
MIT Open Access Articles

Sources of Geographic Variation in Health 
Care: Evidence From Patient Migration

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Finkelstein, Amy, Matthew Gentzkow, and Heidi Williams. “Sources of Geographic 
Variation in Health Care: Evidence From Patient Migration.” The Quarterly Journal of Economics 
(July 19, 2016): qjw023.

As Published: http://dx.doi.org/10.1093/qje/qjw023

Publisher: Oxford University Press

Persistent URL: http://hdl.handle.net/1721.1/105327

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/105327
http://creativecommons.org/licenses/by-nc-sa/4.0/


SOURCES OF GEOGRAPHIC VARIATION IN HEALTH CARE:

EVIDENCE FROM PATIENT MIGRATION

Amy Finkelstein
Matthew Gentzkow

Heidi Williams∗

June 2016

Abstract

We study the drivers of geographic variation in US health care utilization, using an em-
pirical strategy that exploits migration of Medicare patients to separate the role of demand
and supply factors. Our approach allows us to account for demand differences driven by both
observable and unobservable patient characteristics. Within our sample of over-65 Medicare
beneficiaries, we find that 40-50 percent of geographic variation in utilization is attributable to
demand-side factors, including health and preferences, with the remainder due to place-specific
supply factors. JEL: H51, I1, I11
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I. INTRODUCTION

Health care utilization varies widely across the United States (Fisher et al. 2003a; 2003b). Ad-

justing for regional differences in age, sex, and race, health care spending for the average Medicare

enrollee in Miami, FL was $14,423 in 2010, but just $7,819 for the average enrollee in Minneapo-

lis, MN. The average enrollee in McAllen, TX spent $13,648, compared to $8,714 in nearby and

demographically similar El Paso, TX.1 Similar geographic variation is observed in the frequency

of specific treatments (Chandra et al. 2012) and in measures of total health care utilization that

adjust for regional variation in administratively-set prices (Gottlieb et al. 2010). Higher area-level

utilization is not generally correlated with better patient outcomes.2

Understanding what drives geographic variation in utilization has important implications for

policy. If high-utilization areas like McAllen and Miami are different mainly because their doctors’

incentives or beliefs lead them to order excessive treatments with low return, policies that change

those incentives or beliefs could result in savings on the order of several percentage points of GDP

(Congressional Budget Office 2008; Gawande 2009; Skinner 2011). If, on the other hand, patients

in high-utilization areas are simply sicker or prefer more intensive care, such policies could be

ineffective or counterproductive.

In this paper, we exploit patient migration to separate variation due to patient characteristics

such as health or preferences from variation due to place-specific variables such as doctors’ in-

centives and beliefs, endowments of physical or human capital, and hospital market structure. As

a shorthand, we refer to the former as “demand” factors and the latter as “supply” factors.3 To

see the intuition for our approach, imagine a patient who moves from high-utilization Miami to

low-utilization Minneapolis. If all of the utilization difference between these cities arises from

supply-side differences like doctor incentives or beliefs, we would expect the migrant’s utilization

to drop immediately following the move, to a level similar to other patients of the low-utilization

1. Authors’ tabulations based on total Medicare Parts A and B reimbursements per enrollee, from Dartmouth
Atlas of Health Care, http://www.dartmouthatlas.org/downloads/tables/pa_reimb_hrr_2010.xls.

2. See Skinner (2011) for an extensive discussion. The Congressional Budget Office (2008) concludes that high-
spending areas “tend to score no better and, in some cases, score worse than other areas do on process-based measures
of quality and on some measures of health outcomes,” and that more intensive treatment in high-spending areas “ap-
pear[s] to improve health outcomes for some types of patients, but worsen outcomes for others.”

3. This corresponds to the usual definitions of demand and supply in most cases, but the correspondence is not
perfect. For example, peer effects or social learning will generally be captured in our framework as a place-specific
(“supply”) factor, since the composition of peers can change when a patient moves, but it would be more natural to
think of them as shifters of demand rather than supply.
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doctors in Minneapolis. If all of the utilization difference reflects the demand-side reality that res-

idents of Miami are sicker, we would expect the migrant’s utilization to remain constant after the

move, at a level similar to the typical person in Miami. Where the observed utilization change falls

between these two extremes identifies the relative importance of demand and supply factors.

We implement this strategy using claims data for a 20 percent sample of Medicare beneficiaries

from 1998 to 2008. Our main outcome measure adjusts health care spending for geographic price

differences to create a quantity measure of utilization, as in Gottlieb et al. (2010). We introduce a

simple model of health care demand and supply, which implies that the log of a patient’s annual

health care utilization can be written as a combination of a patient fixed effect, a location fixed

effect, and a vector of time-varying controls, including indicators for year relative to move for

migrants. This specification allows for the possibility that migrants have systematically different

utilization levels from non-migrants, and that these levels are correlated with the migrant’s origin

and destination regions. It also allows for arbitrary differences in utilization trends of migrants

relative to non-migrants. The key identifying assumption is that such differential trends do not

vary systematically with the migrant’s origin and destination.

We begin with an event-study analysis of changes in log utilization around moves. We observe

a sharp change in the year of a move, equal to about half of the difference in average log utilization

between the origin and destination. There is little systematic trend pre-move, and no systematic

adjustment post-move. The on-impact effect is similar for moves from low-to-high and high-to-low

utilization regions, and is roughly linear in the absolute value of the origin-destination difference

in log utilization.

Our estimated model exploits this variation to infer that 47 percent of the difference in log

utilization between above- and below-median areas is due to patient characteristics, with the re-

mainder due to place-specific factors. The shares are similar for differences between the top and

bottom quartiles, deciles, or ventiles. The share of the difference in log utilization due to pa-

tients is also similar when we isolate differences between the very highest-utilization areas, such

as McAllen or Miami, and the very lowest-utilization areas, such as El Paso or Minneapolis. The

results appear inconsistent with patient effects arising primarily from habit formation or persis-

tence of treatments started pre-move, and instead point toward heterogeneity in health status or

preferences that are fixed over the horizon of our data.
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Our decomposition can be interpreted in terms of a counterfactual: by what share would the

gap in utilization between areas fall if patients were randomly re-allocated between them. Impor-

tantly, this is a partial equilibrium experiment, in that it holds fixed supply-side characteristics such

as stocks of physical and human capital. In the long run, we would expect some of these charac-

teristics to adjust endogenously to the change in patient demand (Chandra and Staiger 2007). If

this led to convergence on the supply side, the long-run fall in geographic variation under the

counterfactual would be greater than our short-run estimates would suggest.

We replicate our analysis for various components of total utilization. All measures show sharp

changes in the year of a move, with magnitudes implying patient shares ranging from 9 per-

cent to 71 percent. Consistent with intuition, we find large patient shares for outcomes where

we might think patients have significant discretion—preventive care and emergency room visits,

for example—and smaller patient shares for outcomes where we might think they have less—

diagnostic tests, imaging tests, and inpatient care, for example. We also find some suggestive

evidence that the patient share may be lower at higher percentiles of the utilization distribution.

In the final section of the paper, we present evidence on the observable area-level correlates

of our estimated place and patient effects. The potential correlates we consider include the num-

ber, quality, and organizational form of hospitals, survey-based measures of doctor beliefs about

appropriate practice style and patient preferences over alternative practice styles, average patient

demographics, and average patient health status. An important challenge arises with regard to the

latter: because standard measures of underlying health status are derived from claims data, a given

condition is more likely to be recorded in a high-intensity area, and standard measures of patient

health therefore include a large component of systematic, place-specific measurement error (Song

et al. 2010; Welch et al. 2011). To address this, we extend our mover-based strategy to estimate

the place-specific measurement error component, and derive corrected health measures purged of

this measurement error.

The correlations are broadly consistent with both intuition from our model and evidence from

the existing literature. On the supply side, we find that the place component of utilization is

particularly high in areas with a larger share of for-profit hospitals and a larger share of doctors who

report a preference for aggressive care; the latter is consistent with recent literature emphasizing

the importance of physician practice styles and beliefs in driving geographic variation (e.g., Cutler
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et al. 2015). We also find that the place component is higher in areas where patients are sicker,

which is consistent with past work arguing that physical and human capital are likely to adjust

endogenously to patient demand (Chandra and Staiger 2007). On the demand side, we find that the

patient component of utilization is higher where patients are sicker and of higher socio-economic

status, consistent with both patient health status and patient preferences playing an important role.

Were we to take the correlations between log utilization and corrected health measures as causal,

they would imply that about a quarter of the geographic variation in log utilization (or equivalently,

about half of our estimate of the patient share of this variation) may be explained by our corrected

patient health measures; the remainder may reflect preferences or unmeasured health.

Studying Medicare patients is appealing due to the availability of high-quality, rich data on

large numbers of beneficiaries, and the relatively uniform insurance environment. Medicare ac-

counts for a significant share of total US health spending: 20.5 percent as of 2011 (Moses et al.

2013).4 Nevertheless, extrapolating our conclusions to other populations requires caution. Al-

though regional variation in utilization appears to be the norm,5 the relative importance of place

and patient factors could differ in other settings. In private insurance markets, moreover, substan-

tial cross-area differences in prices mean the correlates of area spending may differ substantially

from the correlates of area utilization (Chernew et al. 2010; Dunn et al. 2013; Cooper et al. 2015).

Our work contributes to a large existing literature seeking to separate the role of demand-side

and supply-side factors in driving geographic variation in health care utilization. All of these

studies infer the role of demand-side factors from the explanatory power of patient observables.

Our main contribution is to develop a strategy that exploits migration to capture both observed and

unobserved patient characteristics.

Taken together, the evidence from the prior literature suggests three conclusions: (i) supply-

side factors are a key driver of geographic variation; (ii) patient preferences and characteristics

other than health status explain little variation; (iii) differences in health status may be important,

but the evidence is inconclusive because of endogenous measurement error.6 Our findings confirm

4. This number includes under-65 beneficiaries who we exclude from our study. According to Neuman et al.
(2015), beneficiaries under 65 accounted for 22 percent of spending in traditional Medicare in 2011.

5. Large regional differences have been documented in the US Veterans Affairs system (Ashton et al. 1999;
Congressional Budget Office 2008; Subramanian et al. 2002), in private insurance markets (Baker et al. 2008; Chernew
et al. 2010; Dunn et al. 2013; Philipson et al. 2010; Rettenmaier and Saving 2009; Cooper et al. 2015), and in other
countries including the UK and Canada (McPherson et al. 1981).

6. See Skinner (2011) and Chandra et al. (2012) for reviews, and Cutler et al. (2015) and Baker et al. (2014) for
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that supply-side factors are important, while also revealing that patient preferences and health sta-

tus together account for a large share of variation. Once we address the endogenous measurement

issue with patient health, we find that roughly a quarter of the geographic variation in log health

care utilization can potentially be attributed to observable patient health. Whether the remaining

patient component reflects preferences or unmeasured health remains an open question.

Like past decompositions, ours is not sufficient to draw strong conclusions about the efficiency

of observed geographic variation. Though supply-driven heterogeneity may reflect waste stem-

ming from disagreement among physicians regarding optimal practice styles, it could also reflect

an optimal allocation of physical and human capital. Conversely, although our model shows a

formal sense in which demand-driven variation is likely to be consistent with efficiency, this need

not be the case in a richer model. We view our findings as both a first step toward a more welfare-

relevant understanding and a clarification of an influential body of existing evidence.

Our empirical strategy relates to past work using changes in residence or employment to sep-

arate effects of individual characteristics from geographic or institutional factors. Most closely

related are Song et al. (2010), who look at how health measures change around patient moves, and

Molitor (2014), who looks at cardiologist behavior changes around their moves. Outside of the

health care sector, a number of papers beginning with Abowd et al. (1999) use matched worker-

firm data to separately identify worker and firm fixed effects. In this vein, we draw especially on

Card et al.’s (2013) study of German workers and firms. Other work uses geographic or employ-

ment changes to study neighborhood effects on children (Aaronson 1998), cultural assimilation of

immigrants (Fernandez and Fogli 2006), brand preferences (Bronnenberg et al. 2012), tax report-

ing (Chetty et al. 2013), teacher value added (Chetty et al. 2014a), and retirement savings decisions

(Chetty et al. 2014b).

Section II introduces our model and estimation strategy. Section III describes our data and

presents summary statistics. Section IV presents our main analysis of the role of demand and

more recent contributions. Chandra et al. (2012) write: “In general, the literature points to the importance of supply-
side incentives over demand-side factors in driving treatment choice” (p. 425) and “most of the literature agrees that
patient characteristics and preferences do not explain much of the differences across areas” (p. 402). With regard
to health status, they write: “Some researchers argue that variation is accounted for by population disease burden...
but other authors argue that prevalence of diagnosis is itself endogenous across areas” (p. 402). Skinner (2011)
writes: “While demand factors are important—health in particular—there remains strong evidence for supply-driven
differences in utilization” (p. 46). An exception to this consensus is Sheiner (2014), who argues that patients may
explain most or all of the variation.
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supply factors in explaining geographic variation in health care utilization. Section V explores the

correlates of our estimated patient and place effects. Section VI concludes. All appendix materials

are available in the online appendix.

II. MODEL AND EMPIRICAL STRATEGY

II.A. MODEL

We build a simple model of demand and supply for health care, similar in spirit to to the

model in Cutler et al. (2015). Our goals are to illustrate the demand and supply factors that drive

equilibrium utilization, and clarify the underlying assumptions of our empirical specification.

A population of patients i in year t utilizes health care yit ∈ R+. Patients differ along three

dimensions: health status hit , preferences ηi, and geographic area j. Higher values of hit rep-

resent worse health; the time-constant scalar preference parameter ηi is defined so that higher

values represent tastes for more aggressive care. Some patients are “non-movers” who live in

one area j throughout the sample, while are others are “movers” whose area changes exactly

once.7 Patients’ expected continuation utility u(y|hit ,ηi) = −1
2 (y−hit)

2 +ηiy is maximized at

y∗it = hit + ηi, the level of care that the patient would choose if they were fully informed and

faced a zero out-of-pocket price for care. We assume that the expectation of y∗it given the data

observed by the econometrician depends only on a patient fixed effect and a vector of observables

xit : E (y∗it |{i, j, t,xit}) = αi + xitβ .

Each patient living in area j in year t is matched to a representative physician who determines

the patient’s care. We assume that a physician chooses yit to maximize the perceived utility of her

patients ũ j(y) minus her (net, private) costs of care provision, PC jt(y).8 Thus we can write:

yit = argmax
y

ũ j (y|hit ,ηi)−PC jt (y) . (1)

The difference between perceived patient utility ũ j() and true patient utility u() captures potentially

7. We exclude patients who move more than once from the main analysis for simplicity, but we show that the
results are robust to including them.

8. For simplicity, we assume that net provider costs have been scaled to the same units as patient utility times its
weight in the physician’s objective function. Less compactly, we can assume the physician maximizes Ψũ j()− P̃C jt(),
where P̃C jt() is measured in dollars and Ψ is the weight in the physician’s objective assigned to patient utility, then
define PC jt() = P̃C jt()/Ψ.
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heterogeneous beliefs that would lead physicians to disagree about the appropriate level of care. We

assume ũ j (y|hit ,ηi) = u(y|hit ,ηi)+λ jy, so that higher values of λ j represent relatively aggressive

practice styles. A variety of factors can affect PC jt , including monetary incentives, organizational

rewards, and physical and human capital. We assume PC jt() is linear in y and additively separable

in j and t.

Maximization of equation (1) yields our main estimating equation for patients i living in area j

throughout year t:9

yi jt = αi + γ j + τt + xitβ + εi jt , (2)

where γ j +τt = λ j−PC′jt() and our assumptions imply E
(
εi jt |{i, j, t,xit}

)
= 0. In our main speci-

fication the quantity y will be the log of total utilization, which we define more precisely in Section

III, and xit will consist of dummies for five-year age bins, and fixed effects ρr(i,t) for movers, where

for a mover who moves during year t∗i the relative year is r (i, t) = t− t∗i . Including these relative

year effects allows for the possibility that the decision to move is correlated with shocks to health

status—for example, because sick patients sometimes move to seek care, or, at the other extreme,

because sick patients are unable to bear the physical costs of moving. We normalize ρr(i,t) to zero

for non-movers.

Our main goal is to decompose variation in average log utilization across regions into a demand-

side component attributable to patients and a supply-side component attributable to place. To define

this decomposition formally, let y jt denote the expectation of yit across patients living in area j in

year t, and let y j denote the average of y jt across t. Let y∗jt and y∗j denote the analogous expecta-

tions of the patient-optimal level of care y∗it = hit +ηi, which by the assumptions above is equal to

αi + xitβ . Then the difference in average log utilization between any two areas j and j′ is the sum

of the differences of the place and patient components: y j− y j′ =
(
γ j− γ j′

)
+
(

y∗j − y∗j′
)

. When

we talk about larger groups R that consist of multiple areas j, we abuse notation by letting yR, y∗R,

and γR denote the simple averages of y j, y∗j , and γ j across areas in R.

We define the share of the difference between areas j and j′ attributable to place to be

Splace
(

j, j′
)
=

γ j− γ j′

y j− y j′
(3)

9. We do not model outcomes for movers in year t∗i , when they spend part of the year in their origin area and part
of the year in their destination; when we estimate equation (2), we omit these observations.
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and we define the share attributable to patients to be

Spat
(

j, j′
)
=

y∗j − y∗j′
y j− y j′

.

Note that although Spat ( j, j′) and Splace ( j, j′) sum to one, neither need be between zero and

one, since it is possible that γ j− γ j′ and y∗j − y∗j′ have opposite signs. We define Spat (R,R′) and

Splace (R,R′) to be the analogous shares for groups R and R′. We let ŷ j denote the sample analogue

of y j. Given consistent estimates γ̂ j of γ j, we form consistent estimates ŷ∗j = ŷ j− γ̂ j of y∗j .

II.B. DISCUSSION

Our stylized model clarifies the underlying economic factors that drive both the patient and

place components we estimate, and their relationship to factors previously discussed in the litera-

ture.

The patient component
(

y∗j − y∗j′
)

is the difference in the utility-maximizing level of care y∗it

for an average patient living in j and an average patient living in j′. This in turn is the sum

of the differences in average health hit , and average preferences ηi. The former will be driven by

demographics such as age, behavioral factors such as diet, exercise or smoking (Xu et al. 2013), and

genetic predispositions to disease. The latter will capture the way patients trade off the disutility

of the pain, suffering, or inconvenience of treatment against the value of improved health, as well

as ethical or religious beliefs about the value of prolonging life (Barnato et al. 2007).

The place component
(
γ j− γ j′

)
is the sum of the differences between j and j′ in physicians’

perceptions of marginal benefits λ j minus private marginal costs PC′(). Each of these nests a vari-

ety of factors that have been fleshed out in more detail in the literature. For example, differences

in ũ′() capture heterogeneous beliefs about appropriate or effective treatment, such as the “cow-

boy” or “comforter” approaches to care documented in the survey evidence of Cutler et al. (2015).

Differences in private marginal costs PC′() capture a number of factors including physicians’ disu-

tility or difficulty in delivering a given level of care, which in turn reflects factors such as skill,

training, or experience (as in Chandra and Staiger 2007), liability concerns (as explored in Currie

and MacLeod 2008), or the opportunity cost of physicians’ time. Private marginal costs may also

be affected by organizational features such as available physical capital, the prevalence of non-
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profit hospitals, non-monetary career incentives, insurer constraints, peer effects among doctors,

and organizational culture (Lee and Mongan 2009).

One way to interpret the patient share Spat ( j, j′) is in terms of a counterfactual: by what share

would the gap in utilization between the two areas fall if patients were randomly re-allocated be-

tween them. Crucially, however, this is a partial equilibrium experiment, in that it holds fixed the

existing perceptions, incentives, and physical and human capital of physicians and organizations

embedded in γ j. In the medium or long-run, we would expect all of these factors to potentially

adjust: an area facing sicker patients might invest more in physical or human capital, might spe-

cialize in more intensive forms of care, or might see shifts in its physicians’ perceptions about

what care is appropriate. Chandra and Staiger (2007) provide evidence suggesting that such ad-

justments are quantitatively important, and we stress that our estimates should be interpreted as

partial equilibrium effects that shut down adjustment along these margins.

Under the assumptions of our model, we can also relate our patient-place decomposition to

conclusions about welfare. Suppose that the social cost of care in location j and year t is SC jt (y),

so that a social planner would choose yit to maximize u(y|hit ,ηi)−SC jt (y). Then maintaining the

other assumptions of our model, and assuming that we can write SC′jt (y) = −(γ∗j + τ∗t ), equation

(2) under the social planner solution would be identical, except that τt + γ j would be replaced by

τ∗t + γ∗j . For any two locations j and j′, the patient component
(

y∗j − y∗j′
)

is “efficient,” in the

sense that it would remain unchanged under the social planner. In contrast, the place component(
γ j− γ j′

)
may or may not be efficient in this sense: it will differ from the social planner solution

to the extent that physicians have inaccurate beliefs (λ j 6= 0), or their net private marginal costs

PC′() differ from the social marginal cost SC′(). Of course, these welfare implications require

strong assumptions, and our patient-place decomposition need not have a tight relationship to

welfare in a more general model. For example, if variation in patient preferences (ηi) partly reflects

misinformation or distorted beliefs (as in Baicker et al. (2015)), some component of the patient

component could be inefficient as well.10

10. The patient component could also fail to be efficient if the difference between the private and social marginal
cost of care, SC′ ()−PC′(), varies with patient health or preferences. An example would be if out-of-pocket costs for
different kinds of treatments vary across patients and/or areas. Setting this aside seems a reasonable approximation in
the Medicare context, since patients have relatively homogeneous insurance, although it may not be strictly true (for
example, because rates of supplemental coverage vary across areas).
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II.C. IDENTIFICATION

The model in equation (2) is only identified if the data include movers. If all patients were non-

movers, there would be no way to separate differences in the area fixed effects γ j from differences

in the average patient characteristics y∗j . The key to separate identification of these two components

is the observed changes in utilization when patients move.11

To build intuition, consider a simplified version of our model in which the τt and xit are set

to zero, and so utilization depends only on patient and place fixed effects plus the error term.

Normalize the national mean of αi to zero (in general, we will not be able to identify the national

means of patient, place, and time effects separately, but this will not impact our decompositions of

geographic variation). Suppose we observe a large number of patients who move from area j′ to

area j. Then the difference ∆
j
j′ between their average yit in the years after the move and the years

before the move is a consistent estimator of γ j − γ j′ . If we observe similar samples of patients

moving between the other areas in the sample, along with the overall mean of log utilization y, we

can form consistent estimates γ̂ j of each γ j. The y∗j would then be consistently estimated by ŷ j− γ̂ j.

Identification in the full model is similar. Identifying the τt and age coefficients is standard

and does not rely on movers. Adding the relative year effects ρr(i,t) to xit has a more substantial

effect. It allows for arbitrary changes in log utilization for movers pre- and post-move, with the

restriction that these changes are the same regardless of the origin and destination. In the full

model, therefore, observing only movers from j′ to j is not enough to identify γ j− γ j′ , because ∆
j
j′

would also depend on the difference between the post-move and pre-move ρr(i,t). Identification

in this case comes from the differences in the changes across movers with different origins and

destinations. If we have movers from j′ to j and also movers from j to j′, for example, we can

estimate γ j− γ j′ consistently as
∆

j
j′−∆

j′
j

2 .

Importantly, our model permits movers to differ arbitrarily from non-movers in both levels of

log utilization (via the αi) and trends in log utilization around their moves (via the ρr(i,t)). The

latter would allow, for example, for moves to be associated with either positive or negative health

shocks. We can in principle allow substantially more flexibility, including area- or individual-

specific trends, different fixed effects by sub-periods, and interactions between γ j and patient ob-

11. A sufficient condition for identification is that the number of movers between any pair of areas j and j′ grows
large as the total sample size approaches infinity. Abowd et al. (2002) discuss weaker conditions for identification.
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servables. We can also add flexibility by using data for movers only in the years just before or

after their move, in the spirit of a regression discontinuity. We explore robustness to specifications

along these lines below.

Our model is nevertheless restrictive in several important ways. First, we cannot allow for

shocks to utilization that coincide exactly with the timing of the move and that are correlated with

utilization in the origin and destination. In the example above, suppose that for movers from j′ to

j the conditional expectation of health hit in years just after the move is strictly greater than for

movers from j to j′. This would inflate ∆
j
j′ relative to ∆

j′
j , and lead

∆
j
j′−∆

j′
j

2 to be an overestimate

of γ j− γ j′ . As a concrete example, this could occur if patients who receive adverse health shocks

respond by moving to relatively high-utilization areas. The result in this case would be that we

would attribute some of the health shock to the effect of moving, and so overstate the role of places

relative to patients.

While we cannot rule out such bias entirely, the pattern of results provides some comfort that

it is unlikely to be large. Deterioration in health status that occurs gradually and is correlated with

utilization in the destination and origin would tend to show up as pre-trends in our event study

analysis (Section IV.A). We in fact do find a positive pre-trend, but its magnitude is small, and we

show that the results are robust to restricting the data to a small window around the move. Sudden

health events that prompt a move to systematically higher utilization places could potentially cause

bias without a pre-trend. However, such shocks would tend to produce a post-move spike in our

event studies that dissipates over time (assuming treatment for acute conditions is most intense

immediately after they occur), and this is not the pattern we observe.

Second, our specification assumes that αi and γ j are additively separable in the equation for log

utilization. We see this as an attractive assumption economically. It has the intuitive implication

that patient and place characteristics affect the level of utilization multiplicatively, and thus that the

(level) utilization of patients who are sick or prefer intensive care (i.e., have high αi) will vary more

across places than that of patients who are healthy or rarely seek care (i.e., have low αi).12 We also

see the log model as appealing on econometric grounds, given utilization’s skewed cross-sectional

distribution and large secular trend.

12. To take a concrete example, suppose that patients have either one or two chronic conditions, and that places
spend either five or ten thousand dollars per chronic condition. This would imply a model additive in logs, with
exp(αi) ∈ {1,2}, exp(γ j) ∈ {5,10}, and the log of utilization yi j equal to αi + γ j.
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That said, the log specification nevertheless imposes some important restrictions. It rules out,

for example, variation across places that causes an equal level shift for all patients regardless of

their αi. This could occur, for example, if some places mandate flu shots or other preventive treat-

ments with similar cost for all patients. More subtly, our decompositions of geographic variation

in log utilization give relatively more weight to differences in the bottom part of the utilization dis-

tribution than a decomposition in levels would. In Section IV, we present a variety of specification

and robustness checks that bear on these issues.

The assumption that patient and place effects are additively separable also rules out the pos-

sibility that different types of patients seek out different types of health care within a place. This

can be relaxed by allowing interactions between γ j and patient observables, as we explore below.

It can also be partly addressed by examining whether the results vary when area j is defined at

higher and lower levels of geography, which we also explore below. But our specification does not

capture richer models of behavior in which, within appropriately defined areas, observationally

similar patients seek out different types of providers.

Third, our approach relies fundamentally on the assumption that the γ j that are relevant for

movers are the same as those that are relevant for non-movers. If movers differ in ways that

change the relevant place effects, our decompositions would apply only to variation in utilization

among movers rather than to the population as a whole.

Finally, our model does not allow for the possibility that αi in a given period is a function of

past values of yit . If, for example, patients in high-utilization areas become accustomed to visiting

the doctor frequently and receiving a large number of tests when they do, they might continue to

demand these services post-move. In this case, variation across areas in current αi could partly be

caused by the influence of γ j in the past. We discuss the possibility of such habit formation and

evidence that suggests it may be small in Section IV.A below. However, the fact that we focus on

older patients means that we cannot rule out habit formation over long horizons. If αi depends on

consumption of health care early in life, for example, some of what we attribute to patients may

reflect supply-side differences in the past. The long-term effect of supply-side changes could then

be larger than our estimates would suggest.
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II.D. EVENT-STUDY REPRESENTATION

To visualize the way utilization changes when patients move, we define an alternative “event-

study” representation of equation (2).

To build intuition, it again helps to start with the simple case where τt and xit are set to zero

and where our panel of movers is balanced in the sense that each mover is observed for the same

number of years pre- and post-move. If all movers had the same origin j′ and destination j, we

could construct an event study by simply plotting the average of y for movers by relative year

r (i, t). When origins and destinations vary, however, this plot would not be very informative. If

the flow from any j′ to j were equal to the flow from j to j′, for example, we would expect the

graph to show no change around the move, even if the absolute values of the underlying changes

on move were large.

To produce a more informative plot, we would like to scale y so that the direction and magnitude

of the jump on move are informative regardless of the origin and destination. For a mover i whose

origin and destination areas are o(i) and d (i) respectively, we denote by δi the difference in average

log utilization between the mover’s destination and origin:

δi = yd(i)− yo(i), (4)

and we let Si
place = Splace (d (i) ,o(i)) and Si

pat = Spat (d (i) ,o(i)). Following Bronnenberg et al.

(2012), we define for mover i:

yscaled
it =

yit− yo(i)

δi
.

Note that yscaled
it will be zero if the mover’s utilization is equal to the average in his origin, 1 if

it is equal to the average in his destination, and between zero and one if the mover’s utilization

falls between the two. If the model is correct, the expectation of yscaled
it should be flat both before

and after move and the jump on move will be equal to the average value of Si
place across movers.

Plotting the averages of yscaled
it by relative year would thus produce an event-study figure with a

direct interpretation in terms of the model quantities of interest. The larger the jump in yscaled
it on

move, the greater the share of geographic variation we would attribute to place, and the smaller the

share we would attribute to patients.

To implement this in the full model, we must deal with three additional complications. First,
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we need to allow for the controls τt and xit . Second, our panel is not balanced and so changes in

the composition of movers could introduce pre- or post-trends into the event-study figure. To avoid

this, we need to control for the individual fixed effects αi explicitly. Third, the difference δi can be

very small in some cases, which would make the simple average of yscaled
it poorly behaved. This

leads us to prefer a regression implementation that avoids dividing by δi.

Observe that we can rewrite equation (2) for movers as:

yit = αi + γo(i)+ Ir(i,t)>0Si
placeδi + τt + xitβ + εit , (5)

where Ir(i,t)>0 is an indicator variable for relative year greater than zero. Combining αi + γo(i) into

a single patient fixed effect α̃i, replacing δi with its sample analogue δ̂i (calculated based on both

movers and non-movers in the destination and the origin), and parameterizing the interaction with

δ̂i as a flexible function of relative year yields

yit = α̃i +θr(i,t)δ̂i + τt + xitβ + εit . (6)

This is the event-study equation we take to the data. The relative-year specific coefficients θr(i,t)

are the parameters of interest: they measure changes in yit in years around the move scaled relative

to δi. If the sampling error in δ̂i is ignorable,13 and heterogeneity in Si
place is orthogonal to the

other variables in the model, the plot of the θr(i,t) will have a precise interpretation similar to that

of the average yscaled
it in the simple case: the plot should be flat before and after move, and jump

on move by a weighted average of Si
place.

III. DATA AND SUMMARY STATISTICS

III.A. DATA AND VARIABLE DEFINITIONS

Our primary data source is a 20 percent random sample of Medicare beneficiaries (“patients”)

from 1998 through 2008.14 These data contain approximately 13 million patients. For each patient,

13. Because the number of non-movers we observe in each HRR is large, sampling error in δ̂i is small. We show
in Online Appendix Section 4.5 that accounting explicitly for noise in δ̂i has no impact on our event-study results.

14. The sample is a panel defined by taking all Medicare beneficiaries in each year whose social security number
ends in either “0” or “5.” The sample thus varies from year to year, but a given patient remains in the sample as long
as they are enrolled in Medicare.

14



we observe information on all Medicare claims for inpatient care, outpatient care, and physician

services. For each claim, the data include information on the diagnosis, the type and quantity

of care provided, and the dollar value reimbursed by Medicare. We also observe demographic

information for each patient, including age, gender, race, and zip code of residence, defined as

the address on file for Social Security payments as of March 31st of each year. To match the

timing with which we observe patients’ residence, we define all outcome variables for year t to be

aggregates of claims from April 1 of year t through March 31 of year t +1.15

Our primary outcome variable is based on an index of overall health care utilization by indi-

vidual by year, which we refer to simply as “utilization.” To construct the measure, we follow

Gottlieb et al. (2010) in adjusting total annual expenditure for regional variation in prices. Online

Appendix Section 2 describes the construction of the measure in detail. We prefer to focus on

utilization quantities and set aside variation in administratively-set prices because the drivers of

the latter are both different and better understood.16

In our main specifications, we define the outcome yit to be the log of utilization plus one, which

we refer to simply as “log utilization.” As we discussed in Section II.C, we prefer a log specifica-

tion both economically and econometrically. We explore other functional forms in the robustness

section below. We also examine a number of other outcome measures, including subcategories of

utilization and indicators for particular treatments, which are defined in more detail below.

Our geographic unit of analysis is a Hospital Referral Region (HRR), as defined by the 1998

Dartmouth Atlas of Health Care. The 306 HRRs are collections of zip codes designed to approxi-

mate markets for tertiary hospital care.17 Consistent with the existing literature, we define average

log utilization and other outcomes for an HRR j to include all claims by residents of j, regardless

of the location of the claims themselves. On average, about 16 percent of claims occur outside a

patient’s HRR of residence.

15. We include data from the first few months of 2009 to compute outcomes for our final sample year (t = 2008)
which runs from April 2008 to March 2009.

16. We show in the robustness analysis below that our main conclusions are unchanged if we use total annual
expenditure in place of utilization.

17. See www.dartmouthatlas.org/downloads/geography/ziphsahrr98.xls and
http://www.dartmouthatlas.org/downloads/methods/geogappdx.pdf. Each HRR consists of a collection of zip

codes that contain at least one hospital that performs major cardiovascular procedures and neurosurgeries. Zip codes
are grouped into an HRR based on where the highest proportion of cardiovascular procedures are referred. Each HRR
must have a population of at least 120,000. We drop roughly 2 percent of patient-years whose zip codes do not match
the 1998 HRR definitions.

15
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We define patients to be “non-movers” if their HRR of residence is the same throughout our

sample period. We define patients to be “movers” if their HRR of residence changes exactly

once. Our baseline analysis excludes patients whose HRR of residence changes more than once.

We show in Online Appendix Section 4.3 that including multiple movers does not substantively

change our estimates.

In some of our analyses below, we compare movers to a matched subsample of non-mover

patient years chosen to match as closely as possible the characteristics of our mover sample. For

each mover in our data in each calendar year, we randomly draw a non-mover in the same year in

the mover’s origin HRR who shares the mover’s gender, race, and five-year age bin. The union

of the selected non-mover patient-years forms the “matched sample of non-movers” we refer to

below.

III.B. SAMPLE RESTRICTIONS AND SUMMARY STATISTICS

From our original sample of 13 million patients, we retain a 25 percent random sample of non-

movers along with all movers. We then restrict the sample to the 88 percent of patient-years where

patients are between 65 and 99 years old, exclude 20 percent of the remaining patient-years for

patients enrolled in Medicare Advantage (for whom we do not observe claims), and exclude the

remaining 7 percent of patient-years for patients who do not have Medicare Part A or B coverage in

all months (including, for example, patients who enroll mid-year in the year they turn 65). Finally,

among patients whose HRR of residence changes at least once, we exclude the 18 percent whose

HRR of residence changes more than once, as well as the 35 percent of the remaining “movers”

whose share of claims in their destination HRR, among claims in either their origin or destination

HRR, is not higher by at least 0.75 in the post-move years relative to the pre-move years.18

When we compute HRR averages, such as the sample analogue ŷ j of y j, we omit movers in

18. The change in claim share is not defined for movers who do not have at least one claim both pre- and post-
move. We exclude these cases if: (i) they have no post-move claims and a pre-move destination claim share greater
than 0.05; (ii) they have no pre-move claims and a post-move destination claim share less than 0.95. The claims data
suggest several explanations for why some movers do not satisfy our change in claim share criterion. In a large share of
cases, the geographic distribution of claims remains roughly the same before and after the recorded move, suggesting
that the patient changed the address on file with Social Security without changing their residence. This could occur
if they decided to have their Social Security checks sent to a child who was handling their finances, for example. In
other cases, patients appear to have multiple residences both before and after the move, with the share of claims in the
destination increasing post-move by an amount less than our 0.75 threshold. We show in Online Appendix Section 4.3
that our results are robust to alternative ways of defining movers.
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their move year and we weight non-movers by four to account for our sampling procedure. All

HRR averages are computed by first averaging across individuals in the HRR in each year, and

then taking a simple average across years.

Our final sample includes 2.5 million patients, of whom approximately 0.5 million are movers.

Table I reports summary statistics separately for movers and non-movers. The characteristics of

the two groups are broadly similar, although there are some differences. Relative to non-movers,

movers are slightly more likely to be female, white, and older, and more likely to live initially

in the South or West, rather than the Midwest or Northeast. Average annual utilization in both

groups is roughly $7,500 per year, with a standard deviation of about $10,000, and six percent of

observations equal to zero. Health care utilization is notoriously right-skewed: the median across

both groups is about $4,300 and the 90th percentile is almost $18,000.

There are a variety of reasons that individuals may enter or exit the sample, including death,

entering or exiting Medicare Advantage, and entering or exiting our 65-99 age window. The av-

erage non-mover in our sample is observed for 6.3 years (out of a possible 11), and the average

mover for 7.5 years. The difference is partly mechanical, due to the fact that we must observe

a patient for at least two years to classify them as a mover. About a third of patients die during

our sample period and about 20 percent enter or exit at some point due to enrollment in Medicare

Advantage. In our robustness analysis below, we discuss possible biases due to selective attrition

and show that our results are robust to some alternative ways of handling it. Mortality rates are

broadly similar for movers and non-movers, alleviating concern that our analysis of movers might

miss end-of-life expenditures.

Figure I shows the distribution of average annual utilization across HRRs. The mean HRR has

average utilization of $6,629 per person per year, with a standard deviation of $779. The ranking of

HRRs by utilization is reasonably stable over time: the correlation between an HRR’s rank in the

first half of our sample (1998-2003) and the second half of our sample (2004-2008) is 0.9. We show

in Online Appendix Figure 9 that if we divide HRRs into quintiles by utilization, the evolution

of utilization for the different quintiles is roughly parallel. These facts are consistent with prior

literature showing patterns of geographic variation in health care utilization have been relatively

stable since the early 1990s (Chandra et al. 2011; Rettenmaier and Saving 2009; Weinstein et al.

2004).
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Online Appendix Section 3.1 presents additional summary statistics for movers. The average

distance moved is 588 miles, with a median of 357 miles and a standard deviation of 616 miles.

Roughly 68 percent of moves cross state boundaries, and 50 percent cross census division bound-

aries. Moves to Florida account for 12 percent of all moves, and moves to Arizona or California

account for an additional 12 percent; we show in Online Appendix Table 9 that our results are

robust to excluding moves to Florida, Arizona, and California. We also show the distribution of

movers across different destination HRRs. The median HRR receives 1,133 movers; the range of

movers into an HRR is from 135 to 12,797.

Finally, we examine the time-varying correlates of moving. Online Appendix Figure 4 shows

that moving is correlated with an increase in utilization, including a spike up in utilization in the

year of move. We also report evidence from the Health and Retirement Study (HRS) on the reasons

why older Americans move. The study is a nationally representative (approximately biannual)

longitudinal survey of Americans over the age of 50. We limit the HRS sample to individuals

aged 65 and over, and define movers as individuals who move across HRRs. The most common

self-reported reasons for moving are to be “Near/with children” (31 percent), “Health problems

or services” (13 percent), and to be “Near/with relatives or friends” (10 percent). Analysis of the

HRS panel data shows that significant predictors of moving include being widowed and retiring.

Declines in self-reported health status do not predict moving in the panel.

IV. MAIN RESULTS: PATIENT VS. PLACE

IV.A. EVENT STUDY

We begin with two figures that illustrate the variation driving our event study. Figure II shows

a mover’s claims in her destination HRR, as a share of those in either her origin or her destination,

by relative year. The figure shows a sharp change in the year of the move, with only a small

share of claims in the destination pre-move or in the origin post-move.19 The claim share in the

year of the move (relative year zero) is close to 0.5, consistent with moves being roughly uniform

throughout the year. Figure III shows the distribution of δ̂i, the average log utilization in a mover’s

destination minus the average log utilization in her origin. The mean value of δ̂i is close to zero and

19. In Online Appendix Section 4.3, we show that our results are robust to adjusting for the small amount of
apparent measurement error in the timing of moves and to a range of alternative definitions of movers.
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the distribution is roughly symmetric, implying that moves from low- to high-utilization HRRs are

as common as moves from high to low. The standard deviation is 0.25, and there are a significant

number of moves for which the absolute value of the difference is greater than 0.5.

As a first look at the way utilization changes around moves, Figure IV plots the change in log

utilization (the average two to five years post-move minus the average two to five years pre-move)

against the destination-origin difference in log utilization δ̂i. If all geographic variation were due to

place effects, we would expect this plot to have a slope of one. If all variation were due to patient

effects, we would expect this plot to have a slope of zero. One minus the actual slope is an estimate

of a weighted average of the patient share Si
pat .

Figure IV shows that the slope is in fact 0.63, suggesting an average patient share of roughly

0.37. The relationship is symmetric above and below zero, and strikingly linear. This provides

strong support for our additively separable model, which implies that the absolute change in log

utilization when patients move from j to j′ should be the same as when patients move from j′ to

j. These patterns are also consistent with the relative importance of patients being similar across

origin-destination pairs.

We also plot with an “×” in the same figure the average change in log utilization over the same

period for our matched sample of non-movers, to whom we assign δ̂i = 0.20 That this point and

all points for movers have y values greater than zero reflects the positive time and age trends in

utilization. That the point for non-movers lies below the ones for movers with δ̂i ≈ 0 shows that

moving is associated with an increase in utilization on average. This main effect of moving will be

absorbed by our relative year indicators ρr(i,t). We present additional descriptive evidence on the

main effects of moving in Online Appendix Section 3.1.

Figure V shows how pre-move utilization of movers compares to utilization of non-movers in

their origin HRR’s. The plot is identical to Figure IV except that the variable on the y axis is now

the average difference between log utilization of movers two to five years pre-move and that of

their matched non-movers in the same years. The plot has a small upward slope, suggesting that

patients who will move to a high-utilization HRR have relatively higher pre-move utilization than

those who will move to a low-utilization HRR. This slope is an order of magnitude smaller than

the slope in Figure IV. Any systematic differences of this kind in the average utilization of movers

20. See notes to Figure IV for details on this matching.
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will be absorbed by our patient fixed effects αi.

Our main event-study results are shown in Figure VI, which plots estimated coefficients θ̂r(i,t)

from equation (6).21 Since these coefficients are only identified up to a constant term, we normalize

the value for r (i, t) = −1 to 0. The figure shows a sharp, discontinuous jump at the time of the

move, from 0 to approximately 0.5. As discussed above, one minus the size of this jump can also

be interpreted as an estimate of a weighted average of Si
pat . This figure thus implies a patient share

of roughly a half.

Under the assumptions of our model, the plot should be flat in the years before and after the

move. In practice, the plot shows no post trend and a small but statistically significant pre-trend.

This trend could reflect systematic changes in log utilization of movers relative to non-movers.

Because our model restricts both HRR and patient effects to be time constant, it could also pick up

HRR-specific trends that are the same for movers and non-movers but happen to be correlated with

movers’ δ̂i. In our robustness analysis below, we explore extensions that allow our fixed effects to

change over time. We also allow arbitrary pre- and post-move trends for movers by using data only

from the years just before or after the move, in the spirit of a regression discontinuity. Finally, we

show that the event studies look similar when estimated on various balanced panels.

One source of the patient heterogeneity we measure could be habit formation in the sense of

Becker and Murphy (1988): patient preferences today could be a function of patients’ utiliza-

tion in the past. For example, patients who build a habit of getting regular checkups or flu shots

may continue to do so wherever they go. More mechanically, patients who receive diagnoses or

begin treatment in high-utilization areas may continue their treatment even after they move to low-

utilization areas. This would affect the interpretation of our results, since patient characteristics

today would partly reflect the impact of place characteristics in the past.

Several features of Figures IV and VI suggest that the role of habit formation may be limited.

First, stories such as continuing aggressive treatments started pre-move would tend to predict a

lot of persistence for those moving from high- to low-utilization areas, and less persistence for

those moving from low to high. In fact, Figure IV shows that for any given magnitude
∣∣∣δ̂i

∣∣∣ of the

difference between origin and destination log utilization, changes in log utilization look symmetric

21. For computational ease, all of the event studies we report are estimated on the sample of movers only. We
show in Online Appendix Figure 16 that including non-movers does not affect the analysis.
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for moves up and down.22 Second, a signature of most models of habit formation is that utilization

should continue to adjust toward average behavior in the destination in the years following a move.

This is the key pattern that identifies habit formation in Bronnenberg et al. (2012), for example.

However, Figure VI shows remarkably little evidence of post-merge convergence.23 Log utilization

jumps discretely on move but remains almost perfectly flat for up to nine years thereafter, and this

remains true whether we look at moves from low to high-utilization areas or moves from high to

low (see Online Appendix Figure 11). Finally, many habit formation models would predict less

adjustment for older patients, since they have accumulated larger stocks of past experience; we

show in Online Appendix Figure 12 that there is no evidence of such systematic differences by

age. As already mentioned, however, none of this evidence rules out habit formation occurring at

younger ages or over longer time spans than we observe in our data.

IV.B. MODEL ESTIMATES

We exploit the variation captured in Figure VI to estimate equation (2). We use the estimates

to quantify the roles of patients and of places in explaining geographic variation in log utilization.

We present three main types of decompositions.

Table II, which we consider the central set of results in the paper, presents an additive decom-

position of the difference between high- and low-utilization areas. For different sets of high- and

low-utilization HRRs R and R′, we report the sample analogue of the patient share Spat (R,R′) =(
ŷ∗R− ŷ∗R′

)
/(ŷR− ŷR′), as well as the components ŷR− ŷR′ , γ̂R− γ̂R′ , and ŷ∗R− ŷ∗R′ .

Column (1) decomposes the difference between above-median and below-median HRRs. We

find that 47 percent of the difference in average log utilization is due to patients. This estimate is

fairly precise; we can reject a role for patients of more than about 52 percent or less than about 41

percent.

Other partitions of HRRs result in a similar patient share. Patients account for 41 percent of

the difference between the top and bottom quartiles (column (2)), 39 percent of the difference

between the top and bottom deciles (column (3)), and 44 percent of the difference between the top

22. As further evidence, Online Appendix Figure 11 shows similar changes in utilization upon move in event-study
plots separately for moves up (δ̂i > 0) and moves down (δ̂i < 0) .

23. Online Appendix Figure 8 shows that this remains true when we estimate our event study using a balanced
panel.
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and bottom 5 percent (column (4)).24 The final two columns look at two cases discussed in the

introduction: McAllen relative to El Paso, and Miami relative to Minneapolis. Here, we find that

patients account for 36 percent and 30 percent of the differences respectively, though precision

naturally falls with these smaller samples.

The magnitudes are consistent with the event-study analysis, which suggested a patient share of

50 percent based on the jump in log utilization from relative year -1 to 1, as well as with the slope

of Figure IV. That the estimates are not identical reflects the fact that the additive decomposition

is a slightly different experiment—analyzing differences between two groups of HRRs rather than

averaging Si
pat across all movers i—that the model uses all pre- and post-move years rather than

the on-impact effect of the move, and that the model is estimated on both movers and non-movers.

The stability of the patient share across different partitions is consistent with the linear relationship

shown in Figure IV, which implies that Spat( j, j′) is not strongly correlated with y j− y j′ .

We present a second, alternative decomposition in Table III. Here, we ask what share of the

cross-HRR variance in log utilization would be eliminated in a counterfactual where average pa-

tient characteristics y∗j were equalized across HRRs. This is

Svar
pat = 1−

Var
(
γ j
)

Var
(
y j
) . (7)

Similarly, the change if area fixed effects were equalized is

Svar
place = 1−

Var
(

y∗j
)

Var
(
y j
) .

Note that unlike Spat and Splace, this is not an additive decomposition; the sum of Svar
pat and Svar

place

will not be one so long as Cov
(

y∗j ,γ j

)
is nonzero. In estimating the relevant variances and covari-

ances, we correct for sampling error using a split-sample approach.25

24. Online Appendix Figure 19 shows the corresponding event studies for the various partitions shown in columns
(1) through (4).

25. We randomly assign movers within each origin-destination pair and non-movers within each HRR to two
approximately equal-sized subsamples and estimate equation (2) separately on each subsample. We compute the
variance of γ̂ j (or ŷ∗j ) as the covariance between the γ̂ j’s (or ŷ∗j ’s) estimated from the two subsamples. The correlation
between γ̂ j and ŷ∗j is computed from the variances of γ̂ j and ŷ∗j , and the covariance between γ̂ j and ŷ∗j , which we
estimate as the average of the covariances between γ̂ j from one subsample and ŷ∗j from the other subsample.
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We find that 56 percent of variance would be eliminated if patient effects were equalized. We

find that 72 percent of variance would be eliminated if place effects were equalized. We also find

that there is a positive correlation between y∗j and γ j, with patients with a high demand for health

care tending to sort to higher-utilization areas. Because this correlation is positive, Svar
pat and Svar

place

sum to more than one.

The results thus far decompose geographic variation in log utilization. As discussed in Section

II.C above, we believe modeling utilization in logs is appealing both economically and economet-

rically. However, even if our model is correctly specified, quantifying the drivers of geographic

variation in logs is a different exercise than quantifying the drivers of variation in levels, as the

implicit weights on low and high-utilization observations will be different. If the relative impor-

tance of demand and supply factors varied substantially across the distribution of utilization—for

example, because patient preferences were either more or less important in big ticket end-of-life

expenditures compared to low-cost routine care—log and level decompositions could give very

different answers.

To assess the importance of this issue, we present a third decomposition. Here, we ask what our

estimated (log) model implies about the drivers of geographic variation measured in levels—how

differences in level utilization would change if either y∗j or γ j were equalized across places. The

details of this exercise and a complete set of results are presented in Online Appendix Section 4.2.

A limitation to this exercise is that our “additive decomposition” into Spat (R,R′)and Splace (R,R′)

is no longer additive: the difference between the high and low utilization areas in levels is the prod-

uct rather than the sum of the patient and place components, and so the percentage changes when

we equalize one or the other need no longer sum to one. The results suggest that equalizing patient

characteristics across areas would reduce geographic differences by 27 percent, while equalizing

place characteristics would reduce them by 72 percent. As a separate exercise, we show in Online

Appendix Table 8 that simply estimating the model in levels also yields a somewhat lower patient

share (23 percent). We also show in the same table that if we define the outcome to be whether

the patient is in the top X percent of the national distribution of utilization, the patient share ranges

from 17 percent to 51 percent, with some trend toward lower patient shares at the top of the dis-

tribution. Comparing these results directly to our main estimates is difficult, but they suggest that
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the relative importance of patients may be somewhat lower at higher percentiles of the utilization

distribution.

Robustness We explore the robustness of our results along a number of dimensions in Online

Appendix Section 4. Here, we briefly summarize the main conclusions.

First, we show that our results are robust to using observations for movers only in small win-

dows around the move year, in the spirit of a regression discontinuity. This suggests that our

results are not driven by differential utilization trends for movers that are related systematically to

the origin and destination.

Second, consistent with our assumption that patient and place effects are time-constant, we

show that our conclusions are similar if we estimate the model separately on sub-periods of the

data, or allow explicitly for patient and place-specific trends in utilization.

Third, we relax our additive separability assumption by allowing different place effects γ j for

each quartile of patient age. We see this as a step toward a model where γ j and αi interact, since

patient age is the one of the strongest observable predictors of patient demand. This model yields

similar results. As further support for additive separability, we follow Card et al. (2013) and show

that the increase in R2 when we fully saturate the model with patient-place fixed effects is relatively

small.

Fourth, we show that the qualitative conclusions are robust to excluding all observations for

patients who exit or enter the sample due to death or HMO status, suggesting that any bias from

selective attrition is likely small.

Fifth, to assess robustness to our market definition, we show that results are similar if we define

markets at higher or lower levels of geography, and also if we include only movers who cross state

lines or census region boundaries.

Finally, we explore robustness to other implementation decisions. This includes using alter-

native definitions of movers (such as including individuals who move multiple times within our

sample period, or varying the criteria used to define valid moves), using alternative dependent

variables (such as expenditure rather than utilization, or other functional forms for utilization), ex-

cluding non-movers from the estimation altogether, dropping age and relative year as covariates,

and excluding moves to Florida, Arizona, and California.
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IV.C. OTHER OUTCOMES

In Table IV, we replicate our main decomposition results for the following alternative compo-

nents of annual utilization: dummies for whether a patient has (i) seen a primary care physician,

(ii) seen a specialist, (iii) been hospitalized, or (iv) visited the emergency room; the log of one plus

(i) the number of diagnostic tests the patient received, (ii) the number of imaging tests the patient

received, (iii) the number of preventive care measures the patient received, (iv) the number of dif-

ferent doctors the patient saw, (v) inpatient utilization, (vi) outpatient utilization, (vii) emergency

room utilization, and (viii) other utilization. Detailed definitions of these measures are provided in

Online Appendix Section 2.2. For each row, we re-estimate equation (2) with yi jt defined to be the

measure in question. We then report the sample mean of the outcome measure, the difference in

the mean of the outcome measure between above- and below-median HRRs, and the share of this

difference due to patients, where the partitions into above- and below-median are defined based on

the outcome measure in question and so vary across rows.

The results suggest that the patient share varies from a low of 0.09 for diagnostic tests to a

high of 0.71 for emergency room visits.26 A natural hypothesis is that this variation reflects the

degree of patient involvement in decision making: the outcomes for which we find a large patient

share—preventive care and emergency room visits, for example—tend to be ones where we might

think patients have a significant amount of discretion, while the outcomes for which we find a

smaller patient share—diagnostic tests, imaging tests, and inpatient care, for example—tend to be

ones where we might think more discretion lies with physicians.

We can make this hypothesis more precise through a slight revision of our model. In equation

(1) above, we assume that physicians unilaterally choose the level of care yit based on their percep-

tion ũ j () of the patient’s utility. Suppose instead that for a particular outcome m (diagnostic tests,

emergency room visits, etc.), the quantity chosen maximizes a combination of the physician’s and

26. Online Appendix Figure 10 shows event-study graphs parallel to Figure VI for each of these outcomes. As
with our main utilization measure, we observe in each case large discontinuous changes on move and relatively small
trends pre- or post-move. The size and direction of the pre- and post-trends vary somewhat across outcomes, and so as
a robustness check Online Appendix Table 7 shows the results are similar in magnitude when we limit the estimation
sample for movers to one year pre- or post-move.
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the patient’s incentives:

ym
it = argmax

y
κmu(y|hit ,ηi)+(1−κm)

[
ũ j (y|hit ,ηi)−PC jt (y)

]
. (8)

Here the parameter κm reflects the weight of the patient relative to the physician in decision making

or bargaining. The patient share Spat ( j, j′) is increasing in κm holding other parameters of the

model constant, so long as Spat ( j, j′) ∈ [0,1]. For outcomes such as emergency room visits, where

the patient may decide whether or not to go unilaterally, we might expect κm to be high, consistent

with the high observed patient share; for outcomes such as diagnostic or imaging tests, we would

expect κm to be lower, consistent with the low observed patient share. None of these modifications

substantively change our conclusions.

V. CORRELATES OF PATIENT AND PLACE EFFECTS

Both the patient and place components of utilization could reflect a range of underlying eco-

nomic primitives. In Section IV.A above, we argued that the evidence looks inconsistent with

patient effects being primarily driven by either habit formation or persistence of specific treat-

ments started pre-move. Here, we provide additional evidence on mechanisms by exploring the

observable correlates of our estimated place effects (γ̂ j) and average patient effects (ŷ∗j).

We focus on observables that proxy for the main demand and supply factors suggested by the

model in Section II.A. We present detailed definitions, data sources, and summary statistics for

these measures in Online Appendix Section 3.2.

For places, we are interested in proxies for net private costs (PC jt) and physician beliefs (λ j).

The literature discussed in Section II.B suggests a number of economic drivers of the former, in-

cluding physical capital, human capital, and organizational form. As proxies, we use hospital beds

per capita, primary care physicians per capita, specialists per capita, hospital quality of care scores,

and the share of hospitals that are non-profit. To capture physician beliefs about appropriate prac-

tice style, we draw on survey-based measures from Cutler et al. (2015).27 They present a sample of

physicians with patient vignettes and ask them to rate the likelihood they would recommend differ-

ent courses of action. We use the shares of primary care physicians and cardiologists respectively

27. We are grateful to the authors for sharing these data, as well as the patient survey data discussed below.
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in each HRR who recommend levels of follow-up care greater (“high follow-up”) or less (“low

follow-up”) than clinical guidelines suggest, as well as the respective shares who recommend ag-

gressive (“cowboy”) or less aggressive (“comforter”) end-of-life care.

For patients, we are interested in proxies for average treatment preferences (ηi) and health

status (hit) in each HRR. We include survey-based measures of preferences collected by Cutler

et al. (2015): the shares of patients in each HRR who would request additional tests or specialist

referrals even if not recommended by their primary care physician (“have unneeded tests” and “see

unneeded cardiologist”), and the shares that would choose relatively more or less aggressive end-

of-life care (“aggressive” and “comforter” patient shares). We also use average patient age, race,

and sex from the Medicare claims data, as well as median household income and high school com-

pletion rates from census data. These demographics could proxy for both preferences and health.

Finally, we include standard health measures derived from the diagnoses recorded in Medicare

claims. These are the log of the Hierarchical Condition Categories (HCC) score, and the log of one

plus: the count of a patient’s chronic conditions, the Charlson Comorbidity Index, and the count

of a patient’s Iezzoni Chronic Conditions.

An important challenge arises with interpreting these standard health measures. While they are

intended to capture the underlying health status of a patient, Song et al. (2010) document evidence

that they in fact include a large measurement error component that varies systematically by place.

In places that treat more aggressively, a given underlying condition is more likely to be diagnosed,

and more likely to be recorded in claims conditional on being diagnosed. This makes interpreting

the correlations of the raw health measures with patient and place components difficult, and it has

led the literature on geographic variation to be cautious about inferring the role of patient health.

The empirical strategy developed in this paper gives us a way to extend the approach developed

by Song et al. (2010) and purge these measures of the place-specific measurement error component.

We model a given observed health measure hmeas
i jt as the sum of true health hit and a place-specific

measurement error ξi jt that in turn depends on place and year fixed effects and an orthogonal

mean-zero error term. This yields a model with the same functional form as equation (2), where

the dependent variable is now hmeas
i jt . Estimates of this model allow us to difference out the place-

specific measurement error and recover a corrected estimate ĥit of patient health. Details of this

exercise, and the associated event-study figure showing changes in measured health around moves,
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are in Online Appendix Section 1; we estimate that about 50 percent of the geographic variation in

measured health reflects place-specific measurement error. We use the corrected health measures

throughout the analysis below.

Before turning to the results, we note that because the correlations we are looking at are cross-

sectional, they are likely to pick up the kind of long-term endogenous response of physical and

human capital to patient demand documented in Chandra and Staiger (2007). For example, places

that start out with sicker patients may build more hospitals and hire doctors trained in aggressive

treatments. This would imply that the place component of utilization could be correlated with

patient proxies such as health (as seen in Figure VII), and that the patient component could be

correlated with place proxies such as number of hospitals or share of cowboy physicians (as we

will now see).

Figure VII summarizes the correlates of the estimated place effects (γ̂ j). Each row represents

a different proxy variable. The points in the left panel are coefficients from separate bivariate

OLS regressions. The points in the right panel are coefficients from post-Lasso multivariate OLS,

where a subset of the variables shown in the left panel were selected in a first-stage Lasso regres-

sion (Belloni and Chernozhukov (2013)).28 All variables are standardized so that the coefficients

report the association between a one standard deviation change in the covariate and the respective

outcome. The sample is limited to the 96 HRRs (representing about 60 percent of our baseline

sample) for which the measures of patient preferences and physician beliefs are available from

Cutler et al. (2015). We present results using the full set of HRRs and omitting the Cutler et al.

(2015) measures in Online Appendix Table 13.

The results show that HRRs with more hospital beds per capita, a higher share of cowboy

cardiologists, and a lower share of non-profit hospitals are all associated with statistically signif-

icantly higher place effects. HRRs with more female patients, less educated patients, and sicker

patients by any measure are also associated with higher place effects. The post-Lasso multivariate

regressions show that the shares of cowboy cardiologists and the number of non-profit hospitals

remain significant, as does patient health. The evidence is therefore consistent with past literature

28. In the first stage we select variables using Lasso regression with a penalty chosen by 10-fold cross-validation to
minimize the mean-squared error; in the second stage we report the coefficients and standard errors from multivariable
OLS on the selected covariates. Online Appendix Figures 17 and 18 show the set of covariates that would have been
chosen for alternative values of the penalty.
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highlighting physician beliefs (Cutler et al. 2015) and endogenous responses to patient demand

(Chandra and Staiger 2007) as key drivers.

Figure VIII shows analogous results for the estimated average patient effects (ŷ∗j). Consistent

with intuition, we see that HRRs with older patients, sicker patients (by any of the health measures),

female patients, and higher SES patients (as measured by income or education) are associated with

statistically significant higher average patient demand. The first two of these seem clearly related

to health status; the latter two could reflect differences in preferences. We also see that places

where hospitals with higher quality of care (“Compare”) scores are also associated with statisti-

cally significant higher average patient effects, an association that might reflect reverse causality.

The post-Lasso multivariate regression confirms the intuitive pattern for the patient characteristics,

with gender, education, and health all remaining significant; several place characteristics also have

significant coefficients, perhaps again partly reflecting reverse causality.

One of the clearest takeaways from this analysis is that patient health status is a strong predictor

of both components of utilization. Were we to take the leap and view these relationships as causal,

the bivariate correlation in Figure VIII would suggest that equalizing the chronic conditions mea-

sure across areas would reduce the gap in the patient component of log utilization between above-

and below-median areas from 0.13 to 0.04.29 Recalling that the overall gap in utilization is 0.28

(Table II), this implies that (0.13−0.04)/0.28 or 32 percent of the overall gap could be attributed

to the demand-side differences in observable patient health.

Following recent literature (e.g., Zuckerman et al. 2010), we can refine this estimate by using

individual-level rather than cross-area variation to determine the coefficient linking health status to

utilization. That is, rather than using the bivariate OLS coefficient from Figure VIII, we can use the

coefficient from an individual-year-level panel regression of log utilization of non-movers on the

adjusted health measure in question along with HRR and year fixed effects.30 Here, the main dif-

29. The standardized bivariate coefficient on log chronic conditions in Figure VIII is 0.074. Converting this to
unstandardized units by dividing by the standard deviation of the health measure (0.042) yields a coefficient of 1.76.
The average of the log chronic conditions measures is 1.25 in above-median HRRs and 1.20 in below median HRRs,
so we predict that this gap falls by 1.76×(1.25-1.20) or 0.088.

30. That is, for the sample of non-movers, we estimate:

yit = γ
obs
j + τ

obs
t + ĥitφ + ε

obs
i jt ,

where γobs
j , τobs

t and εobs
i jt are, respectively, area fixed effects, year fixed effects, and an error term, distinct from those

in equation (2), and ĥit is one of our corrected health measures constructed as described in Online Appendix Section
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ference relative to past work based on similar regressions is the ability to correct for measurement

error in observed health.

The results of this decomposition are shown in Table V. To emphasize the importance of our

measurement error correction, the first four rows show results using the raw, unadjusted health

measures. They suggest that failing to account for measurement error would lead us to attribute

between 40 and 80 percent of the log utilization difference between above- and below-median

areas to patient health. (The bottom end of this range is close to the estimate in Zuckerman et al.

2010.) The bottom four rows show results using our adjusted measures. We find that between 22

and 37 percent of the log utilization difference can be explained by patient health.

We have already stressed that this is a predictive rather than causal relationship. A further im-

portant caveat is that our measurement error correction only adjusts for place-level sources of error.

Our corrected measures could still include other forms of measurement error. In particular, patients

with a preference for visiting the doctor more often may be more likely to have their conditions

recorded in claims, leading our adjusted measure to partly reflect differences in preferences.

Our findings on health may be of some interest beyond the study of geographic variation.

We provide a way to quantify and correct for the measurement error identified by Song et al.

(2010), and show that the endogenous error component accounts for a large share of the geographic

variation in measured health. Our corrected measures may have other applications in the large

literature that uses health status measures as inputs into risk adjustments.

VI. CONCLUSION

Looking at over-65 Medicare beneficiaries, we find robust evidence that 40 to 50 percent of

geographic variation in the log of health care utilization is due to fixed characteristics of patients

that they carry with them when they move. The remaining 50 to 60 percent of variation is due to

place-specific factors. Patients matter more for outcomes such as emergency room visits where

they have substantial discretion, and they matter less for outcomes such as diagnostic and imaging

tests where the physician is the main decision-maker.

Our analysis of mechanisms suggests that a substantial share of the patient component can in

1. We then estimate the share of the utilization gap between two areas R and R′ attributable to patient health as
φ
(
hR−hR′

)
/(yR− yR′) where hR is the average of ĥit in R, with the average computed analogously to yR.
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turn be attributed to differences across areas in average health status. The remainder likely reflects

a combination of both unmeasured health and preferences. We also find intriguing correlations

with our estimated place effects, which suggest, among other things, that areas with higher place

components of log utilization also have physicians who believe in a more aggressive practice style,

fewer non-profit hospitals, and a sicker population.

These findings both reinforce and refine the conclusions of the existing literature on geographic

variation. On the one hand, they confirm that supply-side variation plays an important role, and ar-

gue against claims that the role of the supply side is negligible. On the other hand, they clarify that

a large component of variation is in fact due to differences in patient health, and suggest that both

patient preferences and unmeasured health differences may play a larger role than conventional

wisdom would suggest.

Our results do not permit us to draw strong conclusions about welfare. Variation on the supply

side may be, but need not be, inefficient. The correlation of our place component with the health of

the local population suggests that at least some of the former may be due to endogenous responses

of human and physical capital. In the presence of such adjustments, we would expect non-trivial

supply-side variation even in a first-best world. Conversely, demand-side variation need not be

fully efficient; patient demand may reflect misinformation or behavioral biases that could poten-

tially be corrected by policy. Continuing to drill down on the efficiency implications of geographic

variation remains an important goal for future work.

Even without direct welfare implications, some of the patterns of changes we observe have

potential implications for policy. For example, the event-study evidence that place effects have

immediate rather than gradual effects on movers implies that changing supply-side factors such

as doctor practice styles could have large effects in the short run. At the same time, the lack

of post-move convergence suggests that policies aimed at changing demand-side factors such as

patient preferences may have at best very gradual effects, at least among the 65 and over population

(Moses et al. 2013).
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Table I
Summary Statistics

(1) (2)

Non-movers Movers

Female 0.57 0.60

White 0.86 0.88

Age first observed:

65−74 0.67 0.59

75−84 0.24 0.31

≥ 85 0.09 0.09

First observed residence:

Northeast 0.20 0.17

South 0.39 0.41

Midwest 0.26 0.19

West 0.16 0.23

Annual utilization:

Mean $7,796 $7,399

S.D. $12,690 $9,567

Share of patient-years with zero 0.06 0.06

Number of chronic conditions:

Mean 2.98 3.30

S.D. 2.15 2.06

Share of patient-years with zero 0.18 0.15

Average # of years observed 6.26 7.45

Share who die during sample 0.35 0.32

Share of patient-years excluded because

patient is in Medicare Advantage that year 0.18 0.20

# of patients 2,033,096 497,097

# of patient-years 12,730,766 3,702,189

Notes: Rows for female, white, age first observed, and first observed residence report the shares of patients with
the given characteristics among movers and non-movers. Patient-years in Medicare Advantage are excluded from
the baseline sample. The denominator for the row “Share of patient-years excluded because patient is in Medicare
Advantage that year” is the sample of all movers and 25 percent of non-movers, before any other sample restrictions.
In all other rows, the sample is the baseline sample of all movers and 25 percent of non-movers (N = 16,432,955
patient-years).
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Table II
Additive Decomposition of Log Utilization

(1) (2) (3) (4) (5) (6)
Above /
below

median

Top &
bottom

25%

Top &
bottom

10%

Top &
bottom

5%

McAllen &
El Paso

Miami &
Minneapolis

Difference in average log
utilization

Overall 0.283 0.456 0.664 0.817 0.587 0.667
Due to place 0.151 0.271 0.406 0.461 0.374 0.466
Due to patients 0.132 0.185 0.258 0.356 0.213 0.200

Share of difference due to
Patients 0.465 0.405 0.388 0.435 0.363 0.300

(0.027) (0.029) (0.026) (0.025) (0.161) (0.088)

Place 0.535 0.595 0.612 0.565 0.638 0.700

Notes: Table is based on estimation of equation (2), where the dependent variable yi jt is log utilization and the controls
xit are indicators for age in five-year bins. The adjusted R-squared from estimating equation (2) is 0.503. Each column
defines a set of areas R and R′. In columns (1)-(4) these are based on percentiles of average utilization y j. The first
row reports the difference in average utilization overall between the two areas (ŷR− ŷR′); the second row reports the
difference due to place (γ̂R− γ̂R′); the third row reports the difference due to patients

(
ŷ∗R− ŷ∗R′

)
. The fourth row

reports the share of the difference in average utilization between the two areas due to patient
(
Ŝpat (R,R′)

)
which

is the ratio of the third row to the first row. The last row reports the share of the difference in average utilization
between the two areas due to place

(
Ŝplace (R,R′)

)
which is the ratio of the second row to the first row. Standard errors

(in parentheses) are calculated using a bootstrap with 50 repetitions at the patient level. The sample is movers and
non-movers, excluding relative year zero (N = 16,031,875 patient-years).
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Table III
Variance Decomposition of Log Utilization

(1)
Cross-HRR variance of average:

Log utilization 0.035
HRR effects 0.015
Patient effects 0.010

Correlation of average
HRR and patient effects 0.353

(0.052)

Share variance would be reduced if:
HRR effects were made equal 0.717

(0.014)
Patient effects were made equal 0.558

(0.013)

Notes: Results based on estimates of equation (2). The first row reports variance of ŷ j, which is estimated using the
same specification as in Table II. The second, third, and fourth rows report the variance of γ̂ j, variance of ŷ∗j , and the
correlation between γ̂ j and ŷ∗j , respectively, using a split-sample approach to correct for the (correlated) measurement
error in γ̂ j and ŷ∗j . The last two rows of the table report the share of the variance in cross-HRR utilization that would
be reduced if HRR effects were made equal across areas (Ŝvar

place) and if patient effects were made equal across areas
(Ŝvar

pat ). Standard errors (in parentheses) are calculated using a bootstrap with 50 repetitions at the patient level. The
sample size is the same as in Table II.
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Table IV
Components of Utilization

(1) (2) (3)
Utilization measure Mean of

utilization
measure

Above / below
median difference in
utilization measure

Share due to patients

(1) Baseline: Log(utilization) 7.193 0.283 0.465 (0.027)

(2) Seen a primary care physician 0.884 0.042 0.452 (0.027)
(3) Seen a specialist 0.815 0.051 0.322 (0.024)
(4) Any hospitalization 0.226 0.037 0.410 (0.034)
(5) Any emergency room visit 0.346 0.045 0.714 (0.031)

(6) Log(# of diagnostic tests) 1.449 0.550 0.092 (0.008)
(7) Log(# of imaging tests) 0.842 0.220 0.142 (0.014)
(8) Log(# of preventive care measures)a 1.376 0.098 0.611 (0.018)
(9) Log(# of different doctors seen) 1.525 0.113 0.392 (0.016)

(10) Log(inpatient utilization)b 2.004 0.340 0.242 (0.035)
(11) Log(outpatient utilization)b 6.890 0.193 0.358 (0.031)
(12) Log(emergency room utilization)b 2.296 0.352 0.639 (0.031)
(13) Log(other utilization)b 3.430 0.957 0.124 (0.010)

Notes: Table reports the share of the difference in utilization between above and below median HRRs due to patients,
analogous to column (1) of Table II, with the dependent variable yi jt defined to be various components of utilization.
The partition of HRRs into above and below median groups is based on the utilization of individuals in the baseline
sample and differs in each row according to the definition of utilization used. Column (1) reports the mean of the
utilization measure for the given sample. Column (2) reports the difference in the average utilization measure between
above and below median HRRs (ŷR− ŷR′ ). Column (3) reports the share of the difference in column (2) that is due to
patients (Ŝpat (R,R′)). All log outcome measures are the log of the outcome plus one. Online Appendix Table 11 shows
the percent with zero for each of these outcomes. Standard errors (in parentheses) are calculated using a bootstrap
with 50 repetitions at the patient level. The sample size is the same as in Table II.
a“# of preventive care measures” is a count of the number of the following preventive treatments the patient re-
ceived in the past year: Ambulatory Care, Eye Screening, Hemoglobin Test, Lipid Screen, Cardio Screen, Diabetes
Management, Pelvic Screen, Bone Mass Test, Colorectal Cancer Screening, and Flu Shot, or in the past two years:
Mammogram, Pap Test, and Prostate Cancer Screening.
bThese four measures are mutually exclusive and exhaustive.
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Table V
Variation in Log Utilization Explained by Patient Health

(1)
Share of above / below median

utilization difference due to
patient health

Raw health measure
(1) Log(HCC score) 0.435
(2) Log(Charlson Comorbidity Index) 0.483
(3) Log(# of Iezzoni chronic conditions) 0.483
(4) Log(# of chronic conditions) 0.794

Corrected health measure
(5) Log(HCC score) 0.220
(6) Log(Charlson Comorbidity Index) 0.242
(7) Log(# of Iezzoni chronic conditions) 0.256
(8) Log(# of chronic conditions) 0.371

Notes: Table reports shares of the difference in average log utilization between above-median and below-median
utilization HRRs explained by observable patient health (Ŝobs

pat (R,R
′)). Rows (5)-(8) use the patient component (hit ) of

health measures estimated from Online Appendix equation (1). All log outcome measures are the log of the outcome
plus one, except the HCC score which is simply the log of the outcome (there are no zeros). Online Appendix Table 11
shows the percent with zero for each of these outcomes. The sample size is the same as in Table II in rows (1)-(7). In
row (8), the sample also excludes the year 1998, as chronic conditions are not observed in that year (N = 14,598,443
patient-years).
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Figure I
Distribution of Utilization Across HRRs
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Notes: Map shows the distribution of level utilization in quintiles. Lower and upper limit of each quintile are displayed
in the legend. The sample is all movers and non-movers (N = 16,432,955 patient-years). Histogram displays the
distribution of average utilization by HRR. We first average utilization across individuals within each HRR-year,
upweighting non-movers by four, and then take a simple average within HRR across years.
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Figure II
Share of Claims in Destination by Relative Year
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Notes: Figure shows the share of a mover’s claims located in their destination HRR, among those in either their origin
or their destination HRR. The sample is all movers (N = 3,702,189 patient-years).

43



Figure III
Distribution of Destination-Origin Difference in Log Utilization
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Notes: Figure shows the distribution across movers of the difference δ̂i in average log utilization between their origin
and destination HRRs. The sample is all movers (N = 3,702,189 patient-years).
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Figure IV
Change in Log Utilization By Size of Move
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Notes: Figure shows the change in log utilization before and after move. For each mover, we calculate the difference
δ̂i in average log utilization between their origin and destination HRRs, then group δ̂i into ventiles. The x-axis displays
the mean of δ̂i for movers in each ventile. The y-axis shows, for each ventile, average log utilization two to five years
post-move minus average log utilization two to five years pre-move. The line of best fit is obtained from simple OLS
regression using the 20 data points corresponding to movers, and its slope is reported on the graph. The sample is all
mover years between two and five years pre-move and between two and five years post-move (N = 1,919,137 patient-
years). For comparison, we also compute the average change in log utilization for a sample of matched non-movers,
which we show with the “×” marker on the graph. Specifically, for each mover in our data in each calendar year, we
randomly draw a non-mover in the same year in the mover’s origin HRR who shares the mover’s gender, race, and
five-year age bin; the union of the selected non-mover patient-years forms the matched sample.

45



Figure V
Pre-move Differences in Log Utilization
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Notes: Figure shows the level of pre-move log utilization for movers relative to non-movers by the size of their
subsequent move δ̂i. For each mover, we calculate the difference δ̂i in average log utilization between their origin
and destination HRRs, then group δ̂i into ventiles. The x-axis displays the mean of δ̂i for movers in each ventile.
The y-axis shows for each ventile the average of difference in log utilization between mover and matched non-mover
patient-years two to five years pre-move. In Figure IV we describe the construction of the matched sample of non-
movers. The line of best fit is obtained from simple OLS regression using the 20 data points, and its slope is reported
on the graph. The sample is all mover years between two and five years pre-move (N = 1,048,843 patient-years).
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Figure VI
Event Study

−
.2

5
0

.2
5

.5
.7

5
1

L
o
g
 U

ti
li
z
a
ti
o
n
 (

C
o
e
ff
ic

ie
n
t)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

Year Relative to Move

Notes: Figure shows the coefficients θ̃r(i,t) estimated from equation (6). The coefficient for relative year -1 is normal-
ized to 0. The dependent variable yit is log utilization; xit consists of indicator variables for five-year age bins. The
dashed lines are upper and lower bounds of the 95 percent confidence interval. We construct this confidence interval
using a two-step procedure. In the first step, for each HRR j, we construct the asymptotic distribution of ȳ j, which is a
normal distribution with mean µ j and standard deviation σ j calculated from the data. In the second step, we bootstrap
equation (6) with 50 repetitions drawn at the patient level, making a random draw from the distribution of ȳ j for each
mover’s origin and destination to construct their δ̂i for each repetition. The sample is all movers (N = 3,702,189
patient-years).
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Figure VII
Correlates of Average Place Effects
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Notes: Figure shows bivariate OLS regression results (left panel) and post-Lasso multivariate regression results (right panel) of HRR-level place
effects on a set of HRR-level characteristics. All covariates have been standardized to have mean zero and standard deviation one. To obtain the
post-Lasso estimates, we first run a Lasso regression on the full set of covariates, with the penalty level chosen by a 10-fold cross-validation to
minimize mean squared error. We then run an OLS regression on the set of covariates chosen by the Lasso regression. The sample in both panels is
the 96 HRRs for which all covariates are available. Horizontal bars show 95 percent confidence intervals. Hospital Compare Score approximates
hospital quality using timely and effective care measures publicly reported by CMS. Specialists Per Capita, PCP Per Capita, and Hospital Beds
Per Capita count specialists, primary-care physicians, and hospital beds per thousand residents, respectively. Non-Profit Hospitals is the percent
of hospitals that are non-profit. Physican preference measures are drawn from survey responses of PCPs and Cardiologists from Cutler et al.
(2015); physicians classified as High Follow-up or Low Follow-up recommend follow-up visits more (or less) frequently than clinical guidelines
suggest; physicians classified as Cowboy recommend care more intensive than guidelines suggest, and those classified as Comforter recommend
palliative care for severely ill patients. Average Age, Percent Black, and Percent Female are computed among all patients in our baseline sample of
Medicare beneficiaries. Median Family Income is the median income of households across zipcodes in each HRR taken from Census data. Average
Education is the percent of the 25 and over population with a high school degree as computed from Census data. The Health variables are all the
estimated patient components of a series of health measures as described in Online Appendix Section 1. The Patient Preferences variables are
drawn from Cutler et al. (2015) and detail Medicare beneficiaries’ survey responses to desired care in hypothetical cases; Have Unneeded Tests
and See Unneeded Cardiologists are the fraction of patients who would desire such treatment regimens; Aggressive Patient provides the fraction of
patients who would like aggressive end-of-life care; and Comforter Patient provides the fraction of patients who would like palliative end-of-life
care even if it shortens their life.
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Figure VIII
Correlates of Average Patient Effects
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Notes: Figure shows bivariate OLS regression results (left panel) and post-Lasso multivariate regression results (right panel) of HRR-level patient
effects on a set of HRR-level characteristics. Procedure and explanatory variables are the same as in Figure VII.
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