Resource Dependencies in Parallel Development of Military Systems:
A Comparison of Waterfall and Agile Development Methodologies

By
Erik Roberto Garcia

S.B. Aerospace Engineering with Information Technology (2006)
Massachusetts Institute of Technology

SUBMITTED TO THE SYSTEM DESIGN AND MANAGEMENT PROGRAM
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTERS OF SCIENCE IN ENGINEERING AND MANAGEMENT

AT THE [MASSACHUSETTS INSTITUTE]
OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JUN 23 2016
February 2014
CJune 20} LIBRARIES
© 2014 Erik Roberto Garcia. All rights reserved

ARCHIVES
The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic
copies of this thesis document in whole or in part in any medium now known or hereafter created

| Signature redacted

Erik R. Garcia
System Design and Management Program

January 31, 2014

Signature redacted
Certified by:

! Nelson P. Repenning
Professor of System Dynamics and Organization Studies at MIT Sloan School of Ma

nt
Faculty Director of MIT Executive MBA Program
» L7 7

Accepted by: S Ig n atu re red aCted

Patrick Hale

Director
System Design and Management Program

A
- m— 77 Massachusetts Avenue

: . Cambridge, MA 02139
M rn_lbranes http://libraries.mit.edu/ask

DISCLAIMER NOTICE

The accompanying media item for this thesis is available in the MIT
Libraries or Institute Archives & Special Collections

Thank you.

Table of Contents

o 11 o Yo [1 T oo] IO ORI 1
11 1Y oY 1V 4o 1 T OO PO PP 2
1.2 RESEATCH QUUESTION ...ttt sttt ta e e sttt e e e sme e e bbb e saba e e s saat s eesttnsneesmeesmbenabeas 4
13 Thesis OFganiZatioN.......ccccivvrieiiuiiies ettt st s s b e s sbe s b e sbb e s sanssnbeens 4

b T ol 4 TV 1« [O O 5
2.1 Department of Defense Development Life Cycle ..., 5

211 Materiel SOIULION ANGIYSIS ...c.vveiieiieeieeteeeeecee et e 6
2.1.2 Technology DEVEIOPMENTceiiiiiiieecie ettt b b s 7
2.1.3 Engineering & Manufacturing Developmentccoccviiiiiniiinii e, 7
2.14 Role Of System ENGINEEIS........ciiiiiieeeetiee ettt e sar s 7
2.2 Waterfall and Agile Development...........c.ccooerrviiiiiiiiiiniiiic e 7
221 Waterfall DEVEIOPMENT..........oocviiiieieieeee ettt eaesan s sbe st ene e 8
2.2.2 Agile DEVEIOPMENT ..ottt bbb e st be e 9
23 Previous Relevant MOEIs........c..ovirriiirie ettt sent e e eer e st e sree e 10
231 Dynamics of Concurrent Software Development........ccccooiviiininiiiiiiiinie, 10
232 Simulating Kanban and Scrum vs Waterfall with System Dynamics...............cccoininiis 11
2.3.3 AgIle ProjECt DYNAMICS.....eciieverrereereeeieiee et ettt e s sbe b ae bbb st ene s 12

3 MOAEI DEVEIOPMENTeeeiiiieite sttt s s ee s e e e e e b e s be e s bt s e s bbb e e s b e e s aa s e bbb e sbb s ans 13

31 Development and Testing TIMelNes........cccccoivviiiiiiiiiiii e 14
3.1.1 Materiel SOIUTION ANGIYSIS ..vviirrrereieiieiiree ettt e et 17
3.1.2 Technology DevelopmENTcoivviriiiiiiiiiee ettt sa e 17
3.13 Engineering & Manufacturing Development — System Design.......c.cccoeevivivieninniiniienns 18
3.14 Engineering & Manufacturing Development — System Testing........ccccevvvieeinviiniininiennnns 25
3.15 HUMAN RESOUNCING ...eiicvreerirereerrererrrrenrreesseesreretessiissteesassssiansss s s iabbe st s bbesesssseeesbatbssesseessnnes 31
3.1.6 TabIE CONSTANT ..ot ettt b bbb e s s ab s b s s sar s s be e sanesabe s 32

4 Analysis of Waterfall and Agile development Models..........ccoiiiiniiiniiiniiiii e 39

4.1 Overview of Waterfall and Agile Model results.........ccccoveeireieninriinniine e 39
4.1.1 Requirements COMPIELION ..ottt e e 39
4.1.2 Types of Technologies Developedcccviiiiiiiciniiiniiiinie e 40

4.2 Analysis of Waterfall and Agile model development tendencies..........cccocceeieiriiniiiiinininnnnnn. 41
4.2.1 Requirements Development in each BUildc.cccoevvieniiniiiniiniiiicicc e 41
4.2.2 Types of Technologies Developedccccoorieiiiriecinin 48

43 DISCUSSION....veiiiieiieerireeeeireressoessstteeseesiasttstesesssabaaasessabsbnteeesa s ssbbaesaesaas b b e n e e aeaseesnbnnasaesaabsaes 51
43.1 Reducing conflict between cost, schedule, and capability constraintsceceevreiinnnnen. 51
4.3.2 Reducing FIrefightingcocvieviieiiiricireeieeciert s eae s 51
43.3 Impact 0n Development TasKs........ccveieeeerieriirnenie st e s 53

5 CONCIUSION ..ttt s 55

L V) (VT (Yo o OO OO S 57

A o o T=T 1 o L OO P OTSROPY PO 58
7.1 System Design during Agile Development........c.coiviiinieiniiniiininii e 58
7.2 System Design TRL Coflow during Agile Development..........coccocveiiiiininiiiiniiicneeiens 59
7.3 System Testing for both Modelscccoeieiiiiiiiiiiiii s 60
7.4 SYStEM DESIBN TEAMcoveeiririt ittt sttt s ettt et et e bt e b e st e e s e bb e e abe et b s e s e e e baaseas 61
7.5 SOFtWare DESIZN TEAIMc..ccveruerererrrenrercerer ettt ettt s a s sb e st s s s e sbeeane s 62

YV Y o 01 =Y OO OO O R 63

Table of Figures

Figure 1 - System Acquisition Framework (Defense Acquisition Guidebook, 2013}ccccceevvrvecnieneennen. 5
Figure 2 - Implementation flow during development of a concept/software system (Royce, 1970) 9
Figure 3 - Implementation flow during development of a increments of a concept based on Figure 2....10
Figure 4 - Agile development framework of Scrum (Cocco, Mannaro, Concas, & Marchesi, 2011) 12
Figure 5 - List of sub-tasks for each development phaseccccccccveiieiiieiiiin e 14
Figure 6 - Overview Of MOe] STTUCTUTEcc.ceeveeivrierrieriieniisree st st eseessssesr et sraesbe s sbesssssseessesabesbesnnes 15
Figure 7 - Timeline within Development CYCIecccvrierniiiiaiiriiree et e cernresesere s seseneeee e s s e ssaaessnnes 16
Figure 8 - Timeline of parallel Build Development and TeStiNG.........cccceeeviiiiiieiiiiiinieec e e snneen 16
Figure 9 - System Dynamics representation of Materiel Solution Analysis development 17
Figure 10 - System Dynamics representation of Technology Development..........ccccoeecenniiieceeniiennnnns 18
Figure 11 - System Dynamics representation of Concept Planning............cccoevvinvieriveenicinviinnivnnieene e 19
Figure 12 - Interaction between Concept Planning and Concept Development.........ccoccovevviiiirineicnnnns 20
Figure 13 - System Dynamics representation of Waterfall developmentccccceovveervinniiiinvennieenninnnns 21
Figure 14 - System Dynamics representation of product planning and tasking for Agile development.... 22
Figure 15 - System Dynamics representation of Agile development...........cccoovevvrervenieicerceeniceerceeceeeeeenn 24
Figure 16 - Coflow for managing TRL during Agile developmentccooveiirnieniinincneeesee e 25
Figure 17 — Overview Of SyStem TeSTING.....c.ccvveereiiiiireiieritierie e ssree s st ee e see e s b e s ssessaeesbessaseesbeeeses 26
Figure 18 - System Dynamics representation of Integration/Verification Testing.........ccccccevveervceienennnene 27
Figure 19 - System Dynamics representation of Contractor TEStINGccccccvverrerniniriecienienrieesiessessissneenns 28
Figure 20 - System Dynamics representation of Government Testing........cccccvevveivvieenireenieesiceeseeeceeennes 29
Figure 21 - System Dynamics representation of Operational TeSting......cccccovevvveverriernienveericeenenceeseennenns 30
Figure 22 - Priority for allocating System and Software ENgIineersccccccevvveevieeiiesicenn st 32
Figure 23 - Design Defect RAte CUIVEccceveiiviciieiecieeieetestesee e e e e seessbtestessrassassnasasssssessaesssenssassenseans 33
Figure 24 - Code Defect RALE CUIVEccciiiiiireeeciiiciteriee sttt rsre e sene st e e s bee e ssbeesbeesbeseessasabasssaasssaasssans 34
Figure 25 - CONCept DefeCt RAte CUNVE.......ccvviieierriccreeiercrt s et seer et ee s saaesre e e e s s asraessressnnasssens 35
Figure 26 - System Test Defect RAte CUINVE.......cooccvrrriiiririeeicirrree et e e sreesssbeesssatressrnnesssanaesssnsesnnns 36
Figure 27 - Defect Rate FActOr OVEr THMEiicieiiiiciiciee e eceresre e st e s s sraeeinae s e s e st e e nneessreassaesansessaeas 36
Figure 28 - Productivity Rate OVEF TIMIEcceicuiieiiiiiiircieiee st ciercseteereeeset e estaaesaeesreessseaessnassntesssesnenanns 37
Figure 29 - System Engineering Involvement in Test PEriodccvevveiiiiecniiniiiciiesieeeeesireesrveeesenennnne 38
Figure 30 - Requirements Completed in BUild 1.........c.cccoieiiiiiieenieneeniieceeeee et et sre e 41
Figure 31 - System Engineers supporting System Design in Build Lccoccvirviiiiiniiiiiiinnneerceseiesenens 42
Figure 32 - Software Engineers supporting System Design in Build 1cccoovieviiiiieenieiniinecvincenennns 42
Figure 33 - Requirements in Progress in BUild L............cccovveriiiiiciiiiiiniien e seseecceesne e seeesere e seessnesans 43
Figure 34 - Requirements Completed in BUild 2............ccovieniiiniiniiiicieesee e ee s sae e 44
Figure 35 - System Engineers supporting System Design in Build 2cccccvvveiniiinniecninniinniriecssienenens 44
Figure 36 - Software Engineers supporting System Design in Build 2cccovvvimviiiniiccniinnineceneee e 45
Figure 37 - Requirements in Progress in BUild 2...........cccccoviceriiiiiiinieneie et s seeesanesane 45
Figure 38 —Requirements Completed in Build 3cocevvrirenreineceireereee e e 46
Figure 39 - System Engineers supporting System Design in Build 3cccccooviiniiiiiiienininiiecccn e 47
Figure 40 - Software Engineers supporting System Design in Build 3cccooiniiinvcnininnciiecesense e 47
Figure 41 - Requirements in Progress in BUild 3..........cocievieeiniiniincicee et see e 48
Figure 42 - Engineers supporting Technology Development...........cvecverereirnienreenennienierneeneesesssesiessees 49
Figure 43 - Engineers supporting Materiel Solution Analysisc...cccveeriieiennceniniiniiienneeees e 50
Figure 44 — Technologies introduced during each Build's test phase of Waterfallccccoecevenniniennnn 52
Figure 45 — Technologies introduced during each Build's Test Phase of Agile..........cccceeerriineeneeccrnnnnee. 52

Table of Tables

Table 1 - Comparison of Product Development Processes (Ulrich & Eppinger, 2008).........ccccccovevveeiinenennnne 6
Table 2 - Productivity metrics for System Desin TASKScccveeeieirrerierrnneeerireeenrieiesineesesseesssiessessnsen 33
Table 3 - Technologies considered for Build Development...........ccovvvvvreereeveeninrennenee st srreneene 39
Table 4 - Size Of DEVEIOPMENT TEAM ...c...ui ittt e s be e b e e sbae s sanrs s senbesssbeesarsssnsees 39
Table 5 — Associated System Testing phase for completed requirements..........cccceecvvvveriiiinrersvrirncennnenn 39
Table 6 — Number of Requirements introduced during each Build’s Testing phase...........cccccccvvvvecnenenne, 40
Table 7 — Average TRL for Requirements added to each Build............ccooeoeveninnncnincine e, 40
Table 8 — Number of Technologies Adopted in @ Buildcccoeieeiriiiiieieeieeeececeec e 51
Table 9 - Requirements introduced in each Build's Test Phase.............ccccceviuiiienieniiiiciieeccee et seeecieeens 53
Table 10 - TRL of Requirements introduced in each Test Phase of Build 1c.ococveveeeerieccivecnecnnenn, 53

Table 11 - Comparison of technologies developed based on average TRL

Resource Dependencies in Parallel Development of Military Systems:

A Comparison of Waterfall and Agile Development Methodologies
By
Erik Roberto Garcia

Submitted to the System Design and Management Program
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

Abstract

The United States Department of Defense has been plagued with failing programs that are over budget,
behind schedule, and exhibit poor performance during testing. Once a program has cost, schedule, or
capability issues, follow-on development efforts adopt the underlying issues only to reinforce poor
performance. To address these issues that lead to firefighting, one option is to use an Agile software
development process to introduce capabilities earlier in the development process for effective testing.
Two System Dynamics models compare Agile with the traditional Waterfall development approach to
determine: if Agile development reduces the conflict between cost, schedule, and capability constraints;
if Agile development reduces firefighting; and will Agile development impact other development tasks.
Based on the simulation of each model, Agile did improve the dynamics of parallel development cycles
by maximizing the productivity of the entire development team. Under the same System and Software
Engineering team size and development release schedule, Agile development increases the quantity of
requirements introduced within a development cycle. However, Agile development emphasized less on

maturing new technologies leading to considerably less innovative builds.

Thesis Supervisor: Nelson P. Repenning
Title: Professor of System Dynamics and Organization Studies

Faculty Director, MIT Executive MBA Program

Acknowledgements

| gratefully acknowledge the helpful support and valuable resources provided by MIT’s System Design
and Management (SDM) Program. The SDM staff and faculty made my experience at MIT a truly
enjoyable and rewarding one. In addition, | would like to thank all of my classmates, especially those in

the Military, for providing their insight and recommendations on the models.

| owe a debt of gratitude to my thesis advisor, Nelson Repenning, for his considerable support during
the development of the System Dynamics models and insights on fire fighting and resource

dependencies.

I also thank Professor Edward Crawley and Dr. Bruce Cameron for the opportunity to be a teaching

assistant for System Architecture.

| also am gratefully to my Raytheon product leads, Chibl Nahas and Jaime Wiley, for making my
attendance to MIT possible while working, especially with classes during business hours and when the

program’s need was high.

Finally, my deepest thanks goes to my wife, and fellow SDM classmate, Kathleen Voelbel. She has given

me the strength and support to complete this degree.

1 Introduction

Developing a new United States military system requires leadership, management, and execution. To
realize and maintain a large-complex system, it is necessary to manage competing project constraints of
scope, quality, schedule, budget, resources, and risk (Project Management Institute, 2013). Whether
the system is managed as part of a project, program, or a portfolio, decisions to influence one constraint
affect the others because they are interrelated. Therefore, it is important to have a business strategy

and determine which constraints are most important when faced with development challenges.

Regarding the phrase “Good. Fast. Cheap. Pick any two.”, a successful business must ensure “good”
products and should determine flexibility in increasing schedule or cost (Frand, 1980). The value of a
military system is determined by its capability to support the warfighter. It is the responsibility of the
Department of Defense acquisition enterprise to oversee the procurement of systems and ensure
reasonable system requirements are set. If a military system faces challenges due to development risk,
the business strategy should determine which of the following actions the government project/program
office should select: inject the needed funding to maintain schedule, inject a portion of funding to

reduce schedule delay, or inject minimal funding required to support schedule delay.

However, allowing schedule delay or providing additional funding contradicts recent direction from the
Department of Defense. Due to fiscal hardship, the United States Congress requires significant
reduction in procurement costs for military systems. On the other hand, the Secretary of Defense Chuck
Hagel indicates that the military needs to develop more technologically advanced equipment and
weapons systems to support evolving military threats (Parrish, 2013). Depending on the size of the
system, the acquisition process can take many years for a system to be developed, tested,

manufactured, and deployed.

Unfortunately, the acquisition process for large systems has been failing. A 2010 Army Acquisition

Review showed Acquisition Category 1' programs in development had an average schedule slippage of

! An Acquisition Category | program is either designated by the Under Secretary of Defense for Acquisition,
Technology and Logistics as a Major Defense Acquisition Program; or requires more than $365 million for initial
development and testing, or requires more than $2.19 billion to support development through production (based

on fiscal year 2000 US dollars). (ACQuipedia, 2013)

2.1 years and that between 1990-2010, 22 Major Defense Acquisitions Programs were terminated
(Decker & Wagner JR., 2011). In a separate assessment charted by the Under Secretary of Defense for
Acquisition, Technology and Logistics, 67 major programs experiencing schedule delays were examined
in response to acquisition community concerns that testing drove undue scope, schedule delays, and
excessive costs. The author of this assessment states that “programs are most often delayed because of
the results of testing, not the testing itself” (Gilmore, 2011). Both studies agree that poor performance
experienced in testing is due to development efforts citing reasons of “unconstrained requirements,
weak trade studies, and erosion of the requirements and acquisition workforce” (Decker & Wagner JR.,

2011).

The reasons cited for poor performance are also cited as indicators of “firefighting” experienced in
Integration & Testing and Product Deployment phases of aerospace product development (McQuarrie
Jr., 2004). For programs that require multiple development cycles, the development team will focus
vital resources on addressing the performance problems during current testing instead of devoting
resources to early development that ensures quality performance of the next cycle’s test phase. The
dynamics of firefighting in parallel development, as is present in programs with multiple development
cycles, is self-reinforcing (Repenning, 2001) and leads to an increasing overall schedule delay if left

unaddressed.

Similar to the idea behind Technical Debt (Cunningham, 2011), Test Debt, as the author of this thesis
defines it, occurs when capabilities are introduced late in the development cycle and consequently are
not tested early. As Test Debt increases in the system, the risk of defect detection during final testing
or, even worse, defect detections during deployed operation increases. The greater the Test Debt, the
more likely firefighting will ensue and the customer’s confidence in the system’s performance will
decrease to the point that additional “builds” are needed to “clean-up” defects discovered late in the

lifecycle.

1.1 Motivation

Developing new military systems challenges all six project management constraints: scope, quality,
schedule, budget, resources, and risk (Project Management Institute, 2013). However, when three
particular constraints do not go as planned, i.e., the combination of cost overruns, schedule delays, and

poor system performance, a burning-platform is created for the DoD to “shed excessive requirements”
2

and identify “trade-offs between cost, schedule, and performance” (Carter, 2011). In these situations,
the government acquisition entity can reduce the initial set of requirements to a fundamental prototype
that supports future upgrades and provides the minimum capability needed to assess early system
performance, thereby mitigating potential cost, schedule, or performance issues. If the initial
development cycle is successful in meeting objectives, the government acquisition entity can exercise
the option for hardware and/or software upgrades in subsequent parallel development cycles. This

process is similar to engineering real options that reduce risk and financial loss (De Neufville, 2011).

Although having reasonable and mature requirements does help reduce risk of failure during testing, the
prototype may still exhibit poor performance that would lead to fire-fighting during parallel
development cycles. Instead of de-scoping, increasing budget, or allowing schedule delay, one option to
balance fire-fighting would be to alter the development approach. If decreasing Technical Debt reduces
fire-fighting, one option could be to alter the software development approach from the traditional
sequential Waterfall software development and encourage the rapid incremental Agile software
development. Agile software development approaches like Scrum and Extreme Programming were
developed to increase immediate development results, improve software quality, and adapt to changing
requirements and are widely used in the commercial sector. Although Waterfall software development
compliments the Defense Acquisition process and milestones, Agile software development can succeed
in software development efforts of military embedded systems both small and extremely large complex

systems (Tavassoli, 2007), (O’Connell, 2011).

The first two Laws of Program Evolution state that a system in use is changing continually and only
increases in complexity (Lehman, 1980). Agile development addresses the evolution and complexity of a
system by strong team interaction and incremental design and implementation of each new feature.
However, Agile development’s reliance on strong team interaction can have a negative effect since it
increases the complexity of coordination, especially for large teams developing complex and
complicated systems. In addition, the process for designing and implementing a fraction of a capability
lacks the holistic view of the full solution which challenges experienced reviewers in ensuring proper

execution of system-level requirements and preventing future re-design and re-implementation.

Although Agile development is successful in commercial software systems, the application of Agile
development in the defense sector should be compared with traditional Waterfall development to

determine the impact on a parallel product development environment that requires extensive testing.

1.2 Research Question

To determine whether Agile development should be used during parallel software development cycles
of military systems, the following research questions are posed:

® Does Agile development reduce the conflict between cost, schedule, and capability constraints?

* Does Agile development create an environment that reduces firefighting?

¢ Will Agile development impact other development tasks?

1.3 Thesis Organization

To address these research questions, this thesis is organized into the following chapters:

e Chapter 1, Introduction, describes the background, motivation, and research questions of this thesis.

e Chapter 2, Background, defines the development process for military systems and relevant models.

e Chapter 3, Model Development, describes the modeling process that created the System Dynamics
models used for analysis.

¢ Chapter 4, Analysis of Waterfall and Agile development Models, compares the results of both
development processes during parallel development life cycles.

® Chapter 5, Conclusion, evaluates how the research objectives were met, suggests potential future

work, and presents the key contributions of this thesis.

2 Background

Government and Defense Contractors adhere to the Defense Acquisition System for managing United
States defense technology projects and acquisition programs (DoD Instruction 5000.2, 2013). The
Defense Acquisition System along with the Defense Acquisition Guidebook provides insight on the
development process to achieve cost, schedule, and performance goals (Defense Acquisition Guidebook,
2013). In comparing Waterfall and Agile development, previous work provides insight in modeling each
development approach and the dynamics between development processes within the development life

cycle.

2.1 Department of Defense Development Life Cycle

The objective of the Defense Acquisition System is “to rapidly acquire quality products that satisfy user
needs with measurable improvements to mission capability at a fair and reasonable price” (Defense
Acquisition Guidebook, 2013). To do so, Government project/program offices and Defense

Contractor/Suppliers follow the System Acquisition Framework shown in Figure 1.

System Development Life Cycie 1

AOTR - A of O | Test Read| ISR - In-Service Review ! o
ASR - Alternative Systems Review MDD - iel Deved ish | « % Mandatory technical reviews
CDR - Critical Design Review OTRR - Operational Test Readiness Review Ay
EMD - Engineering and Manuf; -1 PCA - Physical Configuration Audit |
Development PDR - Preliminary Design Review .
FCA - Functional Configuration Audit PRR- Production Readiness Review 4 Best practice technical reviews and |
FD - Full Deployment S&T - Science and Technology A audits |
FOC - Full Operational Capability SRR - System Requirements Review |
FRP - Full-Rate Production SFR - System Functional Review |
| 10C - Initial Operational Capability SVR - System Verification Review | ’ Test reviews (see DAG Chapter 9)
| TRR - Test Readiness Review

Figure 1 - System Acquisition Framework (Defense Acquisition Guidebook, 2013)

The Defense Acquisition Framework for Research, Development, Test & Evaluation programs is similar
to commercial New Product Development. Table 1 compares the System Acquisition Framework phases
with the Product Development and Development process described by Ulrich and Eppinger. The two
major differences are: 1) the Ulrich & Eppinger processes couples design and implementation while the

DoD System Acquisition Framework couples implementation with test and demonstration, and 2) the

DoD System Acquisition Framework includes post-production operations and support services as part of
the Development process.

Table 1 - Comparison of Product Development Processes (Ulrich & Eppinger, 2008)

Ulrich & Eppinger |pop System Acquisition Framework Similarities:

Determining market/military need, assessing
Pre-Acquisition Concepts, Experimentation
hPIanning existing systems and alternative technologies,
and Prototyping

tc.
oncept Identifying users and user needs, developing
[Materiel Solution Analysis
Development xperimental prototypes, etc.
System-Level Design [Technology Development Pevelop architecture and interfaces

_Engineering Development - Integrated System [Develop and document final design of
[Detail Design

Design product/system
esting the product/system design and
Testing & Engineering Development — System Capability
implementation, and validate product/system
JRefinement & Manufacturing Process Demonstration
meets needs
IProduction Ramp-UpIProduction & Deployment Phase IProduction and distribution of the product

For each System Acquisition Framework phase, a system passes each stage of pre-systems acquisition,
systems acquisition, and sustainment. The core development efforts for system acquisition include:
Materiel Solution Analysis, Technology Development, and Engineering and Manufacturing Development.
Each effort increases the maturity of a technology for future capability introduction. Currently, the DoD

measures the maturity of a technology using the Technology Readiness Level (TRL) metric.

The TRL scale ranges from 1 to 9 and is a metrics-based indicator associated with the maturity and risk

of atechnology. TRL 1-3 represent Research & Development technologies that have positive laboratory
results. TRL 4-6 represent technologies that have been successfully modeled or prototyped in a relevant
environment. TRL 7-9 represent technologies that have been integrated into an actual system and have

successfully completed mission operation (Technology Readiness Assessment (TRA) Guidance, 2011).

2.1.1 Materiel Solution Analysis
Materiel Solution Analysis is the first element of the Defense Acquisition Framework. The goal of

Materiel Solution Analysis is to identify and define performance requirements and

technology/technologies for a system. This effort includes further developing the maturity of a

technology; identifying implementation and manufacturing risk; and possible prototype/demonstration.

2.1.2 Technology Development

Technology Development is the second element of the Defense Acquisition Framework. The goal of
Technology Development is to reduce technology risk for future system adoption. This effort may
include further technology development and/or demonstration of application. A Preliminary Design

Review (PDR) occurs during this phase.

2.1.3 Engineering & Manufacturing Development

The Engineering & Manufacturing Development phase is the third element of the Defense Acquisition
Framework. The Engineering & Manufacturing Development is comprised of Integrated System Design
and System Capability & Manufacturing Process Demonstration with each effort occurring before and
after the Critical Design Review (CDR), respectively. Unlike Ulrich and Eppinger’s approach to coupling
the design and implementation during the Detailed Design phase, the Integrated System Design phase
refines and documents the system, performance, and/or functional requirements. Implementation
occurs in the System Capability & Manufacturing Process Demonstration effort along with the
integration and demonstration of capabilities. In addition, this phase verifies the manufacturability,

affordability, and producibility of the system.

2.1.4 Role of System Engineers

System Engineering is the “holistic, integrative discipline, whereby the contributions across engineering
disciplines such as Structural Engineers, Electrical Engineers, Mechanical Engineers, Software Engineers,
Human Factors Engineers, and Reliability Engineers are evaluated and balanced to produce a coherent
capability - the system” (Defense Acquisition Guidebook, 2013). The role of a Systems Engineer spans
across the entire life cycle and includes the realization of the architecture; modeling and prototyping of
designs; developing system, performance, and functional requirements and “build-to” documentation;

supporting development testing; and preparation for production.

2.2 Waterfall and Agile Development
As described by Barry Boehm in his 2006 paper titled “A View of 20th and 21st Century Software

Engineering”, Software Engineering processes have evolved every decade, cycling between formal and

informal development. During the 1950’s, Software Engineering followed the same exhaustive reviews
that hardware engineers performed before committing to a design. The use of a strict development
approach was deemed not necessary in the 1960's because software defects are easy to fix, leading to a
“code and fix” model. Unfortunately, the “code and fix” model led to “spaghetti code” and relied on
“cowboy programmers” to address issues; this led to the 1970’s effort in promoting a formal structured,
sequential Waterfall development approach. Laterin the 1980’s, the U.S. DoD coupled the Waterfall
development structure to contractual standards and commissioned the Carnegie Mellon University —
Software Engineering Institute to develop the Software - Capability Maturity Model. Concurrently in the
1980’s, Software Engineering initiatives to improve productivity and scalability through distributed
efforts, such as early testing, and promoting development tools, software processes, and software re-

use.

Starting in the 1990’s, the market shifted to developing quick solutions to meet customer needs. This
emphasis on “Time-To-Market led to risk-driven spiral development. Subsequently, in the 2001, rapid
development approaches integrated into the Manifesto for Agile Software Development (The Agile
Manifesto, 2001). The Manifesto for Agile Software Development values are:

¢ “Individuals and interactions over processes and tools”

® “Working software over comprehensive documentation”

e “Customer collaboration over contact negotiation”

® “Responding to change over following a plan”

2.2.1 Waterfall Development

The Waterfall development approach consists of sequential development phases that are often
separated by a formal review. The approach in developing large software systems was introduced in
1970 by Dr. Winston Royce, as shown in Figure 2 (Royce, 1970). In 1976, “waterfall” was coined in an

article discussing development of software systems for Ballistic Missile Defense (Bell & Thaer, 1976).

The purpose of sequential development is to reduce the number of defects identified in later
development stages. For early system requirements and design tasks, Defense Acquisition Framework
promotes Preliminary and Critical Design Reviews to ensure the design embodies the capability needed
and to reduce risk of rework during implementation of the design. By approaching the concept as a

whole, the design team can determine whether the solution is optimal and is aware of the architectural
8

impact of the solution on other concept solutions. This strategy is important since a requirement’s
rework can cost 50 to 200 times to fix during implementation or deployment of the software

(McConnell, 1996).

Another aspect of Waterfall is that the design of a technology is managed in multiple forms of
documentation to ensure the intent is conveyed during design reviews and to other engineers involved

in the design, implementation, and test efforts.

System
Reguirements

Software
Requirements

Analysis

Program
Desi

Testing '\

Operations

Figure 2 - Implementation flow during development of a concept/software system (Royce, 1970)

2.2.2 Agile Development

Unlike the sequential effort of a concept during Waterfall development, Agile development approach
consists of incremental parallel development efforts. Figure 3 illustrates the concurrent development of
increments of multiple concepts being developed simultaneously. The development of each increment
can occur between one to six weeks, which may include the requirements development, design,
implementation, testing, documentation, and deployment (MITRE, 2010). This development approach
revolves around principles that promote interaction between customers and developers and leads to
flexibility with changing requirements and early releases of software delivery (The Agile Manifesto,

2001).

Kick-off Kick-off Kick-off
Increment(s) Increment(s) Increment(s)

System System System
Requirements Requirements Reguirements Requirements
Software Software Software Software

Requirements

Requirements

Requirements

Requirements

Progra m Progra m Progra m
Desn Desn n De5| n Design
Testlng Testlng Testlng

Operations Operations Operations

Figure 3 - Implementation flow during development of a increments of a concept based on Figure 2

There are different methods of Agile development such as: Extreme Programming, Scrum, Dynamic
Systems Development Method (DSDM), Adaptive Software Development, Crystal, Feature-Driven
Development, and Pragmatic Programming. Of the different methods, Scrum (50%) and hybrids of

Scrum (25%) account for 75% of Agile development methods used in industry (Version One, 2009).

2.3 Previous Relevant Models

There are three System Dynamics models that influenced the research in the dynamics of parallel
product development using Agile software development. The first model provided insight on modeling
parallel product development and the dynamics of managing current and future software development
efforts (Rahmandad & Weiss, 2009). The second and third models provide framework on modeling the

Agile software development process (Luisanna Cocco, 2011) (Glaiel, Moulton, & Madnick, 2013).

2.3.1 Dynamics of Concurrent Software Development
Using System Dynamics to model the dynamics of parallel software development, (Rahmandad & Weiss,
2009) investigated two Software teams (alpha and beta) within the same organization to identify why

only one team was successful at providing a quality product within cost and schedule constraints.

Through interviews conducted by Rahmandad and Weiss, it was apparent that the management styles
were different between alpha and beta. Both alpha and beta had high priority in ensuring customer

satisfaction by developing features and improving development capability. However, alpha often used
10

current development resources to quickly address defects in the field. In contrast, Beta gave higher

priority to current development and capability building.

Using System Dynamics, the authors modeled firefighting in concurrent software development and
identified that the combination of scope, work pressure, work quality, and resource allocation policies
can reinforce firefighting. Although the intentions of customer satisfaction were the same between
teams, the policies employed by the alpha team led to excessive refactoring, yielding ineffective and
inefficient team performance. The policies employed by the beta team yielded successful development

productivity and led to long-term customer satisfaction.

2.3.2 Simulating Kanban and Scrum vs Waterfall with System Dynamics

Using a single System Dynamics model, the dynamic behavior of Agile development styles of Kanban and
Scrum are compared with the traditional waterfall approach (Cocco, Mannaro, Concas, & Marchesi,
2011). By using different input parameters, their data suggest that Lean-Kanban approach is more

efficient than Scrum and Waterfall.

However, the assumption to consolidate all phases of planning, design, coding, and testing cannot be
applied directly to the development process of military systems. The Defense Acquisition Process has a
considerable amount of formal and informal reviews to reduce risk and ensure that the design and
implementation of capabilities integrate within large complex, and sometimes extremely complicated,
systems. For this reason, the Agile development framework of Scrum, shown in Figure 4, will be used to

model Agile development within the Defense Acquisition Framework.

11

switch

error in Kanbas o productivity

ot developers error in sprint Scrum error at the end of the
p ; or in Waterfall Scrum sprist or in
i / Waterfall
AT | Do e saeat = ¥
i imput requirements Requirements " Piction
i . ~ | 5 m - work dooe Live
i 4 N e el
it 4 - discavery Serum or in W
£ i 2 Sprint Backlog 1
Equkmdn'n input features selected featues it
L Kanben) i output N\ work to do in
1 vork in output \ waterfal
i debay in scrom
delay sprint \
plasing \
#° requirements to do
in each iteration
~i e
vork i input T
Original
work to do

Figure 4 - Agile development framework of Scrum (Cocco, Mannaro, Concas, & Marchesi, 2011)

2.3.3 Agile Project Dynamics

Similar to the prior modeling effort of Kanban, Scrum, and Waterfall, the Agile Project Dynamics (APD)
model compares Agile development with Waterfall (Glaiel, Moulton, & Madnick, 2013). However, APD
incorporates a set of Agile practice and management policy attributes, called “genes”, that capture the
dynamics of system development. Through experimentation, their analysis concludes that there are
opportunities to improve cost, schedule, and quality through certain combination of Agile practice and

management policy.

In addition to identifying and experimenting with Agile practice and management policies, they identify
several difficulties for applying Agile software development methodologies to the Defense Acquisitions
process. Several of these reasons include: conflicting stakeholder interests, domain of the contractor,
program control processes, and level of interaction between government and defense contractors

during development.

12

3 Model Development

This chapter describes the process for modeling the parallel product development of military systems
for comparing Waterfall and Agile software development processes. The basis for both System
Dynamics models stem from the defense acquisition process as discussed in Section 2.1. Of the six
phases in the Defense Acquisition System, the three phases that capture the engineering effort in
developing follow-on software builds are: Materiel Solution Analysis, Technology Development, and

Engineering & Manufacturing Development.

To facilitate the modeling effort, the Materiel Solution Analysis and Technology development phases
were simplified to a set of 3 sub-tasks each, as listed in Figure 5. The Engineering & Manufacturing
Development phase consists of the Integrated System Design and System Capability & Manufacturing
Process Demonstration, which are separated by the Critical Design Review. However, for the purpose of
modeling separate development and testing of a system, the Engineering Development effort is split
between the System Design and System Testing efforts, which is consistent the Detailed Design and

Testing & Refinement effort specified by Ulrich & Eppinger.

13

\
eInterpret User Needs and Resource Investigation - Analyze Operational Capabilities
&Environmental Constraints for Requirements Definition
Materiel *Logical Analysis - Develop Concept Performance and Functional/Component Objectives
Solution *Develop Generic System Prototype/Demo J
e . . N
*System Specific Requirements Analysis - Develop System Performance and Functional
Requirements
Technology ::.)oglclal Agal:ss asnd D;snin I:evelopr?int }:or ISystem Specific Solution
Development evelop System Specific Prototype of Technology J
] . . .)
*Design — Detailed design of System to Sub-System requirements
*Code — Software implementation of Design, includes Software Design
System eUnit Tes't - Verify .lmplementation of Code
Design eIntegration — Testing of Sub-System)
eIntegration and Verification — Initial capability testing of system
*Contractor Testing — Testing of system to verify system meets intended function/performance
System *Government Testing — Customer testing to validate system function
yste *Operation Test and Evaluation - Field testing to validate system performance in threat
Testing representative environment

Figure 5 - List of sub-tasks for each development phase

The System Design phase includes the requirements design, software implementation, and sub-system
testing of a technology. The System Testing phase represents the different stages of testing that ensure
reliable mission critical performance. The first three sub-tasks of System Testing associate to “alpha”
testing, internal “beta” testing, and customer “beta” testing that represent Testing & Refinement effort

specified by Ulrich & Eppinger.

3.1 Development and Testing Timelines

Since the architecture of newly developed systems should anticipate obsolete hardware, both System
Dynamics models are based on the introduction of new software-based features. These features are
developed by joint System and Software Engineering efforts as discussed in Section 2.1.4. The scope of
work modeled will include the test phase associated to the system’s inception (Build 0) and three follow-
on development cycles (Builds 1-3) as shown in Figure 6.

14

Build ready for
Deployment

uild 0 ready for Build 1

Technology mature for adoption
Development Cycle

Technology needs Technology mature Technology integrated
more research for adoption in Build

r-BuIId 1 \

r .I System Design |

| S—

Build ready for
Deployment

Build 1 Build 1
Technology

Development

Build 1
System Testing

” p—— Build 1 ready for Build 2
New Technologies Existing Technologies Development Cycle

added to Research added to adopt

Technology mature for adoption

Technology needs Technology mature Technology integrated }
more research for adoptlon’_ L _\ to Build . Build ready for
Build 2 Build 2 Deployment
Materiel Solution [esss—— Technology ﬂ s m:::k:): dan > s :::I:.:s“ o
Analysis Development L ng

h
- A Build 2 ready for Build 3

New Technologies Existing Technologies Development Cycle
added to Research added to adopt

Technology mature for adoption

Technology needs Technology mature | Technology integrated
more research for adoptuon,_ 1 to Build Build ready for
Build 3 Build 3 Deployment
Materiel Solution Technology = sm:‘:‘;: sign ™ Svst::lr:':'e?;tl o e
Analysis Development ng

Neu-r Technol l:;gies Existing Technologies Same interaction between
added to Research added to adopt tasks in both models
- I Different interaction between
I_ tasks in both models

Figure 6 - Overview of Model Structure

The development cycle for each build can be conceptually categorized by two phases: Build
Development and System Testing. The Build Development phase includes efforts pertaining to Materiel
Solution Analysis, Technology Development, and Engineering Development — System Design. The
System Testing phase includes the Engineering Development — System Testing phase. Since the
introduction of capabilities is important, the Build Development phase overlaps with the System Testing

phase as shown Figure 7.

15

Build Development

Materiel Solution Analysis

Technology Development

Engineering Development — System Design

Engineering Development — System Testing
Integration/
Verification ¥
Contractor
Government
i Jesting

Operational
Testing ‘
| Time (Year) >
0 1 2

Figure 7 - Timeline within Development Cycle

The Build Development phase spans for 1.5 year and the Test Phase begins 1 year after the Build
Development phase starts. Each build will overlap with the prior build for 1 year and with the

subsequent build for the second year as shown in Figure 8.

| Buildo-Testing |

| Build 1 - Development |

| Build1-Testing |

| Build2-Development |

| Build2-Testing |

| Build 3 - Development |

[Build 3 - Testing I

| Build X - Development |

l Build X - Testing '

| Time (Years) >

0 1 2 3 X

Figure 8 - Timeline of parallel Build Development and Testing

16

3.1.1 Materiel Solution Analysis

The Materiel Solution Analysis effort focuses on promoting cutting edge technologies for build
introduction. Since these technologies are less developed, it is recommended that the technology
undergo several iterations of design prior to being developed for build introduction. As part of the
Materiel Solution Analysis process, a Technology, labeled as a “M.S. Concept”, is developed by
identifying the need, developing a solution, and generating some form of prototype/demo that
describes the application of the technology as shown in Figure 9. The process is performed by System
Engineers with an expected completion of 15 weeks. As indicated in Figure 6, the modeling of the

Materiel Solution Analysis effort is identical between both models.

Number of M.S.
M.S. Concepts <
-1 Concepts Selected to Stant
kicking off - Build 1 _ Build 1>
|'Ideuify User Needs and ResoumeJ
M.S. Logical Analysis Investigation - Build 1
Systems Team Size -
Build 1
Transition to M.S.
<M.S. Logical Analysis Development - Build |
Productivity per Team
Size>
| Logical Analysis - Buid 1
M.S. Prototyping i
System Team Size -
Buid 1 | Tramsitonto M.S.
<M.S. Prototyping Protortyping - Build 1
Productivity per Team
Size>
Develop Generic System I
Prototype/Demo - Buid 1
M.S. Completion
Systems Team Size -
Buid | | Completed Material
Solutions - Build 1
<M.S. Completion

Productivity per Team
Size> Number of Material
Solutions Developed
- Build 1

Figure 9 - System Dynamics representation of Materiel Solution Analysis development

3.1.2 Technology Development

The Technology Development effort focuses on promoting new technologies for build introduction.
Since these technologies are lesser developed than technologies ready for immediate design and
integration, it is recommended that the technology undergo an additional iteration of design prior to

build introduction. As part of the Technology Development process, a technology, labeled as a Concept,

17

is developed by assessing impact on a specific system, developing a system-specific solution, and
generating some form of prototype/demo that applies the technology to the system as shown in Figure
10. The process is performed by System Engineers with an expected completion of 15 weeks. As
indicated in Figure 6, the modeling of the Technology Development effort is identical between both

models.

<Number of T.D. Concepts
Selected to Start - Build 1>

. T:D Concepts
Concepts added for T.D. kicking off - Build 1
from M.S. - Build 1
System Specific uirements
is - Rﬁfﬂd 1

<Completed Material

T.D. logl:ﬂ)es tems
Solutions - Buikl 1> '%luﬁs

Transition to Logic/Design Team Size
Development - Build 1
<Fraction of M.§ ’ <T.D. Logic/Design

N Productivity per Team Size>

Concepts for T.D.>

Logical Analysis and Desi
velopment for S; n?l
Specific solution - Build 1

T.D. Prototyping/Demo
Transition to Develop T.D. By Systems Team Size - Build 1
Prototyy - B <T.D. Prototyping/Demo

Productivity per Team Size>

Develop System Specific

Prototype of Feature- Build 1
T.D. Completion Systems
Conpleted Technology i, Team Size - Build 1
Development - Build 1
<T.D. Completion
Productivity per Team Size>

Number of Technologies
Developed - Build 1

Figure 10 - System Dynamics representation of Technology Development

3.1.3 Engineering & Manufacturing Development - System Design

The System Design effort of the Engineering & Manufacturing Development phase is unique between
Waterfall and Agile design processes. In the two sub-sections, two System Dynamics model are
described to capture the difference between System Design processes. The interaction between
Materiel Solution Analysis, Technology Development, and System Testing phases and the System Design

phase is identical between both System Design models.

3.1.3.1 Waterfall Development

Waterfall Development is the standard development process for developing military systems since it
best fits the emphasis on reviewing and testing required at each stage of the Defense Acquisition
System. The unique aspect of Waterfall development is the focus on sequential development of a

concept during each phase of the process.

18

3.1.3.1.1 Concept Planning

In addition to integrating new concepts developed in the Materiel Solution Analysis Development and
Technology Development phases, the majority of concepts expected to be integrated in the current
build are known technologies that can be applied to the system. In Figure 11, the Concepts for
Development stock captures the list of concepts that are ready to be developed and integrated in the
current build. Account for level of maturity of concepts in the development process, a “coflow” of the
Technology Readiness Level is maintained to account for concepts being added, developed and
completed in each build (Sterman, 2000). The Technology Readiness Level for new technologies added
from Materiel Solution Analysis and Technology Development efforts are TRL 3 and TRL 6, respectively.
The Technology Readiness Level for existing technologies added during Engineering Development is TRL
7:

<End TRL for T.D.

Concepts>
<End TRL for M. TRL * Concept TRL * Concept TRL * Concept
Concepts> added - Buid 1 CTRL * start - Build 1 TRL * Concept | cOmpletion - Build 1 TRL * Concept
oncept - n =
<End TRL for E.D. Blﬁ]épl Bm'ﬁCfs Completed - Build 1
Concepls>
<M-S-_“ddfd 10 <T.D.added to <E.D. Concepts TRL for Concepts to be <Stop Feature TRL for Concepts
Build 1> Build 1> kickingoff- Build 1> developed - Build 1 Addition - Build 1> Completed in Build 1
Concept start -
Concepts for Build 1 Concepts in Concepts Completed
Development - Build k: . - Build 1
Concepts 1 Progress - Buld 1] congept completion
added - Build 1 <Concepts to - Build 1

Kick-Off - Build 1>

Figure 11 - System Dynamics representation of Concept Planning

When the Build Development is ongoing, new concepts are kicked-off and are categorized as “Concepts
in Progress”, as shown in Figure 12. Once the concept has been designed, implemented, and integrated
in the build, a concept is considered complete. When the Government Test phase begins, the “Stop

Feature Addition” variable is set causing all concept development tasks halts.

19

Concepts for Conceptsin Concepts ‘
Development pProgress Completed

Concept Concept 2
waiting for
kick-off? Concept 3

Concept4

‘

Kick-off Concept?

Concept
Concept8

ConceptB

Concept 10

Figure 12 - Interaction between Concept Planning and Concept Development

Concept(s) not
inProgress?

Concept(s)
Complete ?

Keep
working

3.1.3.1.2 Concept Development
For each concept in progress, Design, Code, Unit Test, and Integration efforts, as shown in Figure 13, are
modeled independently, as shown in Figure 12. This ensures that the work performed in each phase of

a concept adheres to the Waterfall development methodology.

The defense acquisition process requires includes multiple formal and informal design reviews that
separate the design and implementation of a concept. Therefore, the Waterfall Concept Development
process requires the completion of the Detailed Design, prior to coding the concept. Unlike the Agile
Development Design effort, the Design effort includes the entire concept which shall be fully thought
out and vetted through a formal review with all stakeholders. The painstaking emphasis of upfront
development and reviews ensures the optimal concept solution and prevents impact of architectural
changes from other competing concepts in development. Therefore, any Design Defects due to concept

solution and architectural changes are encountered during the Detailed Design effort.

After the Initial Design is completed by System Engineers, the Software Engineering Code effort can
begin. As the software code is developed, the code is unit tested and Code defects are returned to the
Code effort to be addressed. For Code that does not require re-work, System Engineers can begin

concept level Integration to validate the design and code meet the Concept intent. To capture potential
20

defects due to intent, Concept Defects are discovered during Integration and are allocated to the Design

and Code efforts based on the Design Defect Rate.

Once the entire concept has been designed, coded, unit tested, and passed integration testing, the
concept is considered complete and is ready to be added to the official build for System Testing.
However, since System Testing progress is measured by System Requirements, each completed concept

will be converted to five Requirements when added to System Testing.

Concept Development - <Stant Concept -
Build 1 - Concept Build I Concept>
Design Defect to Address
-%.uild 1 - Concept
R S
t <Design Concept
oo r Team Sizeg

<TRL - Buid | - <Tabk of TRL pyefeers uncovered at
Concept> for Design [ntegration - Build 1 -
Defect Rate> Concept>

- BIC>

1 - Concept [« .
Code Defect to Address
Code ready fo! <Code Concept - Build 1 - Concept
Uné‘;l_u‘t?sﬁg iy per Team Size>
oo <SWC - BIC> Defects uncovered by
Test - Build 1 - Concept
VT
Eo t <Uni!_'II_'esl quncepl
per Team Size>
- Build 1 - <Tabk of
<SWUT- BIC> Boicehts |~ IRL for Code
Code ready for 2
Integration - Build Defect Rate>
. 1'- Concept Defects uncovered at Integration -
Initial Design . Build 1 - Concept
Completed - Build | <——— W-
e <Integrate Concept
per Team Size>
<SEl - BIC>
<TRL - Build 1 -
Integration Completed Concept>
ready for Build - Build 1 <Tabk of TRL for
- Concept Concept Defect Rate>

Concept merge in Build
- Build 1 - Concept

Figure 13 - System Dynamics representation of Waterfall development

3.1.3.1.3 Concept TRL and Defect Ratio
During Concept Development, each concept has an associated TRL. This TRL is assigned during Concept

Kick-off and is based on the average “TRL of the Concepts for Development”. The TRL of the concept is

21

used to determine the Design, Code, and Concept Defect Rates using the associated defect tables

discussed in Section 3.1.6.2.

3.1.3.2 Agile Development

Agile Development is an incremental version of Waterfall Development. Instead of a full Concept being
developed, an element of a Concept is developed at a time. To capture this incremental effort, the Agile
model develops Concepts based on individual requirements. The requirements metric is consistent with

the Waterfall conversion of 1 concept to 5 requirements.

3.1.3.2.1 Agile Planning

Similar to the Concept Planning representation of the Waterfall model, the Agile development model
keeps track of each Concept but at the Requirements level. When a concept is added for the current
build, five requirements are added to the Product Backlog as shown in Figure 14. The Product Backlog
manages all requirements that are waiting for or are in development. For requirements being added or
in process, the associated TRL is managed via coflow similar to Waterfall development. The Technology
Readiness Level for new technologies added from Materiel Solution Analysis and Technology
Development efforts are TRL 3 and TRL 6, respectively. The Technology Readiness Level for existing

technologies added during Engineering Development is TRL 7.

TRL* Req deferred

- Buid 1
<Development —— 4
Complete - Build 1>

<End TRL for T.D.

Concepts>

<End TRL for M.S.
Concepts>

<TRL * Req Sprint
Complete - Build 1>

TRL * Requirements

TRL * Requirements
Completed - Build 1

<End TRL for E.D. TRL * Req

Concepis> Completed - Build 1
<E.D. Req added <M.S. Reqs added <T.D. Req added - TRL for Requirements in :
. . : TRL for Requirements
for Build 1> for Build 1> Build 1> Product Backlog - Build 1 Completed in Buik 1
Requirements
Completed in Sprint -
Build 1 ’
Product Backlog - =z > Requirements
Requirerents Build 1 Completed - Build 1
added - Buid 1 <Development <Requirenents Integrated
Complete - Build 1> into Build - Build 1>
Product Backlo] Unfinished Product
Deferred- Build 1 Backlog- Build 1

Figure 14 - System Dynamics representation of product planning and tasking for Agile development

22

While Build Development is ongoing, new requirements are kicked-off when the design team has work
load less than 10 requirements in queue, maximum consistent with concurrent Waterfall concepts as
shown in Figure 12. Once each requirement has been designed, implemented, and passed testing, the
requirement is considered complete and is integrated in to the official build. When the Government
Test phase begins, the “Stop Feature Addition” variable is set causing all concept development tasks

halts.

3.1.3.2.2 Requirements Development

The Requirements Development process captures the Design, Code, Unit Test, and Integration efforts, as
shown in Figure 15 and in Appendix 7.1. Since Agile development promotes concurrent development
across efforts and tasks, it is not necessary to manage the development of each requirement separately.
Contrary to Waterfall development, the development of all requirements is modeled in a single

development process.

When Requirements Development begins, 10 requirements are added to the Detailed Design task. As
time passes, System Engineers develop the “Build To” requirements documentation for the Software
Engineers to code. Once a requirement is coded, the Software Engineer unit tests the code. Any coding
defects revert back to the Code effort for re-work and non-defect code transitions to Integration
Testing. The Integration Testing effort is performed by System Engineers and determines whether the
requirement is ready to be integrated in the official build or if there are Concept defects. Concept
defects are split between Design and Code phases in the same way they were done in the Concept
Development process; however, concept level attributes are less defined during Agile development so a

single time delay was added prior to demoting a requirement.

The second modeling difference between Agile development and Waterfall development is the
discovery of Design Defects due to optimal final solution and architectural changes during development.
Unlike Waterfall development’s emphasis on designing and reviewing the fuil solution, Agile
development is incremental making it difficult for all the stakeholders to review a requirement without
having a full understanding of the final concept scope, especially since the number of reviews increases
due to incremental steps. In addition, the architecture of the software system is continually changing

between concept increments. Therefore, to capture the refactoring due to changing final solution and

23

architectural changes during the development of a concept, the discovery of Design defects occur during
Integration Testing.

<Total Requirements in

Process - Buikl 1> <Design Defects
Uncovered by Integration -
Build 1>

<Iniegration Team
Size - Build 1>

<Integraie Req per
<Average Sprint Design Team Size>
Defect Rate - Build 1>

<Backlog Requirements
in a Sprint>

<Awerage Sprint Design
Defect Rate - Build 1>

<lntegration Team
Siae - Build 1>
<Stop Feawre

Addition - Buikl 1>

<lIntegrate Req
per Team Size>

<Stop Feature
Addition - Build 1>

Sprint Design <Average Sprinl
Deg:t; puiid 1 Defect Rate - Buikl 1>

<Average Sprint
Defect Rate - Buikd 1>

Buid | co
PetssuroEm ¢
Dexopy) L <Average Sprint Design

Defect Rate - Build 1> Dem;md I

<Unit Test Req per
Team Size>

<Unit Test Team
Defects uncovered Sive - Build 1>,
<Design Team Size by Test- <Average Sprint Code
- Build 1> Defeet Rate - Buid 1>
r .| Tested - Code for Iniegration
Req Design lo - Build 1
Implement - Build 1
<Design Req per . el =
Team Sie> <Coding Team Sizc <Code Req per

- Build 1>

Team Size>

Figure 15 - System Dynamics representation of Agile development

3.1.3.2.3 Requirement TRL and Defect Ratio

During Concept Development, each requirement added has an associated TRL. This TRL is assigned
during Requirements Kick-off and is based on the average TRL of the Product Backlog. The TRL must be

managed for each requirement passing between phases. Therefore, a coflow was created for every
stock as shown in Figure 16 or Appendix 7.2.

The TRL of each requirement is used to determine the Design, Code, and Concept Defect Rates using the

associated defect table as discussed in Section 3.1.6.2 as well as the TRL of the requirements being
integrated into the build.

24

<TRI. bor Requiremets in
Prsduct Backkoyg - Build 1>
<IKL* Rey - Sprin
- Dt - Bl 1>
<IRI. * Rey Design
Dfiects from Integration ~
Bukd | i

<Spint Defects - ——

Bul 1> __—"
<Sprin Design
Defects - id 1>
<TRI.* Req Defects from N
st - —_— i <Design Deleets
Spm '-ﬁ'.-q"?j[..:,_;:, Defects babédmm]) <‘|":'M’;;' — Uncorwred by Incgration J
Defects - Buld 1> Bulf 1>
<Sprint Defeats - " <Defects wxoverad . Antegration Testin
Bud 1> 7 by Test - Buikd 1> S ikl 1>
<Sprint SW Defects . =
Huikd 1> “l".'l'.‘n:";""‘ — <Dxficts uncovered at
e <Sprint Design Deects - Buld 1> 1mepration - Buikd 1>
<Sprig SW Delects - Build 1>
<TRL * Rey- <Detailed Design - <TRL * Req - Code <Code - Build 1> <TRL * Rey- <|m°g"‘“‘f‘" Testing
Design - Build 1> \ ’/ Buikl 1> - Build 1> \‘ ’/ Integration - Build |>\ ’/ - Build 1>) . .
Average Sprint Design <TRL for Requirements in Average Sprint Code <TRL for Requirements in Average Sprint Defect <TRL for Rc‘-llﬂfl‘"l‘l_“‘ n
Defect Rate - Build 1 Product Backbog - Build 1> Defect Rate - Buld 1 & Product Backbg - Buill 1> Rate - Buid 1 Product Backlog - Buikl 1>
<Table of TRL for <Tabk of TRL for <Tabk of TRL for
Design Defect Rate> Code Defeet Rate> Sprint Defect Rate>

Figure 16 - Coflow for managing TRL during Agile development

3.1.4 Engineering & Manufacturing Development - System Testing

The System Testing effort ensures that the newly developed requirements improve the overall system
capability without unintended system defects. The test process is broken into multiple milestones test
events to assess the maturity of the build with new requirements. To generate data for analysis during
each test phase, military assets and System Test engineers are required to simulate a controlled
environment that represents the system’s operational environment. The scheduling of these resources
are done months or even years in advance causing strict schedule deadlines for the start and end of

each test phase.

The structure of System Testing, shown in Figure 17, consists of the following 4 phases:
Integration/Verification Testing, Contractor Testing, Government Testing, and Operational Testing. Each
test event is sequential requiring only one test phase across all builds to occur at any given time. As the
set of requirements are tested, requirement defects are uncovered and are either addressed during the
current test phase or are deferred to be addressed in the subsequent test phase. Once a defective

requirement is addressed, the requirement is ready for testing in the subsequent Test Phase.

25

Requirements for IV

Testing - Build |

=

Total SW Build for

Build 1

Integration/Verification Testing -

Contractor T‘e_.it‘ng - Build 1

Requirements not ready for

Integration/Verification

Requirements ready for
Contractor Testing - Build 1

)

Build 1

> Integration/Verification Rework -

Defects Fixed - Build 1
A w i

=

Integration Defects
pushed to next phase - [
Build 1

Requirements for

Contractor found

Defects Fixed - Build |

Contractor Testing -
Build 1 Requirements not ready for v
Total SW Build for Contractor Government Testing - Build
Testing - Build 1 Contractor Testing Rework -
% > Buid 1
Requirements ready for Contractor Testing Defects
Government Testing - pushed to next phase - [H]
Build 1 Build 1
Requirements for
Government Testing - Requirements not ready for '
Build 1 mme X i i
Q—"—*:Z:b Toal S‘-:esﬁﬁl.;m -f(l’;u?s \{E " Operational T‘E’S ting - Buld 1 Government Testing
g = Rework - Build 1
Requirements ready for Government Testing Defects
O.T. Testing - Build 1 pushed to next phase - Build [}t
1
Requirements for OT
Testing - Build 1 _ Requirements not ready '
Total SW Build for Operational | for Deployment - Build 1
Testing - Build 1 =z —p| OT Rework - Build 1
Requirements ready for
Deployment - Build 1
Deployment - Build 1 g

3.1.4.1

Since the majority of the Concept or Requirement Development effort occurs prior to the Integration

Operational Testing
Defects Fixed - Build 1

Figure 17 — Overview of System Testing

Integration/Verification Testing

Government found
Defects Fixed- Build 1

L%

and Verification Testing phase, the majority of the requirements should be tested with representative

hardware to uncover defects that can be addressed and re-tested before build completion. This effort

provides insight on the stability of the new requirements developed prior to testing with legacy

requirements from the prior test phase.

As shown in Figure 18, the Integration/Verification effort begins when the System Testing of the prior

build is complete but, no earlier than a year after the Build Development started. Once the test phase

begins (indicated by the IV Testing variable), the System Test team begins assessing the set of new and

26

legacy requirements via simulated testing. Based on the size and productivity of the team and System
Test Defect rate, a number of requirements are passed for future testing while the defects are passed
for Rework. The rate of requirements being analyzed during Integration/Verification Testing is

equivalent to the System Testing Productivity of 5 requirements/(person*week).

Each requirement is analyzed by a System Engineer who is familiar with the context of a requirement. It
is expected that the System Engineer performing the analysis is also supporting other efforts in the
development cycle and that the System Test team is the sum of System Engineering resources
supporting the test effort. To ensure that Contractor Testing begins on time, the size of the System Test
team adjusts weekly in a uniform distribution to represent the urgency for System Engineers to

complete System Test analysis for requirements they are assigned.

<Operational Testing X

Defects Fixed - Buikl 0> Req for IV .
Reiremens ready Requirements not ready for Integration/Verification
<Requirements ready Contractor Testing - Buld | [Tegration/Verification| Defects Fixed - Build |

for Deployment - Total SW Build for
Buld 0> Req for Integration/Verification Testing - o —
B Build 1 <IV Testing -

Build 1>

<Concept ~ <No Testing - Sting - <Integration/ <Table of SE
Cﬂn'lpk[i)pl"l - Build 1> <ty Temni‘ Vﬁnfgm%_rd:pefecl Involvement in
Build 1> <l§u‘l:[je:n>*re | atio - Build 1> Test Period> <I/V Defects addressable
¥S ¥ in Rework - Build 1>

Team - Build 1> ~<Systems Testing

Productivity per

pleion- Bl | - l e e T e <Contractor Testing
completion - Build 1> Contractor Testing - Integration Defects | g o
Build 1 pushed to next phase [- Build 1>
- Build 1
Requirements not ready for Contractor found
Total SW Buid for C¢ Government Testing - Build 1 "o ™) Defects Fixed - Buid |
Testing - Build 1 = Rework - Build 1

Figure 18 - System Dynamics representation of Integration/Verification Testing

While Integration/Verification Testing is ongoing, the defects are addressed by the System Defect team
with a ratio of two System Engineers for every Software Engineer. The number of defects addressed is
function of the System Defect team, System Defect team’s base productivity (System Defect
Productivity), and level of detail to mitigate risk of future follow-on defect (Productivity Rate over Time,

Section 3.1.6.3.3). Once the Contractor Testing begins, all remaining defects are deferred to the

Contractor Testing re-work phase.

3.1.4.2 Contractor Testing
For the Concept or Requirement Development effort that occurs during the Integration and Verification

Testing phase, requirements are tested with the actual system in a representative operational
27

environment. This test effort provides operational insight on the stability and performance of the new

requirements developed.

As shown in Figure 18 and Figure 19, the Contractor Testing effort begins when the
Integration/Verification Testing is complete but, no earlier than 13 weeks, or % year, after
Integration/Verification Testing was scheduled to start. Once the test phase begins (indicated by the
Contractor Testing variable), the System Test team begins assessing the set of new and legacy
requirements via live or simulated testing. Based on the size and productivity of the team and System
Test Defect rate, a number of requirements are passed for future testing while the defects are passed

for Rework.

The rate of requirements being analyzed during Contractor Testing is equivalent to the System Testing
Productivity of 5 requirements/(person*week). To ensure that Government Testing begins on time, the
size of the System Test team adjusts weekly in a uniform distribution to represent the urgency for

System Engineers to complete System Test analysis for requirements they are assigned.

<Integration/Verification Requirements for Contractor Requirements not ready for Contractor found
Defects Fixed - Buid 1> Testing - Build 1 Government Testing - Build 1 Co Testi Defects Fixed - Build 1
oy —gp| Total SW Buid for C Rework - Buid 1
<Concept completion Testing - Build 1
- Build 1>
24l ﬁ: crle 2 <Contractor Testing

- Build 1>

<Contractor Testing
- Buikl 1>
<Contractor Testing

<System Test
Team - Buikd 1>

<Tabk of SE
<IV Testing - Involvement in <Contractor Defects

i Test Perk f L8 in Rework -
Buikl 1> Defect Ratio - Buid 13, ZSysems Testing est Period> lddnw:;::kiml]:t“nrk
Productivity per
Team Size>
1 i ready for Contractor Testing Sovemment
<TRL * Concept Government Testing - Build 1 Defe Yo it Testing - Buid 1>
completion - Buikl 1> phese - Buil 1
| Government found
e A = Defects Fixed- Buid 1
Total SW Buid for Government st o M Testing
Testing - Build 1 Rework - Build 1

Figure 19 - System Dynamics representation of Contractor Testing

3.1.4.3 Government Testing

For the Concept or Requirement Development effort that occurs during the Contractor Testing phase,

requirements are tested with the actual system in a representative operational environment. This test is

led by the Government and provides operational insight on the stability and performance of the new

requirements developed and legacy requirements.

28

As shown in Figure 19 and Figure 20, the Government Testing effort begins when the Contractor Testing
is complete but, no earlier than 13 weeks after Contractor Testing was scheduled to start. Once the test
phase begins (indicated by the Government Testing variable), the System Test team begin assessing the
set of new and legacy requirements via live or simulated testing. Based on the size and productivity of
the team and System Test Defect rate, a number of requirements are passed for future testing while the

defects are passed for Rework.

Since Government Testing is executed by the customer, the involvement of the defense contractor,
system developer, during this test effort decreases. Therefore, the rate of requirement analysis must

increase by a factor, denoted by “System Engineering Involvement in Test Period”, see Section 3.1.6.3.4.

To ensure that Operational Testing begins on time, the size of the System Test team adjusts weekly in a
uniform distribution to represent the urgency for System Engineers to complete System Test analysis for

requirements they are assigned.

Requi for

<Contractor found - =2
Cilecs Fied » Boll] |5-—ae oo Tostng -l |
<(‘un%'c§:;;u:|:lclhn ms?&ﬁﬁiﬁﬂfwfm‘“ 8 oot ready ¢ Gomr:::ﬁuﬂm ;
Operational Testing - Build 1 _ | Go Tesi Detects >
Rework - Build 1
<Government

<Government <Cofiiractor Testing Testing - Buid 1> T;zi‘\.cr:&ml)
Testing - Build 1> H <Government Testing ~ <System Test ./
Defect Ratio - Build 1> _Team - Build 1> (I'ulhlcol'SE
i Imvolvement in <Government Defects
o <Systens Testing Test Period> :
! Requirements ready i v am Size addressable in Rework -
<TRL # Concepl : Productivity per Team Size>, -
.T. Testing - Build 1 I
compketion - Build 1> OT.T Buld 1>
Govemment Testing <OT Testing -
Defects pushed to next| Buid 1>
L - Build 1
Total SW B\ﬂd for Operational | oot ready phase
Testiag - Dakd 1 for Deployment - Buid |
3 —3pe{ OT Rework - Buid 1

Figure 20 - System Dynamics representation of Government Testing

While Government Testing is ongoing, the defects are addressed by the System Defect team with a ratio
of two System Engineers for every Software Engineer. The number of defects addressed is a function of
the System Defect team, System Defect team’s base productivity (System Defect Productivity), and level
of detail to mitigate risk of future follow-on defect (Productivity Rate over Time, Section 3.1.6.3.3).
Once the Operational Testing begins, all remaining defects are deferred to the Operational Testing re-

work phase.

29

3.1.4.4 Operational Testing

Since by this phase all new functionality has been developed, integrated in the main build, and tested,
the final build is tested with the actual system in a threat representative operational environment. This
test is led by the Government and provides operational insight on the performance of the new

capabilities developed.

As shown in Figure 20 and Figure 21, the Operational Testing effort begins when the Government
Testing is complete but, no earlier than 13 weeks after Government Testing was scheduled to start.
Once the test phase begins (indicated by the OT Testing variable), the System Test team begin assessing
the performance of the system via live testing. Based on the size and productivity of the team and
System Test Defect rate, a number of requirements pass the final testing while the defects are passed

for Rework.

Since Operational Testing is the second test event executed by the customer, the involvement of the
defense contractor, system developer, during this test effort decreases even more. Therefore, the rate
of requirement analysis must increase by a factor, denoted by “System Engineering Involvement in Test

Period”, see Section 3.1.6.3.4.

To ensure that Operational Testing begins on time, the size of the System Test team adjusts weekly in a
uniform distribution to represent the urgency for System Engineers to complete System Test analysis for

requirements they are assigned.

<Government found
Defects Fixed- Buikl 1>

g Total SW Build for Operational .
—2% sz Requirements not ready
Reg:m:mn; u‘ici’;]01' Testing - Buid 1 for Deployment - Build 1

—jg{ OT Rework - Build 1

<OT Testing -
Build 1>
<OT Testing Defect

Ratio - Buikd 1>

. <System Test
Rggpu:’;‘n;r: m;:fi‘:l : Team - Build >

<Systems Testing
Productivity per Team Size>

<Table of SE <OT Defects
Involvement in Test addressable in Rework -
Period> Build 1>
Deployment - Build 1 g
Operational Testing
Defects Fixed - Build 1

Figure 21 - System Dynamics representation of Operational Testing

30

While Operational Testing is ongoing, the defects are addressed by the System Defect team with a ratio
of two System Engineers for every Software Engineer. The number of defects addressed is a function of
the System Defect team, System Defect team’s base productivity (System Defect Productivity), and level

of detail to mitigate risk of future follow-on defect (Productivity Rate over Time, Section 3.1.6.3.3).

Once Operational Testing and Operational Testing Rework are complete, the build is considered mission

ready and is deployed.

3.1.5 Human Resourcing ‘
To control the cost element for comparing Waterfall and Agile development approaches, both models
have 50 System Engineers and 15 Software Engineers dedicated to support the parallel build
development effort. During each time step, System and Software Engineers are assigned task(s) based
on need and priority. It is possible that there may be periods of time where the number of engineers
exceeds the workload. However, it is assumed that the team would remain intact to preserve
knowledge and be available when there is increased flux of engineers needed in the following time step.
During an idle period, the additional engineers would support the planning between cycles or work on

deferred tasks not directly related to ongoing development efforts.

The need for each Build Development task is determined by the number of engineering resources
needed to complete a Concept or Requirement work unit. The need for System Testing tasks is
determined by the average number of engineering resources to complete a phase within the remaining
time period. It is assumed that engineers are supporting multiple tasks given experience and
knowledge, therefore, the number of engineers supporting a phase is based on the number of hours

spent working on sub-tasks within each phase.

The priority of tasks is based the build priority and then respective task priority. Since there are 2 builds

being developed at any given time, the priority in assigning engineers to tasks is shown in Figure 22.

31

Systems Engineering Software Engineering

Buildn-1 Buildn-1
Rework Rework
Buildn-1 Buildn-1
Testing Testing
Build n-1Sprint Build n-1Sprint
Integration Unit Testing
Buildn-1 Buildn-1
Sprint Design Sprint Coding
Build n-1Technology Buildn
Development Rework
Build n-1Material Buildn
Solutions Analysis Testing
Buildn BuildnSprint
Rework UnitTesting
Buildn Buildn
Testing Sprint Coding
Build n Sprint
Integration
Buildn
Sprint Design
Build nTechnoIogy
Development
Build n Material
Solutions Analysis

Figure 22 - Priority for allocating System and Software Engineers

3.1.6 Table Constant

The values used for the following constants do not reflect the metrics of any program of record. They
were manufactured at the author’s discretion in attempt to represent a reasonable development
process. Although these metrics may not be actual metrics, the analysis is based on the

tendencies/trends of each model.

An electronic copy of both models is available upon request for organizations to use their own
proprietary information to compare approaches. If the electronic version of the model is not attached

to this document, please email radian@alum.mit.edu to request a copy.

3.1.6.1 Productivity Rates
The Productivity Rates used for Build Development Tasks are shown in Table 2. Since a Concept is
equivalent to 5 requirements, the Productivity rates for Concept Development and Waterfall

Development tasks are proportional given size of scope.

32

Table 2 - Productivity metrics for System Design Tasks

Ratio

Design Concept per Team Size 0.2
Design Requirement per Team Size 1

Code Concept per Team Size 0.2
Code Requirement per Team Size 1

Unit Test Concept per Team Size 0.2
Unit Test Requirement per Team Size 1

Integrate Concept per Team Size 0.2
Integrate Requirement per Team Size 1

M.S. Completion Productivity per Team Size 0.2
M.S. Logical Analysis Productivity per Team Size 0.2
M.S. Prototyping Productivity per Team Size 0.2
T.D. Completion Productivity per Team Size 0.2
T.D. Logic/Design Productivity per Team Size 0.2
T.D. PrototypinE/Demo Productivity per Team Size | 0.2

3.1.6.2 System Design Constants
Design Defect Rate

ranged from TRL5 to TRL 7.

Table of TRL for Design Defect Rate

The Design Defect Rate for the System Design effort is based on the associated TRL of the Concept or

{

o

) -
/
|
|
|

o
o

Defect Ratio
o
B
——

o
[
|
|

Figure 23 - Design Defect Rate Curve

the average TRL of the Requirements. The Design Defect Rate is lower for more mature technologies as
can be seen by the curve in Figure 23. The slope of the curve revolves around TRL 5 and has a minimum

of 10% and maximum of 100% error. The average Concepts and Requirements developed in each model

33

3.1.6.2.2 Code Defect Rate

The Code Defect Rate for System Design effort is based on the associated TRL of the Concept or
Requirements being coded. The Code Defect Rate Curve in Figure 24 is higher than the Design Defect
Rate Curve due to Software Engineering’s dependence on quality of the Design. It is assumed that the

Design of lower TRL technologies is more abstract causing a higher probability of re-work.

Table of TRL for Code Defect Rate

08 I o

Defect Ratio
o
-y

Figure 24 - Code Defect Rate Curve

3.1.6.2.3 Concept Defect Rate

The Concept Defect Rate for System Design effort captures defects that would not have been detected
during Design or Code reviews but are identified during Integration. The rate is based on the associated
TRL of the Concept or Requirements being integrated. The Code Defect Rate Curve in Figure 25 ranges

from 50% and is limited to 16% error.

34

Table of TRL for Concept Defect Rate
1 [S ——— — —— -

Defect Ratio

Figure 25 - Concept Defect Rate Curve

3.1.6.3 System Test Constants

3.1.6.3.1 System Test Defect Rate

The System Test Defect Rate for System Testing efforts capture the defects that are identified when
testing of all requirements against an expected operational environment. The Defect Rate curve in
Figure 26 is based off the average Technology Readiness Level of all requirements in the build: the
Technology Readiness Level of new requirements are managed during System Testing and the
Technology Readiness Level of legacy requirements are assumed to be Technology Readiness Level 9

since the legacy requirements have passed Operational testing.

Since the initial set of requirements in Build 0 have not undergone final testing, the Test Defect rate is

based on Technology Readiness Level 8.

35

Table of TRL for Test Defect Rate

2 B -

o
o
|
|

o
o

Defect Ratio
o

F-Y

1)' -

|

|

|

Figure 26 - System Test Defect Rate Curve

3.1.6.3.2 Defect Rate throughout Testing

The Defect Rate Factor in Figure 27 adjusts the defect rate for requirements that have undergone prior
testing. Every time the requirement is tested, the probability of an error occurring in the current test
phase is 50% less likely than the prior test phase. To manage the mixing of requirements, the System

Testing model accounts for what test phase each requirement was introduced to capture the proper

number of defects.

Table of Defect Rate Factor over Time

(=)
o

o
o

Defect Ratio
o
B
|
|

o
o
|

Number of Test Completed

Figure 27 - Defect Rate Factor over Time

3.1.6.3.3 System Engineering Productivity through Defect Resolution

During each subsequent phase of testing, the Government and Contractor become more risk-adverse in

accepting rework due to lack of testing. To offset risk of future defects, extra time is spent to review
36

and test rework. Therefore, the defect resolution productivity decreases to account for extra review
and testing. The “Productivity Rate over Time” curve in Figure 28 illustrates that the productivity in
addressing defects uncovered during System Testing decreases linearly by 25% from one phase to

another.

Table of Productivity Rate over Time

a

Defect Ratio
o o
B (=)

[/

0.2 —_— R

Test Phase

Figure 28 - Productivity Rate over Time

3.1.6.3.4 System Engineering Involvement in Test Period

During Integration/Verification and Contractor Testing, the Contractor’s System Engineering team is

responsible for leading System Testing and analyzing each system requirement. When Government and

Operational Testing occur, the Government takes more lead of the effort and the Contractor is less
involved with the testing and analysis. Therefore, the productivity to analyze each requirement

increases during later test phases.

To capture the decreased involvement of the Contractor System Test team, the curve in Figure 29 is

used to increase the productivity of the System Test team during Government and Operational Testing

denoted as Test Phase 3 and 4, respectively.

37

Table of SE Involvement in Test Period

7

W
|
\

N

Productivity Increase
w

[

Test Phase

Figure 29 - System Engineering Involvement in Test Period

0 1 2 3 4|

38

4 Analysis of Waterfall and Agile development Models

This chapter compares the simulation of parallel development models using Waterfall and Agile
development process. As discussed in Section 3.1.3, the difference between both models is the
application of Waterfall and Agile development during System Design. Waterfall development model

manages the design and implementation efforts separately while the Agile development model allows

parallel design and implementation.

4.1 Overview of Waterfall and Agile Model results

Both models replicate the Build Development and System Testing cycles for Build O to Build 3 as shown
in Figure 8. Build 0 begins with 1,500 requirements for System Testing. The number, type, and
frequency of concepts to be kicked-off during Builds 1 to Build 3 are shown in Table 3. The number of

Engineers supporting the parallel development during all build activities is shown in Table 4.

Table 3 - Technologies considered for Build Development

Type of Concepts kicked-off Concepts kicked-off Weeks between kick-off
Materiel Solution Analysis 5 10
Technology Development 10 5
Engineering & Manufacturing Development 15 4
Table 4 - Size of Development Team

Type of Engineer Number of Engineers

System Engineers 50

Software Engineers 15

4.1.1 Requirements Completion
While Build Development is ongoing, the System Design team designs, codes, unit tests, and integrates
requirements for future System Testing. Completed requirements in each build are added to the

associated System Testing phase based on the time completed, as shown in Table 5.

Table 5 — Associated System Testing phase for completed requirements

Build 1 Build 2 Build 3
Integration/ Verification | Week 0-51 Week 52 - 103 | Week 104 — 155
Contractor Testing Week 52 - 64 | Week 104-116 | Week 156 - 168
Government Testing Week 65-78 | Week 117 -130 | Week 169 - 182

39

Table 6 presents the number of new requirements added to respective System Testing phase.
Consistent with software development literature, the Agile development model provides earlier delivery
and introduces more requirements in each build than Waterfall model.

Table 6 — Number of Requirements introduced during each Build’s Testing phase

Waterfall Build 1 Build 2 Build 3
Integration/ Verification 65 65 55
Contractor Testing 30 30 0
Government Testing 20 10 35
Total 115 105 90
Agile Build 1 Build 2 Build 3
Integration/ Verification 105.9 88.9 82.0
Contractor Testing 25.0 26.6 17.4
Government Testing 9.3 129 21.2
Total 140.2 128.4 120.6

4.1.2 Types of Technologies Developed
While Build Development is ongoing, the Materiel Solution Analysis and Technology Development teams
mature new technologies for implementation. These new technologies are associated with lower

Technology Readiness Levels as compared to existing technologies that do not require technology

maturation.

The average Technology Readiness Level for requirements added to each build for both models is shown
in Table 7. Although the Agile development model includes earlier requirements completion and
integrates more requirements than the Waterfall development model, the Waterfall development
model included a higher percentage of newer technologies across each buiid.

Table 7 - Average TRL for Requirements added to each Build

Build 1|Buiid 2 {Build 3 {Average

Waterfall Model | 6.53 | 6.57 | 6.72 6.61

Agile Model 6.76 | 6.88 | 6.92 6.85

40

4.2 Analysis of Waterfall and Agile model development tendencies

This section includes the performance tendencies of both parallel development models discussed in

Section 3. The Agile and Waterfall development models are used to compare the effect of the System

Design processes on resource dependencies.

4.2.1 Requirements Development in each Build

Based on the requirements identified in Table 6, the following sub-sections discuss the development of

requirements in each build.

4.2.1.1 Requirements Development in Build 1

Build 1 development starts at week 0 and ends at week 78. During development, the number of

requirements completed is higher and the rate starts earlier in Agile development than Waterfall

development, as shown in Figure 30. The requirements completed at week 52, week 65, and week 78

represent the total number of new requirements being tested during Integration & Verification,

Contractor, and Government Testing, respectively.

Requirements Completed - Build 1

140 ="

120 >
+ 100 7
] e F—J
£ 80 .
g A
'S 60 —> Waterfall
3 -~ r—"’_,' —aa Agil
g 40 ’_I glle

20 "—I J

-~ o
’
(1] 10 20 30 40 50 60 70 80
Week

Figure 30 - Requirements Completed in Build 1

The cause for the number of requirements completed being higher during Agile development is based

on the number of System and Software Engineers supporting the System Design effort. The number of

engineers supporting a phase is based on the number of available engineers and the number of needed

engineers. For System Design in Build 1, only the System Testing and Defect efforts supersede the

41

System Design effort. Figure 31 and Figure 32 illustrates the number of System and Software Engineers

supporting the System Design effort.

System Design - Build 1

N
wn

N
o

[y
W

o
.

Number of System Engineers
« o
p>
>
#
‘0
)
'-
%

Week

Figure 31 - System Engineers supporting System Design in Build 1

= \Waterfall
=== Agile

The number of System Engineers during Agile development is higher in Agile development due to

parallel development efforts of Detailed Design and Integration work, as shown in Figure 31. By

decomposing a concept into increments, the design team can develop parts of many different concepts

at a time. System Engineers supporting Waterfall development must wait to perform Integration until

all of the Design is completed, making the overall engineering need lower.

The number of Software Engineers starts earlier and is much higher in Agile development due to the

early release of requirement design, as shown in Figure 32.

System Design - Build 1

» 20 'r 1 ’r 1

o [} ¢ 2 |

g 1 ¢\ /J \

< " K 1 ,

‘oo 15 Tt 14 4 1 1

[[p V [}) [} [-

Y 0N PN N [L) "

2 ol LN S YOV NN s W WY N Y | W
v ‘ [} ‘\ A W " ¥ ' L) 1Al

3] ' [] \/ v ' ' v n

%’ [} 1] ' H l‘ (] \‘

s] Y] \Y} Y)

o l' ‘\ y \J P

8 o+ — . : . : —

g 0 10 20 30 40 50 60 70

4

Week

Figure 32 - Software Engineers supporting System Design in Build 1

e \Naterfall
- Agile

42

Although the number of System and Software Engineers supporting System Design is higher in
Agile development, Figure 33 illustrates that the number of requirements in progress is higher
during Waterfall development. The reason for this contrast is due to the Agile development
approach for taking on requirements that the team can manage. Every number requirement in
progress represents the distribution of work across System and Software Engineering efforts as

oppose to Waterfall development that bottlenecks requirements work between Design and Code

efforts.
Requirements in Progress - Build 1
60
w
L o4
[
[+]
£
2
£ — \Naterfall
o

0 10 20 30 40 50 60 70 80
Week

Figure 33 - Requirements in Progress in Build 1

4.2.1.2 Requirements Development in Build 2

Build 2 development starts at week 52 and ends at week 130. Similar to Build 1 development, the
number of requirements completed is higher and the rate starts earlier in Agile development than
Waterfall development, as shown in Figure 34. The requirements completed at week 104, week 117,
and week 130 represent the total number of new requirements being tested during Integration &

Verification, Contractor, and Government Testing, respectively.

43

Requirements Completed - Build 2

140

o=d

120 X 1

- e -l
100 -z £
“' ’__fJ
80 >
C d
- j/—
- Waterfall

60 »
40) === Agile
"
20 =
. . ‘-—" /

50 60 70 80 90 100 110 120 130
Week

Requirements

Figure 34 - Requirements Completed in Build 2

The cause for the number of requirements completed being higher during Agile development is based
on the number of System and Software Engineers supporting the System Design effort. For System
Design in Build 2, all Build 1 efforts and Build 2 System Testing and Defect efforts supersede the Build 2
System Design effort. Unlike Figure 31 and Figure 32 that have a larger upfront System and Software
Engineering team, Figure 35 and Figure 36 illustrate the number of System and Software Engineers

supporting the System Design effort.

System Design - Build 2

N
w

N

(-]

&
=

[
(5

1 e \Naterfall
H \ -== Agile

)

(%]
[l

Number of System Engineers
° &
)

50 60 70 80 90 100 110 120 130

Figure 35 - System Engineers supporting System Design in Build 2

Although no System Engineers are supporting early System Design during Agile development, the
number of System and Software Engineers dramatically increases once the Build 1 — Build Development

efforts is complete. As discussed in Section 0, the size of the engineering team can increase quickly due

44

to the parallel development approach that generates immediately starts generating work across all

System Design development tasks.

Although the System Engineering team starts later during Agile development, the Software Engineering

team starts slightly earlier and remains higher than Waterfall development, as shown in Figure 36.

System Design - Build 2

N
o

7 28 7 %
AN A
£ 5 M /) LI |) R

‘ - X S
e AR . 1!
wi \ TN 'I \ -~ 1
o 1y [} = A n’ ‘\ 1
s 10 -+ 1 'Y A T+
3 1y ’ \ N e \Waterfall
2 57 1175\
°
|
[1]
2 9 ' 4 . hy
§ 50 60 70 80 90 100 110 120 130
z

Week

Figure 36 - Software Engineers supporting System Design in Build 2

Since the Agile System Engineering team does start immediately, the number of requirements in
progress does not increase until week 66, as shown in Figure 37. Unlike Build 1, there is a period in
time where number of requirements in progress is higher for Agile development. This increase is
due to the increase in System and Software Engineers supporting the System Design effort, as

shown in Appendix 7.4 and 7.5.

Requirements in Progress - Build 2

60 l‘\ﬂ
s ! \v"\o—~~'
2> A T WN
t ,J [}
@ 40 — Pl 1
5 I—I '. \55" V "'“N‘
:

£ 30 1 Veesy | — Waterfall
g 20 7 - -== Agile
-4 . H \

10 -

0 T T T T T T T)

50 60 70 80 90 100 110 120 130

Week

Figure 37 - Requirements in Progress in Build 2

45

4.2.1.3 Requirements Development in Build 3

Build 3 development starts at week 104 and ends at week 182. Similar to Build 2 development, the

number of requirements completed is higher and the rate starts earlier in Agile development than

Waterfall development, as shown in Figure 38. The requirements completed at week 156, week 169,

and week 182 represent the total number of new requirements being tested during Integration &

Verification, Contractor, and Government Testing, respectively.

Requirements

140

=
N & O ® O N
O O © © ©o o o

Requirements Completed - Build 3

>

--’--

'----’
’-’
Pl /
v Waterfall
‘,’ / -== Agile
’
o [
-
." : : : . r
100 110 120 130 140 150 160 170 180

Week

Figure 38 —Requirements Completed in Build 3

The cause for the number of requirements completed being higher during Agile development is based

on the number of System and Software Engineers supporting the System Design effort. For System

Design in Build 3, all Build 2 efforts and Build 3 System Testing and Defect efforts supersede the Build 3

System Design effort. Unlike Figure 31 and Figure 32 that have a larger upfront System and Software

Engineering team, Figure 39 and Figure 39 illustrate the number of System and Software Engineers

supporting the System Design effort, which are similar to Build 2 Figure 35 and Figure 36.

46

System Design - Build 3

o 25
o
£ 20
)
b
15
E
%
2 10
)
S
— 5 N
@
o
g 0 . . .
= 100 110 120 130 140 150 160 170 180

Figure 39 - System Engineers supporting System Design in Build 3

= \Naterfall

Although no System Engineers are supporting early System Design during Agile development, the

number of System and Software Engineers dramatically increases once the Build 1 — Build Development

efforts is complete. As discussed in Section 0, the size of the engineering team can increase quickly due

to the parallel development approach that generates immediately starts generating work across all

System Design development tasks.

Although the System Engineering team starts later during Agile development, the Software Engineering

team starts slightly earlier and remains higher than Waterfall development, as shown in Figure 39.

System Design - Build 3

N
=}
\

("] P} - 'f v
o 7 3 AN
£ J v)
oo 15 I) ™
c ' \ 1y
o N} v) \ [
E A |] - | ! \ ! \
o 10 ,- v Vg, | |] [
g an o ' ¥ '
£ ! d \
o [(4 1 \
[] J \
s : w l\ ! ‘
| ™
2 0 - - : - : . \ -t h
5 100 110 120 130 140 150 160 170 180
2
Week

Figure 40 - Software Engineers supporting System Design in Build 3

— \Naterfall

=== Agile

47

Since the Agile System Engineering team does start immediately, the number of requirements in
progress does not increase until week 118, as shown in Figure 37. Contrary to Build 1 but similar
to Build 2, there is a period in time where number of requirements in progress is higher for Agile
development. This increase is due to the increase in System and Software Engineers supporting the

System Design effort, as shown in Appendix 7.4 and 7.5.

Requirements in Progress - Build 3

60 Ao
" \"\‘-- “

50

40 -

30

]
; - — \Waterfall
20 'l --—- Agile
]

Requirements

100 110 120 130 140 150 160 170 180
Week

Figure 41 - Requirements in Progress in Build 3

4.2.2 Types of Technologies Developed

Although the quantity and rate of requirements completed in each build is higher during Agile
development, Waterfall development introduces newer technologies in each build, as presented in
Table 7. As oppose to existing technologies that are shared among systems, new technologies must be
matured before being designed and implemented in a build. The maturation of technologies occurs in
Materiel Solution Analysis and Technology Development efforts. However, these efforts are lower
priority than System Design and System Testing efforts since the value is less tangible. The contrast in

level of technologies implemented stems from the difference in allocation of engineers.

4.2.2.1 Technology Development

During Build Development, concepts for maturing new technologies in Technology Development are
kicked-off at the fidelity shown in Table 3. When scope is added to the Technology Development effort,
System Engineering resources are requested to complete the task. However, the priority of Technology
Development is lower than the priority of the previous build and the priority of System Design and

Testing.
48

Figure 42 compares the number of System Engineers supporting each build’s Technology Development

effort during Waterfall and Agile development. Unlike Agile development, there are periods between

Waterfall System Design tasks when System Engineers are idle. Due to reduced need of System

Engineering resources during System Design, System Engineers responsible for System Design tasks

spend their extra time performing side tasks that include analysis and trade studies that lead to

innovation.

Technology Development - Build 1

=~

— \Naterfall
=== Agile

ON B~ O

Number of
Engineers

2\ (] ‘.' ‘h
0 10 20

T T

30 40 50 60
Week

Technology Development - Build 2

70

3
-
P S ll‘-.‘i

- e \Naterfall

oON B O

Number of
Engineers

AN

50 60 70 8 0 100 110

0 9
Week

Technology Development - Build 3

=== Agjle

120

o S
- n' ~4

— \Naterfall

A === Agile

O N B OO

| V /] W
A ﬁ A ’ v All

l 1

Number of
Engineers

100 110 120 130 140 150 160
Week

Figure 42 - Engineers supporting Technology Development

1

170

In all three builds, Waterfall development exhibits more upfront time spent developing new

technologies. By spending more time up front, new technologies are matured in time to be designed

and implemented in the current build. The extra time spent during Technology Development, shown in

Figure 42, translates to the higher number of new technologies added to a build, shown in Table 7.

49

4.2.2.2 Materiel Solution Analysis

During Build Development, concepts for maturing new technologies in Materiel Solution Analysis are

kicked-off at the fidelity shown in Table 3. When scope is added to the Materiel Solution Analysis effort,

System Engineering resources are requested to complete the task. However, the priority of Materiel

Solution Analysis is lower than the priority of all tasks in the previous and current build.

Figure 43 compares the number of System Engineers supporting each build’s Materiel Solution Analysis

effort during Waterfall and Agile development. During Build 1 where there is only 1 build in

development, the number of System Engineers supporting Materiel Solution Analysis is relatively similar

in both models. During Build 2 and Build 3 where there is parallel development, the level of early

Materiel Solution Analysis support decreases more so in Agile development than Waterfall

development. Once the prior build’s development is complete, the number of engineers that can

support the current build increases, leading to higher resource allocation of all Build Development tasks.

Number of Number of

Number of

Engineers Engineers

Engineers

SR NWRAWGM ORrNWARWU

OoORrNWRAWU

Materiel Solution Analysis - Build 1

— -""-.,. Waterfall
i N\ 1| W === Aglle
S 0 WY [\ W (A (I : ,
10 2 30 50 60 7
0 0 Week®® 0
Materiel Solution Analysis - Build 2
P i~
‘ .""-\ Waterfall
a——IN N 1
] . , ~M W — 1L\
0 60 70 80 90 100 110 120
> Week
Materiel Solution Analysis - Build 3
1S~
~ Waterfall
Hih4 10 \)
: LW AL | — | Gl
A L] l' ‘ K ' T ‘ L} IJ]
100 110 120 130 140 150 160 170
Week

Figure 43 - Engineers supporting Materiel Solution Analysis

50

4.3 Discussion
The following sections summarize the analysis in Section 4.2 with respect to the three Research

Questions posed in Section 1.2.

4.3.1 Reducing conflict between cost, schedule, and capability constraints

Defense Contractors are required to implement Earned Value Management (EVM) during development
of most defense programs. Each task has an associated set of expected costs in labor hours to perform
the work within an expected time period. During each development cycle, the scope of individual tasks
may change during periodic customer reviews due to changes in development performance and
warfighter needs. If there were to be shifts in funding and/or schedule constraints, it is expected that
the number and/or scope of tasks would be reduced. To compare moliels, the size of the engineering

team and development release schedule are fixed to determine if capability slack is created.

Based on the analysis of both models, the Agile development model consistently developed and
implemented more technologies under the fixed cost and schedule, as shown Table 8. The reason for an
increase in technologies developed and implemented is attributed to how Agile development maximizes
productivity across engineering disciplinés through distributed parallel development. Given the short
development cycle of each increment, switching to Agile development would provide the Government

program office capability slack to manage competing cost, schedule and capability constraints.

Table 8 — Number of Technologies Adopted in a Build

Build1 | Build2 | Build 3
Waterfall 23 21 18
Agile 28 25 24

4.3.2 Reducing Firefighting

Firefighting is a development state when early development of the next release is delayed due to
resourcing needs to address defects detected late in the current release. To prevent firefighting during
development of military systems, it is important to complete requirements earlier so that they are test
more often, thereby reducing the probability of defects being detected later in the build.

Figure 44 and Figure 45 illustrate the number of Technologies introduced in each test phase of Waterfall

and Agile development models. Waterfall development is negatively impacted due to competing

51

development resources during later builds leading to a later technology introduction. Since Agile
development implements fractions of a technology at a rate proportional to available engineers, the

ratio of technologies introduced in each test phase is visually consistent from build to build.

Waterfall Development Model

25
(7]
@
2 20
©
[=
£ 15
QU
'—
S 10
g
=3
=
0 - .
1 2 3

B Integration & Verification
B Contractor Testing
W Government Testing

Build Technology
is Introduced

Figure 44 — Technologies introduced during each Build's test phase of Waterfall

Agile Development Model

25
wv
2
& 20
©°
c
£ 15
@
[~
S 10
@
o
E 5 -
5
=

0 A

1 &] Into:-zgrat’on3 & Verfication
- I I I
Blflld Technology m Contractor Testing
is Introduced ® Government Testing

Figure 45 — Technologies introduced during each Build's Test Phase of Agile

Table 9 presents the number of requirements introduced in each build’s test phase for Waterfall and

Agile development. In proportion to the total number of requirements, Waterfall development tends to

52

introduce more requirements later in the test phase. While Agile development could have stopped

development early yet introducing slightly more requirements in the build.

Table 9 - Requirements introduced in each Build's Test Phase

Waterfall Build 1 | Build 2 | Build 3
Integration/ Verification 65 65 55
Contractor Testing 30 30 0
Total 115 105 90
Agile Build 1 | Build 2 | Build 3
Integration/ Verification | 105.9 88.9 82.0
Contractor Testing 25.0 26.6 17.4
otal 140.2 128.4 120.6

Given that the purpose of Government Testing is to determine capability and performance, similar to
“beta testing”, it is less desirable to introduce new capabilities so late. What makes Waterfall
development more susceptible to firefighting is the average Technology Readiness Level of

requirements introduced in each test phase, shown in Table 10.

Table 10 - TRL of Requirements introduced in each Test Phase of Build 1

Waterfall | Agile
Integration/ Verification 6.88 6.93
Contractor Testing 6.32 6.37
Government Testing 5.72 5.92

Given the time delay and increased defect rates, it is expected that the number of new technologies
adopted are introduced during later test phases. However, introducing new technologies late in the test
phase increases the probability of defects being uncovered during the final test phases and post-
deployment. Depending on severity, late defects may be deferred to the next build or addressed in an

intermediate “clean-up” build.

4.3.3 Impact on Development Tasks
As discussed in the prior Discussion sections, switching to Agile development increases the number of

requirements in a build and promotes early software delivery. However, these two benefits are

53

observed at the expense of maturing new technologies that support long-term growth, as shown in
Table 7 and discussed in Section 4.1.2. Table 11 compares the estimate of new and existing

technologies implemented based on the average Technology Readiness Level of each build.

Table 11 - Comparison of technologies developed based on average TRL

Waterfall Agile
New Existing New Existing
Technology | Technology | Technology | Technology
Build 1 10.8 12.2 6.6 214
Build 2 9.0 12.0 3.2 22.5
Build 3 5.1 12.9 1.9 22.2

Although it is advertised that Waterfall development bottlenecking between phases is a limitation, the
limitation indirectly promotes innovation through non-System Design time spent maturing a new
technology. The time spent maturing a new technology is important since the newly developed
technology provides the warfighter an operational advantage. In addition, the “new” technology can be

shared with similar systems as an “existing” technology.

54

5 Conclusion

The United States Department of Defense has been plagued with failing programs that are over budget,
late on schedule, and exhibit poor performance during testing. Once a program has cost, schedule, or
capability issues, follow-on development efforts adopt the underlying issues only to reinforce poor
performance. To address these issues that lead to firefighting, one option for improving the quality of
the system is to introduce capabilities early in the development process so that intensive testing can
reduce the probability that defects are uncovered later in the life-cycle. One potential option is to

leverage Agile development methodologies.

Given the recognition Agile development has received in the commercial sector, there are a number of
organizations promoting Agile development to be used in the United States Defense sector, (O’Connell,
2011) (Samios, 2012). Agile is an iterative incremental development style that focuses on needs and
priorities. This development style has been linked to improved software quality, productivity and

delivery as well as ability to adapt to changing requirements.

However, Agile may not be a silver bullet and applying this development style may cause unintended
effects during the entire life-cycle. Therefore, two System Dynamics models were developed based on
the Defense Acquisition Framework to compare Agile and Waterfall development approaches and
determine: if Agile development reduces the conflict between cost, schedule, and capability constraints;

if Agile development reduces firefighting; and will Agile development impact other development tasks.

Based on the analysis of simulations of each model, Agile did improve the dynamics of parallel
development cycles by maximizing the productivity of the entire development team. Under the same
System and Software Engineering team size and development release schedule, Agile development
increases the quantity of requirements introduced within a development cycle. These requirements are

introduced earlier in Agile than they are in Waterfall development leading to reduced Test Debt.
The strength of Agile development lies in the ability to manage and implement increments of a

capability across multiple development cycles. By modularizing each capability, Agile development

maximizes the Design, Code, Unit Test, and Integration Testing work load improving the team efficiency.

55

During analysis of impact on other development tasks, it was identified that Agile development
consistently integrated capabilities based on existing technologies. Given that Agile development
maximizes team work load, the Agile development effort starves Materiel Solution and Technology
Development tasks leading to reduced maturation of new technologies to integrate within current
development cycle. This tendency is the effect of tactical management policies that are driven to

increase the number of capabilities versus the maturation of technologies.

To ensure success of Agile development, Government project/program office and defense
contractors/suppliers should increase the fidelity and level of interaction to align strategic goals. To
ensure sustainable performance, Government policies should promote flexible capability development
time lines, limit introduction of new capabilities in later test phases, and invest in separate technology

maturation efforts that support strategic needs.

56

6 Future Work

This work compliments existing research that compares Waterfall and Agile software development and
provides the foundation for future research on the impact of policies during parallel development of
military systems. The models are based on the actual development process but do not use historical
data to determine the parameters or capture the human element during development. To improve the
accurateness and holism of both models, future research is needed to calibrate both models and include

additional development factors that legitimize each model’s prediction.

The intent of this thesis is to compare development tendencies between Waterfall and Agile
development. Since each type of military system varies in complexity, both models should be calibrated
using historical development metrics from similar types of military systems e.g. communication systems,
sensor systems, engagement systems, aircraft, ships, etc. By leveraging historical data, both models

could be used to predict the impacts of different policies.

In addition to model calibration, future researchers can extend both models to capture human and
organizational factors that influence the execution of the system’s development. Each model assumes a
constant size and team experience, but does not account for shifts in funding or staffing that can occur
during development; individual engineering experience of unique domain knowledge; or the complexity
in managing a portfolio of concepts in development. These factors provide additional layers of resource

dependencies for future modeling and analysis.

57

89

<Integrate Req per

<Total Requirements in ’ : g
Process - Build 1> <Design Defects <ISr|.1&gra|D30nruT§::.m <Average Sprint Design JTeam Sm.:>
Uncovered by Integration - = o Defect Rate - Buikl 1> <Integration Team
) ! iid 1 Size - Build 1
<Backlog Hequecments Buld 1> <Average Sprint Design <Integrate R - - Sm F>-
B8 Dpuc: Integration Design Defect Rate - Build 1> = i) Design Defects I
: Defects - Build 1 R o ek Teant e Uncovered by Irlmgranon Addition - >
- : <Average Sprint - Build Average Sprint
<Stop Feature Sprint Design i _ < ge Sp
Addition - Build 1> . Defects - Build 1 Defect Rate - Build 1> ' Integration Testing - Defect Rate - Build 1>
> Detailed Design -] s # Build 1
. . Build 1 t i nts Integrated
Requirements for Sprint . Wm? T&?ﬁd Builigu;
Development - Build 1] -
<Average Sprint l_)esngn <Unit Test Req per
Defect Rate - Bmkw mﬂ 1 Team Size>
* <Unit Test Team
Defects uncovered Size - Build 1>
<Design Team Size by Teat - Buld <Average Sprint Code
- Build 1> | Defect Rate - Buid 1>
Code to be .
. Code - | Tested - Build 1 Unit Test - Code for Integration
Baiy Dl i ol 1 - Build |
Implement - Build 1 \ Build 1
<Design Req per

<Coding Team Size <Code Req per

Team Seze> - Build 1>

Team Size>

Juawdojana(aj1by Bulinp ubisaq waisds [/

xipuaddy £

6S

Sprint Demm X Defects d at
Defects - ion - Build 1 i = =
Detailed Design - Sprint Defects -Jg m: |IW';;’T1m | g Pl - Bl |)
) . 3 " Build 1 Build 1 (NS LI
<TRL for Requircments in Requirements for Sprint > L
Product Backlog - Buikl 1> Development - Build 1 Sprint SW 1
<TRL * Riq - Sprie Defects - Build 1
TRL * het Design e B0 by Test - Build 1
< * Req Design esl -
Defects from Integration - | Code ;‘;& i Code
B 1> TRL * Reg- e | Tl | Unit Test- mm'?n B
<Sprini Defects - TRL* Req Sprint | Design - Build | i Buid 1 Build 1
Build 1> Start - Build 1 Req Designto
<Sprint Design Implement - Build 1
Defects - Build 1>
TRL * Reg - TRL * Req- Unit [y TRL * Req- Integration - Build 1
TRL * Req Design Code - Buld 1 TRL * Req Code TRL * Req Unit Test
Complete - Build 1 Complete - Build 1 Complete - Build 1
<TRL * Req Defects from . * * .
: : TRL * Req Sprint SW " Reg TRL* Req Defects <Design Defects
Sprint Test - Build 1> Unit Test - from Test - on - T -
<TRL * Req - Sprint Defects to be Addressed - <B|.a'id :: A %‘1 hmm-;m Uncovered hy Integration -
Defects - Build 1> Build 1 TRL * Req Sprs Def Buill 1>
<Sprint Defects - <Defects uncovered P <Integration Tesling
Build 1> by Test - Buikd 1> - Build 1>
<Sprint SW Delects .
- Build 1> <Sprint Defects - <Defects uncovered at

Build 1 : -
g <Sprint Design Defects - Buid 1> negration - Build 1>

<Sprint SW Defects - Build 1>

Juawdojana(q aJ1By Burinp molfo) TY.L ubisaq waisAs z'/

09

<Op ITesing ~ Requi forIV N
. Defects Fixed - Builkd 0> Testing - Buid 1 Requirements not ready for Integration/Verification W
<Requirements ready for Total SW Buid for Contractor Testing - Build 1 x son/Verification Rework - Defects Fixed - Build 1
Deployment - Build 0> Integration/Verification Testing - -
- . E—— Buid |)
<Concept completion Build 1 <
- Build 1> %]
<No Testing - IV Tent a
Build 1> <LV AC5ng - 15 addressgble
Mo e RGP o el
e work -
compktion - Build 1> TRL * Req for IV <Integration/Verification <System Test <IV Testing - ?
- Buid 1 Requirements ready for Defect Rato - Buld 1> Team - Buikd 1 Beld 1> a
Contractor Testing - Build 1 <Systems Testing Productivity E
per Team Size>) Q
) o Requirerrents for Contractor <T3bnk‘ "f"e\sl%'!!"m ment <Contractor Testing e
<Integration/Verification Testing - Buid 1 - Build 1> =
Defects Fixed - Build 1> Integration Defects pushed =
Total SW Build for Contractor 10 next phase - Buid 1 o
Testing - Buid 1 Requirements not ready for Contractor found =)
for CT Test - Government Testing - Build | % Defects Fixed - Build 1 =
<Concept completion Peq 1 - CRO ork r;uil:l 1 L’
- Build 1> inCT- Buid 1 - 5
i <Contractor Testing =]
<IV Testing - - Build 1> <Contractor Testing Q.
Build 1> _) - Buld 1>))
<TRL * Concept O ! IRL ‘Bl:ﬂ inCT- <Contractor Testing o <Contractor Defects =
completion - Build 1> TRL * Req for CT I Defect Ratio - Build 1> Tea:_ llluﬂ-;.’b addressable in Rework -
- Buid 1 Requirements ready for . Buikl 1>
Government Testing - Buid 1 <Systems Testing - <Taple of SE Invohement
tivity per : }
= or Team Size> in Test Period> <Government
<Contractor found i y .
Defects Fixed - Buill 1>~ Testng - Buld 1 e Tutiag Dol Testing - Bkl 1>
‘Total SW Buid for Government) pushed 10 next phase - Buld 1
Testing - Buikl 1 Requirements not ready for Governrent found
aog Operational Testing - Build 1 Go Testing Defects Fixed- Build 1
<Concept completion | Rework - Build 1
- Build 1> <Government
<Government <Contractor Testing Testing - Build 1> <Gnverrmient
Testing - Build 1> i Buid 1> TRL Y Rean GV <Govemment Testing <System Test Testmg Bl 1
<TRL * Concept - % Bt Defect Ratio - Build 1> Team - Build 1> <Govemment Defects
completion - Build 1> TRL for GVT - addressable in Rework -
Buid 1 Requirements ready for’ <Systems Testing) Build 1>
O.T. Testing - Buid 1 Productivity per Team Size>
<Table of SE Involvement
<Government found in Test Period> —
Defects Fixed- Buid 1> Government Testing Defects 3 Buﬂs\lu:g -
“Total SW Build for Operational _ Pustied fo.pext hase, - B 1
Requrements for OT Testing - Buid 1 Bequitaea 10t Eady
Testing - Buid 1 for Deployment - Build 1
ng - OT Rework - Buid 1
<OT Testing -
Build 1>
<OT Testing Defect
3 o Sys
Requirements ready for Ratio - Build 1> T:a::-mBmw"‘s\IL
Deployment - Build 1
<Systems Testing
Productivity per Team Size> .
<Table of SE <OT Defects
Involvement in Test addressable in Rework -
Period> Build 1>
Deployment - Build 1 « £=%
Operational Testing

Defects Fixed - Build 1

7.4 System Design Team

System Design Team for Waterfall

20

18
E 16 1
o b a,p
a 14 1 r' 1
S /
g 12 1
- —— System Concept
f’,‘ 10 Team
S 81
i 4
2 6 " == == Systems Team
:E; v l Needed for Concept
Z 4 Development

: A\

0 T T T T T T 1

0 20 40 60 100 120 140 160 180 200
Week
System Design Team for Agile
50
45 a
[}

» 40 e -
g ry @ [\
30 N 4 R .
E []
2 Iy _,_I* L | | L | ! . e System Sprint
L s e 1 : v T T
& | Iy, N I] . | L 3 eam
S 20 A v
s * Iy " | ! ’ I == = Systems Team
2 15 -' 1
E] [Needed for
; 10 - | Sprint

0 T T T T T 1] 1

0 20 40 60 100 120 140 160 180 200

Week

61

7.5 Software Design Team

Number of Software Engineers

Number of Software Engineers

20
18
16
14
12
10

o N B~ O ®

50
45
40
35
30
25
20
15
10

Software Design Team for Waterfall

'1
=I| 4
4 [}
"
l=] | A] 1 |'| SW Concept Team
\ Lt a
== == S\W Team Needed
for Concept
| Development
20 40 60 80 100 120 140 160 180 200
Week
Software Design Team for Agile
[]
l‘\ :" T |‘|.n
P B A
L | I ¥
1 \ i"| ' '
Ly i e
! vV -+ — | 1 h SW Sprint Team
S \l v |
& +— LS |l SW Team Needed
v v - - eam Neede
'i | 1 ! \ for Sprint
T T LN T T T T T \l 1
20 40 60 80 100 120 140 160 180 200
Week

62

8 Works Cited

Abran, A. (2004). Guide to the Software Engineering Body of Knowledge: 2004 Edition: SWEBOK.
Retrieved February 4, 2014, from IEEE Computer Society:
http://common.books24x7.com.libproxy.mit.edu/toc.aspx?bookid=14089>

ACQuipedia. (2013, October 7). Retrieved Feburary 6, 2014, from Defense Acquisition University:
https://dap.dau.mil/acquipedia/Pages/ArticleDetails.aspx?aid=a896cb8a-92ad-41f1-b85a-
ddicb4abdc82

Assistant Secretary of Defense for Research and Engineering ASD(R&E). (2011, April). Technology
Readiness Assessment (TRA) Guidance. Retrieved December 18, 2013, from Defense Acquisition
University: https://acc.dau.mil/CommunityBrowser.aspx?id=461216

Bell, T. E., & Thaer, T. A. (1976). Software requirements: Are they really a problem? Proceedings of the
2nd international conference on Software engineering (pp. 61-68). Los Alamitos: IEEE Computer
Society Press.

Carter, A. (2011, 09 13). Advance Policy Questions for Ashton B. Carter Nominee to be Deputy Secretary
of Defense. Washington D.C.

Cocco, L., Mannaro, K., Concas, G., & Marchesi, M. (2011). Simulating Kanban and Scrum vs Waterfall
with System Dynamics. XP (pp. 117-131). Madrid: Springer.

Cunningham, W. (2011, 01 22). Ward Explains Debt Metaphor. Retrieved 12 05, 2013, from
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

De Neufville, R. (2011). Flexibility in engineering design . Cambridge: MIT Press.

Decker, G. F., & Wagner JR., L. C. (2011, January). Army Strong: Equipped, Trained and Ready. Retrieved
January 05, 2014, from U.S. Army: http://usarmy.vo.llnwd.net/e2/c/downloads/213465.pdf

Defense Acquisition Guidebook. (2013, May 15). Retrieved November 01, 2013, from Defense
Acquisition Guidebook: https://dag.dau.mil/Pages/Default.aspx

DoD Instruction 5000.2. (2013). Operation of the Defense Acquisition System. Washington: DoD.

Frand, E. (1980, December). Erwin Frand's Thoughts on Product Development. Industrial Reasearch &
Development, p. 27.

Gilmore, J. M. (2011). Key Issues Causing Program Delays in Defense Acquisition. International Test and
Evaluation Association, 389-391.

Glaiel, F., Moulton, A., & Madnick, S. (2013, March). Agile Project Dynamics: A System Dynamics
Investigation of Agile Software Development Methods. Cambridge, MA.

Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution. PROCEEDINGS OF THE IEEE
(Volume 68, Issue 9), 1060-1076.

Luisanna Cocco, K. M. (2011). Simulating Kanban and Scrum vs Waterfall with System Dynamics. XP (pp.
117-131). Madrid: Springer.

McConnell, S. (1996). Rapid Development: Taming Wild Software Schedules. Microsoft Press.

McQuarrie Jr., A. J. (2004, September). Fire Fighting in Aerospace Product Development: A Study of
Project Capacity and Resource Planning in an Aerospace Enterprise. Cambridge.

MITRE. (2010, December 15). Handbook for Implementing Agile in Department of Defense Information
Technology Acquisition. Retrieved February 4, 2014, from MITRE:
http://www.mitre.org/sites/default/files/pdf/11_0401.pdf

O’Connell, D. (2011). When Agile Software Development and. Software Architecture Collide. Retrieved 11
01, 2013, from DEFENSE TECHNICAL INFORMATION CENTER:
http://www.dtic.mil/dtic/tr/fulltext/u2/a558044.pdf

Parrish, K. (2013, July 31). Pentagon Review Reveals Best, Worst Case, Hagel Says. Retrieved 01 12, 2014,
from U.S. Deparement of Defense: http://www.defense.gov/News/newsarticle.aspx?!D=120559

63

Project Management Institute. (2013). A guide to the Project Management Body of Knowledge (PMBOK
guide). Newtown Square: Project Management Institute, Inc.

Rahmandad, H. (2005). Dynamics of Platform-based Product Development. Boston.

Rahmandad, H., & Repenning, N. (n.d.). The Dynamics of Capability Development and Erosion. Retrieved
August 9, 2013, from http://www.sdl.ise.vt.edu/research.html#ProductDevelopment

Rahmandad, H., & Weiss, D. M. (2009). Dynamics of concurrent software development. System
Dynamics Review Volume 25, Issue 3, 224-249.

Repenning, N. (2001). Understanding Fire Fighting in New Product Development. Journal of Product
Innovation Management, 285-300.

Royce, W. (1970). Managing the Development of Large Software Systems. IEEE WESCON, (pp. 1-9).

Samios, H. (2012, February 29). Introducing Scrum to an Organization. Retrieved January 05, 2014, from
Defense Acquisition University - Acquisition Community Connection:
https://acc.dau.mil/CommunityBrowser.aspx?id=501105

Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World. New
York: Irwin/McGraw-Hill .

Tavassoli, D. (2007). Agile software development of military embedded systems. Military Embedded
Systems.

The Agile Manifesto. (2001). Retrieved February 4, 2014, from Manifesto for Agile Software
Development: http://agilemanifesto.org/

Ulrich, K. T., & Eppinger, S. D. (2008). Product Design and Development 4th ed. New York, New York:
McGraw-Hill/lrwin.

Version One. (2009). State of Agile Survey. Version One Inc.

64

