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ABSTRACT

In the airline industry, it is customary for carriers to offer a wide range of fares for any
given seat in the same cabin on the same flight. In order to maximize the total network
revenue, the airline practices so-called seat inventory control methods.

In this thesis, we first examine several seat inventory control methods which arc employed
or are being developed by some airlines. Then, based on these methods, we propose three
new models to control the seats: the Network Non-greedy Heuristic Bid Price model, the
Leg Based Probability Non-greedy Bid Price Model, and the Convergence Model. These
models are created in order to find a better way to evaluate the connecting fares, taking
into consideration their displacement impacts.

An integrated optimization / booking simulation tool is employed in this research to
compare the new models with the other methods in terms of network performance under
the same demand circumstances.

Generally, all the three new models improve network performance. The revenue results
obtained from the simulation show that using network displacement concepts can provide
us with an average of 0.5% revenue gain over the methods that do not explicitly include
the displacement impacts at a load factor of 93%. The simulation results also show that
under the same demand circumstance and seat control strategies, using a better way to
evaluate the displacement impacts can provide 0.05% revenue improvement.
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Chapter 1

Introduction

1.1 Motivation for Revenue Management

Revenue Management is an attempt by airlines to optimize their total revenue by achieving
a different passenger mix on each flight departure for those passengers paying full fares,
those paying discount fares, and those paying deep discount fares'. It includes two
processes: Price Differentiation and Seat Inventory Control. In the pricing differentiation
process, airlines try to distribute passengers into different groups and make the passengers
who are able to pay more spend as much as they can, and make the remaining seats, which
otherwise will be empty, available for those passengers who will not travel if the price is
too high. Figure 1.1 is a demand curve of a particular flight. We know that the optimal
potential revenue from this flight is the whole area under the demand curve, which is
$25,000.

Fare
$500

Revenue gained
from one fare
level

$250 b7

Demand Curve

v

50 100 Seats

Figure 1.1 Single Fare Product Example

' GAO/RCED-90-102, Fares and Service at Major Airports
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If a single fare level strategy is employed, the revenue the airline can achieve from this
flight is only $12,500 (the shaded area). In practice, sometimes, a single fare level will not
cover total operating costs®. However, under the same demand assumption, if the airline
offers seats at threc different fare levels and if we assume there are perfect strategics to
segment the passengers, then the total revenue the airline can acquire will be $18,750.
Figure 1.2 explains how those three fare levels can provide a higher total network revenue
than the single fare strategy.

Revenue gained
from three fare
levels

Demand Curve

25 50 75 100 Seats

Figure 1.2 Multiple Fare Product Example

Such a fare structure increases the total revenue and makes it casier for an airline to cover
total operating costs.

As Williamson (1992) wrote in her thesis “the airlines are not directly discriminating in
price between different passengers for the same fare product. The differential in price
offered by airlines is usually based on differences in fare products, each of which is
uniquely defined by restrictions on their purchase and use for air travel.” In order to
obtain the benefits of price differentiation, the airlines must manage their fare levels and
the restrictions associated with those fare levels effectively.

In practice, several issues need to be considered to achieve revenue maximization. First,
how many fare levels should an airline set in its fare structure? Theoretically, there should
be as many fare levels as the number of seats on each flight, which means one price for
each passenger. One obvious problem of this scheme is that the complicated fare structure
will confuse not only the passengers but also the travel agents. It is also difficult to
employ this theory in the real world due to a lack of perfect information about the price

* E.L.Williamson, Airline Network Seat Inventory Control: Methodologies and Revenue Impacts, Flight
Transportation Lab Report, R92-3, June 1992.
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elasticity for every single passenger. Furthermore, as the number of the different fare
prices increases, the cost for advertisement and reservation systems will increase.
Considering all those elements, most airlines have no more than 10 different fare products
for each market.

Second, how should the airlines prevent the time sensitive business passengers from taking
advantage of certain low fare products designed for the price sensitive leisure passengers?
Usually, the airlines place some restrictions along with each discounted fare product, such
as Saturday night stay, 7/14 days advance purchase, etc. In practice, these restrictions arc,
at least as, if not more, important than how many fare levels the airlines should offer.

The third issue relating to revenue maximization regards the booking strategy. Usually in
the real world operation, the low fare passengers are more likely to request bookings
earlier, while the full fare passengers tend to come late and book at the last minute before
a flight. Figure 1.3 shows hypothetical booking curves of different fare types.

Passengers Deeply
N Discounted
= Fare
- Discounted Fare
Full Farc
60 so 4o 3b. 20 1o b

Days Prior to Departure

Figure 1.3 Booking Performance of Different Fare Types before Departure

From the figure above we can see that the deep discount requests come much carlier than
full fare requests. The airlines then face a trade-off as to whether they should zive a seat
to a low fare passenger or reserve it for a last minute high fare passenger, but it he/she
does not materialize then this seat will go empty. Therefore, it is very important for an
airline to control the number of seats available as discounted fare products and to reserve
enough seats for last minute high fare passengers. This process is called seat inventory
control. It is an attempt for airlines to balance the number of seats sold at each fare level

13




so as to maximize total passenger revenue. Belobaba(1987) said in his doctoral thesis,
“The seat inventory control process is a tactical component of revenue management that is
entirely under the control of each individual airline and is hidden from consumers and
competitors alike.... Nevertheless, seat inventory control has the potential of increasing
total revenues expected from flights on a departurc-by-departure basis, somcthing that
would be far more difficult through pricing actions.””

1.2 Goal of The Thesis

In the competition among airlines, price differences are no longer determined by how low
an airline’s fare levels are. If we look at the published fare prices of the airlines in
America, most airlines have the same fare prices. The primary differencc among them is
how many seats are available to each fare product by each airline on cach flight it
operates.

Generally speaking, there are five major different seat inventory control methods applied
or being developed in the airline industry today.

¢ Leg Based Fare Class Yield Management.

¢ Greedy Virtual Nesting and/or Fare Stratification Yield Management.
o Greedy EMSR Heuristic Bid Price.

¢ Non-greedy Virtual Nesting based on Network Displacement.

e Network Bid Price Control.

One objective of this thesis is to analyze the algorithms of these five mcthods, see how
they are applied in the real world, and identify the major differences among them. Then, a
new revenue management method is proposed. This method combines the merits of both
the EMSR Heuristic Bid Price method and the non-greedy virtual nesting method, and it
shows revenue improvement with the true data from several airlines.

* P.P. Belobaba, Air Travel Demard And Airline Seat Inventory Management, Flight Transportation
Laboratory Report, R87-7, May 1987.
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1.3 Structure of the Thesis

This thesis includes five chapters.

Following this introductory chapter, in Chapter 2, the five existing major yield
management methods will be briefly discussed. Using a simple example, the major
differences among these five methods will be considered, and pros and cons associated
with each method will be addressed.

In Chapter 3, a new revenue management method is proposed. In this new method, we
will employ network optimization tools to obtain the displacement impact of the
connecting passengers. Then, passengers are booked based on the consideration of their
whole network revenue contribution. Several implementation issues associated with this
new method are also discussed.

In Chapter 4, actual data from two airlines will be used to compare the different revenue
performance of these six revenue management methods through simulation. For the new
proposed method, sensitivity analyses will be presented to identify the best formula in the
bid price calculation.

Finally, Chapter 5 will summarize the research findings and contributions of this work.
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Chapter 2

Existing Revenue Management Methods

As a prelude to the extension of existing models in the subsequent chapter, this chapter
presents an overview of the mathematical approaches developed previously. There are
five major methods introduced here: Leg Based Fare Class Yield Management, Greedy
Virtual Nesting, Heuristic Bid Price, Non-greedy Virtual Nesting, and Network Bid Price.
A simple example will be used to explain these methods. Also, the booking limits
calculated from these five different methods are compared.

2.0 Introduction

Generally speaking, the approaches to seat inventory control can be divided into two
major groups, the partitioned network method and the heuristic nesting method. Ina
partition method, the solution is simply the number of seats allocated to each origin-
destination (OD) fare product, while in a heuristic nesting method the solution is the
number of seats protected for a group of OD fare products.

2.0.1 Partitioned Network Optimization

One way to solve the seat inventory control problem is by using network optimization
tools to solve the following linear program (LP) problem':

'E. L. Williamson, Airline Network Seat Inventory Control: Methodologies And Revenue Impacts, Flight
Transportation Laboratory Report, R92-3, June 1992.
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ODs FareClasses

Revenue = 2 Efare(i,j)x(i,j); 12.1]
j

Subject to:

x(i.j)eLeg(k)
Zx(i,j) < Capacity(k) for all leg k;
ij

x(i, j) < Demand(i, j), for all OD pairs;

where in the formula, i is the number of the OD pairs, and j is the fare class number. This
is a partitioned method because the x(i,j) is simply the allocation of seats to each OD fare.
Once a seat is allocated to an OD fare, it can only be used by that OD fare. The limitation
of this method is that it ignores the stochastic character of demand because, in the second
set of constraints, the right hand side Demand(i,j) is just the mean of each OD demand.
So this method assumes perfect demand forecasting and zero demand deviation.

One more drawback of this method is that it is difficult for an airline to collect the data on
demand for all OD fares in a large network. Most computer reservation systems do not
routinely store information to support such a network optimization process. In the
meantime, since the data changes with the booking periods, how often an airline should re-
run such a large optimization process becomes critical. Re-running this process too
infrequently will make a negative network revenue impact while re-running it too often is
very uneconomical.

Another shortcoming of this method is the “small numbers” problem. For a hub network
with 25 flights in and 25 flights out of a connecting hub, there can be 26 different OD
itineraries on a single flight leg. With 10 fare classes and an overall average aircraft size of
158 seats’, the number of seats per OD fare is, on average, less than 1°. In addition, there
will be a great chance that a seat remains empty due to the deviation of demand. These
reasons make such partitioned network optimization rarely used in the airline industry*.

? Airline Economics, Inc., Datagram: Major U. S. Airline Performance, Aviation Week & Space
Technology, Volume 133, October 8, 1990,

*E. L. Williamson, Airline Network Seat Inventory Control: Methodologies And Revenue Impacts, Flight
Transportation Laboratory Report, R92-3, June 1992,

* P.P. Belobaba, Airline O-D Seat Inventory Control Without Network optimization, Flight Transportation
Laboratory, June 1995.
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2.0.2 Heuristic Nesting Method

The airline seat inventory management problem is probabilistic because there cxists
uncertainty about the ultimate number of requests that an airline will receive for seats on a
future flight and, more specifically, for the different fare classes offered on that flight’.
Nested Heuristics is different from the partitioned method in that it divides all the network
OD fares into several groups. Seats are thereby allocated to each group. Itis like
protecting seats for higher fare products from lower ones. In his doctoral thesis,
Belobaba® presented a heuristic nesting method called Expected Marginal Seat Revenue
(EMSR) method to solve the multiple fare class problem on a single leg. In this method,
Belobaba proposed using the expected marginal seat revenue to determine the number of
seats that should be protected for each higher fare class i over the lower fare class . By
the definition of this method, the seat will be protected for the higher fare class as long as
the following equation holds.

EMSR(S}) = Fare; X F,-(S}) > Fare j [2.2]

where i is the higher fare class, while j is the lower fare class. Then, the seat protection
for the highest fare class I'T1 is simply S%_. However, the number of seats that should be

protected for the two highest fare classes, Iz, is defined as the sum of S% and S32 ,

determined separately from the equation above. Therefore the booking limits, BLi, the
number of seats available to each fare class, is defined as the capacity minus the number of
seats protected for all higher fare classes.

BL; = Capacity —I1;_4 [2.3]

This method is known as EMSRa. In 1992, Belobaba suggested another method known
as EMSRb. In this method, he proposed to calculate the seat protection levels jointly for
all higher fare classes relative to a given lower class, based on a combined demand
forecast and a weighted price level for all classes above the one for which a booking limit
is being calculated. The weighting is done based on expected demand that class’. Such

5 P.P. Belobaba, Air Travel Demand and Airline Seat Inventory Control Management, Flight
Transportation Laboratory Report, R87-7, May 1987.

5 P.P. Belobaba, Air Travel Demand and Airline Seat Inventory Control Management, Flight
Transportation Laboratory Report, R87-7, May 1987.

7 P.P. Belobaba, Comparing Decision Rules that Incorporate Customer Diversion in Perishable Asset
Revenue Management Situations, Decision Sciences, Volume 27, Number 2, Spring 1996.

18



method has been shown to have higher net revenue in practice of seat inventory control
than the partitioned network method.

2.0.3 Some Issues

Before we do any research, we must understand what makes a revenue management
method implementable in the airline industry. First, of course, there must be network
revenue improvement. Second, which is very important yet easy to ignore, is that the
information to support the method must be easy to access. That is why some of the
methods we discuss in this chapter cannot be implemented in the real world even though
they give very good revenue performance.

Following we will discuss five different revenue management methods that are
implemented or being developed in the airline industry in order to find out why some
methods perform better than others. Such information provides a direction for our
research.

2.1 Leg Based Fare Class YM

In this method, data are collected based on each leg and fare class, and forecasts are made
based on each leg. All OD fares that traverse the same legs are divided into several fare
groups based on their relative yield and restriction types no matter whether they are local
fares or connecting fares. Next, the EMSRb method is used to calculate the number of
seats that should be protected for each group of fare products. The fare value, which
represents each fare group, used as the input for the EMSRb calculation, could be
demand-weighted-mean fares, local fares, or prorated fares.

The following example will be helpful to explain this method. Figure 2.1 shows a very
simple network with only two legs.
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‘ leg 1 . Q leg 2 A,‘

A B C

Figure 2.1 A Simple Network with 2 Legs

Suppose we have the following information about the demand and fares.

Leg 1: 500 miles in trip length.

Fare Class Fare Demand Standard Deviation
Local Passengers Y 500 10 5
B 300 20 8
Q 150 40 15
Connecting Passengers Y 1000 8 4
B 625 25 10
Q 250 45 17
Table 2.1 Fare and Demand Information on Leg 1

Leg 2: 600 miles in trip length.

Fare Class Fare Demand Standard Deviation
Local Passengers Y 600 15 6
B 350 25 10
Q 200 45 17
Connecting Passengers Y 1000 8 4
B 625 25 10
Q 250 45 17
Table 2.2 Fare and Demand Information on Leg 2

There are three steps te fulfill the inventory control process: grouping fares, generating
EMSR inputs, and calculating booking limits.
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2.1.1 Process of the Method

1. Grouping of the Fares

The leg-based fare class yicld management is a nesting heuristic method, and it involves
nesting by fare class. In this method, the fares are grouped into different classes based on
their fare classes. In our example here, there are three fare classes, full fare Y class,
business B class, and discount Q class. All OD fares that cross one particular leg will be
grouped in a class, which is the same as their fare classes, no matter whether they are local
fares or connecting fares. Therefore we will have the following fare groups:

Leg 1 Leg 2

Y classes: Y(AB) Y(AQC) Y classes: Y(BC) Y(AC)
B clesses: B(AB) B(AC) B classes: B(BBC) B(AC)
Q classes: Q(AB) Q(AC) Q classes: Q(BC) Q(AC)

Table 2.3 Fare Groups in Leg Based Fare Class YM Method

The seats will be protected according to each of those groups.

2. EMSR Fare Inputs

The fares in each fare group are not the same. For example, fares in Y class on leg 1 are

Fareyug = $500, and [24]
Faremc, = $1 000.

Therefore, before calculating the EMSR curve, we need to decide which value of a fare
should be used as EMSR input. There are several ways to decide this®: Demand Wcighted
Mean Fare, Local Fare, Mileage Prorated Fare, and Local Fare Prorated Fare. In this
thesis, we will use the demand weighted fare as our input.

8 B.L. Williamson, Airline Network Seat Inventory Control: Methodologies And Revenue Impacts, Flight
Transportation Laboratory Report, R92-3, June 1992,
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¢ Demand Weighted Mean Fare

In this method, the fares are weighted by demand. In our example, for instance, Y class on
leg 1, the demand-weighted fare can be calculated as follows:

Fare

_ Fare(AB) x Demand (AB) + Fare(AC) X Demand (AC)

[2.5]

Demand(AB) + Demand (AC)

=$722.22

In the same way, we can obtain other input fares as shown in Table 2.4.

Y class B class Q class
Legl $722.22 $462.50 $225.00
Leg?2 $739.13 $480.56 $202.94
Table 2.4 Demand-weighted Mean Fare for EMSR Input

3. Calculating the EMSR Seat Protection for Each Fare Group

The rule of EMSR seat protection is: as long as the Expected Marginal Seat Revenue of
the higher fare class is higher than the next lower fare class, the seats should be protected
for the bigher fare class passengers. The formula for such protection is given in (2.2).
From this formula, we can calculate the number of seats that should be protected for each
fare level. In this calculation, EMSRb method is implemented to decide the protection.
Please refer to Belobaba (1992) for a detailed description. The solutions are listed in the
following table.

Y class Y and B classes
Seats Protection on Leg 1 16 66
Seats Protection on Leg 2 20 78
Table 2.5 Seats Protection using Fare Class Nesting
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Using formula (2.3) we have the following booking limits for each class:

[ Y class B class Q class
Booking Limits on Leg 1 100 74 34
Booking Limits on Leg 2 100 80 22

Table 2.6 Booking Limits in Leg Based Fare Class YM Method

For local passengers, if the booking limits of their corresponding fare classes are greater
than zero, then they are booked. On the other hand, the connecting passengers can be
booked if and only if the booking limits of their fare classes are greater than zero on all the
legs they traverse.

2.1.2 Summary

This method directly uses the fare classes to group the fares regardless of whether they are
local fares or connecting fares. Hence it is easy to implement and normally results in a
passenger mix with a high yield. However, this method tends to give priority to short haul
high yield passengers; therefore it may take the risk of spilling lower yield but high
revenue long haul connecting passengers. This may cause a negative network revenue
impact especially when demand is low and there are empty seats remaining on some legs.
Under such a circumstance, taking one connecting passenger from a lower fare class may
produce more network revenue contribution than one local passenger from a higher fare
class.

2.2 Greedy Nesting

First proposed by Boeing’, in this method, OD fares are assigned to different inventory
buckets according to a fare range associated with the bucket. OD fares within each
bucket are then controlled as a group. “Greedy” here means the nesting approach is based
totally on the itinerary fare value, and it will tend to give higher priority to long haul,

’Boeing Commercial Airplane Company, A Pilot Study of Seat Inventory Management for a Flight
Itinerary, Unpublished Internal Report, U.S. and Canadian Airline Analysis, Rentor, WA, Feb. 24, 1983.
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connecting passengers. This method can be divided into two different sub-methods: Fare
Stratification and Virtual Nesting. They are similar since both of them are “greedy”, while
they differ in the way they are implemented.

2.2.1 Fare Stratification

This method is distinguished from Fare Class Nesting because it groups all fares on each
leg into several classes based on their fare values. The number of those classes is generally
the same as the number of the fare classes, but used in a separate way. For example,
determined by the number of booking classes in the system, we can choose to cluster the
fares into four groups as follows (based on their total fare value):

leg1 Leg 2
Y class Y(AC) Y class Y(AC)
B class Y(AB), B(AC) B class Y(AB), B(AC)
Qclass B(AB), Q(AC) Q class B(AB), Q(AC)
V class Q(AB) V class Q(AB)

Table 2.7 Fare Groups in the Fare Stratification Method

Next, we use demand-weighted mean fare or mileage-weighted mean fare to calculate the
EMSR input, then calculate the seat protection for each fare class group. Since, in this
method, we have put the full fare connecting passengers in the highest fare class, they will
have the higher priority to access the seats than full fare local passengers. The local
discount fare, which has the lowest fare value, is ranked in V class, and it will be the first
class to be rejected (spilled) if the demands exceed the seat capacity.

2.2.2 Greedy Virtual Nesting

In contrast to Fare Stratification, in this method, the fares are no longer assigned to Y, B,
Qand V classes. Instead, they are grouped into several so-called “virtual” classes by their
fare values. The number of virtual classes can be arbitrarily selected. The maximum
number of virtual classes can be equal to the number of different fare values on each leg.
Following are the virtual classes for our example in Figure 2.1.
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Virtual Classes Fare Classes Fare
Y1 Y(AC) $1000
Y2 B(AC) $625
Y3 Y(AB) $500
Y4 B(AB) $300
Y5 Q(AC) $250
Y6 Q(AB) $150
Table 2.8 Viriual Classes on Leg 1
Leg 2:
Virtual Classes Fare Classes Fare
Y1 Y(AC) $1000
Y2 B(AC) $625
Y3 Y(BC) $600
Y4 B(BC) $350
YS Q(AC) $250
Y6 QEBOC) $200
Table 2.9 Virtual Classes on Leg 2

Here we have chosen an extreme case, where each fare value is in a differeni virtual class,
and the fares are ranked totally based on their itinerary fares. Next, based on these virtual
classes, the EMSR value will be calculated. The calculation is exactly the same as what
has been done in leg-based fare class yield management method. The seat protection and
booking limits are given in the following tables. For the detailed calculations, please refer

to Appendix 1.

Y1 Y2 Y3 Y4 Y5 |
Seats Protection on Leg 1 7 27 44 65 116
Seats Protection on Leg 2 7 22 48 75 121
Table 2.10 Seats Protection using Virtual Class Nesting

Assume that the capacity on both legs is 100 seats.
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Y1 Y2 Y3 Y4 Y5 Y6

Booking Limits on Leg 1 100 93 73 56 35 0
Booking Limits on Leg 2 100 93 78 52 25 0

Table 2.11 Booking Limits in the Greedy Virtual Nesting Method

Comparing the results in Tables 2.10 and 2.11 with the results given in Table 2.5 and 2.6,
we can see that, unlike the leg-based yicld management method, in which both local and
connecting Q classes have seats available, the virtual class Y6, local Q ciass, is not
available while virual class Y5 (connecting Q class) is still available. This is duc to the
greedy virtual nesting method giving higher priority to the long haul high fare passengers.

2.2.3 Summary

Unlike the leg-based fare class YM method, this method groups the fares according to
their total fare values, so it tends to give more favor to the high farc long haul connecting
passengers. For a simple network like Figure 2.1, which has only 2 legs, there arc four
circumstances depending upon the demand: Both legs have low demand, both legs have
high demand, Leg 1 has low demand while Leg 2 has high demand, or Leg 1 has high
demand while Leg 2 has low demand. In three out of four of these cases, that is, when
both legs or at least one of the legs has empty seats, such a method is desirable. However,
when the demand is severely high and both legs have spill, this method may have a
consequential negative impact. This is because, under such a condition, booking two
local passengers can give have higher total network revenue contribution than booking
one connecting passenger.

2.3 EMSR Heuristic Bid Price

The greedy virtual nesting method groups the fares in the virtual classes based totally on
their fare values. The disadvantage with such a strategy is that, when the demands on
both legs are extremely high, loading one connecting passenger while spilling two local
passengers, whose total fares are higher than one connecting passenger, will have a
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negative network fare impact. The idea of the heuristic bid price method (Belobaba 1995)
is to capture the displacement impact of a connecting passenger onto the local passengers.
It uses the virtual classes to calculate the current EMSR curve, then uses this EMSR valuc
to set a “cut-off” price called “bid price." For the local passengers, this bid price is simply
the current EMSR value on that leg. For the connecting passengers, the bid price will be
the combination of EMSR valucs on all legs the fare traverses. Next, we will use the
example in Figure 2.1 to explain this method.

2.3.1 Process of the Method

1.EMSR Curve Calculation

As shown in Table 2.8 and 2.9, we have six virtual classes on both Leg 1 and Leg 2.
Suppose the capacity on each leg is 100. The EMSR curve is shown below.

$1000

$800

$600 (27, 500)

EMSR(100)=$244.1

(65, 250)

| :
$200 (116, 150)

| I I I
25 50 75 100

v

Seat

Figure 2.2  EMSR Curve from Greedy Virtual Nesting Method on Leg 1

On leg 2, we can find a similar EMSR Curve:
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3200 (121, 200)

1 | | i

EMSR(100)=3250
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Figure 2.3 EMSR Curve from Greedy Virtual Nesting Mcthod on Leg ?

v

Seat

The detailed calculations of these two curves and the EMSR value of the 100th scat are in

Appeadix 1.

2. Calculation of the Bid Price

For the local fare, the bid price is simply the EMSR value on that leg. For the connecting

fare, the formula of the bid price on leg 1 is given as
BP, = EMSR, +d X EMSR, .
While the bid price on leg 2 is given as

BP, = EMSR, +d x EMSR, .

The “d” is the product of the percentages of the local passengers on both legs, and its

range is 0 <d < 1'°.

On this basis, we can obtain the following bid price:

19 p P. Belobaba, Airline O-D Seat Inventory Control Without Network Optimization, Flight
Transportation Laboratory, MIT, June 1995.
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Leg 1

Leg 2

Local
Connecting

2441
306.6

250
311.0

Table 2.12

3. Booking Limits

EMSR Heuristic Bid Prices

Considering the bid prices, we can decide whether a passenger should be booked or
spilled. For local passengers, if their fares are higher than the bid price on the leg they

traverse, they can be booked. For connecting passengers, their fares must be higher than
the bid prices on all legs they traverse. As a result, we have the following tables showing

the airline’s bcoking decision for local and connecting passengers:

lLocal fares on Leg 1:

Fa.e Bid Price Book/Spill
Y3 500 2441 Book
Y4 300 244.1 Book
Y6 150 2441 Spill
Table 2.13 Booking Decisions for Local Passengers on Leg 1
Local on Leg 2:
Fare Bid Price Book/Spill
Y3 600 250 Book
Y4 350 250 Book
Y6 200 250 Spill
Table 2.14 Booking Decisions for Local Passengers on Leg 2

Connecting Passengers:

Fare Bid Price on Leg 1 Bid Price on Leg 2 Book/Spill
Y1 1000 306.6 311.0 Book
Y2 625 306.6 311.0 Book
Y5 250 306.6 311.0 Spill

Table 2.15

Booking Decisions for Connecting Passengers
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We notice that the connecting passengers in virtual class Y5 are spilled in this method,
while they have seat availability in the greedy virtual nesting method. Refer to Table 2.10
and 2.11. Thus, the EMSR Heuristic Bid Price approach can reject some lower valued
connecting passengers by using information from both legs.

2.3.2 Summary

This “leg-based bid price” control cmploys the flight leg structure of the existing yicld
managcement system, and does not require network optimization. In this method, the
displacement impact of the connecting passengers has been taken into account: the bid
price for the connecting passengers is the combination of the EMSR values on all legs the
connecting passengers traverse. One disadvantage of this method is that there are certain
heuristic factor in the formula of the bid price: the parameter in the formulation for
connecting passengers is cinpirically related to the proportion of local passengers on cach
leg. Another limitation of this method is that it is still essentially a greedy approach: The
calculation of the EMSR value is based on the total fares.

2.4 Non-greedy Virtual Nesting

As we mentioned previously, a drawback of the Greedy Virtual Nesting method is that it
gives more priority to high fare long haul connecting passengers. When demand is high,
booking one connecting passenger leads two local passengers to be spilled. This may
result in a great loss in network revenue. In this non-greedy virtual nesting method, since
the booking of passengers is not based on their total itinerary fare value, when demand is
high enough, the long haul connecting passengers may be spilled first. We will use the
example in Figure 2.1 to describe how this method works.
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2.4.1 Process of the Method

1. Shadow Prices from Linear Programming

Earlier in this chapter, we introduced a partitioned network optimization method for scat
inventory control using formula [2.1]. Even though this method is not used in real world
operations, it can provide congestion information on each leg through the analysis of the
value of dual variables (or shadow prices) associated with each capacity constraint. Dual
variablcs refer to how much the total network revenue can be improved by increasing the
capacity of a particular leg by one scat. If there is no congestion on a leg, that is if there
are surplus seats on that leg, then the shadow price will be 0. On the contrary, if spill is
cxpected on a leg, then the shacdow price will be positive. Such a concept can be used to
measure the displacement impact of the ccnnecting passengers.

The first step of this approach is to solve equation [2.1], and obtain the shadow prices on
all legs. In our example, we will solve the following LP:

Max:

Re venue = 500x ¥, +300x B, +150x 0, +600x ¥, +350x B, +200x 0,

+1000 X ¥, + 625 x B, +250x O, [2.8]
Subject to:
Capacity Constraints
Y,+B,+Q,+Y. +B,+0. <100 forleg 1,

Y,+B,+0,+Y.+B.+0Q. <100 for leg 2.

Demand Constraints
Y, <10; B, <£20; 0, <40;
Y, <15; B, <25; 0, <45,
Y <8; B, <25; 0. <45;

Y, B, and Q are the numbers of seats allocated to each OD fare. By plugging the above
problem into an LP solver, such as Cplex, OSL, or Lindo, we can get the following
shadow prices (The detailed solution for this problem is in Appendix 2.):
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SP1=$150.0 (291
SP2=$200.0

2. Calculating the Pseudo Fares

The “pseudo fares” are defined as the revenue contribution of the passengers after
considering their displacement impact on the network. Therefore, for local passengers,
their pseudo fares are equal to their total fares. On the other hand, for the connecting
passengers, their pseudo fares on one leg are equal to their total fares minus the shadow
prices on the other legs they traverse. So the same connecting OD fare may have different
pseudo fares on different legs. The values of the pseudo fares of connecting passengers in
our example are given in the following table:

Legl Leg 2
Y class $500 $850
B class $425 $475
| Q class $50 $100
Table 2.16 Pseudo Fares of Connecting Passengers

3. EMSR Seat Inventory Control

After getting the pseudo fares, a method similar to the greedy virtual nesting procedure is
applied. This time, instead of using fares to achieve the virtual nesting, we utilize pseudo
fares. The results are given in the following tables:

Leg 1 (SP2=$200):

Virtual Classes Fare Classes Fare Pseudo Fare
Y1 Y(AC) $1000 $800
Y2 Y(AB) $500 $500
Y3 B(AC) $625 $425
Y4 B(AB) $300 $300
Y5 Q(AB) $150 $150
Y6 Q(AC) $250 $50

Table 2.17  Virtual Classes based on Pseudo Fares on Leg 1
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Note here that the fare B(AC) is now ranked in a virtual class lower than fare Y(AB).
This is due to the consideration of the displacement impact of the connecting passengers
ACon Leg 2.

Leg 2 (SP1=$150):

Virtual Classes Fare Classes Fare Pscudo Fare
Y1 Y(AC) $1000 $850
Y2 Y(BC) $600 $600
Y3 B(AC) $625 $475
Y4 B(BC) $350 $350
Y5 Q(BC) $200 $200
Y6 Q(AC) $250 $100

Table 2.18  Virtual Classes based on Pseudo Fares on Leg 2

Using the virtual class given above we can calculate the EMSR curves on both leg 1 and
leg 2 as shown in following two figures.

$800

$600

$400

$200

(7, 500)
(15, 425)

(69, 150)

EMSR(100)=$150.0

(124, 50)

™

l >

25 50 75

100 - Seat

Figure 24 EMSR Curve Based on Pseudo Fares on Leg 1

On leg 2, we can get a similar EMSR Curve:
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Figure 2.5 EMSR Curve Based on Pseudo Fares on Leg 2

From the two figure abovc we can easily determine that the seat protection for each virtual
clazs. They are listed in Table 2.19.

Y1 Y2 Y3 Y4 Y5
Seats Protection on Leg 1 7 15 41 69 124
Seats Protection on Leg 2 6 19 45 77 133

Table 2.19 Seats Protection in the Non-greedy Virtual Nesting Method

If we assume that the capacity on both legs is 100 seats we will have the following
booking limits.

Y1 Y2 Y3 Y4 YS Y6
Booking LimitsonLeg1 100 93 85 59 31 0
Booking LimitsonLeg?2 100 94 71 55 23 0

Table 2.20 Booking Limits in the Non-greedy Virtual Nesting Method

The critical EMSR value on leg 1 and leg 2 are $150 and $200, respectively.

By comparing the results we achieved here with those obtained from greedy virtual
nesting, we find that some of the long haul connecting passengers no longer have a higher
priority than the local passengers, and the connecting Q class is ranked in the lowest
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virtual class without seat availability at all. On the other hand, the local Q class passengers
on both legs have seats available at this time. This observation also differs from the results
we obtained from the heuristic bid price.

2.4.2 Summary

The non-greedy virtuai nesting method employs simple network LP concepts 1o calculate
the shadow prices, and to measure the displacement impact of the connecting passengers.
Such a strategy normally performs well when demand is extremely high. However several
issues need to be taken into account when we calculate the shadow prices, and we will
discuss them in Chapter 3.

2.5 Network Deterministic Bid Price

The four methods introduced above used the concept of heuristic nesting. The method we
will address in this section is a pure network optimization process. Its concept is similar
to that of the heuristic bid price. The difference is that it uses the shadow prices directly
as the bid prices on each leg. We will use the previous example to explain this approach.

2.5.1 Process of the Method

First, solve the LP equation [2.2] as we did in section 2.4.1 and get the shadow prices on
each leg. The results are:

Spreg = $150 [2.10]
SPregz = $200

The principles for booking decisions in this method ave: for local passengers, if their fare
value is higher than the shadow price on the leg they traverse, they are booked; for
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connecting passengers, they can be booked if and only if their farc values are greater than
the sum of the shadow prices on all legs they traverse. So, we have the following three

booking decision tables.

Local passengers on leg |

Fare Bid Price Book/Spill
Y 500 200 Book
B 300 200 Book
Q 150 200 Spilt

Table 2.21

Local passengers on leg 2

Booking Decisions for Local Passengers on Leg 1

Fare Bid Price Book/Spill
Y 600 150 Rsok
B 350 150 Book
Q 200 150 Book

Table 2.22

Connecting passengers

Booking Decisions for Local Passengers on Leg 2

Fare Bid Price Book/Spill
Y 800 200+150 Book
B 500 200+150 Book
Q 250 200+150 Spill
Table 2.23  Booking Decisions for Connecting Passengers
2.5.2 Summary

The network bid price method uses the LP network optimization concepts to establish the
bid prices. One problem of utilizing this model is that, in the formulation of the
optimization model, the right-hand sides of the constraints require the remaining capacity
on each leg and forecast future demands of each OD fare class. This information changes
during the booking process for a departure date. Therefore, to use this method requircs
the airline to run the LP frequently. This is impractical because most airlines do not have
the data to support such a dynamic optimization process. Plus, running an LP is very time
consuming as the network grows larger and larger.

36



2.6 Chapter Summary

In this chapter, we introduced five different revenue maragement methods:

The Leg Based Fare Class Yield Management Method directly utilizes the existing fare
classes to calculate the EMSR booking limits. It is simple to employ and therefore is
practiced by many airlines. However, this method ignores the fact that the long haul
connecting passengers normally provide more revenue than the short haul local
passengers.

'the Greeuy Virtual Nesting Method treats the fares based on their absolute values and re-
arranges the fares to the so-called virtual buckets. In such a way, the long haul connecting
passengers obtain the highest priority to access the seats. The greedy method performs
well when the demand is low, however when demand is high, booking one connecting
passenger may cause two or more local passengers to be spilled, that is, the connecting
fares have displacement impacts.

The Greedy Heuristic Bid Price Method takes approximates the displacement impacts of
the connecting fares by applying higher bid prices for the connecting passengers than the
local passengers. However this method is still a greedy method because the critical EMSR
values are calculated based on the total fares.

The Non-greedy Virtual Nesting Method uses the shadow prices from the linear
programming models as the displacement impacts. The advantage of this method is that it
gives high revenue contributions (from the simulation results in Chapter 4), but the
disadvantage of this method is that it requires more information in terms of more detailed
ODF demand forecasts, at least for the total demand on a network.

The Deterministic Bid Price method is a pure network optimization method, which simply
uses the shadow prices from the LP model, therefore it requires more detailed incremental
ODF forecasts by booking period.

These five methods, each with its own advantages and disadvantages, suggests a clear
research direction: How the corinecting fares should be treated under different demand
circumstances. Ideally, when the demand is low, the connecting passengers should have
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higher priority to access the seats than the local passengers, while when the demand is
high, enough seats should be reserved for the high yield local passengers. In next chapter,
we will follow these ideas and propose three new models. We will also discuss how to
avoid over-emphasizing the displacement impacts of the connecting passengers in practice.
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Chapter 3

Approaches to Network O-D Control
Considering Displacement Impacts

The mathematical approaches reviewed in the previous chapters suggest directions for
developing new seat inventory control methods. For example, in the non-greedy virtual
nesting method, the displacement impact of the connecting rassengers is taken into account
by employing an LP model. Are there any better ways to evaiuate su~h effects? Can we
take advantages of several good methods to achieve the best revenu. performance? In this
chapter, the methodologies of several new models are presented. A simple network (Figure
2.1) will be employed to explain how to apply these methods in practice, and several related
subjects will be explored.

3.1 Non-greedy Heuristic Bid Price Control
Model

3.1.1 Introduction

We propose this new model based on two observations about the previously reviewed
airline seat inventory control methods:

1. The greedy virtual nesting method does not perform very well when the demand is
extremely high, because under such conditions, booking one connecting passenger may
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cause two local passengers to be spilled. We know that, normally, two local passengers
have a higher total revenue contribution than one connecting passenger. This
observation tells us that the total itinerary network revenue contribution of the
connecting passengers should not be their total itinerary fares, if they make any negative
revenue impact on the network. In order to evaluate such negative impacts, we have o
solve the LP to calculate the shadow prices associated with the capacity constraints.

2. The heuristic bid price method has shown positive revenue performance in practice',
which we ascribe to the consideration of the displacement impacts of the connecting
passengers through setting a higher bid price for them than for local passengers.
However, it is still based on a greedy virtual nesting method, and the total itinerary fares
are utilized to calculate the critical EMSR values.

The new model, which we name Non-Greedy F? uristic Bid Price method, inherits the merits
of both non-greedy virtual nesting and the grecd'y heuristic bid price methods. In this
approach, we calculate the pseudo fares first, then obtain the critical EMSR values and the
bid prices.

3.1.2 The Model

The main idea of this new model is that we will incorporate the displacement impacts of the
connecting passenger by using the pseudo fares to calculate the critical EMSR values. This
is the same as the non-greedy virtual nesting method. Then, in the next step, the heuristic
bid prices are utilized to decide the booking limits.

A broad definition of the shadow price is “the maximum amount that a manager should be
willing to pay for an additional unit of resource.”® In our deterministic LP optimization
model, the shadow price is the value of the last seat on each leg, and it is positive only when
spill is expected to occur.

In the non-greedy virtual nesting method (reviewed in Chapter 2), the pscudo fares, which
are defined as fares minus shadow prices, are introduced to reflect the total itinerary revenue
contribution of the passengers. For local passengers, their pseudo fares are identical to their

' P.P. Belobaba, Airline O-D Seat Inventory Control Without Network Optimization, Flight Transportation
Laboratory, MIT, Cambridge, MA, June 1995.

> W.L. Winston, Operations Research, Application and Algorithms, Third Edition, Duxbury Press, Belmont,
California.
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total fares since they do not make any displacement impacts, while for the connecting
passengers, their pseudo fares will be less than their total fares if the shadow prices arc
positive (or spills are expected).

An alternative way to evaluate this displacement impact of the connecting passengers is to
utilize the critical EMSR value on each leg. The critical EMSR value is a marginal value of
the last seat on a leg.

EMSR(S) = f - P(S) [3.1]

where the EMSR(S) is the expected marginal seat revenue of the Sth seat, f is the fare value,
and P(S)is the probability that the Sth seat can be occupied by the passengers paying fare f.
The EMSR is a measurement of the value of the last seat on a leg, and we can employ it to

gauge the displacement impact of a connecting passenger. Therefore we will be able to
define the pseudo fares in another form, that is, fares minus the critical EMSR values.

Since there are two alternatives to evaluate the displacement impacts of the connecting
passengers--the shadow prices from network optimization and the critical EMSR values
from leg based probability optimization--we can divide our model into two sub-methods:
the Network Non-greedy Heuristic Bid Price Method and the Leg-based Probability Non-
greedy Heuristic Bid Price Method.

1. Network Non-greedy Bid Price Method

In this method, the shadow prices are calculated from solving a deterministic linear program,
then the pseudo fares are employed to evaluate the revenue contributioa of the passengers
to obtain the critical EMSR value on each leg, and consequently, the bid prices are decided.

For the local fares, the bid prices are simply the EMSR values on the corresponding legs,
while for the connecting fares, the bid prices on Leg 1 are:

BP, = EMSR, +d x EMSR,, [3.2]

while the bid prices on Leg 2 are:

BP, = EMSR, +d x EMSR, . 3.3]
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The “d” in the formula is simply the product cf the percentages of the local passengers on
both legs’.

In our example in Figure 2.1, for instance, we obtain the following bid prices (the
calculation of the critical EMSR values is introduced in Chapter 2.4: Non-grcedy Virtual
Nesting Method):

Leg 1 Leg 2
Local 150 200
Connecting 200 237.5

Table 3.1 EMSR Heuristic Bid Prices Based on Pseudo Fares

Based on these bid prices, we can decide whether a passenger should be taken or spilled.
For local passengers, if their fares are higher than the bid prices on the legs they traverse,
they can be booked. For connecting passengers, their fares must be higher than the bid
prices on all legs that they travel. The outcomes of the booking decisions are listed in
following three tables:

Local fares on Leg 1:

Fare Bid Price Book/Spill
Y2 500 150 Book
Y3 300 150 Book
YS 150 150 Book

Table 3.2 Booking Decisions for Local Fassengers on Leg 1

Local fares on Leg 2:
Fare Bid Price Book/Spili
Y2 600 200 Book
Y4 350 200 Book
Y6 200 200 Book

Table 3.3 Booking Decisions for Local Passengers on Leg 2

Connecting fares:

* P.P. Belobaba, Airline O-D Seat Inventory Control Without Network Optimization, Flight Transportation
Laboratory, MIT, Cambridge, MA, June 1995.
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Fare Psfare(1) Bid Price(1) Psfare(2) Bid Price(2) Book/Spill
Y1 800 600 200 650 237.5 Book
Y2 500 300 200 350 237.5 Book
Y4 250 50 200 100 237.5 Spill

Table 34  Booking Decisions for Connecting Passengers

The conclusions in Tables 3.2 to 3.4 differ from those outcomes in Tables 2.13 t0 2.15
obtained from the non-greedy heuristic bid price method: the local passengers have more
seat availability here than they have in the greedy heuristic bid price method. For example,
both local Q classes on Leg 1 and Leg 2, which are spilled in the greedy heuristic method,
now have seats available.

2. Leg Based EMSR Non-greedy Bid Price Method

We may also apply the critical EMSR values to measure the network displacement impaclts.
The first step is to calculate the critical EMSR values using the total itinerary fares as the
inputs. Then these critical EMSR values are subtracted from the fares to obtain the pseudo
fares. Using these pseudo fares, the critical EMSR values are re-calculated, and the bid
prices are subsequently acquired based on these new EMSR values.

In our example in Figure 2.1, for instance, we obtain the following pseudo fares:

Leg 1 Leg 2
Y class $750.0 $755.1
B class $375.0 $380.9
Q class $0.0 $5.9

Table 3.5 Pseudo Fares of Connecting Passengers

The bid prices calculated based on these pseudo fares are:

Leg 1 Leg 2
Local 150.0 200.0
Connecting 200.0 237.5

Table 3.6 EMSR Beuristic Bid Prices Based on Pseudo Fares

As aresult, we have the following three booking tables:
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Local fares on Leg 1:

Fare Bid Price Book/Spill
Y2 500 150 Book
Y3 300 150 Book
Y5 150 150 Book

Table 3.7 Booking Decisions for Local Passengers on Leg 1

Local fares on Leg 2:
Fare Bid Price Book/Spill
Y2 600 200 Book
Y4 350 200 Book
Y6 200 200 Book

Table 3.8 Booking Decisions for Local Passengers on Leg 2

Connecting passengers:

Fare Psfare(1) Bid Price(1) Psfare(2) Bid Price(2) Book/Spill
Y1 800 600 200 650 Book
Y2 500 300 200 350 Book
Y4 250 50 200 100 Spill

Table 3.9  Booking Decisions for Connecting Passengers

We recognize that this approach provides us with a similar result compared with the
outcomes we derived from the network LP optimization process. However, the advantage
of using the EMSR calculation is that it avoids the network optimization process, which
requires a lot of data and computer time. On the other hand, the disadvantage is that the
critical EMSR value might not be the most proper estimation of the displacement effects on
the network optimization. However, this method provide us with a direction of developing
a convergence model: re-calculate the EMSR values based on the pseudo fares till the
values of the pseudo fares converge. For detail discussion about this convergence, pleasce

refer to page 104 and 105 in Chapter 4.




3.1.3 Some Concerns about the Non-greedy Heuristic
Bid Price Model

1. Linear Program Debate

a. Dynamic LP vs. Static LP

In the network non-greedy heuristic bid price method, we evaluated the displacement
consequences of the connecting passengers using the shadow prices of each leg. To
calculate the shadow prices involves solving a traditional Operation Research network
optimization model (2.1). In this model, the right-hand sides (RHS) of the capacity
constraints are the number of seats available on each flight leg, and the RHS of the demand
constraints are the number of bookings still to come in the future. Both of these RHS
change with the booking process, because the capacity remaining on cach leg decreases, and
the demands still to come also decline. If these input data change, so will the outputs of the
optimization process. Thereby the airlines face the decision of how often they should re-
solve the linear program. One solution is to update the LP results whenever the demand and
capacity statistics change. However, practically, most airlines cannot employ such strategics
due to the costs of the data collection and storage and the inaccuracy of demand forecasting.

Therefore, we need to evaluate the revenue effects of employing shadow prices from an LY
that are out of date. If the network revenue decreases, is the change in an acceptable range?
In our experiments, two cases are taken into account to evaluate such effects: Solving LP
multiple times and solving LP once. In the dynamic (or multiple) LP case, instead of re-
solving LP whenever the data change, we re-solve it at each booking check point, which is
more realistic. There are 16 such check points in our demonstrated network (we will
introduce this network in Chapter 4). On the other hand, in the static (or single) LP case,
the LP is solved at the beginning of each departure, and the shadow prices stay the same in
each booking period within that particular departure’s booking process.

Generally, the revenue performance from the multiple LP solving is better than that from the
single LP solving. This is understandable, because multiple LP solving provides more
accurate information about the capacity and demands. However, we also find that the single
LP solving provides a comparable revenue improvement to the multiple LP solving. On a
few occasions, solving LP once has even better revenue gains. This can be explained by
large variations in the demand. For instance, we found that it is possible that during one
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booking period, there are only one or two passengers who are booked, while during the very
next booking period, there are more than 200 passengers who come for booking. If this is
the case, then after the first booking period, we will have a lot of seats left, which will cause
the shadow prices to be somewhat low, and the pseudo fares for the connecting passengers
to be correspondingly high. Therefore, when it comes to the next booking period, in which
the demand is high, many connecting passengers with high pseudo fare values and high
booking priority will be booked. This will cause some high fare local passengers who will
come during the following booking periods to be spilled. On the contrary, if we only solve
LP once, those RHS we will apply are the mean demand and capacity over all the booking
periods. They are more reliable with less deviation; therefore the booking permission will
not be affected by the great changes among the booking periods. Even though such
occasions are rare, it did happen in our experiments.

b. Demand Forecasting

Recall that in the LP problem, there are two types of constraints: capacity constraints and
demand constraints. The RHS of the demand constraints are simply the forecast mean
demands of each OD (Origin-Destination) fare class. Practically, the forecast of demands is
done based on the historical data, up to several months before the departures. Such
forecasting cannot be exactly accurate, and the errors may bring additional mistakes to the
shadow prices and the pseudo fares derived from the LP model. Hence, it is necessary to
evaluate how the total network revenue will be affected if the forecast of the demands is
imprecise. Two cases need to be considered: when the forecast goes too low and when the
forecast goes too high.

In the first case, we will solve the LP at a lower demand level than the actual demand. The
shadow prices derived from the LP will be comparatively low, and the pseudo fares of the
connecting passengers will be correspondingly high. Such a solution normally has better
performance when demand is low, because we know when demand is low it would be better
to carry as many passengers as possible than to take the risk of allowing any seats to go
empty. Nevertheless, when the aemand is high, this oversight may allow those connecting
passengers to eat up the seats that should be reserved for the high yield local passengers,
and subsequently cause a negative revenue impact on the whole network.

In the second case, we will solve the LP at a higher demand level than the actual demand.
The shadow prices will be relatively high. Then the pseudo fares will be relatively low. Asa
result, the connecting passengers will have lower priority to access the seats than they
chould have. If demand eventually turns out to be high, such a solution has very good
network revenue performance, because some connecting passengers from low fare classes
are spilled, and enough seats are reserved for the high yield local passengers. However, if it
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turns out to be a low demand season, this misjudgment will cause an unnecessary rejection
of the connecting passengers. If there are not enough local passengers coming to book,

seats perish.

At this point, we are facing the trade-off between solving LP at a higher demand level to
have a good network revenue achievement when demand is high (although suffering from an
inefficiency when demand is unexpectedly low), and solving LP at a low demand level to
guarantee that there will be no negative performance in low demand periods (although
during the high demand periods resulting in perhaps too many connecting passengers).

c. Degeneracy of the Linear Program

In practice, almost all airline LP applications are degenerate. We know that whether an LP
is degenerate depends on how many constraints of the LP are binding. If the number of the
binding constraints exceeds the number of variables, then the problem becomes degenerate.
Therefore the more constraints the LP has, the higher the chance it is degenerate. If we
look at the LP formula in Equation [2.1], we will find that for every variable there is an
upper bound constraint. So the total number of the constraints is equal to the number of
variables plus the number of flight segments (capacity constraints).

One problem associated with the degeneracy of the LP is that the LP’s dual problem will
have multiple solutions. The optimization tools, such as CSL and Cplex, only supply the
dual solutions they encounter first. Since the shadow prices will directly affect the pseudo
fares and bid prices, the correction of their values can be important. Therefore a non-
degenerate solution is always preferred.

There are a couple of procedures to afford a non-degenerate solution, such as perturbation
of the RHS of the linear program®, or instead of finding the corner/extreme point as the
optimal primal solution, which will cause a multiple dual solution, utilization of the convex
combination of two degenerate bases”.

In the following, we will address this degeneracy problem through several approaches.
Figure 3.1 shows a small network with only two legs:

*D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, August 1996.
’ T. Magnanti, Handout for course Introduction to Mathematical Programming, MIT, Fall 1996.
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Fare = $200 Fare = $300
Demand = 10 Demand = 10

Leg1 Leg2

¢ §— 0

S~ R

Fare = $400
Demand = 10

Figure 3.1 A Two-Leg Network

Assume that the capacity on each leg is 15 seats. The demand and fares of local and
connecting trips are shown in the figure. We can employ the following LP equations to
calculate the dual variables:

Max:

200 X1 + 300 X2 + 400 X3 [3.4]
Subject to:

X! +X3<15

X2+X3<15

X1 <10

X2 <10

X3 <10

Xi >0, fori=13

Through the simplex tableau method we then derive the two optimal solutions:

Solution 1:
Primal Dual Obijective Value
X, =10 Py, = $100 $7000 [3.5]
Xz =10 P12 = $300
X;=3
Solution 2:
Primal Dual Objective Value
X, =10 Py = $200 $7000 [3.6]
X2 = 10 Pzz = $200
X_q = 5

We notice that these two sets of dual variables are different from each other. Which one
will be generated by the optimization solver depends on the sequence of the input
constraints. Additionally, both of these two solutions are degenerat-. To overcome this
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difficulty, we propose the following three approaches. Each are suitable for different
circumstances, and following, we will discuss them one by one.

e True Shadow Prices

The shadow prices are defined as “the amount a manager would like to pay for one more
unit of resource.”® Therefore, we can figure out the correct shadow prices from this
definition. Increase the capacity on one leg by one unit and re-solve the LP in Equation
[3.4] to obtain a new objective value; compare this new objective value with the original
objective value (in Equation [3.5] and [3.6]). The difference is the true shadow price on
that particular leg. To obtain the true shadow prices of our example in Figure 3.1, we will
need to solve the following two LPs in Equations {3.7] and [3.8].

Max:
200 X; + 300 X; + 400 X;3 13.7]
Subject to:
X +X;<16
X+X;5<15
X, <10
X, <10
X3 < 10
X; >0, fori=l3
and
Max:
200X, + 300 X; + 400 X; [3.8]
Subject to:
X, +X; < 15
Xz + X3 516
X; <10
X2 < 10
X; <10
X; >0, jori=13

The objective value of Equation [3.7] is $7100, and of [3.8], $7200. Therefore, the correct
shadow prices on Leg 1 and Leg 2 should be

SP, = $100 {3.9]
SP,=$200

® W.L. Winston, Operations Research, Application and Algorithms, Third Edition, Duxbury Press, Belmont,
California.
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subsequently. We find that even in the simple example above, the dual variables obtained
from the simplex tableau method are different from the accurate ones (SP; and SPz). In the
above example, the dual variables in Solution Set 1 [3.5] are:

P, = $100 [3.10]
sz = $300

The second dual value ($300) for Leg 2 is higher than the true shadow price (SP2), while the
first value for Leg 1 happens to be correct. In Solution Set 2 [3.6], the dual variables are:

Pz] = $200 [3.11]
Pzz = $200

This time, the dual variable on Leg 2 is correct, while that on Leg 1 is too high (the true
shadow price on Leg 1 is $100). By our experience, most of the time, it is better to employ
a lower set of shadow prices than a higher one, because the risk of using a lower one is
accepting too many low yield connecting passengers, while the risk of using a higher one is
leaving seats empty.

e Mean of the Dual Variables

To solve the difficulty of choosing the correct dual variables, one alternative is to employ
the mean value of all sets of the dual variables, that is to find out all possible dual solutions
by re-arranging the sequence of the input constraints. For the applied example, we would
then have the shadow prices as follows:

SP, = $150 3.12]
SP, = §250

e Adjusted Dual Variables

Another alternative to avoid implementing a set of high shadow prices is to multiply an
empirical parameter, which is less than 1 by any set of dual variables released from the LP
solver ([3.10] and [3.11]), for example, 0.8. We will then have either:

SP; = $80 [3.13)
SP, = $240

or
SP; = $160 [3.14]
SPz = $160.
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All three alternatives above try to avoid employing a high set of shadow prices and leaving
seats empty at departure. Alternative 1, true shadow price model, requires re-solving the
LP once for each leg, so the total number of times that the LPs need to be re-solved is the
number of legs plus one. So, for a large network, it may not applicable. Alternative 2, the
mean of the dual variables, requires re-arranging the constraints to obtain the different sets
of dual variables. The extreme case, which means obtaining all sets of the dual solutions,
requires re-solving the LP

P& = (Number of Legs)! [3.15]

legs

times, which is also unrealistic when networks are large. The last alternative, the adjusted
dual variables, is simple to employ, and gives good revenue performance as we will see in
Chapter 4. However it involves a heuristic factor, which we may need to do sensitivity
studies to select.

d. Linear Program versus Integer Program

The seat inventory control assignment is in fact an integer program problem, while the
optimization process that we practiced to obtain the shadow prices is a linear program
model. The shadow prices calculated from the LP are different from those obtained from
the IP. Then why don’t we treat this task as an IP in the first place? Mainly we have two
reasons: First, the optimization procedure to solve an IP requires a much longer time than it
does for an LP problem; second, there is a small number problem associated with current
input data. Since most demands of the OD fares are less than one, the output of these OD
fares through the IP will all be zeros if the requirement of integer solution is imposed.
However, to treat this problem as an integer problem, we can obtain the solution in a
distinct way. Figure 3.2 is the process of the seat inventory control we are using now in the
network displacement adjustment method.
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Figure 3.2 Process of the Non-greedy Seat Controls Method

We observe that the mean forecast demand is required by the LP. Since those inputs are

real numbers, the output of the LP will also be real. A revised process is proposed irn Figure
3.3.
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Figure 3.3 Revised Process of the Non-greedy Seat Inventory Control Method

In this process, the airlines first observe the actual demand data (should be unconstrained
demand data) from 20 historical departures (Note: those actual demand data are integers).
Then these observed demands are employed as the right-hand sides of the demand
constraints in the LP solving process. Since this is a network problem, if the RHS and all
the parameter in the constraints are integers, the outcomes of the LP will be integers as well.
Therefore, an LP problem is transformed into an IP problem. Also, the optimal objective
value from this process should be the theoretical upper bound of the revenues from those 20
departures, and the shadow prices associated with each capacity constraints reflect the value
of the last seat on each leg more accurately.
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e. Additional Thoughts about the Shadow Prices

The 20 sets of the shadow prices calculated from the process above (Figure 3.5) represent a
sample with variance. In Figure 3.5, we simply take the mean values to continue the pscudo
fare calculation. However, if we draw the distribution of these shadow prices, we can
identify that the their values approximate the normal distribution as shown in Figure 3.4,

s

>
v

Meuin — o Mean Shadow

Figure 3.4 Distribution of the Shadow Prices

We can then make a few further adjustments: By definition of the normal distribution, if we
choose to exploit the mean of the shadow prices then there is a 50% opportunity that the
actual shadow prices are lower than the shadow prices we utilize. We know that too high
shadow prices will cause too many connecting passengers to be spilled, which will
consequently lead to empty seats. So we decide to employ the value of ( Mean — o) as the
value of the shadow prices (instead of the Mean) to calculate the pseudo fares. Therefore
the probability that the actual shadow prices will be lower than the implemented shadow
prices decreased to 30%. In practice, we employ the following equation to revise the
shadow prices.

SP, = MAX{00,(SP. - 6 5;)) [3.16]

The equation above shows that if the deviation of a shadow price is higher than its mean
value, the value of this shadow price will be set at zero. Otherwise it will be the difference
between the mean value and the standard deviation.
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2. Heuristic Subjects

a. Heuristic Factor

As mentioned before, the formula of the bid price contains a heuristic factor “‘d”. Belobaba
(1995) suggested in the greedy heuristic method, for a 2-leg itinerary involving a connection
between Leg 1 and Leg 2, the probability outcome that results in the displacement of local
passengers on both legs is the product of PLOC; and PLOC,’, where PLOC; is the
probability that a seat on leg j will be sold to a local passenger. During the development of
our non-greedy heuristic method, we start to realize that the previous handling of that
parameter may or may not. be proper for our case. Therefore sensitivity studies must be
carried out to determine the best value of this parameter.

b. Formula of the Bid Price

For a 2-leg-trip passenger, Belobaba gives the booking criterion as:
F, > max[EMR, (A,) +d x EMR,(A,),EMR,(A,) +d x EMR, (A)] [3.17]

where Fy is the fare of a connecting passenger of itinerary i and fare class k. When a
connecting passenger traverses three or more legs, the above equation is no longer
applicable. We were thinking of imitating the formula above and using d;, d2, and d; before
each EMSR value on every leg, but then this idea was dismissed, because first, it would
involve too many uncertainty factors, and second, such consideration may place too high
restrictions to connecting passengers, which may cause too many of them to be spilled.
Based on the experience from our research, we proposed Formula 3.16 for the connecting
passages which covers multiple flight legs.

BP = Max{EMSR,, i=1, 2......] + d * 2ndMax{EMSR; | i=1,2......} [3.18]

In this formula, only the two largest EMSR values have contributions to the bid prices, and
it is shown to have better revenue performance in the seat inventory control (Chapter 4).

7 P.P. Belobaba, Airline 0-D Seat Inventory Control Without Network Optimization, Flight Transportation
Laboratory, MIT, June 1995.
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3.2 Convergent EMSR Control Model

3.2.1 Introduction

One limitation associated with the greedy methods is that they treat the connecting
passengers as their total itinerary fare values on all legs they traverse. So the revenue
contribution of the connecting passengers is double or even triple counted. To overcome
this shortcoming, we introduced the concept of the pseudo fares. However, the revenue
contribution of the connecting passengers has yet to be properly evaluated, because the sum
of the pseudo fares on all legs of a connecting passenger’s itinerary may not equal to his/her
total itinerary fare value. Therefore the question is: is there a better way to distribute the
connecting fare?

3.2.2 An Observation

In Williamson’s thesis, she mentions that the connecting fare can be prorated by the mileage,
or the local fares etc.® Those methods may not be proper. Consider the following example:
A passenger travels over 4 flight legs with equal length in distance. His/her total fare is
$1000. Suppose due to the difference in local fares and the congestion conditions, the
critical EMSR values on these four legs are: $200, $500, $100, and $10. If we utilize the
mileage to distribute the connecting fares, and the critical EMSR value is employed as a
“cut-off” price to decide the booking, this passenger will be spilled, because his/her
distributed fare on Leg 2 is $333, which is less than the “cut-off” price ($500). We also
notice that on Leg 4, his distributed fare ($333) is much higher than the “cut-off” price
($10). If we reallocate his fare as $247, $617, $123, and $12 subsequently (the total value
of these four numbers is equal to his/her total fare), this is passenger will be booked.

From the example above, we realize that the purpose of the seat inventory control is to try
to take as many high fare passengers as possible; not to spill as many low fare passengers as
possible. Therefore the proper scheme of distributing the connecting fare should make
connecting passengers have the highest ability to compete with local passengers.

®E. L. Williamson, Airline Network Seat Inventory Control: Methodologies And Revenue Impacts, Flight
Transportation Laboratory Report, R92-3, June 1992,
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3.2.3 The Model

The traditionai two-class EMSR problem can be solved using Equation [3.19]

fHIPS)=E
fLP(S,)=E [3.19]
Si+S2=C

where §; and S; are the desired seat allocations for the two fare classes, C is the capacity of
the flight, f1 and f2 are fare values of these two classes, and E is a Langrange undetermined
multiplier. We can alternatively write the Equation [3.19] as following:

[iP(S) = fLP(S,) [3.20]

where S; and S: still need to satisfy the capacity constraint (S7+S2 = C).

For the simplest two-leg segment problem as shown in Figure 3.5,

f2

f) f2

1

A B C
Figure 3.5 A Two-leg Segment Network
to find the optimal seat allocations in the same way as above involves two multipliers, onc

for each leg. The equations turn out to be:

fiP(S))=E,
fLP(S,)=E, [3.21]
fP(S,)=E +E,

We can re-construct Equation [3.21] as following:



fLiP(S,))=6,f,P(S;)

FLP(S,)=0,f,P(S,) [3.22]
6,+6, =1
where in Equation [3.22],
8, = 5 [3.23]
E +E,
and
—_ E2
> E,+E,’

If we treat the “0, f,” as a new fare class f;, and “0, f,” as f5, then Equation [3.22]

contains two traditional 2-class EMSR problems, which is similar to Equation [3.20].
Furthermore f; and fs satisfy the relationship of :

fatfs=1s [3.24]
Such ideas provide us a direction of how the connecting fares should be prorated to the

traversed legs, that is to prorate them according to the EMSR values on each leg. The
process is as follows:

Initially Prorate Connecting Fares
to all Legs Traversed Somehow

Calculate the Critical EMSR
Value for Each Leg
X

Re-prorate the Connecting Fares according
to the EMSR Value on Each Leg

l

No

Convergence?

| EMSRb Control |

Figure 3.6  Convergence in Fare Distribution
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First we can arbitrarily distribute the connecting fares to all legs (for example, equally
distribute) to calculate the critical EMSR value, then distribute the connecting fares based
on these EMSR values. For example, if it is a two leg trip, then we will define the pseudo
fares as follows:

EMSR,
EMSR, + EMSR,
EMSR,

EMSR, + EMSR,

PSE = Fare X

(3.25]

PSF, = Fare X [3.26]

Next, we will compare the difference between the new distributed fares with those of the
previous iteration. If the difference is within a tolerable range:

~x < PSF!" — PSE} < x (327]

then the process is stopped. Otherwise we will go back to re-calculate the critical EMSR
value based on the new distributed fares, and so on. In Equation [3.27], PSF,.f is the value

of OD fare i as prorated to the jth leg in the kth iteration, and the x is a positive value. The
value of x is the convergence criterion. The implementation of such a convergence method
will be discussed in Chapter 4.

3.3 Summary

One major barrier in seat inventory control is that we do not know how to evaluate the
revenue contribution of the connecting passengers on each leg they traverse. In the greedy
methods, connecting passengers are evaluated as their total itinerary fares. Such a strategy
may cause great negative impacts when demand is high, because two local passengers
usually have a higher total revenue contribution than one connecting passenger does.
However, we don’t want to over-emphasize the displacement effects of the connecting
passengers either, because spilling too many of them may lead to empty seats.

In this chapter, we proposed two directions to deal with such a dilemma. One is to employ
the shadow prices and/or the critical EMSR values along with the fine adjustment from the
heuristic bid prices to obtain a better booking mix among the local and the connecting
passengers. The other is trying to find a more proper way to distribute the connecting farcs
to the traversed legs. Both these directions provides us with very good network
performance in practice. We will show some data in Chapter 4.
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Chapter 4

Case Studies

In previous chapters, we have explained and compared several seat inventory control methods
using a simple example. In this chapter, we will exploit some actual airline data and an
integrated optimization/booking process simulation to examine how these methods behave in
a real airline network.

In Section 4.1, we will introduce a simulation software developed in the Flight Transportation
Laboratory at MIT. Then in Section 4.2, the characteristics of the network we will simulate
are presented. Next, the simulation results of the network performance from different
methods are compared in Section 4.3. The last section concludes some concerns related to
the implementation of these methods.

4.1 The Booking Process Simulation

In the following sections of this chapter, we will examine different scat control methods on a
simulated network. The most reasonable comparison is to put all methods under an identical
environment to test how they respond to the same situation. Therefore we prefer to have a
controlled set of circumstances. Such circumstances are difficult to obtain in the real world
because the demand and other factors change from time to time. So a simulation tool is
necessary in our research.

A simulation is “a procedure in which a computer-based mathematical model of a physical
system is used to perform experiments with that system by generating external demands and
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observing how the system reacts to the demands over a period of time'”. With certain
reasonable assumptions, the simulation can provide a similar environment to the real world.

The airline booking simulation software we used in our research was developed in the Flight
Transportation Laboratory at MIT. The software, first created by Williamson (1992) and then
enhanced by several other people, is written in FORTRAN 90. It is an integrated simulation
combining both the revenue management optimization process and random demand generating
process. This simulation model is a Monte Carlo simulation, which can provide an approach
for evaluating different seat inventory control options in a controlled environment that
otherwise would be difficult to obtain through the real-time experimentation. Also this
simulation allows us to compare different seat inventory control methods under the same
demand situation.

There are three kinds of input files in this simulation:

e Demand Input File.

Includes: Number of OD pairs;
Number of fare classes on each OD pair;
Number of flight legs in the network;
Capacity on each flight leg;
Number of book (revision) check points for each departure*;
Path for each OD pair;
Forecast demand for each ODF at each check point.

e Random Demand Generating File.

Includes: Number of departures to be simulated under the same control strategy;
Parameters for the Poisson random number generation.

e Strategy Input File.

Includes: Seat inventory control method for the booking limits calculation;
Demand adjustment parameter*;
Other parameters, such as the heuristic parameter for the bid price formula.

*Booking check points. The airlines adjust their seat inventory control strategy dynamically
according to the updated information about the remaining capacity and demand still to come.
In order to reflect this fact, our simulation is designed as a multiple stages, dynamic process:
The time is segmented from the present time to the departure date as a set of booking periods,

'R.C. Larson and A.R. Odoni, Urban Operations Research, Prentice-Hill, Inc., 1981.
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with booking check points (or re-optimization points) at the beginning of each period. The
booking limits are re-calculated at each of these check points, as shown in the figure below?:

Booking
Period
e, | | |
I (.. ) |
.......... el . Departure
Startof ~ Ttveel R N
Bookings ~ Ttee- » Revision
Points

Figure 4.1 Time Line of the Simulation

In the figure above, those points, at which the simulation update the booking limits, are called
the booking revision (check) points. The time between two check points is a booking period.
To update the booking linits at each check point, the mean and the deviation of the forecast
OD demand for each booking period are required in the simulation.

*Demand adjustment parameter. In order to evaluate the performance of a seat control
methed, we need to know how consistent this method is for both high demand conditions and
low demand conditions. To obtain a high or low demand environment, we do not change the
demand input file, instead, we simply apply a multiplier to each ODF demand data. For
example, to obtain a low demand environment, we will input a demand adjustment parameter
that is less than 1. On the other hand, to obtain a high demand environment, we can input a
parameter that are greater than 1. In this simulation model, this parameter can vary from 0 to
infinity, but mostly, it alters from 0.8 to 1.2 in our research.

The following is the process of the simulation’;

’E. L. Williamson, Airline Network Seat Inventory Control: Methodologies And Revenue Impacts, Flight

Transportation Laboratory Report, R92-3, June 1992,
*E. L. Williamson, Airline Network Seat Inventory Control: Methodologies And Revenue Impacts, Flight

Transportation Laboratory Report, R92-3, June 1992.
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— For each Departure:

— For each Check Point:

Demand Still to Come.

Booking Limits for Each ODFs,

Poisson Demand Generation.
Booking Decisions.

— Next
Next

Summary of the Outcomes

Figure 4.2 Simulation Process

The simulation is run on a PC Pentium 166. The simulation time varies with the size of the
network and the seat inventory control strategy. For example, a hub-spoken network with 32
legs, 121 OD pairs and 10 fare classes in each OD pair with 16 check points, if the greedy
virtual nesting method is implemented, the simulation time for 20 departure days is around 7
minutes. However, if the Deterministic Network Bid Price method is implemented on the
same network, we need 15 minutes. For a larger network with 102 legs, 1066 OD pairs, 7
fare classes in each OD pair, the greedy virtual nesting method takes around 45 minutes for
20 departures, and the deterministic network bid price method takes 2 hours and 35 minutes.

For a more detailed description of the underlying simulation concept please refer to
Williamson’s (1992) doctoral thesis.

4.2 Network Characteristics

The data that we choose to implement to the simulation software is from a sub-network of a
European airline. The general characteristics of this network are:

o 32 flight legs.

e 121 origin and destination pairs.

e 10 fare classes on each O-D pair.

e Mix of long-haul and short-haul flights.

e Each OD fare has at most two legs involved.
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o Average of 72% local traffic on each leg.
e 16 booking periods.

From the 32 flight legs of the network, we choose two typical legs for more detailed analysis:
One (Leg 4) is extremely congested with a 99% load factor, the other (Leg 30) has a
reasonable load factor which is around 75%. We will also trace the leg performance of each
method to make a detailed comparison.

The demand data of the network is shown in the following table:

Demand Adjustment 0.80 1.00 1.20

Total Demand 5556 6941 8313

Local Demand 4670 5845 6999

Connecting Demand 886 1096 1315

Average Leg Load Factor 82.51% 90.00% 92.94%
Table 4.1 Demand Scenarios

In Table 4.1, the average leg load factors are obtained from the EMSRa fare class control
method.

Figure 4.3 shows the cumulative demand curves of two fare classes on Leg 30 under demand
adjustment 1.20.

Accumulated Demand Curve of Two Fare Classes on Leg 30

Demand
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Figure 4.3 Demand Curve for Two Fare Classes on Leg 30



From the demand curves above, we can easily see that the higher fare class passengers tend
to book later than the lower fare class passengers. If we go back to Chapter 1, we will find
such trends are exactly the same as what we showed in Figure 1.3, and it is the reason why
the seat protection for higher fare last-minute passengers is critical in revenue management.

4.3 Strategy Comparison

In this section, different seat control methodologies are compared through the simulation
tool. The results from the simulation are presented to provide a comparison of how ecach
individual method responds to the same demand scenarios. Such information is helpful for
both research and implementation purposes.

4.3.1 Leg Based Fare Class Yield Management(LBFC)

In this strategy, 10 fare classes, which are defined by fare type, are employed as the input to
calculate the EMSR booking limits on each leg, as described in Section 2.1. There are 16
booking periods in this process.

In the following four sections, we present the performance of this method on our example
network.

1. Network Revenue Performance

Tables 4.2 and 4.3 are the network revenue performance of the LBFC method. These two
tables are similar except that in Table 4.2, we apply EMSRa* method, while in Table 4.3 we
employ EMSRb’ method.

* P.P. Belobaba, Air Travel Demand and Airline Seat Inventory Control Management, Flight Transportation
Laboratory Report, R87-7, May 1987.

5P.P. Belobaba, L.R. Weatherford, Comparing Decision Rules that Incorporate Customer Diversion in
Perishable Asset Revenue Management Situations, Decision Sciences, Volume 27, Number 2, Spring 1996,
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Demand Adjustment 0.80 1.00 1.20
Total Revenue 3584323 4130469 4565648
Local Pax Spilled 370 1140 2088
Connecting Pax Spilled 58 223 449
Avg. Leg Load Factor(%) 82.51 90 92.94
Avg. Rev. Per Pax($/Pax) 699.00 740.52 790.36
Avg. Rev. Per Avail. Seat($/Seat) 509.86 587.55 649.45

Table 4.2 Network Performance of LBFC Method using EMSRa Control

Demand Adjustment 0.80 1.00 1.20
Total Revenue 3588448 4140586 4586011
Local Pax Spilled 321 1051 1944
Connecting Pax Spilled 63 268 530
Avg. Leg Load Factor(%) 83.27 90.14 92.85
Avg. Rev. Per Pax($/Pax) 693.86 736.38 785.32
Avg. Rev. Per Avail. Seat($/Seat) 510.45 588.99 652.35
Rev. Improvement over EMSRa 0.12% 0.24% 0.45%

Table 4.3  Network Performance of LBFC Method using EMSRb Control

The items listed in above two tables are factors which we can compare among different
methods, such as number of local passengers spilled and number of connecting passengers
spilled. These numbers can show how a method favors local to connecting passengers, and
they can also provide a reference if a method is too strict to a particular kind of passenger.

In the last row of Table 4.3, we observe that the network revenue can be increased by up to
0.45% at demand level 1.20, simply by changing the control method from EMSRa to
EMSRb. Mostly, in practice, the EMSRb is better then EMSRa®. Therefore in the rest of
our simulations, if not otherwise specified, EMSR control aiways means using EMSRb to
calculate the booking limits.

2. Leg Performance

On the two selected legs, the performance of the seat control (using EMSRb method) is
shown in the following table.

Sp.P. Belobaba, Optimal vs. Heuristic Methods for Nested Seat Allocation, Presentation to the AGIFORS
Yield Management Study Group, Brussels, Belgium, May 1992.
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CAP. LF PAX Load Demand Spill %Local Demand Local SLD

Leg 4 181 99 180 275 95 67.68 111
Leg 30 142 12 103 111 8 85.40 95

Table 4.4 Performance of LBFC method on Two Selected Legs at Demand Level 1.20

The columns, in the table above, are sequentially: The capacity on each leg; the average leg
load factor; the number of passengers on board; the total demand on each leg; the number
of passengers spilled; the percentage of local demand; and the number of seats sold to local
demands.

3. Some Booking Problems on Leg 4

The figure below shows the average (over 20 departures ) booking performance of the 16
booking periods.

Demand and Availability Trends on Leg 4
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Figure 4.4 Mean Demand and Availability Trends Over 16 Booking Periods on Leg 4

We may notice that the capacity proceeds to almost 0 when it comes to the departure date.
This represents a desirable performance because no seats remain empty. The following three
tables show the average demand, sold and spill (over 20 departures) of the last five booking
periods by fare classes.
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Booking Period 12 13 14 15 16
Fare Class 1 1.5 2.75 1.8 0 0
Fare Class 2 0 0.6 0 0 0
Fare Class 3 0.4 1.45 0.25 0.85 0
Fare Class 4 0 0 0 0 0
Fare Class 5 0.95 1.6 2.05 1 0
Fare Class 6 0 0 0 0 0
Fare Class 7 0 0.7 0 0 0
Fare Class 8 10.8 8.4 9.05 17.3 18.6
Fare Class 9 0 0 0 0 0
Fare Class 10 1.25 1.15 2.3 2.25 11

Table 4.5 Demands come During the Last 5 Booking Periods on Leg 4

Booking Period 12 13 14 15 16
Fare Class 1 1.50 275 1.80 0 0
Fare Class 2 0 0.60 0 0 0
Fare Class 3 040 140 0.25 0.75 0
Fare Class 4 0 0 0 0 0
Fare Class 5 045 1.05 1.80 0.35 0
Fare Class 6 0 0 0 0 0
Fare Class 7 0 0 0 0 0
Fare Class 8 10.50 8.35 9.05 16.1 9.6
Fare Class 9 0 0 0 0 0
Fare Class 10 0 0 0 0.3 1.1

Table 4.6 Booking Performance During the Last 5 Booking Periods on Leg 4

Booking Period 12 13 14 15 16
Fare Class 1 0 0 0 0 0
Fare Class 2 0 0 0 0 0
Fare Class 3 0 0.05 0 0.1 0
Fare Class 4 0 0 0 0 0
Fare Class 5 0.5 0.55 0.25 0.65 0
Fare Class 6 0 0 0 0 0
Fare Class 7 0 0.7 0 0 0
Fare Class 8 0.3 0.05 0 1.15 8.95
Fare Class 9 0 0 0 0 0
Fare Class 10 1.25 1.15 2.3 1.95 9.9

Table 4.7  Spill Performance During the Last 5 Booking Periods on Leg 4

These three tables reveal that some demands in higher fare classes are spilled (bold numbers
in Table 4.7) while the demand in lower fare classes are not spilled very sufficiently. Then
we realize that if we can be more aggressive in controlling the seats from the lower fare
passengers in previous booking periods (bold numbers in table 4.6), we could have better
network revenue performance.
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4. Issues on Leg 30

On Leg 30, there is another story. We know that the average load factor on this leg is
around 75%. So generally, the total demand is lower than the total capacity, but passengers
are still spilled on this leg. See the following figure:

Availability and Spills over 16 Booking Periods on Leg 30
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Figure 4.5 Spill Performance on Leg 30

We notice that some passengers are spilled even though there are empty seats available on
that leg. Further research shows that the passengers are not spilled because of the wrong
protection strategy, but due to the critical seat availability problem on other legs. Actually, if
we check in Table 4.4, we will find that all those spilled passengers are connecting
passengers, and the spills of the local passengers on this leg are 0.

S. Summary

The LBFC method (EMSRDb) utilizes the existing fare class as the inputs to the EMSRb
booking limits calculation. This may not be the best way to maximize revenues on a network
of flights. Remember on Leg 30, the less congested leg, we find that spills happen, and all
the spills are connecting passengers. This represents a problem of this method: Normally,
for a two-leg network, if one (or both) of the two legs have empty seats, then connecting
passengers should be given higher priority to access the seats. On the congested leg, Leg 4,
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we also find that some passengers from higher fare classes are spilled because the seats are
not protected adequately from the passengers from lower fare classes.

For comparison purpose, we will always use the LBFC (EMSRb) method as the base case to
compare with the other methods in the following discussions, and in the following, the LBFC
always means LBFC combined with EMSRb method.

4.3.2 Greedy Virtual Nesting Method (GVN)

In this method, the fares on each leg are arrayed into 10 virtual classes based totally on the
values of the fares of passengers. This is also known as “Leg Specific Virtual EMSRb”
method. It means that the virtual classes are sorted on a leg basis, that is, each individual leg
has a different virtual class range. There is another way to do this, in which the fares of the
whole network are grouped into 10 virtual classes together. The latter method is known as
“Network Wide Virtual EMSR”. Normally, leg specific virtual nesting method has a better
network revenue performance, and in this thesis we always employ the leg specific virtual
nesting EMSRb control method for comparisons.

1. Virtual Class Ranges (VRANGE)

The virtual ranges are calculated according to the total itinerary fares. In the following table,
we list the ranges of those virtual classes on the two selected legs: Leg 4 and Leg 30).

VRANGE on LEG 4 VRANGE on LEG 30
1643.0 398.0
588.0 398.0
558.0 398.0
413.0 358.0
401.0 343.0
401.0 251.0
304.0 242.0
152.0 230.0
61.0 194.0
0 .0

Table 4.8  Ranges of 10 Virtual Classes on Leg 4 and Leg 20 in GVN Method
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From the table above we notice that the different legs have dramatically different viriual class
ranges. Generally, there are two factors that may affect the values of the virtual class ranges:
values of fares and number of demands in each fare level. Usually, long legs have higher
virtual ranges than short ones.

We notice that on Leg 30, the first three virtual class ranges are the same ($398.0). The
reason for that is that we sort the fares to a virtual class on a demand base. It means that we
divide the total demand by the number of virtual classes and obtain the number of demand in
each virtual class. Then from the top virtual class we accumulate the demand, as long as the
accumulated demand is less that the number of demand that should be in this virtual class, the
corresponding fares are arrayed to this virtual class. Sometimes, there are a huge number of
demand in one fare class, then it may take two or more virtual classes to contain this farc
class. Therefore these two or more virtual classes will have the same virtual class ranges.

2. Revenue Performance

The network performance of this method at different demand levels is shown in the following
tables.

Demand Adjustment 0.80 1.00 1.20
Total Revenue 3602209 4159008 4616957
Local Pax Spilled 333 1123 2167
Connecting Pax Spilled 61 238 406
Avg. Leg Load Factor(%) 82.97 89.85 93.02
Avg. Rev. Per Pax($/Pax) 697.87 745.17 804.35
Avg. Rev. Per Avail. Seat($/Seat) 512.41 591.61 656.75
Rev. Imprv. over LBFC 0.38% 0.44% 0.67%

Table 4.9 Performance of GVN Method

Compared with the LBFC method (Table 4.3), the greedy virtual nesting method has a higher
revenue performance. The values of revenue per passenger have been increased, so have the
values of revenue per seat. Additional comparisons tell us that the number of the local
passengers that were spilled was greatly increased, and the spills of connecting passengers
are decreased. Such comparisons are shown in the two figures below.
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Local Passengers Spilled Comparison
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Figure 4.6 Comparison of Number of Local Passengers Spilled

Connecting Pax Spilled Comparison
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Figure 4.7 Comparison of Number of Connecting Passengers Spilled

Such differences are obviously due to the different strategies of these two methods in treating
the connecting passengers. The GVN method ranks the connecting fares to higher virtual
classes than the local fares, therefore less connecting passengers are spilled.



3. Leg Performance

The leg performance of the two selected legs is shown in the following table.

CAP. LF PAX Load Demand Spill %Local D Locual SLD
Leg 4 181 96 174 275 101 67.68 117
Leg 30 142 .74 105 111 6 85.40 95

Table 4.10 Performance of GVN on Two Selected Legs at Demand Level 1.20

In practice, the GVN method usually has a higher load factor than the LBFC method. If we
compare Table 4.10 with Table 4.4, we find that the GVN method does have a higher load
factor on Leg 30, however it has a lower load factor on Leg 4. The unusual performance on
Leg 4 can be explained by the extreme congestion on this leg and the inter-actions among the
legs. Another interesting thing we find is that on Leg 30, even though all of the spills are still
connecting passengers, the total number of spills decreases. Those spills are still due to the
congestion from other legs, but since the connecting passengers have higher priority to
access the seats on those critical legs, therefore more connecting passengers can show up on
this less congested leg.

4. Spill Performance

We found that the GVN method controls seats more aggressively than the LBFC method
does. In the two figures below we can easily see that the average seat availability over 20
departures of the GVN method on the congested Leg 4 is always greater than that of LBFC
method. On the less congested leg (Leg 30), these two methods tend to have similar control
performances.
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Availability Trend Comparison on Leg 4
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Figure 4.8 Availability Comparison between LBFC and GVN on Leg 4
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Figure 4.9 Availability Comparison between LBFC and GVN on Leg 30
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4.3.3 Greedy Heuristic Bid Price Method (GHBP)

1. Formula of the Bid Prices

Similar to the GVN method, in the GHBP method, the fares on each leg are also grouped
into 10 virtual classes based totally on the values of the fares. Then EMSRb method is
employed to calculate the critical EMSR value on each leg. These critical EMSR values are
then utilized as the “cut-off” prices to decide whether a passenger should be booked. To a
local passenger, by definition in Chapter 2, the bid price is the value of the EMSR valuc on
the leg this passenger travels. For a connecting passenger, the bid prices are the
combinations of the EMSR values of all legs this passenger traverses.

BPprmecing = Max(EMSR1, EMSRZ) +d x Min(EMSR1, EMSR2) [4.1]

However, in practice, we find that it is always better to set the bid price for local passengers
to be zero, which means that the local passengers are controlled by EMSR booking limits as
before, rather than the EMSR bid price value. The two tables below show the differences in
setting the bid price for local passengers. In Table 4.11, the bid price of local passengers is 0,
while in Table 4.12, it equals critical EMSR value.

Demand Adjustment 0.80 1.00 1.20

Total Revenue 3595406 4156513 4624271
Local Pax Spilled 233 931 1839
Connecting Pax Spilled 147 364 603
Avg. Leg Load Factor(%) 81.90 88.89 92.03
Avg. Reyv. Per Pax($/Pax) 694.71 736.15 787.57
Avg. Rev. Per Avail. Seat($/Seat) 511.44 591.25 657.79
Rev. Imprv. over LBFC 0.19% 0.38% 0.83%

Table4.11  GHBP Control Applied to Orly Connecting Passengers

Demand Adjustment 0.80 1.00 1.20
Total Revenue 3557461 4102171 4565252
Local Pax Spilled 417 1219 2134
Connecting Pax Spilled 119 312 535
Avg. Leg Load Factor(%) 80.14 86.20 89.78
Avg. Rev. Per Pax($/Pax) 708.71 758.25 808.72
Avg. Rev. Per Avail. Seat($/Seat) 506.04 583.52 649.40
Rev. Imprv. over LBFC -0.86 % -0.93% -0.45%

Table 4.12 GHBP Control Applied Both Connecting and Local Passengers

7 p.P. Belobaba. Airline O-D Seat Inventory Control Without Network Optimization, Flight Transportation
Laboratory, MIT, Cambridge, June 1995,
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In these two tables above, the parameter of the bid prices for connecting passengers has been
chosen to be 0.25 (we will explain the reason in the section “Sensitivity Studies”). The
performance of the latter method is worse than the former. If we compare the difference we
will find that in the latter method, too many local passengers are spilled. The reason for this
is that the absolute fare values of local passengers arc lower than those of the connecting
passengers. When we calculate the critical EMSR value for each leg, we had taken into
account all fares that traverse that leg. So the EMSR value is extremely high, and many local
passengers cannot meet the cut-off prices, then are spilled.

2. Sensitivity Studies

We may remember that in the formula of the bid prices for the connecting passengers, there is
a heuristic parameter in Equation [4.1]. As discussed in Chapter 2, this is a heuristic factor
and can be specific to network characteristics. So we need to conduct some sensitivity
studies to find out the best value for this parameter. Figure 4.10 shows how the network
revenue changes with this parameter at demand level 1.20.

Sensitivity Study of the Parameter in the Bid Price
Revenue
4625000

46240007

46230001

46220001

46210007

46200007,

46190007

46180001

4617000 t t t
0.0 0.10 0.25 0.30 0.50
parameter ''d"

Figure 4.10 Sensitivity Studies of Bid Price Formula for GHBP Method

From the figure above we find that the parameter value of 0.25 gives the best network
revenue performance. That is why in the previous section we have chosen 0.25 in our
formula.
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3. Comparison of the GHBP and the GVN Methods

a. Network Revenue Performance

The following table shows the comparison between the network performance of the GHBP
and that of the GVN method using the data from demand level 1.20.

Revenue Improvement Load Factor Loc Pax Spilled Con Pax Spilled
GVN 4616957 0.67% 93.02% 2167 406
GHBP 4624277 0.83% 92.03% 1839 603

Table 4.13 Comparison between the GVN and the GHBP Methods

We find from the table above that the GHBP method has a better revenue performance while
a lower average leg load factor than the GVN methed. Theoretically, at demand level 1.20
(a relatively high demand environment), the GVN method gives too high a priority to high
fare, connecting passengers while spilling too many high yield, local passengers. We know
that the total revenue of two local passengers is normally higher than that of one connecting
passenger. So the GVN method tends to have negative network revenue impact when
demand is high. On the contrary, the GHBP method considers the displacement impact of
the connecting passengers, and sets a higher bid price to control the load of the connecting
passengers and reserve enough seats for local passengers.

b. Leg Performance Comparison

The Leg performance on the two selected legs of the GHBP method is shown in the
following table.

CAP. LF PAX Load Demand Spill %Local D Local SLD
Leg 4 181 .94 170 275 105 67.68 128
Leg 30 142 72 102 111 9 85.40 95

Table 4. 14 Leg Performance of the GHBP at Demand Level 1.20

Compared to the leg performance on Leg 4 with that in the GVN method, the results are

LF PAX Load Local Sold

GVN 96 174 117
GHBP .94 170 128

Table 4.15 Comparison between the GVN and the GHBP on Leg 4
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From the table above we find that the heuristic bid price method has a lower load factor than
the GVN method. This is because in the GHBP method, the bid prices set for the connecting
passengers are the combination of the EMSR values of all the legs the passengers traverse.
So more connecting passengers are spilled. However, the load of local passengers increases
dramatically.

c. Spill Performance Comparison

The passengers who are spilled are different in these 2 methods. In the following table, the
spills on Leg 4 are listed by virtual classes:

1 2 3 4 5 6 7 8 9 10 Total

Virtual Nesting 0.00 2945 0.00 2.70 0.00 0.00 0.1518.0550.75 0.00 101.10
Heuristic Bid Price  0.00 44.05 0.00 2.60 0.00 0.00 0.0013.2645.05 0.00 104.95

Table 4.16 Average Spill comparison Between GVN and GHBP by Virtual Classes

At the first look, we may not feel confident about the GHBP method because it spills more
passengers who belong to the higher virtual classes than the GVN method does (two bold
numbers in the table above). However, the reason for this phenomenon is that both methods are
greedy methods. So when the demand is sorted into virtual classes, the total fares of passengers
are utilized. So those long haul connecting passengers are ranked into a higher class. However
this may not be the best approach. Actually, in GHBP method, a higher bid price for connecting
passengers is set to overcome the previous mistakes. So most of those passengers spilled in
higher virtual classes in GHBP method are connecting passengers.

4.3.4 Non-greedy Virtual Nesting Method (NGVN)

1. Virtual Class Ranges

The only difference between the GVN and the NGVN methods are the inputs to the EMSR
calculation. If we draw a process picture, it will be clear.
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Figure 4.11 Process Comparison between GVN and NGVN

From the figure above we see that the NGVN has an additional process: run the LP to
calculate the shadow prices; utilize the shadow prices as the measurement of the
displacement impacts of the connecting passengers. In our simulation process, the pseudo
fares are calculated as follows:

PSF (i, j,1) = Max{00,[ fare(i, j) — PIILO [4.2)

leTraversedLegs(excludeLegl)

where i is the OD pairs, j is the fare class, and [ is the leg that the passenger traverses. Since
the shadow prices are greater than or equal to 0, we know that the pseudo fares are less than
or equal to the total fares. That is why, if we compare the ranges of the virtual classes in
GVN method (Table 4.8), we will find that the virtual class ranges in the NGVN method tend
to be lower (Table 4.17).

VRANGE on LEG 4 VRANGE on LEG 30
890.0 552.0
776.0 448.0
638.0 420.0
565.0 358.0
304.0 251.0
152.0 245.0

73.0 230.0
61.0 194.0
0 72.0
0 0

Table 4.17 16 Virtual Class Ranges on Leg 4 and Leg 30 in NGVN Method
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2. Network Revenue Performance

The revenue performance of the NGVN method is listed below.

Demand Adjustment 0.80 1.00 1.20
Total Revenue 3602187 4175482 4647918
Local Pax Spilled 160 782 1669
Connecting Pax Spilled 171 408 655
Avg. Leg Load Factor(%) 82.33 §9.86 93.10
Avg. Rev. Per Pax($/Pax) 689.42 725.88 775.92
Avg. Rev. Per Avai'. Seat($/Seat) 512.40 593.95 661.15
Rev. Imprv. over LBFC 0.38% 0.84% 1.35%

Table 4.18 Revenue Performance of the NGVN Method

Here we run the LP only once at the beginning of the first booking period at a correct
demand level. Issues about the combination of running LLP at different demand levels and
running LP at each booking check point will be discussed later.

3. Comparison between the GVN and the NGVN Methods

a. Network Revenue Performance

The table below shows the comparison between the GVN and the NGVN method using the
data at demand levels 1.20 and 0.80.

Revenue Improvement LF Loc. Spilled Con. Spilled Rev./Pax Rev./Seat

GVN 4616957 0.67% 93.02% 2167 406 804.35 656.75
NGVN 4647918 1.35% 93.10% 1669 655 775.93 661.15

Table 4.19 Comparison between GVN and NGVN at Demand Level 1.20

Revenue  Improvement LF Loc. Spilled Con. Spilled Rev./Pax Rev./Seat

GVN 3602209 0.38% 82.97% 333 61 697.87 512.41
NGVN 3602187 0.38% 82.33% 160 171 689.42 512.40

Table 4.20 Comparison between GVN and NGVN at Demand Level 0.80

We find from the two tables above that the NGVN method has much better revenue
performance than the GVN method when demand is high, and a revenue performance similar
to that of GVN meithod when demand is low. This is because when demand is high, we want
to favor more local passengers than connecting passengers, while when demand is low we
want to favor more connecting passengers than local passengers. The strategies of greedy
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and non-greedy methods are totally different. The greedy method values the connecting
passengers as their total fares, so most connecting passengers are arrayed in a higher virtual
class than the local passengers. However the non-greedy method considers the displacement
impacts of the connecting passengers and values them as their fares minus all shadow prices
on the other legs they traverse. This value is lower than the total fares, so the connecting
passengers are re-arranged to lower virtual classes based on their revised fares. Therefore
the long haul, high fare but low yield connecting passengers no longer have the highest
priority to the seats, and the seats are protected for the high yield local passengers. Such
strategy is very profitable when the demand is high because two local passengers normally
have higher revenue contribution than one connecting passengers. On the low demand side,
since the shadow prices are no longer positive (if there is no congestion, the shadow prices
are zero), the pseudo fares of the connecting passengers are equal to their total fares and then
the non-greedy and greedy virtual nesting will give similar booking decisions.

From the two tables above we also notice that at demand level 1.20, the NGVN method has
lower revenue per passenger but higher revenue per seat due to the high load of local
passengers. Figures 4.12 and 4.13 show such comparison.

Comparison of Revenue/Passenger
Dollars

820

800
780
760

740 ‘
BEGYN

ByGvN

720

700
680 -
660
640

620 —
80% 90% 93%

Load Factor

Figure 4.12 Revenue/Passenger Comparison between GVN and NGVN at Demand Level 1.20
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Figure 4.13 Revenue/Seat Comparison between GVN and NGVN at Demand Level 1.20

The reason that the NGVN has a lower value in the revenue per passenger is because the
NGVN method has a high load of local passengers. It lowers the revenue contribution from

cach individual passengers. However, the total revenue contributions of two local passengers

are higher than one connecting passenger, thercfore the NGVN has a higher value in revenue
per scat than the GVN method.

b. Leg Performance

The following table shows the seat control performances of the two selected legs.

CAP, LF PAX Load Demand Spill GoLlocal D Local SILD
Leg 4 181 96 173 275 102 67.68 135
Leg 30 142 .74 105 11 6 85.40 95

Table 4. 21 Leg Performance of NGVN

Compared to Table 4.10, which is the scat control performance of the same two legs in the
GVN method, we have the following table:

LF PAX Load Spill Local Sold
GVN 96 174 101 117
NGVN .96 173 102 135

Table 4.22  Comparison of GVN and NGVN on Leg 4
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From the table above we find that the NGVN method spills fewer passengers than the GVN
method, and sold much more seats to the local passengers than the GVN method does. Such
performance is desirable at a high demand level.

4.3.5 Deterministic Network Bid Price Method (DNBP)

This method is similar to the GHBP method in the respect of setting a “cut-off” price to
control the booking process, but different from the GHBP method in that DNBP mcthod
utilizes the sum of the shadow prices as the cut-off price. So it is a pure network
optimization method. The process of this method is shown in the figure below.

Read in Data

Demand & Capacity

Revised Demand & Capacity —
* Run LP |

v

BP = Z Shadow Price

i€TraversedLegs

A

Control

No

Figure 4.14 Process of the DNBP Control

From the figure above we see that in the deterministic bid price method, an LP nceds to be
run at each booking period to obtain the most updated shadow prices. Then those shadow
prices are applied as the cut-off prices. In the real world, this method is difficult to
implement because of the technology and information limitations. Even though we assume
that we have the information and time to run LP multiple times, this method may not give a
very good performance, because the demand input we use is the foreccast mean demands, and
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the real demands usually deviate from the mean. Therefore the method is very sensitive to
the inputs, because the wrong demand input will cause the wrong shadow prices as output
and consequently cause the wrong bid prices and spill decisions. As our example shows, the
deterministic bid price method gives a very poor network performance (Table 4.23),
compared to the other methods (such as NGVN, GHRP, and GVN methods).

Demand Adjustment 0.80 1.00 1.20
Total Revenue 3585530 4141165 4577434
Local Pax Spilled 172 731 1577
Connecting Pax Spilled 109 373 649
Avg. Leg Load Factor(%) 84.03 91.78 94.67
Avg. Rev. Per Pax($/Pax) 679.83 709.39 751.94
Avg. Rev. Per Avail. Seat($/Seat) 510.03 589.07 651.13
Rev. Imprv. over LBFC -0.08 % 0.01% -0.19%

Table 4.23  Network Performance of DNBP Method

From the table above we find that the revenue performances of the DNBP method are even
worse than those of the LBFC method. This is due to several reasons: First, there are only
16 booking periods assumed in this simulation process, and the small number of the revision
points causes the shadcw prices to be come out of date between re-optimizations. Another
reason for the failure of this method is the great deviation in demand from one period to
another. Suppose we have a very low demand in the first booking period, then we will have
a lot of empty seats after that period. When it comes to the revision time, we will come up
with relatively low shadow prices, which will be applied to the second booking period as the
bid prices. If the second period turns out to be a high demand period, then a lots of low fare
passengers will be booked by mistake, and they will take the seats away from the high fare
passengers from later booking periods. Therefore we need to be very careful when we
employ the DNBP method. We expect to see (and have simulated) beiter performance for
DNBP with more frequent re-optimization.

4.3.6 New Methods

1. Network Non-greedy Heuristic Bid Price Model (NGHBP)

The only difference between the GHBP (Greedy Heuristic Bid Price) method and the
NGHBP method are the inputs to the EMSR calculation. Figure 4.15 shows the control
process of the NGHBP method:
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Figure 4.15 Process of the NGHBP Method

As shown in the figure above, the LP is run first to calculate the shadow prices associated
with cach leg. Then the shadow prices are employed as the measurements of the
displacement effects of the connecting passengers. The pure network revenue contribution
of cach ODF (pseudo fare) is input into the EMSRDb calculation. The detailed description
about this method can be refereed to Part 1 of Section 3.1.2.

a. Compare with the GHBP Method

1) Network Revenue Performance

The table below shows the network performance of the NGHBP method.

Demand Adjustment 0.80 . 1.00 1.20

Total Revenue 3604315 4176231 4649692
Local Pax Spilled 206 824 1698
Connecting Pax Spilled 135 378 638
Avg. Leg Load Factor(%) 82.61 90.06 93.02
Avg. Rev. Per Pax($/Pax) 691.17 727.60 771.87
Avg. Rev. Per Avail, Seat($/Seat) 512.70 594.06 661.41
Rev. Imprv. over LBFC 0.44% 0.86% 1.39%

Table 424  Revenue Performance of the NGHBP Method

Here we run the LP only once at the beginning of the first booking period, and the right-hand
sides (RHS) of the demand constraints are chosen to be at the corresponding demand levels.
The heuristic parameter in the formula of the bid price is obtained from the sensitivity studies:
0.6 for demand level 1.20; 0.4 for demand level 1.00; and 0.3 for demand level 0.80. 1f we

choose to fix the parameter at 0.50 for all demand levels, then the revenue performance of
the NGHBP is as follows:
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Demand Adjustment 0.80 1.00 1.20
Total Revenue 3602322 4175123 4649616
Rev. Imprv. over LBFC 0.39% 0.83% 1.39%

Table 4.25 Revenue Performance of the NGHBP Method with fixed Parameter at 0.50

Tables 4.26 and 4.27 compare the network performance of the GHBP method with that of
the NGHBP method using the data from demand levels at 1.20 and 0.80.

Revenue Improvement LF Loc. Spilled  Con. Spilled Rev./Pax Rev./Scat
GHBP 4624277 0.83% 92.03% 1839 603 787.57 657.79
NGHBP 4649692 1.39% 93.02% 1698 638 777.87 661.41

Table 4.26 Comparison of Network Performance Between GHBP and NGHBP at Demand Level 1.20

Revenue  Improvement LF Loc. Spilled  Con. Spilled Rev./Pax Rev./Seat
GHBP 3595406 0.19% 81.90% 233 147 694.71 S11.44
NGHBP 3604315 0.44% 82.61% 206 135 691.17 512.70

Table 4.27 Comparison of Network Performance Between GHBP and NGHBP at Demand Leve! 0.80

We find from the two tables above that the NGHBP method has better revenue performance
than the GHBP method does both when demand is high and demand is low. The reason is
that, when demand exceeds the capacity, even though the GHBP method tries to overcome
the shortcomings from its greedy approach by setting a higl. *~ bid price for connecting
passengers, this parameter can improve the network revenue performance in only a relatively
small range. However, in the network NGHBP method, the displacement impacts are taken
into account and connecting passengers are re-arranged into more appropriate virtual classes.
With the additional adjustment from the heuristic parameter, we can achicve a very good
revenue performance.

From Table 4.26 we also notice that at demand level 1.20, the NGHBP method has a lower
revenue per passenger value and a higher revenue per seat value than the GHBP method.
Such comparisons are shown in following two figures below (Figure 4.16 and 4.17).
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Figure 4.16 Comparison in Revenue/Passenger between GHBP and NGHBP Methods
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Figure 4.17 Comparison in Revenue/Seat between GHBP and NGHBP Methods

This phenomenon can be explained by the characteristics of the greedy and non-greedy
methods. The greedy methods tend to book many connecting passengers; therefore they
produce very high values in the revenue per passenger. However, those connecting
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passengers take two or more seats in the network; therefore the values of the revenue per
seat in the greedy methods are lower.

2) Leg Performance

Table 4.28 shows the seat control performance of the two selected I g5 from the NGHBP
method.

CAP. LF PAX Load Demand Spill %l.ocal D Local SLD
Leg 4 181 .96 174 275 101 67.68 134
Leg 30 142 .73 104 111 7 85.40 95

Table 4.28  Seat Control Performance of NGHBP Method on Leg 4 and Leg 30

The comparison of the seat controls on Leg 4 between the GHBP and the NGHBP methods
are listed in Table 4.29.

LF PAX Load Spill Local Sold
GHBP .94 170 105 128
NGHBP .96 174 101 134

Table 4.29 Comparison of Seat Controls between GHBP and NGHBP methods on Leg 4

From the table above we find that the NGHBP method tends to spill fewer passengers and
sell more seats to the local passengers than the greedy bid price method does. Such a
difference is typical between the greedy and non-greedy methods.

3) Sensitivity Studies

To find out the best parameter for the heuristic bid price formula, we conduct the sensitivity
analysis. The figure below shows how the revenue changes with the parameter.
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Figure 4.18  Sensitivity Studies of Parameter in Bid Price Formula for NGHBP Method

From the figure above we find that the best parameter (0.60) of the NGHBP method differs
from that of the GHBP method (which is 0.25). We know that the critical EMSR values in
the NGHBP method are lower than those in the GHBP method. Therefore to obtain the
same level of control for the connecting passengers, the value of the parameter “d” in the
NGHBP should be larger than that in the GHBP method. Also we find that the network
revenue is less sensitive to this parameter in the NGHBP method than it is in the GHBP
method. As the value of this paramieter changes from 0.0 to 0.8, the maximum difference in
the revenue improvement is less than 0.02%. In other words, the revenue changes are not
very sensitive to the parameter when this parameter is small, but we can still sec that the
revenue decreases with the parameter when it grows large (from 0.60 to 1.00).

Such a phenomenon can be explained by the complicated booking criteria of the NGHBP. In
the NGHBP control process of our simulation, the fares are not just controlied by the bid
prices. Actually, they are controlled by both the bid prices and the EMSR virtual classes;
that is, if a fare is greater than the bid price, then the booking limits of this fare class on a leg,
instead of being equal to the availability on that leg, is equal to the booking limits of its
corresponding virtual class on that leg (decided by virtual EMSRb method). Since we use
only the virtual class booking limits for local passengers, such booking criteria are 00 strict
for the connecting passengers. Therefore we add an additional compensation rule: The final
booking limits for the connecting passengers are the largest limits of all legs they traverse.
The inter-actions of all these criteria weaken the etfects of the heuristic parameter, and this is
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why we find that within a certain range the parameter “d” scems not to affect the total
network revenue.

4) Spill Performance Comparison

The differences between GHBP and NGHBP methods are also reflected in their spill
performance. The following figure compares the percentage spills of local and connecting
passengers in the GHBP and the NGHBP methods at demand level 1.20).

Greedy Bid Price Non-greedy Bid Price

Connecling
25%

Connecting
27%

Local
75%

Figure 4.19 Comparisons of Percentage of Spills between GHBP and NGHBP at Demand Level 1,20

We find that of the total spill, the local passengers comprise 75% in the GHBP method, and
73% in the NGHBP method. This verifies once more that non-greedy methods favor local
passengers more than the greedy methods do.

5) Additional Comparisons

We also compare the remaining capabilities over 16 booking periods on Leg 4 and 30 (Figure
4.20 and 4.21) from the GHBP and the NGHBP methods.
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Figure 4.20 Availability Comparison between GHBP and NGHBP on Leg 4
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Figure 4.21 Availability Comparison between GHBP and NGHBP on Leg 30

The NGHBP method seems to book more passengers and have fewer seats available than the
greedy method does over all the booking periods. In addition, we find that the NGHBP
method produces fewer empty seats than the GHBP method.
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b. Comparison with Non-greedy Virtual Nesting Method (NGVN)

1) Network Revenue Performance

Tables 4.30 and 4.31 list the comparison in the network performances of the NGHBP
method and the NGVN method.

Reverue  Improvement LF Loc, Spilled Con. Spilled Rev./Pax Rev./Scat

NGVN 4647918 1.35% 93.10% 1669 655 77593  661.15
NGHBP 4649692 1.39% 93.02% 1698 638 777.87 66141

Table 4.30 Network Performance Comparison between NGVN and NGHBP at Demand Level 1.20

Revenue Improvement LF Loc. Spilled  Con. Spilled Rev./Pax Rev./Seat

NGVN 3602187 0.38% 82.33% 160 171 68942 51240
NGHBP 3604315 0.44% 82.61% 206 135 691.17  512.70

Table 4.31 Network Performance Comparison between NGVN and NGHBP at Demand Level 0.80

Generally, we find from the two tables above that the NGHBP method has a slightly better
revenue performance than the NGVN method. Through a more detailed comparison we
believe the reason is that, in the NGVN method, the displacement impacts of the connecting
passengers are over-emphasized and too many connecting passengers are spilled. Such
mistakes in the booking strategy may come from running a deterministic LP. We know in the
LP model, the RHS of the demand constraints are fixed. However, in practice, the demand
deviates greatly from one booking period to another. Therefore the solution of the shadow
prices may be out of date and consequently cause the revenue contribution of the connecting
passengers to be mis-interpreted. On the other hand, the NGHBP method applies a heuristic
factor in the control process and can make a fine adjustment for such mis-evaluation,
therefore achieving a better performance.

2) Leg Performance

Comparing the ler performance of the NGHBP with that of the NGVN method, we have the
following tables:

LF PAX Load Spill Local Sold
NGVN 96 173 102 135
NGHBP .96 174 101 134

Table 432 Comparison between NGVN and NGHBP on Leg 4
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LF PAX Load

Spill Local Sold

NGVN 74 105
NGHBP 73 104

6 95
7 95

Table 433 Comparison between NGVN and NGHBP on Leg 30

From the tables above we find that the two methods have very similar leg performances on

both legs.

3) Spill Performance Comparison

The differences between the NGVN method and the NGHBP method are also reflected in
their spill performances. The following two figures compare the percentage spills of local
and connecting passengers at demand levels 1.20 and 0.80.
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72%
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Figure 4.22 Comparison of Percentage of Spills between NGVN and NGHBP at Demand Level 1.20
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Figure 4.23 Comparison of Percentage of Spills between NGVN and NGHBP at Demand Level 0.80




We find that less connecting passengers are spilled in the NGHBP method at both demand
levels 1.20 and 0.80. The difference is especially obvious at demand level 0.80. We know
that even though both the NGVN and the NGHBP methods have the strategy of favoring the
local passengers when demand is high (using shadow prices to decide the displacement
impacts of the connecting passengers), the NGHBP method can adjust such controls more
dynamically than the NGVN method can. We know that sometimes, the shadow price may
not exactly reflect the displacement impacts of the connecting passengers due to the
deviation of the demand. Once the LP is solved and the shadow prices are decided, the
NGVN cannot make any adjustments anymore. On the other hand, the NGHBP method still
uses more current EMSR values to adjust seat availability within a small range. That is why
the two methods come to different booking decisions.

¢. Some Issues in the Network Methods

1) Run LP at Different Demand Levels

The question of which demand level we should run the LP is a cominon issue for both the
NGVN method and the NGHBP methods. As stated in Chapter 3, the RHS of the demand
constraints in the LP model are the mean forecast demands. Those numbers may not be
accurate in the real world. So one of the tasks of this study is to find how using a wrong
demand forecast will affect the whole network revenue performance compared to using a
correct demand forecast. The different scenarios we have chosen to compare are running the
LP at a lower demand level (0.80), at a medium demand level (1.00), and at a higher demand
level (1.20). Figure 4.24 shows such a comparison in the NGVN method.
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Figure 4.24 Running LP at Different Demand Levels (NGVN Method)

The base for the comparison of revenue improvement is the LBFC (EMSRb). We find that
running LP at a high demand level gives us very good revenue achievement on the high
demand side, while very poor performance on the low demand side (even worse than the
LBFC method). On the other hand, running LP at a lower demand level we can achicve a
higher revenue on the low demand side, but it does not give a revenue improvement
comparable to running LP at high demand levels. It may be worth pointing out that the best
revenue performance at each demand level is not running LP at the correct demand levels,
but at a relatively lower demand levels. For example, the best revenue performance at
demand levcl 1.20 occurs when we run LP at demand level 1.00, and the best revenue
performance at demand level 1.00 occurs when we run LP at demand level (.80, and so
forth. This phenomenon tells us that running LP at a correct demand level is, sometimes, 100
strict for the connecting passengers. If we carc run LP at a slightly lower demand level than
the actual demand level, we will have an even better revenue performance.

Figure 4.24 shows the revenue performance of running LP at different demand levels in the
non-greedy bid price method.
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Running LP at Different Demand Levels
(NGHBP Method)
Revenue himprovement

1.40%
1.20%
1.00%
0.80% B LP at Demand level 0.80

o BLP at Demand Level 1.00
0.60% CJLP at Demand Level 1.20

EJLP at Correct Demand Level
0.40% -
0.20% A
0.00% -
0.83 0.90 0.93
Load Factors

Figure 4.25 Running LP at Different Demand Levels (NGHBP Method)

From the figure above we notice that since the NGHBP introduced a heuristic factor in its
formula, it is more robust for the deviation of the demand. The greatest advantage here is
that running LP at a higher demand level no longer has the negative revenue impacts on the
low demand side, and running LP at a low demand level can provide a more comparable
revenue performance on the high demand side. The heuristic factor provides a very good
reimbursement for the mistakes from the LP.

Note: We conduct the sensitivity studies for each combination. Therefore the heuristic
parameter “d” is different for each bar in the figure above.

2) Multiple LP Runs vs. Single LP Run

Another argument about the linear program is that if we run LP only once at the beginning of
the first booking period, is it accurate enough to capture the displacement impact of the
connecting passengers? We know that the shadow prices change if the demand and capacity
in the network vary. Therefore we need to find out how the multiple LP (once at each check
point) can improve the network revenue. The reason we care about this problem is that to
run a multiple LP, we will need more information about demand and more computer
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calculation time, which are very costly. The figure below is the comparison of revenue
performance between the multiple LP running and the single LP running.

Multiple LP vs. Single LP

Revenue Improvement
2.00%

1.80% 1
1.60% T
1.40%

1.20% 1 Multiple L.P
1.00% +
? B Single LP

0.80% 1

0.60% +

0.40% +

0.20% J

0.00% i

80% 90% 93%
Load Factor

Figure 4.26 Multiple LP vs. Single LP

We find that the multiple LP actually gives similar network revenue contributions to the
single LP. As stated in Chapter 3, this fact is due to the great deviation of the demand.
However, it is no doubt good news because we can achieve a good revenue improvernent
with less information and at a lower cost by running LP only once at the beginning of the first
booking period.

3) Shadow Prices

As mentioned in Chapter 3, one problem of the previous LP is that it is a degenerate
problem. So the dual problem has multiple solutions. The solution obtained from the Cplex
and OSL is the first solution generated in the simplex tableau process. The dual variables
then may not reflect the true shadow prices. The task of this study is to find a set of betier
shadow prices, which can evaluate the displacement impacts of the connecting passengers
more accurate. In Table 4.34 below, we listed the network performance using five different
kinds of shadow prices. The seat control method we employ is simply the non-greedy virtual
nesting method, and those shadow prices are all calculated at demand level 1.20.
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First Period SP  0.8*First Period SP_True SP(Cap+1) True SP(Cap-1)  Upper SP. New UP SPs

Rev. 4647918 4648807 4647712 4647727 4648517 4650493
Improv 1.35% 1.37% 1.35% 1.35% 1.36% 1.41%
Loc Spill 1667 1773 1660 1660 1670 1683
Con Spill 653 607 663 663 659 648

Table 4.34 Shadow Price Studies

The first set of shadow prices is the dual variables calculated from running LP at the first
booking period.

The second shadow prices are calculated from multiplying a parameter (.8 by the first set of
shadow prices (in an attempt to arbitrarily reduce the shadow prices).

The third one, the so-called “True Shadow Prices”, is obtained from the definition of the
shadow prices. That is, the shadow price associated with a capacity constraint in the linear
programming problem is the amount that the optimal objective value is improved by
increasing the right-hand side of the corresponding capacity constraint for one unit (assuming
that the current basis remains optimal).®

The fourth one, also called “True Shadow Prices,” is similar to the third one. The only
difference is that the shadow prices are calculated from decreasing the right-hand side of the
capacity constraint by one unit.

The fifth one, which is named “Upper Bound Shadow Prices,” is calculated from the upper
bound running of the network. The process of obtaining the upper bound is referred to in
Figure 3.5.

The sixth shadow prices are from the revision of the upper bound shadow prices. We notice
that the values of the upper bound shadow prices follow the Normal Distribution (refer to the
fifth part in Section 3.1.3). Therefore, by using the value of ( Mean — o) as the value of the
shadow price (instead of the Mean), we reduce the opportunities that the true shadow prices
are lower than the value we employ to 30%. This strategy gives us the best revenue
performance among the five sets of shadow prices.

In Appendix 3, we list the values of these six different kinds of shadow prices. We find:

* (.8 * First Period SP < First Period SP

e True SP (Cap+1) < First Period SP < True SP (Cap-1).
Since the New Upper SP is calculated as ( Mean — &) , so it always has a lower value
than the Upper SP.

e The First Period SP is generally greater than the Upper SP.

e Generally, 0.8 * First Period SP < Upper Bound SP (with only one exception: Leg 17).

¥ W.L.Winston, “Operations Research, Applications and Algorithms”, Third Edition, Duxbury Press, 1994,

98




From Table 4.34, we find: First, under the same control method and demand environment,
the network revenue performance can be improved by up to 0.05% by simply employing
better shadow prices. Second, the degenerate dual solution has a revenue performance
comparable to other good shadow prices. Third, in the NGVN method, it is better to employ
a lower set of shadow prices than a higher one, all else being cqual.

2. Leg Based EMSR Non-greedy Bid Price Model (LNGBP)

As introduced in Section 3.1.2 (Part 2), this method uses a critical EMSR value (these values
are calculated based on the total fares) as the measurement of the displacement impacts of
the connecting passengers. Then a pseudo fare, which is defined as fare minus the critical
EMSR value, is calculated. The critical EMSR value is then re-calculated based on these
pseudo fares inputs.

a. Network Performance

The following two tables list the network and the leg performances of the LNGBP method.

Demand Adjustment 0.80 1.00 1.20
Total Revenue 3597702 4171245 4637248
Local Pax Spilled 208 790 1618
Connecting Pax Spilled 133 390 677
Avg. Leg Load Factor(%) 82.67 90.15 93.11
Avg. Rev. Per Pax($/Pax) 689.98 724.07 770.42
Avg. Rev. Per Avail. Seat($/Seat) 511.76 593.35 659.64
Rev. Imprv. over EMSRa 0.26% 0.74% 1.12%

Table 4.35 Revenue Performance of the LNGBP method

CAP. LF PAX Load Demand Spill %Local D Local SLD
Leg 4 181 .96 174 275 102 67.68 135
Leg 30 142 75 107 111 4 85.40 95

Table 436 Leg Performance of the LNGBP Method

In the following, we will compare these performances with those from the NGHBP and the
GHBP methods.
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b. Comparison with the NGHBP Method

1) Measurement of the Displacement Impacts

In the LNGBP model, the critical EMSR values are implemented to evaluate the
displacement effects of the connecting passengers. Since the EMSR values are (or should
be) different from the shadow prices, the pseudo fares should also be different from those
from the NGHBP (network non-greedy heuristic bid price). The following table shows the
comparison of the shadow prices and the EMSR values on some legs. The detailed
comparisons are listed in Appendix 4.

Leg Number Shadow Prices Critical EMSR Values Difference
2 0.00 0.00 0.00
3 61.00 61.00 0.00
4 61.00 179.24 118.24
10 729.00 685.06 -43 94
30 0.00 1240 12.40

Table 4.37 Comparison between the Shadow Prices and the Critical EMSR Values

We notice that it is very hard to say which one (SP or EMSR) is strictly greater than the
other one. However, 16 (out of 32) legs have higher shadow price values; 5 legs have
higher EMSR values; and 11 legs have identical shadow prices and EMSR values. If we
consider $10 as a tolerable difference, then 16 legs (50%) have similar shadow prices and
critical EMSR values.

Another fact we notice is that almost all legs that have identical shadow prices and EMSR
values have very high load factors, which is above 96%. The only exception is Leg 2, which
has an identical shadow prices with a load factor of 46%. All legs that have higher EMSR
values than shadow prices have very high load factors (above 92%), and low percentage of
local demand.

2) Virtual Class Range

Since in the probability method we exploit a different way to measure the displacement
impact of the connecting passengers (critical EMSR value on each leg), and we know from
the previous section that the shadow prices and the EMSR have different values on some
legs, we can expect different virtual class ranges from these two different methods. In the
following two tables, we list the virtual class ranges obtained from the network method (LP)
and probability method (EMSR) on Leg 4 and Leg 30.
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VRANGE on LEG 4 VRANGE on LEG 4
From LP Method From EMSR Method

890.0 890.0
776.0 742.0
638.0 539.8
565.0 531.0
304.0 304.0
152.0 147.8
73.0 102.0
61.0 61.0
0 0
0 0

Table 4.38 Comparison of Virtual Class Ranges between NGEBP and LNGBP on Leg 4

VRANGE on LEG 30 VRANGE on LEG 30
from L.P Method from EMSR Method
552.0 526.8
448.0 518.0
420.0 4015
358.0 358.0
251.0 286.0
246.0 251.0
230.9 230.0
194.0 194.0
72.0 72.0
.0 0

Table 4.39 Comparison of Virtual Class Ranges between NGHBP and LNGBP on Leg 30

We notice that those virtual class ranges are very close to each other. Some of them are
identical (bold numbers). However, on a high congested leg, such as Leg 4, the VRANGEs
from the EMSR method tend to be lower than those from the LP method. On the other
hand, on a less congested leg, there are more opportunities that the VRANGE:s obtained
from the EMSR method are higher than those obtained {rom the LP method.

3) Network Revenue Performance

Tables 4.40 and 4.41 show the comparison of the network performance between the NGHBP
and the LNGBP method at different demand levels (1.20 and 0.80).

Revenue Improvement LF Loc. Spilled Con. Spilled Rev./Pax Rev./Scat

NGHBP 4649692 1.39% 93.02% 1698 638 77787 66141
LNGBP 4637248 1.12%  93.11% 1618 677 77042  659.64

Table 4.40 Comparison of Network Performance Between NGHBP and LMGBP at Demand Level 1.20
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Revenue Improvement LF Loc. Spilled Con. Spilled Rev./Pax Rev./Scat
NGHBP 3604315 0.44% 82.61% 206 135 691.17 512.70
LNGBP 3597702 0.26% 82.57% 208 133 689.98 511.76

Table 441 Comparison of Network Performance Between NGHBP and LNGBP at Demand Level 0.80

The network revenue performances of the LNGBP are not as good as those of the NGHBP
method both when demand is low and when demand is high. This is because the LNGBP
uses the critical EMISR values as the measurements of the displacement impacts of the
connecting passengers, and it is not a network optimal solution. We observe that when
demand is high, the LNGBP method spills more connecting passengers than the NGHBP
method, and when demand is low, the LNGBP method spills less connecting passengers than
the NGHBP method.

4) Sensitivity Study

The following figure shows the sensitivity study of the heuristic parameter in the bid price
formula.

Sensitivity Study
Revenue Improvement
1.60%

1.55%T

1.50% 1

1.45% 1

1.35% 1

1.30% T

1.25% t + t t
0.60 0.70 0.80 0.90 1.00 1.1

Parameter "d"

Figure 4.27 Sensitivity Study for LNGBP at Demand Level 1.20

The best value is 0.90, which differs from the vaiue we obtained from the NGHBP method
(0.60). This fact can be explained as follows: The critical EMSR values are normally greater
than the values of shadow prices obtained from the optimization LP model. Therefore, the
pseudo fares calculated from the LNGBP are smaller than those from the NGHBP model.



So the re-calculated critical EMSR values (using the pseudo fares as the inputs) obtained
from the LNGBP, which will be used to determine the bid prices, are also smaller than those
obtained from the NGHBP method. To achieve the same level of control of the booking of
connecting passengers, the LNGBP will need a larger adjustment parameter.

Also we notice that in this method, the revenue is more sensitive to the parameter than it is in
the NGHBP method.
¢. Comparison with the GHBP Method

In Tables 4.42 and 4.43, we list the comparison of the revenue performance between the
GHBP and the LNGBP methods at demand levels 1.20 and 0.80.

Revenue Improvement LF Loc. Spilled Con. Spilled Rev./Pax Rev./Scat

GHBP 46242717 0.83% 92.03% 1839 603 787.57 65779
LNGBP 4637248 1.12% 93.11% 1618 677 77042  659.64

Table 4.42 Comparison of Network Performance Between GHBP and LNGBP at Demand Level 1.20

Revenue Improvement LF Loc. Spilled  Con. Spilled Rev./Pax_Rev./Seat

GHBP 3595406 0.29% 81.90% 233 147 694.71 51144
LNGBP 3597702 0.26% 82.67% 208 133 63998  511.76

Table 4.43 Comparison of Network Performance Between GHBP and LNGBP at Demand Level 0.80

The LNGBP method performs much better in revenue than the GHBP method does, since it
takes into account the displacement impacts of the connecting passengers. The critical
EMSR values reflect the congestion condition of the flight legs: it has a higher value at high
demand levels and a lower value at low demand levels.

d. Conclusions

The network revenue performance of the LNGBP method cannot compete with that of the
NGHBP method both when demand is high and when demand is low. The reason is
obviously due to the measurement of the displacement impacts of the connecting passengers.
The LNGBP method employs the critical EMSR value as the estimation of the displacement
effects of the connecting passengers, and it is a leg based method--it does not reflect the
optimal network solution. This model still has some of the characteristics of the greedy
method: the critical EMSR values are obtained based on the total fares. However this model
provides us with a much better revenue performance than GHBP method. One fact that we
realize is that this method needs more information than the GHBP method does since it nceds
to re-calculate the critical EMSR values based on the pseudo fares of each ODF.
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This model suggests two directions we can go:

Utilize as much information as the Greedy Heuristic Bid Price method does; that is, after
the calculation of the pseudo fares, we only re-arrange the fares to new virtual classes
based on the old virtual class ranges (do not re-calculate the EMSR curve). Then employ
the EMSRb method to control the seats. The revenue performance of such a method is

shown in the following table.

Demand Adjustment 0.80 1.00 1.20
Total Revenue 3597262 4167447 4629500
Local Pax Spilled 228 736 1563
Connecting Pax Spilled 115 418 707
Avg. Leg Load Factor(%) 82.91 90.12 93.05
Avg. Rev. Per Pax(8/Pax) 690.21 720.14 766.03
Avg. Rev. Per Avail. Seat($/Seat) 511.70 592.81 658.53
Rev. Impry. over LBFC 0.25% 0.65% 0.95%

Table 4.44 Revenue Performance of the Revised LNGBP Method

Such a method does not provide as good a performance at high demand levels as the LNGBP
method, but it does provide very close performance at low demand levels. Compared to the
GHBP and the GVN methods, this method has obvious advantages.

e Try to overcome the greedy respect by doing the following convergence process:

Set Pseudo Fares to be
Equal to the Fares, initially

Calculate the Critical
EMSR Values based
on the Pseudo Fare

v

v
Re-calculate the Pseudo Fares:
PSF = Fare - EMSR

Convergence 2~

l Yes

Other Process

No

Figure 4.28 A Loop to Find the Converged Pscudo Fares Based on Critical EMSR Values
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This is a by-product of the LNGBP model, we call it Convergent Pseudo Fare model
(CONPSF). The convergence criterion can be referred to Equation [3.27] in Chapter 3. The
following are some performance results of this model.

e. Convergent Pseudo Fare Model (CONPSF)

As mentioned in the previous section we can make a loop as shown in Figure 4.28 1o find the
best pseudo fares based on the critical EMSR values. At demand level 1.20, it takes about
10 seconds to find the convergence (18 iterations). The converged EMSR values are shown

in Appendix 5, together with the shadow prices and EMSR values from the LNGBP method.

1) Virtual Class Ranges

Since the converged pseudo fares differ from the pseudo fares we obtained in the LNGBP
method, we can expect the difference in the virtual class ranges (VRANGES) between the
LNGBP method and the CONPSF method. Tables 4.45 and 4.46 show the comparisons of
the VRANGEs among the LP method, the LNGBP method, and the CONPSF method on
Leg 4 and Leg 30.

VRANGE:s on LEG 4 VRANGESs on LEG 4 VRANGE:s on LEG 4
From LP Method From EMSR Method From Convergence Method

890.0 890.0 390.0

776.0 742.0 765.8

638.0 539.8 646.2

565.0 531.0 554.8

304.0 364.0 304.0

152.0 147.8 152.0

73.0 102.0 62.8

61.0 61.0 61.9

.0 0 0

.0 .0 0

Table 4.45 Comparison of Virtual Class Ranges among NGHBP, . NGBP, and CONPSF on Leg 4

VRANGE:s on LEG 30 VRANGESs on LEG 30 VRANGE:s on LEG 30
From LP Method From EMSR Method From Convergence Method

552.0 526.8 541.8
448.0 518.0 4199
420.0 401.5 392.1
358.0 358.0 358.0
251.0 286.0 254.2
246.0 251.0 251.0
230.0 230.0 230.0
194.0 194.0 194.0

720 72.0 72.0

.0 ) 0

Table 4.46 Comparison of Virtual Class Ranges among NGHBP, LNGBP, and CONPSF on Leg 30
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The bold number in the above two tables means that the VRANGES are the same as that
from the LP method. We find that the CONPSF method has more identical VRANGE:s than
the LNGBP method. Also for those non-identical values, the VRANGEs from the CONPSF
method are closer to those from the LP method than those frora the LNGBP method.

b) Revenue Performance

T.bles 4.47 and 4.48 show the revenue and leg performance of the CONPSF method.

Demand Adjustment 0.80 1.00 1.20
Total Revenue 3600050 4172507 4647204
Local Pax Spilled 213 782 1660
Connecting Pax Spilled 139 404 662
Avg. Leg Load Factor(%) 82.38 89.90 92.84
Avg. Rev. Per Pax(3/Pax) 691.82 724,97 775.78
Avg. Rev. Per Avail. Seat($/Seat) 512.10 593.53 661.05
Rev. Imprv. over EMSRa 0.32% 0.77 % 1.33%

Table 4.47 Revenue Performance of the CONPSF Method

CAP. LF PAX Load Demand Spill %Local D Local SLD
Leg4 181 .96 173 275 102 67.68 135
Leg 30 142 .73 103 111 7 85.40 95

Table 4.48 Leg Performance of the CONPSF Method

The revenue performance of the CONPSF method is obviously improved compared with that
of the LNGBP method (Table 4.49 and 4.50).

Revenue Improvement LF Loc. Spilled Con. Spilled Rev./Pax Rev./Seat
LNGBP 4637248 1.12% 93.11% 1618 677 77042  659.64
CONPSF 4647204 1.33% 92.84% 1660 662 775.78  661.05

Table 4.49 Comparison of Network Performance Between LNGBP and CONPSF at Demand Level 1.20

Revenue Improvement LF Loc. Spilled  Con. Spilled Rev./Pax Rev./Seat
LNGBP 3597702 0.26% 82.67% 208 133 689.98  511.76
CONPSF 3600050 0.32% 82.38% 213 139 691.82 512.10

Table 4.50 Comparison of Network Performance Between LNGBP and CONPSF at Demand Level 0.80

The load factor of the CONPSF method is lower than that of the LNGBP method both at
low demand levels and high demand levels. However, both the revenue per passenger and
the revenue per seat from the CONPSF method are higher that those from the LNGBP
method. At high demand levels, the CONPSF method spills more local and less connecting
passengers than the LNGBP method does. At the low demand Ievels, the CONPSF method
spills both more local and connecting passengers compared to the LNGBP method.
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The revenue performance of the CONPSF method is comparable to (slightly worse than) that
of the NGHBP method (Table 4.51 and 4.52).

Revenue Improvement LF Loc. Spilled  Con. Spilled Rev./Pax Rev./Scat

NGHBP 4649692 1.39% 93.02% 1698 638 777.87  661.41
CONPSF 4647204 1.33% 92.84% 1660 662 77578  661.05

Table 4.51 Comparison of Network Performance Between NGHBF and CONPSF at Demand Level 1.20

Revenue Improvement LF Loc. Spitlled  Con. Spilled Rev./Pax Rev./Scat

NGHBP 3604315 0.44% 82.61% 206 135 691.17 51270
CONPSF 3600050 0.32% 82.38% 213 139 69182  512.10

Table 4.52 Comparison of Network Performance Between NGHBP and CONPSF at Demand Level 0.80

We notice that the CONPSF method is more strict for connecting passengers than the
NGHBP is, and therefore it has a lower load factor than the NGHBP method.

3) Sensitivity Studies

Finally, Figure 4.29 shows the sensitivity study of the parameter in the bid price calculation
of CONPSF method.

Sensitivity Study
Revenue Improvement
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>
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1.60% 1

1.55%1

1.50% + t t

0.6 0.7 0.8 0.9 1.0
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Figure 4.29 Sensitivity Studies in CONPSF at Demand Level 1.20

From the sensitivity study, we obtain the same parameter value (0.9) as what we gains in the
LNGBP method.
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3. Convergent Proration Model (CONPRT)

In Chapter 3, we discussed how the connecting fares can be optimally distributed to the legs
traversed by employing the convergence concepts (refer to the second part of Section 3.2.2).
In Figure 3.6, we proposed a convergence process, which can be summarized as: 1) Based
on the critical EMSR values on each leg, prorate the connecting fares to each leg; 2) Re-
rank the fares according to these prorated fares; 3) Re-calculate the critical EMSR values
based on these new virtual classes and prorated fares; 4) Check the convergence criterion. If
convergence, then stop. Otherwise go to step 1. For detailed description, please refer to
Section 3.2.

For our simulated network, we can easily find the convergence within 10 seconds (21
convergence iterations). Then virtual EMSRb method (using the prorated fares and the new
virtual classes) is employed to control the seats.

Figure 4.30 shows the convergence processing of prorating the Fare Class 1 of OD pair 7 to
the two legs traversed.

Process of Convergence
Value of Prorated Fares

2500

TR
kr’&
i

2000/

i
§

1500 §

-+ Fare Prorated to Leg 1
~&- Fara Prorated to Leg 2

10001

500 1

1 3 5 7 9 11 13 15 17 19 21
Iterations

Figure 4.30 Convergence Process of Prorating a 2-Leg Fare (O-D Pair 7, Class 1) using Half Fare to Start
We find that the fare has been converged smoothly and quickly. The critical EMSR values

from this method are listed in Appendix 6, together with the shadow prices from LP model
and the EMSR values from the LNGBP and CONPRT methods.

a. Network Revenue Performance

Tables 4.53 and 4.54 show the revenue and leg performance of the CONPRT method.
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Demand Adjustment 0.80 1.00 1.20

Total Revenue 3602298 4173740 4644965

Local Pax Spilled 161 747 1636

Connecting Pax Spilled 165 423 673

Avg. Leg Load Factor(%) 82.47 89.90 93.00

Avg. Rev. Per Pax($/Pax) 688.83 723.09 773.61

Avg. Rev. Per Avail. Seat($/Seat) 512.42 593.70 660.73

Rey. Imprv. over LBFC 0.39% 0.80% 1.29%

Table 4.53 Pevenue Performance of the CONPRT Method
CAP, LF PAX Load Demand Spill %Local D Local SLD

Leg4 181 96 174 275 101 67.68 135
Leg 30 142 72 103 111 8 85.40 95

Table 4.54 Leg Performance of the CONPRT Method

b. Starting Points of the Convergence

Remember that in the convergence processing in Figure 3.6, the first step is “prorate the
connecting fares for legs traversed somehow”. In the process above, we choose 10 use the
average strategy, which means that we prorated the connecting fare equally to all the legs
traversed in de first iteration. Therefore questions arise: is the final convergence stable if
we choose to employ different initial prorating points? We examine, in the following, the
scheme of starting with the total fares, that is, connecting passengers are evaluated as their
total fares on all the legs they traverse initially. The convergence process of the same OD
fare (Fare Class 1, OD pair 7) is shown in the following figure:

Process of Converge
Prorated Fares
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Figure 4.31 Converge Process of Prorating a 2-Leg Fare (O-D Pair 7, Class 1) using Total Fare to Start
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Compared to the previous results, they are very close to each other. Additionally, the
revenue performance of using the average prorated fares as initial input is similar to that of
using total fares as initial input. Table 4.54 shows the comparison.

Demand Adjustment Half of the [Fares Total Fares
Total Revenue 4644965 4644962
Local Pax Spilled 1636 1636
Connecting Pax Spilled 673 673
Avg. Leg Load Factor(%) 93.00 92.99
Avg. Rev. Per Pax($/Pax) 773.61 773.63
Avg. Rev. Per Avail. Seat(3/Seat) 660.73 660.73
Rev. Imprv. over LBFC 1.29% 1.29%

Table 4.55 Comparison between the CONPRT methods with Different Starting Points
The revenue performance of these two convergence schemes are almost identical. Therefore

it shows that the process of the convergence is not necessarily dependent on the starting
points.

¢. Comparison between the CONPSF method and the CONPRT method

Tables 4.56 and 4.57 list the revenue performances of the CONPSF and the CONPRT
methods at demand levels 1.20 and 0.80.

Revenue Improvement LF Loc. Spilled Con. Spilled Rev./Pax Rev./Seat

CONPSF 4647204 1.33% 92.84% 1660 662 77578  661.05
CONPRT 4644965 1.29% 93.00% 1636 673 773.61  660.73

Table 4.56 Network Performance Comparison Between CONPSF and CONPRT at Demand Level 1.20

Revenue Improvement LF Loc. Spiiled  Con. Spilled Rev./Pax Rev./Seat

CONPSF 3600050 0.32% 82.38% 213 139 691.82  512.10
CONPRT 3602298 0.39% 82.47% 161 165 688.83 51242

Table 4.57 Network Performance Comparison Between CONPSF and CONPRT at Demand Level 0.80

The CONPRT method tends to perform better at low demand levels, while the CONPSF
method tends to perform better on the high demand side. If we pay attention to the spills, we
find that the CONPRT method rejects more connecting passengers and less local-passengers

than the CONPSF method. The reason can be explained as: The strategy of the CONPRT
method is to prorate the connecting fares to the legs traversed, therefore the total network
contribution of the connecting fares are equal to their total itinerary fares. Such an idea may
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lead the connecting passengers to having a very low ability to compete with the connecting
passengers when demand is very high.
d. Comparison bexwecn the NGHBP method and the CONPRT method

Tables 4.58 and 4.59 list the revenue performances of the CONPSF and the CONPRT
methods at demand levels 1.20 and 0.80.

Revenue Improvement LF Loc. Spilled  Con. Spilled Rev./Pax Rev./Scat

NGHBP 4649692 1.39% 93.02% 1698 638 77187  661.41
CONPRT 4644965 1.29% 93.00% 1636 673 773.61 660.73

Table 4.58 Network Performance Comparison Betwecen NGHBP and CONPRT at Demand Level 1.20

Revenue Improvement LF Loc. Spilled  Con. Spilled Rev./Pax Rev./Seat

NGHBP 3604315 0.44% 82.61% 206 135 0691.17  512.70
CONPRT 3602298 0.39% 82.47% 161 165 688.83 51242

Table 4.59 Network Performance Comparison Between NGHBP and CONPRT at Demand Level 0.80

Even though the CONPRT method provides a slightly worse revenue performance than the
NGHBP method, it does not contain any heuristic factors. Therefore we do not need to
conduct the sensitivity studies in this method, and it should be more robust than the NGHBP

method.

4.4 Conclusions

1. General Discoveries

Using an integrated optimization/booking simulation tool, we implement six different revenue

management methods to the same simulation network under controlled demand assumptions.
Figure 4.32 shows the revenue improvement comparison among those methods (" BFC
EMSRD as base).
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Method Comparison
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0.00% -

-0.20%

Load Factors

Figure 4.32 Method Comparison

From the figure above, we find that the non-greedy methods generally perform better than
the greedy methods. This is due to the consideration of the displacement impacts of the
connecting passengers. However the price for the good performance of the non-greedy
methods is more information required about the demand. Therefore the non-greedy methods
are harder to implement than the greedy methods.

2. Different Network Example

We should mention here that the comparison given in Figure 4.32 is based on the example
network we employed. If some assumptions about the network characteristics are changed,
the relative network performance may also change. Figure 4.33 shows the method
comparison of those six different methods in another network: The base case for the
comparison is the LBFC (leg based fare class) method using EMSRb control.
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Figure 4.33 Method Comparison in Another Network
Some important characters of this network are:
s 102 flight legs.
« 1066 origin and destination pairs.
o 7 fare classes on each O-D pair, 10 virtual classes are implemented.
e Mix of long-haul and short-haul flights.
o Average 60% local traffic on each leg.
o Booking classes are defined by fare type.
e 18 booking periods.
e A trip with up to 4 legs is allowed.
The demand data of the network is shown in the following table:
Demand Adjustment 0.80 1.00 1.20
Total Demand 5406 6762 8088
Local Demand 3712 4641 5559
Connecting Demand 1694 2121 2529
Average Leg Load Factor 63.08% 75.67% 82.77%
Table 4.60 Demand Scenarios
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We may notice that the network determiaistic bid price method (DNBP) provides a very
good performance in this network while it does not in the previous network. The possible
reason may be that there are 18 booking periods in this network, and the demand deviation
from period to period are smaller than the previous network.

The non-greedy methods consistently result in better revenue performances. Here, for this
network, in all the non-greedy methods, we have run the LP at the correct demand level.
That is, we have supposed that we can obtain accurate demand forecasts. One result in this
network that is different from the previous network is that the NGHBP method gives slightly
less revenue improvements than the NGVN method (remember that in the previous network,
the NGHBP method always gave better performances then the NGVN method).

Also we find that at low demand side, the greedy methods tend to give better performance.
This can be explained by the load factors. Since this network is relatively less congested, the
strategy of favoring the long haul connecting passengers tends to work better. The problem
of the non-greedy method comes from the deterministic LP model. Sometimes the shadow
prices do not reflect the accurate displacement impacts of the network. Therefore connecting
passengers are rejected by mistake.

The ditferent network performance of the seat inventory control methods for two different
networks suggests how important it is to understand the characteristics of the network before
choosing the seat control method.

3. Implementation Concerns

As we mentioned earlier in Chapter 1, for a seat inventory control method to be implemented
in the real world, it must meet certain requirements, such as being easy to employ, and the
information required by the method should be accessible. Among the above compared
methods, the non-greedy methods (NGVN, NGHBP, and CONPSF CONPRT) normally
require more information support than the greedy methods, and therefore are more costly.
During the decision making process, such factors should be taken into account.

4. Upper Bound

Finally, we use the process in Figure 3.3 to calculate the upper bound revenue for both
networks.
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Average Load Factor 83% 90% 93%

Network Revenue 3628841 4217629 4695782

Difference from LBFC 1.13% 1.86% 2.39%
Table 4.61 Upper Bound for the Smaller Network

Average Load Factor 63% 75% 83%

Network Revenue 3078862 3795041 4333306

Difference from LBFC 0.14% 1.50% 3.03%
Table 4.62 Upper Bound for the Larger Network

The theoretical upper bound of the revenue improvement provides us with a reference for
maximum revenue potential. From the two tables above we find that the improvement
opportunities are very small, and generally, the lower the load factor the less revenuc
opportunities. We therefore obtain the following relationship between the upper bound and
different methods:

Upper Bound

1/3~112 1 NGVN, NGHBP

1/4~173 |8 B GVN, GHBP

B | BEC (EMSRb)

Figure 4.34 Upper Bound Interpretation

In our research, we find that the greedy methods (include GVN and GHBP) can provide a
revenue improvement around 1/4 to 1/3 of the upper bound of the revenue gain. The non-
greedy methods (include NGVN and NGHBP) can provide an improvement up to 1/3 to 1/2
of the upper bound. For example, in the smaller network, the NGHBP method can provide a
revenue improvement up to 1.39% at the load factor of 93%, and 0.44% at an average
network load factor of 83%, which are around the half of the upper bound of the revenue
opportunities. On the other hand, in the larger network, the NGHBP method can provide a
revenue improvement up to 1.12% at average load factor of 83% and with revenue
improvement of 0.03% at load factor of 63% level, which is around one third of the revenue
upper bound.

115



Chapter 5

Conclusion

5.1 Summary of Research Findings

In this thesis, we examine several seat inventory control methods. Using an integrated
optimization / booking simulation tool, we compare how different methods can achieve
different network revenues under the sanmie demand circumstances.

The Greedy Virtual Nesting Method performs better than the Leg Based Fare Class Yield
Management method, because the greedy method takes into account the fact that the total
revenue of a connecting passenger from a low fare class is higher than the revenue of a
local passenger from a high fare class. In this method, airlines re-rank the passengers to
virtual classes based completely on the fare values. Therefore the seats are reserved for
the high fare long haul connecting passengers. Such a strategy generally has higher load
factors and revenues at high demand environments.

However under some conditions--at very high demands-- the greedy method tends to have
negative revenue impact. When both flight legs have very high demands, airlines would
rather book two local passengers than one connecting passenger because even though one
connecting passenger has a high total fare, he/she takes two or more seats of the network,
therefore displacement impact occurs. The non-greedy methods (including non-greedy
virtual nesting, non-greedy heuristic bid price, etc.) take into account the displacement
impacts, and evaluate the connecting passengers as their network contributions--fare
minus the displacement impacts. With proper demand information, the non-greedy models
always perform better than the greedy models. In our simulated network, the non-greedy
method can provide up to a 0.5% revenue improvement over the best greedy method (the
greedy heuristic bid price method) at an average load factor of 93%, and up to 2 0.2%
revenue improvement at an average load factor of 83%.
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In the implementation we find that even though we would like the displacement impact to
be considered., we do not want it to be over-emphasized. This is because high shadow
prices may cause too many connecting passengers to be spilled and consequently result in
empty seats (if there are not enough local demands). Therefore we find that it is always
better to implement a slightly lower shadow price than a higher one.

The leg-based probability model, which uses the critical EMSR values as the measurement
of the displacement impacts, even though it cannot compete with the network methods in
terms of revenue gain, uses much less demand data and can achieve a better revenue
performance than the greedy methods. This is a valuable characteristics in the airline
industry because most airlines cannot provide OD data to support a network optimization
process. A by-product of this probability model is a convergence model we called
CONPSF model. The idea of this model is as follows: Since the critical EMSR values we
used to evaluate the displacement impacts in the probability model are based on the total
fares, they may be higher than the actual displacement effects. Therefore we naturally
think that we can use the pseudo fares obtained from the probability model to re-caiculate
the critical EMSR values, and subsequently re-calculate the pseudo fares till the pseudo
fares converge. Such a model improves the revenue performance of the probability model
greatly.

The last model we proposed is called CONPRT model. It comes from the observation of
that the sum of the pseudo fares from the above two models are not equal to the total
fares. Therefore the contribution of the connecting fares are still mis-evaluated.

Therefore we come up with an idea of using the convergence loop to optimally prorate the
connecting fares to the legs traversed based on the critical EMSR value of each leg. Such
a method provides us with a revenue performance similar to other methods.

5.2 Contributions

Based on different approaches of how to evaluate the displacement impacts of the
connecting passengers, we proposed three new models: the Network Non-greedy
Heuristic Bid Price model, the Leg-based Probability Bid Price model (with a by-product
of the Convergent Pseudo Fare model), and the Convergent Proration model. All of them
provide us with good revenue performances.
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In our research, we found that even though the seat allocation results obtained from the
deterministic LP model are partitioned solutions, and rarely employed in the real world,
we can derive some very useful information about the displacement impacts from this
model: the shadow prices. In the network non-greedy heuristic bid price model, we
implement the shadow prices to obtain the pure network revenue contribution of the
connecting passengers. Then, the critical EMSR values are calculated based on these pure
contributions.

We also discuss some implementation issues of the shadow prices. For example, the
degeneracy of the LP. Since the degenerate LP model provides multiple dual solutions,
we need to consider how different dual solutions will affect the revenue. If it is possible,
how can we avoid the degeneracy? Five different shadow prices are proposed to
overcome the degeneracy problem: The heuristic model (d*dual variables), the upper
bound, the upper bound deviated shadow price, the true shadow price (capacity +1), and
the true shadow price (capacity -1). Another implementation issue is how frequently the
airlines should update the LP results. We know that the inputs of the LP (demand and
capacity) change over time. The frequency of re-solving an LP is limited by the technique
and data difficulties. We compared the different updating plans and find that running LP
once using the average demand forecasting and total capacity can provide a very good
revenue performance. Finally, we consider how the accuracy of the demand forecasting
will affect the revenue performance. Different demand right-hand sides are tested. The
general findings are that, if we run LP at a too low demand level, the non- greedy method
may perform like a greedy method and book too many connecting passengers; if the
demand right-hand sides are too high, we may spill too many connecting passengers and
cause empty seats. However, running LP at a slightly lower demand level provides a very
good revenue performance.

We extend the definition of the pseudo fares as the pure fare contribution of the
connecting passengers, and therefore give another form of pseudo fares: fare minus the
critical EMSR values. In this model, we try to approach the network optimal solution
through a leg-based seat inventory control approach, which represents a desirable research
direction.

Even though the shadow prices and the critical EMSR values can evaluate the
displacement impact of the conneciing passengers, the sum of the pseudo fares (derived as
fare minus the shadow prices or critical EMSR values) of the connecting passengers on all
the traversed legs are not equal to the total itinerary fares (normally the sum of the pseudo
fares are greater than the total fares). Therefore the connecting fares may not be properly
allocated to each leg. The convergence model overcomes this fact by finding an optimal
way to prorate the connecting fares on all legs traversed based on the critical EMSR value
on each leg. This model can provide us with revenue results comparable to the network
method.
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5.3 Future Research Directions

By the end of this thesis, we can clearly see several directions for future research:

Improve the LP model to derive more accurate displacement impacts. There are two
ways to achieve this goal. One is to employ a stochastic LP model to capture the
variable character of the demand. The other is to integrate the LP model by taking
into account more information such as passenger recapture, path choice, cancellation,
no-shows, and the passenger up-grades, etc.

Obtain more accurate demand forecasts. Most of the non-greedy methods depend
greatly on uie accuracy of the demand forecast for each ODF. Today, most airlines
are still doing forecasting on a leg base. Without the OD demand forecast, the LP
model cannot by implemented and therefore we crnnot obtain the shadow prices. One
barrier in the OD forecast is the limits of the historical data, because to store these
data requires huge data bases. Another problem is OD demands have very small mean
values and very large deviations. One possible direction for the forecasting is to derive
the OD flows from the link flows.

Derive optimal “d” values theoretically. In the non-greedy heuristic model, the
parameter “d” is obtained by sensitivity studies. Future theoretical works can try to
derive the optimal value for this parameter.

Decrease the dependency on demand information. Since forecasting the OD level
demand is very difficult, another research direction could be how we can use as less
information as a leg level to achieve a network optimal solution. We proposed a
model in this thesis, and we can improve it in future research.
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Appendix 1

Calculation of EMSR Curve

Cn Leg 1:

e The EMSR Curve

The virtual classes of fares are given as below:

Virtual Classes Fare Classes Fare Mean Demand Std Error
Y1 Y(AC) $1000 8 4

Y2 B(AC) $625 25 10

Y3 Y(AB), B(AO) $500 10 5

Y4 B(AB) $300 20 8

YS Q(AC) $250 45 17

Y6 Q(AB) $150 40 15

Table 1 Virtual Classes on Leg 1
1. Protection for Y1:
Mean Demand = 8 : [AL.1]

Standard Deviation = 4

We know that the seats should be protected for class Y1 as long as the following equation
holds:
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EMSRy,(my,) = Fare,, X P, (%y,) > Fare,, [A12]

That is
1000 % Py (rry;) = 625 [A13]

= P, (%,) 20625
From N(0,1) table, we can find Z, which satisfies
P(x>Z) = 0.625, [A14]

is -0.32. Since our sample follows Normal Distribution -- N(8, 4), we can get that:

z=TrTH_ o3 [A1.5]
(o)

wy,=8-032x4=67=7

2) Seats protected for Y1 and Y2 classes.

First, we need to calculate the mean fare of Y1 and Y2 together.

Fareyyy = 1000 <8 +625 %25 _ 716.00 (AL6]

8+25

Then we can get the Mean Demand and Standard Deviation of the combination demand of
Y1 and Y2 classes.

Mean Demand = 8 + 25 =33 [A1.7]
Standard Deviation = 4% +10* =10.77

We know that the seats should be protected for Y1 and Y2 classes as long as the
following equation holds:

EMSRy,,(70y,,) = Farey, X Poy(Tyy,) 2 Fare, [A1.8]

That is
716.00 x PY12 (7Z'Yl2) =500 : [A1.9]

= Py12 (IEYIQ_) 2> 0.6983

From N(0,1) table, we can find Z satisfies

P(x>Z) = 0.6983 [A1.10]
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is -0.52. Since our sample follows N(43, 11.87), we can get that:

z=Tr2=H_ 45 [AL11]
c
y1p =33—-0.52x10.77 = 27.4 = 27

3) Seats protected for Y1, Y2 and Y3 classes.

First calculate the mean fare for Y1, Y2 and Y3.

Fareyyys = 1000 x 8+625x25+500x10 _ 665.70 [AL12]

8+25+10

Then we can get the Mean Demand and Standard Deviation of the combination demand of
Y1, Y2, and Y3 classes.

Mean Demand =8+25+10=43 [A1.13]

Standard Deviation =4* +10* +52 =1187

We know the seats should be protected for Y1, Y2 and Y3 class as long as the following
equation holds:

EMSRy 13 (T y153) = Farey 3 X By 53 (T0y,,3) 2 Fare, [AL.14]

That is
665.70 x PY123 (”Y123) =300 [A1.15]

= PY123 (m Y123) =0.4507

From N(0,1) table, we can find Z which satisfies
P(x>Z) = 0.4507, [A1.16]

is 0.12. Since our sample follows Normal Distribution -- N(63, 14.32), we can get that:

o
Ty1p3 =43+ 0.12x11.87 = 44
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4) Seats protected for Y1, Y2, Y3 and Y4 classes.

First calculates the mean fare for Y1, Y2, Y3 and Y4.

1000 x 8 + 625 x 25 + 500 x 10 + 300 x 20
8+25+10+20

= 549.6 [A1.18]

Fareyi34 =

Then we can get the Mean Demand and Standard Deviation of the combination demand of
Y1, Y2, and Y3 classes.

Mean Demand =8 +25+10+20=63 [Al1.19)
Standard Deviation = \J4* +10* +5* + 8% = 1432

We know the seats will be protected for Y1, Y2, Y3, and Y4 classes as long as the
following equation holds:

EMSRy1234 (T y1234) = Fareyjpas X Py1234 (W y1234) 2 Fares [Al.20]

That is
549.6 x })1234(”1’1234) =250 [A1.21]

= Py1234 (T y1234) = 0.4549
From N(0,1) table, we can find Z, which satisfies
P(x>Z) = 0.4549 [A1.22
is 0.11. Since our sample follows N(108, 22.23), we can get that:

z=Tnwa=H_,q [A123]
c

Ty1234 = 63+0.11x14.32 =65

5) Seats protected for Y1, Y2, Y3, Y4 and Y5 classes.

First calculates the mean fare for Y1, Y2, Y3, Y4 and Y5.

1000 x 8 + 625 x 25+ 500 x 10 + 300 x 20 + 250 x 45
8+25+10+20+45

=424.8 [Al1.24]

Fareyjpas =

Then we can get the Mean Demand and Standard Deviation of the combination demand of
Y1, Y2, Y3, Y4 and Y5 classes.
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Mean Demand =8+ 25+10+20+45=108 [A1.25]
Standard Deviation =42 +10> +5> +8> +17% =2223

We know the seats will be protected for Y1, Y2, Y3, Y4 and Y5 classes as long as the
following equation holds:

EMSRy 2345 (T y12345) = Farey psss X Priagys (T yims) 2 Fareg [A1.26]

That is
424.8 X PIZ345 (Iry12345) 2150 [A1.27]

= Py12345(Ty12345) 2 0.353

From N(0,1) table, we can find Z, which satisfies
P(x>Z) = 0.353, [A1.28]

is 0.38. Since our sample follows N(118, 23.26), we can get that:

Z= ﬂl%‘ﬁ-————’i =0.38 [A1.29]
Ty1234 = 108+ 0.38x22.23=116.4=116

e EMSR Value for Current Seat

Here what we know is that there are 100 seats available, that is

m=108+2Zx2223=100 [A1.30]
So Z=-0.3599
Then the probability

P{x 2 -0.3599) = 0.6406 [A1.31]

EMSR(100) = 0.6406 x 424.8 = $272.1

Since the EMSR value of the 100th seat should not access the lowest fare value in the
higher fare group. So

EMSR(100) = Max{EMSR(100), 3250} = $250.0 [A1.32]
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On Leg 2:

e The EMSR Curve

The virtual classes of fares are given as below:

Virtual Classes Fare Classes Fare
Yl Y(AC) $1000
Y2 B(AC) $625
Y3 Y(BC) $600
Y4 B(BC) $350
Y5 Q(AC) $250
Y6 Q(BC) $200
Table 2 Virtual Classes on Leg 2

1. Protection for Y1:

Mean Demand = 8
Standard Deviation = 4

We know the seats will be protected for Y1 as long as the following equation:

EMSRy,(my,) = Fare,, X P, (%y,) 2 Fare,,

That is
1000 X Py;(my;) 2 625

= ]5;(71: y)=0.625
From N(0,1) table, we can find Z, which satisfies
P(x>Z) = 0.625,

is -0.32. Since our sample follows N(8, 4), we can get that:

z=CY—H_ 39
c
Ty =8-032x4=672~7
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2) Seats protected for Y1 and Y2 classes.
First calculates the mean fare for Y1 and Y2 together.

Farey|p = 1000 x 8 + 625 x 25 =716.00 [A1.38)

8+ 25

Then we can get the Mean Demand and Standard Deviation of the combination demand of
Y1 and Y2 classes.

Mean Demand = & + 25 =33 [A1.39]
Standard Deviation =V4* +10° =10.77

We know the seats will be protected for Y1 and Y2 class as long as the following equation
holds:

EMSRy,,(si yyy) = Farey,, X by, (Ty,,) 2 Fare, [A1.40)

That is
716.00 x PYIZ(EYIZ) 2 600 [A1.41]

= Pyu(ﬂ' y12) >0.838

From N(0,1) table, we can find Z, which satisfies
P(x>Z) = 0.838, [A1.42]

is -0.99. Since our sample follows N(23, 7.211), we can get that:

Z= Emd—:—‘—‘- =-0.99 [A1.43]

Tylp =33-0.99%10.77 =223 = 22

3) Seats protected for Y1, Y2 and Y3 classes.

Calculate the mean fare for Y1, Y2 and Y3 together.

1000 x 8 + 625x 25+ 600 x 15

=679 [A1.44]
8+25+15

Farey123 =
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Then we can get the Mean Demand and Standard Deviation of the combination demand of
Y1, Y2 and Y3 classes.

Mean Demand =8+25+15=48 [A1.45]

Standard Deviation = J4* +10* +6° =12.33

We know the seats will be protected for Y1, Y2 and Y3 class as long as the following
equation holds:

EMSRy,5, (0 y103) = Farey,,y X Py py (T y5) 2 Fure, [A1.46]

That is
679)<Py123 (ﬂy123) 2350 [A1.47]

= Py123(my123) 2 0.515
From N(0.1) table, we can find Z, which satisfies
P(x>Z)= 0515, [A1.48]
is -0.04. Since our sample follows N(48, 12.33), we can get that:

Z= E—’flé;“ =—0.04 [A1.49]

Ty1p = 48—0.04x12.33 = 47.5 ~ 48

4) Seats protected for Y1, Y2, Y3 and Y4 classes.

First calculates the mean fare for Y1, Y2, Y3 and Y4.

1000 x 8 + 625 x 25+ 600 x 15+ 350 X 25

= 566.78 [A1.50]
8+25+15+25

Farey1234 =

Then we can get the Mean Demand and Standard Deviation of the combination demand of
Y1, Y2, Y3 and Y4 classes.

Mean Demand =8+25+15+25=173 [A1.51]
Standard Deviation =4* +10* + 62 +10° =1587

We know the seats will be protected for Y1, Y2, Y3 and Y4 class as long as the following
equation holds:
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EMSRy 53, (T y1034) = Farey 34 X Py 133, (T y155,) 2 Fare [A1.52]

That is
566.78 x Py1234 (ﬂy1234) =250 [A1.53]

= Pyr1234(my1234) 2 0.441

From N(0,1) table, we can find Z, which satisfies
P(x>Z) = 0.441, [A1.54]

is 0.15. Since our sample follows N(73, 15.87), we can get that:

Z=W=O_15 [A1.55)
o
©y1234 = 73+ 0.15%x15.87 —75.4 =75

5) Seats protected for Y1, Y2, Y3, Y4 and Y5 classes.

First calculates the mean fare for Y1, Y2, Y3, Y4 and Y5.

1000 x 8 + 625 x 25+ 600 X 15 + 350 x 25 + 250 x 45

F - = 446.0 A156
Aren2s 8+15+25+25+45 ALl

Then we can get the Mean Demand and Standard Deviation of the combination demand of
Y1, Y2, Y3, Y4 and Y5 classes.

Mean Demand =8+ 15+25+25+45=118 [A1.57]
Standard Deviation =J4° +10 + 6% +10% +17% = 2326

We know the seats will be protected for Y1, Y2, Y3, Y4 and Y5 classes as long as the
following equation holds:

- EMSRy 3305 (T y13305) = Farey pses X Pryzggs (W yip005) 2 Fareg [AL58]

That is .
446.0 x P12345 (7L'y12345) =200 [A1.59]

= Py12345(y12345) 2 0.448

From N(0,1) table, we can find Z, which satisfies
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P(x>Z) = 0.448, (A1.60}

is 0.13. Since our sample follows N(118, 23.26), we can get that:

z=Tr123a5s “H _ 5 (AL61]
o
ﬂ'y1234 =118+0.13x23.26 =121

e EMSR Value for Current Seat

Here what we know is that there are 10u seats available, that is

n=118+2Zx2326=100 [A1.62]
So Z=-0774
Then the probability

P(x2-0.774) =0.7794 [A1.63]

EMSR(100) = 0.7794 x 446.0 = $347.6

Since the EMSR value of the 100th seat should not access the lowest fare value in the
higher fare group. So

EMSR(100) = Max(EMSR(100), $250} = $250 [A1.64]
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Appendix 2

LP Solution Outputs

LP OPTIMUM FOUND AT STEP  §
OBJECTIVE FUNCTION VALUE 63325.00

VARIABLE VALUE REDUCED COST

Y 10.000000 .000000
BLi 20.000000 .000000
QL1 37.000000 .000000
Y2 15.000000 .J00000
Br2 25.000000 .000000
QL2 27.000000 .000000
Yc 8.000000 .000000
Bc 25.000000 .000000
Qc .000000 100.000000

ROW SLACK OR SURPLUS DUAL PRICES

2 .000000 150.000000
3 .000000 200.000000
4 .000000 350.000000
5 .000000 150.000000
6 3.000000 .000000
7 .000000 400.000000
8 .000000 150.000000
9 18.000000 .000000
10 .000000 650.000000
11 .000000 275.000000
12 45.000000 .000000

NO. ITERATIONS= 8
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Sensitivity Analysis

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE
COEF INCREASE
YLI 500.uV0000 INFINITY
BL1 300.000000 INFINITY
QL1 150.000000 150.000000
YL2 600.000000 INFINITY
BL2 350.000000 INFINITY
QL2 200.000000 150.000000
YC 1000.000000 INFINITY
BC 625.000000 INFINITY
QC 250.000000 100.000000
RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE
RHS INCREASE
2 100.000000 3.000000
3 100.000000 18.000000
4 10.000000 37.000000
5 20.000000 37.000000
6 40.000000 INFINITY
7 15.000000 27.000000
8 25.000000 27.000000
9 45.000000 INFINITY
10 8.000000 27.000000
11 25.000000 27.000000
12 45.000000 INFINITY
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ALLOWABLE
DECREASE

550.000000
150.000000
100.000000
400.000000
150.000000
100.000000
650.000000
275.000000

INFINITY

ALLOWABLE
DECREASE

37.000000

27.000000

3.000000
3.000000
3.000000
15.000000
18.000000

18.000000

3.0600000
3.000000

45.000000



Appendix 3

Shadow Prices Compariscn

Following are some shadow prices at demand level 1.20

leg# First Period SP 0.8°First Period SP True SP(Cap+1) True SP(Cap-1) Upper SP New UP SPs

Rev. 4647918 4648807 4847712 4647727 4648517 4600493
4 ,,é 138 137 135 1.35 1.36 141
Loc Spill 1669.00 1773.00 1660.00 1660.00 1670.00 1683.00
Con Spill 655.00 607.00 663.00 663.00 659.00 648.00
SPs 1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00
3 61.00 48.80 61.00 61.00 61.00 61.00
4 61.00 48.80 61.00 61.00 70.10 42.09
5 301.00 240.80 301.00 301.00 301.00 301.00
6 301.00 240.80 301.00 301.00 301.00 301.00
7 322.00 257.60 322.00 336.00 342.50 316.86
8 322.00 257.60 322.00 32200 322,00 322.00
9 0.00 0.00 0.00 0.00 0.00 0.00
10 729.00 583.20 681.00 681.00 699.00 676.30
1 331.00 264.80 331.00 331.00 331.00 331.00
12 309.00 247.20 309.00 309.00 310.10 305.18
13 753.00 602.40 753.00 753.00 740.35 694.69
14 753.00 602.40 753.00 753.00 753.00 753.00
16 £83.00 466.40 5§83.00 583.00 586.256 57717
16 §83.00 466.40 583.00 £83.00 583.00 £§83.00
17 323.00 258.40 312.00 312.00 126.15 0.00
18 505.00 404.00 470.00 470.00 465.55 442.14
19 385.00 308.00 385.00 385.00 391.00 366.43
20 462.00 369.60 413.00 413.00 422.80 406.52
21 72.00 57.60 92.00 149.00 132.10 67.75
2 167.00 133.60 167.00 167.00 14190 92.60
23 72.00 57.60 72.00 72,00 86.25 5145
24 88.00 70.40 211.00 211.00 189.70 133.51
25 68.00 54.40 103.00 103.00 93.60 78.71
26 103.00 8240 103.00 103.00 10525 97.38
27 157.00 125.60 157.00 157.00 160.05 133.06
28 89.00 71.20 89.00 89.00 93.35 77.78
29 72.00 57.60 72.00 72.00 71.70 70.36
30 0.00 0.00 0.00 0.00 0.00 0.00
31 72.00 5§7.60 72.00 72.00 87.00 45.88
32 0.00 0.00 0.00 0.00 0.00 0.00
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Appendix 4

Comparison between Shadow Prices
and Critical EMSR vaiues

Demand Level 1.20

Leg Number Shadow Prices Critical EMSR Values Difterence Load Factors % Local Demand
1 ~0.00 21.51 21.51 0.8 80.94
2 S 0.00 0.46 69.57
3 Bt : 0.00 0.96 76.33
4 61.00 179.24 11824 0.96 67.68
5 0.00 0.99 66.09
6 0.20 0.99 81.75
7 0.00 0.99 56,71
8 0.10 1 61.34
9 0.c0 51.91 5191 0.79 85.01
10 729.00 685.06 -43.94 0.99 83.88
11 0.00 0.99 86.15
12 0.00 0.99 91.97
13 0.00 0.98 61.59
14 0.00 0.99 97.37
15 527 0.99 86.29
16 0.00 1 96.99
17 323.00 14829 -174.71 0.92 61.14
18 505.00 403.82 -101.18 1 46,98

19 385.00 214.40 -170.60 1 61.85
20 462.00 413.43 -48.57 0.99 52.98
21 95.32 0.97 93.71
2 S 4172 5.69 0.97 98.94
23 72.00 126.95 54,95 0.95 99.73
24 88.00 188.44 100.44 0.98 70.09
25 29.12 0.97 62.31
26 1.43 0.99 70.49
27 0.00 . 0.99 75.45
28 21.77 0.97 50.64
29 0.00 097 90.86
30 1240 072 85.4
31 4552 0.97 77.42
32 0.26 0.57 95.03
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Demand Level 0.80

Leg Number Shadow Prices CriticaI‘EMS”H }I_glqes Difference Load Factors % Local Demand

1 0.01 0.54 79.11
2 0.00 0.35 70.95
3 16.50 0.78 76.88
4 0.00 093 65.78
5 241.90 052 64.68
6 0.61 0.95 83.01
7 1.18 0.98 56.66
8 23424 095 6155
9 0.00 053 85.40
10 41.00 0.75 8378
11 0.00 0.99 86.22
12 144.02 0.88 92.36
13 -125.35 0.97 62.88
14 -5.18 0.97 97.41
15 356.79 0.88 86.78
16 18593 0.86 96.70
17 0.11 0.68 60.41
18 -50.17 1.00 4722
19 56.14 0.86 61.43
20 -64.35 1.00 5264
21 39.66 0.80 93.31
2 72.00 0.89 99.45
23 1837 0.77 99.44
24 0.00 0.91 69.59
25 19.99 0.89 61.14
26 17.54 0.97 70.88
27 65.02 0.97 75.58
28 0.33 0.96 49.68
29 18.86 0.79 92.00
30 0.01 052 85.33
31 2983 0.84 78.76
32 0.00 0.37 9497

Note: The shaded numbers are the identical shadow prices and EMSR values.
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Appendix 5

Comparison between Shadow Prices,
EMSR values, and Converged EMSR Vaiues

Demond Level 1.20

Leg Number
1

© N O 0O & W N

— .
s®Joarnm 3

RRBRNEY

-3

828R

Shadow Prices
0.00
0.00

61.00
61.00
301.00
301.00
322.00
322.00
0.00
729.00
331.00
399.00
753.00
753.00
583.00
583.00
323.00
505.00
385.00
462.00
72.00
167.00
72.00
88.00
68.00
103.00
157.00
89.00
72.00
0.00
72.00
0.00

Critical EMSR Values
21.51
0.00
61.00
179.24
301.00
301.20
32200
322,10
51.91
685.06
331.00
309.00
753.00
753.00
588.27
583.00
148.29
403.82
214.40
413.43
167.32
172.69
126.95
188.44
97.12
104.43
157.00
110.77
72.00
12.40
117.52
0.26

Converged EMSR
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22,02
0.00
96.03
194.79
301.05
301.51
378.54
322,00
52.04
685.06
331.00
309.00
753.00
753.00
588.29
583.00
303.91
462.04
395.18
413.65
167.32
174.96
126.95
21255
103.00
113.98
157.00
117.52
72.00
19.35
122,42
c27

Load Fa “tors
0.80
0.46
.96
0.96
0.99
0.29
0.99
1.00
0.79
0.99
0.99
0.99
0.98
0.99
0.99
1.00
0.92
1.00
1.00
0.99
0.97
0.97
0.95
0.98
0.97
0.99
0.99
0.97
0.97
0.72
0.97
0.57

% Local Demand
80.94
69.57
76.33
67.68
66.09
81.75
56.71
61.34
85.01
83.88
86.15
91.97
61.59
97.37
86.29
96.99
61.14
46.98
61.85
52,98
93.71
98.94
99.73
70.09
62.31
70.49
75.45
50.64
90.86
854
77.42
95.03



Demand L.evel 0.80

Leg Mumber
1

O oo N S N

b eh oh ad ehA ed e b e
W O NOOE WN -0

BLEBBNBIRIBRNRR

Shadow Prices
0.00
0.00
0.00
61.00
0.00

301.00
322.00
0.00
0.00
0.00
331.00
0.00
499.00
519.00
0.00
0.00
0.00
401.00
0.00
413.00
0.00
0.00
0.00
88.00
25.00
68.00
18.00
89.00
0.00
0.00
0.00
0.00

Critical EMSR Values
0.01
0.00
16.90

61.00
241.90
301.61
323.18
23424

0.00

41.00
331.00
144.02
373.65
513.82
356.79
185.93

o.n
350.83

56.14
348.15

39.66

72.00

18.37

88.00

4499

8554

83.02

89.33

18.86

0.01
29.83
0.00

Converged EMSR
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0.01
0.00
18.24
61.00
246.03
301.78
325.34
255.62
000
41.04
331.00
144.40
498.31
515.18
357.01
185.98
0.12
37063
59.42
375.66
34.08
72.00
18.37
130.78
62.34
88.86
89.24
89.00
18.86
0.01
39.13
0.00

Load Factors
0.54
0.35
0.78
0.93
0.92
095
0.98
0.95
0.53
0.75
0.99
0.88
0.97
0.97
0.88
0.86
0.68
1.00
0.86
1.00
0.80
0.89
0.77
0.91
0.89
0.97
0.97
0.96
0.79
0.52
0.84
0.37

% Local Demand
79.11
70.95
76.88
65.78
64.68
83.01
56.66
61.55
85.40
83.78
86.22
92.36
62.88
97.41
86.78
96.70
60.41
47.22
61.43
52.64
93.31
99.45
99.44
69.59
61.14
70.88
75.58
49.68
92.00
85.33
78.76
94,97



Appendix 6

Shadow Prices and EMSR Values

Demand Level 1.20

Leg Number
1

W O N A WN

n NN
NBRRBREBIEIsIR N 2B

2888

[
n

Shadow Prices
0.00
0.00

C1.00
61.00
301.00
301.00
322.00
322,00
0.00
729.00
331.00
309.00
753.00
753.00
583.00
583.00
323.00
505.00
385.00
462.00
72.00
167.00
72.00
88.00
68.00
103.00
157.00
89.00
72.00
0.00
72.00
0.00

Critical EMSR Values
21.51
0.00
61.00
17924
301.00
301.20
322.00
322.10
5191
685.06
331.00
309.00
753.00
753.00
588.27
583.00
148.29
403.82
214.40
41343
167.32
172,69
126.95
188.44
97.12
104.43
157.00
110.77
72,00
12.40
117.52
0.26

Converged Pseudo Fares
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2202
0.00
96.03
194.79
301.05
301.51
378.54
322.00
52.04
685.06
331.00
309.00
753.00
753.00
58829
583.00
303.91
462.04
395,13
413.656
167.32
174.96
126.95
212,55
103.00
113.98
157.00
117.62
72.00
19.35
12242
0.27

Converged Proration
31.30
0.04
81.18
115.62
301.02
301.29
378.96
322.00
48,51
684.70
331.00
309,00
753.00
753.00
588.30
583.00
321.80
461.42
388.05
41438
167.30
173.65
165.78
209.53
103
103
157
97
72
29.41
113.61
1.35



Demand Level 0.80

Leg Number
1

© O N O sE W N

P S S S S G Y Sy
O 0 ~N O O WO =2 O

PERES

B ¥

27

828B8R

Shadow Prices
0.00
0.00
0.00
61.00
0.00

301.00
322.00
0.00
0.00
0.00
331.00
0.00
499.00
5§19.00
0.00
0.00
0.00
401.00
0.00
413.00
0.00
0.00
0.00
88.00
25.00
68.00
18.00
89.00
0.00
0.00
0.00
0.00

Critical EMSR Valuss
0.01
0.00
16.90

61.00
24190
301.61
323.18
23424

0.00

41.00
331.00
144.02
373.65
513.82
356.79
185.93

0.1
350.83

56.14
348.15
39.66
72.00

18.37
88.00
44,99
85.54
83.02
89.33

18.86

0.01
29.83

0.00
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Converged Pseudo Fares
0.01
0.00
18.34
61.00

246.03
301.78
325.34
25552
0.00
41.04
331.00
144.40
498.31
515.18
357.01
185.98
0.12
370.63
5§9.42
375.66
34.09
72.00
18.37
130.78
62.34
88.86
89.24
89.00
18.86
0.01
39.13
0.00

Converged Proration
0.20
0.00
17.74

61.00
22323
301.58
32349
270.43

0.00

38.20
319.39
14255
488.57
526.52
35552
185.03

017
379.76
46.64
378.72
64.25
72.00
29.49
107.95
62.44
99.61
88.37
99.61
33.28

0.14
56.68

0.00



