
A Systems Thinking Approach to IT Process Automation
Gaining Efficiencies in Very Large Multi-Service Data Centers

By

Scott E. Albrecht

Bachelor of Science, Information Technology and Business
University of Massachusetts, 2011

Submitted to the Engineering Systems Division in partial fulfillment of the
requirements for the degree of

Master of Science in Engineering and Management

At the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December 2013

Scott E. Albrecht 2013. A rights reserved.

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 2132016

LIBRARIES
ARCHIVES

The author hereby grants MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or

in part in any medium now known or hereafter created.

Signature of Author:

Certified by:

Signature redacted
Scott E. Albrecht

Engineering Systems Division
December 31, 2013

Signature redacted

Accepted by:

James M. Utterback, Thesis Supervisor

D dJ. McGrath Jr. (1959)2.rfessor of Management and Innovation and

Profe gineering System)vT Slpan School of Management

Signature redacted
Patrick C. Hale

Director of Syste' TDesign and Management Program

THIS PAGE INTENTIONALLY LEFT BLANK

2

A Systems Thinking Approach to IT Process Automation
Gaining Efficiencies in Very Large Multi-Service Data Centers

By

Scott E. Albrecht

Submitted to the Engineering Systems Division On January 13, 2014 in partial fulfillment of the
requirements for the degree of Master of Science in Engineering and Management

ABSTRACT

Keeping up with the Joneses, in an Information Technology (IT) sense, is not a feel good activity, it's a

necessity to remain competitive. Building and maintaining a relevant, reliable, and scalable IT service

infrastructures, without crushing the bottom line, is a necessary undertaking to avoid obsolescence in the

marketplace. This is particularly true for very large scale IT Service and "Cloud" providers. At the very top

of many CIO's wish list is to obtain, or create, an effective and efficient IT Process Automation (ITPA)

framework. Use of ITPA or Run Book automation is a requirement to efficiently manage increasingly

massive pools of systems and services under any particular IT Service Provider's management domain. A

successful process workflow, run book, automation, and orchestration framework implementation

requires a high degree of flexibility and scalability to be successful. It also requires an intuitive command

and control structure to manage today's massive scale deployments and their increasingly demanding

customers and service level agreements. This paper explores a new applications of a "publish-subscribe"

messaging paradigm and how it can be leveraged to construct a core ITPA framework. This ITPA

framework will scale to match the various needs of very large IT service infrastructures. The overarching

intent of the paper is to discuss this ITPA framework, at a level of detail sufficient enough to provide a

well-trained IT practitioner the ability to construct it themselves within their organization. This paper is

however abstract enough to give the practitioner a high degree of choice with regards to the specific

technologies and implementation details that must ultimately be tailored to their organization's specific

needs and requirements.

Thesis Advisor: James M. Utterback

Title: David J. McGrath Jr. (1959) Professor of Management and Innovation and Professor of Engineering

Systems MIT Sloan School of Management

3

ACKNOWLEDGEMENTS

I am extremely grateful to have had the opportunity to work with such a talented and experienced group

of students, professors, and supporting staff. The experience while MIT was encompassing and immersive.

It has become part of me and I will carry it forever.

I would like to extend a special thank you to Professor Jim Utterback. Professor Utterback was not just

influential in the construction of this paper but was also a very important pillar to my entire experience

at MIT. He has helped me understand the broader context of the technology that I spend my day to day

immersed in and introduced me to a cast of brilliant individuals whose work has helped to recalibrate the

way I think about Business and Technology. Professor Utterback has also given me the freedom and

confidence to challenge conventional wisdom and think on my own, particularly with regard to Technical

Strategy.

Pat Hale and the entire System Design and Management staff are so friendly and helpful in removing

obstacles for us. This enables us the students, the ability to focus on our core educational mission. The

whole team is critical to the success of the program and their fine work does not go unnoticed, and so,

deserves special thanks.

To my management at my employer Oracle for giving me the assistance, flexibility, and balance necessary

to make my school, work, and life all complement each other.

To my wife and children for giving me the support, time, and encouragement to continue my studies. They

bring purpose to my life.

4

TABLE OF CONTENTS

Abstract --........ 3

Acknow ledgem ents .. 4

Introduction.. 9

Chapter One - The IT Service Provider... 13

A M anagem ent View of the IT Service Provider... 13

A System s Level View of the IT Service Provider ... 16

Chapter Two - IT Process Autom ation and Gaining Efficiencies... 26

Run book and IT Process Autom ation .. 27

Approaches to Autom ation .. 31

Orchestration and Autom ation Products .. 38

Building a Messaging Framework through Publish-Subscribe and Broadcast Paradigms 41

Addressing the System s in Fleet w ith Attribute-Value Pairs... 45

Autom ation via Horizontal "Group Based" Orchestration ... 49

Autom ation via a M icro-Orchestrator... 56

Autom ation via a M acro-Orchestrator... 60

Chapter Three - Design Considerations and Best Practices.. 64

Understanding Safety and M anaging Change through ITPA ... 64

Pitfalls and Failures of Autom ation ... 71

Conclusions and Future W ork .. 74

References- -. 75

5

TABLE OF FIGURES

Figure 1 - The IT Automation Closed Loop (Adapted from Source: Forrester Research, Inc.) (Garbani,

Mendel, & Radcliffe, The IT Automation Imperative - Putting IT On The Road to Industrial Mass Production

REPO RT -, 2009)... 11

Figure 2 - Logical D ata Center... 17

Figure 3 - Generic Service to Abstract Architecture Mapping... 18

Figure 4 - Types of Service Tenancy ... 19

Figure 5 - Complexity Model for Homogeneous Services ... 21

Figure 6 - Large Heterogeneous Multi-Service Datacenter Model ... 22

Figure 7 - Survey - What are (or would be) your primary reasons for adopting or considering IT process

autom ation? (Enter top three in priority order) ... 29

Figure 8 - Survey - Which disciplines have you already automated (or are in the process of automating)

(Enter all that apply).. -... 29

Figure 9 - Survey - What is your highest-priority focus for IT operations process automation for the next

12 to 18 m onths? (Select 1).. 30

Figure 10 - Survey - How would you assess you IT operations process level? (Select 1)...................... 30

Figure 11 - Two Process - Single System Workflow... 33

Figure 12 - Two Process - Two System Workflow .. 35

Figure 13 - Seven Process - Three System ITPA Workflow - The External Orchestrator 37

Figure 14 - ITPA - RBA Gartner Vendor Landscape... 38

Figure 15 - Transitioning View of the Operating System.. 42

Figure 16 - Publish-Subscribe Message Flow Example.. 43

Figure 17 - "Pseudo" M essage.. 45

Figure 18 - Form ing Groups through Attributes... 49

Figure 19 - Horizontal Group Based Orchestration .. 50

Figure 20 - Group Based M icro-Orchestrator.. 57

Figure 21 - The "M icro O rchestrator"... 58

Figure 22 - The Macro Orchestrator - High Level Design ... 61

Figure 23 - The "M acro O rchestrator".. 62

Figure 24 - Relationship between Change, Growth, and Obsolescence ... 65

6

Figure 25 - Possible "Safety Catch" im plementation.. 67

Figure 26 - Single Command Repository vs Synchronized Command Repository.................................. 69

TABLE LIST

Table 1- Key Statistics of Data Processing & Hosting Services in the US 2013 (Recreated from IBIS World

Report) (Kraveepetcharat, 2013).. 14

Table 2 - ITPA Criteria to Benefits M apping ... 24

Table 3 - Top Three IT Automation Priorities Survey (Williams, 2010) ... 28

Table 4 - Possible Attributes Associated with a Rock Star's Fan .. 47

Table 5 - Possible Attributes Associated with a System ... 47

Table 6 - Several Other Possible Attributes Associated with a System ... 48

Table 7 - Forming Groups of Systems in the System Fleet ... 48

Table 8 - Case 2 Operational M essage Sequence... 53

Table 9 - Automation Design Factors that Lead to Difficulty .. 73

7

THIS PAGE INTENTIONALLY LEFT BLANK

8

INTRODUCTION

Information Technology organizations throughout the world are constantly adapting to a more

demanding IT consumer; business or otherwise. Over time, this consumer has grown increasingly less

tolerant of application downtime, system performance degradation, data loss, security failures, or long

cycle times to add new features to a given service or application. This is especially true given that IT

"services", now more than ever, play an essential role in the core operations of businesses of almost any

size. These service demands are also not limited to only core business functions like employee

collaboration suites, human resource, finance, and customer relationship management (CRM). Even the

day to day consumer of internet based "retail" applications also demand "up 24x7" and even for "free"

services. The types of free services may include Facebook, Twitter, Google services, Yahoo, Skype and an

endless array of others. These services provide everything from your individual bank account

management to customizable weight loss programs. The expectations on these free services are

particularly enormous. A zero downtime and defect policy is not a stretch goal, it's the baseline

expectation. Additionally, these service demands are not only placed on IT staff and management, but

also on their counterparts in the applications development side.

Occurring in parallel to the ever increasing service demands are the mounting complexities of the actual

applications that are built and maintained IT organizations. As an example; for every application service

that has become a ubiquitous commodity, there is the inevitable modularization, consolidation, and

integration of these commodities into the next great "suite" of products or platform services. These suites

and platforms will ultimately go through the same commoditization, modularization, consolidation, and

integration until they themselves become ubiquitous. This cycle makes way for the next great platform or

service. This full lifecycle seems to have accelerated recently with the emergence of "cloud" based

applications suites, services, and platforms. The expectation from the consumer's perspective is

instantaneous, persistent, and stable availability of highly complex and customized application service

environments. Just a few short years ago for an IT staff to bring to life an identical suite of would require

a massive systems engineering effort and significant upfront capital. Now a CTO can "order up" this same

service from a cloud based provider in approximately the amount of time it takes to complete the

registration process. Then like magic it appears! But just like any good magic there are two sides to the

equation; the magician's side and observer's side. What the observer sees is only the end result of the

9

magician's preparation and practice. What the observer does not see are the weeks, the months, or the

years spent in preparation by the magician.

With that said; this paper is predominantly written for the architect or practitioner who provides and

builds these mega-services for the consumer. A main focus of this paper will be on spent on understanding

the IT processes and process automations that an IT organization must develop and maintain in order to

efficiently produce these services and applications with any sort of scale.

As an example of automation; 5-7 years ago it might have taken an IT staff of 20 well trained system

administrators, database administrators, developers, architects, and managers anywhere from 3-6

months to manually install, customize, and deploy a large enterprise application for a given enterprise

customer. Now it is possible to have and equivalent application ready to populate with custom data in

less than a day, and sometimes instantly. This act will be done with virtually no human intervention on

the construction side. This system is bought up wholly through automation. Specifically through an

automated IT provisioning processes. This same automated provisioning process has the capability to

create any number of similar systems for any number of enterprise customers. These capabilities are

bounded only by the available infrastructure resources and system capacity. Previously the limitations

might likely occur as a result of insufficient staffing or personnel to create and manage a given service

infrastructure

IT Process Automation (ITPA) does not end after provisioning either, it persists in all aspects of the

service's application lifecycle. These aspects of automation lifecycle likely mirror the typical aspects of a

single application's lifecycle including; provisioning, change management, release management,

performance management, disaster recovery, support, and decommissioning.

When an IT organization is tasked with maintaining the lifecycle of a single enterprise application the need

for automation can be somewhat muted. Typically the necessary tasks of maintenance, support, upgrade

and performance management can be handled somewhat manually by the existing IT staff. However

when an IT organization is tasked with maintaining several thousand enterprise applications, the need for

process automation is unquestionably essential. In a recent Forrester article titled "The IT Automation

Imperative" the author states the following: "With 35% of a typical IT budget spent on personnel, staffing

represents the heaviest IT financial burden. The way in which IT evolves in complexity and size, combined

with the current inefficiency of many IT management processes, leads to an ever-increasing demand for

additional personnel to simply maintain the productivity status quo. In any case even if IT could hire extra

10

resources, there is a general shortage of experienced personnel that would preclude organizations from

doing so.... IT has to embrace the key elements of mass production and adopt automation." (Garbani,

Mendel, & Radcliffe, The IT Automation Imperative - Putting IT On The Road to Industrial Mass Production

REPORT -, 2009)

Process automation is not always a good thing, however, particularly poorly designed or "Clumsy

Automation" (Billings, 1997) can often times lead serious unforeseen negative consequences.

Overreliance on automation can have the effect of degrading the necessary skills required to troubleshoot

the system or systems when things do not go according to the automation plan. Moreover automation

can have the effect of masking to a high degree the complexity of a given IT process.

Given these facts, many of the automation techniques shown in this paper have consideration that both

humans and machines will continue to remain vital controllers in the IT process automation loop shown

below:

Plan

Report and Controller Stage
Monitor

Execute

Figure 1 - The IT Automation Closed Loop (Adapted from Source: Forrester Research, Inc.) (Garbani, Mendel, & Radcliffe, The

IT Automation Imperative - Putting IT On The Road to Industrial Mass Production REPORT -, 2009)

Additionally, even with extremely well designed and implemented IT process automations, the laws of

entropy through time will generally create a more disordered system and therefore increase the

probability of unforeseen process errors. These will emerge from several facets of the system and control

structures that may not have been available as a consideration to the IT process architect or automation

11

designer. This paper will try to give some research and experience based approaches to the design of a

good IT Process Automation framework that will include the ability to have both human and machine

based system controllers and orchestrators.

The flow of this paper is summarized below:

Chapter 1 - The IT Service Provider: An introduction to IT Service Providers, who they are, and what they

do. This Chapter provides a managerial and systems level view of the services and system architectures

prevalent today. This chapter also describes some common design patterns used within the data-service

center that an IT Service Provider will leverage to provide services to their customers. This chapter also

illustrates the operational and systems management needs that must be satisfied in order to maintain

demanding service level agreements with their customers.

Chapter 2 IT Process Automation and Gaining Efficiencies: This chapter describes IT Process and Runbook

Automation (ITPA), what it is, and why it is one of the top priorities of any modern IT organization today.

The reasons for this are even more pronounced for large scale IT Service Providers; e.g. those generating

and providing "cloud" or "as a Service" based products. This chapter illustrates a unique framework, which

recombines several existing technologies in a new way. This newframework provides a core ITPA backbone

to any IT Service organization wishing to enable any variety of "scaled" process automation and

orchestration to fit their particular needs. This framework can be applied to virtually any sized IT Service

provider with service infrastructures of any almost degree of complexity.

Chapter 3 - Design Considerations and Best Practices: Gives some helpful tips, insights, and

recommendations that should be used when designing an IT Process Automation scheme for your

organization. The topics include Safety, Change Management, Standardization, Performance, and

Configuration Management. These topics are interrelated as design considerations that must be though

through when implementing and building out the specific flows enabled by the ITPA framework discussed

in Chapter 2, and more broadly any process or workflow automation scheme.

12

CHAPTER ONE - THE IT SERVICE PROVIDER

What is an IT Service Provider, where do they come from, and what do they do? Loosely, the term Service

Provider describes a company or entity that provides traditional IT services in an outsourced way to

another company, entity, or consumer. The Service Providers focused on in this paper will typically be

External Service Providers who provide a sizable level or number of services to a large consumer base.

The contents of the paper does not only apply to External IT Service Providers however, as many of the

suggestions, approaches, and architectures are equally applicable to all IT Service organizations of any

type or size.

The Information Technology Infrastructure Library - (ITIL) Glossary defines an External Service Provider as:

"An IT Service Provider which is part of a different organization [than] their customer. An IT Service

Provider may have both internal customers and external customers. [Where] An IT Service is defined as:

A Service provided to one or more customers by an IT Service Provider. An IT Service is based on the use

of Information Technology and supports the Customer's Business Processes. An IT Service is made from a

combination of people, processes, and technology and should be defined in a Service Level Agreement."

(Rance, Stuart; Hanna, Ashley; Hewlett-Packard, 2007)

A Management View of the IT Service Provider

This section will review the Service Provider Industry as a whole, and describe what they do, what their

current growth patterns look like.

For the most part the IT Service Provider industry is inclusive of, but not limited to, the following generic

and conceptual Information Technology categories:

* Application and Business Process Outsourcing

* Cloud Computing (PaaS, SaaS, laaS, *aaS)

* Infrastructure Outsourcing

* Web Hosting Services

IT Utility Services

These generic categories take many specific forms. For example, a "PaaS" Service Provider could provide

any number of services including, application server functionality, raw database services, or any facilities

that may be used in the creation of a fully functional application. This contrasted against "SaaS" where

the application functionality is already build shows some distinctions within the "Cloud Computing"

category. In general there are spanning and somewhat deep hierarchies amongst each category.

13

The IT Service Provider industry is quite large and according to a July 2013 report by IBIS World the Data

Processing & Hosting Services Industry (The IT Service Provider Industry) is approximately $84 Billion in

Just the US alone. (Kraveepetcharat, 2013) The worldwide market is certainly larger but the trends that

run through the IT Service Providers industry in the US can be used as a reasonable sampling of how the

remainder of the markets worldwide are moving.

The following are several statistics about the US IT Service Provider Industry. These statistics are helpful

in revealing some fairly interesting trends:

Year Revenue (Sm) IVA ($m) Establishments (Units) Enterprises (Units) Employment (Units) Wages (Sm) Corporate Profit ($b)

2004 60,111.80 32,223.70 46,987 40,804 264,980 17,556.40 1,246.90

2005 62,932.70 32,542.60 48,038 41,224 265,260 17,187.00 1,456.10

2006 67,036.80 33,628.30 52,000 44,149 264,320 17,271.40 1,608.30

2007 73,667.30 35,879.20 57,628 49,324 266,130 17,904.30 1,510.60

2008 74,520.80 36,024.10 58,190 49,800 263,140 17,841.00 1,248.40

2009 76,758.40 36,102.50 58,082 49,721 254,140 17,373.40 1,362.00

2010 77,062.80 35,408.60 57,829 49,522 239,850 16,605.30 1,800.10

2011 78,277.30 36,362.60 55,587 47,529 245,573 17,263.00 1,928.00

2012 82,638.50 35,626.10 52,746 47,239 215,797 15,462.30 1,942.50

2013 83,845,5O 35,S7140 50,620 47,744 214,04 15,413.I0 1,960.1O

2014 86,312.30 36,083.20 45,747 44,789 204,318 15,023.00 2,031.80

2015 89,768.30 36,984.40 43,362 42,621 199,729 15,080.90 2,134.90

2016 89,930.30 37,184.20 41,463 40,916 196,393 15,241.20 2,221.20

2017 94,451.20 38,479.30 40,082 39,847 192,978 15,433.20 2,275.60

2018 97,336.70 39,229.70 38,750 38,514 188,712 15,479.50 2,446.10

Table 1- Key Statistics

(Kraveepetcharat, 2013)

of Data Processing & Hosting Services in the US 2013 (Recreated from IBIS World Report)

One can easily spot that revenue, corporate profits, and the Industry Value Added (IVA) for the Service

Provider Industry in the US are increasing at a reasonable clip annually. In the same table it is also quickly

noticeable that the industry is expected to continue reducing the number of establishments, enterprises

and employment. At first glance it appears from the data that wages are somewhat stagnate, however

given that the total number of employees working in the industry are expected to decline when combined

with the fact that total wages are expected to remain the same implies a healthy 15% projected average

bump in per employee wages over the next 5 years for those that remain in industry.

IBIS provides the following insights; "The Data Processing and Hosting Services industry provides

infrastructure for hosting or data processing services used for a variety of information technology (IT)-

related activities, ranging from web hosting to automated data entry services. During the five years to

2013, businesses have increasingly outsourced their IT infrastructure needs, directly benefiting industry

14

operators. Therefore, the industry has fared well over the period, with revenue growing at an estimated

annualized rate of 2.4% to $83.8 billion, including expected growth of 1.5% during 2013.

Investment in outsourcing application hosting to specialized firms has been the primary driver of growth,

as it has been an alternative to local hosting of enterprise software. Because revenue depends on

subscriptions, the pullback of IT spending during the recession [of 2008] slowed the rate of revenue

growth. However, spending has picked up since 2011, and it is expected to grow even faster in 2013 as

firms increasingly outsource their IT needs to third parties.

Mergers and acquisitions are anticipated to increase during the next five years as firms consolidate to

increase the subscriber base over which they can allocate computing resources. Also, supply disruptions

in the hardware space (such as the flooding of hard-drive manufacturing plants in Thailand during 2011)

may push companies that managed their IT infrastructure needs in-house to opt for a third-party provider.

Other factors will also play into growth in coming years. Consolidation within other industries will push

businesses to outsource their IT needs as systems become too complex to maintain in-house. At the same

time, the exponential growth in complexity as scale grows will increase the expertise level needed to

effectively manage large data centers. As firms begin capturing more data, they will increasingly require

outside expertise to manage their data collection, hosting and processing. As a result, revenue is forecast

to grow at an average annual rate of 3.0% during the next five years, reaching $97.3 billion in 2018."

(Kraveepetcharat, 2013)

The global marketing push toward "cloud" or "*aaS" ([Anything] as a Service) based services are wrapped

into the broader category of IT Service Providers. Though the "*aaS" providers do not comprise the full

spectrum of IT Service Providers they do represent a very large section of this market, at least in name.

There are roughly three main categories of AaaS Providers in this industry. Infrastructure as a Service

(laaS), Platform as a Service (PaaS), and Software as a Service (SaaS). These trends have forced many

commercial off the shelf (COTS) vendors in the software industry to rapidly develop and implement a

"cloud" or "as a Service" based strategy at least around their core software components. This conversion

is at a minimum disruptive. The trend forces software firms to shift from a central role and mindset of

development into to one of operations management. In this new role characteristics like uptime become

a key part of corporate strategy as opposed to a recommended best practice in the deployment of their

applications or application suites. In this type of environment the COTS vendor becomes responsible for

15

far more than delivering the software packages, instruction manuals, and consulting services. They now

become responsible for managing the availability and vigor of the deployed and in production application.

A Systems Level View of the IT Service Provider

By and large the Service Provider Industry makes use of very large data centers to deliver services to their

consumers over public networks. These data centers are leased or owned (in part or in whole) by a given

IT Service Provider. The data centers are typically utilized to provide the "ping (Remote Management),

power (Electrical Power), pipe (Internet Connectivity)" necessary to run a set of servers and equipment

required to deliver the applications and services to their consumers. The view of the data center for the

purposes of this paper is logical rather than physical as a system's location within the "network" will to be

more significant to the discussion than the system's physical location within the data center. Also for the

purpose of this paper data centers are assumed to provide essential elements such as; power, cooling,

ventilation, rack space, modular design, and a fault tolerant electrical and inbound network infrastructure

at a "Tier 4" level of service. Tier 4 is a "standard" level set forth by the Uptime Institute's Data Center

Site Infrastructure Tier Standard. (Uptime Institute, LLC, 2010-2013) The standard set forth by the uptime

institute defines, levels of training of staff, maintenance, operating conditions, and locations, all of which

provide a robust and resilient data center that is used to provide consistent power and external "ping" to

the servers and equipment being hosted and managed.

There is a clear demarcation between the data center and the servers and equipment housed within. For

example the data center may remain fully operational whilst the servers and equipment housed within

are down and unavailable. An analogy that can be used is that a server or a piece of equipment is like an

airplane and the data center, with its core services, is the airport. One or many individual airplanes can be

down for maintenance or repair at any moment while others remain taxiing, taking off, landing, or parked

under normal operation. An airplane's actual state has no impact on the overall state of the airport. In

much the same way, one or many servers, network appliances, or infrastructure components

(equipment), may be down for a period of time, but their outage will not impact the availability of core

data center services of the data center itself.

In general the core operations and maintenance of the data center itself will be out of scope for this paper.

However the operations and maintenance of the servers and equipment within the data center are in

scope. See the boundary diagram below in Figure 2 below.

16

LOGICAL DATA CENTER

CORE DATA CENTER SERVICES

CORE REDUNDANT NETWORK SERVICES

CORE REDUNDANT HVAC SERVICES

CORE REDUNDANT ELECTRICAL SERVICES

CORE SAFETY (e.g. FIRE SUPPRESSION) SERVICES

SERVICE PROVIDER SERVERS AND EQUIPMENT
LSERVE F SERVER SERVER SERVER-] SERVER

EQUIPMENT EQUIPMET EQUIPMENT EQUIPMENT IEQUIPMENT

SERVER SERVERj SERVER SERVER SERVER

SEQUIPMEN EQUIPN EQUIPMENT E MENT EQUIPMENT

Figure 2 - Logical Data Center

This diagram shows this distinction between the core services offered by the datacenter, and the servers

and equipment that operate the services for the IT Service Provider. (Within the dashed line.) It is not

uncommon that an IT Service Provider will have ownership of both the datacenter and the servers and

equipment, but they will typically be managed and operated under distinct operational teams with varying

roles, processes, and procedures. Within this paper the "servers" and "equipment" shown below within

the boundary are in scope, because they are an integral and high touch component of the "service" being

provided by the IT Service Provider whereas the plumbing and availability of the "core data center

services" are assumed to always be available and therefore somewhat ubiquitous.

Given the fact that the "servers" and "equipment" above are in scope, a discussion about the taxonomy

of these systems, as they relate to types of services provided, will be discussed further in this paper. For

now however, it should be understood that the servers and equipment are simply the devices that provide

the raw computing resources and pathways to enable a given service. Specifically the CPU, RAM, storage,

and local network resources.

17

A particular service can have partial or whole ownership of a system or group of systems and equipment.

In fact, the ways in which services utilize servers and equipment will vary extensively from one Service

Provider to the next. These variances are generally limited only to the imagination of the infrastructure

and application architects. Many of these service architectures (though perfectly valid) may look nothing

alike from one Service Provider to the next. This despite the fact that the services provided may be almost

identical. There are some common architectural themes or patterns that exist with regards to the services

being provided. These services are then mapped to these architectural pattern, and these architectures

make use of the servers and equipment as shown below. Again, the mapping is somewhat arbitrary, and

the list is limited to provide a few simple examples.

Abstract
Architecture A

SERVER

Abstract
Architecture B

SERVER

Virtual Virtual
CSERVER SERVER

Virtual Virtual

SERVER [SERVER

Abstract
Architecture C

SERVER

Virtual Virtual
SERVER I SERVER

EQUIPMENT

SERVER
Virtual Virtual
SERVER SRE

A44PS TO

Generic Service

Figure 3 - Generic Service to Abstract Architecture Mapping

Modern system architectures involve "bare-metal" systems and virtualized systems. Both types can be

either single or multi-tenant. The diagram above shows how a single "Generic Service" could run from

Architecture A, Architecture B, or Architecture C. This type of service mapping is defined as a "single-

tenant" type solution. This mapping does not need to be 1:1 however. For example, it is entirely possible

18

I

to have many services mapped to a single architecture. (e.g. : map 5000 homogeneous services onto a

single Abstract Architecture A, B, or C) In doing so the consumers of the services would "share" the

resources used by the service but the sharing would be somewhat abstracted to the consumer of the

service as their view would be one of isolation if done properly. This is a type of Multi Tenancy which has

become pertinent with the widespread adoption of "virtualization" technologies by IT Service Providers.

In Gartner Reference Model for Elasticity and Multitenancy (Natis, 2012)they define several models of

service "tenancy". Gartner states that multitenancy is the "Sharing common application computing

resources among independent users or processes (tenants) is an essential characteristic of cloud

computing, and is referred to as "Multitenancy" (multiple tenants sharing common physical computing

resources, while remaining logically isolated). Depending on the usage scenario, tenants may be user

organizations or applications; in either scenario, the application instances are running in a physical

computing environment partly shared among them, while presenting a logical computing environment

i.e.: a service] that appears exclusively dedicated to each instance (tenant)."

Below is a pictorial description of the "tenancy models" described by Gartner (Natis, 2012).

Types of Service "Tenancy"

Shared Nothing (Single Tenancy) Shared Container (Multitenancy)

Shared Hardware (Multitenancy) Shared Everything (Multitenancy)

Shared OS (Multitenancy) Custom Multitenancy

Shared Database (Multitenancy)

Figure 4 - Types of Service Tenancy

Several implementations of the varying and common types of service architectures and tenancy models

are discussed in further detail in the following chapter, but they are referenced here to make the point

that there is no single and set way to map services to a given set of servers or equipment. There is also no

single or set way to model service tenancy without having a full understanding of the service being

offered. Clearly the mapping or deployment strategies will ultimately be customized to a high degree by

the needs and requirements of the consumers of a given service. For example, one would approach the

19

architecture of a service that provides a single tenant bare metal web server (such as an apache HTTP

server) to an array of individual customers far differently than an architecture which provides a multi

system, multi-tenant ERP service to a set of Fortune 500 companies. Though this paper will not be about

the architectures of servers it is important that the idiosyncrasies of these architectures be discussed in

some level of detail to understand how to create efficiencies through the various automation paradigms

discussed in this paper.

Moving from the discussion of tenancy and architecture comes the topic of complexity of the services

offered by the Service Provider. For example, it is not a fair comparison to say that a "service" providing

1000 unpopulated webserver instances to a consumer is equal in complexity to a "service" that provides

1000 Enterprise Resource Planning (ERP) instances. They are vastly different in their deployment

architectures, tenancy models, and also in their complexity at an atomic "service" level.

Complexity can go in two directions "vertically" and "horizontally." Complexity can also go in both

directions at the same time (Both vertically and horizontally complex). An example of a "vertically"

complex service offered by a Service Provider could be something like a CRM, ERP, Supply Chain, or

Salesforce automation Suite. A single service can span many physical or virtual systems and have hundreds

or even thousands of integration points. An example of a "horizontally" complex service might be a very

simple service architecture or design, with very few integration points and system modules, but the

complexity will come from how it scales. For example the complexity of running a ten thousand

homogeneous webservers is equally complex but in a different way. Perhaps a good metaphor to describe

the distinction between vertical and horizontal complexity is to describe the difference between a custom

Lamborghini and the 2012 model year Toyota Corolla. The Custom Lamborghini is precision tuned

machine, with every component calibrated and tuned to an exact specification for that single car.

However, when you look at the "Just in Time" production line from which the Toyota Corolla is produced

one can easily see how immensely complex the production of the corolla is despite the fact that the

complexity of a single Corolla pales in comparison to the complexity of a single Lamborghini. Below is an

example of the complexity models described above:

20

HOMOGENEOUS SERVICE "COMPLEXITY" MODELS

HORIZONTAL VERTICAL HORIZONTAL AND VERTICAL
SIMPLE COMPLEXITY COMPLEXITY COMPLEXITY

SERVICE SERVICE
SERVICE SERVICE SERVICE

SERVICE SERVICE SERVICE SERVICE SERVICE

SERVICE SERVICE SERVICE

SERVICE SERVICE

Figure 5 - Complexity Model for Homogeneous Services

Each hexagon shown above represents a single abstracted "unit" of complexity as it relates to an

autonomous service. Because this is an abstracted measure of complexity, a single unit could represent

many things. For example; a service with no integration points that performs a limited number of

functions might have only a single "unit" of complexity. On the hand, if there is a vertically complex service

it might contain many "units" of complexity within a single service as shown in the "Vertical Complexity"

model above.

In the Horizontal Complexity model there are many autonomous services with limited complexity that

exist under a given management domain. Despite the fact that any single service might not be complex

in and of itself, the management of hundreds or thousands of these autonomous services will ultimately

create a high degree "horizontal" complexity from its scale. As the number of autonomous services

increases so will the complexity of creation, management, and maintenance these services. Imagine

200,000 homogeneous webserver instances.

In the Vertical Complexity model above, the more complexity units a single autonomous service has, the

more complex the single autonomous service will be. A service with a high degree of vertical complexity

might have dozens of systems, hundreds of integration points, and perform any variety of complex

functions. In much the same way as Horizontal Complexity is positively correlated to the Service Provider's

21

-1

management complexity, so is Vertical Complexity. The more vertically complex a service is, the more

complex it will be to create, manage, and maintain it by the IT Service Provider.

In the case of most Service Providers the services offered are both vertically and horizontally complex and

generally not homogeneous. The will also have many types of tenancies (described above) to formulate

the service architecture. As you can imagine a typical Service Provider's datacenter can become incredibly

complex from both a systems and system's management perspective.

Below is an example of how a very large heterogeneous, multi-service data center could look using our

abbreviated complexity model.

SERVICE
A

SERVICE SERVICE SERVICE
C C

A
SERVICE SERVICE

C C

SERVICE SERVICE SERVICE SERVICE
C C C C

SERVICE
C

SHARED
SERVICE

SERVICE
A

SERVICE
B

SHARED
MULTI-TENANT

SERVICE F

SERVICE
B

SERVICE SERVICE

E E

SERVICE SERVICE
E E

ERVICE
B

SERVICE SERVICE
E E

SERVICE
E

SERVICE
E

SERVICE
E

SERVICE
E

SERVICE SERVICE
E E

LARGE HETEROGENEOUS MULTI-SERVICE DATACENTER MODEL

Figure 6 - Large Heterogeneous Multi-Service Datacenter Model

The model above illustrates one of the key complexities that any modern Service Provider must address

from a systems perspective. In order for an IT Service Provider to manage this incredible degree of

complexity it must find efficiencies in almost every aspect of the operational lifecycle. To gain efficiencies

in managing these systems the Service Provider will undoubtedly need to highly automate if they expect

to compete.

Thought IT Process Automation will be discussed in detail in further sections of the paper we will introduce

some of the key pillars that can fall under the general umbrella of IT Process Automation. According to a

recent Forrester Market Overview of IT Process Automation (Garbani & O'Donnell, Market Overview: IT

22

SERVICE
A

SERVICE
B

SERVICE SERVICE SERVICE
C C C

Process Automation, Q3 2011, 2011)the following four "solutions" represent the Foundation of IT Process

Automation:

Workload automation - This is the earliest and most common form of IT process automation. Any

IT organization that reaches a certain level of complexity needs a workload automation solution

to insure timely and accurate performance of its asynchronous processes.

Run book automation - This is the second wave of IT process automation, born from the

complexity and resource-consuming activities of IT operations. Server provisioning is the most

widely adopted use for run book automation, but the principles are now applied to virtualization

control and the diverse operations needed to make applications cloud-ready.

Low-level process automation - This type of automation replaces script-based IT processes for

typical IT operation activities, such as implementing a patch on an operational server. Other forms

of low-level automation are those used to integrate applications at the user interface level

High-level process automation - Release management, change control, and complex ITIL derived

processes are all examples of high-level IT processes that can be automated. These workflows

often reside within a service desk engine, but this is certainly not a requirement.

Complementary Technologies and Capabilities (Garbani & O'Donnell, Market Overview: IT Process

Automation, Q3 2011, 2011)

Integration into a single automation framework or solution - These solutions have been brought

under a single umbrella and can share data and other interfaces through a common access

framework, even though they may not be fully integrated at a process modeling and data

modeling level.

Ability to combine automation solutions into a single process - solutions have been brought

together as a single and seamless process approach, fully abstracting the differences between

automation solutions. The modeling basis is unified either via a fully-shared model or via an

abstraction layer atop disparate models, which offers the appearance of a common model.

Automation self-service - This is the first stage where IT process automation meets business

process automation. The end users of the process can choose from a service catalog and initiate

the process execution themselves - without the need to involve someone from IT operations. At

this stage, automation presents either complete process suites or expose reusable components

23

that can be stitched together into new processes. Eventually, end users can plan execution of

business process steps that will self-provision resources and load applications to achieve business

objectives.

Ability to use SLAs or history to trigger automated processes - Behavioral insight such as

performance, availability, and capacity factors governs the execution of any process by analyzing

service behaviors and then triggering the appropriate actions. These decision triggers are most

effectively tied to service objectives defined in service-level agreements (SLAs). This capability is

used to plan execution resources, either based on a historical perspective (for example resource

usage for this job at this time of the year), resource forecast (based on capacity management), or

any form of predictive analysis that will help provision resources automatically.

Integration with ITmanagement solutions - Using SLA or any performance-oriented data requires

a close integration with IT system monitoring. This could be achieved by integration with existing

solutions or by including a monitoring capability within the automation solution. The latter is far

less common, but fuller automation suites with such capability are emerging.

Use of complex event processing as an automation trigger - As performance data and other

events become available, an analysis of these events coming from multiple sources can in turn

create an event that will trigger an automated operation. Ideally, CEP will combine event sources

from the business side and from the IT side to reach a conclusion and launch an operation.

The following table from Forrester (Garbani, Mendel, & Radcliffe, The IT Automation Imperative - Putting

IT On The Road to Industrial Mass Production REPORT -, 2009) correlates these criteria of ITPA to the

Benefit that will be derived by a given IT Service Provider:

Table 2 - ITPA Criteria to Benefits Mapping

ITPA Criteria Benefit to IT Operations

Workload Automation Automated execution of asynchronous application processes,

based on date/time, events, or user request

Run Book Automation Generic form of automation through the generation of scripts

based on a library of potential operations conducted on

software launched in context

Low - Level Process Automation A form of run book automation that triggers processes used

in IT operations to automate routine technical tasks

24

I

S~ ~ - -. '--------. ~ - __________

High - Level Process Automation

Integration into a single automation

framework or solution.

Ability to combine automation

solutions into a single process.

Automation self-service

Ability to use SLA or history to

trigger automated processes

Integration with IT management

solutions

Use of complex event processing as

an automation trigger

A form of run book automation that triggers processes that

can be used in IT operations or in business processes to

automate complex workflows.

The grouping of all forms of automation within a single

framework with a common a common core technology, and

an integrated way of nesting automated processes and a

common user interface.

The ability to launch a form of process automation from

another workflow being executed; for example, launching

server provisioning from workload automation

Availability of catalog of automated processes (or a library of

pre-defined processes) that can be launched by a user from a

serf service interface.

Availability to compare a process execution time with a

predefined SLA and take some form of automated corrective

action.

The capability to send or receive events or performance

information from an enterprise monitoring solution

The use of an integrated complex event processing solution

or a similar form of analytics to trigger the launch of an

automated process.

I
This paper will largely be used to describe an IT Process automation system that is flexible enough to

accomplish these goals illustrated above. Because every workflow, every process, and every IT

organization is unique we will attempt to build a unified framework that is simple yet abstract enough to

enable customization to account for the highly variable ways in which all IT departments create and

manage their own processes and workflows.

25

CHAPTER TWO - IT PROCESS AUTOMATION AND GAINING EFFICIENCIES

This chapter focuses on approaches that IT Service Providers can take to gain enormous efficiencies

through IT process automation. Particularly those with very large IT and supporting service infrastructures.

The efficiencies gained are critical for any IT Service Provider who intends to scale their services out

without also scaling the workload necessary to build and maintain these services. Process automation can

be used to create completely or partially automated tasks and workflows in any number of functional

areas. These areas include; change management, provisioning, support, configuration management, or

virtually any phase of the target service's lifecycle. The framework described in this chapter can be

deployed for both highly complex infrastructures and applications of a very large scale. Additionally the

automation solutions that are described can handle a very high volume operations.

Though there are many different approaches to IT process automation, a core understanding of the needs

and requirements of the implementing IT organization are necessary to the success of the ITPA

implementation. This fact is true regardless of the approach to automation taken. In other words, if an

organization doesn't understand what is being automated fully and in the proper context of the

implementing organization then their chances of success are less than average.

We start this section by investigating some of the top priorities of the IT industry as they relate to

automation. These are helpful to understand the needs, priorities, and rational for process automation as

a core IT strategy. This data is followed by an investigation of some of methodologies and tools that can

take out some of the heavy lifting with the development of an ITPA strategy. Again, it should be clearly

understood that the challenges of implementing an ITPA strategy will not be solved by simply installing a

commercial "automation" suite or product. But by presenting how some of these "breeds" of suites,

products, and frameworks are used in a "solution-neutral" way, one can begin to develop a direction

necessary to help their organization define a core ITPA strategy. At the core of any IT Process Automation

effort there must also be a high degree of time allocated to understanding full details the processes and

the workflows that will be automated. This work is necessary regardless of the product or framework an

organization will choose for their individual deployment.

This chapter concludes by providing examples of process automation techniques that have been deployed

and shown to work on a very large production infrastructures. These automation techniques have been

proven to give enormous efficiencies to the management, support, and core operations teams in several

26

very large heterogeneous IT service environments. The IT Process Automation framework described in

this chapter has provided very real and significant gains in efficiencies. These and other alternative

approaches are discussed not to give "the way" to automate workflows and processes, but rather, to give

in some level of detail, "one way" for IT organizations seeking an approach to ITPA strategy.

Run book and IT Process Automation

Why does an IT organization need process automation and what does it look like? Runbook Automation

or as Gartner redefined it "IT Process Automation" (ITPA) is becoming a critical component of any IT

organization's strategic plan. The value that can be found in ITPA is akin to that found in any modern

industrialized production plant but at an IT scale. Specifically, an IT organization can make monumental

leaps forward in efficiency, cost reduction, as well as error and risk reduction by implementing a well

thought ITPA strategy.

In a 2011 report Gartner states that ITPA "promise(s) to mitigate IT operations risk, reduce costs, reduce

complexity and increase operational efficiency. ITPA should not be viewed as an add-on to existing tools,

and it should not be viewed just another IT management tool. It is a new IT operations management

paradigm requiring new skills, organizational design, investment and support, which unless it is

architected upfront will result in unrealized value, additional costs and complexity." (Colville, IT Process

Automation: Moving From Basics to Best Practices - REPORT - G00214344, 2011) Moreover Forrester

echo's these comments by stating; "The tasks of the IT infrastructure and operations (l&O) professional

have become increasingly complex and susceptible to human error. This is a direct consequence of the

sheer volume and diversity of business services and underlying IT infrastructure components. By masking

IT(s) diversity and automating highly repetitive tasks, IT process automation is the key to industrializing

your operations to improve productivity and reduce costs." (Garbani & O'Donnell, Market Overview: IT

Process Automation, Q3 2011, 2011)

A given IT organization has a huge variety of tasks that are done repetitively. These tasks vary from

something as simple as running a single command to update a single file on a single operating system

every day, all the way to a process that involves several hundred independent steps across several

thousand unique systems or groups (collections) of systems. The approach to automating both types of

process share similarities, but the scope and complexity will ultimately drive the direction and level of

effort the automation takes to develop completely. The Service Provider is our target stakeholder for

which these kinds of automation tasks will be developed on and therefore the systems where an

automation will occur are likely to span across many thousand distinct systems or system groups.

27

The following data represents some recent key statistical information about the state of IT Process

Automation. The following surveys were conducted by Gartner Research over a 4 year period to "provide

an understanding of the role process automation plays in IT operations, showing trends for automation

tools investment, use cases, planned investment needs, vendor and product choices." (Williams, 2010)

Some of the key findings are shown below (Williams, 2010):

" Fueled by difficult market conditions, the reduction in human interaction and IT operations costs

are the highest-rated reasons for implementing process automation tools.

" IT operations process automation maturity has improved, with IT organizations moving from a

basic state (job scheduling, basic task automation) to a moderate state (multiple nonintegrated

workflows in IT operations management silos).

" IT operations process automation (Runbook Automation, RBA) tools have become mainstream,

with market adoption influenced by large vendors using them to integrate, enhance and augment

their configuration provisioning, fault and problem management products.

Reviewing the results of the survey one can see a few trends that are worth noting. The first is that

reducing human intervention, reducing cost, and reducing risk are the key motivating factors for an IT

organization to implement a ITPA strategy, and that automation of Provisioning, configuration

management, and fault or problem management were the top priorities that organizations felt deserved

the highest focus. The following table extracted from the Gartner report summarize the findings to the

question "What are (or would be) your primary reasons for adopting or considering IT Process

automation?"

Top Three "First Priorities" Top Three "Second Priorities" Top Three "Third Priorities"

Reduce human intervention 40% Risk mitigation 29% Reduce complexity 25%

Reduce IT operations cost 19% Reduce IT operations costs 27% Reduce human intervention 21%

Reduce complexity 15% Reduce human intervention 20% Support a virtual/cloud init. 18%

Table 3 -Top Three IT Automation Priorities Survey (Williams, 2010)

The full results of this question are shown below:

28

Reduce IT operations
costs

Reduce human
intervention

Reduce complexity

Risk mitigation

Support a best practice
initiative

Support a cloud and/or
virtualization initiative

Other

19

202
21

40

15
17

12
929

9

12
- 8

0
18

0
0
0

25

1 stpriority
2nd priority

3rd priority

0 5 10 15 20 25 30

Percentage of Respondents

Figure 7 - Survey - What are (or would be) your primary reasons for adopting or considering

three in priority order)

35 40 45

IT process automation? (Enter top

Several other key findings from the survey are shown below to the following questions.

'I
Provisioning/
Configuration
Management

Fault and Problem
Management

High Availability

Disaster Recovery

Other

None

I 28

i

0

15

19

-9

23

5 10 15 2

Percentage of Respondents

0 25 30

Figure 8 - Survey - Which disciplines have you already automated (or are in the process of automating) (Enter all that apply)

29

I

Provisioning!
Configuration
Management

Faultand Problem
Management

High Availability

Disaster Recovery

Other

None

40

24

20

2

6

0 5 10 15 20 25 30 35 40 45

Percentage of Respondents

Figure 9 - Survey - What is your highest-priority focus for IT operations process automation for the next 12 to 18 months?

(Select 1)

Advanced: cross organization.
fully orchestrated and
integrated workflows

High; m ultiple orchestrated
workflows within each IT

management silo

Moderate: multiple
nonintegrated workflows in
each IT management silo

Basic: some documented
process. task automation with
job scheduling and scripting

Low: m inimal autom atio n
through batch and scripting

0

5

5

46

33

11

10 20 30 40 50

Percentage of Respondents

Figure 10 - Survey - How would you assess you IT operations process level? (Select 1)

The next section begins to investigate some key approaches to process automation and workflows to help

address some of the needs illustrated above.

30

-i

Approaches to Automation

IT Process Automation is not a plugin piece of software that is installed and begins to function magically

for your organization. ITPA is an evolutionary and likely involves a continuous process of improvement.

The operational capability and the process maturity of an IT organization will be reflected in the value

provided by ITPA. For example, if an organization is slapdash and slipshod with its approach to creating

and implementing their ITPA the result will be equally disordered. None the less before we can investigate

how to automate IT processes we must first understand the process that is going to be automated. The

greater an automation architect understands given processes and workflow, how they work, and what

can go wrong, the greater the result will be. This seems obvious but is often missed when architecting an

organization's IT Process Automation solution.

In this section we start by inspecting process automation at a very straightforward level by digging into a

simple two-process workflow. The processes will run on a single operating system, (The OS type is

immaterial) on a single server, (Again the type here is also immaterial to the discussion) and will perform

a very simple task of a character string search and replace as shown below. These processes could really

do anything, but for the purpose of our investigation they will have the following properties:

1.) Each process in the workflow below modifies a specific file on the operating system and replaces all

strings "Bart" with the string "Lisa" by executing Process "A". Process "B" will similarly change all

strings "Homer" with the string "Marge" in Process "B"

For example: If the target file for Process "A" is /some/directory/myTestFIle.txt and has the

content "Bart runs with Lisa to school" then the following would result when Process "A" is executed:

Content before Process "A" is executed Content after Process "A" is executed

Bart runs with Lisa to school. Lisa runs with Lisa to school

2.) Process A and B complete near instantaneously.

3.) Process A and B are Idempotent (This is implied by the nature of the Process string replacement,

however Idempotence is described in more detail below) In general this property means that our

processes will do what they need to do only if they need to do it otherwise they will not. This allows

them the ability to run repeatedly, safely. For example Process A can run a thousand times but it's

only the first time that it will modify and subsequently write or "commit" any changes to the file. Every

31

other time the string to be replaced will not be found, and the process will exit gracefully without

making any changes. Idempotence is defined below (Anonymous, 2013):

* A unary operation (or function) is idempotent if, whenever it is applied twice to any value, it gives the

same result as if it were applied once; i.e., f(f(x)) -f(x).

For example: the absolute value: abs(abs(x)) = abs(x).

* A binary operation is idempotent if, whenever it is applied to two equal values, it gives that value as the

result.

For example: the operation giving the maximum value of two values is idempotent: max (x, x) - x.

* Given a binary operation, an idempotent element (or simply an idempotent) for the operation is a value

for which the operation, when given that value for both of its operands, gives the value as the result.

For example: the number 1 is an idempotent of multiplication: 1 x 1 = 1.

The preceding properties are by no means required by any process in an automated workflow, but are

used in this example to help understand the level of detail that must be considered even with the simplest

processes. Some example code that could represent the innards of these processes are shown below:

NOTE: It should be clearly understood that there are several other error conditions that can exist beyond

a "file not found condition" however for the purposes of simplicity and illustration it is constructed this

way to show a single failure condition for these particular processes. Process B would look nearly identical

but use different string replacements.

Now that we understand a bit more about the processes we are automating we can begin to look at

putting them together in a workflow that will execute on a single server and operating system.

We start by "daisy chaining" these two distinct processes on a single operating system (virtual or physical)

and try to understand what is involved in design this very simple automation workflow. Review below:

32

//PROCESS A
IF TARGET FILE EXISTS
THEN

IF FILE CONTAINS STRING "Bart"
THEN

REPLACE STRING "Bart" WITH STRING "Lisa"
ELSE

DO NOTHING AND CONTINUE
FIN

ELSE
EXIT WITH NULL POINTER ERROR

FIN
EXIT WITH SUCCESS STATUS

Two Process - Single System Workflow

SERVER A (Virtual or Physical)
Start

Process A

YES
Success Process B

NO
FAILED Success

YEi ety N Finish

Figure 11 - Two Process - Single System Workflow

Conceptually the act of linking two simple IT processes together seems simple. This fact can trick the

process automation designer or manager into thinking that creating a process workflow for ITPA is also

simple. In the examples here however we are starting with 2 processes that are simple to build our

understanding at an atomic level and build out. Later we will expand into process workflows that involve

several dozen processes that span multiple systems within a "group" of systems, and then show how to

automate and track those process across hundreds if not hundreds of thousands of "groups" of systems.

With this fact its fair that we break apart this simplified automation case for the purpose of pointing out

some of the subtleties that the automation architect will need to grapple with in the workflow. The pseudo

code below is one way to represent algorithm of the workflow diagram shown above. This pseudo code

will ultimately need to run on the system where the IT Process workflow is executed. It will also need to

report the status of the workflow that has been executed to the controller of the workflow. For example:

Process A and B workflow

START ITPAPROCESS_1
IF PROCESS A SUCCEEDS
THEN

IF PROCESS B SUCCEEDS

33

THEN
FINISH EXIT SUCCESS CODE

ELSE
IF RETRY ON FAILURE

THEN
RESTART ITPAPROCESS_1

ELSE
FINISH EXIT FAILURE CODE FAIL STEP 2

FIN
FIN

ELSE

IF RETRY ON FAILURE

THEN
RESTART ITPAPROCESS_1

ELSE
FINISH EXIT FAILURE CODE FAIL STEP 1

FIN
FIN
FINISH EXIT FAILURE TIMEOUT OR MAX RETRIES

With this example above one can see that even in this uncomplicated case there are several paths this

process automation workflow could take to finish. (Successfully or with failure) For example:

" Finish both processes successfully and exit successfully.

" Finish neither of the two process successfully and exit with failure.

" Finish one processes successfully while the other fails and exit with failure.

" Finish with a timeout or iteration failure due to max retries.

Some of the many questions that need to be considered in this situation by the automation architect are

shown below:

* What constitutes the success or failure of a given process?

o Can a process partially fail or succeed?

o How does the automation respond in the event of a partial failure?

* How many times can a process retry before it gives up?

* What mechanism will the workflow use to report back its result to the operator or controller?

* Are the processes retry-able or idempotent?

Can the processes be "undone"?

Is the whole workflow retry-able or idempotent? (This assumes Idempotence for all Processes)

Each of these questions above are not just considerations to be theorized about when designing the

automation for this workflow, they must be spelled out in exact detail within the automation code in order

to have the automation perform as it was intended by the automation architect.

34

Let's now take some time to view this same simple two process workflow and split it across two systems

and observe how the workflow diagram has changed:

Two Process - Two System Workflow

T Process A

Success Y

0z

FAILED Retry

0z
YES

NO

Communication link
Success

NO

-. * FAILED

I

SERVER B (Virtual or Physical)

YES
inProcess B

FAILED NOSuccess

YES RtRetry

0z

Finish

Figure 12 - Two Process - Two System Workflow

In the circumstance above the number of processes that are involved in the workflow have not changed

from the previous example and for the most part the workflow logic has remained the same outside the

introduction of a "communication link" (Interface) between the two systems. This communication link is

an extremely important element in this new workflow however and creates several problems for the

process architect to solve. The communication link has created several ambiguities in the workflow

process for the operator, the support staff of the workflow, and possibly to the upstream controller

(human or machine). For example the following questions now need to be asked:

" What are the properties of the communication link?

* How will the processes communicate through the link?

* Where will the status of the workflow exist at any given point? (EX Server A, B, or somewhere

else?)

* How is process control passed?

* If the processes were long running procedures how would one be able to tell what the process

status is at any given point in time.

35

SERVER A (Virtual or Physical)
Start

27

I
Retry

These are obviously only scratching the surface of the complexities of passing control "intra" systems

where the systems exist as part of a group. Grouping systems together particularly in complex services is

somewhat unavoidable at present, and therefore creating automated workflows that spans a great many

systems within a group is common.

Below we will create a final example workflow that performs the following actions

Three System Seven Step ITPA Workflow Example:

* Process A - Stop a webserver on SERVER A

" Process B - Stop an application server on SERVER B

* Process C - Stop a database server on SERVER C

* Process D - Update a configuration file on SERVER A, B, and C

" Process E - Start a database server on SERVER C

* Process F - Start an application server on SERVER B

" Process G - Start a webserver on SERVER A

These steps are each fairly common processes and somewhat straightforward for any operations team or

system administrator. They should be able to perform these tasks at the command line interface (CLI) of

any given system with ease. However when defining the ITPA workflow for these seven processes across

three machines, the complexity magnifies. The models used previously will become far too complex and

cumbersome to continue to implement in the same manner. For example imagine the complexities

involved in inter system communication links and communications that must occur between the systems

to keep tally on what process is doing what and when. At this point we need to limitedly introduce the

concepts of an External Orchestrator and an External Orchestrator Agent, though they will be discussed

in further detail in the section below. The External Orchestrator and the External Orchestrator Agent are

critical elements of our ITPA process controller. These elements will need to communicate via some

method across systems order to perform the following two main functions.

1.) Initiate (or execute) a process on a given Server and,

2.) Report and pass status messages from the External Orchestrator Agent to the External

Orchestrator at any given moment following the initiation (or execution) of a given process.

The External Orchestrator (in this context) can either be human or machine and must be able to intercept

and interpret the messages from the External Orchestrator Agents. It must also be able to understand and

36

control the flow of events from a top level orchestration perspective. The logical flow of events in the

seven process - three system workflow described above is shown below in diagram form.

Seven Process - Three

EO AGENT "

SERVER B (APP SERVER)
EO AGENT

Process B I
I~ATE

Process DI

Process F

SERVER C (DB SERVER)

Process C EQ AGENT

Process D

STATUS
SProcess E

* U

System Workflow

EXTERNAL ORCHESTRATOR (EO)
HUMAN OR MACHINE

SSUCCESS

N 0

FAILED YES

SYES CONTINUE

RETRY

Finish

N 0

Figure 13 - Seven Process - Three System ITPA Workflow - The External Orchestrator

From this diagram it is somewhat easy to see that the number of ways that even this simple process flow

can finish and exit far exceeds the number of ways that the Two Process - Two System workflow can finish

and exit. The design of the automation at an architectural level must be considered very carefully at this

point to in order to remove as much complexity and ambiguity from the process workflow as possible. If

not, the operators of the system's automation scheme may find themselves unnecessarily

troubleshooting a variety of issues as changes are made to the ITPA workflows.

At this point it should be understandable that the complexity of automating of even a small set of standard

IT processes can become very complicated very quickly. The processes referenced in this section, though

highly simplified, are enough to provide (at least at a high-level) a view of the types of automation that

will be coordinated via an ITPA workflow. In actuality, IT processes particularly for a Service Providers will

be significantly more complex, and will be managed across many thousands of discrete "groups" of

systems and often times in parallel.

37

I

SERVER A (WEB SERVER)

Process A I
INITIATE

Process D IS A U

Process G - - - -
I

Describing an approach to the automation and parallel execution of IT processes across many groups of

heterogeneous system is one of the primary goals of this paper and we begin this discussion in the

following sections.

Orchestration and Automation Products

The market if full of pre-packaged ITPA and Run book Automation "solutions." These solutions can be

deployed in order to address any given set of process automation needs. Several of the vendors offer

"canned" or templatized workflows for organizing a specific workflow or process. There are also a great

variety of modules that can be used to tie into an existing monitoring solution or dashboard common to

an IT organization. Though it is helpful to understand the commercial landscape the main focus of this

paper is to understand a particular methodology of IT Process Automation that is not bound by any

particular vendor or an ITPA or Runbook product. None the less, the following is a brief overview of the

ever increasing landscape of ITPA and Runbook commercial vendors. There is also a growing variety of

open-source solutions as well. In a recent Gartner report (Colville, IT Process Automation: Run Book

Automation Tools Mature to Broader Use, 2011)the following are some of the key players in the ITPA

space each offering approaches to the automation needs of any given IT Providers organization

ROA Tools
Aynhu yare)

BMC Software t Atnurn Orchestrator)

CA Techiniologieti (IT Process Automation)

goner ationE Technologies (RwiOive)

HP (JCperations Orchestration)

iWavo Software (iWav, Orchesrator)

NotlO (Aegi5s

Nvivwock Auitomiatioev (Autooniatu)

RRA Toots: Spectfic Automation Focus

Avoc t vt (LAN Desk) (Proc.s Manatlei)

Citrix Systemnwi (Workfiow Studio)

Runbook Consipavvy inter national

Managelo iFV4 Adaptive Man.bragoauemnit Platformp)

Micronoft 4Opalis)

Scapa Technologies (IT Service Autonatioli

Sof viceNow (IT Procsmn Orchestratson)

Singtularity (Run Book Autonomics)

Symia rtec IWorkflow Solution)

Cisco (Tidal IngelligiRnt Aulomaiton)

UC4 jW rkkt.Ad Autc-t-i.ttirm Suit)

Embedded RBA Functionality

IBM Tivoli (Tivobt Process Autontion Engine)

lIP (Cata Palette) (Sifatdvi* acquission)

Unlys (uOrchestrat j
VMware (Virtual Service Orchestralo,)

Figure 14 - ITPA - RBA Gartner Vendor Landscape

In the open-source landscape is equally filled with canned solutions and tools to help an enterprise

customer automate workflows and processes. Some of the open source vendors include PuppetLabs,

OpsCode, Salt Stack, and several others. The solutions offered by open source vendors offer the ability to

I

38

I1

create a high degree of customization for a particular ITPA solution. This advantage is due in part to the

ability to manipulate the code base to accommodate special needs of a particular organization.

Though the focus of this paper is on the creation and use of process automation specific to large scale IT

Service Providers, the findings and recommendations by Gartner (Colville, IT Process Automation: Run

Book Automation Tools Mature to Broader Use, 2011) for all IT vendors (with relation to ITPA and RBA)

are still very much applicable to our case. The recommendations will apply to any variety of ITPA product

open source or otherwise; specifically:

Gartner - Key Findings

* Use cases for RBA tools have expanded beyond the initial task automation.

* While ITPA tools have some out-of-the-box workflows, they still require customization and

scripting to address all aspects of your unique process requirements.

* Because there are no ITPA standards and it is difficult to bridge automation from one system to

another, organizations will likely end up with multiple tools to address different process problems.

" New use cases for ITPA continue to emerge for specific needs around release automation (e.g.,

DevOps) and cloud projects.

Gartner - Recommendations

* Know your process. These tools offer some out-of-the-box workflows, but none will completely

match your processes. You must document your process workflows before selecting an ITPA tool.

" ITPA tools require specific, assigned responsibility and dedicated expertise.

* Understand your tool integration points. Most processes include touch points or triggers to other

management tools. You must understand what management tools are in scope for the process

being addressed before selecting an ITPA tool.

* Start your ITPA projects narrowly. No ITPA tool will automate all IT processes, thus obviating the

need for people or domain-specific tools.

Customization and deep understanding of the processes being automated are essential to the success of

any given ITPA/RBA strategy or rollout. This is particularly true for IT Service Providers that will need to

produce workflows and automations that in all likelihood will be replicated across many thousands of

distinct services of varying complexity.

39

For the most part the pre-baked orchestration paradigms and templates will offer many ideas on how an

organization can build their process automation, but these templates may not necessarily fit an

organization's needs. This paper's messaging concepts (available through a variety of different products)

will help to formulate a framework and architecture that can support a highly customizable and scalable

ITPA and Runbook solution for many types of IT Service providers. So the solutions offered here are not

specific to any particular automation workflow, but rather an execution framework that will enable any

number of process automation workflows in a large variety of circumstance. Before diving into the

specifics of this framework we should review what we want our framework to accomplish. This is

discussed below.

To review, there were two main dimensions discussed in the first chapter that dealt with complexity that

need to be addressed again here in the context of the ITPA framework; vertical and horizontal complexity.

Each of the products highlighted previously can handle one or both of these dimensions in one way or

another. But, in the following sections, we will discuss some of the key types of product-agnostic

technologies that can be combined in particular ways that will provide the building blocks to create an

ITPA solution that will scale in both directions.

In order to understand how one might achieve these ends, we move back to the concept of an external

"orchestrator." Some of the key goals of a core orchestration system are shown below:

1.) The orchestrator must be able to execute any arbitrary operation, on any given system (or group

of systems) within its domain of influence.

2.) The orchestrator must be able to obtain the status (or result) of the operation.

3.) It must be able to execute operations both sequentially and in parallel to any system or group of

systems within its domain of influence. (NOTE: This is a distinct need from #1.)

4.) The orchestrator must provide a mechanism that enables the operator or workflow architect

execute both ad-hoc (from the command line interface CLI) and programmatic control logic

(automated workflow) both vertically and horizontally.

There are several methods that can be used to achieve these ends and one could use any variety of "client-

server" based remote procedure (RPC) calls to communicate their execution payload to the intended

systems. Loops using these coupled technologies such as "ssh (secure shell)", "rpc(remote procedure

call)", or some other method are fairly straightforward particularly when the types of systems involved

are homogeneous and the processes being executed are somewhat simple and quickly return a response.

40

The tightly coupled client-server messaging model puts a lot of responsibility on the external orchestrator,

particularly as it relates to maintaining a central meta-data repository and maintaining sessions between

the orchestrator and the orchestrated systems. Additionally, designing the algorithms, the requisite

metadata (and workflow) repositories, as well as determining who, what, when, where, why and how

things get executed is not only complicated to design and implement, but also very difficult to operate in

an efficient way. However, an alternative approach to using a tightly coupled "client-server" based

messaging scheme (via ssh/rpc/etc), the recommendation is to use a decoupled messaging technology.

The type of decoupled messaging technology we will use to build our ITPA orchestrator is through Publish-

Subscribe. Publish-Subscribe technology allows the external orchestrator to become a decoupled

messaging bus. The infrastructure implementation of a messaging bus can be achieved by using message

queuing (MQ) software that supports publish-subscribe as a messaging pattern. The is a large list of

message queue commercial off the shelf products and a few are IBM WebSphere MQ, JMS, RabbitMQ,

ActiveMQ, and Microsoft Message Queuing. They are equivalent technologies from the perspective of

developing our ITPA platform.

Below are some ideas of architectures for how an ITPA orchestration framework can be implemented

using a publish-subscribe and broadcast paradigm as its core messaging mechanism.

Building a Messaging Framework through Publish-Subscribe and Broadcast Paradigms

To simplify the design process of our external orchestrator we will investigate using publish-subscribe as

our messaging broadcast paradigm. The orchestrator will act as a core "messaging" bus and hub in

addition to providing the execution logic and execution interfaces for our IPTA architecture. The

messaging patterns of publish-subscribe make it an ideal candidate for our external orchestrator because

of the loose coupling between the publisher and the subscriber as well as its ability to scale. The reasons

for this choice will become more evident as we build our ITPA external orchestrator and describe its design

and use.

Publish-subscribe is not a new technology for intra-application messaging schemes. In fact, it was first

described in a paper titled "Exploiting virtual synchrony in distributed systems" (Birman & Joseph, 1987).

Typically publish subscribe technologies have used as part of an application's messaging architecture and

generally publishers and subscribers interface within a particular application's context. Very often that

application would be housed within a single operating system or a tightly grouped set of operating

systems. Until recently however, publish-subscribe has not been generally thought of as a tool for

managing the operating systems themselves or the execution workflows within operating system's

41

context. This is starting to change perhaps in response to the sheer number of operating systems being

built as part of a particular service architecture. IT Service Providers system infrastructures can span into

the millions of virtual and physical servers or Operating Systems. The somewhat recent advances

virtualization technologies have changed the way Operating Systems are used within a Service Provider's

datacenter. The 1:1 mapping between the operating system and single piece of hardware is no longer a

good model of modern computing. A single piece of hardware will generally now house many operating

systems, each with their own processor, memory, and file system management mechanisms through the

OS kernel. Moreover operating systems these days are moving more into the realm of being reusable

"modules" of complex applications, rather than the core infrastructure that houses and runs the whole

application. This is perhaps due to the fact that operating systems can now be created in a way that blurs

the lines between application installations and operating system installations. It should also not be

assumed that an application will run within the confines of a single operating system. Perhaps the

following simple illustration shows this.

Transitioning View of the Operating System

OPERATING SYSTEM APPLICATION

APPLICATION APPLICATION

TIME

APPLICATION APPLCATION

Figure 15 - Transitioning View of the Operating System

This more recent and common design pattern has created a need to rethink the way we IT organizations

communicate with their systems, groups of systems, and how they manage the applications run on them.

An orchestrator must have the ability to communicate fluently with both the operating system and the

applications. It is generally easier to communicate with an application through the operating system then

to speak to the operating system through the application. Therefore the most efficient path to "get to

both" is through the operating system. Additionally a vast majority of IT processes will be kicked off from

42

the operating system rather than through a specific application mechanism, particularly for infrastructure

operations that involve the state of both.

Publish-Subscribe works in a general sense by providing a shared location where a particular message can

be placed and subsequently read by any number of clients. That location is called a "topic" and must be

accessible by both the orchestrator and the nodes (or operating systems) that it orchestrates. Most times

that topic exists as a queue on a message "Broker", such as those provided as part of a message queuing

service (MQ). "Publishers" publish messages to the topic and once the message is in place any number of

"Subscribers" can read the contents of the message, in part or whole. The architecture is loosely coupled

given that the publisher does not need to have knowledge of the subscriber and the subscriber does not

need to have knowledge of the publisher. The following diagram illustrates this generic message flow:

Publish Subscribe Message Flow

"Publisher"

Message W
A

MQ "Broker"

Message
IITE A

Topic

"Subscriber A"

READ Message
D A

"Subscriber B"

READ Message
A

"Subscriber
C"

I EFD 'SMessage
A

Figure 16 - Publish-Subscribe Message Flow Example

Of course this is an oversimplification for how publish-subscribe works, but one can begin to see that only

one message is written to the topic queue and is then read by multiple recipients. This moves the

responsibility of message "delivery" from the publisher to the subscriber and in essence distributes the

messaging load. There of course can still be contention at the broker for very large data centers so

43

J

consideration should be given to the compute power of the broker in relation to the size of the systems

fleet.

The subscribers are for the most part responsible for which messages they read and respond to by filtering

their messages. Filtering can occur at the topic level, or based upon a particular "addressing attributes"

embedded in the message. (This is described more in the section below) The beauty of this design pattern

is that it will enable you to specify from the publisher's standpoint which system or groups of systems you

would like to respond to or act upon your message by tweaking the inclusive (or exclusive) attributes in

the message. This is a very important concept to grasp from an ITPA Operational perspective and so the

point is illustrated in more detail below. It is also important to understand that for each message received

and acted upon by a subscriber, the publisher will in turn receive a reply message from the subscriber

indicating that it has received and is responding to the message. The specifics of this message-receipt flow

will be dependent on the implementing software, however several products that handle this type of

messaging paradigm use the "streaming text oriented messaging protocol" (STOMP) specification to

facilitate this message-receipt coupling in order to abstract the messaging MQ subsystem. This

specification works in a similar way to HTTP and includes generic functions to "CONNECT, SEND,

SUBSCRIBE, UNSUBSCRIBE, BEGIN, COMMIT, ABORT, ACK, NACK, and DISCONNECT" (Creative Commons

Attribution v3.0, 2014)For the purposes of the following discussion we can assume that regardless of the

implementation, any message "sent" via the publisher will in turn receive a "response" acknowledgement

from an individual subscriber. It is within that acknowledgement envelope that the messages from the

individual subscribers will be embedded.

Let's begin by defining our small fleet of systems. The fleet consists of 9 groups of systems each with 8

servers associated with each group. Each group of systems runs a single logical application. So one

application belongs to one group. In total our very small fleet consists of 72 servers, but could just as soon

be 720, or 72,000. Each server in the fleet is a subscriber to the "execution" topic that exists on the central

message broker. They will listen on that topic for messages targeted at them. The publisher for this first

action that we will define in MESSAGE A will create the following message content and deliver it to the

intended "execution" topic:

44

MESSAGE A -
INTENDED AUDIENCE

ALL SERVERS IN GROUPI
MESSAGE CONTENTS

RUN THE "HELLO WORLD"
APPLICATION, THEN SEND
ME BACK THE OUTPUT.

END OF MESSAGE

Figure 17 - "Pseudo" Message

The expectation at this point is that once the message is put on the topic, all subscribers will be able to

view the message. However, only the subscribers matching the "Group 1" attribute will "RUN" and "SEND

OUTPUT" (Which would be whatever the output of the "HELLO WORLD" application is.) It should be noted

that there are a variety of customizable products on the market that are generic enough enable this kind

of message flow between the publishers and the subscribers within in a fleet of systems, namely

mcollective and Salt Stack. (Both open source products) The implementation of how a message is handled

is highly customizable and therefore is up to the imagination of the automation architect and workflow

designers. Regardless, the ability to pass these arbitrary messages to targeted systems is one of the key

building blocks to this papers proposed ITPA workflow automation scheme.

Addressing the Systems in Fleet with Attribute-Value Pairs

Targeting systems is another key feature of the ITPA system being developed. In other words the ITPA

system must be able to tell specific systems or groups of systems what to do at any given time.

"Addressing targets" was briefly discussed in the previous publish-subscribe section, but will be

illuminated in a bit more detail here for its importance to the overall ITPA architecture.

Again, Publish-Subscribe was chosen for two main reasons; the decoupled nature of publish-subscribe

messaging pattern and the ability for publish-subscribe to scale. However, if the publisher is decoupled

(or has no real knowledge of its subscribers), then how will it know where to address its messages. To

solve this publish-subscribe requires somewhat counterintuitive approach to address or target messages

to specific systems within the fleet.

45

The traditional approach of messaging in a coupled client-server model the message is delivered directly

to a known address, or addresses. A separate message is delivered directly by the server to each client.

For example the server knows precisely to whom it will deliver the message. If a coupled client-server

model were chosen for a large fleet ITPA system it will require that the server side have a large meta-data

repository with information about each system that existed in the fleet. For example: If I had 200 servers

that were of type A and another 200 servers of type B, I would register those systems in my meta-data

repository as having either type A or type B. This is a clunky system for several reasons. Firstly what will

happen when 50 of those servers of type B are migrated to be of type A. At that point you must reconcile

your repository to reflect that fact. It seems simple enough in this straightforward situation, but imagine

if the fleet consisted of many thousands of systems each with hundreds of shifting attributes at any given

point in time. The nature of an IT Service Provider's system fleet is one of constant flux with systems

constantly being modified and moving in and out of the fleet. To try to manage and keep current in a

meta-data repository that information, is at best error-prone process and most likely a constant exercise

in frustration. This is why the publish-subscribe paradigm works well in very large constantly changing

system fleets; the subscriber is its own system of record and therefore there is no need to create a

centralized repository that holds all of the information about each system. In publish-subscribe each

system is responsible for responding only to what is directed specifically to it, and it is the final arbiter.

A Rock Start Analogy for Attribute Based Responses in Publish-Subscribe:

A Rock Star is standing on a stage for a concert in Chicago, in front of 50,000 fans. The Rock Star is not

aware of who is in audience but he can still query the audience to gather responses based on the attributes

of the individual members of the audience. Here's how, the Rock Star shouts "Anybody here from

Chicago?" Clearly the fans that are from Chicago will cheer loudly and will undoubtedly represent a fairly

large portion of the audience. Then the Rock Star shouts "Anybody here to Party?" Perhaps an even a

bigger group of fans will begin to cheer. However to extend this analogy, perhaps somewhat absurdly,

what if that same Rock Star shouted "Anybody here over the age of 30 with Brown hair?" Clearly the

participation would be slightly muted but still would undoubtedly include a fairly large collection of

people. However, if the Rock Star then should "Anybody here exactly 30 with Brown hair whose name

begins with the letter S and is 6 feet tall." At this point in time there will certainly be some shouts coming

from the audience in random places but most likely a very small minority of the total audience. Finally our

Rock Star shouts "Anybody here whose name is Sam Sample, who lives on 1551 Sycamore Lane and drives

a Toyota corolla with Illinois license plate 34X992? Your lights are on..." Now, either Sam is there or he is

46

not, but if he is there he will likely give a muffled "woot" from somewhere in the audience and then go

turn off his lights. This may seem absurd in the context of a concert but this is exactly the way our ITPA

system will query the systems fleet to determine who will response to what. These are attributes that

only the individual system Subscriber (or "A fan") knows about. The Publisher ("The Rock Star") does not

need to keep track of them, as it is the responsibility of the individual to reply or respond. Given that

systems do not "lie" unless told to do so, one can assume that if a member of the fleet is there and asked

to respond if it contains a given attribute, it will.

Key value pairs are a common attribute definition mechanism. In the example above each individual would

have attributes like those shown below:

Table 4 - Possible Attributes Associated with a Rock Star's Fan

ATTRIBUTE ATTRIBUTE VALUE

NAME JOE SALLY SAM SUE PAT

HEIGHT 5'6" 6'0" 6'3" 5'4" 5'10"

AGE 30 22 38 29 23

Each person is represented by one column and would have knowledge of only their "column's" attribute

values. For example Sam would have the following information about himself: Nam=Joe, Height=5'6",

Age=30. Sally however would have the following information about herself: Name=Sally, Height=6'0",

Age=22. In the exact same way a system Subscriber will have a series of attributes associated with it that

can be referenced within the message delivered to the Subscriber.

In our example of the 72 systems referenced in 9 group system fleet; each of the systems would have a

file or repository containing the following information; Which SERVER LETTER they possess, and which

SERVER GROUP they belong to. Each of these 72 files will contain enough information to make it uniquely

identifiable and be enough to give it a group identity as well, for example.

Table 5 - Possible Attributes Associated with a System

ATTRIBUTE ATTRIBUTE VALUE

SERVER LETTER A

SERVER GROUP 1

47

These attributes can extend far beyond the two values we've included here to have other pertinent

information about the system. Systems can be grouped by any number of attributes in isolation or in

combination. The following shows some ideas of attributes that may be associated with a given system:

Table 6 - Several Other Possible Attributes Associated with a System

ATTRIBUTE

SERVER LETTER

SERVER GROUP

SERVER SYSTEM TYPE

RAM

CPU

DISK STORAGE

IP ADDRESS

MAC ADDRESS

FULLY QUALIFIED DOMAIN NAME

KERNEL VERSION

LAST MODIFICATION DATE

FUNCTION TYPE

SYSTEM DESCRIPTION

ATTRIBUTE VALUE

B

5

SPARC

24GB

8 x Intel Quad @ 2.7GHz

2.5TB

192.168.100.20

00:0c:ff:ff:fc:e7

serverb.somecooldomain.com

2.7.300.4

April 1, 2013

Webserver

Interchangeable webserver for somecooldomain fleet.

I
Now with the foundation of addressing the fleet of systems described, let's take a look at how one might

use this to execute "arbitrary" commands to variable systems groups. Below are 6 example queries (or

targeted broadcasts) that we will used to strategically call a particular execution to our systems. The

execution will be something very simple like return a simple value like "uptime." The queries are as

follows:

Table 7 - Forming Groups of Systems in the System Fleet

DEFINED SYSTEM OR GROUP SET {}

{ANY SERVER IN GROUP 1}

{ANY SERVER IN ANY GROUP WITH SERVER LETTER A}

{ANY SERVER IN ANY GROUP 7 THROUGH 9}

{ANY SERVER IN GROUP 3 THROUGH 5 WITH A SERVER LETTER B THROUGH E }

48

I

QUERY

A

B

C

D

SERVER_A

SERVER_B

SERVER_A

SERVERB_

E {ANY SERVER IN GROUP 3 THROUGH 5 WITH A SERVER LETTER G }

F {ANY SERVER IN ANY GROUP WITH ANY SERVER LETTER}

GROUP1 GROUP2 GROUP3 GROUP4 GROUPS GROUP6 GROUP7 GROUP8 GROUP9

SERVRA

SERVER_B

SERVERC SERVER j SERVERC SERVER_C LSERVERC SERVERC SERVERC SERVERC SERVER_C

LSERVER_D

LSERVER_E

LSERVER_F

LSERVER_G

SERVER_H

SERVER.D SERVER_D SERVERD- SERVERD jISERVER-D SERVERD

SERVER -ED SERVERE SERVERE SERVER_E FSERVER_E SERVER_E

F_F SERVER SERVER SERVERF RF

SERVERG ERVERG SERVER G SERVER G

SERVERH SERVERH SERVER H SERVER H SERVERH SERVER_H

SERVER_D

SERVER_E

SERVERF

SERVER_G

SERVER_H

SERVER_D

SERVER_E:-

SERVERF

SERVER_G

SERVER_H J

QUERY A

QUERY B

(ANY SERVER IN GROUP 1)

(ANY SERVER IN ANY GROUP OF TYPE SERVER_A

QUERY D

QUERY E

.UE RY

{ANY SERVER IN GROUP [3-5] OF TYPE SERVER_[B-E])

{ANY SERVER IN GROUP [3-51 OF TYPE SERVERG

QUERY C { ANY SERVER IN GROUP [7-9] } (ANY SERVER }

Figure 18 - Forming Groups through Attributes

At this point we have enough of a foundation to begin building a "Horizontal" automation approach to

delivering execution or initialization messages to selective systems within the fleet. This type of approach

will work very well where there are a huge number of systems within the fleet that are relatively simple

and homogeneous in nature. However it can also be expanded to include highly complex groups of

systems that are homogeneous in their group structure.

Automation via Horizontal "Group Based" Orchestration

Now that the ITPA system is able to send targeted messages to specific systems or groups of systems

across the fleet, it is time to investigate some of the operational aspects of this new feature. Horizontal

"Group Based Orchestration" is one way to address both horizontally complex environments (those that

scale) and vertically complex systems by moving horizontally up and down the group or "stack of systems."

There is an underlying assumption that the vertical complexity amongst each stack is similar. For example:

If Server A from Group 1 is a webserver of a specific type then it is assumed that Server A in Groups 2-n

49

11

L

SEVEA SEREARVER _ SERVER_A VR

SERVERB SERVERB3 SERVERB SERVER SERVER_:B

FEVE A

SERVER_A

will also share a similar configuration. This is so that if you execute "Step 1" or "Step 2" horizontally across

the fleet you are issuing identical "Steps" or commands against very similar systems. (See the section

above on standardization and configuration management)

This type of execution motion, up and down the stack, is referred to as Horizontal Group Based

Orchestration. Illustrated below:

GROUPI GROUP2 GROUP3 GROUP4 GROUP5

SERVE_ SERVERA

SERVERjB SERVERB

SERVE l SERVER_C

SERVERD SERVER_DD

SERVE_ SERVER_E

SERVERF LSERVERF

S SERVER_G

SERVERH SERVER-H

SERVER_A

SERVER_B

SERVER_C

SERVER_D

SERVER_E

SERVERF

SERVERG

SERVER_H

SERVER_A SERVER Aj

SERVER_8 SERVERB

SERVER_C SERVER_C j

SERVER_D SERVER_D

FSERVERE SERVER_E

SERVERF SERVERF

SERVER SERVERG

SERVERH SERER H

I STEP 1

STEP 2

GROUP6 GROUP7 GROUP8 GROUP9

I~~ E- f L IL V~~
SERVERA j SERVERA SERVERA SERVERA

SERVERB R _ SERVERB SERVER

SERVER_C SERVER_C SERVER_C SERVERC

SERVER_D SERVER_D I SERVERD SERVERD

SERVERE SERVERE SERVERE SERVER

SERVERF SERVER_ SERVERF SEVER F

SERVER_ SERVERG SERVER SERVERG

SERVERH SERVER H ERR_H SRE_

STEP 4

STEPS

STEP 3 P

Figure 19 - Horizontal Group Based Orchestration

What can this capability offer to our ITPA automation and orchestration framework from an overall ITPA

solution? The best way to discuss these capabilities will be through specific operational cases. Three are

described below.

Operational Case 1 - Application Change: Update 10000 identical webserver systems with the latest

Apache HTTPD Software.

More of a recommendation than anything else, it's a good idea to create attributes that match the

structure of your fleet. For example if the fleet is split by function then it is a good idea to have a function

specific attribute that will enable the operators to tease out the intended systems from the fleet. In this

50

I

...............I

example will we have created an attribute on each system called "sysFunction." sysFunction will have the

value "webserver" on every system that performs the function webserver and has a similar configuration.

In this case there are 10,000 of them in the fleet. Regular expressions (regex) are a common way of

"querying" attributes via a variety of software packages that use publish-subscribe. As an example if there

were only 3 types of systems in my fleet "webserver", "application server", and "database server" I could

access all webservers by defining the message to look something like this:

MESSAGE-
INTENDED AUDIENCE

ALL SERVERS WHERE ATTRIBUTE
sysFunction = web*

CONT ENTS
RUN "Apache HTTPD Update" and
send to background.
PRINT "STARTED UPDATE"

END OF MESSAGE

The Publisher will put this out on the "execution" topic and every subscriber to this topic will read this

message. Because all of our webservers are subscribers, they will all read this message and realize that

they are being asked to do 2 things;

1.) Run the Apache HTTPD Update process and background it*, and

2.) Return a message that says the system has started the update.

The reason why the running process is sent to the background is so that the system can immediately

process the next step and return the message that the process has started almost instantly. What this will

do is allow the publisher to receive a return response from all 10,000 systems almost instantly stating that

the update has started. It is generally not a great idea to "wait" for a process to complete before returning

a response to the Publisher given the variable nature of each system. For the moment all the Publisher

(and the Publisher's Operator) needs to know is that the process was executed and not whether or not it

succeeded in the execution. If the execution path is linear (e.g. first RUN (background) then PRINT) then

knowledge of execution can be somewhat guaranteed by receiving the targeted response from all systems

stating "STARTED UPDATE." Additionally any mechanism can be used to tally the responses back to the

Publisher in order to ensure the "executed" number matches the intended number. A variety of "read-

51

only" operations can should be developed to create a sort of pre-flight validation. These could include

prerequisite checks, property populations, or system specific actions.

At this point the Publisher can query the systems in much the same way by executing a "GIVE ME STATUS"

message to the intended systems. This message may look like the message below:

MESSAGE - -
INTENDED AUDIENCE

ALL SERVERS WHERE ATTRIBUTE
sysFunction = web*

CONTENTS
PRINT "$UPDATESTATUS"

END OF MESSAGE

Retrieving the status should be as near to instantaneous as possible. This is a process that can be called

either "interrogating the execution" or "fingerprinting the status". This can be done in a variety of ways,

and will most likely be very specific to the process that was executed in the previous command. The status

returned will likely be of a few common conditions; RUNNING, EXITED SUCCESSFUL, EXITED FAILED. The

operator or "orchestrator code" communicating through the Publisher will investigate the statuses from

all 10,000 systems. One would imagine that once all 10,000 systems return EXITED SUCCESSFUL the

operation can be considered complete, however given the number of systems it will also give the operator

or orchestrator the knowledge of the exact number (and identification) of systems that FAILED and allow

corrective actions to commence, either orchestrated through the Publisher or otherwise. For example the

INTENDED AUDIENCE of the messages could be modified to be inclusive of only FAILED systems.

Operational Case 2 - Datacenter Power Failure: The fleet has 50,000 systems of varying types; 5,000

database servers, 25,000 application servers, 10,000 webservers, and 5,000 batch processing systems. The

datacenter has lost power and is running on diesel. You have 30 minutes to bring all systems and services

down in their proper order in order to avoid data loss and corruption. Specifically, webservers must come

down first, followed by the application servers and batch processing servers, and then all of the database

systems.

52

Without shortcutting too much, the discussion around these cases will be limited to the actual messages

placed out on the "execution topics." This case 2 will be performed by publishing the following messages

with the following contents:

Table 8 - Case 2 Operational Message Sequence

INTENDED AUDIENCE
MESSAGE

NUMBER

1

CONTENTS I
RIBUTE RUN "Shutdown webserver instance" and send to

background & PRINT "SHUTTING DOWN

WEBSERVER"

ATTRIBUTE QUERY $STATUS OF webserver AND

PRINT "WEBSERVER $STATUS"

ATTRIBUTE RUN "Shutdown database instance" and send to

R batch* background & PRINT "SHUTTING DOWN

APPLICATION AND BATCH SERVER"

ATTRIBUTE QUERY $STATUS of application or batch server

)R batch* AND PRINT "APP or BATCH $STATUS"

ATTRIBUTE RUN "Shutdown database instance" and send to

background & PRINT "SHUTTING DOWN

DATABASE SERVER"

ATTRIBUTE QUERY $STATUS of database server AND PRINT

"DATABASE $STATUS"

ATTRIBUTE RUN "Halt System"

R PRINT "HALTING"

database

I
queried $STATUS indicates that that the status of the system (or applications being queried) is

The Actions 1-6 described above are a series of execution/status couplets that are done against a variable

set of systems, specifically the set of Subscribers that respond to the publishers query. This sequence of

events is shown below:

53

ALL SYSTEMS WHERE ATT

sysFunction=webserver

ALL SYSTEMS WHERE

sysFunction=webserver

ALL SYSTEMS WEHRE

sysFunction=application (

ALL SYSTEMS WEHRE

sysFunction=application

ALL SYSTEMS WHERE

sysFunction=database

ALL SYSTEMS WHERE

sysFunction=database

ALL SYSTEMS WHERE

sysFunction=webserver C

application OR batch ORi

2

3

4

5

6

7

NOTE: The

variable.

START

U
WHILE $CURRENTSTEP <=
$TOTALNUMBERSTEPS...

... EXECUTE $CURRENTSTEP ON
$TOTALSYSTEMS

STEP SUCCESS

< $STATUS

P

LL

PARTIAL
<PA RT AL/FULL PATAL

FAILl

ALL SYSTEMS FAILED ON THIS STEP -
REVIEW THE STEP FOR CAUSE OF

FAILURE, FIX, AND REEXECUTE.

STARTING VARIABLE POPULATION
- TOTAL SYSTEMS=(TOTAL SYSTEMS FROM QUERY)
- CURRENTSTEP=O
* TOTALNUMBERSTEPS=(TOTAL STEPS IN SEQUENCE)

4

I
MOVE TO NEXT STEP IN SEQUENCE AND

INCREMENT CURRENTSTEP

REMOVE FAILING SYSTEM(S) FROM
$TOTALSYSTEMS OR RESOLVE OFFENDING

SYSTEM ISSUE AND CONTINUE

The intention of the diagram above is to simply give the flavor of what an operator would consider when

executing arbitrary commands to any variety of systems in the fleet. For example Step 1 and 2 above

should expect 10,000 systems to respond to each step. Step 2 would can be executed repeatedly until

such time that the fully response indicates 10,000 SUCCESSFUL or FAILED responses. Anything less will be

cause for decisions to be made by the operator or the orchestrator. For example, If all 10,000 webserver

systems responded back with 9,950 SUCCESS and 50 FAILED then the operator or orchestrator will need

to decide how to handle the remaining 50 FAILED systems. At this point the systems can either be fixed

or corrected, or removed from the $TOTALSYSTEMS to move on with steps 3 and 4. This approach could

be described as a "Lockstep" ITPA and orchestration approach, and though there are a great many benefits

'I

54

____I

r

to using this approach there are also some pitfalls that will be addressed in the "Pitfalls of the Lockstep

Approach" section below.

Operational Case 3 - Change Stage Only: The same fleet of 50,000 systems comprises a set of 10,000

customer environments. Maintenance is approved only for stage systems and services (half the fleet) and

will be inclusive of the following tasks:

1.) Shutdown the webserver processes on all "Stage" webservers

2.) Run a prescribed set of update steps on all "Stage" application servers. EX deploy new code to

enterprise applications running within the application server containers.

3.) Restart all running "Stage" application server processes.

4.) Start the webservers processes on all "Stage" webservers restoring services.

In this case to avoid unnecessary redundancy we will simply mention only what is the intent of this case;

to illustrate the process of combining attributes in the messages in order to further refine which system

will respond to the messages. In particular, steps 1-4, each require only the "Stage" systems to respond

to actions called for in a message. This is particularly important to understand in this framework. Adding

additional attributes to the identity section of the message gives the ability to create the logical AND

necessary to define groups that are highly specific. In this case the sysFunction will continue to be defined

as "webserver", "application", etc but a new attribute will be added to further refine the grouping. In this

case we will have an attribute called sysPhase, which can be Development, Stage, or Production. Our

query in Case 3 will be to only systems with the attribute sysPhase="Stage". Keep in mind that an attribute

is really just a specific system level variable defined by the fleet or datacenter system's architect. In most

situations the attributes are modifiable to a given state of the systems or applications therein. One can

employ different strategies to deal with how modifications are made but it is best to have a known set of

attributes at the time the systems are brought online. This is particularly true if the publish subscribe

messaging pattern is used as part of a provisioning cycle.

Pitfalls of the Lockstep Approach

Despite the numerous advantages of using a lockstep approach for orchestrating any variety of system or

application level tasks across a given Service Providers datacenter it is not a silver bullet. For the lockstep

approach to work perfectly, it would require that every execution against every system acted near

identically for homogenous system types if timing is truly of the essence. This is rarely the case. As an

example and going back to the Operational Case 2 above, what would happen if the timing around a given

55

execution fell along a standard bell distribution curve for steps 1, 3, and 5? The completion times of the

command execution would show that 95% of the systems will complete their given execution within 2

standard deviations of the mean. This is likely fine if the standard deviation is small. But what will happen

if the mean execution time is 10 minutes with a standard deviation of 3 minutes. In short 50% of the

systems will need to wait around idle and in a completed state for at least 9-10 additional minutes before

being able to move onto the next step. (And that is only if the remaining systems come in successfully) It

is highly possible that the time constraints to complete the given set of steps will not accommodate this

type of lockstep approach. But is there a way to develop this publish-subscribe messaging pattern in order

to orchestrate multiple steps within a single "system or application groups" independently from any other

"system or application group" and still have them operate in parallel? Particularly when the goal is to

allow each group to complete as fast as it can without regard to any other group. To accomplish this

through a single publisher/broker is highly difficult particularly when the expectation is to scale to

thousands or hundreds of thousands of "system or application groups" perhaps involving millions of

individual systems.

Without even considering the incredibly complex messaging and execution logic that will ultimately be

associated with this kind of solution from a single publisher/broker to multi-simultaneous workflow

solution, the architect really must consider the messaging load that will undoubtedly be necessary to

facilitate all of the necessary status checks. For example; if only 10,000 systems were involved in the multi-

step ITPA workflow, the orchestrator would need to publish highly targeted messages to each of those

10,000 systems almost defeating the purpose of a broadcast solution. To address this core problem the

ITPA automation solution we must begin to develop the concept of a "Micro-Orchestrator" described in

the following section.

Automation via a Micro-Orchestrator

The previous section discussed some of the architectures, strategies, benefits, and pitfalls of using the

Publish-Subscribe messaging schemes to horizontally orchestrate and automate ITPA based tasks in very

large fleets. The size of and members of these self-forming groups are generally limited to the capability

and performance limitations of the network and/or the system housing the message broker. But a system

fleet can be managed well into the hundreds of thousands using this scheme and makes it an ideal solution

for fleet wide automation and orchestration. However, when one tries to apply conditional logic to "daisy-

chain" IT processes between and across multiple "groups of groups" is where this single publisher/broker

56

messaging scheme begins to show some weaknesses. This is particularly true when "first to finish" and

timing are key. To overcome these weaknesses let's introduce the concept of a "Micro-Orchestrator."

The Micro-Orchestrator is the same thing as the full-fleet Publish-Subscribe paradigm but flipped 900 and

localized to the group. The purpose of the Micro-Orchestrator is not to replace the fleet-wide

orchestration scheme, but rather to handle the flow-control of ITPA tasks within a given application group

or "stack". Now instead of each system being only a subscriber to the full fleet's "execution" topic there

will now be an additional "execution" topic specific to the group. Each system in the fleet will now listen

to two "masters"; the fleet wide publisher, and the group wide publisher (i.e. the Micro-Orchestrator).

GROUP 1

SERVER A

SERVER B+-

SERVERC4-

SERVER _ -

SERVERE 14

SERVERF

SERVERG

SERVER _

MICRO ORCHESTRATOR (MO)

STATUS
RECEIVED INITIATE
SUCCESS

CONTROL STATUS
ACTION

CONTINUE
RETRY

GROUP2

SERVER A

SERVERB

SERVER _ --

SERVER_ +

SERVERE

SERVERF

SERVERG

SERVERHH+

MICRO ORCHESTRATOR (MO)

STATUS
RECEIVED INITIATE
SUCCESS

CONTROL
ACTION STATUS

CONTINUE
RETRY

0
Figure 20 - Group Based Micro-Orchestrator

The Micro-Orchestrator will have no visibility or knowledge of any other subscribers, publishers, or

brokers in the fleet other than the ones within its group. In other words it is exclusive to the group. The

Micro-Orchestrator will at a minimum be responsible for the following higher order ITPA tasks.

1.) Initiation of group based process workflows.

2.) Receipt of the Status of a given process (real time or queried)

3.) Flow control between ITPA tasks between the systems in the group.

57

-1

4.) System Addressing or Querying scheme.

To illustrate the micro-orchestrator let's revive the 7 process workflow involving tasks A-G so that we can

follow the control loops around to see how micro-orchestrator must handle the execution and control

actions in response to statuses it receives from the micro orchestrator Subscriber agents. The following is

a more generic control diagram of the "External Orchestrator" shown in the previous section.

SERVER A (WEB SERVER) . MICRO ORCHESTRATOR (MO) +
MO AGENT

Process A
INITIATE

Process D

STATUSSTATUS
RECEIVED

INITIATE

SERVER B (APP SERVER) .-. "".."" SUCCESS
MO AGENT

Process B
INITIATE

Prcss D
ASTATUS

Process F -

SERVER C (DB SERVER) .- m"..".".... CONTROLTUE
MO AGENT .ACTION

Process C -CNIU
NlTIATERETRY

Process D

.STATU S ; ,.
Pess E ' '.

Figure 21 - The "Micro Orchestrator"

Using our Publish-Subscribe pattern, the Micro-Orchestrator is the "Publisher/Broker" and the MO-Agent

is the Subscriber. Below is a description of some of the interactions between the Micro-Orchestrator and

the Orchestrator Agent shown above in the in 7 Process workflow. Although the actual logic and methods

used between the Micro-Orchestrator and the MO Agents will vary considerably depending on the

workflow being defined, below is a possible approach:

1.) The overall 7 Process workflow is initiated by the Micro-Orchestrator.

2.) The Micro-Orchestrator passes a message to the Micro-Orchestrator Agent on Server A informing

Server A to initiate Process A.

3.) The Micro-orchestrator must then receive the initiation status of Process A. (Did Process A start?)

58

a. Because it is unknown in this workflow how long Process A will take to complete the micro

orchestrator need only know that the agent actually initiated Process A and nothing more.

b. The micro orchestrator agent will immediately pass back a message to the micro

orchestrator indicating the status of the initiation only, for example: initiated (SUCCESS)

or not initiated (FAIL).

c. The way a particular success or failure of a process initiation looks is variable depending

on the operating system and many other factors. However, the logic to derive the status

of an initiation is at the Server level and then translated within the "message" passed back

to the micro orchestrator and into to something understandable by the workflow logic.

The contents and type of messaging will be determined by the orchestrator, agent, OS,

and workflow logic.

d. For the purposes of this discussion we will assume that Process A is initiated successfully

and that the "success" message is sent back to the orchestrator.

4.) Following the successful initiation of Process A the micro orchestrator will poll the micro

orchestrator agent for the status of Process A.

a. This polling can take many forms but in general it is meant to find out what the state of

Process A is at the time of the poll. Some simple examples of Process A status could be

i. RUNNING

ii. SUCCESSFUL

iii. FAILURE (PARTIAL OR OTHERWISE)

b. The workflow logic will be responsible for defining the frequency, number of iterations,

and the timeouts associated with the status polling of any given process.

c. The workflow logic will also determine what happens "next" when a status is received.

For our purposes we will assume that it will exit on FAILURE, iterate on RUNNING, and

continue the workflow on SUCCESS.

d. For all intents and purposes the method to "poll" and retrieve a status will look identical

to the method used to "initiate" a process from a functional perspective. For example; to

get a status is pretty much the same as the initiation of a process, with the exception that

process being initiated simply gets the status of the previous process instead of initializing

something new. Again this can have many forms.

e. In this example we will assume that Process A completes SUCCESSFUL after 5 minutes and

the micro orchestrator retrieves this status from the micro orchestrator agent.

59

5.) Once the status of Process A is received by the micro orchestrator the micro-orchestrator will

send a message to Server B to initiate Process B.

From this point forward the 7 process workflow will loop around initiating processes and receiving

statuses of those processes until the workflow either completes or fails.

The previous illustration shows how workflows can be orchestrated in and intra-group way. But clearly

this is limited in application. The key to a robust ITPA solution for very large IT Service providers is to scale.

Now, at this point in the discussion, we have the raw materials to create a framework that can approach

the ITPA and orchestration scheme from any angle:

" Very large groups of varying vertical complexity

* Very large groups of varying horizontal complexity

" Very large groups with varying levels of both horizontal and vertical complexity.

This can be done by combining the horizontal fleet wide Publish-Subscribe messaging scheme to handle

horizontal complexity and scale, with the Micro-Orchestrator's Publish-Subscribe messaging scheme to

handle vertical complexity and scale. To illustrate this the concept of the "Macro-Orchestrator" is now

introduced.

Automation via a Macro-Orchestrator

This is an important point for the ITPA solution being developed in this paper. With the use of the Micro-

Orchestrator we are able develop complex workflow automations that will control the conditional

movement of processes within a group of logically linked systems at any level of vertical complexity. With

the single Publish-Subscribe "Horizontal" automation and orchestration scheme we are given the breath

and scale to target execution to any given system or group of systems in the fleet.

From the perspective of the central Publish-Subscribe "Horizontal" automation and orchestration scheme

the system that runs Micro-Orchestrator is no different than any other individual "Subscriber" system in

the fleet and therefore can be queried for execution in the same manner as any other system. The central

Publish-Subscribe Publisher/Broker will now become the "Macro-Orchestrator"

The diagram below illustrates the role of the Macro-Orchestrator, which now serves two roles.

1.) Horizontal "Group-Based" automation and orchestration, and

2.) Macro "controller" of multiple Micro-Orchestrator Controllers (i.e. the Macro-Orchestrator)

60

With this new connection between the two, the Macro-Orchestrator can now initiate any given Micro-

Orchestrator ITPA workflow by making a single call to a group's Micro-Orchestrator and querying it for

status in the same way as any other Process Execution-Status copulate in the fleet. This moves the

conditional logic and overwhelming message load of complex workflows out of the domain of the Macro

(central) - Orchestrator and leaves it squarely within the control of the Micro-Orchestrator. See below:

MICRO ORCHESTRATORIMOI

STATUS

CONTROL STATUS
(ONTINUI

WAYIR

GROUP2

SERVER_A

SERVER_8

SERVER_C

SERVERD

FSERVER_E

SERVER G

SERVER G

MICRO ORCHFSTRLATOR IMOI

STATUS
AWCRVED NIAF
SUCCESS

STATUS

ACONN

GROUP3

FSERVERA_A -

5ERVER_B

FsERVER_C

FSERVER_71

SERVERE

SERtVERG

DI

MACRO ORCHESTRATOR (MO)

4- 4-

MICRO ORCHESTRATOR IMO)

STATus
RECIVED INITITE

:ACTIONt

CONTROL STATUS

'N ISTATUS

I
I

I

Figure 22 - The Macro Orchestrator - High Level Design

This new method allows complex intra-group workflows to move completely away from a lockstep

orchestration scheme and solves both of the Horizontal "group based" orchestration pitfalls. Lockstep

timing and conditional messaging load. Now with the use of the Macro/Micro-Orchestrator combination

61

-1

GROUP 1

$ERVERB -

tERVRo

$ERE

SERERE

SERVEH e

/

I

INIIATE
CONTROL

ACTION
STATUS

RECEIVED

the first and fastest system to complete its individual ITPA task in a given group based workflow will no

longer be tied to the slowest system of the slowest group to finish its operations before moving to the

next task in the workflow.

Revisiting our 7 Process workflow, now a single group's full workflow can be viewed as a "single" task

from the Macro-Orchestrators perspective. That single task can have the same status types as a single

systems task, SUCCESS, RUNNING, or FAILURE. (Amongst many others)

Though the illustration below only shows 2 "groups" of systems being "orchestrated" by the Macro-Micro

Orchestrator combination, this same framework can be used to orchestrate any number of groups. It is

certainly possible to have 10's of thousands of "groups" controlled by the Macro-Orchestrator and by

extension many hundreds of thousands (if not millions) of individual systems controlled by their individual

group's Micro-Orchestrators.

SERVER A (WEB SERVER) MO'-"E"T

NGT TE

Process D
STATUSI

Proess aG

SERVER B (APP SERVER) - .- -
MO AGENT

INITIATE

Process STATUS

SERVER C (DB SERVER) -. "-""-.

MO AGENT
Process C IIIT

Proes D

STATUS
Process E

SERVER A (WEB SERVER) T

Process D
STATUS

SERVER B (APP SERVER)

c
hATE

STATUS

SERVER C (OR SERVER) MO A -EN

Proces-C INITIATE
Process D

STATUS

MICRO ORCHESTRATOR (MO)*

STATUS
RECEIVED INITIATE
SUCCESS

-NCONTROL

ACTION
CONTINUE

RETRY

MICRO ORCHESTRATOR (MO)

STATUS

11 EEIVED INITIATE

CON ROt STATUS

CONTINUE

MACRO ORCHESTRATOR (MO)

STATUS

RECEIVED
SUCCESS INITIATE

NO

CONTROL STATUS

ACTION

CONTINUE

RETRY

Figure 23 - The "Macro Orchestrator"

This approach does not need to be limited to 2 tiers of orchestrators either. In fact, the lightweight nature

of a subscriber makes it possible to create any number of "zones" of orchestration within a very large fleet

of systems. Perhaps the most interesting fact of the Micro-Macro Orchestration approach as that it can

tackle ITPA automation, orchestration, and workflow schemes across system fleets with almost any level

62

I

I
I

of vertical or horizontal complexity. It can also fit into almost any system or datacenter architecture, with

any type of tenancy model, and in organizations with almost any level of process maturity. It is also

abstract enough that there are a great variety of open source software products which can be used to

create this type of ITPA solution without being unnecessarily bound by a particular software vendor, or

product suite.

63

CHAPTER THREE - DESIGN CONSIDERATIONS AND BEST PRACTICES

Understanding Safety and Managing Change through ITPA

If there are two laws that demand the respect of any large scale IT Service Provider they are undoubtedly

Moore's Law and Murphy's Law:

Moore's Law states that the number of transistors on an integrated circuit will double every two years

until the limits of physics are hit. This has been abstracted to a more general law of "exponentials" which

seems to indicate a doubling in the processing and capacity of computer hardware during this same

period. (Moore, 1965) This observation has accurately predicted the exponential growth in compute

capacity over the past several decades and is expected to continue on this same trajectory into the near

future. Perhaps as a bit of hyperbole it could be stated that if this trend were to continue on its current

path, the most powerful computer today will be approximately 33.5 Million times slower than the most

powerful computer available 50 years from now and 1 Billion times slower in 60 years. There are

reasonable arguments to be made about the future plausibility of this growth continuing or plateauing,

which is not the intent of this paper to describe, but rather to state; that at present, the exponential

growth continues in this regard. Perhaps as the possibility of "quantum computing" matures the

continued acceleration in compute power will continue to be seen for many generations to come.

Murphy's Law states that anything that can go wrong, will go wrong.

So what do these two "laws" have to do with how Service Providers provide services? For starters, the

doubling of compute capacity every couple of years has the effect of creating a strong negative correlation

between the Service Provider's ability to grow and its probability of obsolescence. Meaning, if there is

little to no growth of the Service Provider or its services, the probability of its obsolescence is pretty high.

This implies change, a lot of it, and fast. Therefore, Murphy's Law in this context, is an invitation for

calamity and failures as changes are introduced.

The illustration below is a simplified dynamics model displaying the relationship between growth,

obsolescence, and change.

64

OBSOLESCENCE -

CHANGE

+ GROWTH

Figure 24 - Relationship between Change, Growth, and Obsolescence

If everything remained standardized and nothing changed from the time systems and applications were

provisioned, life for the IT Service Provider would be easy. This is simply not reality though, and change

happens very frequently. Even with the deployment of a standardized service environment there is always

the inevitable drift that will shift any given environment from highly-standard to highly-modified. This is

particularly true for emerging technologies and for services that require a high level of customizations to

meet customer requirements. Change and growth, however, will always be necessary for any service

provider to avoid service obsolesce. For example if an organization's services are becoming obsolete in

the market place, they must grow or change along one of many service dimensions which include:

performance, functionality, cost, availability, or resiliency.

"Safety"- an emergent property of complex systems, is particularly important to consider when change is

unavoidable and frequent. Inevitably an ITPA solution will be used to introduce changes to the service

infrastructure. Therefore, the safety of the ITPA control structures should not just be evaluated by looking

only at the "last event in the chain" that might cause a failure. One needs to take a holistic view of the

entire "system" being orchestrated and automated.

Failures can come from any number of intrinsic and extrinsic factors to the systems being automated. In

an influential paper by Nancy Leveson, titled "A New Accident Model for Engineering Safer Systems"

(Leveson, 2011) she states that there are several conditions which lead to an unsafe system and that it is

those conditions without proper controls that ultimately leads to system failures. The operating

conditions of these failures generally go well beyond sequential events proximal to the failure. They

include:

0 Social and Organizational Factors

65

" System Accidents and Software Errors

" Human Error

" Adaptation

" Emergence and Constraints.

Leveson states that "accidents occur when external disturbances, component failures, or dysfunctional

interactions among system components are not adequately handled by the control system, that is, they

result from inadequate control or enforcement of safety-related constraints on the development, design,

and operation of the system. Safety then can be viewed as a control problem, and safety is managed by a

control structure embedded in an adaptive socio-technical system. The goal of the control structure is to

enforce constraints on system development (including both the development process itself and the

resulting system design) and on system operation that result in safe behavior." (Leveson, 2011)

Development of an ITPA control structure and automation scheme, particularly one with the breath and

reach of the type mentioned in this paper, demand very careful design to avoid unforeseen and

unnecessary system failures.

Imagine a circumstance where a message (as described in Chapter 2) is accidently addressed to ALL

systems listening on a particular topic. However, the message was actually intended for a very small group

of systems but was misdirected due to the message author's confusion about how the "regular

expression" would expand. This is human error. Now imagine that the "action" taken was a one-off update

to modify a critical and untested system function. The plan was to thoroughly regression test this

modification against the very small group of systems, garner management approval for the modification,

and ultimately push this modification to the remaining systems in the fleet. Now, however, you have just

accidently released this change, untested, to the entire fleet of systems. There is a possibility that the

modification will be innocuous and all will be good. There is also a possibility that the modification will

cause a full failure of every service in the fleet. Catastrophe, particularly if there are strong SLA's in place,

or the systems are uptime critical. Clearly no one would not be so haphazard about the introduction of

new code to the entire systems fleet, yet somehow this type of event seems to happen regularly

regardless of the process used to implement the change. The regularity of this type of failure event is why

it is vital that "controls" be implemented to prevent hazards like this from occurring.

A highly simple example of a control that can be put in place for a given operation is to use the concept

of a rifle's "safety-catch." In most forms the safety-catch will only allow the trigger of the rifle to be pulled

if the safety-catch is first disengaged or turned off so it is no longer blocking the trigger from being pulled.

66

This mitigates the possibility that the trigger will be accidently pulled and the weapon discharged. If the

logic of the action being executed through the ITPA framework first checks for the engagement of a

"virtual" safety-catch and the default position is "safety-catch=on" then the potentially catastrophe event

can be averted. In order to enable a system for execution through the ITPA framework, there should be a

decoupled execution of a toggle that will switch the safety-catch from "on" to "off" before any action can

be executed.

--- I

h-

MACRO ORCHESTRATOR(MO)

STATUS
RECEIVED
SUCCESS INMATE

No

CONTROLCOT~. STATUS
ACTION

CONTNUE
RETRY

Figure 25 - Possible "Safety Catch" implementation

A virtual safety-catch can take many forms and can be implemented in any variety of ways, but it is

recommended that these types of default safety controls be implemented at the onset of a given ITPA

solution. This safety catch should be considered as a "security" catch point, including the ability to pass

and interrogate public private key information, passwords, or any variety of other security and sanity

checks. They should also be layered throughout the ITPA workflow and process execution control

structures to prevent unintended execution at several strategic points. Designing these types of controls

adequately will ultimately lead to a "safer system." Each workflow or process automation developed will

67

INITIATE

MESSAGE RECEIVED

<SAFETY
CATCH

ultimately be unique, so the implementation of the safety controls will also be unique. The ITPA solution

in this paper gives the necessary flexibility to the process engineer or workflow developer to design safety

controls, which match the particular needs of the IT Service provider and service being offered. The

controls and virtual safety-catch mechanisms should also not be limited to just the code. These types of

controls should be thought through and implemented at the organizational level as well.

Clearly a safe ITPA solution is of very little value if it is not useful. The usefulness of it will be determined

by how well understood it is by the implementing IT organization. For example, granting a large

organization the ability to create workflows and automation solutions has a great many obvious benefits.

The drawbacks are also obvious, particularly where the workflows and automation solutions involve

change and configuration management. (Which they undoubtedly will, unless the Micro-Marco

Orchestrator scheme is only used for reporting purposes.)

Another design consideration related to safety is the integrity and reliability of what is being executed.

For example, suppose the message above was truly intended to the entire fleet of systems and the action

to be executed was "runUpdate." What would happen if the runUpdate action was inconsistent from one

system to another, but it was supposed to be identical? What if System A's runUpdate would perform

tasks 1,2 and 3, while System B's runUpdate still only ran task 1 and 2? Even if runUpdate completed

"SUCCESSFUL" on both systems, it would create an inconsistent state between System A and B because A

will have tasks 1, 2, and 3 completed, and system B only one and 2. This condition would not be easily

caught particularly if the orchestrator was only checking for the overall status of the full execution of

runUpdate and not the subtasks contained within. Perhaps the easiest way to deal with this is to keep a

single shared action repository for the fleet. It is also possible to derive some type of reconciliation scheme

that will keep the repository equivalent between system A and B despite the fact that they are different

copies of the same repository. The latter is a must less desirable approach due to the complexities of

synchronization across very large numbers of systems. None the less, the same ITPA solution described in

this paper could also (and perhaps recursively) be used to maintain a synchronized execution repository

for the fleet. The distinction between a single command repository and a synchronized command

repository is shown below.

68

Single Repository vs. Synchronization

Single Repository

MASTER
REPOSITORY

Synchronization

REPLICARELC

REPLICA REPLICA

REPLICA ELC

MASTER
REPOSITORY

Figure 26 - Single Command Repository vs Synchronized Command Repository

Two other considerations when creating workflows or process executions within this paper's ITPA

framework are described below:

1.) Create a method that will guarantee that the invocation of a specific process (command

execution) has occurred or not occurred. So couple the status of the execution (did it start) and

the actual execution into a single SEND-ACKNOWLEDGE coupling (see STOMP and our implied

send-reply communication between the publisher and subscriber in Chapter 2)

2.) Decouple the status of what was executed from its actual execution. Particularly for long running

processes.

There's an important distinction between the statuses above. One answers the question, "Did it start?"

the second answers the question "How did it finish?"

This somewhat minimum criteria should be considered when creating the statuses and messaging

between the orchestrators and the subscribers that are part of the same "topic" domain (both macro and

micro). In particular, if the subscriber replies back that it executed, it is vitally important that it did indeed

execute. This will give confidence to the operator or the orchestrator code author that what was reported

to have happened is actually what happened. An example could be the following:

69

I

A message is directed to the systems containing the desired attributes and those systems call a command

wrapper that executes in the following in order.

a.) Execute the intended process, detach from it, and background it.

b.) Print a message that the previous line executed and encapsulate that message in the reply

message to the publisher.

Both (a) and (b) are executions and they must occur in sequence, (a) then (b). Therefore the only way to

get to (b) is to have completed (a). If (a) is sent to the background then (b) will simply report back via a

reply message that (a) has run. This assures the receiver of the reply message that (a) actually occurred

else they would never have received the message printed by (b). This coupling has an added benefit as

well; the operator or the workflow orchestration code should not need to wait until the command is fully

executed in order to know it was actually executed or wait to receive the exit status of the executing

process in order to know it started. This is particularly important when processes that are invokes take

several minutes to several hours to complete.

The decoupling of the status in number 2 above is also an important feature of any messaging flow. If the

execution is decoupled from the status, then the publisher or orchestrator can always expect an

instantaneous (or near instantaneous) reply message from the executing subscriber system. In Macro-

orchestrator based execution this will allow the operator to quickly view the status in a real time way to

a very large set of systems. If the status execution is from the command line interface (say on a Linux

system), or collected in an array through an orchestration mechanism, the results can easily be parsed

through using standard UNIX tools or programming languages, or visually inspected for patterns indicating

success, failure, or processing. This also allows the micro-orchestrator to continually poll systems for

status and allow for multi-threading techniques without being held up on long running process executions.

Of course there are truly an unlimited variety of ways that an IT Service Provider could use this publish

subscribe based ITPA framework to manage automation and orchestration requirements. The flexibility

of this ITPA framework is very high and somewhat limited by the maturity of the IT organization

implementing automation and orchestration through it. There are times, however, where IT process

automation is not the best course of action and can itself lead to an unsafe system state. Some of these

pitfalls are described below.

70

Pitfalls and Failures of Automation

Automation is essential to any modern IT organization, however it is not always appropriate or desirable

for every circumstance. There are several instances where automating IT processes will only achieve

minimal or even negative net results. This, even if the automation is exceptionally well done. Automating

without evaluating the benefits and risks of the automation can lead to a high degree of organizational

"wheel spinning." In other words, teams may spend a significant amount of time and effort automating

processes that were better left manual. It's also possible that the actual automation will lead to a high

degree of downstream (or upstream) dysfunction. For example, automating a provisioning process in such

a way that makes operations, maintenance, and support of the service more complicated will have a net

negative impact on the entire service organization. What is an efficiency win for provisioning is a loss for

others. Therefore, when evaluating a particular process automation, one must look not just at the

immediate impact of automation but also on the upstream and downstream impacts of the automation.

In a book titled Aviation Automation: The searchforA Human-centered Approach (Billings, 1997), Billings

explores some of the costs and benefits of aviation automation. Though Aviation and IT are not identical

topics, from the perspective of automation, they share a remarkable number of commonalities. This is

particularly true in the way that that IT Operators staff regularly interact with complex IT systems in a

manner quite similar to a Pilot's interactions with their aircraft and flight control systems. Billings sites the

following from the 1989 ATA Human Factors Task Force:

"During the 1970s and early 1980s, the concept of automating as much as possible was

considered appropriate. The expected benefits were a reduction in pilot workload and

increased safety...Although many of these benefits have been realized, serious questions

have arisen and incidents/accidents have occurred which question the underlying

assumptions that the maximum available automation is always appropriate, or that we

understand how to design automated systems so that they are fully compatible with the

capabilities and limitations of the humans in the system" (Billings, 1997)

The author goes on to state design factors that can lead to a high degree of confusion for operators of

"the system." This confusion can ultimately lead to multiple failure scenarios. In the case of Billing's book

"the system" is the aircraft, the flight control mechanisms, and human to machine interactions therein.

Below there are several of the "design flaws" illustrated by Billings which have been abstracted and given

in the context of IT systems. The general spirit of Billing's cautions for each of these categories is still

intact. These can serve as general cautions and considerations for any IT automation solution.

71

Failures of automation systems often times will result at the design phase. When accidents occur however

they are typically investigated from a "chain-link" vantage point. For example, instead of looking at the

design flaws of the system the investigation for root cause will typically focus on how this event lead to

that event, which ultimately caused the accident. A more holistic view must be taken when creating the

automations and automation systems in order to avoid conditions which would not otherwise exist if

careful consideration was taken with regards to the below design factors that can lead to difficulty.

Automation Design Factors that Lead to Difficulty Modified from Billings for IT examples (Bi I I i ngs, 1997)

Design Factor

Complexity i

Brittleness

Reliance on Automation 1

Difficulty

Complexity (particularly complexity hiding) is a consideration that needs to

be understood. Particularly where automation components interact with

other systems automated components. Without understanding the

different interactions it's possible to create a considerable amount of

confusion when certain interactions default to unknown modes and create

undesirable circumstances. Controlling interfaces and interactions

between the system being automated and external systems is key to good

design.

As Billings describes it "Brittleness is an attribute of a system that works

well under normal or usual conditions but does not have desired behavior

at or close to some margin of its operating envelope." These types of

conditions exist in many forms and are difficult to test for, even under

extreme testing circumstances. The operating "margins" should be

reviewed when constructing any ITPA automation system or framework.

As automation is used and implemented there will ultimately be some level

reliance attributed to it. This lever didn't cause the light to go off but was

assumed to work properly, and continuation to the next step continues.

This reliance or faith in the automation system can lead to numerous

failure conditions. This is not necessarily a design consideration per se but

should be considered as something to be addressed in the ITPA solution.

72

Clumsy Automation This one seems somewhat self-evident, but Billings describes as a

"descriptor to denote automation that lightens crew workload when it is

Data Overload

Skill Degradation

already low, but requires more attention and interaction at times when

workload is already high"

The data that can emerge through automation, though extremely valuable,

can ultimately lead to distraction from other areas where attention should

be given, or rather consume so much time interpreting the inflow of data

that the other areas that require attention may be missed.

This again is not entirely design flaw, but certainly a consideration to be

taken into account during the design phase. Billings specifically states that

"one potentially serious problem in human-machine systems with highly

capable automation is a loss of certain skills by the human when the

automation routinely performs tasks that require such skills" Automation

is not a replacement for necessary skills and it should not be assumed that

an operator with the capability to run a particular automation has the

necessary skills to perform the underlying automation.

Table 9 - Automation Design Factors that Lead to Difficulty

One of main takeaways of this chapter is that automation is not the only solution to address manual IT

process workflows. There are times where it is less than optimal, or even harmful to introduce

automation. There are also several ways that automation can be done very poorly, and result in a

condition that is significantly worse than the condition that existed prior to the introduction of the

automation. The considerations in this chapter can be used as a starting point in creating a robust, useful,

and safe ITPA solution using the framework described in this paper. A final and important point is again

one that Billing's makes that must be part of the architects' frame of mind when designing automation in

the context of IT Process Automation.

"It is necessary that we look not only at the human or at the machines, but at the system, if we are co

correct system faults or to design and implement more effective systems in the future." (Billings, 1997)

73

CONCLUSIONS AND FUTURE WORK

The Micro-Macro Orchestrator combination can be used in many ways to gain efficiencies. Particularly

when implemented as described in this paper and a Publish-Subscribe messaging pattern. Publish-

Subscribe as a management framework has only recently begun being used as an orchestration tool and

is generally only utilized in one dimension or the other (ex: Micro (vertical) vs Macro (horizontal)).

Combining both, as described in this paper, gives the ability to scale on a vertical and horizontal level using

a single framework. This makes the proposed ITPA solution particularly useful in very large and complex

IT service infrastructures. This paper describes a possible framework that can be used to perform any

number of IT process and workflow automations, but the implementation details of the given workflows

and process automations are left to the automation architect or system engineer. They will remain the

final arbiter in determining the details around any specific automation or workflow.

The value in this approach can be found in the flexibility, speed, scale of execution, and instant feedback.

These factors can lead to massive efficiencies, but can also lead to massive failures if not implemented

with careful thought. For example just as one can properly update 10000 systems in parallel one can also

improperly update or destroy those same 10000 systems in parallel and in an instant. This pushes the

thoughts toward the safety of the system which was discussed somewhat in the last section of this paper,

but not at an extent that it deserves. This topic in particular requires a significant amount of future work

to understand the ramifications and potential implications of not being able to unscramble the egg, so to

speak. However, this same concern would apply to any large scale ITPA, change management,

provisioning, or IT management framework with a very large scope of execution.

The need for these types of solutions will only grow in the coming years as IT organizations throughout

the world look to either expand their fleet services offered internally or outsource to a cloud or External

IT Service provider. To either organization the solution described in this paper is applicable to gain the

automation efficiencies necessary to scale out.

It should also be noted that the decoupled communications mechanism utilized in the proposed ITPA

solution is also applicable in other areas that require the coordination and orchestration of numerous

"systems." It doesn't seem like much of a stretch to see this type of orchestration mechanism used to

orchestrate the lockstep movement of drones or other autonomous vehicles from a central controller

with the ability to pass control to individual units for more complex movements and operations. The ability

to both group and split tasks that are both vertically and horizontally complex is a highly relevant topic for

any large scale computing environment and so this paper can serve as a gateway for further work.

74

REFERENCES

Creative Commons Attribution v3.0. (2014, December 1). STOMP Protocol Specification, V1.2. Retrieved

from GIT Hub: http://stomp.github.io/stomp-specification-1.2.html

Anonymous. (2013, November 2). Idempotence. Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/idempotence

Billings, C. E. (1997). The Search for a Human-Centered Approach (Human Factors in Transportation).

CRC Press.

Birman, K. P., & Joseph, T. A. (1987). Exploiting Virtual Synchrony In Distributed Systems. Ithaca: Cornell

University, Department of Computer Science.

Colville, R. J. (2011). IT Process Automation: Moving From Basics to Best Practices - REPORT -

G00214344. Stamford: Gartner Research.

Colville, R. J. (2011). IT Process Automation: Run Book Automation Tools Mature to Broader Use.

Stamford: Gartner.

Garbani, J.-P., & O'Donnell, G. (2011). Market Overview: IT Process Automation, Q3 2011. Cambridge:

Forrester Research.

Garbani, J.-P., Mendel, T., & Radcliffe, E. (2009). The IT Automation Imperative - Putting IT On The Road

to Industrial Mass Production REPORT-. Cambridge MA: Forrester REsearch.

Kraveepetcharat, A. (2013). Data Processing and Hosting Servcies in the US REPORT - 51821. lBISWorld.

Leveson, N. G. (2011). Engineering A Safer World - System Thinking Applied to Safety. Cambridge: The

MIT Press.

Moore, G. E. (1965). Cramming More Components Onto Integrated Circuits. Electronics Magizine, 4.

Natis, Y. V. (2012). Gartner Reference Modelfor Elasticity and Multitenancy - REPORT - G00231615.

Stamford: Gartner.

Rance, Stuart; Hanna, Ashley; Hewlett-Packard. (2007, May 30). ITIL IT Service Management. Glossary of

Terms and Definitions.

U pti me I nstitute, LLC. (2010-2013). Data Center Site Infrastructure - Tier Standar: OPerational

Sustainability. New York: Uptime Institute.

Williams, D. (2010). IT Operations Process Automation Achieves Mainstream Status With Increased

Market Adoption and Importance - REPORT G001 74293. Stamford: Gartner.

75

