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ABSTRACT

Consideration of the martensitic nucleation process
as a sequence of small steps which take the particle from
maximum to minimum coherency leads to the hypothesis that the
first step in martensitic nucleation is faulting on planes of
closest packing. It is further postulated that the faulting
displacements are derived from an existing defect, while matrix
constraints cause all subsequent processes to occur in such a
way as to leave the fault plane unrotated, thus accounting for
the observed general orientation relations. Mechanisms for
accomplishing these processes are described for the major
lattice changes which occur in metal systems. For the specific
case of the fcc+hcp transformation in Fe-Ni-Cr alloys and the
fcc-+bcc transformation in Fe30%Ni, the energetics of the
proposed mechanisms are examined using a theory of stacking-
fault energy developed from the basic concepts of classical
nucleation theory. The theory predicts that, under the known
thermodynamic conditions for martensitic nucleation, the fault
energy decreases with increasing fault thickness. Spontaneous
formation of martensitic embryos can occur by the simultaneous
dissociation of 4 to 5 properly spaced lattice dislocations
to produce a fault of sufficient thickness that the fault
energy can be zero or negative. Thus, the function of the
nucleating defect is to provide a group of appropriate partial
dislocations of the proper spacing. Typical lattice defects,
such as grain-boundary segments, incoherent twin boundaries
and inclusion-particle interfaces, are considered as possible
sites which can fulfill this function. Examples of martensitic
nucleation at each of these sites by the proposed faulting
mechanism are found in available experimental observations.

Thesis Supervisor: Professor Morris Cohen

Title: Ford Professor of Materials Science and
Engineering
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1. INTRODUCTION

Having made practical use of martensitic transforma-

tions for over 3000 years, man's lack of an adequate explanation

of how these transformations come about has represented an

uncomfortable situation to those who like to consider metallurgy

a science. While phenomenological approaches to the

crystallography have produced a satisfying description of the

growth aspect of these transformations, the mystery largely

remains in the mechanism of nucleation; this is the problem we

address here.

It is now well recognized that classical homogeneous

nucleation theory cannot account for martensitic nucleation (1);

small-particle experiments have demonstrated convincingly that

the transformation is nucleated heterogeneously on rather

sparsely distributed special sites (2) Proposed theories of

martensitic nucleation as they stand today are largely

concerned with the initial growth start-up of an existing

martensitic embryo. These theories were mainly developed to

explain bulk kinetic behavior. Kaufman and Cohen(1) and

Raghavan and Cohen(3) extended a model proposed by Knapp and

Dehlinger (), and considered the formation of interfacial

dislocation loops as the rate-limiting step in martensitic

nucleation. Magee(5) later proposed that the motion of such

interfacial dislications might be rate-limiting. Subsequently,

Raghavan and Cohen(6) showed that the ideas of dislocation
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formation and dislocation motion were interdependent: either may

initiate the growth process depending on the size and shape of

the embryo.. Mechanisms of how the embryos first come into

existence have not been developed in detail. A possible

exception might be the recent attempts to acccuzt for embryo

(7,8)
production through soft phonon-mode concepts . Though

nucleation at free surfaces is predicted and there is recent

indication from electron microscopy 9 ) that soft modes may have

some relevance to nucleation in thin films, these theories are

unable at this time to account for the known heterogeneous

nature of martensitic nucleation in bulk material.

Knapp and Dehlinger (4) and Kaufman and Cohen(3)

consider that embryos might be produced by some type of

dislocation rearrangement above T0 , the parent-prdduct equili-

brium temperature. A conceptual difficulty with this approach

is that, if such rearrangements are difficult below T0 when the

chemical driving force is favoring embryo formation, it is hard

to imagine how they can readily occur above T when opposed by

the driving force. Experiments designed to detect the presence

of such high-temperature embryos have not provided convincing

support for their existence 1 0 ,1 1 ,1 2 )

Magee(5) and Christian(13) suggested that such

dislocation rearrangements could occur below T . By interaction

with a suitable defect, the energy versus particle size may be

"downhill" from the start and, further, a large critical

nucleus size (implicit in the Knapp-Dehlinger and Kaufman-Cohen



14

approaches) may not be necessary. However, a specific defect

and mechanism of defect-particle interaction has not been

described. Thus, although the basic energetic scheme necessary

to account for martensitic nucleation has been outlined by

(5) (13)
Magee and Christian , a consistent nucleation mechanism

has yet to be developed. A basic question in the martensitic

nucleation problem today is thus one of mechanism, and that is

the issue chosen for this thesis.

While the previous treatments of the martensitic

nucleation mechanism have worked backward from the structure of

a fully-developed martensitic unit with emphasis on explaining

available kinetic information, the approach we will take here

is to develop a nucleation sequence working forward from the

very formation of the embryo and making use of available

structural information. The latter consists primarily of

(a) the known heterogeneous nature of the transformation,

(b) the crystallography of the transformation (particularly

the orientation relations), (c) established concepts of

dislocation mechanics, and (d) hitherto unexplained results

of transmission electron microscopy. We will also attempt

here to deal with the nucleation process in sufficient

generality to encompass many martensitic systems, thereby

permitting the observations on one s.ystem to be incorporated

in an understanding of others. Though we will discuss the

critical step in nucleation for purpose of examining energetic

feasibility, our main concern is actually with the development
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of a general mechanism for the sequential stages in the overall

process of embryo formation without emphasis on any particular

stage as rate-limiting. Various possibilities will be explored

in light of available experimental evidence, but we do not

exclude the possibility that different stages may be rate-

limiting in different systems and under different nucleation

conditions.
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2. BASIC CONCEPTS FOR A GENERAL MECHANISM

Theories of martensitic nucleation which consider the

initial growth stage of a martensitic unit, starting with

essentially the same structure as a fully developed macroscopic

plate, are closely tied to the phenomenological theories (14'15)

of the martensite crystallography, designed to account for the

structure and morphology of the fully grown macroscopic product.

However, if we consider the total nucleation process (that is,

the process which includes the stage during which the first

structure recognizable as the new lattice comes into existence),

the phenomenydogical theories may not be entirely relevant.

The phenomenological theories assume that the inter-

face plane (habit) of a martensitic plate must be "an invariant

plane (i.e. the shape change of the transformation is an

invariant-plane strain). Recognizing that the lattice deforma-

tion which transforms the parent to the product lattice is not

by itself an invariant-plane strain, a lattice-invariant

deformation is added which, in combination with the lattice

deformation*, fulfills the requirement that there be a plane

which is macroscopically invariant. The processes which

accomplish these deformations are envisioned as occurring

simultaneously at a semicoherent interface, and the propagation

of this interface accomplishes the growth of the martensitic

plate.

As in the Bowles and Mackenzie(15) formulation the total lattice
deformation here includes a "Bain strain" relating the two
lattices plus a rigid-body rotation.
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In the case of nucleation, however, these processes

need not occur simultaneously. The strain energy of a macro-

scopic plate is minimized if its interface plane is an invariant

plane. On the other hand, if the shape of the particle at the

earliest stage of nucleation is other than plate-shape, or by

virtue of its small size, if coherency-strain energy is

favored over surface energy, then the invariant-plane condition,

and hence the lattice-invariant deformation, may not be

necessary. But the lattice deformation per se is necessary if

the particle is to be recognizable as a region of new lattice.

Unlike the growth process which has been developed from the

phenomenological theories, the total nucleation process might

then be considered as some sequence of steps arranged in a

logical order. Further, the phenomenological theories, though

specific about the mechanism of the lattice-invariant deforma-

tion, do not consider the actual mechanism of the lattice

deformation. Where the lattice deformation is of such

importance in nucleation, the mechanism of the lattice deforma-

tion may constitute the very essence of the nucleation problem.

It is also apparent that, even in the total transfor-

mation process, there are additional constraints beyond those

involved in the phenomenological theories. The success of the

latter has largely been in demonstrating that, for the majority

of martensitic transformations, a simple lattice-invariant

deformation system can be found which, in combination with a

logical lattice deformation (smallest principal strains), can
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produce the observed total shape change and orientation

relations. However, these theories do not explain why the

observed lattice-invariant shear system is chosen over other

possible systems which could also lead to invariant-plane shape

strains (but differing from observed habit and orientation

relations). These theories do not, therefore, account for such

general observations as the tendency of the orientation

relations to involve parallelism of planes of closest packing.

Still operating within the essential framework of the

phenomexilogical theories, we will here examine other possible

details of the transformation process with particular attention

to the constraints existing at the nucleation stage. It is

hoped that the result will be useful in understanding not only

the nucleation problem, but also those problems dealt with by

the phenomenological theories as well; though constraints in the

growth stage (invariant plane) may not exist at nucleation,

constraints operating at the nucleation stage may conceivably

persist throughout the entire transformation process.

If we now consider the total nucleation process as a

sequence of small steps, a reasonable order for these steps

would be, by analogy with other phase transformations, one which

takes the particle from maximum to minimum coherency. Moreover,

the observed parallelism of closest-packed planes common to the

orientation relations of all martensitic transformations is a

rather special condition. It is improbable that such a condition

would be attained by coincidence after all of the steps which



19

account for the total transformation process, but more likely

would be maintained throughout the total sequence, starting from

the first step. In addition, if we assume that the easiest

(lowest-energy) systensfor the displacements in the lattice

deformation are the same as those for conventional plastic

deformation by slip, it seems probable that the first (most

coherent) step in the nucleation process would be faulting on

the closest-packed planes. Furthermore, there is considerable

evidence that the martensitic transformation is heterogeneously

nucleated(2 ). If we assume that the function of the nucleating

defect is to provide the displacements of the first faulting

step, and consider the subsequent steps to be generated without

benefit of such pre-existing displacements, we can then

explain the observed general orientation relations by recognizing

that the constraint of the surrounding parallel close-packed

planes will tend to make these subsequent processes occur in

such a way as to leave the fault plane unrotated. These

considerations lead to the following concepts which we postulate

as the basis for a general mechanism of martensitic nucleation:

(1) Unlike the growth process developed from the

phenomenological theories, the total nucleation process can be

considered as a sequence of steps which take the particle from

maximum to minimum coherency.

(2) The first nucleation step consists of faulting

on the closest-packed planes; the fault displacement is derived

from an existing defect.
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(3) The subsequent steps in the nucleation process

occur in such a way as to leave the fault plane unrotated.

We will here describe specific mechanisms consistent

with these requirements for each of the major martensitic

transformations occurring in metals. The energetic feasibility

of these mechanisms will be examined in specific alloys under

the conditions for which martensitic nucleation is known to

occur (Chapters 4 to 6). Implications relative to kinetic

behavior will also be -explored (Chapter 7). Having defined the

function of the nucleating defect, possible nucleation sites

will be investigated in light of available experimental

observations (Chapter 8).

In order to treat the energetics of general faulting

mechanisms, we will first establish a procedure for the

calculation of stacking-fault energy consistent with the

underlying concepts of classical nucleation theory.
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3. PRINCIPLES OF STACKING-FAULT ENERGY

There is often a certain skepticism regarding

proposals of out-of-the-ordinary dislocation dissociations.

Consideration of dislocation self-energies and interaction

energies alone are not enough to decide whether a particular

dissociation is possible. Once it is established that these

energies are favorable, the deciding factor is the stacking-

fault energy. To date there appears to be no unified theory

for the calculation of stacking-fault energies in order to

settle such questions. This problem is addressed here not only

because we will be invo-king rather special partial disloca-

tions in the proposed nucleation mechanisms, but also because

the concept of fault energy represents a realistic way of

taking into account the basic concepts of classical nucleation

theory in order to evaluate the energetic feasibility of

nucleation by a general faulting mechanism.

3.1 General Principles

Attempts at thermodynamic calculation of stacking-

fault energy usually treat the fault either as a surface(
1 6 ,1 7 )

or as a small volume with only volume free energy (18,19)

However, if we recognize that a stacking fault represents a

second-phase embryo, we find, consistent with classical

nucleation theory, that the stacking-fault energy consists of

both volume-energy and surface-energy contributions.
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To identify the structure constituted by a particular

fault, we use the following simple rule:

If 1 dislocation per x planes produces a bulk

structure, then m such dislocations of the proper spacing

produces an embryo of that structure n = m-x planes thick.

Figure 1 illustrates the structure of stacking faults

in the fcc lattice. Figure la shows the normal ABC stacking of

the fcc close-packed planes. Figures lc and d indicate the

stacking sequence for intrinsic and extrinsic faults,

respectively. Inasmuch as an intrinsic fault can be formed by

the motion of a single Shockley partial dislocation, while the

motion of such a dislocation on every second plane would produce

a bulk hcp crystal, an intrinsic stacking fault is actually an

hcp embryo, two planes in thickness (n = 2). An extrinsic

fault can be generated by the motion of Shockley partial

dislocations on two consecutive planes. Since the motion of

such dislocations on every plane would produce an fcc twin, we

conclude that an extrinsic fault is a twin embryo, two planes

in thickness (n = 2).

As in classical nucleation theory, the free energy of

such second-phase embryos relative to the perfect lattice can

be expressed in terms of the chemical free-energy difference

between parent and product phases, AGchem, a strain energy, Estr

and a true surface energy, a. The fault energy, y, expressed as

an energy per unit area of fault (in the fault plane), for a

fault n planes in thickness can be written as:
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Y = nP (AGchem + Estr) + 2a(n) (1)

where PA is the density of atoms in a close-packed plane in moles

per unit area, AGchem and Estr are defined here as molar

quantities, and a(n) is the free energy per unit area of the

particle-matrix interface. AGchem and Estr refer to bulk proper-

ties definied in an infinite crystal and so are independent of the

size of the embryo*.

By definition, then, the differences between "bulk"

and "embryo" properties are included in the surface energy, Q,

and we must allow for a possible dependence of a, on the fault

thickness (n), i.e. surface interactions at small separations.

This approach represents a straightforward application of the

basic definition of surface energy established by Gibbs(20)

Unlike other more approximate or qualitative approaches to

fault-energy calculations, Equation (1) is a rigorous statement

of the total energy of the fault.

3.2 Intrinsic Stacking-Fault Energy

Reliable measurements of intrinsic stacking-fault

energy by the extended-node method are now available for many

fcc alloys. When the bulk thermodynamic properties of the fcc

and hcp phases of an alloy are well established, the stacking-

fault energy determinations furnish, by the arguments presented

here, an evaluation of the fcc-hcp coherent surface energy at

Sstr may be shape dependent, but will not depend on size per
se.
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two planes of separation. Lecroisey and Pineau(2 1 ,22) have

measured the intrinsic fault energy as a function of temperature

by the extended-node method in several Fe-Cr-Ni alloys. They

demonstrated that their measurements correspond to equilibrium

fault energies by showing that the observed node configurations

were reversible upon heating and cooling.

The chemical free-energy differences between the fcc

(Y) and hcp (-) phases, AG , were calculated for three of

Lecroisey and Pineau's alloys, using the regular-solution thermo-

dynamics of Breedis and Kaufman(23 ). Values of AGY are available

for iron over the temperature range of interest, while linear

extrapolations of high-temperature data to room temperature were

adopted for pure chromium and nickel(23) A third law correc-

tion for AGE of chromium and nickel below 300 0K was made by

fitting the free-energy curves to Debye free-energy functions*.

The resulting free-energy curves for the three alloys are shown

in Eigure 2.

Measurements (22) of the lattice parameters of the 6

phase in Fe-Cr-Ni alloys indicate that the fcc-hcp transformation

in these alloys is accompanied by a contraction along the hcp

c-axis on the order of 1 percent. A calculation of the

coherency strain energy associated with this contraction for the

extended-node configurations on which the fault-energy

measurements were made reveals that this energy represents less

* Knowing the Debye temperature of one phase, an "effective"
Debye temperature of the other phase was determined from the
measured high-temperature entropy difference. The Debye free-
energy function thus defined was joined to the linear extra-
polation at 3000 K by adjustingcj -.
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than 0.1 percent of the measured fault energy. The contribution

of coherency strain energy can thus be neglected.

Subtracting the volume chemical free-energy contribution

of two planes of hcp from the measured intrinsic stacking-fault

energies leaves (through Equation 1) a value which represents

twice the fcc-hcp coherent surface energy at a separation of two

planes. The stacking-fault energy measurements of Lecroisey and

Pineau and the surface energy values thus obtained are shown in

Figure 3. The surface energies for these three alloys are found

to lie between 10 and 15 ergs/cm 2, and are relatively

insensitive to temperature. Hence, the temperature dependence

of the stacking-fault energy in these alloys arises principally

from the fcc-hcp entropy difference, AS , as suggested by

Lecroisey and Pineau.

Similar results have been obtained for Co and Co-Ni

alloys. Ericson has shown that the temperature dependence

of the intrinsic stacking-fault energy in such alloys can be

correlated with ASfcc+hcp in the same manner, and further,

there is an additional contribution to the fault energy besides

the volume chemical free energy, inasmuch as the fault energy

still has a positive value at T0 , the fcc-hcp equilibrium

temperature. By the formalism developed here, Ericson's

measurements are consistent with fcc-hcp coherent surface

2
energies of 5 - 10 ergs/cm

Similarly, for a variety of other alloys (23,25)

wherever data are available, comparison of measured intrinsic
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fault energies, and bulk thermodynamic data indicate a small

additional positive energy contribution which can be ascribed

to fcc-hcp coherent surface energy.

In the absence of surface adsorption effects, the

fcc-hcp coherent interface is expected to have a positive

surface entropy. The surface energies of Lecroisey and Pineau's

high-purity alloys (Figure 3) should, therefore, decrease with

increasing temperature. The dashed lines in the surface-energy

plots of Figure 3 represent least-squares fits to the data and

indicate that, though the actual magnitude of the slope may not

be statistically significant, there is a consistent decrease

with increasing temperature for all three alloys. The solid

curves show the best fit, using the average slope of the three

2 o
alloys which corresponds to a surface entropy of 0.01 ergs/cm - K

(the curves are flattened at very low temperatures to be

consistent with the Third Law). Adding the calculated volume

free-energy contributions to the surface-energy curves in

Figure 3 yields the calculated fault energies represented by the

solid curves through the measured fault-energy values. A

2 o
coherent surface entropy of 0.01 ergs/cm - K seems reasonable

since the ratio of the surface entropy to surface energy is

then of roughly the same magnitude as that for free surfaces

in metals. The influence of the coherent surface entropy on the

temperature dependence of the fault energy, is, of course,

small in comparison to the large effect of ASY* in these alloys.

However, recent measurements in Co-Ni-Cr alloys (25), where
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ASfcchcp is significantly smaller, indicate a discrepancy

between the measured temperature dependence and that predicted

by ASfcc+hcp alone, this being consistent with a coherent

surface entropy of roughly the same magnitude.

The strong influence of ASfcc+hcp on the observed

temperature dependence of the intrinsic stacking-fault energy,

the consistent evidence for a positive surface energy, and the

indications of a positive surface entropy, all represent

excellent agreement between experiment and theory. Accordingly,

where the bulk fcc-hcp thermodynamics of an alloy are known,

calculation of the intrinsic stacking-fault energy as a function

of temperature requires only one measurement to establish the

appropriate fcc-hcp surface energy. In the absence of such

a measurement, the range of observed surface energy values (5

to 15 ergs/cm ) suggests that the use of a surface energy of

10 ergs/cm2 can pravide an estimate of intrinsic stacking-fault

energy within + 10 ergs/cm2 0

3.3 Extrinsic Stacking-Fault Energy

Treating an extrinsic stacking fault (Figure ld) as a

twin embryo two planes in thickness predicts that the extrinsic

fault energy represents twice the coherent twin-boundary energy

at two planes of separation, since the volume thermodynamic

contribution in this case will be zero in the absence of

* Provided AG fcc-hcp is known within + 40 cal/mole.
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applied stress. Experimental measurement of the extrinsic fault

energy and the energy of isolated coherent twin boundaries in

the same alloy would provide an interesting experimental

determination of the extent of interaction of these interfaces

at two planes of separation.*

3.4 Comparison with the Pair-Wise Central-Force
Interaction Approach

The predictions of the thermodynamic approach to

stacking-fault energy described here are compared with those

obtained using the approximation of pair-wise central-force

interactions in Appendix A. It is concluded that the relations

obtained by the latter approach are not as precise as those of

the more rigorous thermodynamic approach, but may provide some

additional qualitative information beyond that available from

the thermodynamics alone.

* An intrinsic fault, in addition to representing an hcp embryo
two planes thick, can be considered as a twin embryo one plane
in thickness. Where measured intrinsic and extrinsic fault
energies are generally not equal, there is clearly a signifi-
cant interaction of the coherent twin boundaries at one plane
of separation. Treating an intrinsic fault in this manner is
not a fruitful approach for fault-energy calculation.
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4. THE FCC+HCP TRANSFORMATION

The fcc+hcp martensitic transformation is the

simplest case for examining the concept of nucleation by a

faulting mechanism, in that the entire transformation can be

achieved by simple faulting. In other words, a bulk hcp crystal

can be created from fcc merely by the passage of a Shockley

partial dislocation on every second close-packed plane.

Moreover, the observation of such partial dislocations in the

fcc-hcp martensitic interface(26), as well as the direct

observation of splitting of lattice dislocations upon cooling

into the transformation region (27), support the likelihood that

the transformation actually occurs by this mechanism.

4.1 Basic Energetics

The measured values of the fcc-hcp coherent surface

energy at two planes of separation are not very different from

that expected for isolated fcc-hcp coherent interfaces,

suggesting that the surface interaction beyond two planes of

separation is not large. This provides a basis for adopting

the approximation of classical nucleation theory that the

surface energy is independent of particle size.

We can now examine the possibility of spontaneous

nucleation by faulting. Equation (1) predicts that, under

conditions where the volume-energy change, AGchem + E str, is

negative, the fault energy, y, decreases with increasing fault
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thickness, n. The volume-energy change will be negative when

the magnitude of the chemical driving force, AG chem, is greater

than the strain energy, E str; this will occur below T coh, the

equilibrium temperature for the parent and ooherent-product

structures. The fault thickness can be increased by "overlap"*

of partial dislocations, and so we can consider the simultaneous

dissociation of a group of dislocations rather than the

dissociation of a single dislocation. The simplest configura-

tion for this purpose is a finite symmetric tilt-boundary

segment (or "superdislocation") where the dislocations are of

the proper spacing. For fcc*hcp nucleation, such a defect would

consist of a tilt boundary segment where the dislocations are

spaced two planes apart. A distribution of sizes of such defects

can be expected to exist in a crystal. Figure 4 is a schematic

representation of the expected temperature dependence of the

fault energies associated with the dissociation of defects of

various thicknesses. At Tcoh , all the faults have the energy,

2a, but the energies diverge at lower temperatures because the

energy of the thicker faults decreases more rapidly. Thus,

under conditions where the intrinsic stacking-fault energy (n=2)

is still positive, the energy of thicker faults can be zero or

negative.

The dissociation of fcc lattice dislocations into

Shockley partial dislocations lowers the total strain energy of

* "Overlap" here refers to the overlapping of the faults
produced by the partial dislocations.



- - - - - - - -_

Tcoh

2o-

y

0

Ms

n3 >n2>n,

THE FAULTSCHEMATIC REPRESENTATION OF THE TEMPERATURE DEPENDENCE OF

ENERGYj -Y, FOR THREE FAULT THICKNESSESi Np, N 2 AND N3.

FIGURE 4.



35

the dislocations (Frank criterion) and the partials repel each

other. This is also true, in general, for the dissociations

to be considered in subsequent chapters. In considering a

finite tilt-boundary segment containing m dislocations of

Burgers vector b dissociating into two finite boundary segments

of Burgers vectors b and b2 , the elastic interaction of the two

segments can be approximated by treating them as superdisloca-

tions of Burgers vectors mb and mb For parallel dislocations

of infinite length and line sense , the energy (per unit length

of dislocation) of moving such superdislocations from a

separation r0 to r is given by (2 8 )

E_(r) - E_(r0 ) = - (b * )(b 2'-) +

(b1 x) (b 2 X) 1  r
1-u ln r (2)

When the interaction of dislocations of Burgers vectors b and

b2 is repulsive, the interaction of the superdislocations mbI

and mb2 is also repulsive.

At small separations, the interaction of the two

finite boundary segments will not be as severe as that of the

superdislocation analog but will still be repulsive in nature.

Thus, the total dislocation energy will decrease monotonically

with increasing separation. This dislocation energy actually

represents the surface energy of the end interfaces bounding a

thin second-phase embryo. The total free energy per unit
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length of such an embryo formed by the dissociation of such

dislocations of infinite length is given by:

G(r) = E,(r) + y-r . (3)

Since the dislocation interaction is repulsive and E1 (r) decreases

monotonically with r, the restraining force necessary to provide

a stable configuration (separation) of the partial dislocations

arises from a positive stacking-fault energy.* On the other

hand, if the stacking-fault energy is zero or negative, the

defect will be unstable.

Figure 5 is a schematic tepresentation of the total

free energy of the system as a function of the separation, r,

of the partial dislocations bounding a faulted region. When

the fault energy is positive, there is an equilibrium separation,

r eq, of the partial dislocations where the dislocation repulsion

is balanced by the "attractive" force associated with the fault

energy. Lowering the temperature to where the fault energy is

zero, the only force acting is the dislocation repulsion, and

the equilibrium separation becomes infinite. Lowering the

temperature further, the fault energy is negative, and provides

an additional force pushing the dislocations apart. Under such

conditions, the actual details of the short-range repulsive

dislocation interaction is relatively unimportant since, when

the fault energy is negative, the defect is clearly unstable

* In assuming dislocations of infinite length, line-tension
effects may be ignored for the time being.
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with respect to the formation of a thin martensitic embryo.

Once the embryo can attain a large size in the plane of

faulting, there is a reasonable chance of thickening by

incorporating other existing dislocations on parallel slip

planes (or possibly' encountering pinned screw dislocations

crossing the plane which can thicken the particle by a pole

mechanism). We here regard the formation of the initial thin

embryo as "nucleation."

As indicated in Figure 5, when y is zero or negative

there is no barrier to nucleation in the proposed model. Such

nucleation by the dissociation of a group of dislocations of the

proper spacing (normal to the fault plane) is thus an athermal

process. The overall energy scheme represented by Figure 5 is

similar to that suggested by Magee(5) and by Christian(13) for

martensitic nucleation from a defect. In terms of classical

nucleation theory, the situation considered here can be regarded

as heterogeneous nucleation on an existing interface where the

total energy of the two particle-matrix interfaces produced is

lower than that of the original interface they replace. As

long as the remaining terms contributing to the total particle

energy (here represented by the fault energy) do not increase

with particle size (y<O), the particle is unstable and there is

no barrier to nucleation. We will later treat the possibility

that a force provided by a somewhat negative fault energy is

required to drive the partial dislocations to large separations.

But for now, we will let y=O represent the critical condition

for spontaneous nucleation from such a defect.
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Given that there will be a distribution of sizes of

the defects under consideration here, the Ms temperature will

be determined by the largest (most potent) defect which is

available in sufficient numbers to produce detectable transfor-

mation. We here define the size of the defect by the parameter

n, the number of atomic planes in the thickness dimension of

the fault (embryo) produced by the dissociation of the defect.

The Ms temperature thus determined is indicated in Figure 4

where n3 corresponds to the size or potency of the existing

defect that defines M . We next compute the size of the defect

necessary to account for nucleation under the known conditions

for the fcc-*hcp martensitic transformation in Fe-Cr-Ni alloys.

4.2 Energetics of the Transformation in Fe-Cr-Ni Alloys

4.2.1 Surface Energy

Two of the alloys studied by Lecroisey and Pineau(
2 1 ,2 2 )

and discussed in Chapter 3 displayed a spontaneous E martensitic

transformation on cooling. The Ms temperatures for this trans-

formation in the alloys Fel6Crl3Ni and Fel8Crl2Ni were found to

be -950C and -65 0 C, respectively. Referring to Figure 2,

AGY+S at Ms for the two alloys is -34 cal/mole and -30 cal/mole,

respectively. Assuming surface interaction to be small beyond

two planes of separation (as previously justified), we can

obtain the coherent fcc-hcp surface energy for these alloys

from Figure 3, giving a values of 10 ergs/cm2 for Fel6Crl3Ni

and 12 ergs/cm2 for Fel8Crl2Ni.
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4.2.2 Coherency Strain Energy

The coherency strain energy associated with the %l%

contraction normal to the hcp basal plane for the "stress-free"

fcc-hcp transformation in these alloys can be neglected for the

extended-node configurations on which the intrinsic stacking-

fault energy measurements were made, since this configuration

is a shape which tends to minimize the coherency-strain energy.

However, at the critical stage of nucleation, it is expected

that the shape of the particle will not be one which minimizes

the strain energy, inasmuch as the shape should be established,

rather arbitrarily, by the geometry of the original defect.

Assuming isotropic elasticity, and a shear modulus,

p, and Poisson's ratio, v, for both particle and matrix, the

strain energy per unit volume, E , of a coherent particle in a

matrix where the stress-free transformation strain of the

particle is a pure dilatation, -- , is given by Eshelby 2 9 ) as:v

2(1 + v) (Av) 2
v 9(1- v) v v

This result is independent of shape. Eshelby (29) also showed

that the strain energy per unit volume of a particle whose

stress-free transformation strain is a pure shear, c 13 31'

is shape dependent and is given by:

E v 2r1p (-1 3 ) 
2 (5)
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where 2p(s 1 3 ) 2 is the energy per unit volume necessary to pull

the particle back to its original shape in the absence of the

matrix or, alternatively, the strain energy per unit volume of

the particle if it transformed in a perfectly rigid matrix.

The n factor is a shape-dependent parameter which is the fraction

to which the total energy per unit particle volume is reduced by

accommodation of the transformation strains in the matrix. For

a thin plate in the plane of shear, q approaches zero. The

accommodation factor for a sphere is given by (29)

7 -5v (6)
15(1 v)

and for a rod (29) = 1/2. For v - 1/3 the values for a sphere

and a rod turn out to be very nearly the same.

If we consider nucleation by dissociation of

infinitely-long dislocations in a tilt-boundary segment (Figure

6a), the shape of the particle in the early stages of dissocia-

tion will be rod-like. However, if the dissociation occurs by

the bowing out of a finite length of such a segment where the

spacing of the pinning points, k, is comparable to the segment

dimension, n (Figure 6b), the nucleating shape can be more

nearly spherical. In view of the fact that the accommodation

factors for these two shapes are nearly identical, we will

assume a spherical shape for purposes of strain-energy estimates.

The spherical shape favors some additional simplifica-

tions. For spherical symmetry, the strain energy is independent
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FIGURE 6. POSSIBLE PARTICLE SHAPES AT THE CRITICAL STAGE OF NUCLEATION FROM

THE TILT-BOUNDARY SEGMENT, (A) ROD SHAPE, CORRESPONDING TO

DISSOCIATION OF A GROUP OF INFINITE DISLOCATIONS, (B) SPHERICAL

SHAPE, CORRESPONDING TO THE BOWING OUT OF PINNED DISLOCATIONS

WITH SPACING OF PINNING POINTS, , COMPARABLE TO BOUNDARY

SEGMENT HEIGHT, N.
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of the orientation of the shear. Hence, we assume that, for a

complex shear or deviatoric strain, the accommodation factor

will be about the same as for the simple shear (Equation 6)

and the total strain energy per unit particle volume can be

obtained by replacing (E13) 2 in Equation (5) with the second

tensor invariant (30) :

1 2 2 2 2 2 2
[- (E1 1 - 22 ) + (C22 33 + (C33 11) 1 + 12 + C23 + 613'

The procedure adopted here and in subsequent chapters to estimate

the coherency-strain energy at the earliest stages of nucleation

is to divide the transformation strains into dilatational and

deviatoric components. The strain energy associated with the

deviatoric component is to be evaluated by the procedure just

outlined, while the dilatational strain-energy component can be

determined through Equation (4).

To determine the transformation strains relevent to

the coherency strain energy in the type of heterogeneous nuclea-

tion we are considering here, we must subtract from the total

stress-free transformati-on strain matrix describing the total

transformation process those strains which are accomplished by

the motion of the existing dislocations. The total stress-free

strain describing the fcc-hcp transformation in these Fe-Cr-Ni

alloys consists of a shear c13 " :31 equal in magnitude to one-

half an~fcc twinning shear, and a small contraction c33 normal

to the basal plane of approximately 1%. If we were to consider
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fully coherent nucleation without benefit of an existing defect,

all these strains would contribute to the coherency strain

energy. However, in the defect-assisted nucleation we are

treating here, the 13 = 31 shear strain does not appear in

the coherency strain energy contributing to the fault energy, y,

since the energy associated with this shear is in the form of

interfacial energy associated with the existing dislocation

array and is already accommodated in the matrix.

Accordingly the stress-free transformation strains

appropriate to the coherency strain energy (per unit volume)

simply reduces in this case to 33. Taking e33 =-.01 and using

11 2 (22)
an Fe-Cr-Ni austenite shear modulus of 7.4 x 10 dynes/cm ,

we obtain a deviatoric strain-energy component of 4.45 cal/mole

and a dilatational component of 5.56 cal/mole to give a total

coherency strain energy of 10 cal/mole at the early stages of

nucleation by the proposed mechanism.

4.2.3 The Critical Defect

The size of the defect necessary to account for

spontaneous nucleation of c martensite at the observed Ms

temperatures for these alloys according to the considerations

represented in Figure 5 can now be calculated by setting y=O

in Equation (1) and rearranging:

2a (7)
A (AGchem Estr *
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Substituting the derived quantities in Equation (7), we obtain

defect sizes of n=7 for Fel6Crl3Ni and n=lQ for Fel8Crl2Ni.

Since each partial dislocation produces two atomic planes of

hcp, the existing defect which is responsible for the Ms

temperature consists of 4 or 5 dislocations.

As an approximate estimate of the probability of such

dislocation groups being available in sufficient abundance

to account for observable transformation, we treat the probability

of such groups existing as segments of larger inhomogeneous tilt

boundaries. For a simple tilt boundary in which a fraction, f,

of the slip planes crossing the boundary are randomly* occupied

by dislocations, the probability that any m planes will be

simultaneously occupied by dislocations is fm

If we consider all the dislocations in an annealed

3
polycrystal with a dislocation density p(cm/cm3) to be arranged

as boundaries of subgrains of average diameter D, the length of

dislocations per unit boundary area (or number per unit length)

will be 1/3 pD. The fraction of slip planes in the boundaries

occupied by dislocations is then f = 1/3 pDd, where d is the

interplanar spacing. The probability of any arbitrary group of

m
m planes being occupied by dislocations is thus (1/3 pDd)

The number of groups of m dislocations of a given configuration

* Dislocations in isolated finite tilt boundaries or in such
segments of inhomogeneous tilt boundaries will experience
climb forces. The assumption of a random distribution of
the dislocations in such boundaries carries with it the
assumption of restricted dislocation climb.
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per unit length of boundary (or the length of such groups per

unit boundary area) is given by the product of this probability

and the number of possible positions of such groups per unit

boundary length, d . The number per area of such groups of

length D is then l/Dd (1/3 pDd)m and the number per unit volume

of sample, N , is given by

N = ( pDd)m-1 (8)

Taking d = 2R, D = 10p and p = 109 cm/cm3 (including

grain boundary dislocations) as representative of annealed

polycrystalline austenites, the number per unit volume of

groups of 4 dislocations of the appropriate spacing is 106

3
per cm . This agrees well with the expected density of initial

martensitic nucleation sites which is generally taken to be

5 7 3between 10 to 10 per cm on the basis of small particle

experiments.(5)

The rapid variation of N with m indicated by

Equation (8) is also consistent with the observed sharpness of

the Ms temperature. The number per volume of more potent

2 3nucleation sites involving 6 dislocations is only 10 per cm .

Thus we see that the probability of a group of

dislocations being arranged with a particular spacing decreases

rapidly with the number of dislocations required for the

nucleation event. The idea that 4 or 5 dislocations could

happen to be spaced by two planes is sufficiently probable to

be realistic, and at the same time sufficiently improbable (in
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terms of the expected number of such defects per unit volume

of parent phase) to account for the known sparseness of the

initial nucleation sites which trigger the martensitic

transformation.
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5. THE FCC-+BCC TRANSFORMATION

We will now demonstrate that the fcc*bcc lattice

change, despite an increased complexity of the atom motions,

can also be accomplished by a faulting mechanism and treated

with the same basic energetic considerations developed for the

fcc +hcp transformation.

5.1 Mechanism

To consider the nucleation of the fcc+bcc martensitic

transformation, we first develop a mechanism which is

consistent with the concepts postulated in Chapter 2. A

convenient place to start is the "double shear" mechanism

developed by Bogers and Burgers (31) for the fcc-*bcc conversion

of a hard-sphere structure.

Figure 7a and d* illustrates an: fcc packing of

spheres lying in {lll}fcc planes. Before dealing with the

transition to a bcc structure, it is instructive to visualize

the configuration of spheres after a regular fcc twinning

shear, shown in Figure 7c and f, wherein successive layers

parallel to the close-packed plane PVQ have shifted by
afcc <112> in the direction QT perpendicular to PV. The result

6

of this twinning shear is that the shear plane PVQ and its

* Figure 7d-f are sections through the hard-sphere model in
Figure 7a-c, corresponding to {l10}fcc planes. Such planes
are normal to the shear plane PVQ and contain both the shear
direction QT and the dilatational direction.
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conjugate plane PVS remain as close-packed {lll}fcc planes,

whereas the other two close-packed planes QSV and QSP

become {l00}fcc planes. Thus, the 600 angle denoted in Figure 7a

is enlarged to 900 in Figure 7c.

If we now trace the paths taken by the hard spheres

during the transition from Figure 7a and d to 7c and f, each

sphere must ride up to a saddle-point position between the

initial and final states. Hence, a dilatational component

normal to the shear plane is involved; this expansion amounts

to 5.4 percent at one-third of the twinning shear, afcc <112>,
18

as shown in Figure 7b and e. Figure 7b further indicates that

the shear plane PVQ and its conjugate plane PVS are still

dimensionally unchanged, but the planes QSV and QSP are distorted

in such a way that the 600 angle in Figure 7a is enlarged to

700 32' in Figure 7b, thus attaining the geometry of a {110}

plane. The stacking sequence of these planes is not correct

for a true bcc structure, but the latter can be obtained if

successive planes (parallel to QSV or QSP) are sheared according

to Figure 8. Referred to the bcc structure, this shear

abcc<10onecplnr
corresponds to a displacement of 8 <110> on each plane, or
afcc <112> referred to the-fcc structure. Again, because of
16

the hard-sphere packing, there is a dilatation (3.6%) normal

to the shear plane. Since each of the above shears entails a

dilatational component, they are more accurately described as

invariant-plane strains. By the Bogers-Burgers model, then, a

bcc structure can be generated from an fcc structure by two
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invariant-plane strains; for convenience, we will still refer to

these deformations as "shears."

The first shear of the Bogers-Burgers model must

involve displacements on each <111>fcc plane of af <112CC, the

latter being one-third the Burgers vector of a Shockley partial

dislocation, 6 <112>. Bogers and Burgers suggest that such

partial displacements might occur by the "spreading" of a

Shockley partial dislocation over a number of successive <lll>fcc

planes. The concept is not difficult to imagine because, in

the conventional glide motion of an afcc <112> partial disloca-

tion, the atoms pass through appropriate positions for the first

Bogers-Burgers shear. Under thermodynamic conditions where

these positions are energetically favorable, the atoms may

tend to stay in these positions (Figures 7b and e)rather than

continue through to the full Burgers-vector twinning displace-

ment of afcc <112> (Figure 7c and f). However, the full

Burgers vector can be conserved if the atoms in an adjacent

plane are concurrently "dragged along" to the same type of

position. The concept is illustrated in Figure lb. Since

the effect of a Shockley partial displacement is to move atoms

from A to B positions (and B to C, etc.) we can denote the

positions obtained by dividing this displacement into thirds

as A' and A" (also B' and B", etc.). The Shockley partial

displacement which produced the intrinsic stacking fault in

Figure lc has moved the atoms in the plane immediately above

the slip plane from B to C positions. In this process, the

atoms moved through B" positions. If the intermediate
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configuration is energetically favorable, this plane of atoms may

stay in the B" position, as in Figure lb; the Burgers vector

is conserved if the A plane below is "dragged" to A' while

the planes above move through the full Shockley partial

displacement. In this manner, a single Shockley partial

dislocation can produce a fault with the structure of the

first Bogers-Burgers shear configuration, three planes in

thickness. Such a fault is actually bounded by a fcc<2>18<12

dislocations on each plane, and we can say the original

Shockley partial dislocation has "spread" its core over three

planes. Just as the fcc-hcp lattice deformation can be

derived from a Shockley partial dislocation spaced every

second plane, the first shear of the Bogers-Burgers fcc-bcc

mechanism can thus be derived from Shockley partial disloca-

tions spaced three planes apart.

If we now examine the second shear of the Bogers-

Burgers mechanism occurring in a crystal lattice, we find

that it must be modified to conform to our postulate that the

initial fault plane will be left unrotated. Figure 9

represents the plane Q'V'S' of Figure 7b on which a simple

shear by the displacement "a" (as in Figure 8) on each plane

is required to convert the structure to bcc. The dashed line

XY is parallel to Q'V'- and thus represents the line of

intersection of the two shear planes. The component of "a"

which is normal to XY will rotate the initial shear plane PVQ
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FIGURE 9. {11O} BCC-TYPE PLANE SHOWING ALTERNATE SHEAR
DISPLACEMENTS FOR CONVERTING THE STRUCTURE

PRODUCED BY THE FIRST BOGERS-BURGERS SHEAR TO

A BCC STRUCTURE. XY REPRESENTS THE LINE OF
INTERSECTION OF THE TWO BOGERS-BURGERS SHEAR

PLANES. SEVEN "A" DISPLACEMENTS FOLLOWED BY

A "B+C" DISPLACEMENT PRODUCES NO NET ROTATION

ABOUT XY.
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about XY. This rotation will be opposed by the constraint of

the close-packed planes of the matrix surrounding (parallel to)

the faulted region. The rotation can be.eliminated if every

eighth Q'V'S' plane moves to a bcc position by the displacement

"b + c" of Figure 9 instead of "a". The component of "b + c"

normal to XY is seven times that of "a" and is oppositely

directed. Thus, a displacement of "a" for seven planes

followed by a "b + c" displacement* every eighthplane (on the

average) can convert the configuration of the first Bogers-

Burgers shear to bcc without a rotation of the initial shear

(fault) plane. The displacement "c" is of the same magnitude

as "a" ( b <110>) but is of opposite sign. The "b"

displacement is bcc <211> referred to the bcc lattice; referred

to the fcc lattice, it represents a Shockley partial displace-

ment. When these displacements occur in the faulted region

left by the motion of the partial dislocations which

accomplish the first Bogers-Burgers shear, they will leave the

corresponding partial dislocations in the particle-matrix

interface.

The proposed mechanism of fcc-*bcc martensitic

nucleation is outlined in Figure 10. Figure 10a represents
a fcc

an 2 [110] screw dislocation lying normal to the plane

of the diagram ([110] here corresponds to QV in Figure 7).

* The same result can be obtained by a homogeneous shear of
"a" per plane with a displacement of a total lattice
vector (-a+b+c) every eighth plane. However, such a
description involves unnecessary additional atom motions.
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FIGURE 10. SEQUENCE OF STEPS FOR THE FORMATION OF A SEMICOHERENT BCC EMBRYO

FROM AN FCC LATTICE DISLOCATION. (A) EXISTING AFCC/2 [do]
SCREW DISLOCATION. (B) DISSOCIATION OF DISLOCATION WITH SPREADING

OF CORES OVER CONSECUTIVE PLANES TO PRODUCE A FAULT WITH THE

STRUCTURE OF THE FIRST BOGERS-BURGERS SHEAR CONFIGURATION.
(C) SPONTANEOUS RELAXATION OF FAULT OF (B) TO BCC STRUCTURE

PRODUCING NEW PARTIAL DISLOCATIONS IN THE FAULT INTERFACE.

(a)

(b)

(c)

11



57

Dissociating on the (111) plane (corresponding to PVQ in

Figure 7) and "spreading" over three planes, this dislocation
aa fcc

can produce three 18 [121] and three a8 [211] partial

dislocations as in Figure 10b. The fault produced by this

operation alone has the structure of the first Bogers-Burgers

shear configuration. Thicker faults can be produced by the

simultaneous dissociation of an fcc [110] dislocation every

three planes. From this structure, atoms can slide to bcc

positions by the modified second shear mechanism just described.

This shear occurs on (1 1 1 )fcc = (0 1 1 )bcc (corresponding to QVS

in Figure 7), and will produce an interfacial structure (Figure

10c) consisting of seven 8 [011] partial dislocations

followed by an abcc [011] partial dislocation and an [112]8 6

Shockley partial dislocation every eighth plane. In this way,

a semicoherent bcc martensitic embryo is produced in the

Kurdjumov-Sachs orientation:

(111) fcc (0)bcc

[110] fcc [1 bcc*

Accordingly, we are proposing a model for the fcc+bcc

lattice deformation where the transformation strains are princi-

pally derived from the shears associated with two sets of partial

dislocations; one set is derived from an existing defect,

while the other is spontaneously generated. Additional

strains necessary to produce a perfect bcc structure are

obtained from dilatations (normal to the shear plane) which



58

accompany these partial shears, owing to the "hard-sphere"

nature of the atoms. To arrive at the correct lattice parameter

of the product phase, however, a uniform dilatation must be

superimposed. Inasmuch as the semicoherent embryo

represented in Figure 10c still has a high degree of coherency

with the matrix, it will not be able to relax completely to

its equilibrium structure at this' early stage. There is no

"invariant line" or "invariant plane"; these are established

in later stages of the total sequence which leads the particle

from maximum to minimum coherency (and hence decreasing strain

energy). The conditions which may determine how the "invariant

line" and "invariant plane" are established in these later

stages (thus influencing macroscopic morphology) are examined

in Appendix B. We will now consider-the-eneigetic feasibility

of the formation of a semicoherent bcc nucleus by the mechanism

just discussed.

5.2 Energetics of the fcc-cc Lattice-Deformation

To examine the energetics of the proposed nucleation

mechanism, we will deal with the specific case of the fcc->-bcc

martensitic transformation in Fe30Ni, since the conditions under

which martensitic nucleation occurs in this alloy are well

established. We first consider the energetic feasibility of

the fault produced by the first Boger-Burgers shear alone

(represented in Figures 10b and lb) existing in significant

sizes. The distorted structures of such a fault is midway between
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fcc and bcc since it can be visualized as fcc which has been

sheared 24 percent along [121] on (111) or bcc which has been

sheared 25 percent along [011] on (011). Hence, the structure

represents a specific model for the old "strain embryo" concept

so often discussed in connection with martensitic nucleation.

The view is generally held that such a structure is of too

(1,32)
high a strain energy to exist in any significant size

Where the chemical driving force at M for Fe30Ni is about 300

cal/mole, the strain energy of such a defect, regarding it as

distorted bcc, must be approximately of this magnitude or less

for the structure to exist in appreciable size. The isotropic

elastic constants of Fe30Ni martensite at Ms have been measured

by Goldman and Robertson(3 3 ). Assuming the same elastic

anisotropy as for pure iron, the appropriate modulus for

[011] (011) shear is 4 x 1011 dyne/cm2 (34); and if all the

strain is confined to the particle, linear anisotropic

elasticity predicts a strain energy of 2100 cal/mole. If we

consider an elastically relaxed form of the particle such that

some of the distortion is accommodated in the matrix, an

isotropic linear elastic calculation using the shape considera-

tions discussed in Chapter 4 can lower the energy by as much

as 1/2; but this is still much too high in relation to the

chemical driving force.

A shear strain of 25 percent is large enough that

nonlinear elastic effects might be substantial. To estimate

the magnitude of such effects, the strain energy of the unrelaxed
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configuration of the first Bogers-Burgers shear (referred to

the bcc lattice) was computed using various interatomic

potentials available for pure iron. These calculations are

discussed in detail in Appendix C. The results indicate that

the strain energy is not significantly different from that

predicted by linear elasticity. Thus, it appears that the

strain energy of this configuration, even in some elastically

relaxed form, will not be much less than 1000 cal/mole. With

a chemical driving force of 300 cal/mole, this corresponds

(through Equation (1)) to a fault energy for the fault of

Figures lb and 10b of roughly +350 ergs/cm2 per plane of fault.

Therefore, it is expected that the motion of the partial

dislocations which produce the first Bogers-Burgers shear

configuration will only occur under conditions where the

fault structure thus produced can move spontaneously to the

configuration of Figure 10c immediately as the dislocations

pass. As discussed further in Appendix C, the high-energy

configuration of Figure 10b then need only exist at the cores

of the partial dislocations which make up the interfaces

that bound the ends of the fault (embryo).

The consideration of such fcc-bcc intermediate

configurations in Appendix C indicates that the high-energy

configuration of the first Bogers-Burgers shear should be

unstable and an unconstrained particle in this configuration

would move spontaneously to bcc without barrier. For a

constrained particle in a matrix, however, spontaneous
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relaxation to the configuration of Figure 10c can occur when

the fault energy of this configuration is zero or negative.

We now estimate the energy of this complex fault.

5.2.1 Surface Energy of the Semicoherent bcc Embryo

The surface energy of the fault in Figure 10c arises

principally from the partial dislocations produced in the

interface. Picturing these dislocations as lying along [1 1 0 1 fcc'

the Burgers vectors can be separated into screw and edge

components* and the energies of these components evaluated

screw
separately. The energy per unit area, Y , of a single set

of screw dislocations of Burgers vector magnitude b and spacing

D, can be computed as one half the energy of forming two such

arrays of opposite sign and moving them to infinite separation;

the energy is set to zero at a separation of r = b/a, where a,

is the core-energy cut-off parameter designed to take core

energy into account in the integration. 28) Integrating from

r to w gives an infinite energy for such an array because its

stress field produces a constant strain at large distances.

However, at an interphase interface where such an array is

matching two structures, this constant strain puts atoms in

equilibrium positions with no associated strain energy. Thus,

for the case of a single set of screw dislocations matching two

structures at an interface, a constant stress term, $, must be

added to the normal dislocation stress field, o (x), as in the

* These components are best seen in Figure 9 where the vectors
indicated represent the Burgers vectors in question and XY
the dislocation line.
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energy calculation for a misfit edge-dislocation interface by

Brooks(35 ). The energy of such a boundary is then given by:

00

Y screw - y + f] bdx2D r [yz (9)

Substituting the appropriate expression (28) ,b coth( - 1],

for a z(x) + $ and integrating, we obtain,

screw _pb 2 ) - ln rrsinh ( ) . (10)

Goldman and Robertson(33) have measured the isotropic shear

moduli of the fcc and bcc phases of Fe30Ni at M at 6.5 x 1011

dynes/cm2 and 5.5 x 10 dyne/cm 2, respectively. Taking particle

and matrix to be in parallel, we use an "effective modulus" of

11 2
p = 6 x 10 dyne/cm2. Approximating the screw component of the

dislocation interface of Figure 10c as a homogeneous array

consisting of one dislocation per plane with the appropriate

Burgers vector to produce the required overall displacement.,

we obtain a screw-component contribution to the interfacial energy

2of 27 ergs/cm

The edge component of the interfacial dislocation

array can be considered as two sets of dislocations: one

consisting of a small partial dislocation on each plane, and

the other consisting of a larger oppositely directed dislocation

every eighth plane. Where the function of the second set is to

cancel the effect of the first (so that there is no rotation of

the fault plane), the array represents two skewed tilt boundaries
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stabilized by the cancellation of their (long-range) stress

fields. An upper limit of their energy can be estimated by

regarding them as two separate symmetric tilt boundaries.

(28)-
The energy of a symmetric tilt boundary is given by (

wege-2 rr Trr 7rr0
edge p_ 2 ,)D - coth Dr- ln (2 sinh -)i- 47rf(l-v)D [D Di

.. . . (11)

The energy of the two sets of edge dislocations then comes out

2 2
to be 50 ergs/cm and 236 ergs/cm , respectively, giving a total

edge-component contribution of 286 ergs/cm2 to the interfacial

energy.

However, since the tendency of the two sets of

dislocations in the interface is to cancel each other, there

will be a strong interaction between them. A better estimate

might be simply to sum the core energies of the dislocations.
2

pib (28)Taking a core energy per unit length of 4 b gives

2 2
energies of 42 ergs/cm and 180 ergs/cm , or a total

edge-component contribution of 222 ergs/cm2

Overlap of the cores of the two sets of edge

dislocations might lower their energy contribution even

further. If we allow the second set of edge dislocations to

"spread" their cores over consecutive planes to produce a

continuous distribution, the basic structure of the embryo is

unaffected.* In this case there would be a total cancellation

* In considering the structure of a martensitic interface,
Frank( 3 6 ) suggests that his interfacial screw dislocations
might spread their cores in this manner.
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of the two sets of edge dislocations and their energy

contribution would be zero. Allowing for some extent of core

overlap, therefore, we will say that the contribution of the

edge component of the interfacial dislocation array is between

2
zero and 222 ergs/am

Summing up the screw- and edge-component contributions

to the energy of the interface dislocation array and adding an

estimate of 20 ergs/cm2 as the contribution of the fcc-bcc

coherent surface energy, we obtain a total surface energy, a,

for the fault of Figure 10c of between 50 and 270 ergs/cm2

We will adopt a value of a = 150 ergs/cm2 for further

calculations; the surface energy of a fully developed

2
martensite interface is generally estimated as %200 ergs/cm ,

while the structure considered here represents a more coherent

form.

5.2.2 Coherency Strain Energy

As in Chapter 4 we obtain the transformation strains

relevent to the coherency strain-energy contribution to the

fault energy, y,c the semicoherent embryo by subtracting from

the total stress-free transformation strain matrix the shear

strain in the fault plane which can be derived from the existing

defect and which is therefore already accommodated in the form

of existing (dislocation) interfacial energy. In addition,

shear displacements associated with the partial dislocations

in the (1 1 1 )fcc interfaces which are produced by the spontaneous
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motions of the atoms within the fault from unstable to stable

positions are also accommodated in the form of the interfacial

energy just calculated. Hence, the volume coherency strain

energy here arises principally from the dilatations which

must accompany the shear displacements of the partial

dislocations owing to the hard-sphere nature of the atoms in

the model. A 5.4 percent expansion normal to the fault plane

is associated with the first shear, and there is a 3.6 percent

expansion normal to the plane of the second shear. Since the

"hard-sphere" model produces a bcc structure with too large a

lattice parameter, a uniform contraction of 2.3 percent in all

directions must be superimposed to produce the final structure.

Referring these strains to the same coordinate system, where

x is [li0] fcc' the close-packed direction common to the two

shear planes, and x 3 is [1 1 1 fcc' the normal to the fault

T
plane, gives the following result for E. the remaining

"stress-free" transformation strains:

0 0 0 0 0 0 -. 023 0 0 .023 0 0

0 0 0 + 0 .032 .011 + 0 -. 023 0 0 .009 .011 (12)

L 0 .054 0 .011 .004 0 0 -.023 0 .011 .035

With the procedure outlined in Chapter 4 and again using

p = 6 x 10 dynes/cm 2, we obtain deviatoric and dilatational

strain energies of 105 cal/mole and 18 cal/mole, respectively.

The total volume coherency-strain energy, E str, is thus 123

cal/mole. In view of the fact that this energy is significantly
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less than the magnitude of the chemical driving force of 300

cal/mole at Ms, the fault energy will decrease with increasing

fault thickness.*

5.2.3 The Critical Defect

To examine the energetic feasibility of the proposed

mechanism of formation of a semicoherent bcc embryo, we now

assume that the formation of this embryo fault represents the

critical step in fcc-bcc nucleation as in fcc-hcp nucleation.

Following the same energetic considerations represented in

Figure 5 of Chapter 4, we first take the condition that y = 0

for the most potent defect (available in detectable quantity)

to represent the condition which defines the M5 temperature.

(This condition of y = 0 will be relaxed in Chapter 7.)

Substitution of the estimates of a, Estr, and AGchem

in Equation (7) results in a critical defect size for the

spontaneous formation of the proposed nucleus at M of n = 13.5.

Since three planes of fault can be derived from one lattice

dislocation, the nucleating defect again corresponds to 4 to 5

dislocations of the proper spacing. The similarity of this

result with that obtained for the fcc-hcp transformation is note-

worthy in terms of the generality of the proposed mechanism of

nucleation by faulting.

* Since the surface energy here arises principally from the
interfacial dislocations, the extent of interaction between
the two opposite surfaces can be calculated. Such a calcula-
tion reveals that the range of interaction is on the order of
the dislocation spacing in the interface. Surface interaction
is, therefore, negligible for the fault thicknesses we are
considering.
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The long experimental search for martensitic embryos

in Fe-Ni austenities by electron microscopy has provided numerous

hitherto unexplained observations(5,37,38) which support the

proposed mechanism of initial nucleation by faulting on close-

packed planes. Such a fault on (1 1 1 ) cc reported by Magee(5 )

is shown in Figure 11. The fault was observed in an Fe33.lNi

foil which had been partially transformed to martensite. Such

faults were found in a variety of Fe-Ni-Mn-C austenites under

similar conditions. Diffraction-contrast experiments revealed

that the faults were neither conventional (intrinsic or

extrinsic) stacking faults or twins.* Further, it was noted

that the faults had some thickness and the dislocations

associated with them were not coplanar. Magee also observed

isothermal growth of such units along (1 1 1 )fcc at a temperature

where the bulk alloy exhibited isothermal transformation

behavior. Such findings provide strong support for the

contention that the formation of martensitic embryos in the

form of thin faults on close-packed planes represents the first

stage in martensitic nucleation.

Similar fault structures were reported earlier by

Gaggero and Hull(3 7 ) and Dash and Brown (38) Some of their

observations will be discussed in detail in Chapter 8 when

specifiq nucleation sites are examined.

* Thermodynamic. calculations also indicate that the formation
of intrinsic faults or 6 martensite in these alloys is
extremely unlikely.
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FIGURE 11. {lll}FCC FAULT OBSERVED IN FE-33.1NI FOIL AFTER

PARTIAL MARTENSITIC TRANSFORMATION OF SPECIMEN.

MAGEE(5)
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6. OTHER MARTENSITIC TRANSFORMATIONS

We now extend the proposed mechanism of martensitic

nucleation to less familiar cases.

6.1 The bcc-fcc Transformation

The bcc-fcc lattice deformation can be accomplished by

running the Bogers-Burgers fcc-bcc mechanism in reverse. A

homogeneous shear of abcc [011] on each plane of (011)bcc

(corresponding to Q'V'S' of Figure 7b) converts (101)bcc to the

configuration of (1 11 )fcc (P'V'Q' of Figure 7b). An fcc

structure is then obtained by a shear on each of the latter

afcc
planes of 18 [121]. Again dilatations accompany these shears

in a hard-sphere model.

An a2 [111] lattice dislocation on (011)bcc can

dissociate by the reaction:

a a bcc -bcc [111] [011] + bcc [211] + 8 [011]
2 8 48

........ (13)

where the three partial dislocations correspond to "-a," "b,"

and "c," respectively, in Figure 9. If a group of such

dislocations, one on every second plane, dissociate in this

manner, the 8cc [011] partial dislocations can accomplish the

first shear of the inverse Bogers-'Burgers mechanism by spread-

ing over successive planes to produce a homogeneous shear.



70

If the second shear necessary to convert the fault

structure thus produced to fcc is then presumed to occur

spontaneously, we must again modify the displacements to leave

the (011 )b fault plane unrotated. Figure 12 represents the

(101)bcc plane that has been transformed to (111 )fcc and is
afcc

the plane of the second shear. The 18 [121] displacement (per

plane) required to convert the structure left by the abcc [011]

partial dislocations to fcc is indicated by the displacement "a."

Again, the dashed line represents the line of intersection of

the two shear planes, and it is the component of "a" normal to

this line that would cause a rotation of the fault plane

(011)bcc. This rotation can be eliminated if, after eight

planes of the "a" displacement, every ninth plane is displaced

by "b + c." The "c" displacement corresponds to Shockley

partial dislocation and "b" corresponds to 2/3 of a Shockley

partial. Superimposing a uniform dilatation to adjust the

lattice parameter, we thus achieve a semicoherent fcc embryo

in the form of an (011 )bcc fault with an interface structure

similar to that of the bcc embryo discussed in Chapter 5.

Very few "fcc" martensites actually have a true fcc

structure. If AGfcc+hcp is small, such that we might expect

the close-packed structure to be relatively "indifferent" to

stacking sequence, there is a simpler way that the embryo fault

can relax to avoid rotation of the fault plane. If the second

"shear" occurs by a displacement of "a" in Figure 12 for two

planes, followed by a "b" displacement every third plane, the
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FIGURE 12.

a

{11I}FCC-TYPE PLANE SHOWING SHEAR DISPLACEMENTS FOR
PRODUCING AN FCC STRUCTURE FROM THAT OF THE FIRST

SHEAR OF THE INVERSE BOGERS-BURGERS MECHANISM.

DASHED LINE REPRESENTS THE LINE OF INTERSECTION OF

THE TWO SHEAR PLANES. EIGHT "A" DISPLACEMENTS

FOLLOWED BY A 'B+C" DISPLACEMENT PRODUCES AN FCC

STRUCTUR* WITH NO ROTATION OF THE INITIAL FAULT

PLANE.
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fault plane is unrotated and a close-packed structure is

generated with the stacking sequence ABCBCACAB. This is the

samarium structure and can be considered as fcc with a fault

every third (111 )fcc plane. There is evidence that this is

actually the basic structure of the "fcc" martensites in

copper-, silver-, and gold-base alloys( 3 9 ,4 0 )

This high-period structure is often described with

an orthorhombic unit cell taking the close-packed plane as the

basal plane. Such structures in Cu-Al and other Cu-base alloys

are often quoted as apparent exceptions to the general

parallelism of closest-packed planes in the parent-martensite

orientation relations, since the orthorhombic basal plane is

deviated from the nearest {10}bcc plane by about 40( .

However, this observation does not violate our basic concepts

here when we note that, by the proposed mechanism, the

orthorhombic basal plane is the plane of the second shear of the

lattice deformation and not the original fault plane which is

maintained unrotated in establishing the orientation relations.

That the suggested general faulting mechanism applies

to this type of lattice transition is supported by the

transmission electron microscopy of Ferraglio and Mukherjee(42)

in Au-47.5 at.% Cd shown in Figure 13. The transformation in

this alloy is from ordered bcc to an ordered samarium structure.

The presence of long-range order does not affect the

applicability of the proposed mechanism, since the same partial
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FIGURE 13. {011}Bcc FAULT OBSERVED IN ORDERED Au-CD ALLOY
DURING IN SITU MARTENSITIC TRANSFORMATION. FAULT

EMANATING FROM GRAIN BOUNDARY IN (A) IS ENLARGED

IN (B) TO SHOW STRIATIONS IN FAULT IMAGE. FERRAGLIO

AND MUKHERJEE (42).
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dislocations will simply transform the ordered parent to an

ordered product. The fault shown in Figure 13 is on (011)bcc

and was made to appear and extend reversibly ("thermo-

elastically") by thermal stressing through control of the

intensity of illumination in the electron microscope. When such

faults grew beyond a certain size, they assumed the habit of the

macroscopic product in this alloy and were identified as

martensite by electron diffraction. The striations in the

fault of Figure 13 suggest a second deformation has occurred

within the fault in addition to the displacements in the fault

plane, as proposed. Ferraglio and Mukherjee's observations

will be discussed further in Chapter 8.

Since the embryo structure considered here ia very

similar to that of the bcc embryo discussed in Chapter 5, we

can expect that the coherency strain energy and the energy of

the dislocation interface, compared to that of the iron-base

fcc*bcc transformation, will roughly scale with the shear

modulus. The shear modulus of copper-base alloys is about

one-half that of iron-base alloys. If we assume that the size

of the available structural defects for nucleation is the same,

Equation (7) predicts that the chemical driving force at Ms

should be one-half that of Fe30Ni or roughly 150 cal/mole.

Thermodynamic calculations(43) show that this is actually the
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magnitude of the chemical driving force at M for this

transformation in copper-rich (disordered*) Cu-Al alloys.

6.2 The bcc*hcp Transformation
a bcc

If a group of 2 [1111] dislocations, one on every

second (011) plane dissociate by the reaction of Equationbcc

(13) and produce a true fcc structure by the mechanism

described, the abcc [2111 partial dislocations produced in the

dissociation do not participate in the lattice deformation.

Inasmuch as these dislocations correspond to fcc [112] Shockley

partial dislocations in the fcc structure and there is one such

dislocation on every second close-packed plane, the passage of

these partial dislocations through the fcc embryo will convert

it to hcp. The bcc+hcp lattice deformation can, therefore, be

accomplished by a sequence in which fcc appears as an inter-

mediate structure**. If the Shockley partial dislocations

follow closely behind the 8 [0111 partial dislocations while

* Ordered Cu-Al alloys which exhibit thermoelastic behavior
appear to involve lower chemical driving forces. Observa-
tions in Fe-Pt(4 4) reveal that long-range order has a
profound influence on martensitic kinetics Qpomoiig such
thermoelastic behavior, although the influence of the order
on the basic parameters relevant to nucleation is not yet
established. Although the ordered Au-Cd observations
indicate that the proposed nucleation mechanism is still
applicable, we will limit our discussion of energetics to
disordered alloys.

** This mechanism may account for the observation(45) of fcc-
type martensites as artifacts in thin foils of titanium-base
alloys which display bcc-+hcp martensitic transformations in
the bulk.
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the additional spontaneous displacements are occurring, the

sequence may be very close to simultaneous and so the fcc

structure need not ever exist in any significant amount.

In this transformation, the basal plane of the hcp

structure is the plane of the fault. The embryo thus formed

conforms to the observed orientation relations for the bcc-hcp

transformation.

6.3 Additional Distortions

The bcc, fcc, and hcp structures considered herein

represent the basic structure of the majority of the

martensites which occur in alloy systems. Various tetragonal

and orthorhombic structures which are observed can be derived

from these basic structures by small additional distortions.

These distortions can come about from the presence of

interstitial atoms as in the case of the bct martensites in

iron-base alloys containing carbon*, or the distortions may

arise from ordering of substitutional atoms (either long- or

short-range) in the parent phase. Cahn and Rosenberg(46) have

shown that such distortions can result from an anisotropy of

atomic pair correlations brought about by the transformation

of a parent phase with short-range order.

* The lattice deformations produced by the proposed mechanisms
are of course ecuivalent to the assumed Bain strains of the
phenomenological theories. Accordingly, any theoretical
considerations based on the assumption of a Bain strain will
still apply.
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6.4 Mechanical Twinning

In the present context, mechanical twinning can be

viewed as a special class of martensitic transformation where

the parent and product phases have the same structure but

differ in orientation. The driving force in this case will

consist entirely of a mechanical work term derived from the

applied stress acting through the transformation shape change*.

The similarity of fcc twinning to the fcc+hcp transformation is

obvious since the twinning merely requires the passage of a

Shockley partial dislocation on every close-packed plane rather

than every second plane. Accordingly, the defect necessary for

the nucleation of an fcc twin involves a denser array of

dislocations.

The formation of a bcc (112) twin requires the passage

of an acc 1111] partial dislocation on each (112) plane. Such

dislocations can be derived from a group of bcc 111] lattice
2

dislocations by the spreading of their cores over successive

planes as invoked in the case of fcc+bcc nucleation (Chapter 5).

The concept of core spreading for twinning has some prior basis,

(4) abc
in that it has been proposed 8) that the cores of 2 [111]

screw dislocations will adopt a symmetrical "star-shaped"

.ab'cc
configuration involving dissociation to form--- <ill> type

partial dislocations on three (different) {112} type planes.

The kind of core spreading suggested here for twin nucleation

* Such a work term can also be included in the general case
of martensitic nucleation when considering nucleation under
applied stress(47).
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can be derived from the latter type of spreading if we consider

the simultaneous dissociation of a group of dislocations of

the proper spacing and allow all the abcc <111> screw dislocations

thus generated to move on the same set of {112} planes.

Consequently, the existing defect required for bcc twin

nucleation is similar to that proposed for the fcc*bcc trans-

formation in that it requires a lattice dislocation on every

third plane.
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7. -KINETICS OF MARTENSITIC NUCLEATION

In order to examine the energetic feasibility of a

general faulting mechanism of martensitic nucleation in

specific systems, we have treated the spontaneous formation of

embryo faults as a critical event. However, the possibility

remains that later stages in the total sequence of the

development of a martensitic unit might actually represent the

critical stage which determines the nucleation rate. In

exploring the consequences of a resistance to the motion of

partial dislocations, we will here consider the possibility

that their thermally-activated motion may be rate-limiting in

isothermal martensitic nucleation. Other possible rate-

limiting steps will be compared.

7.1 Resistance to Dislocation Motion

We have so far allowed y=O to represent the critical

condition for the spontaneous production of a martensitic embryo

from an existing defect. We now consider the possibility of a

resistance to the motion of the dislocations bounding the ends

of the fault such that a stress, T0 , is required to move them.

The fault in question is bounded by n dislocations of Burgers

vector b, and so the force per unit length (of interface)

necessary to move such a dislocation array will then be nT0 b.

A stacking-fault energy y exerts a force per unit length on

this array of -y. Accordingly, the critical condition for a
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defect to become unstable with respect to the formation of a

martensitic embryo is then:

Y = -nT b . (14)

The critical resolved shear stress for slip near the

M temperature has been measured by Breedis and Robertson(49)
5

in single crystals of Fe30Ni as well as Fe-Cr-Ni alloys exhibit-

ing the fcc*hcp transformation. The critical shear stress can

be interpreted as the stress necessary to move total lattice

dislocations, and the value obtained for Fe30Ni is expected to

arise principally from "invar strengthening" and solid-solution

strengthening. It is difficult to extract from this information

the shear stress appropriate for the motion of the partial

dislocations considered here, but the observed critical shear

stress can certainly be taken as an upper limit (%8kg/mm 2

Using this value, and substituting Equation (1) into Equation (14)

along with the quantities derived in Chapter 5 for the pertinent

parameters, and solving for n, we find a size for the existing

defect necessary to account for spontaneous nucleation at Ms

for Fe30Ni of n=16. This is greater than the defect size

calculated for the y=0 criterion by about 3 planes. Since three

planes of fault can be derived from one lattice dislocation in

the fcc-*bcc case, the defect includes only one more dislocation.

Inclusion of resistance to dislocation motion, then, does not

substantially alter the feasibility of the proposed mechanism

for martensitic nucleation in Fe30Ni.
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On the other hand, for the fcc-hcp case, if we take the

observed critical resolved shear stress of %5 kg/mm2 for

Fe-Cr-Ni alloys 4 9 ) to represent the stress necessary to move

Shockley partial dislocations, this does significantly affect

the size of the defect that will account for the fcchcp

transformation in the Fe-Cr-Ni alloys discussed in Chapter 4.

Yet, the absence of hysteresis in the reversibility (on heating

and cooling) of the extended-node configurations on which the

intrinsic fault-energy measurements were made indicates that no

appreciable athermal stress is required for the motion of

Shockley partial dislocations in these alloys. The possibility

of a "thermal" stress arising from thermally-activated motion

of partial dislocations will now be considered.

7.2 Thermally-Activated Dislocation Motion

Theories of thermally-activated deformation (50,51)

assume the rate of plastic deformation to be determined by the

thermally-activated motion of dislocations. The activation

energy, Q, for dislocation motion under an applied stress, T,

can be expressed as:

Q = Q - (T - T P)v* (15)

where Q is the activation energy in the absence of applied

stress, T is the athermal resistance to dislocation motion,

and v* is the "activation volume" defined by:

V* - (16)
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A basic assumption is that v* is independent of strain rate.

The stress necessary for a given rate of dislocation motion (or,

equivalently, a rate of plastic strain) is then dependent on

temperature and the imposed rate. Figure 14 represents the

temperature dependence of the applied stress necessary for two

strain rates. At high temperatures, this simple model

predicts that the applied stress necessary for dislocation

motion becomes T and the dislocation behavior is then

essentially athermal in nature.

If we now consider the thermally-activated motion of

the partial dislocations bounding the martensitic embryo faults,

we find that the resistance stress T in Equation (14) is

dependent on the "imposed" rate of growth of the fault, or,

alternatively, the rate of growth of the fault is dependent on

the stress T acting on the partial dislocations through the

fault energy'y. From the relation of Equation (14), we can

now see that the stress associated with the fault energy will

be:

T = - (17)
nb

Figure 15 schematically illustrates the conditions

for martensitic nucleation when the motion of the partial

dislocations is thermally activated. The line showing the

fault energy necessary to drive the dislocations, -nT b, is

split into two curves at low-temperatures representing two

rates of growth (in the fault plane) of the faults. The solid
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y curve indicates the temperature dependence of the fault energy

of a defect of size n as in Figure 4. Equation (14) is

satisfied when the y curve crosses into the region between the

-nT b curves corresponding to r . and i .* In this regionSmin max-

the rate of growth of the fault will vary with temperature, and

further, owing to the curvature of the y curve, there is a

temperature where this rate is a maximum. Thus, consideration

of thermally-activated motion of the partial dislocations

leads to the prediction of isothermal growth of the

martensitic embryos and also suggests that the kinetics of this

growth can exhibit C-curve behavior.

7.3 Isothermal Nucleation

The observation in Au-Cd (Chapter 6) that an embryo

fault must grow to some size (in the fault plane) before a

martensitic plate with the macroscopic habit grows from it

suggests the possibility that the isothermal growth of these

faults could represent the rate-limiting step in isothermal

nucleation. Once a particle has reached a condition where it

can advance to a later stage in the nucleation sequence (e.g.

macroscopic habit) with sharply reduced coherency strain

energy, the effective driving force is then greatly increased

(y more negative) and growth may then be very rapid. On the

basis that the growth of the embryo faults is the rate-limiting

step in isothermal nucleation, the min and rmax shown in

* The significance of i. and r will be discussed later.min max
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Figure 15 can be taken as the embryo growth rates which

correspond to the minimum and maximum* detectable isothermal

nucleation rates, respectively. Isothermal behavior can be

detected when the y curve crosses the -nT0 b curve in the region

where it is separated into the rmin and rmax branches.t This

simple model of thermally-activated dislocation motion suggests

that for the thermodynamic conditions portrayed by the dashed y

curve in Figure 15, true athermal behavior can also occur.

With the assumption that the thermally-activated

motion of the partial dislocations bounding the embryo faults

is rate-limiting, we can obtain an expression for the activation

energy, Q, for isothermal martensitic nucleation by substituting

Equations (1) and (17) into Equation (15) to obtain:

Q = Q + (T + Estr + -) v* + ( v*) AGc (18)0 P b nb b

Inspection of Equation (18) reveals that the

dependence of the activation energy on the chemical driving

force is determined by the activation volume v*. This is

similar to the result suggested by Magee(5,52) in treating

the motion of lattice dislocations as the rate-limiting

phenomenon, except that v* is here the activation volume for

the motion of partial dislocations. If v* is insensitive to

temperature over the temperature range of the isothermal-nuclea-

tion measurements, the model is in accord with the familiar

* The maximum detectable rate of isothermal nucleation is the
maximum rate distinguishable from athermal behavior.

t Provided autocatalytic effects are not too severe.
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experimental result(5,52, 5 3 ) that the activation energy for

isothermal martensitic nucleation is very nearly linearly

dependent on the chemical driving force. Moreover, since Q

is inversely related to n in Equation (18) and there will be a

distribution of existing defects of varying n, a distribution

of activation energies is predicted, as experimentally

(52)verified by the small-particle experiments of Magee

Expressing the activation energy in the form

Q = A + BAGY+U*, the experimentally determined values of A and

B are summarized in Table 1. The first two alloys represent

results obtained on bulk specimens as summarized by Raghavan

and Cohen(5 3 ). The values listed for Fe24Ni3Mn actually

summarize results obtained for many Fe-Ni-Mn alloys of

similar composition. The activation energies obtained from the

bulk-specimen data constitute an "average" activation energy

since autocatalysis was present and the quantities were derived

assuming a singly-activated process.

The second two alloys represent the results of the

small-particle experiments of Magee(5 2 ). Here autocatalytic

effects are circumvented and the distribution of activation

energies can be taken into account more directly. The

activation energies determined were those of the most potent

initial nucleation sites. The A and B values listed in Table 1

for these alloys were determined from Magee's data (activation

energy versus temperature) by calculating the appropriate

* With AGY+a in ergs/cm3



TABLE I
KINETIC PARAMETERS DERIVED FROM ISOTHERMAL NUCLEATION EXPERIMENTS

BULK SPECIMENS(53)

FE24NI3MN

FE29.2NI

SMALL

PARTICLES(52)

FE24.2N13.6MN

FE22.3N1.49C

A B Q v*

ERGS CM3  ERGS EV CM3

3.66 x 10-12 1.05 x 10-21 1.84 x 10- 12  1.15 2.44 x 10-22  21

8.27 x 10-12 3.69 x 10 21  1.89 x 10~ 12  1.18 8.56 x 10-22  73

3.39 x 10-12  1.20 x 10-12  1.32 x 10 12  0.83 2.78 x 10~ 22  24

4.48 x 10~ 12 1.77 x 10~ 21 1.42 x 10-12 0.89 4.11 x 10~ 22 35

co
co
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chemical driving forces using thermodynamic parameters

(54)
suggested by Kaufman

The values of Q and v* necessary to account for the

measured A and B values are also given in Table 1. These

were obtained through Equation (18) using the values of the

parameters derived in Chapter 5 for Fe30Ni and taking n z 15.

The magnitude of T , the athermal component of T0 , may be

significant in deformed austenites (thus accounting for

mechanical stabilization effects) but is assumed negligible for

the annealed alloys under discussion here (following the

considerations described earlier for Shockley partial

dislocations). The derived quantities indicate a magnitude

of Q for the motion of the a <112> partial dislocations of
o 18

%leV. The activation volumes range between 21 and 73 Q, where

0 is the atomic volume.

Results of deformation studies of Fe30Ni.04C austenite

near M by Richman and Bolling '5 5 5 6 ) yield values of

-22 3
Q = 1.68 eV and v* = 13.7 x 10 cm or 117Q for normal slip.

With Q0 = 1.68 eV for the motion of lattice dislocations, the

proposed value of %leV for the smaller partial dislocations

considered here seems reasonable.

When correlating measured activation volumes with

specific dislocation mechanisms, an activation area, A*, is

derived by theoretical considerations of the mechanism being

proposed; the expected activation volume is given by:

v* = bA*. (14)
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If the same activation area for the thermally-

activated motion of the a <112> partial dislocations as for

the lattice dislocations is assumed, an activation volume for

the partial dislocations of v* = 2.64 x 10-22 cm3 or 23Q is

predicted. The expected v* for these dislocations thus agrees

quite well with the derived values necessary to account for the

observed nucleation kinetics of these alloys. Richman and

Bolling's measurements also confirm that the activation volume

is not strongly temperature dependent at the low temperatures

where the isothermal nucleation measurements are made.

7.4 Alternative Rate-Limiting Steps

Several possibilities may be explored for alternative

rate-limiting steps in the total nucleation sequence. The

spontaneous formation of the interfacial abcc <110> partial

dislocations occurring in fcc-)bcc nucleation involves motions

of atoms from unstable to stable positions under the conditions

at hand and so should occur without a barrier. However, the

Shockley partial dislocations which must be formed on every

eighth plane could require thermal activation in a manner

similar to that considered by Kaufman and Cohen and Raghavan

and Cohen(3) for the punching out of lattice dislocation loops

in a Frank interface. On the other hand, the barrier for the

formation of Shockley partial dislocation loops would be much

lower than that for lattice dislocation loops, and if we

visualize this component of the interface to form, instead, as a
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continuous distribution of smaller partial dislocations as

considered in the discussion of the interfacial energy, the

barrier should be negligible.

The lattice-invariant deformation required in the

later stages of nucleation might constitute another possible

rate-limiting step. This is the case represented by the

thermally-activated punching out of lattice-dislocation loops

to form a Frank interface. The assumption has been that twinned

martensites would exhibit similar behavior if we regard the twin-

related regions to be formed by mechanical deformation or

"twinning" (i.e. the passage of twinning partial dislocations)

of regions which have undergone the lattice deformation.

However, it is not clear that the formation of twin-related

regions requires any true additional deformation beyond the

lattice deformation. Referring to Figure 7 we can see that

after the partial dislocations derived from the existing defect

have moved on plane PVQ to produce the intermediate configura-

tion of Figure 7b, the spontaneous displacements necessary to

complete the fcc*bcc lattice deformation can occur on either

plane Q'V'S' or Q'P-'S'. The bcc structures produced by these

two possibilities are twin-related to each other across the

plane QTS. Accordingly, as one set of existing partial

dislocations moves on the fault plane, the selection of

alternating shear systems for the spontaneous motions required

to complete the lattice deformation can result in the formation

of alternating twin-related regions without the necessity of
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any further plastic deformation beyond the lattice deformation.

The mechanism described can account for the twin-related

martensite laths observed in low stacking-fault energy

austenites (57. If the twin-related regions in twinned-Plate

martensites can be generated by this type of mechanism (the

operation of one common set of dislocations together with

alternating systems of spontaneous -motions*), the formation of

a twinned plate should not require any (thermally-activated)

mechanical twinning.

We have so far not specifically dealt with the

kinetics of the dissociation of a dislocation core. However,

if we adopt the model of a dislocation core as a distribution

of small Burgers vector dislocations (58), such that the

required partial dislocations may be viewed as already existing

in the core, the problem of dissociation simply reduces to

the problem of partial dislocation motion already considered.

There is experimental evidence in support of the

motion of partial dislocations as the rate-limiting step in

isothermal martensitic nucleation. The observation of

isothermal fcc+hcp transformation in Fe-Cr-Ni alloys by

Manganon and Thomas( 6 0 ) and by Breedis and Robertson(4 9 )

substantiates this mechanism, since none of the subsequent

stages in the general nucleation mechanism are required for

* Dislocations formed in the spontaneous "second shear"
motions of one variant might perform the "first shear" of
a second variant. This could also provide a mechanism of
"interfacial" autocatalysis; the afcc/ 6 [112] partial
dislocations formed in the interface of an embryo fault on
(lll)fcc (Figure 10) might operate to form another embryo
fault on (llI)fcc.
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the fcc-hcp transformation. Strong evidence in support of the

proposed rate-limiting mechanism for fcc-bcc nucleation is the

direct observation by M (5) of the slow isothermal growth of

such embryos on (111 )fcc in thin foils under the same conditions

for which isothermal nucleation was known to occur in bulk

specimens.

Though we cannot at this time rule out the possibility

that later stages in the total nucleation sequence might be

rate-limiting, and indeed it is still possible that different

stages of the general mechanism may be rate-limiting in

different systems or conditions, the evidence to-date would seem

to favor the motion of partial dislocations as the most likely

candidate for a general rate-limiting step.
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8. THE NUCLEATING DEFECT

The proposed general mechanism of martensitic

nucleation by faulting defines the function of the nucleating

defect. The defect must be able to provide a group of

appropriate partial dislocations of the proper spacing. One can

easily conceive of a variety of structural defects capable of

fulfilling this function. We will here examine those defects

for which direct observations of their operation as martensitic

nucleation sites are available. It should be noted that, although

the required Burgers vector and spacing of the dislocations will

depend on the particular martensitic transformation in question,

the basic features of the necessary defects are common to the

other martensitic transformations. Accordingly, a particular

type of defect which is observed to operate for one martensitic

transformation is expected to be a very likely nucleation site

for the other transformations as well.

8.1 Grain-Boundary Segments

In our discussions of specific transformation

mechanisms thus far, we have considered the example of a finite

symmetric tilt-boundary segment as a kind of prototype nuclea-

tion site. Such a segment could easily exist as part of an

"infinite" tilt boundary having a lower average tilt angle.

In such a case, the considerations of the dislocation

interactions of Chapter 4 must be modified to take into account
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the attractive interaction of the partial dislocations of the

segment with the rest of the boundary. The segment will still

be unstable with respect to embryo formation according to our

fault-energy considerations as long as the conditions at the

boundary are such that the repulsive interaction of the partial

dislocations exceeds this attractive interaction.

More complex "general" grain boundaries could also

contain segments in which locally some of the boundary disloca-

tions are in a configuration consistent with these conditions.

The sequence of electron micrographs in Figure 16, from the

work of Ferraglio and Mukherjee on Au-Cd already discussed,

demonstrates martensitic nucleation from such grain-boundary

segments. The progress of the transformation in this sequence

was controlled by thermal stressing with the electron beam.

A martensitic embryo fault on (0 1 1 )bcc is seen growing from

the grain boundary at "A" in Figure 16a, while a subgrain

boundary at "I" in Figure 16a gives rise to a martensitic plate

at "C" in Figure 16b. Since a grain boundary is thought to

possess a somewhat periodic structure of regions of varying

misfit, we might expect the regions of the appropriate structure

for martensitic nucleation to be arranged in a somewhat periodic

fashion. This appears to be the case in Figure 16. The boundary

at "A" in Figure 16a is dotted with small dark regions which

widen to form embryo faults at later stages in the sequence.

The largest fault from this boundary also demonstrates in this

sequence that the embryo first grows to some size in the "fault"
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FIGURE 16. SEQUENCE OF ELECTRON MICROGRAPHS SHOWING FORMATION OF
MARTENSITIC EMBRYO FAULTS IN ORDERED AU-CD FROM A GRAIN

BOUNDARY AT "A" AND A SUBGRAIN BOUNDARY AT "I". LARGEST

FAULT AT "A" BOUNDARY IN (A) TAKES ON MACROSCOPIC

MORPHOLOGY DURING LATER GROWTH IN

AND MUKHERJEE .

(B) AND (C). FERRAGLIO
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morphology before a plate with the macroscopic habit grows from

it.

8.2 Incoherent Twin Boundaries

An incoherent segment of an fcc twin boundary can be

modeled as an array of Shockley partial dislocations, one on

each close-packed plane. Hence, such a boundary is a likely

source of Shockley partial dislocations on separate planes.

The fcc*bcc transformation can be nucleated by the glide of

every third dislocation from the boundary (with subsequent core

spreading), or alternatively, dissociation of all of the Shockley

partial dislocations to produce fcc <112> partial dislocations,
a fcc

leaving 9 <112> partial dislocations in the boundary. Figure

17 illustrates the transmission microscopy observation of Dash

and Brown in Fe32.3Ni of such an embryo "M" nucleating from

an incoherent twin boundary segment "N" at the "corner" formed

with the coherent boundary "C". Such a twin boundary corner

is a most probable nucleation site inasmuch as the array of

partial dislocations forming the incoherent segment represents

a "finite" tilt boundary at that point and is thus most likely

to give the desired "superdislocation" behavior.

8.3 Inclusion-Particle Interfaces

The interface of an incoherent inclusion particle

might be expected to contain the appropriate "finite boundary"

array of dislocations for martensitic nucleation. The earliest
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FIGURE 17. MARTENSITIC NUCLEATION AT A TWIN BOUNDARY IN

FE32,3NI. EMBRYO FAULT "M" ORIGINATES AT TWIN

CORNER "J" FORMED BY INCOHERENT BOUNDARY "N"

AND COHERENT BOUNDARY "C". DASH AND BROWN( 3 8 )
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experimental evidence in support of the proposed faulting

mechanism for martensitic nucleation was the transmission

microscopy observation by Gaggero and Hull(37) of such faults

emanating from an inclusion particle in a partially transformed

Fe30Ni austenite foil, as shown in Figure 18.

8.4 Strain-Induced Nucleation Sites

There are numerous observations of special martensitic

nucleation sites which can be produced during plastic deforma-

tion. A rather unique example is the observation of

Easterling and Swann(61) of the martensitic transformation of

small iron precipitates in copper. Small coherent fcc particles

of almost pure iron in a copper matrix were found to be stable

with respect to spontaneous transformation to bcc even at

cryogenic temperatures, presumably due to the absence of

suitable nucleation sites. However, the particles could be

made to transform martensitically by room-temperature plastic

deformation of the copper matrix, and electron microscopy

indicated that the transformation was nucleated when matrix

screw dislocations passed through the particles. This observa-

tion is illustrated in the micrograph of a deformed foil in

Figure 19. Some fully coherent particles still remain, as at

point "A". Many particles are fully transformed (e.g. at "B")

giving a dark contrast, while others marked "C" and "D" are

partially transformed, some with the dislocations still attached.

These experiments comprise rather unusual conditions in that the
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FIGURE 18. FAULTS ASSOCIATED WITH AN INCLUSION PARTICLE IN

A PARTIALY TRANSFORMED FE30NI FOIL. GAGGERO

AND HULL 37)
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FIGURE 19. DEFORMED COPPER FOIL CONTAINING IRON PRECIPITATES.

SOME PARTICLES ARE STILL COHERENT AS AT "A". DARK

PARTICLES AS AT "B" ARE FULLY TRANSFORMED WHILE
OTHERS AT "C" AND "D" ARE PARTIALLY TRANSFORMED,
SOME WITH DISLOCATIONS STILL ATTACHED. EASTERLING
AND SWANN( 6 1 )
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chemical driving force involved was on the order of 1000 cal/mole.

Using this chemical driving force in Equation (7) together with

the parameters developed for Fe30Ni in Chapter 5 suggests that

under such extreme conditions a single dislocation could be an

operative nucleation site. Under the more typical chemical

driving forcesencountered in bulk materials, we would expect

that dislocation pile-ups involving several parallel slip planes

might be able to act as nucleation sites in a similar manner.

Cohen and Weertman (6 2 ) proposed a cross-Slip mechanism

for producing partial dislocations on consecutive close-packed

planes in fcc materials. In this picture, Shockley partial

dislocations in an initially coplanar pile-up of extended

dislocations are visualized to cross-slip onto another close-

packed plane by leaving behind sessile "stair-rod" dislocations,&

The sessile dislocations cause the next dislocation to cross-

slip onto another plane parallel to the first, and so on.

Fujita and Ueda (6 3 ) have found evidence by transmission

microscopy that such a mechanism operates in the strain-induced

fcc-hcp martensitic transformation in Fe-Cr-Ni alloys. Their

observation is illustrated in Figures 20a-c. Dislocations "D"

running along fcc*hcp interfaces or slip planes in the "X"

direction cross-slip to product faults running in the "Y"

direction. Overlap of such faults is clearly indicated at "S"

in Figure 20b. Fujita and Ueda's interpretation of this process

as a mechanism for producing hcp martensite is illustrated in

Figure 21.
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FIGURE 20. FORMATION OF HCP MARTENSITE BY CROSS-SLIP. DIS-

LOCATIONS "D" RUNNING ALONG FCC-HCP INTERFACES
OR SLIP PLANES IN THE "X" DIRECTION CROSS-SLIP
TO PRODUCE FAULTS RUNNING IN THE "Y" DIRECTION.

OVERLAP OF SUCH FAULTS IS INDICATED AT "S" IN

(B). ARROWS IN (C) INDICATE FAULTS ORIGINATING

AT AN FCC-HCP INTERFACE. FUJITA AND UEDA(63 )
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FUJITA AND UEDA( 63 )
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The most commonly observed(21,2 6 60 6 4 ) strain-induced

nucleation site for the fcc-*bcc martensitic transformation is

the intersection of various types of shear bands (6 martensite,

twins, bundles ,of stacking faults) in austenites of low intrinsic

stacking-fault energy. The observation by Venables (26) of a bcc

martensite embryo produced at the intersection of two 6 martensite

plates is shown in Figure 22. Mechanisms by which these inter-

sections can produce the a fc <112> partial dislocations18 <1>prildsoain

necessary for the Bogers-Burgers lattice deformation have been

proposed 2 1 ,6 5 ). The partial dislocations may be produced by

the spreading of the cores of the Shockley partial dislocations

of the second shear band as they cross the coherent interface

of the first (6 5 ) , or, treating the interface as incoherent, such

dislocations might be produced by interaction of the crossing

Shockley partial dislocations with the interface (as in the

crossing of a symmetric tilt boundary) ).

It should be noted that these strain-induced nucleation

sites are largely operational during plastic deformation where

martensite formation is an effective means of plastic

relaxation. Under conditions of an unfavorable chemical

driving force, alternative relaxations can occur at these sites

such that their potency as nucleation sites on subsequent

cooling is substantially reduced.
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FIGURE 22. NUCLEATION OF a(BCC) MARTENSITE AT THE INTERSECTION OF TWO E (HCP) PLATES
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9. CONCLUDING REMARKS

We have now made the case for a general mechanism of

martensitic nucleation by faulting on closest-packed planes, and

have shown this mechanism to be consistent with a wide variety

of experimental observations, many of which were previously

unaccounted for by existing theories. In its essential nature,

the proposed theory can be considered to regard martensitic

nucleation as a type of spontaneous plastic deformation, brought

about not by an externally applied stress, but by an "internal"

chemical stress. The concept is similar to the proposal of

Kaufman and Cohen(1) of formation of dislocations necessary for

the lattice-invariant deformation by a chemical stress, or

Magee's(5) concept of the motion of such dislocations through

chemical stress, but'goes beyond these concepts in that the

"plastic deformation" considered is the actual lattice deforma-

tion which brings the primeval embryo structure into existence.

Plastic deformation represents an apt analogy to

martensitic nucleation in several respects. Early theoretical

considerations of the mechanism of plastic deformation led to

the conclusion that to homogeneously distort a crystal into a

"slipped" structure would require an energy far in excess of

that observed to be necessary for plastic flow. To circumvent

this difficulty, the concept of a dislocation was invented.

Rather than homogeneously deforming a large volume, a small

(pre-existing) singularity in displacement is propagated along
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the crystal to achieve the same final structure. Similarly,

early theoretical considerations of martensitic nucleation

led to the conclusion that homogeneous deformation of a region

of crystal into the product structure involved an intolerably

large energy barrier. Again, we circumvent this difficulty by

simply propagating existing dislocations to achieve the lattice

deformation.

It should be noted that treating martensitic nucleation

as spontaneous plastic deformation leads to a particular type of

kinetic behavior. Normal plastic deformation can be viewed as an

essentially athermal process which can be assisted by thermal

activation; plastic flow can still occur at 0 K if a high enough

stress is applied. Similarly, the considerations of Chapter 7

predict that martensitic nucleation can still occur at 0 K if

the chemical driving force is sufficiently large. Hence, we

are led back to the concept originally proposed by Knapp and

Dehlinger that martensitic nucleation is to a first approxi-

mation an athermal process. Aside from the special cases where

the transformation can be made to exhibit isothermal behavior,

the role of thermal activation can largely be regarded as a

reduction of the magnitude of the chemical stress necessary for

this spontaneous deformation.

A few words are in order concerning the possible

relevance of . soft phonon-mode" concepts ' to martensitic

nucleation. These ideas have had some success in accounting

for certain displacive phase transformations (e.g. the w
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transformation(66)) consisting primarily of "atom shuffles"

which do not result in any overall shape change. As pointed out

in Appendix C, the occurrence of a shape change in martensitic

transformations greatly increases the importance of matrix

constraints. Though soft-mode mechanisms may have some

relevance to surface and thin-film martensitic nucleation (as

suggested by recent experiment(9 ) where the matrix constraints

are somewhat relaxed, it has not been demonstrated that these

mechanisms: can account for martensitic nucleation in the bulk

when the constraint of the matrix opposing the shape change is

fully taken into account. Also, as pointed out in Chapter 1,

these theories do not appear able in their present stage of

development to take into account the known heterogeneous nature

of the transformation in bulk material.

Many lattice deformations involved in martensitic

transformations can be considered as the product of a homogeneous

strain and "atom shuffles." In such cases (e.g. the fcc+hcp

transformation), the mechanisms proposed here accomplish both the

homogeneous strain and shuffles simultaneously by the passage of

an inhomogeneous array of partial dislocations. However, it is

conceivable that in a complex transformation, such as bcchcp

which we treated here as a combination of bcc*fcc and fcc-*hcp,

the atomic-shuffle component of the transformation might be

accomplished separately by a soft-mode transformation. This

could account for the observation of pre-martensitic effects in

Ti-Ni which have features similar to the w transformation(6 7 ,6 8 )
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However, the observation by Perkins(6 8) of thin embryo faults in

partially transformed Ti-Ni foils suggests that even in this

complicated material, the basic mechanism of nucleation by

faulting still applies.

In summary, both theoretical considerations and

experimental evidence lead to the proposition that the general

mechanism of martensitic nucleation is a type of faulting on

closest-packed planes. The total nucleation process is

postulated to comprise a sequence of steps with the first step

derived from an existing defect. Taking matrix constraints into

account, the first step should be a faulting displacement on a

plane of closest packing and subsequent steps are expected to

occur in such a way as to leave the fault plane unrotated. Such

a general mechanism is consistent with the observed orientation

relations and the known heterogeneous nature of martensitic

nucleation.

Specific mechanisms have been presented for each of

the major lattice changes occurring in alloy systems. The

energetic feasibility of these mechanisms has been demonstrated

for the known conditions for martensite nucleation, invoking

fairly simple defects which may consist of 4 or 5 lattice

dislocations of the proper spacing. The predicted kinetic

behavior of such a faulting mechanism is consistent with the
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observed kinetics of martensite nucleation, both in terms of

the basic athermal nature, and in terms of the correct

activation energy and its dependence on chemical driving force

when isothermal behavior is observed. For each of the major

lattice changes, there are ample direct experimental observations

available of the predicted embryo faults emanating from the

types of nucleation sites where the proposed dislocation

groups are expected.



112

10. SUGGESTIONS FOR FUTURE WORK

1. Though the available evidence supports the idea that

the faults observed in partially transformed Fe-Ni austenites

are martensitic embryos, it still remains to be proven that

they are bcc in structure. Further transmission electron

microscopy would undoubtedly be the most fruitful approach to

this problem. Since we have a precise model for the structure

and orientation of such faults (i.e. the semicoherent embryo

of Figure 10c), the expected diffraction contrast can be

computed and tested against contrast experiments. However,

preliminary calculations indicate that the expected displacement

vector is such that the conditions for loss of contrast,

g-R = 0, would be satisfied only for very special combinations

of g reflections and fault thickness. Testing these predictions

would require an accurate determination of the number of planes

of thickness of the faults. Since many of these faults are

found to be in direct contact with larger martensitic units, a

simpler test of whether they are bcc might be to examine their

dark-field contrast using g reflections from the larger units.

This approach assumes that the faults are in the same

orientation as the larger units, however, and the model

suggests that this would not be strictly correct.

Whereas the faults represent too small a volume to

contribute their own spots to a conventional selected-area

electron diffraction pattern, another approach to structure
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determination could be the use of a scanning transmission

electron microscope capable of obtaining selected-area

0 
0

diffraction from an area n200A in diameter; faults %20A in

thickness might then comprise a large enough fraction of the

total diffracting volume to give rise to their own diffraction

pattern. Finally, with high-resolution lattice-imaging

techniques it might be possible to test the predicted bending

of planes on crossing the faulted region.

2. Having defined the basic structural features of the

nucleating defect, it may now be possible to examine thin foils

for probable nucleation sites and observe their operation on

cooling by cold-stage electron microscopy. Such experiments

may now be more fruitful than previous "shot-in-the-dark"

attempts where the structure of the defects was completely

unknown.

3. Calculations of the dislocation interactions in the

proposed faulting mechanism can be done in more detail. In

particular, the interaction of the finite partial dislocation

tilt-boundary segments at close separations where the super-

dislocation analog is no longer appropriate should be examined.

For the case of such segments existing as part of a larger

sub-boundary of lower average tilt angle, their interaction

with the other dislocations in the boundary should be examined.

A useful calculation would be a determination of the largest
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average boundary tilt angle for which the repulsion of the

finite (partial dislocation) boundary segments is still greater

than the attractive interaction with the rest of the boundary.

Another refinement would be an examination of possible

"end-effects" in the fault energy (i.e. y = y(r)) at early

stages of dissociation. A more rigorous calculation of the shape

dependence of the strain-energy contribution to the fault energy

would be helpful in this connection.

4. The energetics of later stages in the total "nucleation"

process should be examined. The critical condition at which a

growing semicoherent embryo fault is able to undergo the

lattice-invariant deformations determining the invariant line

and invariant plane should be considered. Though these steps

may occur after the rate-controlling step and thus have no

influence on the nucleation kinetics, they may influence

morphology and thus determine the final product structure.

5. As for the question of the rate-limiting step in the

total-.nucleation process, an important area for further

experimental work is the isothermal fcc*hcp transformation.

The kinetics of this transformation should be studied in the

same detail as has the fcc-bcc transformation. A much better

understanding of isothermal martensitic nucleation may result

from a thorough examination of such a special case where the

overall transformation mechanism is greatly simplified.
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APPENDIX A

COMPARISON OF THERMODYNAMIC AND PAIR-WISE CENTRAL-FORCE
INTERACTION APPROACHES TO STACKING-FAULT

.ENERGY CAJLCULAT ION

Since many attempts at theoretical estimates of

stacking-fault energy have employed the approximation of

pair-wise central-force interactions (28,69) , a brief comparison

with the predictions of the thermodynamic approach described

in Chapter 3 is in order. Considering pair-wise interactions

out to 11 neighbor shells (derived from the original fcc 6

neighbor shells), Hirth and Lothe (2 8 ) express as sums of

interaction energies the following energies (per unit area)

relative to perfect fcc: y1 , the intrinsic stacking-fault

energy, YH' the energy per (basal) plane of an hcp crystal,

YE, the extrinsic stacking fault energy, and YT' the coherent

twin-boundary energy. Comparison of these expressions gives

the relations:

YE = 2yT (Al)

Y, = 2YH G6 + (A2)

where $6 and $ represent, in Hirth and Lothe's notation, 9th

and 10th neighbor interaction energies. The first relation

agrees with the thermodynamic prediction for the extrinsic

fault energy, and further suggests that there is no inter-

action between the coherent twin interfaces since their energy

at a separation of two planes is identical to that of

isolated boundaries. The second relation is in agreement with
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the thermodynamic prediction for intrinsic fault energy if we

take -$6 + # to represent twice the fcc-hcp interfacial

energy. However, it is unlikely that the true fcc-hcp

interfacial energy actually arises from 9th and 10th neighbor

interactions, but rather arises from shorter-range interactions

which are not taken into account by the central-force

approximation. Hirth and Lothe suggest that interactions

beyond 8th neighbors need not be considered.

Including interactions out to only 8 neighbor shells

leads to the additional relations:

Y,= YE (A3)

YT H (A4)

These relations are clearly inconsistent with experiment.

Measurements of intrinsic and extrinsic fault energy in the

same alloy indicate that they are in general not equal.

Though the second relation is often suggested, measurement

of the temperature dependence of coherent twin-boundary energy

(70) (69)in platinum and copper shows a positive surface

entropy, whereas the fcc-*hcp entropy difference is of opposite

(71)sign .

The relations obtained from the approximation of

central-force interactions are clearly not as rigorous as

those obtained from the present, more direct thermodynamic

approach. However, where central-force interactions might be

considered to represent some part of the total forces at play,

this treatment of the problem may be useful in indicating, at

least qualitatively, some additional information beyond that
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available from the thermodynamics, e.g. the suggestion of a link

between intrinsic and extrinsic fault energy; materials with

very low intrinsic fault energies might be expected to have low

twin-boundary energies.
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APPENDIX B

INFAENCE OF NUCLEATION CONDITIONS ON MACROSCOPIC HABIT

The semicoherent bcc embryo in an fcc matrix

represented in Figure 10c must undergo additional plastic

deformations in order to completely relax to its equilibrium

lattice parameter. These additional deformations will

determine the invariant line and invariant plane which

establish the habit of the macroscopic martensitic unit.

We have established the parallelism (or near

parallelism) of the closest-packed planes of the two

structures, but the final orientation relation will be

determined when the invariant line is established, since this

line fixes the directions which are parallel in the closest-

packed planes of the two structures. In addition to

determining the orientation relations, the invariant line

may also have a strong influence on the invariant plane or

habit plane inasmuch as this plane must contain the

invariant line. Accordingly, we can expect a correlation

between orientation relations and habit plane.

The three basic types of orientation relations

observed in fcc-bcc type martensitic transformations are

illustrated in Figure 23. The Kurdjumov-Sachs relation

involves parallelism of the close-packed directions of the

two structures, [1 1 0 ]fcc and tll'lbcc, while the Nishiyama

relation involves parallelism of [121] fcc and [1 0 1 ]bcc. The
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Greninger-mciano relation involves parallelism of directions

approximately midway between these two cases. The macroscopic

morphologies associated with these three relations are also

shown in Figure 23. The Kurdjumov-Sachs relation is found in

the (225) plate martensites as well as in the (112) lath

martensites observed in steels of low intrinsic stacking-fault

energy. The Greninger-Troiano relation is generally found in

(259) plate martensites. Determination of the orientation

relations of (111) lath martensites has indicated that they

are closest to the Nishiyama relation(
7 2 ).

According to the phenomenological theories, once an

invariant line is established by the "total lattice deforma-

tion," the lattice-invariant deformation can produce a macro-

scopic matching of the two structures along a direction normal

to the invariant line, thus defining a macroscopic invariant

plane. Though there may be a true invariant line in the

lattice deformation, the "invariant plane" is only a macro-

scopic concept. Actually, only in the Greninger-Troiano case

is there a true invariant line in the total lattice deformation.

A particle in the Kurdjumov-Sachs or Nishiyama orientation

relations is constrained to match the matrix along directions

which are not equal in length in the two equilibrium

structures and additional deformations are required to

accomplish this matching (macroscopically). In the latter two

cases, the invariant line concept becomes a macroscopic

concept like the invariant plane, and all directions in the

invariant plane are invariant only macroscopically. The
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required additional deformations would account for the more

complex substructures of the other morphologies compared to

the Greninger-Troiano (259) plate martensites. The semi-

coherent embryo in Figure 10c is in the Kurdjumov-Sachs

orientation. A small rotation about [111]fcc is required to

put the particle in the Greninger-Troiano relation and

establish a true invariant line. This can be accomplished

by the formation of a grid of additional screw dislocations

in the (111 )fcc interface. All that is then required to

produce the final structure of a (259) plate is the twinning

operation on (112) [111 bcc. We will now examine possible

constraints which could cause the particle to stay in the

more "awkward" Kurdjumov-Sachs orientation.

Perhaps the morphology which conforms most closely

to the exact Kurdjumov-Sachs orientation relation(2 1 ) is the

strain-induced martensite produced at the intersection of shear

bands in austenites of low intrinsic stacking-fault energy, as

illustrated in Figure 22. Clearly the embryo produced at such

an intersection of {lll}fcc bands will be initially rod-shaped

with the long dimension along the close-packed [l0]fcc

direction. The strain energy of a particle of such a shape is

not minimized by establishing an invariant plane but rather by

making the direction of its longest dimension an invariant

line. Hence, the bcc embryo is plastically "stretched" in

the close-packed direction, making this direction macroscopically

invariant and thus maintaining the Kurdjumov-Sachs orientation
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relation. The complex dislocation structure observed in such

martensites is essentially that expected if a bcc crystal is

pulled along its IllIbcc three-fold symmetry axis. If a

martensitic plate is to grow from such an embryo its habit

plane must contain [110]fcc and must therefore have (hh)
f(2cc

indices. Figure 24 illustrates the observation by Venables(2 6 )

of such a (225) plate apparently nucleated from the

intersection of two 6 martensite bands in a deformed stainless

steel foil. Hence, we suggest that constraints at the nuclea-

tion stage might establish not only the paralleli-sm of close-

packed planes but also the invariant line of the total lattice

deformation as well, thereby determining the ultimate orienta-

tion relations and influencing the macroscopic habit.

The total nucleation process envisioned here can be

related to the existing phenomenological theories as follows.

In matrix form, Bowles and Mackenzie consider the "total

lattice deformation," ST' which determines the invariant line

to be given by:

S = 6RB (Bl)

where B is the "Bain strain" relating the two lattices, R is

a rigid-body rotation, and 6 is a uniform dilatation which

allows some variation of the true invariant line. The

existence of such a dilatation is not generally accepted.

The total transformation shape change is given by the product

of S and a lattice-invariant deformation consisting of a

single shear.



123

9 *f4~

4

0.5 A
t/lE.

I
A'

FIGURE 24. {225}-TYPE MARTENSITE PLATE NUCLEATED AT THE
INTERSECTION OF TWO E MARTENSITE BANDS.

VENABLES (26)

ot



124

In the nucleation process considered here, we

substitute for 6RB an "effective" total lattice deformation

given by:

ST P6S 2S (B2)

where S is the first "shear" of the Bogers-Burgers mechanism,

2 is the modified second "shear," 6' is a uniform dilatation

necessary to establish the equilibrium lattice parameter, and

P is a plastic deformation which allows a particular (macro-

scopic) invariant line to be maintained. Though P is actually

a lattice-invariant deformation, we here include it in the

"effective" total lattice deformation since it performs

essentially the same function as the Bowles and Mackenzie

diltation parameter, 6. Again, combination of this

"effective" total lattice deformation with the conventional

single shear lattice-invariant deformation produces the

total shape change and thus establishes the invariant plane

or habit. In the case of the Greninger-Troiano (259)

martensite, P is simply a small rotation about 1111 fcc to

establish a true invariant line. In the Kurdjumov-Sachs .(225)

case, it consists of the additional twinning of the multiple-

shear theories(73,74) or the complex deformation of the plastic

accommodation model(75 ). However, in the present context, we

consider these additional deformations to take place in the

martensite as part of the total lattice deformation rather

than occurring in the austenite before the lattice deformation.

In other words, we are proposing that the complex deformations
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that are necessary to allow habits other than (259) take place

not simply because one type of lattice-invariant deformation

is energetically more favorable than another, but because con-

straints existing at the nucleation stage (and possibly persis-

ting throughout growth) require a particular invariant line to

be produced by the total lattice deformation.

We have already examined how particle shape at the

nucleation stage might influence the invariant line of the total

lattice deformation. It is also possible that such constraints

may have a more basic "mechanistic" origin. If we follow the

orientation of the particle in tracing back the proposed

sequence of steps for the formation of a (259) martensitic plate,

we can describe the sequence as Greninger-Troiano -- Kurdjumov-

Sachs -+ Nishiyama. (The three relations are really equivalent

at the S1 stage, but the [1 2 1 ] fcc direction of the Nishiyama

relation is the Sl shear direction and hence a "special"

direction.) Accordingly, the trend of habit planes corres-

ponding to these three orientation relations of (259) -+ (225)

(111) might represent the result of constraints at progres-

sively earlier stages in the lattice-deformation process.

The (111) lath or "massive" martensite morphology is

generally formed at higher temperatures, and is similar to

the martensites formed at higher temperatures in other alloy

systems (e.g. titanium alloys). The analysis of nucleation

kinetics discussed in Chapter 7 and illustrated in Figure 15
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suggests that alloys which transform at higher temperatures may

exhibit completely athermal behavior. Further, the kinetic

parameters obtained from isothermal Fe-Ni and Fe-Ni-Mn alloys

indicate that the transition from isothermal to athermal behavior

with increasing transformation temperature will occur in the

vicinity of room temperature, and this is also where the

transition from plate to (111) lath morphology occurs in these

alloys. It may be that an embryo which forms at low

temperatures with some degree of initial isothermal growth may

have an opportunity to relax to a more highly developed form

(e.g. Greninger-Troiano orientation), whereas an embryo which

forms completely athermally at higher temperatures may grow

too rapidly at its inception and its structure and morphology

will resemble that of a more primitive stage of embryo

development (S ). The more complex deformations required to

maintain this more primitive form might hinder the particle's

growth in the later stages where the plate martensites are

capable of extremely rapid growth, thus accounting for the

smaller size of the final martensitic units in the (111) lath

morphology.

Another possible origin of the constraint leading

to the Kurdjumov-Sachs orientation might be the presence of

the hcp e phase as an intermediate structure. In the case

of austenites of very low intrinsic stacking-fault energy

where the e phase is present in appreciable quantities, the

a martensite preferentially nucleates in the E phase
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and forms as (112) laths with the Kurdjumov-Sachs orientation.

The (225) plate martensites are generally observed in alloys

of intermediate stacking-fault energy where the bulk hcp phase

is not observed but electron microscopy has revealed the

association of intrinsic faults with small embryonic (225)

units (76) , suggesting that the hcp intermediate structure

concept may still play some role in these alloys.
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APPENDIX C

ENERGETICS OF INTERMEDIATE CONFIGURATIONS
IN THE FCC+BCC LATTICE DEFORMATION

In order to estimate the possible importance of

nonlinear elastic effects in the fcc*bcc lattice deformation,

the energy necessary to homogeneously deform a bcc lattice

into the unrelaxed configuration of the first shear of the

Bogers-Burgers mechanism was computed using various

interatomic potentials available for pure iron. The results

are tabulated in Table C-1. The energies of three configura-

tions were calculated and are represented by the three columns

in the table. The first consists. of the uniform dilatation

(AV/V e 7%) necessary to make the bcc atoms of Fe30Ni the same

"size" as the fcc atoms. The second consists of the "hard-

sphere" shear which converts the bcc structure to the Bogers-

Burgers "first-shear" configuration with the atoms in the bcc

size. This deformation consists of a shear of 25% along

[0111bcc on (011) bcc accompanied by a 3.6% contraction normal

to the shear plane. The third configuration is the product of

both the dilatation and "hard-sphere" shear and thus represents

the unrelaxed configuration produced by deforming the fcc

lattice by the Bogers-Burgers first shear.

The first set of values represents an anisotropic

linear elastic calculation for pure iron using a bulk modulus

of 1.73 x 1012 dynes/cm2 and a shear modulus for [011] (011)

11 2shear of 1/2 (C 11 - C 12) 5.25 x 10 dyne/cm .The first
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Table C-i

Computed Strain Energy of fcc-bcc Intermediate
Configuration Using Interatomic Potentials

for Pure Iron

E str, cal/mole

dilatation

Linear Elasticity
(Anisotropic)

Potentials

Morse (Girifalco and
Weizer, 1958) (77)

Johnson I (1964) (78)

Johnson II (1966) (79)

Johnson and Wilson
(1971) (80)

720

575

490

126

674

"shear"

3057

1349

2756

3094

dilatation
+ "shear"

3026

1148

2405

2184

3840 3391
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set of interatomic potential calculations represented are those

obtained from the Morse potential developed for iron by

Girifalco and Weizer . The atomic- interactions were summed

over a crystallite 73 unit cells in volume. The other

potentials represented in Table C-1 consider-only first and

second neighbor interactions. The Morse potential and Johnson

I potential(78) involve only central-force interactions and

thus do not reproduce the elastic constants of iron exactly

since C12 = C 44 For the last two potentials( 7 9 ,8 0 ) a hydro-

static pressure is added to maintain the equilibrium lattice

parameter and the linear elastic constants are reproduced

exactly.

Though the Morse potential calculation gives a strain

energy of approximately half the magnitude of that of the linear

elastic calculation, the other more recent potentials suggest

that the strain energy is not appreciably different from the

linear elastic result. This result is not surprising if we

examine a hard-sphere model. A homogeneous fcc twinning

shear, corresponding to a Shockley partial displacement on

each ( 1 1 )fcc plane (as illustrated by the displacement "c"

in Figure 12) leads to a twin-related structure with the same

energy as the original undisturbed fcc lattice. The presence

of such a second energy minimum suggests a "softening" of

the elastic constants (at high strain) for displacement in

the <112> direction. However, the deformation of the bcc
fcc

lattice considered here corresponds to the displacement "-a"

of Figure 9 on each (011)bcc plane. Such a displacement
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brings the hard spheres of one plane in contact with the hard

spheres of the plane below in such a way as to hinder further

displacement in this direction. If anything, the expected

deviation from linearity would be one to make the elastic

constants "harder" for displacement in this direction.

The calculated energies in Table C-1 also suggest

that to a first approximation the effect of the additional

dilatation necessary to maintain a constant sphere size can be

neglected in view of the large energy associated with the

hard-sphere shear alone. These considerations suggest that a

linear elastic calculation of the strain energy of the shear

components alone may provide a reasonable picture of the

energetics of homogeneously deforming an fcc lattice through

the Bogers-Burgers lattice deformation. We can now perform

such a calculation for Fe30Ni at the Ms temperature.

The appropriate shear modulus for 1121] (1 1 1 )fcc

shear is 1 - C1 2 + C4 4 ). Using the elastic constants

(81)
determined near the M temperature for Fe30Ni by Kayser

5

gives a value of .48 x 1012 dyne/cm2 for this shear modulus.

By the considerations discussed earlier, the strain energy

associated with a homogeneous shear strain y on this system

should be of the form represented in Figure 25a. Position A

is the equilibrium fcc lattice and A' represents the twin-

related lattice obtained by a complete twinning shear. The

dashed line represents the linear elastic calculation while

the solid line reflects the expected "softening" due to the
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presence of the second minimum at A'. Position B represents

one-third of a twinning shear and is thus the configuration

of the first Bogers-Burgers shear.

The shear modulus for [011] (0 1 1 )bcc shear used in

Chapter 5 gives a strain energy for a shear strain Y2 on this

system in the bcc lattice of the form represented in Figure 25b.

Here position C is the equilibrium bcc lattice and position B

is again the configuration of the first Bogers-Burgers shear

which can be equivalently obtained by a 25% shear strain of

the bcc lattice on this system. The interatomic potential

calculations and the hard-sphere considerations discussed

earlier suggest that there will not be a large deviation from

linear elastic behavior in this case. The deformation from

position B to position C represents the second shear of the

Bogers-Burgers lattice deformation.

Because of the chemical free-energy difference

between the two structures the energy of position C of

Figure 25b must be 300 cal/mole lower than that of position A

in Figure 25a. Also, because position B represents the same

structure in both cases the deviations from linear elasticity

must be such that the energy of this configuration is the

same referred to either lattice. Accordingly, the energetics

of homogeneously deforming the fcc lattice through the Bogers-

Burgers lattice deformation can be represented by the three-

dimensional plot of Figure 26 where the Y and y2 axes

represent deformations along the two shear systems as in
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homogeneously deformed along y1 to position B will be unstable

with respect to spontaneous deformation along y2 to produce

the bcc lattice of position C. It should be noted that the

energies considered here are for homogeneous deformation of

an unconstrained lattice. In considering the formation of a

bcc embryo in an fcc matrix, surface and strain energy must

be included in the total energy and these will raise position

C. Only for the conditions of a negative fault energy

established in Chapter 5 will position C be lower than A in

the total energy balance. Under such conditions, existing

dislocations capable of moving atoms from the A position to

the B position will experience a force causing them to move,

thus imparting the necessary y1 displacement such that the Y2

displacement may occur spontaneously.

The energy curves in Figure 26 represent sections

through an energy surface. If this entire surface were

constiucted, a lower energy path might be found between points

A and C. However, the actual path and the magnitude of the

energies involved are unimportant to the nucleation mechanism

considered here. The partial dislocations derived from the

nucleating defect will accomplish the y1 component of the

lattice deformation regardless of the energy involved, and

the y2 component occurs spontaneously. If there is a lower

energy path between A and C, the spontaneous y2 deformation

may begin to occur as the structure is deformed along y1 by

the partial dislocations even before point B is reached.
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By the proposed mechanism these intermediate configurations

will only exist at the particle interfaces. The actual

magnitude of the energies of the intermediate configurations

in the fcc-bcc lattice deformation thus will only influence

the core energies of the partial dislocations which form the

particle-matrix interfaces.

The exact shape of the energy surface of Figure 26

is important to the proposed alternative approaches to the

martensitic nucleation problem which invoke higher-order elastic

constants (e.g. localized soft phonon-mode theories ).

However, it should be noted that higher-order elastic constants

derived from such an energy surface for the homogeneous

deformation of an unconstrained lattice are not entirely

relevant to the nucleation problem. The surface energy and

coherency strain energy associated with nucleation in a matrix

will severely distort this energy surface (especially where

a large macroscopic shape change is involved) and the resultant

modification of the effective higher-order elastic constants

must be properly taken into account if the martensitic nuclea-

tion problem is to be dealt with at all realistically.

It is interesting to consider that the core of an fcc

lattice dislocation with partial displacements on the y shear

system is likely to possess atoms in positions near B in

Figure 26. Under conditions where position C is of higher

energy than A (in the total energy balance of surface, strain,

and volume chemical free energy) and thus the formation of a
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martensitic embryo is energetically unfavorable, atoms near

the B position might still be able to lower their energy

somewhat by relaxing toward C on the Y2 shear system. Since

this involves a second shear plane, the dislocation core

would thus adopt a partially "cross-slipped" configuration

and this may influence dislocation mobility and the resulting

mechanical behavior. Such an effect might account for the

previously unexplained observation by Breedis and

Robertson (49) of a strengthening effect at temperatures

slightly above the region of spontaneous stress-assisted

martensitic nucleation. The effect was clearly shown by a

comparison of the temperature dependence of the critical

shear stress for slip in single crystals of an unstable

Fe-Cr-Ni alloy with that of a stable Fe-Cr-Ni alloy with

comparable solid-solution strengthening. Electron microscopy

could reveal no evidence of actual martensitic transformation

in the region where the strengthening was observed. Such a

strengthening effect might thus be attributed to the

dislocation cores adopting the proposed partially "cross-

slipped" configuration as the thermodynamic conditions for

spontaneous martensitic nucleation are approached.
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