with respect to the commutation set Z := {%L, R̆, O(1), O(2), O(3)}
(see (3.1.1)).

Related C0 estimates hold for the low-order derivatives of the scalar-valued functions µ − 1,

Li(Small) := Li − xi

%
, and Ri

(Small) := Ri + xi

%
, and for the St,u tensorfield χ(Small) := χ − g/

%
.

In particular, if T(Lifespan);U0 < ∞, then these quantities extend to ΣU0
T(Lifespan);U0

as many-times
classically differentiable functions of the geometric coordinates (t, u, ϑ).

(3) Rectangular coordinates. If T(Lifespan);U0 <∞, then the change of variables map Υ : [0, T(Lifespan);U0)×
[0, U0] × S2 →MT(Lifespan);U0

,U0 from geometric to rectangular coordinates extends continuously
to [0, T(Lifespan);U0 ] × [0, U0] × S2. Furthermore, Υ has a positive Jacobian determinant and is
globally invertible on [0, T(Lifespan);U0)× [0, U0]× S2. In addition, if T(Lifespan);U0 <∞, then the
Jacobian determinant of Υ vanishes precisely on the set of points p ∈ ΣU0

T(Lifespan);U0
with µ(p) = 0.

84The theorem extends without any significant alterations to equations of the form �g(Ψ)Ψ = N (Ψ)(∂Ψ, ∂Ψ) wheneverN
verifies the future strong null condition of Remark 2.15. For simplicity we also assume (2.1.7). As we have noted earlier, this
assumption is easy to eliminate.
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(4) Lower bound for R̆Ψ = µRΨ. There exists a constant c > 0 such that if µ(t, u, ϑ) ≤ 1/4, and
GLL(t, u, ϑ) = d

dΨ
gαβ(Ψ)LαLβ(t, u, ϑ) 6= 0 then,

Lµ(t, u, ϑ) ≤ − c

(1 + t) ln(e+ t)
, (4.1.3)

|RΨ|(t, u, ϑ) ≥ c

µ(t, u, θ)(1 + t) ln(e+ t)

1

|GLL(t, u, ϑ)|
. (4.1.4)

Moreover, the vectorfield R verifies the Euclidean estimate85

|R− (−∂r)|e . ε̊ ln(e+ t)(1 + t)−1. (4.1.5)

At all points p ∈ ΣU0
T(Lifespan);U0

where µ(p) = 0, the derivative RΨ blows up like µ−1.

Remark 4.1 (Maximal development of the data). We stress the following important feature, made possi-
ble by Christodoulou’s framework: with some additional effort, the results of Theorem 4 can be extended
to a larger region, beyond the hypersurface ΣT(Lifespan);U0

, to reveal a portion of the maximal development
of the data; see Subsect. 5.2 and in particular Christodoulou’s Theorem 4. This extra information can be
obtained because the results of Theorem 4 are sufficiently sharp.

Discussion of the proof of Theorem 2. The basic strategy begins with assuming, as bootstrap assumptions,
that the Heuristic Principle C0 decay estimates (see Subsubsect. 2.1.5) hold for Ψ and its low-order deriva-
tives on a region of the formMT,U0 for which µ > 0. By “derivatives,” we mean derivatives with respect
to the commutation vectorfields Z := {%L, R̆, O(1), O(2), O(3)} (see (3.1.1)). This mirrors the start to
our proof of Proposition 1.3, in spherical symmetry. Using these bootstrap assumptions for Ψ and the
smallness of the initial data, we derive analogous C0 estimates for µ − 1 and its low-order derivatives
by using the transport equation (2.1.28) (note that µ − 1 vanishes in the case Ψ ≡ 0). We also derive
C0 estimates for the quantities Li − xi/% as well as χ from the simple transport equations which they
satisfy; see (2.1.28), (2.1.24), and (2.1.27). It is essential to note that all of these low-order estimates are
regular relative to µ. In particular, the estimate (4.1.5) can be proved during this stage of the argument.
Furthermore, assuming that one knows that the quantity in (4.1.1) is the classical lifespan of the solution
in the region of interest (below, we describe how to establish this fact), the estimate (4.1.2) can easily be
derived by using the transport equation (2.1.28) to prove that µ must remain positive up to a time of order
exp

(
1

C(Lower−Bound)̊ε

)
.

Next, we derive generalized energy estimates for Ψ on the regionMT,U0 . The main ideas behind these
estimates were discussed in Sect. 3. To control the error terms, it is convenient to rely not only on the low
derivative assumptions discussed below, but on a full set of bootstrap assumptions, including L2 assump-
tions consistent with Prop. 3.4. Clearly, in deriving the generalized energy estimates, we must bound the
norm ‖·‖L2(Σut ) of the high derivatives of the eikonal function quantities such as µ, Li, and χ.Most of these
estimates can be derived using the transport equations mentioned in the previous paragraph. However, to
bound the top derivatives of χ in the norm ‖ · ‖L2(Σut ), we avoid derivative loss by using the modified
quantities described in Subsubsect. 3.4.3 and elliptic estimates (see Remark 3.10). Similarly, one must

85Here, |V |2e := δabV
aV b and ∂r is the standard Euclidean radial derivative.
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carefully avoid top-order derivative loss stemming from the terms ∆/µ, which appear upon commuting the
wave equation with the transversal derivative R̆.

After deriving the generalized energy estimates, we improve the Heuristic Principle bootstrap assump-
tions by assuming small-data and using Sobolev embedding on the spheres St,u. In particular, we use the
low-order L2 estimates (3.2.15a) of Prop. 3.4, which do not degenerate at all relative to µ−1.

We now give the main idea explaining why the classical lifespan of Ψ in regions of the form MT,U0

is given by (4.1.1). The main point is that if infMT,U0
µ > 0, then the rescaled frame {L, R̆,X1, X2} is

uniformly comparable to the rectangular coordinate vectorfield frame { ∂
∂xα
}α=0,1,2,3 onMT,U0 . Hence, the

above C0 bounds, which show that Ψ and its derivatives relative to the rescaled frame remain uniformly
bounded on MT,U0 , imply that the first rectangular derivatives of Ψ also remain uniformly bounded on
MT,U0 . Therefore, by standard techniques,86 we can extend the solution to a larger region of the form
MT+∆,U0 .

Next, as we noted in Remark 2.2, the Jacobian determinant of the change of variables map Υ is propor-
tional to µ. This is the main observation needed to prove the statements concerning Υ.

Finally, the estimates (4.1.3) and (4.1.4) are analogs of the estimates (1.3.16) and (1.3.17) proved in
spherical symmetry. The additional terms present away from spherical symmetry involve Cu−tangential
derivatives of Ψ. Hence, they decay very rapidly and make only a negligible contribution to the estimates.

�

4.2. Extending the sharp classical lifespan theorem to a related class of equations. Below we sketch
how to extend Theorem 2 to apply to non-covariant quasilinear equations of the form

(g−1)αβ(∂Φ)∂α∂βΦ = 0. (4.2.1)

Analogously, the small-data shock-formation theorem (Theorem 5 below) can be extended to apply to
equations of type (4.2.1), provided the nonlinearities fail the classic null condition (we assume, of course,
that gαβ = mαβ +O(|∂Φ|) is a perturbation of the Minkowski metric). In particular, recall from Remark
2.12 that the correct analog of the future null condition failure factor (+)ℵ is

(+)ℵ := mκλG
κ
αβ(∂Φ = 0)Lα(Flat)L

β
(Flat)L

λ
(Flat), (4.2.2)

where

Gλ
αβ = Gλ

αβ(∂Φ) :=
∂

∂(∂λΦ)
gαβ(∂Φ). (4.2.3)

When (+)ℵ ≡ 0, the nonlinearities verify Klainerman’s classic null condition [35], and the methods of [37]
and [10] yield small-data global existence. When (+)ℵ is nontrivial, Theorem 5 below can be extended
to show that small-data future shock formation occurs. See also Sect. 5.1 for a discussion of Alinhac’s
related small-data shock formation theorem.

Remark 4.2. Note that there is a major difference between equations of type (4.2.1) and the scalar equa-
tions of the form (g−1)αβ(Ψ)∂α∂βΨ = 0. As we described in Subsect. 1.4, the latter type of equations
exhibit small-data global existence even when the classic null condition fails.

86By “standard techniques,” we mean an adapted version of the continuation criterion of Proposition 1.1. Note that since in
the present context, the metric depends only on Ψ, it suffices to control Ψ in W 1,∞, instead of W 2,∞ as in the proposition.
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Examples
• In the case of the equation�mΦ = ∂t((m

−1)αβ∂αΦ∂βΦ),we compute thatGλ
αβ = 2δλαmβ0.Hence,

(+)ℵ = mκλδ
κ
αL

α
(Flat)L

β
(Flat)L

λ
(Flat) = −mαλL

α
(Flat)L

0
(Flat)L

λ
(Flat) = 0. Therefore, the nonlinearities

in this equation verify the classic null condition.
• In the case of the equation �mΦ = 2∂tΦ∂

2
t Φ, we compute that Gλ

αβ = mα0mβ0δ
λ
0 . Hence, (+)ℵ =

mα0mβ0δ
λ
0L

α
(Flat)L

β
(Flat)L

λ
(Flat) ≡ 1. Therefore, the nonlinearities in this equation fail the classic

null condition.

4.2.1. Connections to equations of the form �gΨ = N . The main idea of extending the theorem is to
differentiate (4.2.1) with rectangular coordinate derivatives ∂ν and to set

Ψν := ∂νΦ, (4.2.4)
~Ψ := (Ψ0,Ψ1,Ψ2,Ψ3), (4.2.5)

thereby arriving at a coupled system that can be put into the form

�g(~Ψ)Ψν = N (~Ψ)(∂~Ψ, ∂Ψν), (4.2.6)

where�g(~Ψ) is the covariant wave operator corresponding to g(~Ψ). The semilinear termN (~Ψ)(∂~Ψ, ∂Ψν)

generated from the commutation verifies the future strong null condition87 of Remark 2.15. Hence, as in
our study of the scalar equation (2.1.2) under the structural assumptions of Subsubsect. 2.1.7, the danger-
ous quadratic terms, whose presence is heralded by (+)ℵ 6≡ 0, can only hide in the operator�g(~Ψ).With the

term N (~Ψ)(∂~Ψ, ∂Ψν) having little effect on the dynamics, we can effectively analyze the system (4.2.6)
by studying each scalar equation for Ψν using methods similar to the ones we used to analyze the scalar
equation �g(Ψ)Ψ = 0. In particular, the Heuristic Principle estimates (2.1.36a)-(2.1.36b) hold for each
scalar component Ψν .

4.2.2. The evolution equation for µ and its connection to the top-order L2 estimates. It is instructive to
examine the dangerous quadratic terms present in the system (4.2.6) from a different point of view by
deriving the evolution equation for µ (that is, an analog of equation (2.1.28)) in the present case of the
metric g(~Ψ). Specifically, arguing as in our proof of (2.1.28) and exploiting the identity ∂αΨβ = ∂βΨα,
we find that

Lµ(t, u, ϑ) = −1

2
[GL

LLR
aR̆Ψa](t, u, ϑ) + µErr (4.2.7)

= −1

2
(+)̊ℵ(ϑ)[RaR̆Ψa](t, u, ϑ) + µErr,

87More precisely, we have

N (~Ψ)(∂~Ψ, ∂Ψ) = (g−1)αα
′
(g−1)ββ

′
Gµα′β′ {∂βΨα∂µΨ− ∂µΨα∂βΨ}+ (g−1)αβ

1√
|detg|

∂
√
|detg|
∂Ψλ

∂αΨλ∂βΨ,

where Gλαβ(~Ψ) is defined in (4.2.3) and the determinant is taken relative to the rectangular coordinates; see [64, Lemma A.1.2]
for the details.
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where88

(+)̊ℵ(ϑ) := (+)ℵ(t = 0, u = 0, ϑ), (4.2.8)

GL
LL := Gλ

αβ(~Ψ)LαLβLλ and the error terms Err in (4.2.7) are small and decaying according to (2.1.36a)-
(2.1.36b). In deriving the second line in (4.2.7), we have used the fact that we can prove an esti-
mate of the form GL

LL(t, u, ϑ) = (+)̊ℵ(ϑ) + O(̊ε), where ε̊ is the size of the data. Hence, the term
−1

2
(+)̊ℵ(ϑ)[RaR̆Ψa](t, u, ϑ) is the dangerous one that can cause µ to vanish in finite time.

To analyze solutions ~Ψ, we can derive energy estimates for each scalar component Ψν by commuting
each equation (4.2.6) with vectorfield operators Z N and deriving energy identities of the form (3.2.7) for
Z NΨν . The energy identities for the Ψν are of course coupled, but the analysis of each component is
essentially the same as it is for the scalar equation�g(Ψ)Ψ = 0. The only new ingredients that we need are
estimates of the following form, which must hold for each ν = 0, 1, 2, 3 :∣∣∣GL

LLR̆Ψν

∣∣∣ ≤ 2 |Lµ|+ Err. (4.2.9)

The estimates (4.2.9) are are less straightforward to derive compared to the case of the scalar equation
�g(Ψ)Ψ = 0; their derivation uses the symmetry condition ∂αΨβ = ∂βΨα; see Appendix A of [64].
These estimates are used to replace inequality (3.4.18) for each scalar component Ψν of our system. More
precisely, the estimates (4.2.9) are analogs of the algebraic replacement Lµ = 1

2
GLLR̆Ψ+Err that we used

to derive (3.4.24) from (3.4.23). As such, they play essential roles in allowing us to close the top-order L2

estimates for the Ψν .

5. THE SHOCK-FORMATION THEOREMS AND COMPARISONS

In this final section, we first state Alinhac’s and Christodoulou’s shock formation theorems. We then
compare and contrast their approaches and explain the advantages of Christodoulou’s framework. In
particular, we highlight the conceptual and technical gains that stem from using a true eikonal function
throughout the proof and working with quantities that are properly rescaled by µ : relative to the rescaled
quantities, the problem becomes a traditional one in which one establishes long-time well- posedness. We
then state the shock formation theorem of [64]. Finally, we compare and contrast the various results.

5.1. Alinhac’s shock formation theorem. In this section, we state Alinhac’s shock formation results
in 3 space dimensions. We summarize the most important aspects of his shock formation results in the
following theorem.89 We try to stay true to the original formulation when stating his theorems (some of
the coordinate systems appearing in the theorem could actually be eliminated). The results are a partial
summary of Theorems 2 and 3 of [2] in the case of 3 space dimensions.

88As we described in Subsect. 2.2, (+)̊ℵ is a good approximation to (+)ℵ that has the advantage of being constant along the
integral curves of L.

89Despite the title of the article [2], it addresses both the cases of 2 and 3 space dimensions.
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Theorem 3 (Alinhac). Consider the following initial value problem expressed relative to Minkowski-
rectangular coordinates:

(g−1)αβ(∂Φ)∂α∂βΦ = 0, (5.1.1)

(Φ|t=0, ∂tΦ|t=0) = λ(Φ̊, Φ̊0), (5.1.2)

where λ(Φ̊, Φ̊0) is a one-parameter family of smooth, compactly supported initial data indexed by λ >
0. Let Φλ be the solution corresponding to the data. Assume that (1.1.7) holds and that Klainerman’s
classic null condition fails for the nonlinearities in (5.1.1), that is, that the function (+)ℵ(θ) from (4.2.2)
is non-vanishing at some Euclidean angle θ ∈ S2. Recall that Friedlander’s radiation field is the function
z[(Φ̊, Φ̊0)] : R× S2 → R defined by

z[(Φ̊, Φ̊0)](q, θ) := − 1

4π

∂

∂q
R[Φ̊](q, θ) +

1

4π
R[Φ̊0](q, θ), (5.1.3)

where the Radon transformR is defined in (1.2.17). Assume that the function

1

2
(+)ℵ(θ)

∂2

∂q2
z[(Φ̊, Φ̊0)](q, θ) (5.1.4)

has a unique, strictly positive, non-degenerate maximum at (q∗, θ∗). If λ is sufficiently small and positive,
then the classical lifespan T(Lifespan);λ of the solution is finite and verifies

lim
λ↓0

λ lnT(Lifespan);λ =
1

1
2

(+)ℵ(θ∗)
∂2

∂q2z[(Φ̊, Φ̊0)](q∗, θ∗)
. (5.1.5)

In addition, there exists a first blow-up point p(Blow−up);λ with rectangular coordinates p(Blow−up);λ =

(T(Lifespan);λ, x
1
λ, x

2
λ, x

3
λ) and a constant C > 0 depending on (Φ̊, Φ̊0) such that whenever λ is sufficiently

small and positive, the following statements hold true.

C1 behavior relative to rectangular coordinates. Φλ is a C1 function of the rectangular coordinates {xα}
and for t ≤ T(Lifespan);λ, we have

|Φλ|+
3∑

α=0

|∂αΦλ| ≤ Cλ
1

1 + t
. (5.1.6)

Blow-up of second rectangular derivatives. One can obtain the behavior of the second rectangular deriva-
tives of Φλ in the past domain of dependence of a neighborhood of p(Blow−up);λ in ΣT(Lifespan);λ

. More
precisely, strictly away from p(Blow−up);λ, Φλ is a C2 function of the rectangular coordinates with second-
order derivatives that verify a bound of the form (5.1.6), where the constant C depends on the distance to
p(Blow−up);λ. In contrast to the regular behavior (5.1.6), the following blow-up behavior occurs:

C−1

(
t ln

T(Lifespan);λ

t

)−1

≤
3∑

α,β=0

‖∂α∂βΦλ‖C0(Σt)
≤ C

(
t ln

T(Lifespan);λ

t

)−1

. (5.1.7)

Detailed description near the first blow-up point. We define the rescaled time variable τ := λ ln t and in
particular set τ(Lifespan);λ = λ lnT(Lifespan);λ. Let u(Flat) = 1 + t − r be a flat eikonal function of the
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Minkowski metric. There exists a true eikonal function u for the dynamic metric g(∂Φλ) defined near
p(Blow−up);λ. u(Flat) and u respectively induce time-rescaled flat coordinates (τ, u(Flat), θ) and geometric
coordinates (τ, u, θ), where θ is the Euclidean angle. The first blow-up point can be written uniquely in
the time-rescaled flat coordinates as p(Blow−up);λ = (τ(Lifespan);λ, u(Flat);λ, θλ).

Relative to the time-rescaled geometric coordinates, we have the following conclusions. There exists a
value uλ, a neighborhood Ω ⊂ {(τ, u, θ) | τ ≤ τ(Lifespan);λ, u ∈ R, θ ∈ S2} of (τ(Lifespan);λ, uλ, θλ), and
functions v, w, ζ ∈ C3(Ω) with the following properties.

(1) The functions v, w, ζ can be related to the solution Φλ by interpreting ζ as the change of variables
from (τ, u, θ) to u(Flat), v as the solution Φλ expressed in the time-rescaled geometric coordinates,
and w as the rescaled first transversal derivative of v. More precisely, we have

ζ(τ(Lifespan);λ, uλ, θλ) = u(Flat);λ, (5.1.8a)

v(τ, u, θ) = λ−1 (1 + eτ/λ − ζ(τ, u, θ))︸ ︷︷ ︸
r

Φλ(τ, u(Flat) = ζ(τ, u, θ), θ), (5.1.8b)

∂

∂u
v = w

∂

∂u
ζ. (5.1.8c)

(2) The change-of-variables function ζ satisfies
• ∂

∂u
ζ ≥ 0, with equality exactly at (τ(Lifespan);λ, uλ, θλ) and nowhere else.

• At the point (τ(Lifespan);λ, uλ, θλ), we have ∂2

∂τ∂u
ζ < 0, ∂2

∂θ∂u
ζ = ∂2

∂u2 ζ = 0, and the Hessian
with respect to u, θ of ∂

∂u
ζ is positive definite.

(3) The derivative ∂
∂u
w does not vanish at (τ(Lifespan);λ, uλ, θλ).

We make the following clarifying remarks concerning Alinhac’s theorem.
• Consider the inverse change of variables to ζ. That is, let η be defined by η(τ, ζ(τ, u, θ), θ) = u.

Then η is, relative to rectangular coordinates, a solution to the eikonal equation: (g−1)αβ(∂Φλ)∂αη∂βη =
0.
• Note that by the chain rule and the change of variables u(Flat) = ζ(τ, u, θ) we have, with τ, θ fixed,

∂ζ

∂u

∂

∂u(Flat)

=
∂

∂u
.

Hence, by (5.1.8b)-(5.1.8c), we have

∂

∂u(Flat)

(rΦλ)(τ, ζ(τ, u, θ), θ) = λw(τ, u, θ), (5.1.9a)

∂2

∂u2
(Flat)

(rΦλ)(τ, ζ(τ, u, θ), θ) = λ
∂
∂u
w

∂
∂u
ζ

(τ, u, θ). (5.1.9b)

Hence, from (5.1.9a)-(5.1.9b) and the conclusions of the theorem, it follows that the transversal
second derivative ∂2

∂u2
(Flat)

(rΦλ) blows up at p(Blow−up);λ thanks to the vanishing of ∂
∂u
ζ, while the

first derivative ∂
∂u(Flat)

(rΦλ) does not blow-up.
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• The quantity ∂
∂u
ζ should be compared to the quantity µ discussed throughout this paper. The

statements concerning the first derivatives of ∂
∂u
ζ given in the theorem above are natural: the non-

degeneracy condition ∂2

∂τ∂u
ζ < 0 is the exact analogue of (3.3.7) (see also (1.3.16) in spherical

symmetry); the conditions concerning ∂2

∂u2 ζ and ∂2

∂τ∂u
ζ are in fact necessary if τ(Lifespan);λ is the

first (rescaled) blow-up time and (τ(Lifespan);λ, uλ, θλ) is the unique first blow-up point.

5.2. Christodoulou’s results. In [11], Christodoulou proved, for a class of quasilinear wave equations
arising in irrotational relativistic fluid mechanics (see also [9] for a generalization to the non-relativistic
Euler equations), theorems that are analogous to the sharp classical lifespan theorem (Theorem 2) and the
small-data shock-formation theorem (Theorem 5) of the third author. Actually, Christodoulou’s work went
somewhat beyond these two results in the following two senses.

(1) His shock-formation theorem was extended to apply to a class of small fluid equation data for
which there is non-zero vorticity. However, most of his main results, including the shock-formation
aspect of his work, applied only to a region in which the fluid is irrotational (vorticity-free), in
which case the fluid equations reduce to the aforementioned scalar quasilinear wave equation.
Hence, we will not elaborate on Christodoulou’s treatment of the full relativistic Euler equations,
but instead focus only on describing his results for irrotational flows.

(2) After identifying the constant-time hypersurface region ΣU0
T(Lifespan);U0

where the first shock-point
occurs, he goes further by characterizing the nature of the maximal future development, including
the boundary, of the data lying in the exterior of the sphere S0,U0 ⊂ ΣU0

0 . Christodoulou’s full
description of the maximal development is made possible by the sharp estimates he proved in his
sharp classical lifespan theorem [11, Theorem 13.1 on pg. 888], analogous to Theorem 2 stated
above, and which forms the most difficult part of the analysis.

We now describe Christodoulou’s results [11] in more detail. There are some inessential complications
that arise in the formulation of the problem compared to our study of the equations�g(Ψ)Ψ = 0 and that of
Alinhac because Christodoulou’s background solutions are not Φ = 0, but rather Φ = kt,where k is a non-
zero constant. These are the solutions that correspond to the nontrivial constant states in relativistic fluid
mechanics in Minkowski spacetime, and the resulting complications are simply issues of normalization
and not serious ones. To avoid impeding the flow of the paper, we describe Christodoulou’s equations in
detail and address the normalization issue in Appendix A. Here, we summarize the most important aspects
of his work. The results stated below as Theorem 4 are a conglomeration of [11, Theorem 13.1 on pg.
888, Theorem 14.1 on pg. 903, Proposition 15.3 on pg. 974, and the Epilogue on pg. 977]. The quantities
that appear in the theorem are essentially the same as the quantities we have studied in Sects. 2-4, up to
the differences in normalization we describe in Appendix A.

Theorem 4 (Christodoulou). Let σ = −(m−1)αβ∂αΦ∂βΦ be as defined in (A.0.12), where m is the
Minkowski metric. Assume that the Lagrangian L(σ) verifies the positivity conditions (A.0.13) in a neigh-
borhood of σ = k2, where k is a non-zero constant, but that L(σ) is not the exceptional Lagrangian
(A.0.29). Consider the following Cauchy problem for the quasilinear (Euler-Lagrange) wave equation
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corresponding to L(σ), expressed relative to rectangular coordinates:

∂α

(
∂L(σ)

∂(∂αΦ)

)
= 0, (5.2.1)

(Φ|t=0, ∂tΦ|t=0) = (Φ̊, Φ̊0). (5.2.2)

Assume that the data are small perturbations of the data corresponding to the non-zero constant-state
solution Φ = kt and that the perturbations are compactly supported in the Euclidean unit ball. Let
U0 ∈ (0, 1/2) and let

ε̊ = ε̊[(Φ̊, Φ̊0)] := ‖Φ̊0 − k‖HN (Σ
U0
0 )

+
3∑
i=1

‖∂iΦ̊‖HN (Σ
U0
0 )

(5.2.3)

denote the size of the data, where N is a sufficiently large integer.90

Sharp classical lifespan. If ε̊ is sufficiently small, then a sharp classical lifespan theorem in analogy with
Theorem 2 holds.

Small-data shock formation. We define the following data-dependent functions of u|Σ0 = 1 − r (see
Appendix A for definitions of α,η, etc.):

E [(Φ̊, Φ̊0)](u) (5.2.4)

:=
∑

Ψ∈{∂tΦ−k,∂1Φ,∂2Φ,∂3Φ}

∫
Σu0

{
α−2µ(η−1

0 + α−2µ)(LΨ)2 + (L̆Ψ)2 + (η−1
0 + 2α−2µ)µ|∇/Ψ|2

}
d$,

S[(Φ̊, Φ̊0)](u) :=

∫
S0,u

r
{

(Φ̊0 − k)− η0∂rΦ̊
}
dυe/ +

∫
Σu0

{
2(Φ̊0 − k)− η0∂rΦ̊

}
d3x, (5.2.5)

where d$ is defined in (3.2.8), dυe/ denotes the Euclidean area form on the sphere S0,u of Euclidean
radius r = 1− u, and d3x denotes the standard flat volume form on R3. Assume that (see (A.0.21) for the
definition of H)

` :=
dH

dσ
(σ = k2) > 0. (5.2.6)

There exist constants C > 0 and C ′ > 0, independent of U ∈ (0, U0], such that if ε̊ is sufficiently small
and if for some U ∈ (0, U0] we have

S[(Φ̊, Φ̊0)](U) ≤ −Cε̊E1/2[(Φ̊, Φ̊0)](U) < 0, (5.2.7)

then a shock forms in the solution91 Φ and the first shock in the maximal development of the portion of the
data in the exterior of S0,U ⊂ ΣU

0 originates in the hypersurface region ΣU
T(Lifespan);U

(see Definition 2.3),

90A numerical value of N was not provided in [11].
91That is, Φ and its first rectangular derivatives remain bounded, while some second-order rectangular derivative blows up

due to the vanishing of µ.
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where

T(Lifespan);U < exp

C ′ U∣∣∣k3`S[(Φ̊, Φ̊0)](U)
∣∣∣
 . (5.2.8)

A similar result holds if ` < 0; in this case, we delete the “−” sign in (5.2.7) and change “≤” and “<”
to “≥” and “> .”

Description of the boundary of the maximal development. For shock-forming solutions,92 the boundary
B of the maximal development of the data in the exterior of S0,U ⊂ ΣU

0 is a disjoint union B = (∂−H ∪
H) ∪ C, where ∂−H ∪ H is the singular part (where µ vanishes) and C is the regular part (where µ
extends continuously to a positive value). The solution and its rectangular derivatives extend continuously
in rectangular coordinates to the regular part. Each component of ∂−H is a smooth 2−dimensional
embedded submanifold of Minkowski spacetime, spacelike with respect to the dynamic metric93 h (see
(A.0.15)). The corresponding component of H is a smooth, embedded, 3−dimensional submanifold in
Minkowski spacetime ruled by curves that are null relative to h and with past endpoints on ∂−H. The
corresponding component C is the incoming null hypersurface corresponding to ∂−H, and it is ruled by
incoming h−null geodesics with past endpoints on ∂−H.

H HC

92Some of the results stated here depend on some non-degeneracy assumptions on the solution that are expected to hold
generically, such as ∂2

∂u2µ > 0 at the shock points.
93We follow the conventions of [11] and denote the dynamic metric by h = h(∂Φ) in this section.
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FIGURE 7. The geometry of the maximum development in cross-sectional view. The gray
lines indicate the level sets of our eikonal function u, near the first blow-up point. The
dotted lines form the regular boundary C. The black curves indicate the singular boundary
H, whose lower endpoints are ∂−H.

We make the following remarks concerning Christodoulou’s theorem.

• Most aspects of Theorem 2 can be proved by using the strategy outlined in the discussion of the
proof of Theorem 4 (see also Subsect. 4.2).
• The full description of the boundary of the maximal development, especially in view of the goal

of extending the solution past the shock front, involves discussions both relative to Minkowski
spacetime and relative to the eikonal foliation corresponding to u, which degenerates along ∂−H∪
H. We invite interested readers to consult [11, Ch.15] and will not discuss these issues further
except to note that the full description requires studying the solution at times t beyond the time of
first blow-up and studying the blow-up sets µ→ 0 along the Σt, which have positive dimension.
• The quantity (5.2.6) is the exact analog of the future null condition failure factor (+)ℵ from (2.1.40).

Note that unlike the general classes of equations considered in Theorems 2, 3, and 5, the quantity
(5.2.6) is not angularly dependent.
• As we make clear in Subsect. 5.3, Christodoulou’s condition for shock formation, though com-

pelling, is not sharp. On the other hand, Alinhac’s condition for shock formation, based on
John’s conjecture, is sharp in a sense that we make precise. For example, it is easy to see
that there exist spherically symmetric data for which Christodoulou’s quantity (5.2.5) verifies94

S[(Φ̊, Φ̊0)](U) ≥ 0 for all U. For such data, the shock formation condition (5.2.7) cannot be satis-
fied. However, Cor. 1.4 can be extended to show that such data, when nontrivial, lead to finite-time
shock formation, and Theorem 5 shows that this shock formation is in fact stable under general
small perturbations. Hence, the condition (5.2.7) does not detect all shock forming data.

5.3. Comparison of Alinhac’s and Christodoulou’s frameworks. The frameworks of Alinhac and
Christodoulou share some fundamental features, including the following:

• Shock formation is caused by the crossing of characteristics, as in Burgers’ equations.
• Shock-forming solutions remain regular relative to adapted coordinates constructed out of a true

eikonal function.
• Establishing good peeling properties plays an important role in the analysis.

However, they also differ in one significant way. The main advantage of Christodoulou’s framework is
that it allows one to extend the solution beyond the hypersurface ΣT(Lifespan)

where the first singularity
occurs. In fact, his methods reveal a large portion of the maximal development of the data (see Remark
1.12 and Figure 7). The extension is made possible by the precise form of the dispersive estimates and
the formulation of the well-posedness theorem (see Theorems 2 and 4) in terms of the sharp breakdown
criterion µ→ 0.

94Simply take data with Φ̊0 − k ≥ 0 and ∂rΦ̊ ≡ 0.
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In contrast, Alinhac’s results are valid only up the hypersurface ΣT(Lifespan)
where first singularity oc-

curs, and only for data for which there is a unique first singularity point; see his non-degeneracy assump-
tions on the data stated just below (5.1.4). In particular, his results do not apply to the spherically sym-
metric data that we treated in Subsubsect. 1.3.1. This should be further contrasted with another strength
of Christodoulou’s framework, which is that it can be extended to show the stability (under general small
perturbations) of John’s spherically symmetric shock-formation result; see Theorem 5 by the third author.
It is natural to wonder whether or not Alinhac’s approach can be easily modified to recover all of the de-
tailed features revealed by Christodoulou’s framework. Unfortunately, as we describe below, the answer
seems to be “no.” In total, only Christodoulou’s framework is suitable for setting up the important prob-
lem that we discussed in the Introduction: extending our understanding of 1D conservation laws to higher
dimensions, including extending the solution beyond the shock.

We now highlight two merits of Alinhac’s results. First, his proofs are relatively short and he was the
first to show that indeed, failure of the null condition in equation (5.1.1) leads, for a set of small data, to
finite-time shock formation. A second merit is that his condition on the data for shock-formation, stated
just below (5.1.4), is explicitly connected to the limiting lifespan of the solution via equation (5.1.5). That
is, he proved a restricted version of John’s conjecture, limited only by his non-degeneracy assumptions
on the data. We also note that in [30] (see also [31]), John made notable progress towards proving his
conjecture by showing that the second derivatives of Φ start to grow near the limiting time. However,
he never proved actual blow-up. This discussion suggests that the John-Hörmander lifespan lower bound
is essentially sharp and that if the John-Hörmander quantity (5.1.4) is non-positive in a region, then the
solution should exist beyond the standard almost global existence time in a related spacetime region. In
Subsect. 5.5, we will in fact sketch a proof of this statement.

We now describe a few aspects of Alinhac’s proof and explain the origin of its limitations. His proof
is relatively short, primarily because he was able to disregard many of the intricate geometric structures
present in Christodoulou’s framework. As we have seen in Sect. 3, Christodoulou’s framework leads to
a complicated interplay between derivative loss and µ-degeneration of the generalized energy estimates.
Having disregarded these features, Alinhac’s approach led to linearized equations that lose derivatives
relative to the background. More precisely, he set up an iteration scheme95 to construct the blow-up
solution Φλ together with the smooth functions v, w, and ζ , as well as the coordinates of the first blow-up
time (in particular, τ(Lifespan);λ)) of Theorem 3. At each step in the iteration, his effective eikonal function
corresponds to the current iterate of ζ. Hence, the ζ iterate does not correspond to a true eikonal function
of the nonlinear solution. For similar reasons, his adapted vectorfields (which also vary from iterate to
iterate) have small components that are transversal to the true characteristics, which led to derivative loss
in the estimates relative to the previous iterate. These derivative losses turns out to be sufficiently tame,96

and Alinhac was therefore able to handle them with a Nash-Moser scheme.
Alinhac’s iteration scheme, however, fundamentally depends on a condition that he calls “(H)”; see

[4, pg. 15]. Roughly speaking, condition (H) demands that each iterate has a corresponding µ that vanishes
at exactly one point on its constant-time hypersurface of first blow-up; this turns out to be guaranteed when

95The initial guess is “Φλ=0”, which formally solves a Burgers-type equation along each outgoing null geodesic.
96Interestingly, although Alinhac did not use the elliptic estimates of Remark 3.10 in his work, he did need to use an analog of

the renormalized Raychaudhuri equation of Subsubsect. 3.4.4 in his derivation of tame L2 estimates for his linearized equations.
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his non-degeneracy assumption on the data, stated immediately after (5.1.4), hold. On the other hand,
when the maximum of the John-Hörmander quantity (5.1.4) is attained at multiple points, or perhaps even
along a submanifold, condition (H) fails for the zeroth iterate and the scheme cannot continue. It is for this
reason that Alinhac’s framework does not recover the stability of spherically symmetric blow-up; compare
with Remark 5.1. Furthermore, the condition (H) also poses a barrier to recovering the geometry of the
maximal development, as Christodoulou did in his Theorem 4: Christodoulou showed that to the future of
the first blow-up point, the subset of Σt where µ→ 0 generically has dimension at least two and thus falls
beyond the scope of Alinhac’s iteration scheme.

5.4. The shock-formation theorem of [64]. We now state the small-data shock formation theorem from
[64] for solutions to the covariant wave equation �g(Ψ)Ψ = 0 in 3 space dimensions. We also briefly
discuss its proof. As we have described above, the theorem extends without any significant alterations to
equations of the form �g(Ψ)Ψ = N (Ψ)(∂Ψ, ∂Ψ) whenever the semilinear term N (Ψ)(∂Ψ, ∂Ψ) verifies
the future strong null condition of Remark 2.15 (or, if we are studying shock formation to the past, the
past strong null condition of Remark 2.16); see also Remark 2.13.

Theorem 5. [64, Theorem 22.3.1; Shock formation for nearly radial data] Let (Ψ̌ := Ψ|Σ−1/2
, Ψ̌0 :=

∂tΨ|Σ−1/2
) be “initial” data (at time −1/2) for the covariant scalar wave equation

�g(Ψ)Ψ = 0.

Assume that Klainerman’s classic null condition fails for the nonlinearities, that is, that the future null
condition failure factor (+)ℵ from Definition 2.4 does not completely vanish. Assume that the data are
nontrivial, spherically symmetric,97 supported in the Euclidean ball of radius 1/2 centered at the origin
and that (Ψ̌, Ψ̌0) ∈ H25 ×H24. Then (perhaps shrinking the amplitude of the data if necessary), a shock-
formation result in analogy with Cor. 1.4 holds for the corresponding solution. Furthermore, for each
shock-forming spherically symmetric (small) data pair, the shock-formation processes are stable under
general small perturbations (without symmetry assumptions) of the data belonging to H25×H24 and the
Euclidean ball of radius 1/2.

Furthermore, all of the conclusions of Theorem 2 hold for the solution. In particular, its lifespan is finite
precisely because µ vanishes at one or more points and at such points, some rectangular derivative ∂νΨ
blows up.

Remark 5.1 (The stability of spherically symmetric blow up). An immediate corollary is that F. John’s
blow-up result in spherical symmetry (see Subsubsect. 1.3.1) is stable under small arbitrary perturbations.
It turns out, however, that for technical reasons, it is easier to prove that shock formation occurs for
spherically symmetric initial data, even for equations that are not invariant under the Euclidean rotations.
Theorem 5 asserts that these shock formation processes are also stable under general small perturbations.

Discussion of the proof. Thanks to the difficult estimates of Theorem 2, Theorem 5 can be proved without
much difficulty. We need only to show that µ vanishes in finite time. In fact, for the nearly spherically
data under consideration, Theorem 5 can be proved by using arguments very similar to the ones we used
in proving Cor. 1.4, given in spherical symmetry. Although there are additional terms present away from

97Note that we are not assuming that the equation itself is invariant under Euclidean rotations. Hence, spherically symmetric
data do not generally launch spherically symmetric solutions.
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spherical symmetry, the low-order Heuristic Principle estimates of Theorem 2 can be used to show that
they decay sufficiently fast and do not affect the shock formation processes in a substantial manner. See
Subsect. 2.2 for some additional details.

�

5.5. Additional connections between the results. We now discuss some additional connections between
the shock-formation results of Christodoulou, those of Alinhac, and those of [64]. Throughout this sub-
section ε̊ denotes the small size of the data.

5.5.1. Only one term can drive µ to 0. The sufficient conditions on the initial data from Theorems 3, 4,
and 5 that lead to finite-time shock formation are not obviously related. However, as we have noted in
the previous subsections as well as our discussion of Theorem 2, shock formation is essentially driven by
one term and one term only, at least in the context the three theorems mentioned above. In the case of
Theorem 5, to analyze the behavior of µ, one uses the following estimate for solutions to the equations
�g(Ψ)Ψ = 0 (see (2.2.6)):

Lµ(t, u, ϑ) =
1

2
(+)̊ℵ(ϑ)R̆Ψ(t, u, ϑ) + · · · , t ≥ ε̊−1. (5.5.1)

In the case of the equations treated in Alinhac’s Theorem 3 or in Christodoulou’s Theorem 4, one uses
equation (4.2.7). Thus, to guarantee shock formation, one must carry out the following two steps.

(1) Show that the term 1
2

(+)̊ℵ(ϑ)R̆Ψ(t, u, ϑ) from (5.5.1) (or its analog in the case of the other equa-
tions) becomes negative with a sufficiently strong lower bound on its absolute value.

(2) Derive upper bounds for the remaining terms showing that they are dominated by the negative
term.

The various conditions on the initial data stated in the three shock-formation theorems are all included for
these two purposes.

In the case of Theorem 5, which applies to nearly spherically symmetric data, we explained the claim
made in the previous sentence in Subsect. 2.2. In the case of Christodoulou’s Theorem 4, his arguments
are explained on [11, pgs. 893-903]. In Subsubsect. 5.5.2 we provide additional details on Christodoulou’s
arguments and explain how his conditions on the data can be modified to apply to some other equations not
studied in his monograph. In Subsubsect. 5.5.3, we flesh out the connection between Alinhac’s condition
on the data for shock formation and the two steps described above. Furthermore, we show how to use
Christodoulou’s framework to relax Alinhac’s non-degeneracy assumptions on the data, thus yielding a
full resolution of John’s conjecture; see Subsubsect. 1.2.3. We finish in Subsubsect. 5.5.4 by describing
the various shock formation results from a unified perspective.

5.5.2. Extending Christodoulou’s shock-formation condition to other equations. Under some structural
assumptions on the nonlinearities, it is possible to modify Christodoulou’s condition (5.2.7) so that it ap-
plies to the scalar equations �g(Ψ)Ψ = 0 from Theorems 2 and 5. Such a condition provides a set of
shock-generating data that differs from the nearly spherically symmetric data of Theorem 5. Specifically,
his condition can be modified without difficulty to apply whenever the future null condition failure fac-
tor98 (+)ℵ(θ) from (2.1.40) takes on a strictly positive or negative sign for θ ∈ S2. The reason is that

98Recall that relative to standard spherical coordinates (t, r, θ) on Minkowski spacetime, we have (+)ℵ = (+)ℵ(θ).
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Christodoulou’s analysis is based on averaging over the spheres St,u, and his condition guarantees that the
analog of ±R̆Ψ eventually verifies a lower bound of the form & ε̊(1 + t)−1 (as in (2.2.1)) along some
unknown integral curve of L. Hence, when (+)ℵ has a definite sign, the analog of Christodoulou’s condi-
tion, with the correct sign, ensures that the product 1

2
(+)̊ℵ(ϑ)R̆Ψ(t, u, ϑ) from equation (5.5.1) becomes

sufficiently negative along the unknown integral curve of L; this is sufficient to guarantee that µ vanishes
in finite time. Clearly, because nothing is known about the integral curve, the definite sign99 of (+)ℵ(θ) for
all θ ∈ S2 plays an essential role in this argument. Similarly, thanks to the observations of Subsect. 4.2,
Christodoulou’s condition (5.2.7) can be modified without difficulty to apply to the non-covariant equa-
tion (g−1)αβ(∂Φ)∂α∂βΦ = 0 whenever the future null condition failure factor (+)ℵ = (+)ℵ(θ) from (4.2.2)
takes on a strictly positive or negative sign for θ ∈ S2.

5.5.3. Eliminating Alinhac’s non-degeneracy assumptions on the data. With the more precise estimates
from Christodoulou’s framework, we can eliminate the non-degeneracy conditions on the data that Alinhac
used to prove shock formation (see just below equation (5.1.4)). Here, we sketch a proof that small-data
finite-time shock formation occurs in solutions to equation (5.1.1) if we sufficiently shrink the amplitude
of the data and if John’s condition holds:

the John-Hörmander quantity (5.1.4) is positive at one point (q∗, θ∗). (5.5.2)

This shows that the lifespan lower-bound of Theorem 1 is sharp in the small-data limit. An analo-
gous sharp condition can also be stated in the cases of Christodoulou’s equations (5.2.1) and the equa-
tions �g(Ψ)Ψ = 0. Furthermore, we recall that by Prop. 1.2, the condition (5.5.2) always holds for
nontrivial compactly supported data. We begin our sketch by first studying Alinhac’s equations using
Christodoulou’s framework and showing how the condition (5.5.2) can be exploited. For convenience, we
assume here that the data for Alinhac’s equations are supported in the Euclidean unit ball Σ1

0, and we study
the solution only in regions of the formMt,U0 (see (2.1.35e)), where 0 < U0 < 1 is a fixed constant.

We first explain how the behavior of the term −1
2

(+)̊ℵ(ϑ)[RaR̆Ψa](t, u, ϑ) on the right-hand side of the
relevant evolution equation (4.2.7) for µ is connected to the John-Hörmander quantity

1

2
(+)ℵ ∂

2

∂q2
z[(Φ̊, Φ̊0)], (5.5.3)

the (data-dependent) function appearing in Theorems 1 and 3. The first important observation is that at
time ε̊−1, long before any singularity can form, we have the following estimate (whose proof we will
sketch below) relative to standard spherical coordinates (t, r, θ) on Minkowski spacetime, valid in the
constant-time hypersurface subset ΣU0

ε̊−1 :∣∣∣∣−1

2
%(+)ℵRaR̆Ψa(t =

1

ε̊
, r, θ) +

1

2
r(+)ℵ ∂

2

∂q2
z[(Φ̊, Φ̊0)](q = r − 1

ε̊
, r, θ)

∣∣∣∣ ≤ Cε̊2 ln

(
1

ε̊

)
. (5.5.4)

99Recall that at t = 0, the Euclidean angular coordinate θ is equal to the geometric angular coordinate ϑ, and hence
(+)̊ℵ(ϑ) = (+)ℵ(θ = ϑ) (see (2.2.5) and (4.2.8)).
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Hence, switching to geometric coordinates (t, u, ϑ), using (5.5.4), the estimate (+)ℵ(t, u, ϑ) ≈ (+)̊ℵ(ϑ)
mentioned in Subsect. 2.2, and assuming that ε̊ is sufficiently small, we see that the assumption (5.5.2) im-
plies that there exists a point p belonging to a region100 ΣU0

ε̊−1 such that at p, the term−1
2

(+)̊ℵ(ϑ)[RaR̆Ψa](t, u, ϑ)
from equation (4.2.7) is dominant, negative, and of order c̊ε%−1(t = ε̊−1, u) ≈ c̊ε(1 + t)−1. Hence, at
time t = ε̊−1, this term causes µ to begin decaying along the integral curve of L emanating from p, at
the rate −c̊ε ln(1 + t). Furthermore, since the Heuristic Principle estimates (see (2.1.36a)) imply that the
geometric angular derivatives of the Ψν have significantly died off by time ε̊−1, we can use ideas similar
to the ones used to prove (2.2.4) to deduce that the product −1

2
(+)̊ℵ%RaR̆Ψa (note the factor of %) is ap-

proximately constant along the integral curves of L for times beyond ε̊−1. In particular, along the integral
curve emanating from p, the product −1

2
(+)̊ℵ%RaR̆Ψa remains order −c̊ε for times beyond ε̊−1. Hence,

by equation (4.2.7), we see that along that integral curve (which corresponds to fixed u and ϑ), we have101

Lµ(t, u, ϑ) ≈ −c̊ε(1 + t)−1. (5.5.5)

Since L = ∂
∂t
, it easily follows from (5.5.5) that µ must vanish in finite time and a shock forms. We stress

that in contrast to our proof of (2.2.4), we did not assume here that the angular derivatives of the data are
even smaller than the small radial derivatives. Previously, we had made this assumption (see Remark 2.17)
so that we could treat the linear term %µ∆/Ψ on the right-hand side of (2.1.26) as negligible starting from
t = 0; in general, we have to wait for the angular derivatives of the solution to die off before this term
becomes negligible and in this sense, inequality (5.5.4) is important because it accounts for the nontrivial
influence of the angular derivatives of the data on the product %RaR̆Ψa at time ε̊−1.

We now provide arguments that lead to a sketch of a proof of (5.5.4) and more. We begin by considering
data (Φ̊, Φ̊0) for Alinhac’s wave equation (5.1.1), but we now solve the Cauchy problem for the linear wave
equation with that data:

�mΦ(Linear) = 0, (5.5.6)

Φ(Linear)|t=0 = Φ̊, ∂tΦ(Linear)|t=0 = Φ̊0. (5.5.7)

We now recall that the function z[(Φ̊, Φ̊0)] from (5.1.3) is Friedlander’s radiation field for the linear wave
equation (5.5.6). That is, the r−weighted solution rΦ(Linear) to (5.5.6) is, relative to standard spherical
coordinates (t, r, θ) on Minkowski spacetime, asymptotic to z[(Φ̊, Φ̊0)](q = r−t, r, θ). Related statements
hold for various derivatives of Φ(Linear). In particular, with

Σ′t := Σt ∩
{
r >

t

2
> 1

}
, (5.5.8)

100It could happen that p does not belong to a subset ΣU0

ε̊−1 with 0 < U0 < 1. In this case, we would have to rework some of
our constructions in order to allow us to study regions with U0 > 1. Alternatively, we could start with data given at time −1/2
and supported in the Euclidean ball of radius 1/2 centered at the origin, as in Theorem 5.

101 A careful proof of (5.5.5) would involve possibly shrinking the amplitude of the data by data→ λ ·data (for λ sufficiently
small) to ensure that the term − 1

2
(+)̊ℵ(ϑ)[RaR̆Ψa](t, u, ϑ) from equation (4.2.7) dominates all of the other terms.
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we have the following standard estimate (see, for example, [20]):∣∣∣∣r∂2
rΦ(Linear)(t, r, θ)−

∂2

∂q2
|t,θz[(Φ̊, Φ̊0)](q = r − t, r, θ)

∣∣∣∣ ≤ C
ε̊

1 + t
, along Σ′t, (5.5.9)

where ε̊ is the (small) size of (Φ̊, Φ̊0).
To deduce (5.5.4), we must connect the estimate (5.5.9) back to the nonlinear problem (5.1.1). To this

end, we solve both the nonlinear wave equation (5.1.1) and the linear wave equation (5.5.6) with the same
data (Φ̊, Φ̊0). The difference Φ − Φ(Linear) solves the inhomogeneous linear wave equation with trivial
data and with a source equal to the quadratic term

{
(m−1)αβ − (g−1)αβ(∂Φ)

}
∂α∂βΦ. It therefore follows

from the standard Minkowskian vectorfield method, as developed in [36], that
∥∥rΦ(Linear)

∥∥
C0(Σ′

ε̊−1 )
≤ Cε̊,

‖rΦ‖C0(Σ′
ε̊−1 ) ≤ Cε̊, and

∥∥r(Φ− Φ(Linear))
∥∥
C0(Σ′

ε̊−1 )
≤ Cε̊2 ln ε̊−1. Furthermore, when the data are

sufficiently regular, similar estimates hold for a limited number of higher (t, r, θ) coordinate derivatives of
Φ and Φ(Linear). In addition, it is not difficult to show using (4.2.7) that along ΣU0

ε̊−1 , |µ−1| is no larger than
Cε̊ ln ε̊−1. One can also show that along ΣU0

ε̊−1 , R
a is equal to −xa/r plus an error term that is no larger

than Cε̊2 ln ε̊−1, and similarly, %− r is no larger than Cε̊ ln ε̊−1. It follows that along ΣU0

ε̊−1 , the nonlinear
solution r∂2

rΦ is equal to %RaR̆Ψa (recall that Ψa = ∂aΦ) up to an error term of size ≤ Cε̊2 ln ε̊−1. In
total, we have the following estimate:∥∥∥r∂2

rΦ(Linear) − %RaR̆Ψa

∥∥∥
C0(Σ

U0
ε̊−1 )
≤ Cε̊2 ln

(
1

ε̊

)
. (5.5.10)

Combining (5.5.9) and (5.5.10), we arrive at (5.5.4).
The above discussion suggests that it should be possible to show that in the relevant region, John’s

condition (5.5.2) is automatically implied by the shock formation criteria of Theorem 5 or Christodoulou’s
criteria; we do not investigate this possibility here. It would be interesting to know whether or not all
(nontrivial) compactly supported data that are small enough for Theorem 2 to apply must necessarily lead
to shock formation. The proof outlined above is limited in the sense that the argument requires one to
perhaps shrink the amplitude of the data in order to deduce shock formation. A hint that such a result
might hold true, at least for some nonlinearities, lies in John’s results [25]: for the class of equations
that he addressed, finite-time breakdown of an unknown nature occurs for all such data, even without the
smallness assumption.

The above discussion can also easily be extended to prove the following interesting consequence: if the
John-Hörmander quantity 1

2
(+)ℵ(θ) ∂2

∂q2z[(Φ̊, Φ̊0)](q, θ) appearing in (5.1.4) is negative on a Minkowskian
annular region (q, θ) ∈ [q1, q2 := 0] × S2 ⊂ ΣU0

0 , and if ε̊ is sufficiently small, then the corresponding
solution to equation (5.1.1) exists beyond the standard lifespan lower bound exp

(
1
Cε̊

)
, in a spacetime

region bounded by an inner g−null cone Cu1 and the outer g−null cone C0, where u1 ≈ 1 − q1. The
reason is simple: under the assumptions, up to small errors, the term −1

2
(+)̊ℵ(ϑ)[RaR̆Ψa](t, u, ϑ) from the

evolution equation (4.2.7) for µ is positive and thus works against shock formation. More precisely, an
argument similar to the one outlined above, based on the estimate (5.5.4) and equation (4.2.7), leads to the
conclusion that µ ≥ 1 − Cε̊2 ln

(
1
ε̊

)
ln(e + t), where the factor Cε̊2 ln

(
1
ε̊

)
is from the right-hand side of
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(5.5.4). Hence, since µ cannot vanish in the region before the time

∼ exp

(
1

Cε̊2 ln
(

1
ε̊

)) , (5.5.11)

we see from the analog of Theorem 2 for equation (5.1.1) (as outlined in Subsect. 4.2) that blow-up cannot
occur in the region of interest before the time (5.5.11). Similar results hold for Christodoulou’s equations
(5.2.1) and for the equations �g(Ψ)Ψ = 0.

5.5.4. A unified perspective on shock-formation involving three phases. A convenient way to summarize
the above results for shock-forming data, combining the methods of Alinhac [2] and Christodoulou [11]
and incorporating the perspective of John [30], is to divide the shock-formation evolution (for sufficiently
small data) into the following three phases. Our use of the terminology “phases” is motivated by John’s
work [30], in which he was able to follow the solution nearly to the singularity, long enough to see some
growth in the higher derivatives of the solution (John’s “third phase”), but not long enough to see the actual
singularity form.

Phase (i): On the time interval [0, ε̊−1], the linear evolution dominates, the Cu−tangential derivatives
die off, and the important transversal derivative term behaves according to Friedlander’s radiation
field, as in (5.5.4).

Phase (ii): This is the period after time ε̊−1 where µ remains bounded away from 0 by a fixed
amount. Starting at around time ε̊−1, if the Cu−transversal derivative term has, at least at some
points, the “right” sign and is large enough in magnitude, then µ begins to decay along the cor-
responding integral curves of L. Once the decay starts, it does not stop. As long as µ stays some
fixed distance away from 0, the geometric L2 estimates, such as those of Prop. 3.4, are essen-
tially equivalent to standard L2 estimates that could be derived via the vectorfield commutator and
multiplier methods applied with Minkowski conformal Killing fields, as outlined in Subsect. 1.2.
In particular, we do not need the precision of a true eikonal function in order to understand the
behavior of the solution in this phase.

Phase (iii): µ is now very close to 0 at some spacetime point. We need the full precision of the
eikonal function to follow the dynamics all the way to shock formation. To close the geometric L2

estimates without derivative loss, we need to use Christodoulou’s strategy as described in Subsub-
sect. 3.4.3. For the shock-generating data that verify Alinhac’s assumptions (which in particular
ensure that at the time of first breakdown, there is only one shock point), if we are willing to allow
the linearized equations to lose derivatives relative to the previous iterate, then we can also close
the L2 estimates using his Nash-Moser scheme. However, Alinhac’s methods are not designed to
reveal the complete structure of the maximal development of the data, including the boundary.
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APPENDIX A. SOME DETAILS ON THE WAVE EQUATIONS STUDIED IN [11]

In [11], Christodoulou considered Lagrangians of the form L(σ), where

σ := −(m−1)αβ∂αΦ∂βΦ, (A.0.12)

and as usual, (m−1)αβ = diag(−1, 1, 1, 1) is the standard inverse Minkowski metric expressed relative to
rectangular coordinates. In particular, in order for the corresponding Euler-Lagrange (wave) equation to
have a fluid interpretation, Christodoulou considered Lagrangians L(σ) in a regime where the following
five positivity assumptions hold:

σ, L (σ),
dL

dσ
,
d

dσ

(
L /
√
σ
)
,
d2L

dσ2
> 0. (A.0.13)

The assumptions (A.0.13) imply that Φ can be interpreted as a potential function for a physically reason-
able irrotational relativistic fluid with desirable properties such as having a characteristic speed (of sound)
strictly in between 0 and 1 (speed of light). The corresponding Euler-Lagrange equation, which is the
main equation that he studies, is

∂α

(
∂L

∂(∂αΦ)

)
= −2∂α

(
∂L
∂σ

(m−1)αβ∂βΦ

)
= 0. (A.0.14)

As we mentioned in Subsect. 5.2, Christodoulou studied perturbations of solutions of the form Φ = kt,
where k is a non-zero constant. These are the solutions that correspond to the nontrivial constant states in
relativistic fluid mechanics in Minkowski spacetime. When expanded relative to rectangular coordinates,
(A.0.14) becomes102

(h−1)αβ∂α∂βΦ = 0, (A.0.15)

where the reciprocal acoustical metric h−1 is defined by

(h−1)αβ = (h−1)αβ(∂Φ) := (m−1)αβ − F (m−1)ακ(m−1)βλ∂αΦ∂βΦ, (A.0.16)

F = F (σ) :=
2

G

dG

dσ
, (A.0.17)

G = G(σ) := 2
dL
dσ
. (A.0.18)

The characteristic speed of the background solution Φ = kt is not 1 as in our work and that of Alinhac,
but rather

η0 = η(σ = k2), (A.0.19)

102We follow the conventions of [11] and denote the dynamic metric by h = h(∂Φ) in this section.
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where η > 0 is the function defined by

η2 = η2(σ) = 1− σH, (A.0.20)

H = H(σ) :=
F

1 + σF
. (A.0.21)

More precisely, η is the speed of sound, and by virtue of (A.0.13), it is straightforward to show that
0 < η < 1. Also, (h−1)00 is not assumed to be equal to −1 as in our work, but rather there is a lapse
function α defined by

α−2 = α−2(∂Φ) := −(h−1)00(∂Φ). (A.0.22)

The proper analog of our background inverse Minkowski metric is in fact the flat inverse metric

(h−1)αβ(∂tΦ = k, ∂1Φ = ∂2Φ = ∂3Φ = 0), (A.0.23)

which is equivalent to

h(∂tΦ = k, ∂1Φ = ∂2Φ = ∂3Φ = 0) = −η2
0dt

2 +
3∑

a=1

(dxa)2. (A.0.24)

The eikonal function corresponding to the background solution is

u(Flat) = 1− r + η0t, (A.0.25)

where r is the standard Euclidean radial coordinate. The inverse foliation density corresponding to the
background solution is

µ(Flat) = η0. (A.0.26)

The outgoing and ingoing null vectorfields corresponding to the background solution are

L(Flat) = ∂t + η0∂r, L̆(Flat) = η−1
0 ∂t − ∂r. (A.0.27)

The analog of the future null condition failure factor (4.2.2) is

dH

dσ
(σ = k2). (A.0.28)

Note that unlike the general case of (4.2.2), the quantity in (A.0.28) is a constant. It was shown in [11]
that dH

dσ
(σ = k2) vanishes when k 6= 0 if and only if, up to trivial normalization constants,

L(σ) = 1−
√

1− σ. (A.0.29)

The Lagrangian (A.0.29) is therefore exceptional in the sense that the quadratic nonlinearities that arise in
expanding its wave equation (A.0.14) around the background Φ = kt verify the null condition.
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[19] Lars Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations, Pseudodifferential operators (Ober-
wolfach, 1986), 1987, pp. 214–280. MR897781 (88j:35024)

[20] , Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin) [Mathematics
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