
Resource Dependencies in Parallel Development of Military Systems:
A Comparison of Waterfall and Agile Development Methodologies

By

Erik Roberto Garcia

S.B. Aerospace Engineering with Information Technology (2006)
Massachusetts Institute of Technology

SUBMITTED TO THE SYSTEM DESIGN AND MANAGEMENT PROGRAM
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTERS OF SCIENCE IN ENGINEERING AND MANAGEMENT

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2014

T'JL..t 3
@ 2014 Erik Roberto Garcia. All rights reserved.

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 2 3 2016

LIBRARIES
ARCHIVES

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic
copies of this thesis document in whole or in part in any medium now known or hereafter created.

Signature of Author:

Certified by:

AepeLC y:

Signature redacted
Erik R. Garcia

System Design and Management Program
January 31, 2014

Signature redacted
Nelson P. Re nning

Professor of System Dynamics and Organization Studies at MIT Sloan School of Ma nt
Faculty Director of MIT Executive MBA rogram

Signature redacted-
V- Patrick Hale

Director
System Design and Management Program

.% r

d b

MITLibraries
77 Massachusetts Avenue
Cambridge, MA 02139
h"tp://Iibraries.mit.edu/ask

DISCLAIMER NOTICE

The accompanying media item for this thesis is available in the MIT
Libraries or Institute Archives & Special Collections

Thank you.

Table of Contents
1 Introduction .. 1

1.1 M otivation...2
1.2 Resea rch Question .. 4
1.3 Thesis Organization... 4

2 Background ... 5
2.1 Departm ent of Defense Developm ent Life Cycle ... 5

2.1.1 M ateriel Solution Analysis ... 6
2.1.2 Technology Developm ent .. 7
2.1.3 Engineering & M anufacturing Developm ent ... 7
2.1.4 Role of System Engineers.. 7

2.2 W aterfall and Agile Developm ent... 7
2.2.1 W aterfall Developm ent... 8
2.2.2 Agile Developm ent... 9

2.3 Previous Relevant M odels... 10
2.3.1 Dynam ics of Concurrent Softw are Developm ent .. 10
2.3.2 Simulating Kanban and Scrum vs Waterfall with System Dynamics.............................. 11
2.3.3 Agile Project Dynam ics... 12

3 M odel Developm ent ... 13
3.1 Developm ent and Testing Tim elines... 14

3.1.1 M ateriel Solution Analysis ... 17
3.1.2 Technology Developm ent .. 17
3.1.3 Engineering & M anufacturing Developm ent - System Design.. 18
3.1.4 Engineering & Manufacturing Development - System Testing..................................... 25
3.1.5 Hum an Resourcing... 31
3.1.6 Table Constant .. 32

4 Analysis of W aterfall and Agile developm ent M odels.. 39
4.1 Overview of W aterfall and Agile M odel results.. 39

4.1.1 Requirem ents Com pletion ... 39
4.1.2 Types of Technologies Developed ... 40

4.2 Analysis of W aterfall and Agile model developm ent tendencies .. 41
4.2.1 Requirem ents Developm ent in each Build ... 41
4.2.2 Types of Technologies Developed ... 48

4.3 Discussion..51
4.3.1 Reducing conflict between cost, schedule, and capability constraints 51
4.3.2 Reducing Firefighting ... 51
4.3.3 Im pact on Developm ent Tasks... 53

5 Con clusion... 55
6 Future W ork..57
7 Appendix ... 58

7.1 System Design during Agile Developm ent... 58
7.2 System Design TRL Coflow during Agile Developm ent .. 59
7.3 System Testing for both m odels ... 60
7.4 System Design Team ... 61
7.5 Softw are Design Team .. 62

8 W orks Cited...63

Table of Figures
Figure 1 - System Acquisition Framework (Defense Acquisition Guidebook, 2013) 5
Figure 2 - Implementation flow during development of a concept/software system (Royce, 1970)..........9
Figure 3 - Implementation flow during development of a increments of a concept based on Figure 2.... 10
Figure 4 - Agile development framework of Scrum (Cocco, Mannaro, Concas, & Marchesi, 2011)..........12
Figure 5 - List of sub-tasks for each development phase ... 14
Figure 6 - Overview of M odel Structure ... 15
Figure 7 - Tim eline w ithin Developm ent Cycle .. 16
Figure 8 - Timeline of parallel Build Development and Testing.. 16
Figure 9 - System Dynamics representation of Materiel Solution Analysis development 17
Figure 10 - System Dynamics representation of Technology Development.. 18
Figure 11 - System Dynamics representation of Concept Planning..19
Figure 12 - Interaction between Concept Planning and Concept Development 20
Figure 13 - System Dynamics representation of Waterfall development .. 21
Figure 14 - System Dynamics representation of product planning and tasking for Agile development.... 22
Figure 15 - System Dynamics representation of Agile development.. 24
Figure 16 - Coflow for managing TRL during Agile development .. 25
Figure 17 - Overview of System Testing.. 26
Figure 18 - System Dynamics representation of Integration/Verification Testing................................ 27
Figure 19 - System Dynamics representation of Contractor Testing... 28
Figure 20 - System Dynamics representation of Government Testing ... 29
Figure 21 - System Dynamics representation of Operational Testing ... 30
Figure 22 - Priority for allocating System and Software Engineers ... 32
Figure 23 - Design Defect Rate Curve .. 33
Figure 24 - Code Defect Rate Curve .. 34
Figure 25 - Concept Defect Rate Curve.. 35
Figure 26 - System Test Defect Rate Curve... 36
Figure 27 - Defect Rate Factor over Tim e ... 36
Figure 28 - Productivity Rate over Tim e ... 37
Figure 29 - System Engineering Involvement in Test Period ... 38
Figure 30 - Requirem ents Com pleted in Build 1.. 41
Figure 31 - System Engineers supporting System Design in Build 1... 42
Figure 32 - Software Engineers supporting System Design in Build 1... 42
Figure 33 - Requirem ents in Progress in Build 1.. 43
Figure 34 - Requirem ents Com pleted in Build 2.. 44
Figure 35 - System Engineers supporting System Design in Build 2...44
Figure 36 - Software Engineers supporting System Design in Build 2 ... 45
Figure 37 - Requirem ents in Progress in Build 2.. 45
Figure 38 -Requirem ents Com pleted in Build 3 ... 46
Figure 39 - System Engineers supporting System Design in Build 3 ... 47
Figure 40 - Software Engineers supporting System Design in Build 3 ... 47
Figure 41 - Requirem ents in Progress in Build 3.. 48
Figure 42 - Engineers supporting Technology Development... 49
Figure 43 - Engineers supporting Materiel Solution Analysis ... 50
Figure 44 - Technologies introduced during each Build's test phase of Waterfall 52
Figure 45 -Technologies introduced during each Build's Test Phase of Agile 52

ii

Table of Tables
Table 1 - Comparison of Product Development Processes (Ulrich & Eppinger, 2008)............................. 6
Table 2 - Productivity metrics for System Design Tasks ... 33
Table 3 - Technologies considered for Build Development ... 39
Table 4 - Size of Developm ent Team .. 39
Table 5 - Associated System Testing phase for completed requirements.. 39
Table 6 - Number of Requirements introduced during each Build's Testing phase 40
Table 7 - Average TRL for Requirements added to each Build... 40
Table 8 - Num ber of Technologies Adopted in a Build .. 51
Table 9 - Requirements introduced in each Build's Test Phase.. 53
Table 10 - TRL of Requirements introduced in each Test Phase of Build 1 ... 53
Table 11 - Comparison of technologies developed based on average TRL ... 54

iii

Resource Dependencies in Parallel Development of Military Systems:

A Comparison of Waterfall and Agile Development Methodologies

By

Erik Roberto Garcia

Submitted to the System Design and Management Program

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

Abstract

The United States Department of Defense has been plagued with failing programs that are over budget,

behind schedule, and exhibit poor performance during testing. Once a program has cost, schedule, or

capability issues, follow-on development efforts adopt the underlying issues only to reinforce poor

performance. To address these issues that lead to firefighting, one option is to use an Agile software

development process to introduce capabilities earlier in the development process for effective testing.

Two System Dynamics models compare Agile with the traditional Waterfall development approach to

determine: if Agile development reduces the conflict between cost, schedule, and capability constraints;

if Agile development reduces firefighting; and will Agile development impact other development tasks.

Based on the simulation of each model, Agile did improve the dynamics of parallel development cycles

by maximizing the productivity of the entire development team. Under the same System and Software

Engineering team size and development release schedule, Agile development increases the quantity of

requirements introduced within a development cycle. However, Agile development emphasized less on

maturing new technologies leading to considerably less innovative builds.

Thesis Supervisor: Nelson P. Repenning

Title: Professor of System Dynamics and Organization Studies

Faculty Director, MIT Executive MBA Program

iv

Acknowledgements

I gratefully acknowledge the helpful support and valuable resources provided by MIT's System Design

and Management (SDM) Program. The SDM staff and faculty made my experience at MIT a truly

enjoyable and rewarding one. In addition, I would like to thank all of my classmates, especially those in

the Military, for providing their insight and recommendations on the models.

I owe a debt of gratitude to my thesis advisor, Nelson Repenning, for his considerable support during

the development of the System Dynamics models and insights on fire fighting and resource

dependencies.

I also thank Professor Edward Crawley and Dr. Bruce Cameron for the opportunity to be a teaching

assistant for System Architecture.

I also am gratefully to my Raytheon product leads, Chibl Nahas and Jaime Wiley, for making my

attendance to MIT possible while working, especially with classes during business hours and when the

program's need was high.

Finally, my deepest thanks goes to my wife, and fellow SDM classmate, Kathleen Voelbel. She has given

me the strength and support to complete this degree.

v

1 Introduction

Developing a new United States military system requires leadership, management, and execution. To

realize and maintain a large-complex system, it is necessary to manage competing project constraints of

scope, quality, schedule, budget, resources, and risk (Project Management Institute, 2013). Whether

the system is managed as part of a project, program, or a portfolio, decisions to influence one constraint

affect the others because they are interrelated. Therefore, it is important to have a business strategy

and determine which constraints are most important when faced with development challenges.

Regarding the phrase "Good. Fast. Cheap. Pick any two.", a successful business must ensure "good"

products and should determine flexibility in increasing schedule or cost (Frand, 1980). The value of a

military system is determined by its capability to support the warfighter. It is the responsibility of the

Department of Defense acquisition enterprise to oversee the procurement of systems and ensure

reasonable system requirements are set. If a military system faces challenges due to development risk,

the business strategy should determine which of the following actions the government project/program

office should select: inject the needed funding to maintain schedule, inject a portion of funding to

reduce schedule delay, or inject minimal funding required to support schedule delay.

However, allowing schedule delay or providing additional funding contradicts recent direction from the

Department of Defense. Due to fiscal hardship, the United States Congress requires significant

reduction in procurement costs for military systems. On the other hand, the Secretary of Defense Chuck

Hagel indicates that the military needs to develop more technologically advanced equipment and

weapons systems to support evolving military threats (Parrish, 2013). Depending on the size of the

system, the acquisition process can take many years for a system to be developed, tested,

manufactured, and deployed.

Unfortunately, the acquisition process for large systems has been failing. A 2010 Army Acquisition

Review showed Acquisition Category 11 programs in development had an average schedule slippage of

1An Acquisition Category I program is either designated by the Under Secretary of Defense for Acquisition,

Technology and Logistics as a Major Defense Acquisition Program; or requires more than $365 million for initial

development and testing, or requires more than $2.19 billion to support development through production (based

on fiscal year 2000 US dollars). (ACQuipedia, 2013)

1

2.1 years and that between 1990-2010, 22 Major Defense Acquisitions Programs were terminated

(Decker & Wagner JR., 2011). In a separate assessment charted by the Under Secretary of Defense for

Acquisition, Technology and Logistics, 67 major programs experiencing schedule delays were examined

in response to acquisition community concerns that testing drove undue scope, schedule delays, and

excessive costs. The author of this assessment states that "programs are most often delayed because of

the results of testing, not the testing itself' (Gilmore, 2011). Both studies agree that poor performance

experienced in testing is due to development efforts citing reasons of "unconstrained requirements,

weak trade studies, and erosion of the requirements and acquisition workforce" (Decker & Wagner JR.,

2011).

The reasons cited for poor performance are also cited as indicators of "firefighting" experienced in

Integration & Testing and Product Deployment phases of aerospace product development (McQuarrie

Jr., 2004). For programs that require multiple development cycles, the development team will focus

vital resources on addressing the performance problems during current testing instead of devoting

resources to early development that ensures quality performance of the next cycle's test phase. The

dynamics of firefighting in parallel development, as is present in programs with multiple development

cycles, is self-reinforcing (Repenning, 2001) and leads to an increasing overall schedule delay if left

unaddressed.

Similar to the idea behind Technical Debt (Cunningham, 2011), Test Debt, as the author of this thesis

defines it, occurs when capabilities are introduced late in the development cycle and consequently are

not tested early. As Test Debt increases in the system, the risk of defect detection during final testing

or, even worse, defect detections during deployed operation increases. The greater the Test Debt, the

more likely firefighting will ensue and the customer's confidence in the system's performance will

decrease to the point that additional "builds" are needed to "clean-up" defects discovered late in the

lifecycle.

1.1 Motivation

Developing new military systems challenges all six project management constraints: scope, quality,

schedule, budget, resources, and risk (Project Management Institute, 2013). However, when three

particular constraints do not go as planned, i.e., the combination of cost overruns, schedule delays, and

poor system performance, a burning-platform is created for the DoD to "shed excessive requirements"

2

and identify "trade-offs between cost, schedule, and performance" (Carter, 2011). In these situations,

the government acquisition entity can reduce the initial set of requirements to a fundamental prototype

that supports future upgrades and provides the minimum capability needed to assess early system

performance, thereby mitigating potential cost, schedule, or performance issues. If the initial

development cycle is successful in meeting objectives, the government acquisition entity can exercise

the option for hardware and/or software upgrades in subsequent parallel development cycles. This

process is similar to engineering real options that reduce risk and financial loss (De Neufville, 2011).

Although having reasonable and mature requirements does help reduce risk of failure during testing, the

prototype may still exhibit poor performance that would lead to fire-fighting during parallel

development cycles. Instead of de-scoping, increasing budget, or allowing schedule delay, one option to

balance fire-fighting would be to alter the development approach. If decreasing Technical Debt reduces

fire-fighting, one option could be to alter the software development approach from the traditional

sequential Waterfall software development and encourage the rapid incremental Agile software

development. Agile software development approaches like Scrum and Extreme Programming were

developed to increase immediate development results, improve software quality, and adapt to changing

requirements and are widely used in the commercial sector. Although Waterfall software development

compliments the Defense Acquisition process and milestones, Agile software development can succeed

in software development efforts of military embedded systems both small and extremely large complex

systems (Tavassoli, 2007), (O'Connell, 2011).

The first two Laws of Program Evolution state that a system in use is changing continually and only

increases in complexity (Lehman, 1980). Agile development addresses the evolution and complexity of a

system by strong team interaction and incremental design and implementation of each new feature.

However, Agile development's reliance on strong team interaction can have a negative effect since it

increases the complexity of coordination, especially for large teams developing complex and

complicated systems. In addition, the process for designing and implementing a fraction of a capability

lacks the holistic view of the full solution which challenges experienced reviewers in ensuring proper

execution of system-level requirements and preventing future re-design and re-implementation.

3

Although Agile development is successful in commercial software systems, the application of Agile

development in the defense sector should be compared with traditional Waterfall development to

determine the impact on a parallel product development environment that requires extensive testing.

1.2 Research Question

To determine whether Agile development should be used during parallel software development cycles

of military systems, the following research questions are posed:

" Does Agile development reduce the conflict between cost, schedule, and capability constraints?

* Does Agile development create an environment that reduces firefighting?

* Will Agile development impact other development tasks?

1.3 Thesis Organization

To address these research questions, this thesis is organized into the following chapters:

* Chapter 1, Introduction, describes the background, motivation, and research questions of this thesis.

" Chapter 2, Background, defines the development process for military systems and relevant models.

* Chapter 3, Model Development, describes the modeling process that created the System Dynamics

models used for analysis.

" Chapter 4, Analysis of Waterfall and Agile development Models, compares the results of both

development processes during parallel development life cycles.

* Chapter 5, Conclusion, evaluates how the research objectives were met, suggests potential future

work, and presents the key contributions of this thesis.

4

2 Background

Government and Defense Contractors adhere to the Defense Acquisition System for managing United

States defense technology projects and acquisition programs (DoD Instruction 5000.2, 2013). The

Defense Acquisition System along with the Defense Acquisition Guidebook provides insight on the

development process to achieve cost, schedule, and performance goals (Defense Acquisition Guidebook,

2013). In comparing Waterfall and Agile development, previous work provides insight in modeling each

development approach and the dynamics between development processes within the development life

cycle.

2.1 Department of Defense Development Life Cycle

The objective of the Defense Acquisition System is "to rapidly acquire quality products that satisfy user

needs with measurable improvements to mission capability at a fair and reasonable price" (Defense

Acquisition Guidebook, 2013). To do so, Government project/program offices and Defense

Contractor/Suppliers follow the System Acquisition Framework shown in Figure 1.

System Development Life Cycle

MA B11& F1 o FO"
Pre-Acquisition'D Aniern and ProdRctio

ECblnng cepts, Moteriel Solution Technology n Opertions
Enbn Experimentation Analysis Development Development Deployment and Support

and Prototyping

AOTR - Assessment of Operational Test Readiness ISR - In-Service Review
ASR - Alternative Systems Review MDD - Materiel Development Decision Mandatory technical reviews
CDR - Critical Design Review OTRR -Operational Test Readiness Review

EMD - Engineering and Manufacturing PCA - Physical Configuration Audit
Development PDR - Preliminary Design Review

FCA - Functional Configuration Audit PRR - Production Readiness Review Best practice technical reviews and
FD - Full Deployment S&T- Science and Technology audits
FOC - Full Operational Capability SRR - System Requirements Review

FRP - Full-Rate Production SFR - System Functional Review I

IOC - Initial Operational Capabtlity SVR - System Verification Review Test reviews (see DAG Chapter 9)
TRR - Test Readiness Review

Figure 1 - System Acquisition Framework (Defense Acquisition Guidebook, 2013)

The Defense Acquisition Framework for Research, Development, Test & Evaluation programs is similar

to commercial New Product Development. Table 1 compares the System Acquisition Framework phases

with the Product Development and Development process described by Ulrich and Eppinger. The two

major differences are: 1) the Ulrich & Eppinger processes couples design and implementation while the

DoD System Acquisition Framework couples implementation with test and demonstration, and 2) the
5

DoD System Acquisition Framework includes post-production operations and support services as part of

the Development process.

Table 1 - Comparison of Product Development Processes (Ulrich & Eppinger, 2008)

Ulrich & Eppinger DoD System Acquisition Framework Similarities:

Determining market/military need, assessing
Pre-Acq uisition Concepts, Experimentation

Planning existing systems and alternative technologies,
and Prototyping

etc.

oncept Identifying users and user needs, developing
Materiel Solution Analysis

Development experimental prototypes, etc.

System-Level Design Technology Development Develop architecture and interfaces

Engineering Development - Integrated System Develop and document final design of
Detail Design

Design product/system

Testing the product/system design and
esting & Engineering Development - System Capability

implementation, and validate product/system
Refinement & Manufacturing Process Demonstration

meets needs

Production Ramp-Up Production & Deployment Phase Production and distribution of the product

For each System Acquisition Framework phase, a system passes each stage of pre-systems acquisition,

systems acquisition, and sustainment. The core development efforts for system acquisition include:

Materiel Solution Analysis, Technology Development, and Engineering and Manufacturing Development.

Each effort increases the maturity of a technology for future capability introduction. Currently, the DoD

measures the maturity of a technology using the Technology Readiness Level (TRL) metric.

The TRL scale ranges from 1 to 9 and is a metrics-based indicator associated with the maturity and risk

of a technology. TRL 1-3 represent Research & Development technologies that have positive laboratory

results. TRL 4-6 represent technologies that have been successfully modeled or prototyped in a relevant

environment. TRL 7-9 represent technologies that have been integrated into an actual system and have

successfully completed mission operation (Technology Readiness Assessment (TRA) Guidance, 2011).

2.1.1 Materiel Solution Analysis

Materiel Solution Analysis is the first element of the Defense Acquisition Framework. The goal of

Materiel Solution Analysis is to identify and define performance requirements and

6

technology/technologies for a system. This effort includes further developing the maturity of a

technology; identifying implementation and manufacturing risk; and possible prototype/demonstration.

2.1.2 Technology Development

Technology Development is the second element of the Defense Acquisition Framework. The goal of

Technology Development is to reduce technology risk for future system adoption. This effort may

include further technology development and/or demonstration of application. A Preliminary Design

Review (PDR) occurs during this phase.

2.1.3 Engineering & Manufacturing Development

The Engineering & Manufacturing Development phase is the third element of the Defense Acquisition

Framework. The Engineering & Manufacturing Development is comprised of Integrated System Design

and System Capability & Manufacturing Process Demonstration with each effort occurring before and

after the Critical Design Review (CDR), respectively. Unlike Ulrich and Eppinger's approach to coupling

the design and implementation during the Detailed Design phase, the Integrated System Design phase

refines and documents the system, performance, and/or functional requirements. Implementation

occurs in the System Capability & Manufacturing Process Demonstration effort along with the

integration and demonstration of capabilities. In addition, this phase verifies the manufacturability,

affordability, and producibility of the system.

2.1.4 Role ofSystem Engineers

System Engineering is the "holistic, integrative discipline, whereby the contributions across engineering

disciplines such as Structural Engineers, Electrical Engineers, Mechanical Engineers, Software Engineers,

Human Factors Engineers, and Reliability Engineers are evaluated and balanced to produce a coherent

capability - the system" (Defense Acquisition Guidebook, 2013). The role of a Systems Engineer spans

across the entire life cycle and includes the realization of the architecture; modeling and prototyping of

designs; developing system, performance, and functional requirements and "build-to" documentation;

supporting development testing; and preparation for production.

2.2 Waterfall and Agile Development

As described by Barry Boehm in his 2006 paper titled "A View of 20th and 21st Century Software

Engineering", Software Engineering processes have evolved every decade, cycling between formal and

7

informal development. During the 1950's, Software Engineering followed the same exhaustive reviews

that hardware engineers performed before committing to a design. The use of a strict development

approach was deemed not necessary in the 1960's because software defects are easy to fix, leading to a

"code and fix" model. Unfortunately, the "code and fix" model led to "spaghetti code" and relied on

"cowboy programmers" to address issues; this led to the 1970's effort in promoting a formal structured,

sequential Waterfall development approach. Later in the 1980's, the U.S. DoD coupled the Waterfall

development structure to contractual standards and commissioned the Carnegie Mellon University -

Software Engineering Institute to develop the Software - Capability Maturity Model. Concurrently in the

1980's, Software Engineering initiatives to improve productivity and scalability through distributed

efforts, such as early testing, and promoting development tools, software processes, and software re-

use.

Starting in the 1990's, the market shifted to developing quick solutions to meet customer needs. This

emphasis on "Time-To-Market led to risk-driven spiral development. Subsequently, in the 2001, rapid

development approaches integrated into the Manifesto for Agile Software Development (The Agile

Manifesto, 2001). The Manifesto for Agile Software Development values are:

* "Individuals and interactions over processes and tools"

* "Working software over comprehensive documentation"

* "Customer collaboration over contact negotiation"

* "Responding to change over following a plan"

2.2.1 Waterfall Development

The Waterfall development approach consists of sequential development phases that are often

separated by a formal review. The approach in developing large software systems was introduced in

1970 by Dr. Winston Royce, as shown in Figure 2 (Royce, 1970). In 1976, "waterfall" was coined in an

article discussing development of software systems for Ballistic Missile Defense (Bell & Thaer, 1976).

The purpose of sequential development is to reduce the number of defects identified in later

development stages. For early system requirements and design tasks, Defense Acquisition Framework

promotes Preliminary and Critical Design Reviews to ensure the design embodies the capability needed

and to reduce risk of rework during implementation of the design. By approaching the concept as a

whole, the design team can determine whether the solution is optimal and is aware of the architectural

8

impact of the solution on other concept solutions. This strategy is important since a requirement's

rework can cost 50 to 200 times to fix during implementation or deployment of the software

(McConnell, 1996).

Another aspect of Waterfall is that the design of a technology is managed in multiple forms of

documentation to ensure the intent is conveyed during design reviews and to other engineers involved

in the design, implementation, and test efforts.

Sys te m
Re uirements

Softwa re
Renuirements

AnalIysis

Progra m

Coding

Testing

1:0penra t ions

Figure 2 - Implementation flow during development of a concept/software system (Royce, 1970)

2.2.2 Agile Development

Unlike the sequential effort of a concept during Waterfall development, Agile development approach

consists of incremental parallel development efforts. Figure 3 illustrates the concurrent development of

increments of multiple concepts being developed simultaneously. The development of each increment

can occur between one to six weeks, which may include the requirements development, design,

implementation, testing, documentation, and deployment (MITRE, 2010). This development approach

revolves around principles that promote interaction between customers and developers and leads to

flexibility with changing requirements and early releases of software delivery (The Agile Manifesto,

2001).

9

Kick-off Kick-off Kick-off
Increment(s) Increment(s) Increment(s)

System System System System
Requirements Requirements Re uirements Requirements

Software Softa re Software Software
Requirements Requirements Re uirements Requirements

Analysis Analysis AnaIysis Analysis

Program Prora m Program Program
Design Desin Desin

Coding Coding Coding Coding

Testing Testing Testing Testing

Operations Operations Operations Ope rations

Figure 3 - Implementation flow during development of a increments of a concept based on Figure 2

There are different methods of Agile development such as: Extreme Programming, Scrum, Dynamic

Systems Development Method (DSDM), Adaptive Software Development, Crystal, Feature-Driven

Development, and Pragmatic Programming. Of the different methods, Scrum (50%) and hybrids of

Scrum (25%) account for 75% of Agile development methods used in industry (Version One, 2009).

2.3 Previous Relevant Models

There are three System Dynamics models that influenced the research in the dynamics of parallel

product development using Agile software development. The first model provided insight on modeling

parallel product development and the dynamics of managing current and future software development

efforts (Rahmandad & Weiss, 2009). The second and third models provide framework on modeling the

Agile software development process (Luisanna Cocco, 2011) (Glaiel, Moulton, & Madnick, 2013).

2.3.1 Dynamics of Concurrent Software Development

Using System Dynamics to model the dynamics of parallel software development, (Rahmandad & Weiss,

2009) investigated two Software teams (alpha and beta) within the same organization to identify why

only one team was successful at providing a quality product within cost and schedule constraints.

Through interviews conducted by Rahmandad and Weiss, it was apparent that the management styles

were different between alpha and beta. Both alpha and beta had high priority in ensuring customer

satisfaction by developing features and improving development capability. However, alpha often used
10

current development resources to quickly address defects in the field. In contrast, Beta gave higher

priority to current development and capability building.

Using System Dynamics, the authors modeled firefighting in concurrent software development and

identified that the combination of scope, work pressure, work quality, and resource allocation policies

can reinforce firefighting. Although the intentions of customer satisfaction were the same between

teams, the policies employed by the alpha team led to excessive refactoring, yielding ineffective and

inefficient team performance. The policies employed by the beta team yielded successful development

productivity and led to long-term customer satisfaction.

2.3.2 Simulating Kanban and Scrum vs Waterfall with System Dynamics

Using a single System Dynamics model, the dynamic behavior of Agile development styles of Kanban and

Scrum are compared with the traditional waterfall approach (Cocco, Mannaro, Concas, & Marchesi,

2011). By using different input parameters, their data suggest that Lean-Kanban approach is more

efficient than Scrum and Waterfall.

However, the assumption to consolidate all phases of planning, design, coding, and testing cannot be

applied directly to the development process of military systems. The Defense Acquisition Process has a

considerable amount of formal and informal reviews to reduce risk and ensure that the design and

implementation of capabilities integrate within large complex, and sometimes extremely complicated,

systems. For this reason, the Agile development framework of Scrum, shown in Figure 4, will be used to

model Agile development within the Defense Acquisition Framework.

11

s-,itch

error in Kanbas pro h-
developrs error in sprint Scrum

or in Waterfall

B mcd w iN =rqir""~ Requrements a F.ato
Rework Wr done

rework rework discoverv

a spnt Baklerdiscoverv
Scrnan or in Watrf

%Nwork to do in mp feates nselected feoars
Kanban o ina dM output

i wor in olpuwatel work

delay in scrom
done rate

Elaborated dlysrn
plannig

w requirements to do
in each iteration

ork in itpt

Original
work to do

error at the end of Ihe
Scrm spint or is

Live

cceptance testin

work done to

Figure 4 - Agile development framework of Scrum (Cocco, Mannaro, Concas, & Marchesi, 2011)

2.3.3 Agile Project Dynamics

Similar to the prior modeling effort of Kanban, Scrum, and Waterfall, the Agile Project Dynamics (APD)

model compares Agile development with Waterfall (Glaiel, Moulton, & Madnick, 2013). However, APD

incorporates a set of Agile practice and management policy attributes, called "genes", that capture the

dynamics of system development. Through experimentation, their analysis concludes that there are

opportunities to improve cost, schedule, and quality through certain combination of Agile practice and

management policy.

In addition to identifying and experimenting with Agile practice and management policies, they identify

several difficulties for applying Agile software development methodologies to the Defense Acquisitions

process. Several of these reasons include: conflicting stakeholder interests, domain of the contractor,

program control processes, and level of interaction between government and defense contractors

during development.

12

3 Model Development

This chapter describes the process for modeling the parallel product development of military systems

for comparing Waterfall and Agile software development processes. The basis for both System

Dynamics models stem from the defense acquisition process as discussed in Section 2.1. Of the six

phases in the Defense Acquisition System, the three phases that capture the engineering effort in

developing follow-on software builds are: Materiel Solution Analysis, Technology Development, and

Engineering & Manufacturing Development.

To facilitate the modeling effort, the Materiel Solution Analysis and Technology development phases

were simplified to a set of 3 sub-tasks each, as listed in Figure 5. The Engineering & Manufacturing

Development phase consists of the Integrated System Design and System Capability & Manufacturing

Process Demonstration, which are separated by the Critical Design Review. However, for the purpose of

modeling separate development and testing of a system, the Engineering Development effort is split

between the System Design and System Testing efforts, which is consistent the Detailed Design and

Testing & Refinement effort specified by Ulrich & Eppinger.

13

Materiel
Solution

Technology
Development

System
Design

Sys em

Testing

Jinterpret User Needs and Resource Investigation - Analyze Operational Capabilities
&Environmental Constraints for Requirements Definition

*Logical Analysis - Develop Concept Performance and Functional/Component Objectives
eDevelop Generic System Prototype/Demo

*System Specific Requirements Analysis - Develop System Performance and Functional
Requirements

eLogical Analysis and Design Development for System Specific Solution
eDevelop System Specific Prototype of Technology

*Design - Detailed design of System to Sub-System requirements
eCode - Software implementation of Design, includes Software Design
*Unit Test - Verify implementation of Code
e 1ntegration - Testing of Sub-System

*integration and Verification - Initial capability testing of system
eContractor Testing - Testing of system to verify system meets intended function/performance
*Government Testing - Customer testing to validate system function
*Operation Test and Evaluation - Field testing to validate system performance in threat
representative environment

Figure 5 - List of sub-tasks for each development phase

The System Design phase includes the requirements design, software implementation, and sub-system

testing of a technology. The System Testing phase represents the different stages of testing that ensure

reliable mission critical performance. The first three sub-tasks of System Testing associate to "alpha"

testing, internal "beta" testing, and customer "beta" testing that represent Testing & Refinement effort

specified by Ulrich & Eppinger.

3.1 Development and Testing Timelines

Since the architecture of newly developed systems should anticipate obsolete hardware, both System

Dynamics models are based on the introduction of new software-based features. These features are

developed by joint System and Software Engineering efforts as discussed in Section 2.1.4. The scope of

work modeled will include the test phase associated to the system's inception (Build 0) and three follow-

on development cycles (Builds 1-3) as shown in Figure 6.

14

Build ready for

Build 0Deployment
System Testing

Technology mature for adoption Bi ady for Build 1

Technology needs Technology mature Technology integrated
more research for adoption in Build Build ready for

Build 1 Build 1 Build " Build I Deployment
Materiel Solution Tedhnology System Design System Testing

Analysis Development

Build 1 ready for Build 2
New Technologies Existing Technologies Development Cycle
added to Research added to adopt

Technology mature for adoption

Technology needs Technology mature Technology integrated
more researc for adoption to Build Build ready for

Build Z2 Build 2 Buio B " Buil d Deployment
Materiel Solution Technology System Design System Testing

Analysis Development

Build 2 ready for Build 3
New Technologies Existing Technologies Development Cycle
added to Research added to adopt

Technology mature for adoption

-echnology needs Technology mature Technology integrated
more research for adoption to Build Build ready for

Build 3 Build 3 BuIld 3 -Bid3 Dpomn
Materiel Solution Technology System Design I System Testing

Analysis Development

New Technologies Existing Technologies Same interaction between
added to Research added to adopt I tasks in both models 1

Different interaction between
tasks In both models

Figure 6 - Overview of Model Structure

The development cycle for each build can be conceptually categorized by two phases: Build

Development and System Testing. The Build Development phase includes efforts pertaining to Materiel

Solution Analysis, Technology Development, and Engineering Development - System Design. The

System Testing phase includes the Engineering Development - System Testing phase. Since the

introduction of capabilities is important, the Build Development phase overlaps with the System Testing

phase as shown Figure 7.

15

Build Development

Materiel Solution Analysis

Technology Development

Engineering Development -System Design

Engineering Development -System Testing
Integration/
Verification

Corbdor 1 y a

Build 0-Testin

Buil 1- D oGovernment
Testin

Tsi Operational
Testin

Time (Year)

012

Figure 7 - Timeline within Development Cycle

The Build Development phase spans for 1.5 year and the Test Phase begins 1 year after the Build

Development phase starts. Each build will overlap with the prior build for 1 year and with the

subsequent build for the second year as shown in Figure 8.

BuildBi3--Tetin

Buildu Developmment

BuildBd-eTesting

Build 2 - Development

Build2 -Tstn

Bu ilId 3 - Devel opment

Build 3- Tstn

Bui I d X - Developmen

Build X -Testing

Time (Years)

0 1 2 3 X

Figure 8 -Timeline of parallel Build Development and Testing

16

3.1.1 Materiel Solution Analysis

The Materiel Solution Analysis effort focuses on promoting cutting edge technologies for build

introduction. Since these technologies are less developed, it is recommended that the technology

undergo several iterations of design prior to being developed for build introduction. As part of the

Materiel Solution Analysis process, a Technology, labeled as a "M.S. Concept", is developed by

identifying the need, developing a solution, and generating some form of prototype/demo that

describes the application of the technology as shown in Figure 9. The process is performed by System

Engineers with an expected completion of 15 weeks. As indicated in Figure 6, the modeling of the

Materiel Solution Analysis effort is identical between both models.

M.S. Concepts <Number ol M.S.

icBking off- BuiledI to Start

Identify User Needs and Resource

M.S. Logical Analysis Investigation - Build I

Systems Team Size -
Buil

Transition to M.S.

<M.S. Logical AnjlN Development - Build I

suc per Team

Logical Analysis - Buid

M.S. Prototyping
System Team Size -

Buikl 1 Transition to M.S.

<M. S Protityping Protortyping - Build I

Pr dutiVit\' per Team

Size>

Develop Generic System
Prototype/Demo - Build I

M.S. Con-pletion
Systems Team Size -

Build I Completed Material
Solutions - Build I

<M.S. ComIpletin

Productivity per Team
Sizc> Number of Material

Solutions Developed
- Build I

Figure 9 - System Dynamics representation of Materiel Solution Analysis development

3.1.2 Technology Development

The Technology Development effort focuses on promoting new technologies for build introduction.

Since these technologies are lesser developed than technologies ready for immediate design and

integration, it is recommended that the technology undergo an additional iteration of design prior to

build introduction. As part of the Technology Development process, a technology, labeled as a Concept,

17

is developed by assessing impact on a specific system, developing a system-specific solution, and

generating some form of prototype/demo that applies the technology to the system as shown in Figure

10. The process is performed by System Engineers with an expected completion of 15 weeks. As

indicated in Figure 6, the modeling of the Technology Development effort is identical between both

models.

<NuMber i T.D. COncepts
Selected to Start - Build I> T.D Concepts

Concepts added for T.D. kicking off - Build I

from M.S. - Build I
System Spe Ruirements

Analyis- B

<Completed Material T.D. Logic/Design Systena
So ltiont - Build I> Transition to Logic/Design Team Size - Build I

Devebopment - Build I
<Fraiction (if M.S. <I' _ID. Ln /Desiu

SAnaPyris and Design

SIvelopment for Syte
Specific solution - Buikd I

T.D. Prototyping/Demo

Transition to Develop T.D. Systems Team Size - Build I
Prototype/Denio - Build 1 <TI.. Prototypiu/Deon

Il duiCtii I -per Teai Size>

Develop System Specific
Prototype of Feature- Build I

T.D. Completion Systems
Completed Technology Team Size - Build I
Development - Build I

<T.D. CompletiIn
PrOducrivIty Per Team Size>

Number of Techobgies
Developed - Build 1

Figure 10 - System Dynamics representation of Technology Development

3.1.3 Engineering & Manufacturing Development - System Design

The System Design effort of the Engineering & Manufacturing Development phase is unique between

Waterfall and Agile design processes. In the two sub-sections, two System Dynamics model are

described to capture the difference between System Design processes. The interaction between

Materiel Solution Analysis, Technology Development, and System Testing phases and the System Design

phase is identical between both System Design models.

3.1.3.1 Waterfall Development

Waterfall Development is the standard development process for developing military systems since it

best fits the emphasis on reviewing and testing required at each stage of the Defense Acquisition

System. The unique aspect of Waterfall development is the focus on sequential development of a

concept during each phase of the process.

18

3.1.3.1.1 Concept Planning

In addition to integrating new concepts developed in the Materiel Solution Analysis Development and

Technology Development phases, the majority of concepts expected to be integrated in the current

build are known technologies that can be applied to the system. In Figure 11, the Concepts for

Development stock captures the list of concepts that are ready to be developed and integrated in the

current build. Account for level of maturity of concepts in the development process, a "coflow" of the

Technology Readiness Level is maintained to account for concepts being added, developed and

completed in each build (Sterman, 2000). The Technology Readiness Level for new technologies added

from Materiel Solution Analysis and Technology Development efforts are TRL 3 and TRL 6, respectively.

The Technology Readiness Level for existing technologies added during Engineering Development is TRL

7.

<End TRI. ior T.D.
Concepts>

<End TRL for M.S. TRL * Concept TRL * Concept TRL * Concept
Concepis>added- Buld 1 TRL * start - Build I 'TRL * Concept c peTion -Bid TL*concept

<End TRL for E.D. C nldpt Pr ss Build I
Concepts>

c tobI 'R

<M.S. added to <T.D. added to <E.D. Concepts TRL for Concepts to be <Stop Feature TRL for Concepts
Build I> Build I> kicking off- Build 1> developed - Build 1 Add n - Build > Completed in Build 1

/ 1' Concept start -
dion-Bi I

Concepts for Build 1 Concepts in Concepts Completed
Development - Build Pogress -Bid1 Cnetimlto ul

Concepts Cocp opein
added - Build 1 <Concepls to - Build I

Kick-Off- Build 1>

Figure 11 - System Dynamics representation of Concept Planning

When the Build Development is ongoing, new concepts are kicked-off and are categorized as "Concepts

in Progress", as shown in Figure 12. Once the concept has been designed, implemented, and integrated

in the build, a concept is considered complete. When the Government Test phase begins, the "Stop

Feature Addition" variable is set causing all concept development tasks halts.

19

I

Conceptsfor Conceptsin Concepts
Develomenti Progress Corno leted

Concept1

Concept Concept2
waitingfor

kick-off? .. Concept3 ,

Yes Con cept 4 Yes

Yes Conce pt5 N0
Concept(s) not Concepts)
in Progress? Cocp6Complete ?

Ki ck-off Con cept 7 Keep
Concept worki ng

Concept8

Concept9

Con cept 10

Figure 12 - Interaction between Concept Planning and Concept Development

I

3.1.3.1.2 Concept Development

For each concept in progress, Design, Code, Unit Test, and Integration efforts, as shown in Figure 13, are

modeled independently, as shown in Figure 12. This ensures that the work performed in each phase of

a concept adheres to the Waterfall development methodology.

The defense acquisition process requires includes multiple formal and informal design reviews that

separate the design and implementation of a concept. Therefore, the Waterfall Concept Development

process requires the completion of the Detailed Design, prior to coding the concept. Unlike the Agile

Development Design effort, the Design effort includes the entire concept which shall be fully thought

out and vetted through a formal review with all stakeholders. The painstaking emphasis of upfront

development and reviews ensures the optimal concept solution and prevents impact of architectural

changes from other competing concepts in development. Therefore, any Design Defects due to concept

solution and architectural changes are encountered during the Detailed Design effort.

After the Initial Design is completed by System Engineers, the Software Engineering Code effort can

begin. As the software code is developed, the code is unit tested and Code defects are returned to the

Code effort to be addressed. For Code that does not require re-work, System Engineers can begin

concept level Integration to validate the design and code meet the Concept intent. To capture potential
20

defects due to intent, Concept Defects are discovered during Integration and are allocated to the Design

and Code efforts based on the Design Defect Rate.

Once the entire concept has been designed, coded, unit tested, and passed integration testing, the

concept is considered complete and is ready to be added to the official build for System Testing.

However, since System Testing progress is measured by System Requirements, each completed concept

will be converted to five Requirements when added to System Testing.

Concept Development - <Stalt Concept -
Build I - Concept Build I Concept>

Desin' Defect to Address
- uld I - Concept

etailed Design . __" D
p 'I r

Design ready <TRL - Build I - <Table ofTRL <Defects uncovered at
for Coding - <& 1)- B I C> Concept> Dgn Integration - Build I -

Build I - Detect Rate> Concept>
Concept

Code - Build
I - Concept

Code Defect to Address
Code ready fi C <Code Concept - Build I - Concept
Unit Ts i - per Team Size>

Conrcept <SWC - B I C> Defects uncovered by
Test - Build I - Concept

Conc t < nit est oncept01 per'Team Size> -Bid - <Tbef

Code redy for<S WULT - B I C>' oncept> TRL for Code

Igra13 - yBusnd rpenai Deftel t Rate>
3 - Concept Defects uncovered at Integratin -

Initial Design ehid - Concept
Coopletef Build the ac The T ot c et

<111te rte Concept
per'tain Size>

<SEl - B I C>
<TRL_ - Build I -

Integration Comipleted Concept>
ready for Build - Buil I <Table of TRIL for-

- Concept Concept Defect Rate>

Concept ready
for Build - Build

I - Conce t

Concept merge in Build
- Buikd I - Concept

Figure 13 - System Dynamics representation of Waterfall development

3.1.3.1.3 Concept T RL and Defect Ratio

During Concept Development, each concept has an associated TRL. This TRL is assigned during Concept

Kick-off and is based on the average "TRL of the Concepts for Development". The TRL of the concept is

21

used to determine the Design, Code, and Concept Defect Rates using the associated defect tables

discussed in Section 3.1.6.2.

3.1.3.2 Agile Development

Agile Development is an incremental version of Waterfall Development. Instead of a full Concept being

developed, an element of a Concept is developed at a time. To capture this incremental effort, the Agile

model develops Concepts based on individual requirements. The requirements metric is consistent with

the Waterfall conversion of 1 concept to 5 requirements.

3.1.3.2.1 Agile Planning

Similar to the Concept Planning representation of the Waterfall model, the Agile development model

keeps track of each Concept but at the Requirements level. When a concept is added for the current

build, five requirements are added to the Product Backlog as shown in Figure 14. The Product Backlog

manages all requirements that are waiting for or are in development. For requirements being added or

in process, the associated TRL is managed via coflow similar to Waterfall development. The Technology

Readiness Level for new technologies added from Materiel Solution Analysis and Technology

Development efforts are TRL 3 and TRL 6, respectively. The Technology Readiness Level for existing

technologies added during Engineering Development is TRL 7.

TRL* Req deferred
- Build I TRL * Req

<Devekopnvni Deferred - Buil I
Compjlete - Buikl 1>

<End TRL for T.D. <TRL * Req Sprint

Concepts> Complete - Build I>

<End TRL for MS. TRL * Requirenents

Concepts> added - Build I

<EndT-Rl, tor E.D. Buil I TRL Req Comrplete- Build I
Concepts> Completed - Build I

<E.D. Req added <M.S. Reqs added <T.D. Req added - TRL for Requirenents in TRL for Requirements
for BUild I> for Build I> Build I> Product Backlog - Buik I Completed in Build 1

Requirerrents
/Completed in Sprint -

Product Backlog - Buikd I Requirements

R e q u i r e nw t s B u i k io p l V i l C o p t e - at e d
added - Buil <levelopment <Rquiremnt\ Inregred

Uomplete - Buil 1> into Buikd - BuikM I>

Product Backl Un Fmished Product
Deferred- Build I Backlog - Build 1

Figure 14 - System Dynamics representation of product planning and tasking for Agile development

22

While Build Development is ongoing, new requirements are kicked-off when the design team has work

load less than 10 requirements in queue, maximum consistent with concurrent Waterfall concepts as

shown in Figure 12. Once each requirement has been designed, implemented, and passed testing, the

requirement is considered complete and is integrated in to the official build. When the Government

Test phase begins, the "Stop Feature Addition" variable is set causing all concept development tasks

halts.

3.1.3.2.2 Requirements Development

The Requirements Development process captures the Design, Code, Unit Test, and Integration efforts, as

shown in Figure 15 and in Appendix 7.1. Since Agile development promotes concurrent development

across efforts and tasks, it is not necessary to manage the development of each requirement separately.

Contrary to Waterfall development, the development of all requirements is modeled in a single

development process.

When Requirements Development begins, 10 requirements are added to the Detailed Design task. As

time passes, System Engineers develop the "Build To" requirements documentation for the Software

Engineers to code. Once a requirement is coded, the Software Engineer unit tests the code. Any coding

defects revert back to the Code effort for re-work and non-defect code transitions to Integration

Testing. The Integration Testing effort is performed by System Engineers and determines whether the

requirement is ready to be integrated in the official build or if there are Concept defects. Concept

defects are split between Design and Code phases in the same way they were done in the Concept

Development process; however, concept level attributes are less defined during Agile development so a

single time delay was added prior to demoting a requirement.

The second modeling difference between Agile development and Waterfall development is the

discovery of Design Defects due to optimal final solution and architectural changes during development.

Unlike Waterfall development's emphasis on designing and reviewing the full solution, Agile

development is incremental making it difficult for all the stakeholders to review a requirement without

having a full understanding of the final concept scope, especially since the number of reviews increases

due to incremental steps. In addition, the architecture of the software system is continually changing

between concept increments. Therefore, to capture the refactoring due to changing final solution and

23

architectural changes during the development of a concept, the discovery of Design defects occur during

Integration Testing.

<Total Requirement in <inegrate Ren pat

ProcesN - Buki 1> <Design Defetlc <hnwenration Team <Axerape Sprint Detsin Team Sie>

eaeeon /elt Rate - Buiki 1> <fitegrafion Team

<Backkog Requirenionis Buikil> Aerg >pitDein Si/c -Buikl 1>
ine Sprint> Integration Design Detect Rate - Biki 1 <ileraeR Design Defects <Stop Fealure

Defects - Build I per Teatm See> Uncovered by Integration Addition - Build 1>

<Stop atr Sprint Desig < ri- Bud I/ - <Average Sprint
Lie'e Rate(Rat BIik 1>

Addition - Buikl I> Defects - Build l ~I ec ae-Bii Inlegra in Testing - Defect Raic - Buik 1>
Detaied Design - "PrnDecs Bud I -

op Buikld I Requirements Integrated
Development - Buikd I into Build - Build I

<Mec'IRae Buiil DeI " <11nil Te't Reql per
De Rste - >Team Si/e>

i: V -<Unih Teqt Team

Defects uncovered Si/e - Build I>
< ,i t L i e by Test - Buid <Average Sprint Code

Code to be Dear&I Rate - Buike >

Req Design to Code - Tested - Build I Unit Test - Code r ie atin
Inplenent - Build I Builki Build I

<Deetig Reg pat <Coding Ten Si/e <Code Reil per
Teaitive> -uk I tetmtiec

Figure 15 - System Dynamics representation of Agile development

3.1.3.2.3 Requirement TRL and Defect Ratio

During Concept Development, each requirement added has an associated TRL. This TRL is assigned

during Requirements Kick-off and is based on the average TRL of the Product Backlog. The TRL must be

managed for each requirement passing between phases. Therefore, a coflow was created for every

stock as shown in Figure 16 or Appendix 7.2.

The TRL of each requirement is used to determine the Design, Code, and Concept Defect Rates using the

associated defect table as discussed in Section 3.1.6.2 as well as the TRL of the requirements being

integrated into the build.

24

Sprint Design Decteesared. aluRequireers hsiteld
-eciid Design - Defects - Budld I, Iegra.io - Buikd I Integration Teing - into Buikd- Build I

Build I
Build I

A11ra i. r q e ign, R iiremn ts forSprnt iS thefe RBek - Buiki 1 Developie -Bud I D tR - Bui I
11< -15i S Defects - -ovrd

. I. -Ie I t lu1tdikuic by Test -iBuild I Fgr6-C kof wfo nainn Code TR be
3Ak.1 Cnop Tested Build Systm Testi
TSyse TeSpr int Des- Beure - te n y d Brild 1 Buiee - Buid o

But 1i,> - Start - Build I

evtAs t aRLs* Rm y - wRL *eq eUnit TRq- Iga egration - Build y d
Code - Bul I TRL * Req Code Test- BIi R Req Unit Test IRL *RgSpi

each peha i i Coplete -Bui d I Compte - Build Compete -Build

eachet tes phase.R~i! esg

TheI structure~ of Syte Tesing shown intgr 7 cosit of te fllowing 4TR phases:cs ro

Intrtiin Ttin Cotcts to Tetingd -rm Test [
and Opserati Testing.n Bucd

s o rue n ae es d re qimndefcsare Req Sprin Dkce
current test pa be Adeferre-ddressed -- -

d ser, the roeqent Te - ---

B ~ ~ ~ ~ prn 1> Ife 1-ta B"11> >e -Sr

<TRL - Retl- <Delailcd Decin <1TR 1 Req - Code COnde - Budld I> <Tk I Re- <huie r uation Te ini

Desig -Buk > BUMk 1> -Buik! 1> \A P " nietrawin Buil 1> BAIU 1> < R.ltRL111elli l

Average Sprini Design <TRL 161 Requ~leirenn1 ill Average Sprint Code <TR h Requiremenlk ill A Rate -Spuid 1Defect Bck Ir- tik
Defect ~ ~ ~ ~ P Rae Bid Pod t Backkw, - BAIM 1> Defect Rate - Build 1 Prd11 ac1,-BiMl ae uk

<T able of T RI, lor <Tahk- ol TRL lor <Th oTR r

Design DFLcct Rate> C ode Defect Rate> Sprint Delict Rate>

Figure 16 - Coflow for managing TRL during Agile development

3.1.4 Engineering & Manufacturing Development - System Testing

The System Testing effort ensures that the newly developed requirements improve the overall system

capability without unintended system defects. The test process is broken into multiple milestones test

events to assess the maturity of the build with new requirements. To generate data for analysis during

each test phase, military assets and System Test engineers are required to simulate a controlled

environment that represents the system's operational environment. The scheduling of these resources

are done months or even years in advance causing strict schedule deadlines for the start and end of

each test phase.

The structure of System Testing, shown in Figure 17, consists of the following 4 phases:

Integration/Verification Testing, Contractor Testing, Government Testing, and Operational Testing. Each

test event is sequential requiring only one test phase across all builds to occur at any given time. As the

set of requirements are tested, requirement defects are uncovered and are either addressed during the

current test phase or are deferred to be addressed in the subsequent test phase. Once a defective

requirement is addressed, the requirement is ready for testing in the subsequent Test Phase.

25

Requirennts for IV
Testing - Build I Requirements not ready for IntegrationNerification

Total SW Build for Contractor Testing - Build I ItgaineiiainRwr Defects Fixed - Buikd I
IntegrationNerification Testing - 3;- Buerain/ iikio Reok--3

Buikd I ul

Integration Defects
Requiretents ready for pushed to next phase -

Contractor Testing - Build I Build I

Requirements for
Contractor Testing -

Build I Requirernts not ready for
Total SW Build for Contractor Governtrnt Testing - Build Contractor found

Testing - Build I Contractor Testing Rework _ Defects Fixed - Build I

Build I

Requirements ready for Contractor Testing Defects
Govemnent Testing - pushed to next phase - -J

Build I Build I

Requirements for
Government Testing - Requirements not ready for Government found

Build I Total SW Build for Government Operational Testing - Build G Defects Fixed- Build
Testing-Buikd I Rework -Build 1

Requirements ready for Government Testing Defects
O.T. Testing - Build I pushed to next phase - Build

Requirements for OT
Testing - Build I Requirements not ready

-. Total SW Build for Operational for Deploytent - Build I
7jTesting - Buil - OT Rework - Buikd I

Requirements ready for
Deployment - Build I

Deployrrent - Buikd I
Operational Testing

Defects Fixed - Build I

Figure 17 - Overview of System Testing

3.1.4.1 Integration/Verification Testing

Since the majority of the Concept or Requirement Development effort occurs prior to the Integration

and Verification Testing phase, the majority of the requirements should be tested with representative

hardware to uncover defects that can be addressed and re-tested before build completion. This effort

provides insight on the stability of the new requirements developed prior to testing with legacy

requirements from the prior test phase.

As shown in Figure 18, the Integration/Verification effort begins when the System Testing of the prior

build is complete but, no earlier than a year after the Build Development started. Once the test phase

begins (indicated by the IV Testing variable), the System Test team begins assessing the set of new and

26

legacy requirements via simulated testing. Based on the size and productivity of the team and System

Test Defect rate, a number of requirements are passed for future testing while the defects are passed

for Rework. The rate of requirements being analyzed during Integration/Verification Testing is

equivalent to the System Testing Productivity of 5 requirements/(person*week).

Each requirement is analyzed by a System Engineer who is familiar with the context of a requirement. It

is expected that the System Engineer performing the analysis is also supporting other efforts in the

development cycle and that the System Test team is the sum of System Engineering resources

supporting the test effort. To ensure that Contractor Testing begins on time, the size of the System Test

team adjusts weekly in a uniform distribution to represent the urgency for System Engineers to

complete System Test analysis for requirements they are assigned.

<Operational Testing
Defects Fixed - Build 0> Requtiremtents for IV

<R DeI lect xd\' - . T>sRe g s Bur IV Requirements not ready for Integration/Verification

k 1 n TotalSW Buid for Contractor Testing - Bul nEration/Verification Defects Fixed - Buidd Ifo~r Depkoyssvisl -37TtlS Budfo
BUil 0> Req for Test - Integration/Verification Testing - Rework - Build I

Bd WReq in IV - Build I Budd
1

<(oscept <No Testing <IV Testin - i < (i E

Bco id 1> TRL *riB B jn IV -Bl T Ratio - Build 1> Test Period> <UV DefecB addrexsable

TRL~ ~ *Ie frI Tluudl <Syste msi TetiI

<TRL* Concept Requreen ready for - > < nRewor T i

complietin - lid l> Contractor Testing - >,. ntegaion Defects ~ - nBctu xind
Build I pus1 to xphs1

Requirementsnt ready for Cotaco fTend

Testing ~ ~ ~ ~ Bil -Iul eor ul

Figure 18 - System Dynamics representation of Integration/Verification Testing

While Integration/Verification Testing is ongoing, the defects are addressed by the System Defect team

with a ratio of two System Engineers for every Software Engineer. The number of defects addressed is

function of the System Defect team, System Defect team's base productivity (System Defect

Productivity), and level of detail to mitigate risk of future follow-on defect (Productivity Rate over Time,

Section 3.1.6.3.3). Once the Contractor Testing begins, all remaining defects are deferred to the

Contractor Testing re-work phase.

3.1.4.2 Contractor Testing

For the Concept or Requirement Development effort that occurs during the Integration and Verification

Testing phase, requirements are tested with the actual system in a representative operational

27

environment. This test effort provides operational insight on the stability and performance of the new

requirements developed.

As shown in Figure 18 and Figure 19, the Contractor Testing effort begins when the

Integration/Verification Testing is complete but, no earlier than 13 weeks, or /4 year, after

Integration/Verification Testing was scheduled to start. Once the test phase begins (indicated by the

Contractor Testing variable), the System Test team begins assessing the set of new and legacy

requirements via live or simulated testing. Based on the size and productivity of the team and System

Test Defect rate, a number of requirements are passed for future testing while the defects are passed

for Rework.

The rate of requirements being analyzed during Contractor Testing is equivalent to the System Testing

Productivity of 5 requirements/(person*week). To ensure that Government Testing begins on time, the

size of the System Test team adjusts weekly in a uniform distribution to represent the urgency for

System Engineers to complete System Test analysis for requirements they are assigned.

<Integration/Verifi al iun Requirerents for Contractor Requirenents not ready for Contractor found

Delect Fixed - BiU I> esting - Build I Government Testing - Build I Co ctor Testige - Build I

<~~~~~~~~~Contractor Testingo ru> ds>-hr nRstc

TTotal SW Build for Contractor
<Concept completion Testing - Buik I e e w e toitdxt

ToRet for CT Test - <CoOpTtrsBctor TueTtiTs

Bui: d FiurReq in CT -Build D < re s i Co ntractor Testing <System Test <Tabi, ,I S E
<3 V Teting - Team -BuiG e e> Involvennt in <Coniraclor Defect

BUMk 1 , TL*R i T-D B> <ntraemo Teting Te e] eiod> addiv ab in Rew\ork -

TRL Reqfor T R BLP it e

r Ce orC Requirements ready for ContractoroTestir o <Goernent
<TRI-e ntsarcep, teste w Government Testing -Build Defects pushed to nev ir o etin h - B tU s >

completio)n - BMill I>
phase - Build I oenen on

led by the ~~~~~~~~~~~~~~~~ Government anfrvdsoeainlonihuntesaiiy n efrac ftenw

Requirements ddt ready for Defects Fixed- Build
Total SW Buil for Government Operational Testing - Build I Government Testing -

Testing - Buikld I Rework - Build I

Figure 19 - System Dynamics representation of Contractor Testing

3.1.4.3 Government Testing

For the Concept or Requirement Development effort that occurs during the Contractor Testing phase,

requirements are tested with the actual system in a representative operational environment. This test is

led by the Government and provides operational insight on the stability and performance of the new

requirements developed and legacy requirements.

28

As shown in Figure 19 and Figure 20, the Government Testing effort begins when the Contractor Testing

is complete but, no earlier than 13 weeks after Contractor Testing was scheduled to start. Once the test

phase begins (indicated by the Government Testing variable), the System Test team begin assessing the

set of new and legacy requirements via live or simulated testing. Based on the size and productivity of

the team and System Test Defect rate, a number of requirements are passed for future testing while the

defects are passed for Rework.

Since Government Testing is executed by the customer, the involvement of the defense contractor,

system developer, during this test effort decreases. Therefore, the rate of requirement analysis must

increase by a factor, denoted by "System Engineering Involvement in Test Period", see Section 3.1.6.3.4.

To ensure that Operational Testing begins on time, the size of the System Test team adjusts weekly in a

uniform distribution to represent the urgency for System Engineers to complete System Test analysis for

requirements they are assigned.

Requiremrnts for
<0 111 0 r Goverament Testing - Buiki I

P<Coin'piCollpTotal SW Buikd for Government eaGovernen found
< pu i -lb 1> Testing - Buid I OperaimnTs -Bild Ir Dects Fxed- Build I

Fiu 20kye Dnmeq for GVT Test 'cstrepresentGoverao vnent Testing

eaq in GVT- Buikd II <Gmvrci t<Ioennent
<Govern men t <Contraclor Testn sooi n, d Les- Buika > e te -wBith ar

Testine ~ ~ ~ ~ ~ ~ ~ ~ ~ n - ukTesk l GvrmnTstn Sse~s
Fefn TR *uk I> GVTefeeat CBilI Tm uk l T~ fS

TRf tw Sys g fo en e Tnu of deet a e <nction oflk] 1

th Syte efectk temSyte Deettamsbs poutvit (Syste Defetroutiit) ad leverkl

Genne

ntTsig<T3etn

Dees pkushe onxtBiil
Bul TRqirretsrady tWBio r Opeatina Requiemen notc al rend phaser - uk-

Testing -m B-k Buk I>r DepTy Tesin Bul BuiM 1> TReok- uk

Figre 0 Syte Dyamcs epesetaionofGovrn ent Testing<0'1,il

Whil GoernentTestng s ogoig, te dfecs ae adresed y tefe pysem t Deec Bueam w1h> ai

of~~~~~~ ~oa twW Bystem Enonrr fOpeeyeofw raninee.l h numbe of dectsddrse saucin

of detail to mitigate risk of future follow-on defect (Productivity Rate over Time, Section 3.1.6.3.3).

Once the Operational Testing begins, all remaining defects are deferred to the Operational Testing re-

work phase.

29

3.1.4.4 Operational Testing

Since by this phase all new functionality has been developed, integrated in the main build, and tested,

the final build is tested with the actual system in a threat representative operational environment. This

test is led by the Government and provides operational insight on the performance of the new

capabilities developed.

As shown in Figure 20 and Figure 21, the Operational Testing effort begins when the Government

Testing is complete but, no earlier than 13 weeks after Government Testing was scheduled to start.

Once the test phase begins (indicated by the OT Testing variable), the System Test team begin assessing

the performance of the system via live testing. Based on the size and productivity of the team and

System Test Defect rate, a number of requirements pass the final testing while the defects are passed

for Rework.

Since Operational Testing is the second test event executed by the customer, the involvement of the

defense contractor, system developer, during this test effort decreases even more. Therefore, the rate

of requirement analysis must increase by a factor, denoted by "System Engineering Involvement in Test

Period", see Section 3.1.6.3.4.

To ensure that Operational Testing begins on time, the size of the System Test team adjusts weekly in a

uniform distribution to represent the urgency for System Engineers to complete System Test analysis for

requirements they are assigned.

<Governent feiuid
DDcts Fcixed- BUike I>

Figur Total SW Buikd for Operational RequiTtments ot ready
Requirements for OT Testing - Build I for Deploymnent - Buikd I

Testing - Buikd I l OT Rework - Build I

< T TestingL -

() e <0T Tesfini- Detect <Svstemi Test
Requiremnents ready frRatio - Build 1> Ta1-Biil
Deployment - Build I em-BidI

Prolth vl per Te a Siz>
<Tlable of S I <01T Defects

It olenn in" Test aIddre abl in Rework

Period> tid1

Depboyment - BWi1 I
Operational Testing

Defects Fixed - Buikd I

Figure 21 - System Dynamics representation of Operational Testing

30

While Operational Testing is ongoing, the defects are addressed by the System Defect team with a ratio

of two System Engineers for every Software Engineer. The number of defects addressed is a function of

the System Defect team, System Defect team's base productivity (System Defect Productivity), and level

of detail to mitigate risk of future follow-on defect (Productivity Rate over Time, Section 3.1.6.3.3).

Once Operational Testing and Operational Testing Rework are complete, the build is considered mission

ready and is deployed.

3.1.5 Human Resourcing

To control the cost element for comparing Waterfall and Agile development approaches, both models

have 50 System Engineers and 15 Software Engineers dedicated to support the parallel build

development effort. During each time step, System and Software Engineers are assigned task(s) based

on need and priority. It is possible that there may be periods of time where the number of engineers

exceeds the workload. However, it is assumed that the team would remain intact to preserve

knowledge and be available when there is increased flux of engineers needed in the following time step.

During an idle period, the additional engineers would support the planning between cycles or work on

deferred tasks not directly related to ongoing development efforts.

The need for each Build Development task is determined by the number of engineering resources

needed to complete a Concept or Requirement work unit. The need for System Testing tasks is

determined by the average number of engineering resources to complete a phase within the remaining

time period. It is assumed that engineers are supporting multiple tasks given experience and

knowledge, therefore, the number of engineers supporting a phase is based on the number of hours

spent working on sub-tasks within each phase.

The priority of tasks is based the build priority and then respective task priority. Since there are 2 builds

being developed at any given time, the priority in assigning engineers to tasks is shown in Figure 22.

31

I Systems Engineering Software E
Buil n-1 Build
Rework Rew

Buil n-1 Build
Testing Test

Buildn-1Sprint Buil n-
In tion UnitTe

Buil n-1 Build
Sp ri nt De si Rn Sri nt C

F Bui dn-1Tecno ogy Buil
Dlevelo ment Rew

Build n-iMaterial Bui
SolutionsAnal sis Test

Buil n Buil n
Rework UnitTe

Buil n Buil
sting rin C

Buil n Sprint
Intirain

Bui n
5r ri nt De si en

Bui dn Tecnoog

Buil n Mate ria
ol ions Anal 0

Figure 22 - Priority for allocating System and Software Engineers

3.1.6 Table Constant

The values used for the following constants do not reflect the metrics of any program of record. They

were manufactured at the author's discretion in attempt to represent a reasonable development

process. Although these metrics may not be actual metrics, the analysis is based on the

tendencies/trends of each model.

An electronic copy of both models is available upon request for organizations to use their own

proprietary information to compare approaches. If the electronic version of the model is not attached

to this document, please email radian@alum.mit.edu to request a copy.

3.1.6.1 Productivity Rates

The Productivity Rates used for Build Development Tasks are shown in Table 2. Since a Concept is

equivalent to 5 requirements, the Productivity rates for Concept Development and Waterfall

Development tasks are proportional given size of scope.

32

Ijngineering
n-1
ork

n-1
iin

1Sprint
stin

n-1
odini
dn
ork

d n
ing

Sprint
sti ni

dn
odini

Table 2 - Productivity metrics for System Design Tasks

Ratio
Design Concept per Team Size 0.2

Design Requirement per Team Size 1

Code Concept per Team Size 0.2

Code Requirement per Team Size 1

Unit Test Concept per Team Size 0.2

Unit Test Requirement per Team Size 1

Integrate Concept per Team Size 0.2

Integrate Requirement per Team Size 1

M.S. Completion Productivity per Team Size 0.2

M.S. Logical Analysis Productivity per Team Size 0.2

M.S. Prototyping Productivity per Team Size 0.2

T.D. Completion Productivity per Team Size 0.2

T.D. Logic/Design Productivity per Team Size 0.2

T.D. Prototyping/Demo Productivity per Team Size 0.2

3.1.6.2 System Design Constants

3.1.6.2.1 Design Defect Rate

The Design Defect Rate for the System Design effort is based on the associated TRL of the Concept or

the average TRL of the Requirements. The Design Defect Rate is lower for more mature technologies as

can be seen by the curve in Figure 23. The slope of the curve revolves around TRL 5 and has a minimum

of 10% and maximum of 100% error. The average Concepts and Requirements developed in each model

ranged from TRL 5 to TRL 7.

Table of TRL for Design Defect Rate

0.8

0
*- 0.6

0.

0.2

0
0 1 2 3 4 5 6 7

TRL

Figure 23 - Design Defect Rate Curve

8 9

33

3.1.6.2.2 Code Defect Rate

The Code Defect Rate for System Design effort is based on the associated TRL of the Concept or

Requirements being coded. The Code Defect Rate Curve in Figure 24 is higher than the Design Defect

Rate Curve due to Software Engineering's dependence on quality of the Design. It is assumed that the

Design of lower TRL technologies is more abstract causing a higher probability of re-work.

Table of TRL for Code Defect Rate

0.8

0.6

024

0

0 1 2 3 4 5 6 7 8 9

TRL

Figure 24 - Code Defect Rate Curve

3.1.6.2.3 Concept Defect Rate

The Concept Defect Rate for System Design effort captures defects that would not have been detected

during Design or Code reviews but are identified during Integration. The rate is based on the associated

TRL of the Concept or Requirements being integrated. The Code Defect Rate Curve in Figure 25 ranges

from 50% and is limited to 16% error.

34

Table of TRL for Concept Defect Rate

0.8

0
' 0.6

0.4

0.2

0 1 2 3 4 5 6 7 8 9

TRL

Figure 25 - Concept Defect Rate Curve

3.1.6.3 System Test Constants

3.1.6.3.1 System Test Defect Rate

The System Test Defect Rate for System Testing efforts capture the defects that are identified when

testing of all requirements against an expected operational environment. The Defect Rate curve in

Figure 26 is based off the average Technology Readiness Level of all requirements in the build: the

Technology Readiness Level of new requirements are managed during System Testing and the

Technology Readiness Level of legacy requirements are assumed to be Technology Readiness Level 9

since the legacy requirements have passed Operational testing.

Since the initial set of requirements in Build 0 have not undergone final testing, the Test Defect rate is

based on Technology Readiness Level 8.

35

Table of TRL for Test Defect Rate

0.8

0.6

U

0.4

0.2

0

0 1 2 3 4 5 6 7 8 9

TRL

Figure 26 - System Test Defect Rate Curve

3.1.6.3.2 Defect Rate throughout Testing

The Defect Rate Factor in Figure 27 adjusts the defect rate for requirements that have undergone prior

testing. Every time the requirement is tested, the probability of an error occurring in the current test

phase is 50% less likely than the prior test phase. To manage the mixing of requirements, the System

Testing model accounts for what test phase each requirement was introduced to capture the proper

number of defects.

Table of Defect Rate Factor over Time

.0

VT

0

0

0

. I

.6

.4 -

.2

0

0 1 2 3 4

Number of Test Completed

Figure 27 - Defect Rate Factor over Time

3.1.6.3.3 System Engineering Productivity through Defect Resolution

During each subsequent phase of testing, the Government and Contractor become more risk-adverse in

accepting rework due to lack of testing. To offset risk of future defects, extra time is spent to review

36

n Q

and test rework. Therefore, the defect resolution productivity decreases to account for extra review

and testing. The "Productivity Rate over Time" curve in Figure 28 illustrates that the productivity in

addressing defects uncovered during System Testing decreases linearly by 25% from one phase to

another.

Table of Productivity Rate over Time

0.8

.0
0.6

0.4

0

0 1 2 3 4

Test Phase

Figure 28 - Productivity Rate over Time

3.1.6.3.4 System Engineering Involvement in Test Period

During Integration/Verification and Contractor Testing, the Contractor's System Engineering team is

responsible for leading System Testing and analyzing each system requirement. When Government and

Operational Testing occur, the Government takes more lead of the effort and the Contractor is less

involved with the testing and analysis. Therefore, the productivity to analyze each requirement

increases during later test phases.

To capture the decreased involvement of the Contractor System Test team, the curve in Figure 29 is

used to increase the productivity of the System Test team during Government and Operational Testing

denoted as Test Phase 3 and 4, respectively.

37

Table of SE Involvement in Test Period

0 1 2 3

Test Phase

Figure 29 - System Engineering Involvement in Test Period

38

5.

a)4

a 3

0

0

4 Analysis of Waterfall and Agile development Models

This chapter compares the simulation of parallel development models using Waterfall and Agile

development process. As discussed in Section 3.1.3, the difference between both models is the

application of Waterfall and Agile development during System Design. Waterfall development model

manages the design and implementation efforts separately while the Agile development model allows

parallel design and implementation.

4.1 Overview of Waterfall and Agile Model results

Both models replicate the Build Development and System Testing cycles for Build 0 to Build 3 as shown

in Figure 8. Build 0 begins with 1,500 requirements for System Testing. The number, type, and

frequency of concepts to be kicked-off during Builds 1 to Build 3 are shown in Table 3. The number of

Engineers supporting the parallel development during all build activities is shown in Table 4.

Table 3 - Technologies considered for Build Development

Type of Concepts kicked-off Concepts kicked-off Weeks between kick-off

Materiel Solution Analysis 5 10

Technology Development 10 5

Engineering & Manufacturing Development 15 4
Table 4 - Size of Development Team

Type of Engineer Number of Engineers
System Engineers 50
Software Engineers 15

4.1.1 Requirements Completion

While Build Development is ongoing, the System Design team designs, codes, unit tests, and integrates

requirements for future System Testing. Completed requirements in each build are added to the

associated System Testing phase based on the time completed, as shown in Table 5.

Table 5 - Associated System Testing phase for completed requirements

Build 1 Build 2 Build 3

Integration/ Verification Week 0 - 51 Week 52 - 103 Week 104 - 155

Contractor Testing Week 52 - 64 Week 104 - 116 Week 156 - 168
Government Testing Week 65 - 78 Week 117 - 130 Week 169 - 182

39

Table 6 presents the number of new requirements added to respective System Testing phase.

Consistent with software development literature, the Agile development model provides earlier delivery

and introduces more requirements in each build than Waterfall model.

Table 6 - Number of Requirements introduced during each Build's Testing phase

Waterfall Build 1 Build 2 Build 3

Integration/ Verification 65 65 55

Contractor Testing 30 30 0

Government Testing 20 10 35

Total 115 105 90

Agile Build 1 Build 2 Build 3

Integration/ Verification 105.9 88.9 82.0

Contractor Testing 25.0 26.6 17.4

Government Testing 9.3 12.9 21.2

Total 140.2 128.4 120.6

4.1.2 Types of Technologies Developed

While Build Development is ongoing, the Materiel Solution Analysis and Technology Development teams

mature new technologies for implementation. These new technologies are associated with lower

Technology Readiness Levels as compared to existing technologies that do not require technology

maturation.

The average Technology Readiness Level for requirements added to each build for both models is shown

in Table 7. Although the Agile development model includes earlier requirements completion and

integrates more requirements than the Waterfall development model, the Waterfall development

model included a higher percentage of newer technologies across each build.

Table 7 - Average TRL for Requirements added to each Build

Build 1 Build 2 Build 3 Average

Waterfall Model 6.53 6.57 6.72 6.61

[Agile Model 6.76 6.88 6.92 6.85

40

4.2 Analysis of Waterfall and Agile model development tendencies

This section includes the performance tendencies of both parallel development models discussed in

Section 3. The Agile and Waterfall development models are used to compare the effect of the System

Design processes on resource dependencies.

4.2.1 Requirements Development in each Build

Based on the requirements identified in Table 6, the following sub-sections discuss the development of

requirements in each build.

4.2.1.1 Requirements Development in Build 1

Build 1 development starts at week 0 and ends at week 78. During development, the number of

requirements completed is higher and the rate starts earlier in Agile development than Waterfall

development, as shown in Figure 30. The requirements completed at week 52, week 65, and week 78

represent the total number of new requirements being tested during Integration & Verification,

Contractor, and Government Testing, respectively.

Requirements Completed -Build 1
140

120

. 100

E 80
60

40

20

n

-Waterfall
--- Agile

0 10 20 30 40 50 60 70 80

Week

Figure 30 - Requirements Completed in Build 1

The cause for the number of requirements completed being higher during Agile development is based

on the number of System and Software Engineers supporting the System Design effort. The number of

engineers supporting a phase is based on the number of available engineers and the number of needed

engineers. For System Design in Build 1, only the System Testing and Defect efforts supersede the

41

4W-

a, OP

-- p s

do00O
oe

System Design effort. Figure 31 and Figure 32 illustrates the number of System and Software Engineers

supporting the System Design effort.

System Design -Build 1

I
5% h%

-N
.~ ~ ~ o , V

20 30 40

Week
50 60 70

- Waterfall
- Agile

80

Figure 31 - System Engineers supporting System Design in Build 1

The number of System Engineers during Agile development is higher in Agile development due to

parallel development efforts of Detailed Design and Integration work, as shown in Figure 31. By

decomposing a concept into increments, the design team can develop parts of many different concepts

at a time. System Engineers supporting Waterfall development must wait to perform Integration until

all of the Design is completed, making the overall engineering need lower.

The number of Software Engineers starts earlier and is much higher in Agile development due to the

early release of requirement design, as shown in Figure 32.

System Design - Build 1

14 i i I p
* % 1 01 1 or

3 % I Is T 1- % I % p 5i 5 Il S

a 4 t t-

30 40

Week

- Waterfall
- -- Agile

50 60 70 80

Figure 32 - Software Engineers supporting System Design in Build 1

42

25
GJ

20

E 15

0

E
z 0 10

20

1LU

M 15
S10

4A5

0
:4-

0

E
z

0 10 20

Although the number of System and Software Engineers supporting System Design is higher in

Agile development, Figure 33 illustrates that the number of requirements in progress is higher

during Waterfall development. The reason for this contrast is due to the Agile development

approach for taking on requirements that the team can manage. Every number requirement in

progress represents the distribution of work across System and Software Engineering efforts as

oppose to Waterfall development that bottlenecks requirements work between Design and Code

efforts.

Requirements in Progress - Build 1

. %

.

- Waterfall
- -- Agile

0 10 20 30 40 50 60 70 80

Week

Figure 33 - Requirements in Progress in Build 1

4.2.1.2 Requirements Development in Build 2

Build 2 development starts at week 52 and ends at week 130. Similar to Build 1 development, the

number of requirements completed is higher and the rate starts earlier in Agile development than

Waterfall development, as shown in Figure 34. The requirements completed at week 104, week 117,

and week 130 represent the total number of new requirements being tested during Integration &

Verification, Contractor, and Government Testing, respectively.

43

60

4A s

0340
E

*~30

w 20

10

0

Requirements Completed - Build 2

-'-

i 1P

-Waterfall
Agile

100 110 120 130

Figure 34 - Requirements Completed in Build 2

The cause for the number of requirements completed being higher during Agile development is based

on the number of System and Software Engineers supporting the System Design effort. For System

Design in Build 2, all Build 1 efforts and Build 2 System Testing and Defect efforts supersede the Build 2

System Design effort. Unlike Figure 31 and Figure 32 that have a larger upfront System and Software

Engineering team, Figure 35 and Figure 36 illustrate the number of System and Software Engineers

supporting the System Design effort.

System Design - Build 2
25

S20

E 15U ' iE

10

0

.0
E 0
Z

IVI ' g4
Ia i ,,i

- Waterfall
- - - Agile

50 60 70 80 90

Week
100 110 120 130

Figure 35 - System Engineers supporting System Design in Build 2

Although no System Engineers are supporting early System Design during Agile development, the

number of System and Software Engineers dramatically increases once the Build 1 - Build Development

efforts is complete. As discussed in Section 0, the size of the engineering team can increase quickly due

44

E

Q:

140

120

100

80

60

40

20

0
50 60 70 80 90

Week

to the parallel development approach that generates immediately starts generating work across all

System Design development tasks.

Although the System Engineering team starts later during Agile development, the Software Engineering

team starts slightly earlier and remains higher than Waterfall development, as shown in Figure 36.

System Design - Build 2

PU a Si
I I

5/ 1 %
US%

U I %

60 70 80 90

Week

- Waterfall
--- Agile

100 110 120 130

Figure 36 - Software Engineers supporting System Design in Build 2

Since the Agile System Engineering team does start immediately, the number of requirements in

progress does not increase until week 66, as shown in Figure 37. Unlike Build 1, there is a period in

time where number of requirements in progress is higher for Agile development. This increase is

due to the increase in System and Software Engineers supporting the System Design effort, as

shown in Appendix 7.4 and 7.5.

Requirements in Progress - Build 2

-*

-U
0~~ -%

--

0 , 1 f

AS

60 70 80 90

Week

- Waterfall
--- Agile

100 110 120 130

Figure 37 - Requirements in Progress in Build 2

45

20

a)

S10

) 5

04--

0

0
E
z

50

E-

Cr
W)W

60

so

40

30

20

10

0
50

4.2.1.3 Requirements Development in Build 3

Build 3 development starts at week 104 and ends at week 182. Similar to Build 2 development, the

number of requirements completed is higher and the rate starts earlier in Agile development than

Waterfall development, as shown in Figure 38. The requirements completed at week 156, week 169,

and week 182 represent the total number of new requirements being tested during Integration &

Verification, Contractor, and Government Testing, respectively.

Requirements Completed - Build 3
140

120 "

E
C,
4)

100

80

60

40

20

n

-Waterfall
-- Agile

I,- P s

'p.,

100 110 120 130 140 150 160 170 180

Week

Figure 38 -Requirements Completed in Build 3

The cause for the number of requirements completed being higher during Agile development is based

on the number of System and Software Engineers supporting the System Design effort. For System

Design in Build 3, all Build 2 efforts and Build 3 System Testing and Defect efforts supersede the Build 3

System Design effort. Unlike Figure 31 and Figure 32 that have a larger upfront System and Software

Engineering team, Figure 39 and Figure 39 illustrate the number of System and Software Engineers

supporting the System Design effort, which are similar to Build 2 Figure 35 and Figure 36.

46

System Design - Build 3

20 - - - -

lot * --.- i- it

1I I

5 -LA -

100 110 120 130 140 150 160 170 180

Week

- Waterfall
- - - Agile

Figure 39 - System Engineers supporting System Design in Build 3

Although no System Engineers are supporting early System Design during Agile development, the

number of System and Software Engineers dramatically increases once the Build 1 - Build Development

efforts is complete. As discussed in Section 0, the size of the engineering team can increase quickly due

to the parallel development approach that generates immediately starts generating work across all

System Design development tasks.

Although the System Engineering team starts later during Agile development, the Software Engineering

team starts slightly earlier and remains higher than Waterfall development, as shown in Figure 39.

System Design - Build 3

- -- -- -

I * I

110 120 130 140

Week

-- Waterfall
-- - Agile

150 160 170 180

Figure 40 - Software Engineers supporting System Design in Build 3

I
47

a.'
C

LU

E
4-9

E
z

20

153

10

5

0

C

U

0

0

E
z3 100

25 C

Since the Agile System Engineering team does start immediately, the number of requirements in

progress does not increase until week 118, as shown in Figure 37. Contrary to Build 1 but similar

to Build 2, there is a period in time where number of requirements in progress is higher for Agile

development. This increase is due to the increase in System and Software Engineers supporting the

System Design effort, as shown in Appendix 7.4 and 7.5.

Requirements in Progress - Build 3

60 - -

50 - - - -_

40 1
E 4 %

.30 ~-Waterfall
2 -- - -- - - - Agile

10

0--
100 110 120 130 140 150 160 170 180

Week

Figure 41 - Requirements in Progress in Build 3

4.2.2 Types of Technologies Developed

Although the quantity and rate of requirements completed in each build is higher during Agile

development, Waterfall development introduces newer technologies in each build, as presented in

Table 7. As oppose to existing technologies that are shared among systems, new technologies must be

matured before being designed and implemented in a build. The maturation of technologies occurs in

Materiel Solution Analysis and Technology Development efforts. However, these efforts are lower

priority than System Design and System Testing efforts since the value is less tangible. The contrast in

level of technologies implemented stems from the difference in allocation of engineers.

4.2.2.1 Technology Development

During Build Development, concepts for maturing new technologies in Technology Development are

kicked-off at the fidelity shown in Table 3. When scope is added to the Technology Development effort,

System Engineering resources are requested to complete the task. However, the priority of Technology

Development is lower than the priority of the previous build and the priority of System Design and

Testing.

48

Figure 42 compares the number of System Engineers supporting each build's Technology Development

effort during Waterfall and Agile development. Unlike Agile development, there are periods between

Waterfall System Design tasks when System Engineers are idle. Due to reduced need of System

Engineering resources during System Design, System Engineers responsible for System Design tasks

spend their extra time performing side tasks that include analysis and trade studies that lead to

innovation.

Technology Development - Build 1

-f I IAi

0 10 20 30 Week 40 50 60 70

- Waterfall
- - - Agile

Technology Development - Build 2

___--- Waterfall

50 60 70 80 Week 90 100 110 120

Technology Development - Build 3

~ ~

LOO 110 120 130Week 140 150 160 17

Waterfall
- - - Agile

0

Figure 42 - Engineers supporting Technology Development

in all three builds, Waterfall development exhibits more upfront time spent developing new

technologies. By spending more time up front, new technologies are matured in time to be designed

and implemented in the current build. The extra time spent during Technology Development, shown in

Figure 42, translates to the higher number of new technologies added to a build, shown in Table 7.

I
49

E T
Z U

4-

E 'Eb
Z LU

8
6
4
2
0

8
6
4
2
0

4- L

_aa
E T
ZU-j

8
6
4
2
0

4.2.2.2 Materiel Solution Analysis

During Build Development, concepts for maturing new technologies in Materiel Solution Analysis are

kicked-off at the fidelity shown in Table 3. When scope is added to the Materiel Solution Analysis effort,

System Engineering resources are requested to complete the task. However, the priority of Materiel

Solution Analysis is lower than the priority of all tasks in the previous and current build.

Figure 43 compares the number of System Engineers supporting each build's Materiel Solution Analysis

effort during Waterfall and Agile development. During Build 1 where there is only 1 build in

development, the number of System Engineers supporting Materiel Solution Analysis is relatively similar

in both models. During Build 2 and Build 3 where there is parallel development, the level of early

Materiel Solution Analysis support decreases more so in Agile development than Waterfall

development. Once the prior build's development is complete, the number of engineers that can

support the current build increases, leading to higher resource allocation of all Build Development tasks.

Materiel Solution Analysis - Build 1

-N Ro A

0 10 20 30 Week40 50 60 7

Materiel Solution Analysis - Build 2

50 60 70 80 Week90 100 110 12

Waterfall
- - - Agile

0

-- Waterfall
--- Agile

0

Materiel Solution Analysis - Build 3

- -Waterfall
--- A --- Agile

100 110 120 130 140 150 160 170
Week

Figure 43 - Engineers supporting Materiel Solution Analysis

50

0

-o
E
z

4-
0

E
z

4-
0

E
z

IA

L.J

V)L_

LU

C

C
LU

5
4
3
2
1
0

4.3 Discussion

The following sections summarize the analysis in Section 4.2 with respect to the three Research

Questions posed in Section 1.2.

4.3.1 Reducing conflict between cost, schedule, and capability constraints

Defense Contractors are required to implement Earned Value Management (EVM) during development

of most defense programs. Each task has an associated set of expected costs in labor hours to perform

the work within an expected time period. During each development cycle, the scope of individual tasks

may change during periodic customer reviews due to changes in development performance and

warfighter needs. If there were to be shifts in funding and/or schedule constraints, it is expected that

the number and/or scope of tasks would be reduced. To compare models, the size of the engineering

team and development release schedule are fixed to determine if capability slack is created.

Based on the analysis of both models, the Agile development model consistently developed and

implemented more technologies under the fixed cost and schedule, as shown Table 8. The reason for an

increase in technologies developed and implemented is attributed to how Agile development maximizes

productivity across engineering disciplines through distributed parallel development. Given the short

development cycle of each increment, switching to Agile development would provide the Government

program office capability slack to manage competing cost, schedule and capability constraints.

Table 8 - Number of Technologies Adopted in a Build

Build 1 Build 2 Build 3
Waterfall 23 21 18
Agile 28 25 24

4.3.2 Reducing Firefighting

Firefighting is a development state when early development of the next release is delayed due to

resourcing needs to address defects detected late in the current release. To prevent firefighting during

development of military systems, it is important to complete requirements earlier so that they are test

more often, thereby reducing the probability of defects being detected later in the build.

Figure 44 and Figure 45 illustrate the number of Technologies introduced in each test phase of Waterfall

and Agile development models. Waterfall development is negatively impacted due to competing

51

development resources during later builds leading to a later technology introduction. Since Agile

development implements fractions of a technology at a rate proportional to available engineers, the

ratio of technologies introduced in each test phase is visually consistent from build to build.

Waterfall Development Model

0

CU

%I.-
0

E
z

25

20

15

I

5

0 _-
1 2 3

Build Technology B Integration & Verification
s Contractor Testing

is Introduced Government Testing

Figure 44 - Technologies introduced during each Build's test phase of Waterfall

Agile Development Model

1 2
Build Technology

is Introduced

3
Integration & Verfication

N Contractor Testing
Government Testing

Figure 45 - Technologies introduced during each Build's Test Phase of Agile

Table 9 presents the number of requirements introduced in each build's test phase for Waterfall and

Agile development. In proportion to the total number of requirements, Waterfall development tends to

52

CU

0)

0
0

E

z

25

20

15

10

5

0

introduce more requirements later in the test phase. While Agile development could have stopped

development early yet introducing slightly more requirements in the build.

Table 9 - Requirements introduced in each Build's Test Phase

Waterfall Build 1 Build 2 Build 3

Integration/ Verification 65 65 55

Contractor Testing 30 30 0
Government Testing 20 10 35

Total 115 105 90

Agile Build 1 Build 2 Build 3

Integration/ Verification 105.9 88.9 82.0

Contractor Testing 25 0 26.6 17.4

Government Testing 9.3 12.9 21.2

Titc- 140.2 128.4 120.6

Given that the purpose of Government Testing is to determine capability and performance, similar to

"beta testing", it is less desirable to introduce new capabilities so late. What makes Waterfall

development more susceptible to firefighting is the average Technology Readiness Level of

requirements introduced in each test phase, shown in Table 10.

Table 10 - TRL of Requirements introduced in each Test Phase of Build 1

Waterfall Agile

Integration/ Verification 6.88 6.93

Contractor Testing 6.32 6.37

Government Testing P 5.72 5.92

Given the time delay and increased defect rates, it is expected that the number of new technologies

adopted are introduced during later test phases. However, introducing new technologies late in the test

phase increases the probability of defects being uncovered during the final test phases and post-

deployment. Depending on severity, late defects may be deferred to the next build or addressed in an

intermediate "clean-up" build.

4.3.3 Impact on Development Tasks

As discussed in the prior Discussion sections, switching to Agile development increases the number of

requirements in a build and promotes early software delivery. However, these two benefits are

53

A

observed at the expense of maturing new technologies that support long-term growth, as shown in

Table 7 and discussed in Section 4.1.2. Table 11 compares the estimate of new and existing

technologies implemented based on the average Technology Readiness Level of each build.

Table 11 - Comparison of technologies developed based on average TRL

Waterfall Agile
New Existing New Existing

Technology Technology Technology Technology

Build 1 10.8 12.2 6.6 21.4

Build 2 9.0 12.0 3.2 22.5

Build 3 5.1 12.9 1.9 22.2

Although it is advertised that Waterfall development bottlenecking between phases is a limitation, the

limitation indirectly promotes innovation through non-System Design time spent maturing a new

technology. The time spent maturing a new technology is important since the newly developed

technology provides the warfighter an operational advantage. In addition, the "new" technology can be

shared with similar systems as an "existing" technology.

54

5 Conclusion

The United States Department of Defense has been plagued with failing programs that are over budget,

late on schedule, and exhibit poor performance during testing. Once a program has cost, schedule, or

capability issues, follow-on development efforts adopt the underlying issues only to reinforce poor

performance. To address these issues that lead to firefighting, one option for improving the quality of

the system is to introduce capabilities early in the development process so that intensive testing can

reduce the probability that defects are uncovered later in the life-cycle. One potential option is to

leverage Agile development methodologies.

Given the recognition Agile development has received in the commercial sector, there are a number of

organizations promoting Agile development to be used in the United States Defense sector, (O'Connell,

2011) (Samios, 2012). Agile is an iterative incremental development style that focuses on needs and

priorities. This development style has been linked to improved software quality, productivity and

delivery as well as ability to adapt to changing requirements.

However, Agile may not be a silver bullet and applying this development style may cause unintended

effects during the entire life-cycle. Therefore, two System Dynamics models were developed based on

the Defense Acquisition Framework to compare Agile and Waterfall development approaches and

determine: if Agile development reduces the conflict between cost, schedule, and capability constraints;

if Agile development reduces firefighting; and will Agile development impact other development tasks.

Based on the analysis of simulations of each model, Agile did improve the dynamics of parallel

development cycles by maximizing the productivity of the entire development team. Under the same

System and Software Engineering team size and development release schedule, Agile development

increases the quantity of requirements introduced within a development cycle. These requirements are

introduced earlier in Agile than they are in Waterfall development leading to reduced Test Debt.

The strength of Agile development lies in the ability to manage and implement increments of a

capability across multiple development cycles. By modularizing each capability, Agile development

maximizes the Design, Code, Unit Test, and Integration Testing work load improving the team efficiency.

55

During analysis of impact on other development tasks, it was identified that Agile development

consistently integrated capabilities based on existing technologies. Given that Agile development

maximizes team work load, the Agile development effort starves Materiel Solution and Technology

Development tasks leading to reduced maturation of new technologies to integrate within current

development cycle. This tendency is the effect of tactical management policies that are driven to

increase the number of capabilities versus the maturation of technologies.

To ensure success of Agile development, Government project/program office and defense

contractors/suppliers should increase the fidelity and level of interaction to align strategic goals. To

ensure sustainable performance, Government policies should promote flexible capability development

time lines, limit introduction of new capabilities in later test phases, and invest in separate technology

maturation efforts that support strategic needs.

56

6 Future Work

This work compliments existing research that compares Waterfall and Agile software development and

provides the foundation for future research on the impact of policies during parallel development of

military systems. The models are based on the actual development process but do not use historical

data to determine the parameters or capture the human element during development. To improve the

accurateness and holism of both models, future research is needed to calibrate both models and include

additional development factors that legitimize each model's prediction.

The intent of this thesis is to compare development tendencies between Waterfall and Agile

development. Since each type of military system varies in complexity, both models should be calibrated

using historical development metrics from similar types of military systems e.g. communication systems,

sensor systems, engagement systems, aircraft, ships, etc. By leveraging historical data, both models

could be used to predict the impacts of different policies.

In addition to model calibration, future researchers can extend both models to capture human and

organizational factors that influence the execution of the system's development. Each model assumes a

constant size and team experience, but does not account for shifts in funding or staffing that can occur

during development; individual engineering experience of unique domain knowledge; or the complexity

in managing a portfolio of concepts in development. These factors provide additional layers of resource

dependencies for future modeling and analysis.

57

<Total Requirements in <Integrate Req per

Process - Build I> <Design Defects <Integration Team <Average Sprint Design
Uncovered by Integration - Size - Buikd I> Defect Rate - Build I> <Integration Team

<Backlog Requiements Buil> < p Size - Buikd I>

Defect<Integrate Req Design Defects <Stop Feature

Defects - Build I per Team Size> Uncovered by Integration Addition - Buiki I> M

<Stop Feature Sprint Design raw Sp Buil I <Average Sprint M
Addition - Build I> Defects - Build Rate Bild > Integration Testing - Defect Rate - Buiki I> 0

Detailed Design - "pit eets-zBuk

Reurnrsfr pit Build I Bik I inegrtio 1w t ' Requirements Integrated

Development - Build 1 into Build - Build 1 Z
<Average Spant Desigb t <Unit Test Req per
Deect Rate -Buil Deg uskl- Team Size>

Req D<Unit Test Team

fe t un overed
'Size - B uik

d>
< De sign Teami S ize bTetr-7 <Average Sprint Code

- Build I > Cod to be Defect Rate - BUikd I>

Tested - ul I Code for Integration

In~~nBuil I ul
Imp emen 1o - rUet - Bul -Buik

<Design Req per <Coding Team Size <Code Req per
ream Size> - Build I> Team Size>

Cri
00

7.2
System

 D
esign TRL C

oflow
 d

u
rin

g
 A

gile D
evelo

p
m

en
t

rb

y
a

A

S.-'A
V

:
*

a
.a

P

C
A

2-
gV

59

I

<Operational Testing Requirenints for IV
Defects Fixed - Buid 0> Testing - Build I Requirements not rady for

<ReqUirentents ready tor Total SW Build for Contractor Testing - Build Integraton/Vertfcatio
DeployNlent - Build 0> Req flr Test - Integation/Verification Testing - Buil

<Concept completion B - Buikd 1
- Build 1> <N e RQ: in IV- Buil I

Buii I> <IV Testin -

<TRL Concept TRL Buik I>

completion - Buik I> eIL *tReq for IV \ < -ation/Verification <Systen Test
- Build I Requirenents ready for Detect Ratio - Build > Team - Buiki I

Contractor Testing - Build 1 <Systeim Textin Productivt
per Teamn S i/e>

<IrttetmituiVerifaiou Requirements for Contractor t ried>

Testing- Build I
DefectsTotal SW Build for Contractor Inte tion Defects pushed

Testing - Build 1 Requirenents not ready for

Req for CT Test - Governnent Testing - BuilJ I Contractor Te
<Concept competion Build Rework - B

- Build > eq in CT - Buik I <Contractte Textin7

<IV Testing Build 1>
Build 1>

<TRL* Concept TRL * R CT- <Contnictor Te tin y

compk-tion - Build I> TRL * Req for CT DfTeamc i - BUik >
- Build I Requirements ready for

Gosvrnrent Testing- BuilI<Sxxtesr estn <Table of S EInvlexenrnt
Prioductiitv per ilT~ eid

Requirenents for Team Sie> it Text Period>
<Conttctor t1Und Government Testing - Build

Defects Fixed - Buikld> Contractor Testing Defects

Total SW Build for Goerrnent pushed to iext phase - Build
Testig - Bild tRequireninnts not ready forTesting - BOWl I Operational Testing - Build IReq for GVT Test Government

<Concept completion - Bui Rework - Bu
- Build 1> Req in GVT - Build I <Governnvnt

<Govemmttentt <Contractor lestin12 Textinu - Buiki I>
Testing - Build I> Buiki 1> <Gtrnemnttt Testing <Systent Test

<TRL _ Concept .. V Defect Ratio - Buikd I> Team - Buikd I>
completion - Build I> TL f r GVT -

Build 1 Requireents ready fo <Syster Te stin e

O.T. Testing - Build I Productit per Tea.- S---e>
<Table of SE Ifootentnt

<Government found in Test Perilod>

Defects Fixed- Btikl I Governmen Testing Defects

Total SW Build for Operational pushed to next phase - Build I

Requirements for OT Testing - Build I for Deploymient - Bui
Testing - Build I

<OT Testinlt
Buikd I >

<OT Testin Defect <ytmTs
Requirements ready for\ Ratio - Build I>
Deployment - Build I

<Svsterns Testini
Productivity per Tean/Si/e>

<Table fSE
Inv lenet in t

Period>

Deploynent - Build 1 5,
Operational Testing

Defects Fixed - Build 1

Integration/Verifeation

n Rework - Defects Fixed - Build I

f
-kl

in Rexiork
-Fi

<I/V Defects addresxable
\n Rewor k - Buil 1>

<IV Testine -
Build 1>

<Contractor Testitn
Buik1 1>

Contractor found
Defects Fixed - Build I

<Contractor Testin 7
Buiki I> <Coniactor Dects

addrexxalblc in Reworks -
Build 1,

<Governnrient
Textint - Buiki I>

Governmnnt found
Defects Fixed- Build I

-sting , , , o

Testin - Build I>

<Goenrent
addressable in

Buikd I

<OT Testine -
BUild)>

Defects
Rework

<OT Defets
iddrexxable it Resork

Buiki I>

1 e

Q

zb

Md

E0

M-
C

piF

System Design Team for Waterfall

-I --

I
-f 1-1

20

18

16

14

12

10

8

6

4

2

0

50

45

40

35

30

25

20

15

10

5

0i I VV
40 60 80 100 120 140

Week

- System Concept
Team

- - Systems Team
Needed for Concept
Development

0

System Sprint
Team

- - Systems Team
Needed for
Sprint

160 180 200

61

7.4 System Design Team

-tIA
II IvIjr~gIJw~vI

0 20 40 60 80 100 120 140 160 180 20

Week

System Design Team for Agile

- - - -- I- - - -,-

-- g

- I / 1 '

0 20

-

7.5 Software Design Team

Software Design Team for Waterfall

vvv-

0 20 40 60 80 100 120 140 160 180 20
Week

Software Design Team for Agile

'hi'

IL IIUv

V

I', #91

-I_--

- SW Concept Team

- - SW Team Needed
for Concept
Delopnment

0

I -

I Ig - SW Sprint Team

- - SW Team Needed
for Sprint

IV
0 20 40 60 80 100

Week

120 140 160 180

I

bb
C

fU

0

0

E
z

0

0

E
z

20

18

16

14

12

10

8

6

4

2

0

50

45

40

35

30

25

20

15

10

5

0

200

62

I

Develonment

8 Works Cited
Abran, A. (2004). Guide to the Software Engineering Body of Knowledge: 2004 Edition: SWEBOK.

Retrieved February 4, 2014, from IEEE Computer Society:
http://common.books24x7.com.libproxy.mit.edu/toc.aspx?bookid=14089>

ACQuipedia. (2013, October 7). Retrieved Feburary 6, 2014, from Defense Acquisition University:
https://dap.dau.mil/acquipedia/Pages/ArticeDetails.aspx?aid=a896cb8a-92ad-41f1-b85a-
ddlcb4abdc82

Assistant Secretary of Defense for Research and Engineering ASD(R&E). (2011, April). Technology
Readiness Assessment (TRA) Guidance. Retrieved December 18, 2013, from Defense Acquisition
University: https://acc.dau.mil/CommunityBrowser.aspx?id=461216

Bell, T. E., & Thaer, T. A. (1976). Software requirements: Are they really a problem? Proceedings of the
2nd international conference on Software engineering (pp. 61-68). Los Alamitos: IEEE Computer
Society Press.

Carter, A. (2011, 09 13). Advance Policy Questions for Ashton B. Carter Nominee to be Deputy Secretary
of Defense. Washington D.C.

Cocco, L., Mannaro, K., Concas, G., & Marchesi, M. (2011). Simulating Kanban and Scrum vs Waterfall
with System Dynamics. XP (pp. 117-131). Madrid: Springer.

Cunningham, W. (2011, 01 22). Ward Explains Debt Metaphor. Retrieved 12 05, 2013, from
http://c2.com/cgi/wiki?WardExplainsDebtMeta phor

De Neufville, R. (2011). Flexibility in engineering design. Cambridge: MIT Press.
Decker, G. F., & Wagner JR., L. C. (2011, January). Army Strong: Equipped, Trained and Ready. Retrieved

January 05, 2014, from U.S. Army: http://usarmy.vo.linwd.net/e2/c/downloads/213465.pdf
Defense Acquisition Guidebook. (2013, May 15). Retrieved November 01, 2013, from Defense

Acquisition Guidebook: https://dag.dau.mil/Pages/Default.aspx
DoD Instruction 5000.2. (2013). Operation of the Defense Acquisition System. Washington: DoD.
Frand, E. (1980, December). Erwin Frand's Thoughts on Product Development. Industrial Reasearch &

Development, p. 27.
Gilmore, J. M. (2011). Key Issues Causing Program Delays in Defense Acquisition. International Test and

Evaluation Association, 389-391.
Glaiel, F., Moulton, A., & Madnick, S. (2013, March). Agile Project Dynamics: A System Dynamics

Investigation of Agile Software Development Methods. Cambridge, MA.
Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution. PROCEEDINGS OF THE IEEE

(Volume 68, Issue 9), 1060-1076.
Luisanna Cocco, K. M. (2011). Simulating Kanban and Scrum vs Waterfall with System Dynamics. XP (pp.

117-131). Madrid: Springer.
McConnell, S. (1996). Rapid Development: Taming Wild Software Schedules. Microsoft Press.
McQuarrie Jr., A. J. (2004, September). Fire Fighting in Aerospace Product Development: A Study of

Project Capacity and Resource Planning in an Aerospace Enterprise. Cambridge.
MITRE. (2010, December 15). Handbook for Implementing Agile in Department of Defense Information

Technology Acquisition. Retrieved February 4, 2014, from MITRE:
http://www.mitre.org/sites/default/files/pdf/11_0401.pdf

O'Connell, D. (2011). When Agile Software Development and. Software Architecture Collide. Retrieved 11
01, 2013, from DEFENSE TECHNICAL INFORMATION CENTER:
http://www.dtic.mil/dtic/tr/fulltext/u2/a558044.pdf

Parrish, K. (2013, July 31). Pentagon Review Reveals Best, Worst Case, Hagel Says. Retrieved 01 12, 2014,
from U.S. Deparement of Defense: http://www.defense.gov/News/newsarticle.aspx?D=120559

63

Project Management Institute. (2013). A guide to the Project Management Body of Knowledge (PMBOK
guide). Newtown Square: Project Management Institute, Inc.

Rahmandad, H. (2005). Dynamics of Platform-based Product Development. Boston.
Rahmandad, H., & Repenning, N. (n.d.). The Dynamics of Capability Development and Erosion. Retrieved

August 9, 2013, from http://www.sdl.ise.vt.edu/research.html#ProductDevelopment
Rahmandad, H., & Weiss, D. M. (2009). Dynamics of concurrent software development. System

Dynamics Review Volume 25, Issue 3, 224-249.
Repenning, N. (2001). Understanding Fire Fighting in New Product Development. Journal of Product

Innovation Management, 285-300.
Royce, W. (1970). Managing the Development of Large Software Systems. IEEE WESCON, (pp. 1-9).
Samios, H. (2012, February 29). Introducing Scrum to an Organization. Retrieved January 05, 2014, from

Defense Acquisition University - Acquisition Community Connection:
https://acc.dau.mil/CommunityBrowser.aspx?id=501105

Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World. New
York: Irwin/McGraw-Hill.

Tavassoli, D. (2007). Agile software development of military embedded systems. Military Embedded
Systems.

The Agile Manifesto. (2001). Retrieved February 4, 2014, from Manifesto for Agile Software
Development: http://agilemanifesto.org/

Ulrich, K. T., & Eppinger, S. D. (2008). Product Design and Development 4th ed. New York, New York:
McGraw-Hill/Irwin.

Version One. (2009). State of Agile Survey. Version One Inc.

64

