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Abstract Rare cells have the potential to improve our
understanding of biological systems and the treatment of a
variety of diseases; each of those applications requires a dif-
ferent balance of throughput, capture efficiency, and sample
purity. Those challenges, coupled with the limited avail-
ability of patient samples and the costs of repeated design
iterations, motivate the need for a robust set of engineering
tools to optimize application-specific geometries. Here, we
present a transfer function approach for predicting rare cell
capture in microfluidic obstacle arrays. Existing computa-
tional fluid dynamics (CFD) tools are limited to simulating
a subset of these arrays, owing to computational costs; a
transfer function leverages the deterministic nature of cell
transport in these arrays, extending limited CFD simulations
into larger, more complicated geometries. We show that the
transfer function approximation matches a full CFD simula-
tion within 1.34 %, at a 74-fold reduction in computational
cost. Taking advantage of these computational savings, we
apply the transfer function simulations to simulate reversing
array geometries that generate a “notch filter” effect, reduc-
ing the collision frequency of cells outside of a specified
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diameter range. We adapt the transfer function to study the
effect of off-design boundary conditions (such as a clogged
inlet in a microdevice) on overall performance. Finally, we
have validated the transfer function’s predictions for lateral
displacement within the array using particle tracking and
polystyrene beads in a microdevice.

Keywords Rare cell capture · Circulating tumor cell ·
CTC · Transfer function · Collision dynamics · Cell
capture · Design optimization

1 Introduction

Rare cells have the potential to improve our understand-
ing of biological systems, how we treat disease, and to
serve as biomarkers for disease detection in the absence
of other symptoms. Fetal cells circulating in maternal
blood present a non-invasive alternative to amniocentesis
(Mohamed et al. 2007), reducing the risk to the fetus.
Stem (Zhu et al. 2013) and progenitor cells (Hatch et al.
2011) have been used for culture and later experimenta-
tion, including transplantation (Zhu et al. 2014). Circulating
epithelial cells (CECs) of pancreatic origin have been found
in the blood of pancreatic cyst patients, and may enable
the early detection of pancreatic cancer (Thege et al. 2014;
Rhim et al. 2014). Finally, circulating tumor cells (CTCs),
which are shed from a primary tumor into the circula-
tory system and are thought to contribute to metastasis
(Maheswaran and Haber 2010), can inform patient prog-
nosis (Cristofanilli et al. 2004), therapeutic efficacy (Kirby
et al. 2012; Stott et al. 2010), and the genetics of dis-
seminating cancer cells (Russnes et al. 2010; Navin et al.
2011; Pratt et al. 2014; Lohr et al. 2014). A challenge in
studying these cells is that they are exceedingly rare—as
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few as 1 CTC per 100 million blood cells, for example
(Racila et al. 1998; Krivacic et al. 2004)—requiring engi-
neered solutions to isolate as many of the target cells as
possible, while capturing few blood cells.

A variety of techniques can be used to isolate rare cells
(Pratt et al. 2011). Differences in size compared to non-
target cells enable filtration (Hsu et al. 2008; Sollier et al.
2014), the passive focusing of cells using microvortex–
wall interactions (Hsu et al. 2008; Sollier et al. 2014),
and streamline-separation approaches (Gleghorn et al. 2010;
Bhagat et al. 2011) or high throughput. Changes in the cell
membrane composition can lead to a differential electroki-
netic response (Becker et al. 1995; Shim et al. 2013; Huang
C et al. 2014). Finally, surface markers unique to the target
rare cell, perhaps either due to its non-hematological origin
or a specific disease state, can be used to identify the cells
by staining with a fluorescently-conjugated antibody and to
capture cells by antibody immobilization; the latter process
is known as immunocapture.

Immunocapture relies on bringing target cells into con-
tact with an antibody-functionalized surface at conditions
(e.g., local shear stress) and for a duration conducive to rare
cell capture (Smith et al. 2012). Magnetic techniques mix
antibody-functionalized nanoparticles (Allard et al. 2004;
Hayes et al. 2006) or rods with a blood sample (Talasaz
et al. 2009; Powell et al. 2012; Earhart et al. 2014), often
after pre-processing steps such as centrifugation or dilu-
tion; the antibodies on the particle or rod surfaces bind
with the antigens on the cell surface and then can be sep-
arated from the bulk sample by applying a magnetic field.
Microdevice techniques engineer device geometries on the
scale of the target cells and use combinations of diffisional
mixing, cell-wall interactions, and varying shear stress to
isolate rare cells by bringing them into contact with a
fixed, antibody-functionalized device wall; these devices
have used micron-scale obstacles in linear arrays (Nagrath
et al. 2007) and radial arrays (Murlidhar et al. 2014),
herringbone-like device floors to increase and control the
frequency of interactions between the cells and the capture
surface.

Of the techniques described, the most broadly impactful
and influential techniques have been immunocapture-based,
starting with the magnetic-bead-based isolation approach
that evolved to become the Veridex CellSearch system
(Racila et al. 1998) and later driven by the first imple-
mentation in a microfluidic platform (Nagrath et al. 2007).
These approaches have led to an explosion of technologi-
cal development associated with optimization of cell capture
(Stott et al. 2010; Yu et al. 2014), reduction of contaminants
(Gleghorn et al. 2010), expansion of downstream analyses
(Stott et al. 2010; Maheswaran et al. 2008; Ligthart et al.
2013), and correlation of clinical outcomes (Cristofanilli
et al. 2004; Allard et al. 2004). Our work falls into this

context, in that delineation of proper microfluidic geome-
tries optimizes capture and minimizes contaminants.

We have previously reported on geometrically enhanced
differential immunocapture (GEDI), which uses both size
differences and antibody specificity to capture target rare
cells, while simultaneously minimizing contaminating cell
capture (Gleghorn et al. 2010; Kirby et al. 2012). GEDI
uses an array of obstacles in a microfluidic device, arranged
to generate size-dependent cell trajectories, bringing tar-
get cells into contact with as many obstacles as possible.
Those cells are then captured on the obstacle by use of a
target-specific antibody immobilized on the surface. The
inadvertent capture of non-target cells is minimized by a
combination of differential collision dynamics, shear stress,
and antibody specificity. Figure 1 shows a potential GEDI
geometry, in which cell transport and capture are governed
by the array geometry (row spacing �, column spacing �,
row offset �, obstacle diameter 2R), cell diameter 2a, and
the mean fluid velocity Uinlet (which determines the shear
stress and residence time a cell experiences while in contact
with the obstacle surface).

Each downstream application for rare cell capture
requires its own balance of capture efficiency (capturing
as many target cells as possible) and sample purity (min-
imizing the capture of contaminating cells); e.g., genetic
assays require a high purity sample of only a few cells,
whereas staining and enumeration studies are more tolerant
of contaminants but need many target cells for sensitivity.
These challenges, coupled with the limited supply of patient
samples, motivate the development of engineering tools to
optimize application-specific device designs.

Existing tools to optimize the array geometry have used
analytical approximations (Inglis et al. 2006; Davis et al.
2006) or computational fluid dynamics (CFD) simulations
for a small subset of the obstacle array (tens of obstacles), as
simulations of collision and capture dynamics in a full-size
device (thousands of obstacles) is computationally challeng-
ing (Gleghorn et al. 2013; Smith et al. 2014). This work
presents a transfer function approach that leverages those
existing CFD simulations as the basis of a computationally-
efficient simulation of a large device geometry, including
spatially varying geometries and/or off-design boundary
conditions.

In the high Péclet number regime in which most rare cell
capture microdevices operate, advection dominates Brown-
ian diffusion. Further, if we consider dilute cell suspensions
(or approximate dense suspensions as dilute), a cell’s trajec-
tory through the device is a deterministic function of its size,
initial position, and the array geometry. We can reduce the
obstacle array to one “unit structure” around an individual
obstacle, with periodic boundary conditions, and calculate
transfer functions that approximates transport behavior as
a function of the cell’s initial position when it enters the
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Fig. 1 A two-dimensional array of cylindrical obstacles in a microflu-
idic device generates size-dependent cell transport as a function of
the mean velocity Uinlet, row spacing �, column spacing �, row off-
set �, obstacle diameter 2R, and cell diameter 2a. Some aspects of
these arrays can be reduced to a “unit structure” with periodic bound-
ary conditions (inset). Cell displacement (yout − yin), collision status,
and shear history can be represented by a transfer function within each
unit structure

unit structure, H(yin), subject to the limitations discussed
in Section 2.2. Transfer functions can be generated for the
output position, yout; a collision status flag, C (0 or 1); and,
if a collision does occur, the shear stress vs. time history,
τ(t) experienced by that cell, which facilitates calculating
the probability of cell capture (Fig. 2). The transfer func-
tion can be applied iteratively to simulate cell capture and
transport in a device of arbitrary length.

2 Computational methods

A transfer function, H(in), predicts output position (yout),
collision status (C = 0 or 1), and shear stress and time
history (τ(t), if cell-obstacle contact occurs). The transfer

function can be calculated using CFD simulations of one
unit structure and applied iteratively to simulate a device
of arbitrary size and spatially-varying geometry. The result-
ing trajectory and shear stress time histories are used in
previously-validated cell capture simulations, informing the
selection of a device geometry that is optimized for a
specific application.

2.1 Calculating the transfer function

Particle trajectories were calculated for one unit structure
using the CFD and particle advection simulation we have
previously reported (Gleghorn et al. 2013; Smith et al.
2014), and used to calculate transfer function lookup tables.
This process occurs in three distinct numerical simulations
that are repeated for each geometry and cell diameter of
interest. Briefly:

Computational fluid dynamics (CFD) simulations
COMSOL Multiphysics (COMSOL, Inc.) solved the two-
dimensional Navier–Stokes equations, computing the fluid
velocity field for each obstacle array geometry in a small
domain of 5 × 20 obstacles (chosen based on a conver-
gence study) with an inlet velocity Uinlet = 100 μm s and a
zero-pressure outlet. In this system, the Reynolds number is
small as compared to unity,

Re� ≡ ρUinlet�

μ
= 0.02, (1)

C
ap

tu
re

 p
ro

ba
bi

lit
y,

 P
ca

pt
ur

e

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

Input position, y
in

 (μm)

O
ut

pu
t p

os
iti

on
, y

ou
t (

μm
)

0 50 100 150 200
0

50

100

150

200 y
out

P
c

Fig. 2 A transfer function can be calculated using a limited CFD
and particle advection simulation of one unit structure, then applied
iteratively to simulate an arbitrarily large obstacle array device. Out-
put position (yout), collision status and shear history (τ vs. t ; not
shown), and thus the probability of capture (Pc) for a given cell type
are deterministic functions of a cell’s input position (yin) in the high
Péclet number regime where most obstacle array microdevices operate.
There is a characteristic discontinuity in yout at the stagnation point on
the obstacle’s leading edge, which occurs at yin ≈ �/2+� = 108 μm,
and correspondingly Pcapture = 1 at that stagnation point; both of these
characteristics are mitigated by diffusion in physical systems. Here,
capture probability is shown for a 20 μm diameter LNCaP prostate
cancer cell in a � = � = 200 μm, � = 8 μm device with Uinlet = 100
μm s
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where ρ and μ are the bulk fluid density and viscos-
ity, respectively; the flow is independent of Uinlet. From
this data, x- and y-velocity components for the unit struc-
ture encompassing the central obstacle (which has periodic
boundary conditions) were interpolated onto a regular grid
and saved. This process is repeated for each array geometry.

Particle advection simulations The velocity field data
calculated above is then used in a custom, parallelized
particle advection simulation realized in MATLAB (The
Mathworks). An initially uniform distribution of cells is
advected through the unit structure by use of a fourth-order
Runge–Kutta integration scheme with adaptive time step-
ping. In this system, advection dominates diffusion and
inertial effects are negligible (Pe, the Péclet number, � 1),
so the cells are modeled as Lagrangian tracers, following
the fluid streamlines unless cell–obstacle contact occurs;
at which point, cells roll along the obstacle surface. This
process is repeated for a range of cell diameters and array
geometries of interest.

Transfer function derivation The particle advection
results are used to derive several transfer function lookup
tables, H(yin), that are unique to each geometry and cell
diameter. The output position, yout, and a cell-obstacle col-
lision flag, C, are saved for each yin value. If a collision
occurs (i.e., C = 1), the x- and y-velocity fields are used
to calculate the shear stress experienced by the cell as it
rolls along the obstacle surface, τ(t). An illustrative transfer
function for yout, as well as the capture probability expected
for LNCaP prostate cancer cells (calculated as described
in Section 2.3) given the shear stress time history transfer
functions, is plotted in Fig. 2.

2.2 Simulating cell transport using the transfer function

A MATLAB simulation was developed to iteratively apply
the transfer function lookup tables, calculated as described
in the previous section, to calculate trajectories for an ini-
tially uniform distribution of cells in a device of arbitrary
size.

For each unit structure along the length of the device,
each starting particle’s trajectory is calculated using one-
dimensional linear interpolation of the transfer function
lookup table, H(yin),

yout = Hposition(yin), (2)

where yin and yout are the particle’s position with respect
to that unit structure’s local coordinate system. The same
interpolation process is used for the collision status flag, C,

C = �Hcollision flag(yin)�, (3)

and, if contact occurs (i.e., C = 1), the shear stress history,

τ(t) = Hshear history(yin). (4)

The local values from unit structure N are advanced
into unit structure N + 1 accounting for the shift in local
coordinates due to the offset, �,

yin,N+1 = yout,N − �. (5)

This process is repeated for each particle start position and
each unit structure in the device, with the mean of C for all
start positions and unit structures representing the mean col-
lision frequency for that cell diameter and geometry. Shear
histories, τ(t), for each particle start position are saved for
subsequent use in a Monte Carlo cell capture simulation,
described in Section 2.3.

We can also approximate changes in the offset (both
magnitude and direction) between unit structures simply
by using a different transfer function lookup table along
the length of the device. This approximation assumes that
the fluid velocity field—and thus the transfer function,
H(yin)—within each unit structure is unaffected by offset
changes between it and adjacent unit structures, and is only
valid when there are few changes in offset as compared to
the number of unit structures in the device.

2.3 Predicting cell capture probability

Shear histories, τ(t), generated by the transfer function for
each starting particle were used to calculate cell capture
probabilities using the exponential cell capture model that
we have reported previously (Smith et al. 2014). Briefly:

Modeling cell capture The most sophisticated cell capture
models include the effects of mechanical forcing, cell adhe-
sion kinetics (Bell et al. 1984; Dembo et al. 1988), cell
deformation, and biomolecule deformation (Dustin et al.
1996; Zhu et al. 2000). Although these detailed models are
able to predict cell adhesion, cell release, and rolling (i.e.,
repeated adhesion and release) events, they require a priori
knowledge of the many parameters that describe these adhe-
sion events, such as reaction rate coefficients and contact
area measurements.

Because these parameters are often unknown for rare
cell capture applications, we have pursued a reduced-order
model to create an engineering tool based on the limited
information available for these cells. We began with a shear-
stress dependent capture model first reported by Decuzzi
and Ferrari (2006) and subsequently used to predict cancer
cell capture in microfluidic devices by Wan et al. (2011),

Pcapture = mrmlK
0
aAcexp

(
− λ

kBT

Fdislodge

mrAc

)
, (6)
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where the probability of cell capture (Pcapture) is a func-
tion of the receptor and ligand surface densities (mr and
ml , respectively), receptor–ligand association constant at
zero load (K0

a ), the contact area (Ac), the characteristic
receptor–ligand bond length (λ), the thermal energy (kBT ),
and the dislodging force (Fdislodge). We grouped the con-
stants, which are unknown for most rare cell systems, into
two lumped parameters, took Fdislodge as proportional to the
local shear stress τ , and discretized the model as

dPcapture = A exp (−Bτ) dt, (7)

where dt is the length of each timestep in the simula-
tion, and dPcapture is the probability that capture occurs in
that timestep. The constants A and B are experimentally-
determined, unique to cell type and surface chemistry sys-
tem, and are measured by data fitting (Smith et al. 2014)
to the results of capture characterization experiments in
a Hele-Shaw flow chamber designed to expose cells to a
range of shear stresses (Santana et al. 2012; Huang et al.
2014). This work uses LNCaP human prostate adenocarci-
noma cells and J591, a monoclonal antibody that binds to
the prostate-specific membrane antigen (PSMA) expressed
on the LNCaP cell membrane, as a model system. The cap-
ture constants for this system have been previously reported
as A = 3.44 × 10−2 s−1 and B = 85.5 Pa−1 (Smith et al.
2014).

Cell capture Monte Carlo simulations The discrete cell
capture probability, dPcapture (Eq. 7), was calculated for
each timestep where contact occurred using the shear his-
tories, τ(t), generated by the transfer function for each
starting particle. This discrete probability was compared to a
pseudorandom number, dPrandom; a cell was assumed “cap-
tured” if dPcapture ≥ dPrandom. This stochastic process was
repeated as a Monte Carlo simulation, varying dPrandom for
1000 replicates per particle trajectory (with the number of
replicates chosen based on a convergence study), and the
average value reported as the mean capture probability for
that cell and array geometry.

3 Experimental methods

The displacement transfer function (yout vs. yin) was deter-
mined experimentally for particles flowing through the
GEDI microdevice reported by Gleghorn et al. (2010) and
Kirby et al. (2012). These experimental measurements were
compared to the CFD-derivedtransfer functions for the same
geometry and particle diameter with various boundary con-
dition errors, with the best-fit result quantifying the error
present in the physical GEDI device owing to flow pertur-
bations due to the inlet/outlet design, as well as the effects
of the three-dimensional nature of flow in the GEDI device.

3.1 Particle tracking experiments

A GEDI microdevice was prepared as described by
Gleghorn et al. (2010). Briefly, a � = � = 200 μm array
of 2R = 100 μm obstacles with an offset of � = 7 μm
was etched into silicon at a depth of 100 μm using standard
photolithography techniques. The device was sealed using a
3-mm-thick polydimethylsiloxane (PDMS, 7:1 base:curing
agent) gasket held in place with a plexiglass compression
jig. Tygon tubing (0.010 inch inner diameter; Saint-Gobain)
was connected to a 3 mL plastic syringe (Becton Dickin-
son) and the device was manually primed with deionized
water.

Polystyrene beads (Bangs Laboratories; 20.92 ± 0.64
μm diameter) were suspended into a density-matched
water/glycerol solution (1.026 g/mL) at a concentration
of 106 beads per mL. Pluronic F68 non-ionic surfactant
(Sigma-Aldrich) at a concentration of 0.1 % (v/v) was
added to the bead suspension to reduce non-specific adhe-
sion of the beads to themselves and to the microdevice
surface.

The bead suspension was pumped through the microde-
vice using a 3 mL syringe and a syringe pump (Chemyx) at
a rate of 1 mL/hr for the duration of the experiment. After
the bead suspension had flushed out the device, a region of
approximately 3 × 3 obstacles (centered across the device
width and adjacent to the inlet) was imaged at 20× in bright-
field using a Nikon Eclipse LV-100 microscope, Q-Imaging
EXi Blue CCD camera, and Nikon NIS-Elements imag-
ing software. 2 × 2 binning resulted in the acquisition of
696 × 520 pixel images at approximately 18 frames/s; these
frames were saved as a series of grayscale uncompressed
TIFF images.

3.2 Image processing

TIFF images were processed using the MATLAB adaptation
(Blair and Dufresne 2007) of the well-known IDL Parti-
cle Tracking software (Crocker and Weeks 1996). Briefly:
images are first rotated to align the coordinate system of
the array with that of the image, then are color-inverted to
present bright beads on a dark background. Next, a spatial
band-pass filter is applied to remove the background and
smooth out the beads, with a spatial cutoff chosen based
on the bead diameter. The centroid of each bead is then
determined by identifying the local brightness maxima in
each image to pixel level accuracy. Finally, sequential pairs
of images are compared and 〈x, y〉 tracks for each particle
identified.

Each particle trajectory is compared to the known bound-
aries of the unit structures present in the image. Particle
tracks which are long enough to traverse across a complete
unit structure are used to compute yout as a function of
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Fig. 3 The transfer function model (symbols) closely agrees with the
full CFD simulation (lines) for both (a) collision frequency and (b)
capture probability using LNCaP prostate cancer cells and a device
with N = 100 unit structures for a range of offsets (�). The residual
error (e.g., Pcapture, CFD−Pcapture, Trans. Fn.) quantifies the error between
the transfer function approximation and the CFD simulation, and the

residual error for collision frequency and capture probability are shown
below their respective plots. The RMS residual error across all values
of � (i.e., � = 0 to �/2) and cell diameters studied is 1.01 × 10−2

row−1 for collision frequency and 1.34 × 10−2 for capture probability,
with a 74-fold reduction in computational time

yin using two-dimensional linear interpolation across each
boundary. Incomplete tracks (i.e., trajectories that terminate
before leaving the unit structure), which are common for
particles that slow down significantly near the stagnation
region at the front of the obstacle and are “lost” by the track-
ing code in the dark region caused by the fillet between the
floor of the device and each cylindrical obstacle, are dis-
carded. yout vs. yindata points from individual particles are
binned into 20 yin groups for statistical purposes; the mean
yout value for each yin bin is reported in this work, along
with error bars representing the standard error of the mean
to a 95 % confidence interval.

The experimentally derived transfer function was com-
pared to CFD-derived transfer functions for the same parti-
cle and array geometry with various errors in the boundary
conditions (i.e., an off-design transverse flow component),
calculated as described in Section 2.1. A simulated transfer
function was selected that minimized the overall error resid-
ual between it and the experimental transfer function; with
this transfer function corresponded to the off-design flow
error in the experiment (E; see Eq. 8) within ±1 %.

4 Results and discussion

Here, we present a validation of the transfer function model,
by comparison to our previously described CFD (Gleghorn
et al. 2013; Smith et al. 2014) simulations for simple geome-
tries and experimental measurement of the position transfer
function. We then apply the transfer function simulation to
study complex geometries and boundary conditions beyond
the capabilities of the CFD simulation, at a significantly
reduced computational cost.

Unless otherwise noted, the results described in this work
are for an array with row spacing � = 200 μm, column
spacing � = 200 μm, obstacle radius R = 50 μm, an
array length of N = 100 unit structures, and Uinlet = 100
μms; this geometry and flow rate corresponds to those used
in previously reported experiments (Gleghorn et al. 2010;
Kirby et al. 2012; Smith et al. 2014; Zhu et al. 2013).
Results are presented in dimensional units to facilitate ready
comparison to biological length scales.

4.1 Comparison between transfer function and CFD
simulations

We have validated the transfer function simulations by com-
paring them to the results of our previously-described CFD
particle advection and cell capture simulations (Gleghorn
et al. 2013; Smith et al. 2014). Devices N = 100 unit
structures long and with various offsets � were studied
using both CFD and transfer function simulations for cell
diameters from 6 to 34 μm.

The results show that the transfer function accurately
captures the collision (Fig. 3a) and capture dynamics
(Fig. 3b) predicted by the CFD simulation. When consid-
ering all offsets (i.e, � = 0 to �/2) and cell diameters
studied, the RMS of the error residual (e.g., Pcapture, CFD −
Pcapture, Trans. Fn.) was 1.01 × 10−2 row−1 for collision fre-
quency and 1.34 × 10−2 for capture probability. In general,
the error residual was highest for combinations of geome-
tries and cell diameters that resulted in frequent “grazing”
collision events, where a particle would be in contact with
the obstacle surface for a short period of time. These
small errors incurred by the transfer function simulation
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(a)

(b)

(c)

Fig. 4 The transfer function model allows for the computationally
efficient simulation of reversals in the offset direction, which lead to a
notch filter effect, reducing the collision frequency for small and large
cells. (a) The number of rows in the device, N , the number of rows
between reversals, Nr , and the y-direction shift at reversal, ��, control
the notch filter’s performance. (b) The notch filter’s lower diameter
cutoff is proportional to �; the upper diameter cutoff is proportional to
�� (illustrated here for N = 100 and Nr = 50). (c) The maximum col-
lision frequency within the notch filter is proportional to the number
of rows between reversals, Nr (shown here for N = 100, �� = 8�).
Both (B) and (C) here are for a � = 8 array

were balanced by a 74-fold computational savings as com-
pared to the full CFD simulation.

4.2 Reversing geometries

The transfer function simulation can approximate cell trans-
port and capture in spatially-varying obstacle arrays. One
such geometry is a reversing array (Fig. 4a), in which the
sign of the offset reverses every Nr unit structures out of
N total unit structures in the device, possibly accompanied

by a y-direction shift in the obstacles following the offset
reversal, ��. Reversing arrays are useful in rare cell cap-
ture microdevices, as they prevent a net displacement of the
target cells in the offset direction, allowing for the full area
of the array to be used for cell capture; they also prevent a
pressure gradient in the y direction, ensuring a better match
between simulated and real-world velocity fields. Further-
more, the magnitude of �� can be selected to generate a
notch filter in which the collision frequency of particles
within a specified diameter range is much higher than for
other particles; notch filters are particularly useful for sys-
tems where the contaminating cells are both smaller and
larger than the target cell population.

In these simulations, the transfer function lookup tables
used in Eqs. 2 to 4 are reversed in y based on the offset
direction, and �� replaces � in Eq. 5 for the unit structure
immediately following the offset reversal, as described in
Section 2.2.

N , Nr , �, and �� all contribute to the notch filter’s
“width” (i.e., the lower and upper diameter cutoffs) and the

(a)

(b)

Fig. 5 (a) Off-design boundary conditions, such as from a clogged
inlet channel or a lump of captured cells near the inlet, can lead to a
transverse velocity error, E = Utransverse/Uinlet; this additional veloc-
ity component alters trajectories within the array. Here, schematic
pathlines are shown in a reversing (notch filter) geometry. (b) As com-
pared to E = 0, E > 0 expands the lower and upper diameter cutoffs
and reduces the mean collision frequency as cells are displaced so
as to miss one or more downstream obstacles; E < 0 increases the
lower diameter cutoff and leads to an increased collision frequency for
cells above the upper diameter cutoff. These effects are illustrated for
N = 100, Nr = 50, � = 7 μm, �� = 6� for varying values of E
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(c)

Fig. 6 (a) Particle tracking experiments and comparison to simulated
transfer functions for various transverse errors allow for the quantifi-
cation of E along the length of the obstacle array, shown in a planview
schematic here (not to scale). 20 μm diameter beads were tracked
through a � = � = 200 μm, � = 7 μm array; the trajectories were
grouped into 20 yin bins and averaged within each bin, with error bars
representing the standard error of the mean to a 95 % confidence inter-
val. This data was fitted to simulated transfer functions by selecting a
value of E that minimized the residual error between it and the exper-
imental data. (b) Adjacent to the inlet manifold in a GEDI device, the
expansion of the fluid flow to fill the obstacle array causes a large
transverse error of E = 10 %. (c) The overall obstacle array is robust to
these perturbations; 0.2 mm (i.e., 10 unit structures) downstream from
the inlet, the error has been reduced to 2 %. Throughout the bulk of the
device, E < 1 %

mean collision frequency for cells between the lower and
upper diameter cutoffs. As is the case with non-reversing
arrays (Fig. 3a), the lower diameter cutoff is a function
of the offset, �. Figure 4b shows the effect of the y-
direction shift at reversal, ��; larger values of �� result in
an increased upper diameter cutoff, increasing the “width”
of the notch. When �� is sufficiently large, the obstacle
following a reversal is shifted enough so that a cell that
collides with the obstacle preceding it moves from one

collision to another. Small or zero values of �� result in a
cell missing the obstacle after a reversal and traveling past
several obstacles before another collision can occur, reduc-
ing the mean collision frequency. Finally, for any given
� and N , the collision frequency within the notch fil-
ter is increased by having more unit structures between
reversals, i.e., with larger values of Nr (Fig. 4c). This
increase is the result of entrance effects in the array, which
occur as some cells travel past several obstacles before
colliding with one; more frequent reversals exacerbate
this effect.

We have previously described a ballistic particle advec-
tion simulation (Gleghorn et al. 2013) that can account
for reversing arrays. That ballistic approximation, which
assumes that the fluid velocity field is uniform and uni-
directional in x, only considers cell motion transverse to
the flow direction (i.e., in the y direction) resulting from
cell–obstacle collisions. The transfer function simulation,
however, accounts for the transverse cell motion away from
the obstacles that results from streamline dilation and con-
traction around the obstacles. An important conclusion of
this work is that consideration of transverse cell motion
owing to these dilations and contractions shows that the
ballistic model underpredicts the value of �� needed to gen-
erate a notch filter of a given upper diameter cutoff. For
example, the transfer function’s more accurate estimate of
collision dynamics in a reversing array with �� = 8� yields
the same upper diameter cutoff as �� = 2� in the ballistic
approximation.

4.3 Off-design boundary conditions

Understanding how cell transport in these obstacle arrays
is affected by off-design boundary conditions is of practi-
cal importance when translating simulations into a robust
microdevice design. These off-design boundary conditions
can result from many sources; e.g., a clogged inlet channel
that alters the flow within the array, or a lump of cap-
tured cells near the device inlet. They can be represented by
including a transverse velocity component around the obsta-
cles, Utransverse, and the magnitude and sign of the deviation
from the on-design case represented as

E = Utransverse

Uinlet
, (8)

where positive values of Utransverse correspond to a trans-
verse flow component in the +y direction (i.e., in the same
direction as the offset for non-reversing arrays).

One approach to studying transport with these off-design
boundaries is to use CFD to solve for the velocity field with
various values of Utransverse, then to advect a distribution of
cells through a large array as we have described previously
(Gleghorn et al. 2013; Smith et al. 2014). This approach,
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however, introduces another variable into the simulations,
increasing the computational cost by an order of magnitude.
The transfer function simulation presents a more efficient
solution to this problem.

We generated transfer functions for a range of particle
sizes within a � = 7 μm array, as described in Section 2.2,
with the CFD solution for one unit structure including
an additional Utransverse boundary condition. These transfer
functions were then applied to study Utransverse in a reversing
array geometry.

Figure 5 shows the effect of E on the notch filter’s pre-
dicted performance. Several trends are notable: First, E < 0
leads to an increase in the lower diameter cutoff as com-
pared with E = 0. Cells which would have been deflected
around the offset side of an obstacle (i.e., the +y side of
the obstacle for when the offset is in the +y direction) by
a collision event are instead deflected around the non-offset
side (i.e., the −y side of the obstacle for when the offset
is in the +y direction) due to the negative Utransverse flow.
After that deflection, the cells must travel past one or more
obstacles before the array offset presents another obstacle
in their path. The net effect is to reduce the mean collision
frequency for cells of that size; smaller cells require less dis-
placement to be deflected around the non-offset side of the
obstacle than a larger cell, resulting in the lower diameter
cutoff increasing when E < 0.

Second, E < 0 increases the mean collision frequency
for cells larger than the upper diameter cutoff. As those
large cells pass through a reversal in the offset direction
(where there is a y-direction shift in the array, ��), their
size causes them to miss the first obstacle after the offset
reversal; they then travel some distance before their next
collision. E < 0 reduces that distance, increasing the mean
collision frequency for cells larger than the upper diameter
cutoff as compared to E = 0.

Third, E > 0 both broadens the notch filter (expanding
the difference between the lower and upper diameter cut-
offs), and reduces the mean collision frequency within the
notch filter. The broadening of the notch filter is caused
by cells which would have passed near the non-offset side
of the obstacle being displaced by the Utransverse flow error
enough to cause a collision. Similarly, the reduction of the
mean collision frequency within the notch filter is a result
of cells that would have been on trajectories with frequent
collisions being displaced by Utransverse so as to miss one
or more downstream obstacles, reducing the mean collision
frequency.

These off-design collision dynamics represent inter-
esting physical phenomena, and are most applicable to
physical systems where many cells are captured on the
obstacles and/or clog an inlet channel. They are less
likely to be seen when capturing rare cells (which are
few in number) at high purity; e.g., approximately 1 % of

the O
(
104

)
obstacles in a GEDI microdevice will capture a

cancer cell in a GEDI microdevice processing a 1 mL blood
sample (Kirby et al. 2012). Furthermore, these off-design
dynamics are mitigated in physical microdevices by their
localized nature—that is, conservation of momentum pre-
vents a uniform transverse flow component across the length
of a device. These effects deserve careful consideration
when designing a system where the number of cells cap-
tured will be on the same order as the number of obstacles,
or when designing a device with few obstacles.

4.4 Experimental validation

We have measured the position transfer function at sev-
eral locations (Fig. 6a) with the GEDI microdevice first
reported by (Gleghorn et al. 2010); by comparing the mea-
sured transfer function to simulated transfer functions for
a range of transverse flow errors, E, we can quantify E in
the microdevice by selecting a simulated transfer function
that minimizes the RMS residual error between it and the
experimental data, as described in Section 3.

The GEDI device is designed using a branched inlet man-
ifold; for the obstacles immediately adjacent to the inlet
manifold (i.e., the first obstacles in the array), we expect
significant transverse flow errors attributable to the fluid
expanding from the finite number of inlet channels into the
larger domain of the obstacle array. The experimental results
validate this hypothesis, with bead trajectories expanding as
they enter the obstacle array. Figure 6b shows the measured
transfer function in this region, which corresponds to a large
error of E = 10 % (RMS residual error for yout = 10.3 μm).

The overall obstacle array, however, is robust to these
localized errors due to the inlet and outlet manifolds. Only
ten unit structures downstream of the inlet (Fig. 6c), the
transverse error has been reduced to E = 2 % (RMS residual
error = 7.7 μm). For several locations further downstream,
E was measured as ≤ 1 %, indicating that the transfer
function accurate simulates transport and collision phenom-
ena (and thus the capture probably) within the bulk of the
obstacle array.

5 Conclusion

This work facilitates the efficient design of application-
specific rare cell capture microdevice geometries by demon-
strating that a transfer function, calculated based on limited
CFD and particle advection simulations for one unit struc-
ture, to predict collision and capture dynamics in arbitrarily
large arrays accurately and at a 74-fold reduction in com-
putational cost. We have shown that the transfer function
approximates transport in spatially-varying arrays, and have
demonstrated that a notch filter can be engineered using
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reversing arrays, reducing the collision frequency for both
small and large contaminants. The transfer function can
be adapted to simulate off-design device conditions, such
as the transverse flow component that can result from a
clogged device inlet, making those studies feasible as com-
pared to the high computational cost of a direct simulation.
Finally, we have experimentally validated the transfer func-
tion approach, showing good agreement to the transfer
function for polystyrene beads flowing through an obstacle
array.
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