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Abstract

The thesis is divided into two parts. In the first part we describe methods for mitigat-
ing the degradation in performance caused by high latencies in parallel and distributed
networks. For example, given any “dataflow” type of algorithm that runs in T steps on
an n-node ring with unit link delays, we show how to run the algorithm in O(T) steps
on any n-node bounded-degree connected network with average link delay O(1). This
is a significant improvement over prior approaches to latency hiding, which require
slowdowns proportional to the mazimum link delay. In the case where the network
has average link delay daye, our simulation runs in O(y/duel) steps using n/v/dave
processors, thereby preserving efficiency. We also show how to efficiently simulate an
n X n array with unit link delays using slowdown O(d?/3) on a 2-dimensional array
with average link delay dav.. Lastly, we present results for the case in which large
local databases are involved in the computation.

In the second part of the thesis we design schedules that provide per-packet delay
guarantees in connection-oriented networks. We consider a network with arbitrary
topology on which a set of sessions is defined. For each session i, packets are injected
at a rate r; to follow a predetermined path of length d;. Due to limited bandwidth,
one packet at a time may advance on a link. Packets therefore may experience end-
to-end delays while traversing from their sources to their destinations. For the first
time, we present an asymptotically-optimal schedule that achieves a delay bound of
O(1/r; + d;) for every session- packet, as long as the total rates add up to less than
1 on each link. An additional bonus is that only constant queues are needed at the
switches. We also describe a simple distributed algorithm that, with high probability,
delivers every session-i packet to its destination within O(1/+; + d; log(m/rmin)) steps
of its injection where rpy;, is the minimum session rate, and m is the number of links
in the network.
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Chapter 1

Introduction

Recent technology advances have motivated a great deal of research in the fields of
computation and communication. One general problem is network latency, i.e. the
delay experienced by information as it travels from one location to another. Since
latency has a direct impact on performance, we investigate this issue in two contexts.
First, we study how to hide the effect of communication delay in high performance
computing. Second, we present methods that ensure fast information delivery in
communication networks.

Much effort is directed towards satisfying the increasing demands of paralle! and
distributed computing. One line of research is devoted to massively parallel processors
(MPPs) that are dedicated to parallel computing, e.g. CRAY supercomputers and
Connection Machines. Networks of workstations (NOWs) provide another platform
for high performance computing [3]. The idea here is to connect desktop computers
that are designed for small interactive jobs over a network. In this way, NOWs
are capable of acting as a distributed supercomputer. Among various other issues
such as job scheduling and load balancing, communication latency determines the
efficiency of computing, especially when a NOW is involved. In Part I of this thesis,
we devise methods for mitigating the impact of communication latency in parallel
and distributed computing.

Many experts believe that the communication networks of the future will be based

en Asynchronous Transfer Mode (ATM) technology, which will enable the integra-
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tion of traffic with a wide range of characteristics within a single communication
network [28]. A central problem in the design of ATM networks is that of providing
quality-of-service (QoS) guarantees, such as the guarantees on bandwidth, delay, jitter
and packet loss. These issues are particularly important if the networks support real-
time traffic such as voice and video. Good scheduling algorithms can ensure fairness
among the traffic streams and the efficient use of the network resources. In Part II
of this thesis, we study the scheduling disciplines for connection-oriented packet-
switched networks, e.g. ATM. We design schedules that efficiently deliver packets to

their destinations, thereby providing end-to-end delay guarantees.

1.1 Hiding Latency for Parallel and Distributed
Computation

In Part I of this thesis, we devise methods for mitigating the impact of latency in
parallel and distributed computing. We focus on a model of processors interconnected
by a bounded-degree fixed-connection network. The network may be either well-
structured (such as an array) or unstructured (such as an arbitrary binary tree), and
it may be either real or virtual. We assume that each link (or edge) in the network
has a delay which models the latency associated with using the link. We also assume
that the links have sufficient bandwidth and can be pipelined.

Most papers describing algorithms for parallel or distributed computation assume
a model of computation in which all the links have unit delay. Such a model is nice to
work with and it is realistic for some parallel machines, but not for most. In reality,
there are often substantial delays associated with some or all of the links. These
delays can be caused Ly long wires, links that are realized by paths that go through
one or more intermediate switches, wires that are required to go off-chip or off-board,
communication overheads, and/or by the method which is used to prepare a packet
for entry into the network. Link delays are an even greater concern for distributed

machines and NOWs. This is because some latencies can be very high (due to the
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fact that some processors can be far apart physically) and also because the variation
among latencies can be high (since some processors may be very close or even part

of the same tightly-coupled parallel machine).

Traditional Approaches

Since communication latency is an important factor in the performance of a parallel
or distributed algorithm, several methods have been devised in an attempt to com-
pensate for latency. The simplest of these methods is to slow down the computation
to the point where the latency is accommodated. This approach is most commonly
used at the circuit level, where the clock speed is set to be slow enough so that all of
the data has time to reach its destination before the next step begins. This means
that the circuit needs to be slowed down to accommodate the highest latency. Such
an approach is clearly less than desirable in the context of a NOW with high-latency
links.

An alternative approach is to organize the network in a hierarchical fashion so
that the latencies are consistent with the hierarchy. For example, the CM-5 [1, 36]
is organized into a fat tree and the KSR consists of two levels of nested rings. In
both cases, the highest latency links are segregated into the top levels of the network
hierarcky. This type of architecture works well for applications in which most of the
computation is local since local computation can proceed using the low-level low-
latency links. Cnly rarely, it is hoped, would the high latency links be needed. Thus.
only certain steps of the computation would be slow. Unfortunately, this approach is
not suitable for scenarios where the network is unstructured (which is often the case
for a NOW) or when the underlying application requires frequent communications
through the high-level links.

Redundant computation is another approach that has been used in the past [12,
30, 35] to hide the effects of latency. Here the idea is to avoid latency by recomputing
data locally instead of waiting to receive it through a high-latency link.

Probably the most generally applicable method of hiding latency is the approach

known as complementary slackness. The idea behind this approach is to load each
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processor with enough work so that it stays productive while waiting for data to
be supplied by the network. There are many implementations and incarnations of
this method. For example, each processor in the CRAY YMP C-90 keeps busy by
operating on a pipeline of 128 64-bit words. Processors on the HEP machine [53]
swapped between unrelated threads while waiting for the data. The CM-1 and CM-
2 were designed to simulate much larger virtual machines so that a single processor
would perform the computation of many virtual processors [8, 57]. The technique also
forms a critical component of Valiant’s bulk synchronous model of parallel comput-
ing (59, 60] and it has been employed in several algorithms papers [5, 26, 30, 37, 50].

Unfortunately, in all of the preceding examples, it is incumbent on the program-
mer to provide the slackness or pipelining needed or to determine what part of the
computation must be redundantly duplicated and by which processors to overcome
the latencies in the network. Even in the scenario where a large virtual network is
being simulated on a small parallel machine, it is incumbent on the programmer to
find the parallelisi necessary to efficiently implement the algorithm on a (potentially

very large) virtual network.

Our Goal and Results

The goal of our research is to devise automatic methods for hiding latency. Our ap-
proach falls within the broad class of methods based on complementary slackness, but
does not require the programmer to provide slackness, pipelines, or greater parallelism
in order to hide the latency. Rather, our methods attempt to find the slackness auto-
matically. By automatically finding the slackness, we hope to allow the programmer
to assume that there are nniform delays on each link of the network, thereby easing
the task of writing code. Moreover, our methods will enable us to automatically
convert a program that was written for a well-structured unit-delay machine into a
program that will run with minimal degradation in performance on a network with
potentially large and variable latencies, at least for certain classes of networks.

In this thesis, we devise automatic methods for latency hiding on rings, linear

arrays and 2-dimensional arrays. These are the simplest networks for parallel algo-
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rithms. Nevertheless, they support a rich class of interesting and important parallel
algorithms. A large number of examples can be found in [34]. We consider the
problem of implementing any “dataflow” type of algorithm that is designed for an n-
processor guest ring with unit-delay links on an n-processor host ring with arbitrary
link delays. A priori, it would seem that any such implementation would require
slowdown dpax Where dpax is the largest delay in the host. Indeed, this is the delay
that would be incurred by many prior approaches. Among other things, we show how
to accomplish a slowdown of O(v/daye), Where da. is the average delay. Efficiency is
preserved here if we use only n/1/d,. processors to carry out the computation. The
improvement is particularly impressive in the case when dyax > dave, Which is often
the case for NOWs. We also consider the problem of simulating an n X n array with
unit-delay links on an n x n array with arbitrary delays, and achieve a slowdown of
O(d2/?). When large databases are involved in the computation we use the method

of redundant computation for latency hiding. We postpone the detailed description

of the computation models and our results to Chapter 2.

1.2 Dynamic Packet Routing with Delay Guaran-
tees

In Part II of this thesis we study scheduling disciplines for packet-switched networks.
Modern integrated services networks, such as broadband integrated services digital
networks (B-ISDN), carry a wide range of traffic types over a single communication
network.\ Traffic streams with different characteristics have different requirements.
For example, file transfer requires absolute accuracy, but. it can tolerate relatively high
end-to-end delay, i.e. the transfer time. On the other hand, for real-time services such
as audio, video and interactive multi-player games, it is crucial to provide quality-of-
service (QoS) guarantees such as minimum delay and jitter.

The choice of an appropriate scheduling discipline is key to achieving performance

bounds. Mitra and Ziedins [39] note that a good scheduling scheme satisfies both
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fairness and efficiency constraints. The former guarantees a given grade of service
to each application while the latter ensures the network resource is not underused.
Keshav points out some common performance parameters in [28], including band-
width, end-to-end delay, delay-jitter and loss. A bandwidth bound requires that each
network user receives a minimum bandwidth from the network. End-to-end delay
(or delay for short) is the total time from the packet injection until it is delivered to
the desired destination. A delay bound requires fast delivery of the packets, which is
particularly important for real-time services. A delay-jitter bound requires that the
difference between the largest and the smallest delay is small. Finally, a loss bound
requires that not many packets are lost. In practice, most current integrated-service
networks provide only a bandwidth bound.

We concentrate on bounding the delay with no packet loss for connection-oriented
networks, e.g. Asynchronous Transfer Mode networks (ATM). By connection oriented,
we mean that a set of connections is predefined on the network, where each connection
is specified by a route connecting a source node and a destination node. A user
requests a share of a particular connection and injects a stream of packets along this
connection continually.! When traveling from its source towards its destination, a
packet goes through a set of switches along its predetermined route. More than one
packet may contend for the same switch simultaneously. Due to limited processing
power, some packets may have to queue up at the switches while others are being
serviced. In this way, packets experience end-to-end delay. Apart from delay bounds,
we are also concerned with queue size at each switch due to limited buffer size.

In order to bound the delay and the queue size, it is necessary to impose certain
usage restriction on the users. We can view the relationship between the users and the
scheduler as a contract. As long as the users generate the traffic within the agreed-
upon rates, the scheduler can in return meet the users’ performance requirements, e.g.

providing the delay guarantee. Leaky-bucket regulated traffic is one popular method to

!We note the following. First, choosing routes for network connections is not a problem that we
consider here. We focus on scheduling the motion of the packets once the routes are fixed. Second,
we refer to our routing problem as dynamic since packets are injected over time. In contrast, in a
static routing problem all packets are present initially.
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restrict the users [14, 15, 58]. Here, a traffic stream is characterized by two parameters,
a maximum burst size (or bucket size) and an average arrival rate. (Some papers
characterize the traffic with one additional parameter, the maximum arrival rate.)

Leaky-bucket regulated traffic is widely used in the literature, e.g. [18, 38, 48, 46, 47].

Related Work

The design of scheduling disciplines so as to minimize the end-to-end delay is well

studied. In this section we discuss some related work.

GPS and GPS-Based Schemes One simple scheme is called Generalized Pro-
cessor Sharing (GPS), a generalization of the uniform Processor Sharing (PS) [29].
With PS, there is a separate FIFO queue for each contending user at a switch. Dur-
ing any time interval, a switch serves all the nonempty queues simultaneously at the
same rate. This means that packets are serviced in infinitesimally small amounts by
PS, i.e. it assumes a fluid model. GPS allows different users to have different service
shares. A switch serves its nonempty queues in proportion to the service shares of
the corresponding users. Since GPS uses an idealized fluid model that cannot be
realized in the real world, various packet approximation algorithms of GPS have been
proposed.

One simple emulation of GPS, proposed by Nagle, is called Weighted Round
Robin [40]. In this approach, each of the nonempty queues is serviced in a round
robin fashion proportional to the weight of the queue. Each time a queue is serviced
a whole packet at the head of the queue is transmitted. Related work on round robin
includes [23, 52].

Weighted Feir Queueing (WFQ), first proposed by Demers, Shenker and Keshav,
is one of the best-known approximation schemes of GPS [17]. The intuition behind
WFQ is to compute the times packets would complete service had GPS been used, and
then serve packets in the order of these finishing times. Demers, et al. demonstrate the
fairness of WFQ in [17]. A few congestion control algorithms are designed based on

WFQ, e.g. [27, 51]. Some variants of WFQ are also studied. For example, Worst-case
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Fair Weighted Fair Queueing by Bennett and Zhang (7], Self-Clocked Fair Queueing
by Davin and Heybey [16] and Golestani [19).

Packet-by-packet Generalized Processor Sharing (PGPS), identical to WFQ, was
proposed independently by Parekh and Gallager [46, 47]. They provide delay bounds
for leaky-bucket regulated traffic streams. The first paper [46] proves that the delay
bound of PGPS is within one packet transmission time of the bound of GPS on a
single switch. The second paper [47] establishes end-to-end delay bounds for the case
of multiple switches. In particular, if the ith connection has d; switches and a packet
arrival rate of r;, then each packet injected along this connection can be delivered to
its destination within 2d;/r; steps. These results are among the best known on the
subject. (See Chapter 6 for more details.)

Other related disciplines include the Virtual Clock Multiplezing by Zhang [61],
Frame-based Fair Queueing by Stiliadis and Varma [55, 56] and Stop-and-Go Queueing
by Golestani [20, 21, 22].

Delay-Insertion-Based Schemes An entirely different technique based on “delay-
insertion” is also used to bound the end-to-end delay. The intuition here is that if
each packet receives a large random delay initially, then the packets are sufficiently
spread out so that they only need to wait a small number of steps at each successive
switch. Rabani and Tardos [49] and Ostrovsky and Rabani [41] prove delay bounds
that are essentially the sum of the minimum injection rate and the maximum number
of switches per connection. Their schemes also allow a packet loss probability. (See
Chapter 6 for more details.)

Many techniques for analyzing delay-insertion-based schemes are introduced by
Leighton et al. in [31, 32] in the context of static routing, where all the packets are

present in the network initially. We shall summarize some of these techniques in

Chapter 8.
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Our Results

In this thesis we show, for the first time, how to design a schedule that guarantees
asymptotically-optimal delay bounds for all connections. In particular, if the ith
connection has d; switches and a packet arrival rate of r;, then each packet injected
along this connection can be delivered to its destination in O(d; + 1/r;) steps. Our
result presents two main improvements upon previous work. First, the multiplicative
bound of Parekh et al. is enhanced to an optimal additive bound. Second, the bound
expressed in terms of 1/7yin + dmax due to Rabani et al. is enhanced to a connection-
based delay guarantee of O(1/r; + d;) for each connection i. An additional bonus of
our work is small queues for all edges. We defer the detailed description of our model

and results to Chapter 6.
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Chapter 2

Overview

2.1 Model and Problem

We consider the problem of simulating a network G with unit-delay links on a network
H with arbitrary delays on its links. We refer to G as the guest and H as the host. Let
91,92, . .. be the processors of G and py,p,,... be the processors of H. We shall use
pebbles to record the computations performed by the guest processors. In particular,
pebble (z,t) represents the ¢tth step of computation by processor ¢;. In a simulation
of G, H carries out the same step-by-step computation as G. In other words, H
simulates G by computing every pebble created by G in an order that preserves the
“dependency” of the pebbles. Our goal is to provide methods that would allow H to
simulate G with a minimum amount of slowdown when G is used in a general purpose
way. Two computation medels are studied here, the dataflow model and the daiabase

model.

Dataflow Model

In the dataflow model, each computation solely depends on the computation of the
previous step. Creating a pebble (z,t) involves two time units. The first time unit is
for communication, where g; obtains pebbles of the form (7, £—1) from all its neighbors

gj- The second time unit is for computation, where g; performs computation based
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on pebbles (j,t — 1) and records the result in pebble (z,t). Take an example of an
n-node guest linear array. In 2T time steps, G creates n x T pebbles, where pebble
(¢3,t),for 1 <i<nand1 <t <T, depends on pebbles (: — 1, — 1), (i, — 1) and
(¢+1,¢—1). (See Figure 2-1.) Any host processor p can compute pebble (,) as long
as p has the information in pebbles (: — 1,t — 1), (¢,¢ — 1) and (i + 1, — 1) either by
directly computing these pebbles or by receiving them from neighboring processors.

The dataflow model is applicable to many computations such as matrix oper-
ations, Fourier transform, sorting, algorithms for computational geometry, etc. A

large number of examples can be found in [34].
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Figure 2-1: The computation pebbles created by a guest linear array.

Database Model

In the database model each guest processor g; has a potentially large local memory
that may be accessed and updated by ¢; during each step. We refer to the local mem-
ory of g; as the database, b;. Each computation not only depends on the computation
of the immediate past but also the state of the database. For example, let G be a
linear array. To create pebble (z,%), g; first communicates with its neighbors, then
performs computations based on pebbles (i — 1,¢ —1), (¢,¢ — 1) and (: +1,¢ — 1) and
the current state of database b;. Lastly, g; updates database ;. Hence, creating a

pebble involves two time units as in the dataflow model, one for communication and
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one for computation and recording.

In the database model, a pebble not only records the result of a computation
but also the changes to the database incurred by this computation. To emphasize,
a pebble does not contain a snapshot of the whole database but rather the changes
incurred by one computation. Therefore, a pebble has small size and can be passed
along links.

In order to simulate G on H, we assume that the initial contents of each database
can be copied before the computation begins (thereby allowing redundant computa-
tions), but that the large size of a database makes it impractical to transmit a copy
of a database through the network during the computation. Suppose processor p of
H copies databases b; and b;, then p only has access to b; and b; and hence can only
compute pebbles of the form (z,t) and (j,t) for ¢ > 1. Moreover, if both processors p
and q decide to copy b;, then p and g each maintains a copy of b;, and each looks up
and updates its own copy. If p is to compute pebble (z,t) then p needs an updated
copy of the database that includes all the changes incurred by the computations (z,¢')
for all ' < t. Hence, p must either have directly computed all the pebbles (3,%’) or
else have received the information from its neighbors.

Unlike the dataflow model, the database model captures a scenario where the
computation performed by a processor depends on the state of a local memory or
where part of the computation performed by a processor is to update its local mem-
ory. These situations could be critical in some applications involving a network of

workstations.

Bandwidth

The guest network G has unit bandwidth on each link. This allows each pebble to
be passed along a unit-delay link of G in one time step. In our simulation we assume
that the link bandwidth of the host network H is w. That is, P pebbles can be passed
along a d-delay link of H in d + [5] — 1 steps by pipelining. In many cases of our
study, it is sufficient to assume that the host and the guest have comparable link

bandwidth, i.e. w is a constant. However, in certain situations the bandwidth needs
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to be 6(log n). Otherwise, we pay an extra factor of é(log n) in the slowdown. The

details are discussed in Sections 4.2.4 and 5.2.4.

2.2 Results

Table 1 summarizes our results. In the table, n is the size of the guest, daye is the
average delay of the host and “Bd-deg” stands for bounded-degree. The ratio of n
and the slowdown is the size of the host since all the simulations are work efficient,
i.e. it takes the guest and the host the same amount of work to compute the same

result, where work is the product of the number of processors used and the running

time.
Guest Host Model Order of Slowdown
1 | Ring/Linear Array | Bd-deg Network | Dataflow Vdave
2 | Ring/Linear Array | Bd-deg Network | Database Voo log®n
3 2-D Array 2-D Array Dataflow d23log™*n
4 2-D Array Bd-deg Network | Dataflow nMA(Vdove + n1/4)
5 2-D Array Bd-deg Network | Database | n'/*log® n(v/dp + n'/4)

Table 1: Result Summary.

The first two results in Table 1 are proved in terms of linear arrays. Au n-node
un’t-delay ring is essentially the same as an n-node unit-delay linear array, since the
latter can simulate the former with a slowdown of 2 [34]. Result 1 is asymptotically
opiimal in some cases. In addition, we also have a constant-approximation algorithm
for simulating rings and linear arrays in the dataflow model. Results 2 and 3 are
optimal up to a polylogarithmic factor in some cases. Result 3 is for a worst-case
model. When the delays on the host are randomly arranged, the bound can be
improved to O(d?/2). Results 4 and 5 are easy generalizations of Results 1 and

2 respectively. Chapters 3 and 4 present latency hiding methods for the dataflow

model. Chapter 5 concentrates on the database model.
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The methods for latency hiding in the two computation models are substantially
different. For example, we make heavy use of redundant computation in the database
model, whereas redundancy is apparently not useful for the dataflow model.

Our bounds indicate that hiding latency in the database model is more difficult
than in the dataflow model. Intuitively, this is because computation in the dataflow
medel is processor independent, and hence can be done by any processor with the
information of the previous computation. In the database model computation can
only be done by the processors with the right databases. One cannot afford to pass
large databases across the links with liraited bandwidth, because this will cause high
slowdown. One also cannot afford to keep many copies of the databases, because
memory is expensive and keeping every copy of the databases updated is difficult.

In Chapter 5, we also establish limits on the degree to which the high latency can
be mitigated when each database is allowed 2 small number of copies. For example, if
each database has only one copy, we show that the slowdown can be as much as d,a,
even if d,. is a constant and the best simulation is used. When each database has
at most two copies and each host processcr copies a constant number of databases,
we give an example of a host whose average delay is a constant, but for which the
slowdown has a lower bound of Q(logn). These results demonstrate that it is easier
to overcome latencies in dataflow types of computations than in computations that

require access to large local databases.

2.3 A Related Scheduling Problem

The problem of latency hiding in the dataflow model can be viewed as the following
scheduling problem. The pebbles created by the guest network together with their
dependencies form a directed acyclic graph (dag), whose nodes represent computa-
tional tasks of equal execution time, and whose arcs represent precedence. All these
tasks are to be computed by the processors in a given host network. If the same
host processor computes two tasks of direct dependence, no communication cost is

incurred. Otherwise, there is a comrnunication cost between the two host processors
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that compute these two tasks, and this cost is equal to the total delay between the
processors in the host network. The goal here is to schedule the dag (with possi-
ble repetitions of the nodes) using the given host processors so as to minimize the
makespan, i.e. the total time taken to execute all the tasks.

A variation of the above scheduling problem has been studied. Here, we are given
any task dag (not necessarily created by a guest network in the dataflow model). All
the arcs in the dag are associated with a fixed quantity that indicates the communica-
tion cost. Note that, unlike our problem, the communication cost here is the same for
any processor-pair. In [44] Papadimitriou and Ullman studied an » xn grid dag (which
they called a diamond dag). They showed a nontrivial time-communication tradeoff
and gave an asymptotically-optimal schedule. Their result was similar to the special
case of our Result 1 stated in Section 2.2 where all the link delays in our host network
are the same. In [45] Papadimitriou and Yannakakis presented a 2-approximation
algorithm for general dags where an unlimited number of processors could be used.
For well-known families of dags such as the full binary tree, the diamond dag and
the fast Fourier transform, cnly a finite number of processors were needed and their
approximation algorithms were optimal (or near-optimal). Redundant computation
was used in {45].

Dag scheduling has been studied in other papers, including [2, 11, 13, 24, 25, 42,
43]. Some variations of the problem include the cases in which the dags are limited
to certain topologies, the task nodes require different execution time, arcs require

different communication times and/or processors have different processing powers.
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Chapter 3

Dataflow Model — Linear Arrays

We begin vur presentation with the methods for hiding latency in linear arrays. Our
basic approach is to transfer a process that involves a two-way communicatio. to a
process that involves one-way communication only. (This idea is also essential for
simulating 2-dimensional arrays in Chapter 4.) We present an asymptotically tight
bound on the slowdown for linear arrays. All the results for linear arrays are applicable

to rings.

3.1 Average Delay — An Upper Bound

Let the network G be an n-processor guest linear array with unit delay on all the
edges. Let the network H be an n-processor host linear array with arbitrary delays,
where d; is the delay on the ith edge of H. As discussed in Section 2.1, in 2T time steps
G creates n x T pebbles, where pebble (i,),for 1 <:<nand 1 <t < T, depends
on pebbles (i —1,¢ —1), (,t —1) and (¢ +1,¢—1). We first present algorithm STRIPE
in which H simulates G with a slowdown of O(dave), Where daye = Y1 di/(n — 1) is
the average delay of H.

Consider the first n/2 rows of pebbles created by G. Let L be the triangle formed
by pebbies (i,t), where i + ¢ < n + 1. Let R be the triangle formed by pebbles (i,1),
where ¢ < t. (See Figure 3-1.) In STRIPE, H first simulates the bottom half of L
and then the bottom half of R. At this point every pebble in the first n/2 rows is
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Figure 3-1: (Left) Triangles L and R. (Right) Algorithm STRIPE. Each slanted stripe
is simulated by one processor of H. Arrows correspond to communications. Dashed
lines correspond to the delays d; encountered by communications.

nf2

simulated. If the entire computation of G is partitioned into groups each of which
consists of n/2 rows of pebbles, then H can repeat the precess and simulate every
group in a similar manner.

To simulate the bottom half of L, the computation pebbles of G are divided into
n slanted stripes, and each processor of H simulates one stripe. (See Figure 3-1.) In
particular, processor p; of H simulates a stripe consisting of pebbles (i — ¢ 4 1,1), for
1 £t <tandt < n/2. Note that in the original computation by G, processor g;
depends on both g;_, and g;;:. However, in the simulation by H p; depends on p;_,
and p;_;. Hence, STRIPE transforms a process that involves two-way communication

into a process that involves only one-way communication.

Lemma 3.1.1 Processor p; (1 < i < n) is able to compute pebble (i —t+1,t) at step
t+ 2k d-

Proof: =~ We use induction on 7. The base case for p, is obvious. Pebble (i —¢+1,1)
depends on pebbles (i — ¢, — 1), (i —t+ 1,t — 1) and (i — ¢t + 2,t — 1), which
are computed by processors p;_2, p;—1 and p; respectively. By induction these three
pebbles are computed at step (t —1)+ Y43 dy, (t - 1) +Z"2 di and (¢ —1)+ 3424
respectively. It follows that (i — ¢ +1,¢) can be computed at step t + Y-  dp. O
Hence, pebbles (¢ + 1,n/2), for 0 < i < n/2, are computed at steps n/2 +
Z;.:__.';/ >“1dy, and so the bottom half of L is simulated in n/2 + YrZi di. steps by
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H. The bottom half of R is simulated in a similar manner after processor p, passes
pebbles (n — ¢t + 1,t), for 1 < t < n/2, to appropriate processors. Note that the
intersection of R and L is only computed once. Thus, H has completed simulating
the first n/2 rows of pebbles created by G. The next n/2 and every subsequent n/2
rows of pebbles can be simulated in a similar manner. Therefore, the slowdown is

upper bounded by,

n—1
3§ = 2n/2 + §k=1 dk = O(dave).

3.2 A Better Upper Bound

To get a better upper bound on the best achievable slowdown, we use the idea of
“complementary slackness” in our new algorithm called FATSTRIPE. Each host pro-
cessor is loaded with enough work to balance out the communication time. Suppose
FATSTRIPE uses an interval of m processors to carry out the simulation. For sim-
plicity, assume that this interval consists of processors py,...,pm. The bottom half
of L is divided into m slanted stripes, each of which has width £ = n/m. Again, p;
computes every pebble in stripe i. (See Figure 3-2.) Within each stripe ¢, p; first

computes all the pebbles in the bottom row and then moves up.

.

0000
. 000O0™,
~.0000™,

n/2.

,000O0™,
" 0000™%,
3y 00000

== et [Tl

Figure 3-2: Algorithm FATSTRIPE. Processor p; simulates stripe ¢ which has width
¢ = n/m. (In the figure, £ = 4.) All the pebbles in stripe : are computed by time
step {n/2 + 42 di.

Lemma 3.2.1 Processor p; finishes simulating stripe i by step fn/2 + Y42, di.
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Proof: We inductively show that p; can compute the pebbles in the zth row of
stripe ¢ by time step £z + 3}-} di. The base of the induction holds trivially for z = 1
and z = 1, since processor p; does not depend on other processors and pebbles in the
first row do not depend on other pebbles. Let us consider the pebbles on the (i +1)st
row of stripes i+ 1, for x > 1 and ¢ > 1. These pebbles could only depend on pebbles
on the zth row of stripe ¢ — 1, ¢ and ¢ + 1, which can be computed by processors
Pi-2, pi-1 and p; by steps £z + Y73 d i3 dy and €z + TiT) dy respectively
by induction. Hence, p; is able to receive all the information necessary to compute its
(z + 1)st row by step €z + Y"i=} di and therefore finish computing the (z + 1)st row
by step €(z + 1) + 42} di. Since each stripe contains at most n/2 rows, p; finishes
simulating stripe by step n/2 + 17} d;. O
Hence, the slowdown is O(n/m + Yj-' di/n) in simulating the first n/2 rows
of pebbles. All the subsequent n/2 rows can be simulated in a similar manner. To

minimize the slowdown, FATSTRIPE uses the interval I (with m; processors and d;

average delay) that minimizes the quantity n/m; + dym;/n. Therefore,
Theorem 3.2.2 FATSTRIPE achieves a slowdown of minineervals 1 O(n/mi+dym;/n).

In the case when /d,. < n, there exists an interval I with M; = n//dy.
processors and average delay d; < dpve. Theorem 3.2.2 implies that the slowdown is
O(V/dave) when M simulates G. In the case when v/d,,c > n a single host processor
is used to carry out the simulation, which incurs a slowdown of n = O(/dy.). The

simulation is work-efficient in both cases. Therefore,

Cerollary 3.2.3 FATSTRIPE efficiently simulates G on H and achieves a slowdown
of O(\/dave), where daye is the average delay of H.

Bandwidth Let us consider the effect of bandwidth on the slowdown. In FAT-
STRIPE as long as the stripe width is at least 2, then pebbles cross the edges one at
a time by using pipelining. In STRIPE (i.e. FATSTRIPE with stripe width 1) at most
two pebbles may cross an edge at the same time. Therefore, it is sufficient for the
host bandwidth to be twice as large as that of the guest bandwidth. Otherwise, we

pay another factor of 2 in the slowdown.
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3.3 A Matching Lower Bound

We proceed to show that the upper bound, min; O(n/m;+d;m/n), in Theorem 3.2.2
is asymptotically tight by showing that min; max{n/2m/,dym /2n} is a lower bound
on the best achievable slowdown even if we allow redundant computation. Note that
with redundant computation, a pebble may be computed by several host processors.
This technique makes it more likely for the host to simulate the guest efficiently.

However, we show below that redundancy does not help in this case.

Lemma 3.3.1 The top pebble, (1,n) of triangle L, cannot be computed at a time step
earlier than

T = img}ji ; max{n?/2my, dym,/2}.

Proof: We consider how the pebbles in L are computed in some simulation of
G by H. In particular, we build a ternary tree T to keep track of the processors
that have “effectively” computed the pebbles in L. The top pebble (1,n) has to be
computed by some processor of H. Call this processor ¢. (If more than one processor
of H has computed (1,n), then we pick any one of them to be g.) We label the root
of tree T with ¢(*™). Let u be a processor that has computed (1,7 — 1) and has
passed this information to ¢, and v be a processor that has computed (2,2 — 1) and
has passed this information to q. (Note that other processors may compute (1,n —1)
and (2,n —1). We are only concerned with processors that pass information to q.)
Now label the children of ¢(*™ with u{!»~1) and v(1-1), We proceed to construct
the children of u(*»~1) and v(>"~1), In general, node a** in T has children b(-1:t-1),
c@*=1) and d(+1#-1) if the following holds. Processors a, b, ¢ and d compute pebbles
(2,t), (¢ —1,t — 1), ({,t — 1) and (¢ + 1, — 1) respectively, and a receives the values
of ¢ —1,t—1), (¢,t —1) and (¢ +1,¢ —1) from b, c and d before a is able to compute
(¢,t). The leaves of T are nodes of the form p(*). The important observation is the
following. If p(i*) is a node in T, then information has to be passed from processor
p to g in H. The total delay from p to ¢ lower bounds the number of steps in the

simulation.
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Let J be the smallest interval that contains all the processors appearing in tree 7".
If processors x and y are at the two ends of J, then there exist two nodes of the form
gli=ts) and ylvt) in T. Hence, information has to be passed from z and y to ¢ in H.
This takes at least dym /2 steps, and pebble (1,n) therefore cannot be computed at
a step earlier than dym;/2. By a work argument, (1,7) cannot be computed before
step n?/2m;. Hence, (1,n) cannot be computed at a step earlier than * = miny
max{n?/2my, dym;/2}. m]

It follows that the slowdown in simulating triangle L is lower bounded by 7/n.
By a similar argument to Lemina 3.3.1 none of the pebbles (i,n), for 1 < i < n, can
be computed at a time step earlier than 7. By repeating this argument the first kn

rows of G cannot be simulated in time less than k7. Therefore, we obtain,

Theorem 3.3.2 The slowdown of any simulation of an n-node guest linear array G
by a host linear array H is lower bounded by min; O(n/m; + dymy/n), where I is a
subarray of H and has mjy processors and average delay d;. Hence, FATSTRIPE is

optimal up to a constant factor.

3.4 Simulating Linear Arrays on General Networks

We now consider simulating a linear array G on a general n-node network H with
average delay d.... We first embed a linear array 7 in H and then use M to carry

out the simulation of G.

Lemma 3.4.1 Let H be a connected n-node network with arbitrary topology. Then
an n-node linear array H can be one-to-one embedded in H such that every edge of

H is used at most twice in H.

Proof:  Our proof follows the approach of Theorem 3.15 in [34, page 470]. It is
sufficient to embed a linear array H in a spanning tree of H. The proof proceeds by
induction on the height of the tree with the following inductive hypothesis. For any
child u of the root v, there is a one-to-one embedding of a linear array in the tree

such that v and u form two endpoints of the array, the edge uv is used at most once
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and all other edges of the tree are used at most twice. (Note that we treat all the
edges as undirected.)

Let T be any spanning tree of H. The base of the induction in which T is a single
node, i.e. the height is 0, is trivial. Otherwise, let v be the root of T' and u be any
child of v. We label the children of v as u,,...,uq, and assume u = u4 without loss
of generality. We place the first node of the linear array at v, and place the second
node of the array at any child w of u; (if any) using edges vu; and u;w. Next, we
inductively place the nodes of the array in each node of the subtree of T rooted at
u;, making sure that the last node is placed at u,, the edge u;w is used at most once
and that all other edges in the subtree are used twice. Therefore, edge u w is used
at most twice in total.

We place the next node of the linear array at any child = of u; (if any), using
edges u1v, vuz and uz. Again, we inductively place nodes of the linear array in the
subtree rooted at u, such that u, and z are endpoints. We continue in this fashion.
At the last subtree rooted at u, we enter this subtree at a child of u (if any) and exit
at u. This completes the embedding of the linear array. Our lemma follows from the
observation that the linear array has endpoints v and u, edges vu,, ..., vug_, are

used twice and vug is used once. (See Figure 3-3.)

Endpoint

Endpoint
@

’ : \..04 (u)

.
‘
.

Figure 3-3: Embed a linear array one-to-one in a tree such that each tree edge is used
at most twice. The dotted lines indicate tree edges and the solid lines indicate array
edges.
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Since H has n nodes and degree §, H has at most én/2 edges and therefore the
total delays on all edges of H is at most 6dayen/2. By Lemma 3.4.1, H uses each edge
of H at most twice. Hence, the total delays on all edges of H is at most 8day.n, and
the average delay of H is at most 8da.. By Corollary 3.2.3, H can simulate G with
a slowdown of O(v/8d,.). When H has bounded degree, i.e. § = O(1), we have,

Theorem 3.4.2 A bounded-degree host network with average delay duye can efficiently

simulate an n-processor guest linear array with a slowdown of O(y/daye).

Theorem 3.4.2 does not hold when H has unbounded degree. Consider the following
example. Let H be a linear array of /n cliques, in which each clique contains /n
nodes. If a clique edge has delay 1 and an edge connecting two adjacent cliques has
delay n, then H has d,. < 4. Suppose m connected cliques are used to simulate n
steps of G. Lemma 3.3.1 implies a slowdown of min,, max{\/n/2m,m/2} in simulat-
ing every n steps of computation by the guest. The first term follows from a work
argument, since m+/n processors are in m cliques. The second term comes from the
communication delay, since a linear array embedded in these m connected cliques has
a total delay of at least mn. Hence, the slowdown is at least min,, max{/n/2m,m/2},

which is 2(n'/4), whereas the average delay is a constant.
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Chapter 4

Dataflow Model —

Two-Dimensional Arrays

In this chapter we present methods for hiding latency in 2-dimensional arrays. The
analysis here is substantially more complex than that for the 1-dimensional case. We
focus on simulating a 2-dimensional array on a 2-dimensional array. Section 4.1 gener-
alizes the approach for the linear arrays. Section 4.2 introduces some new mechanism
to improve the bound. Section 4.3 discusses the case when the delays are randomly

arranged.

4.1 An Analogue of the One-Dimensional Case

Let the guest network G be ar n X n 2-dimensional array with unit delay on all the
edges. Let the host network H be an n X n 2-dimensional array with arbitrary delays.
Let z;; be the delay between processors p;; and piy1; of H for 1 <i < n -1 and
1 < j < n, and let y;; be the delay between p; ; and p; ;41 of H for 1 < i < n and
1 £ j < n—1. The tth step of computation by processor g;; of G is recorded in
pebble (z,7,%). In 2T steps, G creates n x n X T pebbles, where pebble (%, j, ), for
1<¢,j<nandl <t<T,dependson (i —t+1,j—t+1,t—-1),(i—¢t,j—t+1,t—1),
(i—t+2,j—t+1,t—1),(i—t+1,j—t,t—1)and G —t+1,j—t+2,¢t—1).
Consider the first n/2 steps of computation by G. We define four pyramids P, P;,
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P; and P, analogous to the left and right triangles in the linear array case. All four
pyramids have the square, defined by vertices (1,1,1), (1,n,1), (»,1,1) and (n,=n,1),
as their bases. The top vertices of P, P;, P3 and Py are (1,1,n), (1,n,n), (n,1,n)
and (n,n,n) respectively. Note that the bottom half of the four pyramids contain all
the pebbles created by G for the first n/2 steps of computation.

Algorithm 2D-RAY is a 2-dimensional analogue of STRIPE. To simulate the first
n/2 steps of computation of G, 2D-RAY simulates Py, P,, P; and P; one by one.
Pyramid P, is divided into n? rays, each of which is simulated by one processor
of H. In particular, processor p;; of H simulates ray R;;, consisting of pebbles
(t—t+1,5—t+1,t), for 1 <t < min{s,j,n/2}. (See Figure 4-1.) When every
pebble for the first n/2 steps of computation of G is simulated, 2D-RAY repeats the
process and simulates the next n/2 steps of computation. In the following we bound
the slowdown in terms of the total delay on monotone paths, where a monotone path
travels in two directions, up and right. Let the length of a path be the total delay on
the path, and let D; ; be the length of the longest monotone path from processor py
to p;; in H. We have,

Lemma 4.1.1 Processor p; ; of H is able to compute pebble (i —t+1,j —t +1,t) at
step D; ; +t.

Proof: We use induction on the indices (Z, ) of the processors. The base of
the induction for p,,; is obvious. Pebble (i —t + 1,5 — ¢t + 1,¢) depends on pebbles
(i—t+1,j—t+1,8—1), (s—t,5—t+1,8—1), (i—t+2, j—t+1,t—1), (i—t+1,j—t,t—1)
and (i—t+1,j—t+2,t—1), which are computed by processors p;_1 -1, pi—2,j—-1, Pi.j-1,
Pi-1,j—2 and p;_, ; respectively. (See Figure 4-1.) By induction, these five pebbles are
computed at steps D;_; j_1+(t—1), Di—zj-1+(t—1), D; j_1+(t—1), Diy j—2+(t—1)
and D;_; ; + {t — 1) respectively. It follows that pebble ( —¢ + 1,7 — ¢ + 1,t) can be
computed at step max{D;_y ; + Ti-1,j, Dij-1 + ¥ij—1} +t = D;; +1.
a
Hence, 2D-RAY simulates pyramid P, in D, ,, + n steps. Since P;, P3, and P; can

be simulated similarly, 2D-RAY simulate the first n/2 steps of computation of G in
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Yij-1

Ti,j

Vij

Figure 4-1: Algorithm 2D-RAY. In pyramid P, the dashed line represents the ray of
pebbles computed by processor p;; (which is shown in the upper left corner). Two of
those pebbles, computed at times ¢ and ¢ — 1, are shown shaded. The five numbered
pebbles are those that (i —t+ 1,5 — ¢t + 1,¢) depends on.

O(Dy n + n) steps. The simulation is repeated for every n/2 steps of computation of

G. Therefore,

Lemma 4.1.2 Algorithm 2D-RAY achieves e slowdown of O(D, . [n), where D, ,, is
the length of the longest monotone path in H.

Unfortunately, D, , can be large compared with daye, the average delay of H.
In the worst case D,, can be ©(n’da.), implying a slowdown of O(ndy.). We
introduce algorithm FATRAY, a two-dimensional analogue of FATSTRIPE, to achieve
a slowdown that is often better than O(D,,/n). Pyramid P, is divided into m? rays,
each of which has size £ x £ = - x 2. FATRAY uses an m X m contiguous subarray
of processors in H to carry out the simulation. For simplicity, assume FATRAY uses
processors p;; (1 <¢,j < m). Again, p;; computes every pebble in ray R;;, and p; ;
first computes all the pebbles on the bottom plane and then moves up. The follow

lemma is analogous to Lemma 3.2.1.
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Lemma 4.1.3 Processor p;,; finishes simulating ray R; ; by step £*n/2 + D; ;.

Proof:  Asin Lemma 3.2.1 we can inductively show that p;; can compute all the
pebbles in the zth plane in ray R;; by time step ¢22 + D; ;. Since each ray contains
at most n/2 planes of pebbles, p;; finishes simulating ray R;; by step £2n/2 + D; ;.
0

This implies a slowdown of O(n?/m? + D, ,n/n). To minimize the slowdown,
FATRAY uses the contiguous subarray S that minimizes n?/m% + Ds/n, where mg x

ms is the size of S and Ds is the length of the longest monctone path in S.
Theorem 4.1.4 FATRAY achieves a slowdown of mingubarrays s O(n%/m% + Dg/n).

Unfortunately, the slowdown can still be big compared with dyy.. For example, sup-
pose that H has n edges of delay n which are spread out evenly in the network and
has unit delay on all other edges. The slowdown is ming ©(r?/m%+ Ds/n) = O(n!/3)
whereas daye is a constant. Matters are better, however, when all the delays are the

same, as we show in the following theorem.

Theorem 4.1.5 In the case where all the delays in H are d, FATRAY efficiently
simulates G on H and achieves a slowdown of @ (min{d2/3,n2}). The slowdown is

optimal up to a constant factor.

Proof: = When d < n® FATRAY uses a subarray of size 45 X 3i/5- Theorem 4.1.4
implies a slowdown of O(d?*/®). We show that the slowdown is asymptotically tight
as follows. Consider pebble (z,7,d/3), and suppose processor ¢ computes it in a
simulation. Let A be the set the pebbles of the form (i, ;,), for 1 < t < d'/3,
on which (%, j,d"/3) depends, i.e. (i,3,d"/3) cannot be computed until after (#,7°,1)
is computed. If every pebble in A is computed by ¢ then it takes at least |A| =
0 ((d1/3)3) = )(d) time steps to simulate A. Otherwise, a processor p # ¢q computes
some pebble in A and passes this information to q. The delay from p to ¢ is at least
d. Hence, the slowdown on simulating the first d'/3 steps is d*/3. The same argument
applies for the slowdown in the next d'/3 steps.

When d > n® FATRAY nses a single host processor for the simulation and achieves

a sloewdown of O(n?). This slowdown is asymptotically tight for the same reason as
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in the previous case. We consider pebbles (3, j, n) instead of (3, j,d"/3). In both cases
the simulation is work-efficient. ]

Theorem 4.1.5 can be generalized to any k-dimensional array, for k£ > 1.

Theorem 4.1.6 Suppose G is an n X ... X n k-dimensional array with unit-delay
edges, and H is an n X ... X n k-dimensional array with delay-d edges, then H
can efficiently simulate G with a slowdown of O(min{d*/*+! n*}). The slowdown is

optimal up to a constant factor.

4.2 Improved Bounds for Worst-Case Delays

in order to improve the slowdown, we observe that not all the host processors are
useful. If a host processor is surrounded by high delays, then the benefit to be
gained by using its computing power is nullified by the communication cost. We first
describe criteria of removing such host processors. We then embed guest processors
to the unremoved host processors. Suppose that guest processor g;; is mapped to
host processor p, then p computes the pebbles in ray R;; in the 2D-RAY algorithm.
For any arrangement of the delays in H, we show how to embed G on H such that,
for any monotone path in G, its image in H has length of O(d,.nlog®?n). As a
result, Lemma 4.1.2 implies a slowdown of O(daye log®?n) as long as only O(1) guest
processors are mapped to each host processor. By applying the idea used in FATRAY,

5/3

we improve the slowdown to O(d?/21og®®n) and achieve work-efficiency at the same

time.

4.2.1 Removing Useless Processors

We first recursively represent H using a quad-tree, in which each node corresponds
to a subarray of H. The root represents the entire n x n array. The four children of
the root represent the four % x 2 subarrays, etc. In general, a node at depth k of the
quad-tree corresponds to an i x % subarray of H. We refer to this subarray as a

depth-k array. The leaves represent the individual processors of H. (See Figure 4-2.)
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HHEA

Figure 4-2: The quad-tree that represents H.

We describe a 2-stage procedure to remove “useless” processors of H. A processor
is removed if it is surrounded by high delays (stage 1) or few unremoved processors
(stage 2). (When a processor is removed, its incident edges remain in the network.)
For each depth k, we define two quantities D, for “delay threshold” and my for
“survival threshold”. Note that Dy is larger than the average delay on a row/column
in a depth-k array by a factor of O(logn), and m, is smaller than the number of

processors in a depth-k array by a factor of O(logn).

D = (clogn) (7rdue) (4.1)

= () 3)

A constant c is specified later. We also define a maximum depth k;,ax such that when

k = knax the survival threshold m; becomes 1.
1 1
kmax = logn — 3 logc— 3 log log n. (4.3)

e Stage 1 From depth k = kpax down to depth 0, if the total delay on a

row/column of a depth-% array exceeds the threshold Dy, then all the 3k Dro-
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cessors on that row/column are removed.

e Stage 2 From depth k = k. down to depth 0, if the number of unremoved
processors in a depth-k array is smaller than the threshold my, then all the
processors in that array are removed. Moreover, we also remove processors so
that the number of remaining processors in any depth-k array is an integer

multiple of my.
Lemma 4.2.1 At most 2n?/c processors are removed in stage 1.

Proof:  The total delay of H is 2n%daye. At most 222 depth-k rows and columns

clogn

can have delay more than Dy. Since each depth-k row/column contains J processors,

at most cl’:: — processors are removed at depth k. There are logn depths, and so the
lemma follows. 0

Lemma 4.2.2 At most n?/c processors are removed at stage 2.

n2
clogn

at depth k. O

We label each array with the number of unremoved processors contained in it. By

Proof: Since there are 4* depth-k arrays, at most processors are removed

Lemmas 4.2.1 and 4.2.2, at most 3n?/c processors of H are removed. Therefore, H is

labeled with ¢;n?, where ¢; > 1 —(3/c). Any constant ¢ > 3 works for our argument.

4.2.2 The Embedding

For clarity of presentation, we create an intermediate 2-dimensional array G that has
size /cin X \/cin and unit-delay edges only. We describe an algorithm EMBED that
maps the processors of G one-to-one to the unremoved processors of H. The goal is
to show that for any monotone path in G its image in H under EMBED has length
O(daven logs/ 2n). As a result, H can simulate G with a slowdown of O(dave logs/ 2n).
Obviously G can simulate G with constant slowdown.

EMBED partitions G into regions recursively, and each depth-k region of G cor-

responds to a depth-k array of H. The depth-0 region is the entire network G. By
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the construction of stage 2, c;n? (the number of processors in G) is a multiple of my.
Hence, G can be viewed as a collection of contiguous squares of size \/mg X Vmo.
We inductively assume that each depth-k region consists of contiguous squares of
size \/mi X \/my, where m; is defined in Equation (4.2). Each depth-k region R is
partitioned into four depth k + 1 regions Ry, R;, R3 and R, as follows. First, each

mg X \/my square of R is divided into four squares of size \/mis1 X \/Trs1, Where
VM1 X /Mt
Miy1 = /mi /2. Suppose that R; corresponds to a depth k + 1 square of H that
+
has z; unremoved processors, then R; has size z;. By the construction of stage 2, z;

is a multiple of my4,. Hence, R; can be formed as a collection of contiguous squares

of size VMk+1 X /Mgy, Note that if z; is 0, the the corresponding R; is empty. (See
Figure 4-3.)

At depth kmax, each depth-kmax region consists of contiguous squares of size 1 x 1.
EMBED maps the processors in a depth-kyax region of G to the unremoved processors
in the corresponding depth-kmax array of H in an arbitrary one-to-one manner. Thus,
we have a one-to-one mapping fromn the processors of G to the unremoved processors

of H.

R
Ve Rs : Bl Depth k
ME41 t Ry
Depth &k + 1

21 22 23 24

Figure 4-3: (Left) Depth-k region R and depth k + 1 regions R;, R, and R of G.
(Right) Depth-k and k + 1 arrays of H. Depth k + 1 region F; has size z;, where z; is
the number of unremoved processors in the corresponding array of H. In this figure,
24 =0, and Ry is therefore empty.

We also define the depth-k boundaries in G to be the borders of depth-k regions of
G. Note that the depth-k boundaries are at least ,/my apart in both horizontal and

vertical directions.
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4.2.3 Bounding Monotone Path Length

In this section we bound the total delay on the image of P in H, where P is any
monotone path in G. Suppose a and b are two neighboring processors in G, then their
images ay and by in H are connected by a I-bend route as follows. First, ay is routed
along its row to by’s column and then routed to by along the column. We define a
and b (resp. ay and by) to be k-related if k is the largest integer such that « and b
(resp. ay and by) are in a same depth-k region (resp. depth-k array). We also define
ag and by to be peers of each other. Note that each unremoved host processor can

have 4 peers.

Lemma 4.2.3 Let P be any monotone path in G. The image of P in H has a total
delay of O(dayen log®/2 n) under EMBED.

Proof: Let a and b be two neighboring processors on P and let ag and by be
their images. Suppose a and b (resp. ay and by) are k-related. We first bound the
length of the 1-bend route from ay to by. By the construction of stage 1, the total
delay on a depth-k row/column that contains ay or by is at most Dy. Hence, the
distance from ay to by is at most 2Dy.

We now bound the number of neighboring a’s and ’s that can be k-related. If
k < kmax, P must cross some depth k+1 boundary of G in traveling from a to b. Since
P is monotone and the depth-k boundaries are \/my apart in both horizontal and

2n

vertical directions, P can cross the depth-k boundaries at most ey times. Hence,

2n

VTEET
the total delay incurred by k-related peers on the image of P is at most 2D, \/nﬁ’:_“,

at most neighboring a’s and b’s on P can be k-related. This implies that

for k& < kpax. Obviously, at most 2n neighboring a’s and ’s can be kp,,-related.
Summing over all depths, we conclude that the total delay on the image of P is at

most 2Dppay * 21 + 3k ckmax 2Dk ‘/,;‘::__H, which is O(dayen log5/ z n) by the definitions
of Dy, my and kpax. a

Hence, we can embed G on H such that O(1) guest processors are mapped to
each host processor and that the image in H of any monotone path in G has length

O(dayenlog®?n). Lemma 4.1.2 implies that H can simulate G with a slowdown
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of O(davelog®?n). To improve the slowdown and achieve efficiency, we apply the
idea of complementary slackness and use an m X m contiguous subarray of H for
simulation as in FATRAY. Theorem 4.1.4 and Lemma 4.2.3 imply a slowdown of
0] ((dmm log®*m)/n + n’/mz). By choosing m to be max {nd;,{,/ 3log = n, 1}, we

have,

Theorem 4.2.4 Network H with average delay day. can efficiently simulate G with
a slowdown of O (dﬁ{i log®/® n) .

4.2.4 Bandwidth

The preceding analysis focuses entirely on the issue of latency and ignores bandwidth
constraints. This does not present any problems if the link bandwidth available on the

3/2 n) times larger than that on the guest array. If the bandwidth

host array is 2(log
of the host and guest arrays are comparable, however, and if the guest array is fully
utilizing the bandwidth on its links then congestion becomes an issue. In this case,
we may need to slow down the simulation by an additional factor of O(log®/2n).

In Section 4.2.3, peers ay and by are connected by a 1-bend route in H. To
address the congestion issue, we present a more sophisticated method of connecting

32 n) routes going through it and that

ay and by such that each edge in H has O(log
the distance hetween ey and by remains unchanged asymptotically.

We begin with some definitions. Recall that EMBED maps each depth-k region
Ry of G to a depth-k array Si of H. A depth-k row/column of Sy is live if it contains
some unremoved host processors. A boundary point of Sy is live if it belongs to some

live row or column of S;. We first bound the number of connections from inside of

Sk to outside of Sk in terms of the number of live rows and columns of 5.

Lemma 4.2.5 Consider any depth-k array, Sy, of H. The number of processors in
Sk that have peers outside Sy is O(x+/logn), where x is the number of live rows and

columns in Sk.

Proof:  Let z be the number of unremoved processors in S, then the number of

live rows and columns is at least afaE The number of host processors in Si that
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have peers outside Si is proportional to the perimeter of Ry, the depth-k region that
corresponds to Si. By the construction of EMBED, Rj consists of squares of size
VM X /mi. Hence, Ry has perimeter of O(z/./mx), which is O (;;—z-g\/[()g—n) by the
definition of m; in Equation (4.2). Our lemma follows. 0
We now describe a recursive procedure that connects the peers. The following

facts are used in our routing,.
Fact 4.2.6 Consider a routing problem on a square array of size x X .

1. If each node has O(y) requests, then the routing can be done in 1 bend and
O(zy) congestion.

2. Let the nodes on the cross divide the square array into four £ x % quadrants. If
each boundary node and cross node have O(y) requests and all other nodes have

no requests, then the routing can be done in O(1) bends and O(y) congestion.

Our recursive routing starts at depth & = kyac. Consider all the depth-k arrays
Sk. For all the peers that are k-related, we connect them through a 1-bend routing

within Si. Since Sy has size \/logn x v/logn and each host processor has at most 4
peers, the congestion caused by this 1-bend routing within Sy is O(y/logn) by item
1 of Fact 4.2.6. For all the processors that have peers outside S, we route them
to live boundary points such that the following two conditions hold. First, each
live boundary point of Sy receives O(y/logn) requests. This is possible because of
Lemma 4.2.5. Second, the routing uses 1 bend and causes a congestion of O(logn)
by item 1 of Fact 4.2.6.

We proceed recursively to depths k& < kmax. Consider all the depth-k arrays 5.
From the previous stage the host processors that are not connected to their peers are
routed to some live boundary points of depth &£ + 1 arrays. Hence, they are either
on the boundary or on the cross of Sk, and O(/logn) host processors are routed to
the same location. For all the peers that are k-related, we connect them within S;.
Otherwise, we route tkem to the live boundary points of Sy such that each live point

receives O(v/log n) requests (including those from all previous stages but have not yet
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connected to their peers). This is possible by Lemma 4.2.5. In both cases, item 2 of
Fact 4.2.6 implies that the routing can be done in O(1) bends and that the congestion
incurred is O(/logn).

The congestion incurred at depth k, for 1 < k < kmax, is O(vIogn) and at
depth kpax is O(log n). Since each of the depths uses the same underlying edges, the

3/ 2n). The host processors are routed to live boundary

overall congestion is O(log
points in O(1) bends at each depth, and therefore the length incurred at depth k is
(0] (%‘;d,,,e log n). Suppose that ay and by are k-related, then the distance between
them is Lrk O (2—’,‘; ave lOg n), which remains O (E"pd,m log n) as in Lemma 4.2.3. In

summary,

Lemma 4.2.7 In the above rouiing scheme the congestion is O(log**n) on all edges
of H. Furthermore, for any monotone path P in G, the image of P in H has length
O(daven log®% n).

4.3 Improved Bounds for Randomly-Arranged De-
lays

In this section, we show that the length of the longest monotone path in H is often
short when the delays are randomly arranged. If M is the number of edges in an n x n
array H, then for a given set of M delays with average d,,. the longest monotone
path in H has length O(nd,y.) for most of the M! permutations of the delays. That
is, in the uniform distribution of the M! permutations, the longest monotone path
has length O(nday.) with high probability, and therefore the slowdown is O(d,.) with
high probability.

Without loss of generality we assume that day. is a constant. (For a nonconstant
dave, €ach delay d is normalized to max{d/day., 1}. The normalized delays have average
O(1), and the total original delay on any monotone path is at most d,y. times the total
normalized delay.) We divide the delays in H into O(logn) levels. Level ¢ conta,ix.ls

the delays that are in the range of [2¢,2%1), and level £* contains the delays that are
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at least 2¢.

4.3.1 Shortcuts and Edge Coloring

Ii an edge with a large delay is surrounded by edges with small delays, we can route
around this large delay. The intuition is that in a random permutation most long
delays can be shortcut. For each edge f, we consider four edge-disjoint alternate
paths that connect the two endpoints of f. (See Figure 4-4.) The 3 x 3 box that
contains these four paths is called the bounding bozx of f. After the shortcut, the total
delay on f equals the shortest alternate path length. For clarity, we shall refer to the
delay before the shortcut as the original delay and the delay after the shortcut as the
shortcut delay.

path 3

path 4

path1

Figure 4-4: The bounding box and four edge-disjoint alternate paths for edge f.

For a given set of delays with a constant average, the number of level-¢* original
delays is O(n?2~¢). Therefore, the probability for an edge f to have a level-£* original
delay is O(27%). However, shortcutting dramatically decreases this probability as the

following lemma shows.

Lemma 4.3.1 The probability for an edge f to have a level-£* shortcut delay is
0(27%).

Proof:  If edge f has a shortcut delay from level £*, then the four alternate paths
must each have an edge whose original delay is from level (¢ — 4)*. For a particular
set of four edges to have level (£ — 4)* original delays, the probability is (f) / (]:’ ),
where B is the number of level (€ —4)* original delays, and M is the number of edges
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in H. Since there are 3:3-9 -1 = 81 ways to choose four edges from four alternate

paths, we derive the following from a union bound.

Pr [ Shortcut delay on f is from level ¢+ ] < 81 - (‘;3) / (1;4) .

Our lemma follows from the observation that B = O(n?27¢) since dae = O(1), and
that M = O(n?). m]

Unfortunately, these probabilities are not independent from edge to edge for two
reasons. First, the arrangement of delays is a permutation of a given set of delays.
This does not cause a problem however, as the analysis in Lemmas 4.3.2 and 4.3.2
will show. Intuitively, in a permutation if one edge has a large delay then other edges
are less likely to have large delays. Second, the bounding boxes are not necessarily
disjoint. To resolve this problem we introduce an edge coloring, so that any two
distinct edges with the same color have edge-disjoint bounding boxes. Clearly, only
a constant number of colors are needed.

We show in the following that, for any monotone path in H, the total delay
incurred from the edges in one particular color group is O(n) with high probability.
Since there are O(1) color groups, our results follows from a union bound. For each
color group we consider two cases, edges with large shortcut delays and edges with

small shortcut delays.

4.3.2 Large Delays

In this section we show that, with high probability, the total delay in H due to
shortcut delays from large levels is O(n). Therefore, any monotone path can only

pick up O(n) delay from these levels.

Lemma 4.3.2 With probability 1 —O(n™"), any monotone paths pick up a total delay
of O(n) from levels £ > L, where L = ;logn — }loglogn.

Proof: By Lemma 4.3.1, the probability that one particular edge has a shortcut
delay from level (3logn)* is O(n~3). Since H has ©(n?) edges, with probability
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1—0(n") no edge in H has delay from level (2logn)*.

We show below that, with high probability, H has O(log®n) shortcut delays are
from level L*. Let A = an? be an upper bound the number of edges in one particular
color group, where a is a constant. Since daye = O(1), at most B = bn3/2log'/%n
original delays can be from levels (L — 4)*, where b is a constant. We show that,
with a small probability, more than C = clog®n edge delays are from level L*, for a
sufficiently large constant c.

For a particular set of C edges to have level-L* shortcut delays, at least 4 edges in
each of these C bounding boxes have level (L — 4)* original delays. For a particular
set of four edges in each bounding box to have level (L — 4)* original delays, the
probability is at most (4%) / (:g) This is true since all the C bounding boxes are
edge-disjoint. There are at most (g) ways to choose C edges whose shortcut delays
are from L* and 81€ ways to choose four edges from each of the C boxes. We therefore

derive the following from a union bound.

p = Pr[ Atleast C edges have level-L* shortcut delays |

< ne(2)(2) ()

We bound probability p with the inequalities,

Y\* . (v ye\*
Z) < <= .
(z) —(x)—(a:) ’ (4.5)
where e = 2.718.. is the base of the natural logarithm. By the definitions of A, B and
C and the fact that M = 2n?, we have,

< (81~Ae)0 (&)40 _[8l-a-b- ¢ clog’ n
P=\"T M/ ~\(2%-c-logn |

Let c be a sufficiently large constant, then the above probability is bounded by O(n™1).

Summing over all the O(1) color groups, we conclude that with probability 1—O(r=!)
H has no shortcut delays from level (2 log n)* and O(log?® n) shortcut delays from level

L*. Hence, any monotone path picks up a total delay of O(n**log®n) = O(n) from
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levels £ > L. 0

4.3.3 Small Delays

In this section we show that the shortcut deiay from small levels do not accumulate
too much on any monotone path with high probability. In particular, with probability
1 — O(n™?), each monotone path picks up O(n27¢) delay from each “small” level .
Summing over all O(logn) “small” levels, we can conclude that each monotone path
picks up a total of O(n) small delays with probability 1 — O(n1).

Consider a particular level £ < L, where L = 1 logn—} loglogn. We divide H into

2m-1

- ) sequences of 2m — 1

m? squares of size 22 x 2%, where m = n2~%. There are (
squares that some monotone path could possibly go through. We call these sequences
of 2m — 1 sqnares monotone sequences. If the total number of level-£ shortcut delays
in each of these sequences is bounded, then the total level-¢ shortcut delay that any

monotone path picks up is also bounded.

Lemma 4.3.3 With probability 1 — O(n~2), any monotone path picks up a total of
O(n27%) delay from level-€ shortcut delays, where ¢ < L is one particular level and

L = 1logn — lloglogn.

Proof: Consider one particular monotone sequence of 2m — 1 squares of size
22¢ x 2% where m = n2~%. Let random variable X be the number of level-£ shortcut
delay in this sequence of squares, and let random variable X; be the number of level-¢
shortcut delays from the ith square in the sequence. We use a moment generating
function argument to upper bound X = X; + ... + Xp,,—1. . We first bound the
probability Pr{ X; = ki,..., Xom-1 = kzm—1 ] Let A = d24f be;qﬂ upper bound on
the number of edges from one particular color group in each 22"%( 22’ square, ‘whefe
a is a constant. Since daye = O(1), at most B = bn?2-* or:iginal delays can be ffém
level (£~ '4)*‘, y\rhefe b is a constant. Let k = m=t ks iBy épplying ﬁhé'l.'séfme‘ logic

oy .
. [

.as for :Ineqqaflity (44), we have, B

' ‘AV? . .‘ ! ' ' s I. “
P = Pr[X1 = kl,.'..,sz'_; = kg'm..) ] g '7
. e ; l o
)
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By Inequality (4.5), the probability is bounded by,

it (A9)" L (A) T (B
ky 7 \k2ma M
2m-1 (81 .a- b4 . e5)’-‘:’

= 1I 20 k;

=1

P

IA

(4.6)

We proceed to bound the expectation of eX.

EleX] = E[eXit-+Xm]

= Y e 3 PriXi=ki..., Xomo1 = bzt ]
k20 N ki=k

2m-1 y k;
Z Z H (76—) ’ wherey=81.a.b4.86_2-4

2m-1 _ k;

>y Iy

k30T kg i=1 i
— ey(2m—l).

IA

IA

The first inequality follows from Inequality (4.6), and the last equality follows from
e¥(2m=1) — (ngo %-)21"-1. We use Markov’s inequality to bound the probability
that the total number of level-£ shortcut delays exceeds #(2m — 1) in this particular
monotone sequence.

- X 2m—1 Ele¥] (v-B)(2m~1)
Pr[XZ,B(2m—1)]=Pr[e > f2m )]scﬁ(m_l)se& .

There are (2":1) < 2?™=1 monotone sequences. By a union bound, the probability
that every sequence has fewer than B(2m — 1) level-£ shortcut delays is at least
1 - 22m=1e(v=A)2m-1) et B be the constant y + 2, then this probability is bounded
by 1 — O(n“a), since m = n/ 2% > logn. Therefore, every monotone path picks up
_ tbta,l of O(n2-*) shortcut delays from level £ with probability 1 — O(n~2). o

. Summing 0vér.a.lll levels £ < L results in a total delay that is linear in n as desired.
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Lemma 4.3.4 With probability 1 — O(n™!), all the monotone paths pick up e total
delay of O(n) from levels £ < L for L = }logn — 1 loglogn.

For the case in which dave = O(1), Lemmas 4.3.2 and 4.3.4 show that any monotone
‘path has a total delay of O(n) with high orobability. For the case in which d,. is

nonconstant, the discussion at the beginning of section implies that,

Theorem 4.3.5 Suppose H is a network with average delay dn.., then with high
probability every monotone path in H has delay O(ndyye).

To make the algorithm work-efficient, we use an m x m subarray of H of average
delay at most d,y. to simulate G. Theorems 4.1.4 and 4.3.5 implies that the slowdown
is O(n?/m? 4 davem/n) with high probability. By choosing m to be ma -{rd;l/3,1},

we have,

Theorem 4.3.6 Suppose the delays on network H are from a random permutation
of a set of delays whose average is dyye, then with high probability H can simulate G
with slowdown O(d*?).

ave

Congestion problems are not an issue here, since each edge of H is used O(1)

times by alternate paths in the shortcut process.
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Chapter 5

Database Model

We switch our attention to the database model. As discussed in Chapter 2, simulation
in the database model! is more difficult than in the dataflow model. For algorithms
such as STRIPE in Chapter 3 to work for the database model a host processor needs
O(n) copies of the databases on average. This is unrealistic because of the memory
requirement as well as the difficulty in updating the databases. We therefore develop
new machinery for the database model. Contrary to the dataflow model, we make
substantial use of redundant computation. Apart from the slowdown, another impor-
tant parameter for the database model is load, which is the number of databases that
a host processor copies.

The main contribution of this chapter is an algorithm called OVERLAP that sim-
nlates linear arrays in the database model with a small load and a small slowdown.
Since OVERLAP is technically involved, we begin with a special case ir Section 5.1
where the host linear array has delay d on all edges. The simulation in this special
case is much simpler, and it conveys some intuition for using redundant computa-
tion in the general case. Section 5.2 presents OVERLAP in detail. The techniques
are generalized to simulate linear and 2-dimensional arrays on general networks in
Sections 5.3 and 5.4. Lastly in Section 5.5 we discuss the lower bounds on slowdown

when each database is allowed a small number of copies.
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5.1 A Special Case

In this section we consider a special case. Let G be a guest linear array with n
processors and unit-delay edges, and let H be a host linear array with n processors
and delay d on all edges. We use redundant computation, an approach that is not

useful for the dataflow model, to achieve an optimal slowdown of 0(\/2)

Theorem 5.1.1 In the database model, H can efficiently simulate G with a slowdown
and a load of O(v/d). This slowdown is optimal up to a constant factor.

Proof:  We consider two cases. If n < v/d then one host processor copies all the
databases and carries out the entire computation by itself. Hence the load and the
slowdown are n, which is O(v/d). Otherwise, the first % host processors are used for
the simulation. For 1 < j < 7"3, processor p; copies 3v/d databases b; and computes
3v/d columns of pebbles (,), where (f —2)Vd+1<: < (+1)Vd and 1 < ¢. In this
way each processor shares v/d databases with its right and left neighbors and each
pebble is redundantly computed by three neighboring processors.

We show how to simulate the first v/d rows of pebbles created by G in O(d) steps
by H. Every subsequent v/d rows of pebbles are simulated in the same manner. The

algorithm is demonstrated in Figure 5-1. For 1 < j < 7"3 let,

P; = {Pebbles (3,t): 1<t<Vd, -2V/d+1<i-jVd<Vd},
L = {Pebbles (i,t): 1<t<Vd, 1<i—(j—2)0Vd<t),

R = {Pebbles (i,t): 1<t<Vd, ~t+1<i—(j+1)Vd<0},
A = {Pebbles ((j —2)Vd,t): 1<t <Vd},

B = {Pebbles (( —1)Vd+1,t): 1<t<+d},

C = {Pebbles ((jvd,t): 1<t <+d},

D = {Pebbles ((j + )Vd+1,t): 1<t<+Vd},

T = Pj—(LUR).

Processor p; of H computes all the pebbles in P;. First, p; computes the pebbles in

the trapezium T without communicating with its neighbors. There are 2d pebbles in
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T and so this takes 2d steps. Next, p; passes column B to processor p;_; and receives
column A from p;_;. It also passes column C' to processor p;;; and receives column D
from p;41. This communication takes d + v/d < 2d steps using pipelining. Processor
p; can now compute the pebbles in triangles L and R in d steps. It is important
for p; to compute the pebbles in L and R in order to continue the simulation of the
next v/d rows of pebbles, since databases need to be updated. This presents a major
difference between the dataflow and database models.

Hence, it takes at most 5d steps in total for processor p; to compute every pebble
in P;. The next v/d steps of computation can be simulated in a similar fashion. The
slowdown is therefore O(v/d). Theorem 4.1.5 shows that £(+/d) is a lower bound on

the slowdown.

Figure 5-1: Simulating v/d steps of computation of G on H.

Note that during the computation of T, the pebbles in columns B and C can start
to travel to the neighboring processors of p; as soon as they are ready. Processor p;
can also start to compute triangles L and R before the entire columns of A and D are
transfered. In this way, the communication time can be saved. Although it does not
make a difference asymptotically in this case we take advantage of this observation

in OVERLAP. ]
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5.2 Algorithm OVERLAP

To simulate a guest linear array on a host linear array with arbitrary delays we
use an algorithm called OVERLAP. In OVERLAP, we remove host processors that
are surrounded by high delays. The motivation of this step is similar to that of
Section 4.2. For the remaining processors, we decide how rmuch redundancy is needed
for neighboring processors and how much computation exch processor is able to carry
out. During the simulation, some pebbles are redundantly computed to ensure that
the communication is not too costly. We first obtain a slowdown of O(day. log® n),
where dyye is the average delay of H and n is the size of G and H, and later improve

the slowdown to O(v/daye log® n) while achieving work efficiency.

5.2.1 Removing Useless Processors

We recursively represent H using a binary tree, in which each node corresponds to
a subarray of H. The root represents the entire array. The left and right children
of the root represent the left and right halves of the array respectively. In general, a
nede at depth k of the binary tree corresponds to a subarray of H that contains 13
processors. We refer to this subarray as a depth-k interval. The leaves represent the

individual processors of H. (See Figure 5-2.)

' '

I '.."--,Il
o * o *

Figure 5-2: The binary tree that represents H. In this figure, unremoved orocessors
of H are represented by black circles; removed processors are represented by white
circles. Arrows indicate the endpoints of the root interval. Interval I has one live
child and I’ has two live children.

We describe a 2-stage process that removes the processors that are surrounded

by high delays (stage 1) and the processors that are surrounded by few unremoved
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processors (stage 2). During stage 2, we also label each live subarray, where a live sub-
array contains some unremoved processor. These labels indicate how many columns
of pebbles the live subarrays are able to compute.

For every depth k, we define Dy to be the “delay threshold” and m; to be the
“overlap size” as follows. Note that Dy is larger than the average delay in a depth-k
interval by a factor of ©(logn), and my is smaller than the number of processors in
a depth-k interval by a factor of ©(logn). We shall use m; to indicate the size of
overlap between neighboring depth-£ intervals, i.e. the number of columns of pebbles

redundantly computed by both intervals.

D, = (clogn) (;—kd“e) (5.1)
M= (Elolgn) (22") (52)

As we shall see, any constant ¢ > 5/2 works for our argument. We also define a

maximum depth kmax such that when k = kyax the overlap size my becomes 1.

kmax = logn —loglogn — logec. (5.3)

e Stage 1 From depth k = kp.x down to depth 0, if the total delay in a depth-k

interval exceeds Dy, then all the processors in that interval are removed.

o Stage 2 At depth k = knay, let I be a live depth-k interval and let = be the
number of unremoved processors in I. If z is smaller than 2m; then we remove
all the remaining processors in I and I is no longer live. Otherwise, we label I

with z.

Suppose all the live depth-(k + 1) intervals are labeled. Now consider each live
depth-k interval I. If I has two live children I; and I, that are labeled with z,
and z, then let 2 = z; + £ — myy;. If I has one live child I, that is labeled
with z,, then let £ = z,. If < 2my, we remove all the remaining processors
in I and I is no longer live. Otherwise, we label I with z. We proceed to depth

k — 1 until reaching depth 0.
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Lemma 5.2.1 At most n/c processors are removed at stage 1.

2k
clog

Proof: The total delay in the array H is ndave. At most — depth-k intervals
can have delay more than Dj. Each depth-k interval contains ok processors and so at

most cl:gn processors are removed at depth k. Since there are logn depths, at most

n/c processors are removed at stage 1. o

Lemma 5.2.2 The label on the root interval is at least (1 - %) n at stage 2.

Proof:  Before stage 2, the number of remaining processors in H is at least (1 —
1/c)n by Lemma 5.2.1. At depth k = kya of stage 2, the sum of the labels on the
live depth-k intervals is at least (1 — 1/c)n — 2m;2F, which is (1 — 1/c)n — =22—. At

clogn

each depth k < kpax, the sum of the labels on the live depth-k intervals decreases by

5n
2clogn

at most (2my + myyq )2", which is . Summing over all depths, we conclude that

the label at the root interval is at least (1 — %) n. O

5.2.2 Assigning Databases

For clarity of presentation, we first assume that G has n' processors, where 7’ is the
label on the root interval of G and n’ is a constant fraction of n by Lemma 5.2.2.
We also assume the existence of pebbles (0,t) and (n’ + 1,t), for all ¢ > 1, which
are known to H at time step 0. This ensures that each pebble computed by G is
dependent on three pebbles.

Algorithm OVERLAP assigns one database to each remaining processor of H so
that H has load one. In particular, a depth-k interval with label z is assigned z
databases. The depth-0 interval, i.e. H, has all the databases b,...,b,. We assume
inductively that a depth-k interval I labeled z is assigned databases b;;1, ..., biyg. If I
has only one child I, then OVERLAP assigns b;41,...,b;4, to I;. If I has two children
I and I, that are labeled z, and z; respectively, then z = z; + z; — M4y by the
construction of stage 2. OVERLAP assigns bj1, ..., iz, to interval I; and bitz—zp+1,

.+ biyz to Ir. Note that myy, databases, namely by _z,41,.. .y bisrz,, are assigned

to both I; and I;. These my;; columns of pebbles will be redundantly computed
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by both I; and I,. At depth kna.« each remaining processor of H is assigned one

database.

5.2.3 The Simulation

In OVERLAP, H recursively simulates every mgy = ch;‘sn rows of pebbles created by
G as follows. If H, the depth-0 interval, has two live depth-1 intervals I; and I, as
children, then I; and I, recursively compute the first m; = mo/2 rows of pebbles and
then repeat for the next m; rows. In particular, I; (resp. I;) computes all the pebbles
of the form (7,t), where I (resp. I;) owns database b; and 1 < t < m,. Intervals I
and I, share m; databases and therefore redundantly compute these m; columns of
pebbles. If H has one live child I;, then I; recursively computes the first m; rows
and then repeats for the second m; rows. At depth k = kpyay, each depth-k interval
computes m; = 1 row of pebbies. Theorem 5.2.3 explains the simulation in details.
Let us define a set of values ssk) for 0 < k < kmax and 1 < t < my, where the
superscript k represents the depth of the recursion, and the subscript ¢ represents
the row number. Roughly speaking, 3§k) corresponds to the time by which a depth-
k interval computes its pebbles in the tth row. We are interested in the slowdown
3,(,?3 /mo, where 35,?3 corresponds to the time that H takes to simulate the first mg steps
of computation by G. Recall that the delay threshold Dy defined in Equation (5.1) is

an upper bound on the total delay in any live depth-k interval. The recurrences are

as follows.

s = ) 4 p, for 1<t < mep (5.4)
s = Sﬁ)m,,“ + sf,’f,)m for mpp +1<t<my (5.5)

The base of the recurrence is defined to be,
35;’:,2 = s = for k= kmax (5.6)
Let the left endpoint of interval I be the leftmost unremoved processor in I, and the
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right endpoint be the rightmost unremoved processor in I. (See Figure 5-2.) For
notational simplicity, we assume that I is the leftmost live depth-% interval and is
assigned databases by, ..., b;. Let By = {(¢,t) : 1 <i < z,1 <t < m;}. The proof of

the following theorem describes how algorithm OVERLAP performs the simulation.

Theorem 5.2.3 For 1 <t < my, if pebbles (0,t) and (z + 1,t) are known by time
step sfk) by the left and right endpoints of interval I respectively, then by time step
s every pebble (¢,t) in By is computed by all the processors in interval I that have

a copy of database b;.

Proof: We proceed by a backwards induction on k. At level k = kpax, we have
mi = 1 and box By has size z x 1. Since remaining processors of I have load one,
each processor computes one pebble in B;. By definition sgk) = 1. Hence, the base
of the induction holds.

Suppose that the inductive hypothesis is true for £ + 1. Note that the hypothesis
can be applied to any depth k + 1 interval. Let us concentrate on I, the leftmost live

depth-% interval. Suppose I is labeled with z. There are two cases to consider.

Case 1: Suppose I has two live children I; and I that are labeled with z, and z,
respectively. By construction = z; + x5 — myy1. Let Byyy = {(5,8) : 1 < i < 24,
1 <t<mgp}. Let y = 23 — myyy and B, ={(t):y+1<i<z,1<t<mpp}.
Let column C consist of pebbles (y,t) and column D consist of pebbles (z; + 1,1),
where 1 <t < my;. Note that boxes By, and B;. ., have an overlap of width my,,,
Le. the myy; columns between C' and D are common to both Byy; and Bj,,. (See

Figure 5-3.) Two observations can be made from the inductive hypothesis.

@ Observation 1 For 1 < ¢t < my44, every pebble (y,t) in column C can be
computed by I; by time step sfk"'l) without any conditions on pebbles (0,t) and
(z1 + 1,%). Since C and D are my, columns apart and ©; > 2my4q by the
construction of stage 2, the pebbles in column C therefore do not depend on
the pebbles (0,t) and (z; + 1,t). (The dotted diagonal lines in Figure 5-3 show

the dependencies of columns C and D.)
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Figure 5-3: The box of pebbles Bi;; has size 21 X my4; and is represented by the
lower left box with a dashed boundary. Bj,; has size z; X mi4; and is represented
by the lower right box with a solid boundary. B is the union of all four boxes. For
interval I to compute every pebble in By, I, and I, (the live children of I) recursively
compute By, and Bi,,. Once the bottom half of By is computed the top half is
computed in a similar manner.

e Observation 2 Let z > 0 be some constant. For 1 <t < myy,, if the value of
pebbles (0,t) and (z; + 1,t) are known at time step sgk“) + z by the left and
right endpoints of interval I; respectively, then by time step s$k+l) + z, every
pebble (2,%) in Biy, is computed. This is true because there is no difference

between starting the simulation at time step z and at time step 0.

Similar statements can be made about the box By, and column D. Now suppose
that the value of pebbles (0,t) and (z + 1,t) are known at time step sgk) by the
left and right endpoints of interval I respectively. Observation 1 and the inductive
hypothesis imply that any pebble (y,¢) in column C can be computed by I, by time
35"“’. Since the total delay in interval I is at most Dy then the left endpoint of
interval I, can receive the pebble (y,t) (logether with any relevant database changes)
by time s{*1) + D, which equals s{* (Equation (5.4)). Similarly, all of the pebbles
in column D can be sent to the right endpoint of interval I; by time ssk). Since sgk) is
greater than sgk“) by a constant amount, namely Dy, for 1 <t < myy;, Observation
2 and the inductive hypothesis imply that pebbles (Z,t) in box Byy, (resp. Bj,,) are
computed by I; (resp. I) by time sgk) . Therefore, pebbles (7,1) in the bottom half of
By, are computed by time sfk).

Once the bottom half of By is simulated I simulates the top half in a similar
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manner. Thus, pebbles (¢, ¢) in the top half of By are computed by time ss,’f2+ . +s$f)mk "

which equals s{* (Equation (5.5)).

Case 2: The case in which I has one live child is simpler. Let I; be the child
of I. By construction, I, has label z; = z. By Observation 2 and the induction
hypothesis, if the values of the pebbles (0,t) and (z, + 1,2), for 1 <t < myy, . are
known at time steps ssk) by the left and right endpoints of interval I respectively,
then every pebble (z,%) in By (i.e. the bottom half of By) is computed by I by time
step sgk). Since intervals I and I; have the same remaining processors (and hence the
same endpoints), the above statement holds for I. Interval I then computes the top
half in the same manner. Thus, pebbles (,t) in the top half of By are computed by
time s{f) at s,(,f)mk 41 Which equals s (Equation (5.5)).

The inductive step is complete. Hence, given that the value of pebbles (0,t) and
(z + 1,t) are known at time step sfk) by the left and right endpoints of interval I all
pebbles (z,t) in box By are computed by time step sfk). 0

Recall that n' is the label of the tree root and n’ is a constant fraction of n by

Lemma 5.2.2. We have the following.

Theorem 5.2.4 Suppose that guest linear array G has n' processors and the host
linear array H has n processors and an average delay of day.. Algorithm OVERLAP
simulates G with H such that the load on H is one and the slowdown is O(daye log® n).

Proof: The load on H follows directly from the database assignment. The box
By contains all of the pebbles for the first mg steps of computations by G, where
mo = cl:sn. The root interval Ip contains ail the remaining processors of H. Since

pebbles (0,t) and (n’+1,t) are available at time step 0 by assumption, Theorem 5.2.3

implies that Iy, i.e. H, computes the pebbles in box By by time sﬁ,‘,’g. We derive s,(,?g
from the recurrence of s{*) in Equations (5.4) and (5.5) and the definition of Dy in

Equation (5.1).

sf,?g = 2"55,’,‘2 +2kDy  for k = kmax- (5.7)
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Therefore, 35,?3 < iogn + 2¢daven log?n = O(davenlog?n). Since mg = Thogn the
slowdown is O(daye log® n). 0

5.2.4 Bandwidth

It is clear that the bandwidth required for the communication between depth-k in-
tervals is at most the bandwidth of G. Therefore, congestion is not an issue if the
bandwidth on H is at least logn times the bandwidth on G. If, however, the band-
width on G and H are comparable then we need to pay an extra factor of logn in

the slowdown.

5.2.5 Improvements

In this section we first modify OVERLAP to achieve work efficiency. So far each host
processor is assigned at most 1 database, and the base of the recurrence is therefore
8% =1 for k = kmax as defined in Equation (5.6). Observe that in Equation (5.7)
the second term of 5{2 dominates the first term. We can balance the two terms by
increasing the value of sﬁ,’fz for the base case, i.e. increasing the load on the host
processors.

In particular, we use an m-processor subarray of the host linear array H to sim-
ulate an n-processor guest linear array, where m = max {1, ﬁ:log‘s n} and the
subarray has average delay at most dae. If m = 1, the slowdown and the load are
both n. Otherwise, we carry out the 2-stage process to remove the useless processors
of the m-processor subarray as as described in Section 5.2.1. The only difference is
that the network size is m instead of n, and the variables such as Dy, my and knmax
are also defined in terms of m. Each unremoved host processor is assigned © (%)

databases, and hence the base case is sfffl =0 (-,%) for k = knax. We obtain,

sf,?) =0 m_.r + 2¢cdavem log? m
0 clogm m

from Equation (5.7). Since m = 2 log~*n, we have s{Q = O (n log™! ﬁ) Since
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My =

Togm?. the slowdown 3(0) /mo is O(dm, log n) Thls 1mphes that the sxmulatlon

is work preservmg.

Theorem 5.2.5 In the database model an n-pmcessor guest hnear array on be ef
ficiently simulated by an n-processor host hnear array with a slowdown and a load of

0 (dave log® n), where the host has average delay d,,.‘re

Combining Theorems 5.1. 1 and 5 2. 5 we ca,n 1mprove the slowdown to by afac- .

tor of O(v/dave) while preservmg efﬁcxency Suppose that G i is- an n-processor guest .

linear array, and H is an n-processor host linear array wlth avera.ge delay dpve. We
make use of an intermediate linoaf array H(; that has a delay of d,.. on every edge.
Theorem 5.1.1 implies that network Hy can efficiently simulate G with a slowdown of
O(v/dave), Where ma.x{vz";, 1} processors of Hy are used. In the simulation by Hy,
every O(day.) steps of computation interleave with every O(day.) steps of communi-
cation. If we treat every O(day.) steps as one time unit, then Hy acts like a guest
linear array with unit-delay edges and H has a normalized average delay of O(1).
Theorem 5.2.5 implies that H can simulate Hp with a slowdown of O(log®n). The
combined slowdown is therefore O(1/dy,. log® ). It is obvious that the combined load
is O(V/dave log® n). Theorem 5.2.5 is improved to the following.

Theorem 5.2.6 In the database model, an n-processor guest linear array can be ef-
ficiently simulated by an n-processor host linear array with a slowdown and a load of

O(Vduve log® n), where the host has average delay dqye.
g

5.3 Simulating Linear Arrays on General Networks

We generalize algorithm OVERLAP to simulate a guest linear array on an arbi-
trary bounded-degree connected host network. Given a connected bounded-degree
n-processor network H with average delay day., we first find a linear array M that can
be embedded one-to-one to H and has average delay d,... As discussed in Section 3.4
such H can be found, and H is used to carry out the simulation. Combined with

Theorem 5.2.6, we obtain,
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- Theorem 5.3.1 ‘An n-j)rdces.sor guest linear array can be efficiently simulated by a
"';‘_\coimé'éted bodnded.—a'egree n-processor host with a slowdown of O(v/dye log® n), where
the host has average delay dyye.

For the same ‘reason as in Sectibn 3.4 Theorem 5.3.1 does not hold when H has

o  unbounded dégre'e. -

5.4 Simulating 2-Dimensional Arrays on General
- Networks
~ Our techniques can also be generalized to simulate a 2-dimensional array on any

connected bounded-degree network.

Theorem 5.4.1 In the database model, an n x n guest can be efficiently simulated by
a bounded-degree host network with a slowdown of O(nlog® n + v/ndyue log® n), where
the host has average delay daye.

Proof: As discussed in section 3.4 there exists a linear array H such that 7 is
embedded one-to-one in H and that H has average delay O(dave). The simulation of
G on H will be performed by simulating G on H. We first show how to simulate G
on an intermediate linear array Hy, where Hy has delay daye on all the edges. The

size of My depends on the relative sizes of dgye and n.

Case 1: If d,ve < n, then H, has n processors, each of which simulates one column
of processors of G. To simulate one step of G, a processor of Hy computes n pebbles
and then communicates with both of its neighbors. The communication takes at most
n + daye steps, which is O(n) steps. Hence the slowdown of H, simulating G is O(n).
Also, in this simulation every O(n) steps of computation interleave with every O(n)
steps of communication.

Since dave < n, if every O(n) steps are treated as one time unit then H has a
normalized average delay O(1) and Hp acts like a guest linear array with unit-delay
edges. Therefore, Thecrem 5.2.6 implies that H can efficiently simulate H, with a

slowdown of O(log®n). The combined slowdown is therefore O(n log® n).
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Case 2: If dave > n, then Hp has n/z processors, where = = \/cmﬁ- Each processor
of Ho simulates 3z columns of G, overlapping z columns with each neighbor. (The
redundant computation used here is similar to that in Theorem 5.1.1.) To simulate z
steps of G, each processor of Ho computes at most 3x2n pebbles and then communi-
cates with both of its neighbors. The communication takes at most 3z2n + day. steps,
which is O(daye) steps. Hence the slowdown of simulating every x steps is dyve/z,
which is O(v/ndave). Also, in this simulation every O(day.) steps of computation
interleave with every O(dav.) steps of communication.
“ If every O(dave) steps is treated as one time unit, H has normalized average delay
O(1) and Hp acts like a linear array with unit-delay edges. If n/z processors of H
are used to simulate My, Theorem 5.2.6 implies a slowdown of O(iog® ), which is
O(log® n). The combined slowdown is therefore O(y/nidaye log®n). o
The above technique can be applied to the dataflow model, where Mg simulates

G in the same manner and H simulates H, with a slowdown of O(1) in both cases.

Theorem 5.4.2 In the dataflow model, an n x n guest can be efficiently simulated

by a bounded-degree host network with a slowdown of O(n + \/ndy.), where the host

has average delay d,..

5.5 Lower Bounds

In this section we discuss the impact on the slowdown of the simulation when the
number of copies of each database is bounded and the load is a constant. We consider
the case in which each database can have one copy and the case in which each database
can have at most two copies. Notice that although we are restricting the number of
copies of each database to either one or two, a particular processor in the host can
have a copy of many databases.

For the case in which each database is allowed one copy we give an example to
show that the slowdown can be dpax. Let G' and H; be n-processor guest and host
linear arrays. Every y/n-th edge of H; has a delay of \/n and all other edges have nnit
delay. Therefore, H; has an average delay of O(1). If at most \/n processors of H;
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have copies of databases, then by a work argument the slowdown when H; simulates
G is at least \/n. Otherwise, there exist databases b; and b;y; such that they are
assigned to processors p and q of H; respectively and that the delay between p and
q is at least \/n. Hence, for all time steps ¢, processor p cannot compute pebble (z, 1)
until \/n steps after ¢ computes (¢ + 1,¢ — 1), and ¢ cannot compute (: + 1,¢) until
/1 steps after p computes (z,¢ — 1). This implies a slowdown of dmax = /7, whereas

dave is a constant. Note that the above argument makes no assumption on the load.

Theorem 5.5.1 If each database can have at most one copy, the slowdown when

simulating G by H, is dpax.

For the case in which each database is allowed at most two copies we construct a
host network H; whose average delay is O(1), but for which the simulation slowdown
is }(log n). Network H, is made up of ©(n) processors and the edge delays are either
1 or d. The following is a recursive construction of H, in which we define a series of

boxes. (See Figure 5-4.) We regard H; as a level-k box, where k = log 3. Network H,
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Figure 5-4: A level-3 box. Host network Hj is a level-k box, where k = log .

consists of two level k—1 boxes that are connected by edges of delay 1. In general,

a level-£ box, for 1 < ¢ < k, consists of two level f— 1 boxes that are connected by

logn edges of delay 1. We say that these . Processors are in a segment. A level-0

box consists of a single edge of delay d.

d2de

Let d = logn. Since a level-£ box contains 2¢ edges of delay d an edges of

delay 1, H, has O(n) processors and constant average delay d,,.. Furthermore,

Lemma 5.5.2 If processors p and q are in two different segments I and J, then the

delay between p and q is at least min {% logn, § log n}, where u and v are the numbers
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of processors in segments I and J respectively. In particular, the delay between p and

q is at least d = logn.

Theorem 5.5.3 If each database is allowed at most two copies and the load is a

constant c, then the slowdown when simulating G by H, is Q(log n).
Proof: = We consider the following two cases.

Case 1: There exists some “overlap” in the database assignment. In particu.ar, sup-
pose databases b;, biy1, ..., biy; are assigned to processors in segment I and by, . ..,
bitjs bitj+1 are assigned to segment J # I, for some j > 1. Suppose also that the
other copy of b ;41 is assigned to J' # I and the other copy of b; is assigned to I' # J.
Notice that pebbles of the form (2 4- k,t), for 1 < k < j, can only be computed by
processors in segment I or J. Since the load is ¢, the number of processors in segment
I'is at least j/c. The same is true for segment J. We shall find a path of 45 pebbles
such that either a delay of O(jlogn) occurs, or a delay of logn occurs O(j) times
during the simulation. For simplicity we assume that j is even. The case in which j
is odd is similar.

We use a triple (z,, p;) to say that processor p, computes pebble (3, 1), and we use
expressions of the form (z,¢,p;) « {7 -- 1, — 1,p,) to indicate dependency. That is,
processor p; receives pebble (z —1,¢ — 1) from processor p, before p, computes (3, ).
(Note that p, may be the same as p,.) Consider the computation of the following

path of 45 pebbles, 7, « ... « 74;, where 7 is a triple of the form,

( (i+kt—k,p) forke A, where A={k:1<k<j},
((+j+1,t—k,p) for ke B, where B={kodd:j<k<2j},
(¢+J,t —k,pr) for k€ C, where C = {keven:j <k <2j},
(¢ —k+3j,t —k,pr) for k€D, where D= {k:2j <k<3j},
(¢ +1,t—k,p) for k€ E, where E = {keven:3j <k <4j},
(¢,t —k,pr) for k € I, where F = {kodd:3j <k <4j}.

Tk = 9

\

This path goes backwards in time and zigzags during time steps k, for k € BUC U
E U F. (See Figure 5-5.)
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T35+1

Taj

Figure 5-5: A path of 4; pebbles, where j is even.

By assumption processors py, for k£ € CUE, can only belong to segment I or J. If
processors p, for k € C U E, do not belong to the same segment, then Lemma 5.5.2
implies a delay of 5’; logn for the communication between segments I and J. Hence,
it takes more than -2-'%logn steps to compute this path of 45 pebbles. Otherwise,
processors pg, for £ € C U E, all belong to segment I. Lemma 5.5.2 implies a delay of
logn in computing every 7, for j < & < 2j. This is because processors py, for k € B,
cannot be in segment I by assumption. Similarly, if processors pi, for k € C U E,
all belong to segment J, then there is a delay of logn in computing every 7y, for
3j < k < 4j. Hence, it takes more than jlogn steps to compute this path of 4;
pebbles.

We can repeat this argument for every 4; steps. Hence the slowdown is Q(log n).

Case 2: There exists no “overlapping” of the databases as in case 1. Let &;,...,b;,
for j > ¢, be the longest sequence of consecutive databases assigned to one segment.

Call this segment I and the sequence of databases S;. Notice that processors in I do
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not have a copy of b;_,. Let J be a segment that is assigned a copy of b;_,. Let S; be
the sequence of consecutive databases such that b;_; is a member of 5; and that each
member of S; has a copy in J. If b; were a member of S, then either the database
sequences Sy and Sy would produce the “overlapping” pattern sufficient for case 1 or
Sy would be longer than S;. This latter case contradicts with the definition of Sy.
Hence, any segment that has a copy of §;_; cannot have a copy of b;. This implies
that the processors computing the pebbles in the (: —1)st and ith column are at least

logn delay apart by Lemma 5.5.2. Therefore, the slowdown is Q(logn). O
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Part II

Dynamic Packet Routing
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Chapter 6

Overview

6.1 Model and Problem

Consider a connection-oriented network N of arbitrary topology, on which a set of
sessions are defined. Each session is specified by a source node, a destination node
and a simple path connecting these two nodes. (A path is simple if it uses each edge
at most once.) Packets are injected to the network A in sessions. A packet injected
in session ¢ arrives at the source node of session i, traverses its predetermined path,
and then is absorbed at its destination nede. The injection is constrained by a rate
7y, 80 that at most ¢r; +1 packets can be injected in session 7 during any ¢ consecutive
steps. Another parameter is the path length d;, which is the number of edges on the
path of session .

We assume that all packets have the same size. We also assume that at each step
at most one packet can traverse each edge. When two packets simultaneously contend
for the same edge, one packet has to wait in a queue. During the routing, packets
wait in two different kinds of queues. After a packet has been injected, but before it
leaves its source, the packet is stored in an initial quene. Once the packet has left its
source, during any time it is waiting to traverse an edge, the packet is stored in an
edge queue. The end-to-end delay (delay for short) for a packet is the total time from
the packet injection until it reaches its destination. This includes the total time the

packet spends waiting in both types of queues, plus the time it takes to traverse the
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edges.

Our goal is to minimize both the end-to-end delay for each packet and the size for
all edge queues. In order to achieve delay guarantees and bounded queue sizes, it is
necessary to require that for all edges e, the sum of the rates of the sessions that use
edge e is at most 1. Throughout we assume that the sum of the rates of the sessions
using any edge e is at most 1 — ¢, for a constant € € (0,1).

Our research focuses on the problem of timing the movements of the packets along
their paths. A schedule specifies which packets move and which packets wait in queues
at each time step. In particular, we concentrate on template-based schedules, where
we define a fixed template for each edge in the network in advance. A template of size
M is a wheel with M slots, each of which contains at most one token. Each token is
affiliated with some session. All templates spin at the speed of one slot per time step.
A session-i packet can traverse the edge only if a session-i token appears. (If more
than one session-z packet is waiting, then the one that has been waiting the longest
gets to move.) The template size and the associated tokens do not change over time.
Therefore, even if the computation of the schedule is time-consuming, it only needs
to be done once. Packets can then be scheduled indefinitely as long as the sessions

do not change.

6.2 Lower Bounds

For all schedules, the path length d; is an obvious lower bound, since it takes every
session-¢ packet d; steps to cross d; edges.

It is easy to see that §2(1/r;) is an ezistential lower bound for all schedules. Con-
sider n sessions with the same rate r = (1 — €)/n, each of which has the same initial
edge. If a packet is injected in each session simultaneously, one of the packets requires
n = {)(1/r) steps to cross e. Hence, Q(1/r; + d;) is an existential lower bound for all
schedules.

For any given set of sessions, £(1/r;) is a lower bound for some session 7 in

template-based schedules. Suppose the total rates add up to 1 — ¢ for some edge e,
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then there always exist two session-: tokens separated by at least (1 — €)/r; slots on
the template for edge e, for some i. Otherwise, there would be more tokens than slots
on this template. If a session-z packet is injected just after the first token has passed,
then this packet cannot cross edge e until (1 — €)/r; steps later. Hence, Q(1/r;) is a
lower bound for all template-based schedules.

If the schedule is not restricted to being template-based, the scheduler is more
powerful. The scheduler does not have to decide on a fixed schedule in advance, but
rather can make a new decision at each step, based on the injections. In this case it

is unknown if for any given set of sessions, ((1/r;) is a lower bound.

6.3 Results

We present a simple distributed scheduler in Chapter 7. In a distributed scheme, each
edge decides which packet to advance next without knowledge of the entire network.
We obtain a delay bound of O (:—. + d; log #) , where m is the number of edges in the
network and 7, is the minimum injection rate over all sessions. While this bound
is not optimal, it nevertheless conveys some intuition for our main result.

We also present an asymptotically-optimal template-based schedule, which allows
every session-¢ packet to be delivered to its destination within O(1/r; +d;) steps of its
injection. This delay bound matches the lower bound of (1/r; + d;) and therefore is
optimal up to a constant factor. Our result improves upon previous work in several

aspects.

o We prove that an additive delay bound of O(1/r; +d;) is achievable. It is tempt-
ing to believe that a multiplicative bound of O(d;/r;) is the best possible, since
a session-z packet may need to waii 1/r; steps in order to advance each edge.
For example, Parekh and Gallager [47, page 148] give a bound of 2d;/r; under

our model. Their scheme has the advantage of being simple and distributed.

o We provide a session-based delay guarantee without dropping any packets. This

means that packets from sessions with short paths and high injection rates reach
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their destinations fast. Some previous work states the delay bound in terms of
R = max;(1/r;) and D = max; d; while allowing a packet loss probability of p.
For example, Rabani and Tardos prove a bound of O(R)+(log* p~1)°Us" ™) D4
poly(logp™) in [49]. This bound is improved to O(R + D + log'**p~1) by
Ostrovsky and Rabani [41]. Since their bounds are not session-based, a session
with a long path or low injection rate affects the delay bounds for all sessions.
The schemes of Rabani et al. are distributed, where knowledge of the entire

network is not assumed, but each packet carries some information.

e An additional bonus of our result is constant-size edge queues. This is interest-
ing because edge queues are much more costly than initial queues in practice.
An initial queue is usually considered as a part of the sender’s terminal, which
has a relatively large amount of cheap and slow memory. An edge queue, how-

ever, is a part of a network element, which has expensive and fast memory.

e A consequence of our result is a packet-based bound for the static problem,
which improves upon the O(c + d) bound in [31]. Here, the congestion ¢ is
the maximum number of paths that cross an edge and the dilation d is the
maximum path length. (In the static problem, all packets are present initially.
See Chapter 8 for more details.) Suppose packet p follows a route of P;, then p
can be routed to its destination within O(c; +d;) steps, where ¢; is the maximum
congestion along P; and d; is the number of edges on P;. The result trivially
follows from our result by creating a different session ¢ for each packet p, and

defining r; = (1 — €)/c;.

In Chapter 8 we review the techniques in [31] and discuss how to adapt them to our
routing problem. We prove the existence of a schedule with delay bound O(1/r; 4 d;)
in Chapter 9, and we present general approaches to constructing such a schedule in

Chapter 10.
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6.4 Generalization to the Leaky-Bucket Injection
Model

Our results above can be generalized to bursty traffic streams that are leaky-bucket
regulated. Here, each session 7 has a maximum burst size (or bucket size) of b; > 1
and an average arrival rate of r;. During any ¢ consecutive time steps at most r;t + b;
session-: packets are injected. (Therefore, our injection model in Section 6.1 is the
special case of the leaky-bucket model, in which the maximum burst size is 1.)
Leaky-bucket regulated injections allow traffic shaping. When session-i packets
are injected, they first enter the session-i bucket at the source. These packets then
leave the bucket one at a time at the rate of r;. In this way, the end-to-end delay is
separated into two components, delay in the bucket and delay in the network. Since
delay in the bucket is upper bounded by b;/r;, the end-to-end delay is increased by

at most b;/r; steps and the size of the edge queues is unchanged.
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Chapter 7

Preliminaries

In this chapter we present some preliminary results. Section 7.1 proves a generic
fact about “token sequences” for template-based schedules. Section 7.2 presents two
lemmas for probabilistic analysis that will be used extensively throughout the thesis.

We also show a simple scheduler that, with high probability, generates a schedule
that achieves a delay bound of O (% + d;log ;z;“:), where m is the number of edges
and i, = min; r;. We begin with a centralized scheme in Section 7.3 and convert
it to a distributed scheme in Section 7.4. This preliminary result is substantially
simpler to prove than the optimal result of O(1/r; +d;) because of the relaxed bounds.

Nevertheless, it illustrates the basic ideas necessary to prove the main result.

7.1 Token Sequences

Throughout the thesis we define template-based schedules in terms of token sequences.
A token sequence for session i consists of d; session-i tokens, Ky, ..., Ky, one from
each template along the session-i path. If K;4, appears z; steps after K;, then z; is
the token lag for these two tokens and Zg‘:'il z; is the end-to-end delay for this token
sequence. The token sequences for each session z form a partition of all the session-¢
tokens.

In the following we show that, in any template-based schedule, bounding the delay

for token sequences is sufficient to bound the packet delays and that bounding the
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token lag is sufficient to bound the edge queues. Our proof relies on Lemma 7.1.1. A
vector ¥ = [v1,v3,...,vn] is sorted if v; < vy < ... < v,. We define perm(7) to be
a sorted vector whose components form a permutation of the components of 7. We
also use the notation % < ¥ to indicate that the jth component of @ is smaller than

the jth component of ¢ for each j.

Lemma 7.1.1 Lel @ = [uy,us,...,u,] and 0 = [vy,vs,...,v,] be two vectors, each of

which consists of n distinct numbers. If @ < U, then,
1. perm(u) < perm(v);

2. If v <4+ Z, then perm(?) < perm(i) + Z, where Z = [z,...,2] is a vector of n

z’s for a scalar 2.

3. Let |0] represent the mazimum component of ¥, then |perm(¥) — perm(@)| <

Proof: = Without loss of generality, we assume @ is sorted, i.e. @ = perm(w). We
also assume perm(v) = [va(l), +++»Vg(n)], where o represents the sorted permutation

of U.

1. Let us compare u; and v,(;). There are two cases to consider. If j < o(j), then
u; < Us(j) < Vo(j)- These inequalities hold since @ is sorted by assumption and
U < 9. If j > o(j), then there exists j' > j such that v;; < v,(;). (Otherwise,
for all ;' > j, vj» > v,(;). However, only n — j components of # can be greater
than v,(j).) Combining the fact that i is sorted and @ < ¥, we have u; < u; <

vj1 < Vg(j). Therefore, perm(@) < perm(¥) in both cases.

2. Since perm(i+Z) = perm(il)+-Z'for Z = [z,..., z], Property 1 implies perm(7) <

perm(¥ + Z) = perm(d) + Z.

3. Suppose |perm(¥) — perm(#)| = v,(j) — u;. There are two cases to consider. If
Vo(5) < v;, then vy(j) —u; < vj—uj, which implies |perm(v) — perm(a)| < |7 —1|.

If v,(j) > vj, then there exists j' < j such that v,(;y < v;. (Otherwise, for all
(4) J (5) J
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3" £ 3, vs(5) > vj. However, only j — 1 components of ¥ can be smaller than
Uo(j)-) Since uj < u; by the assumption that @ is sorted, we have v,y — u; <

vj — uj, which implies |perm(v) — perm(d)| < | — @|. Property 3 follows.

(W]

We are ready to transform a token-sequence-based bound into a packet-based
bound. Although it might seem straight-forward, the difficulty is that a packet is
unable to identify a token sequence. This means if a session-i token appears, then
the session-i packet that has been waiting the longest has to move. The first token

in a token sequence is called an initial token.

Theorem 7.1.2 Consider any template-based schedule. If the end-to-end delay for
each session-i token sequence is bounded by X, then each session-i packet reaches its
destination within X steps after it obtains an initial token. If the token lag is bounded
by z for all token sequences for all sessions, then the edge queue size is also bounded

z.

Proof: It suffices to show the following. For any y > 1, consider the first y
session-i packets injected. After obtaining its initial token, each of these y packets
reaches the destination within X steps and it waits at most = steps to advance each
edge.

Let Tk be the time that the kth packet catches an initial token K and advances
its first edge. Let Tj; be the time that the kth packet would cross the jth edge if
it followed the token sequence initiated at K. Note that T}; is not necessarily the
time that the kth packet crosses the jth edge in a template-based schedule. However,
T; does represent a time that a token would appear on the jth edge. We have
Tu<Tu<...<Tp,and Tjy <Tje < ... < T, for 1 <k <y.

We first apply Property 1 of Lemma 7.1.1 to show that packets 1 through y are able
to cross the jth edge by times perm(Ty;, Tz, ..., Ty;), for 1 < j < d;. Take an ex-
ample of the second edge. Let perm(Tis,T%s,...,Ty:) = (To1),2: To(2),2 - - - » Toy) )
where o represents the sorted permutation. Property 1 of Lemma 7.1.1 implies

Thy, Toay - -+, T < [Toqa),20 To(2),20 - - - » Toy),2)- Since packet 1 has left its first edge by
Y (1), (2), (¥),
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time T1; and an unused token for the second edge appears by T, ()2, packet 1 is able
to advance its second edge by T;,(1),2. Since packet 1 has left by T,(y),2, packet 2 is able
to obtain an unused token by T,(3),2 and advance its second edge. Similer reasoning
applies to packets 3 through y for the second edge. Inductively, packets 1 through
y are able to advance their last edge by perm(T14;, T24;,- .-, Tya;). This quantity is
bounded by [T11 + X,T21 + X, ..., Ty,1 + X] by Property 2 of Lemma 7.1.1. Hence,
all the session-¢ packets reach their destination within X steps after they obtain the
initial tokens.

Let us bound the queue size now. Consider the jth edge, where 1 < j < d,.
Suppose packet k, for 1 < k < y, uses token K,; to cross its jthe edge at time
tr;j. Let Ky jy1 be the (5 + 1)st token on the same token sequence as Ky;, and let
tr,j+1 be the time that Ky ;41 appears. (Note that Kj; is not necessarily on the
same token sequence as the initial token that packet & used to cross its first edge,
and that Ky ;i1 is not necessarily the token that packet k& would use to cross the
(7 + 1)st edge.) Since txj < t 41, Property 1 of Lemma 7.1.1 and our argument
for the delay bound above imply that packets 1 through y are able to cross the
(7 + 1)st edge by perm(ti,j+1,t2,j41,---sty,j+1). Property 3 of Lemma 7.1.1 shows
that |perm(tyjy1, 82,415 -5 ty,j41) — [t1), 2j, - - -, ty;]| is bounded by z, the token lag.
Hence, a packet waits at most = steps to advance each edge once it obtains an initial

token. O

7.2 Lemmas for Probabilistic Analysis

Throughout the construction of our schedules, we use the Lovdsz Local Lemma [54,
pages 57-58] and a Chernoff Bound [10] for probabilistic analysis. We include them

here for easy reference.

[Lovasz Local Lemma)] Let F,...,E, be a set of “bad events” each occurring

with prodability at most p and with dependence at most d (i.e. every bad cvent is
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mutually independent of some set of n — d other bad events). If 4pd < 1, then
Pr[ N | > 0.
In other words, no bad event occurs with a nonzero probability.

[Chernoff Bound] Let X; be n independent Bernoulli random variables with prob-

.

ability of success p;. Let X = Y7, X; and let the expectation p = ", p;. Then for
0 < 6 <1, we have,
PrX > (1+68)p]<e 3

We also prove a variation of the Chernoff bound.

Lemma 7.2.1 Let X; be n independent Bernoulli random variables with probability
of success p;. Let X = 37" X; and the expectation E[X]= Y7 p;. Then for u > E[X]
and 0 < § < 1, we have,

Pr{X >(1+6)u]<e

Proof: We prove the lemma by amplifying the success probabilities. If © > n,
then Pr[ X > (14 é)u ] =0 and we are done. Otherwise, let p} be a value such that
pi <p; <1 and X7 pi = u. We have,

Pr[ X > (14 6)u | success probabilities p;, ..., py ]

< Pr[ X > (14 6)u | success probabilities p,...,p ].

The Chernoft bound implies that the above probability is bounded by e=#*/3. O
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7.3 A Simple Centralized Scheduler

We now present a centralized scheduler that achieves a delay bound of O (;’.- + d; log ;ﬁ:—;)

and edge queues of size O (log r:an)'

7.3.1 Template Size

We first decide the template size M. Roughly speaking, M needs to be sufficiently
large so that enough tokens can be placed to accommodate arrivals from all sessions
every M steps. We express the injection rate for session ¢ in terms of s;/¢;, a fraction
lightly larger than r;. If M is the least common multiple of ¢; for all ¢, then we can
place s; session-: tokens every ¢; consecutive slots on each template along the path of

session 7. The quantities of ¢; and s; are defined as follows.

6 = oMsdl (7.1)
8 = I_fgr,'(l+€/2)_|. (7.2)

In other words, ¢; is the smallest power of 2 that is larger than or equal to 2/(er;),
and s; is the largest integer that is less than or equal to £;r;(1 + €/2).
Lemma 7.3.1 Let #; = s;/{;. We have the following properties for +;.

1. r; < 7; for each session i;

2. Yies.Ti £ 1 —¢/2 for each edge e, where S, is the set of sessions thal cress

edge e.

Proof:  We first show,
bir; < s5; < é’,-r,-(l + 6/2). (7.3)

The difference between the lower bound and the upper bound is ¢;r;c/2, which is
at least 1 by the definition of ;. Therefore, there is an integer in the range of

[liri, €iri(1 + €/2)], and s; is such an integer by definition.
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Inequality 7.3 implies r; < 7; < ri(1 + €/2). Property 1 is immediate. Given
Yies.Ti S 1—¢, we have Y ;5. 7 < (1 —€)(14+¢€/2) <1~ ¢€/2. Property 2 follows.
a

We now define the template size M to be max; ¢;, which is © (;ﬁ) Since all the

¢;’s are powers of 2, M is also the least common multiple of the ¢;’s.

7.3.2 Token Placement

We describe a procedure to place the tokens for all sessions. For each session i, we
first place s; initial tokens in one slot every ¢; slots on the template that corresponds
to the first edge of session i. We then delay each initial token of session-i by an

amount chosen uniformly and independently at random from [L + 1, L + 4], where

L = 2Mog(§ log(mM))1 (7.4)

for a constant a. In other words, L is a power of 2 that is greater than or equal to
£log(mM). As we shall see, this is enough randomness to spread out the tokens.
For every session-: token a placed on the template corresponding to the jth edge, we
place a session-i token b on the template corresponding to the (j + 1)st edge such
that b appears exactly 2L steps after a. In this way, we have partitioned all the
session-z tokens into M7; sequences, where each token sequence has d; tokens and
two neighboring tokens in each sequence are 2L apart. In the following we show that

the tokens cannot be too clustered.

Lemma 7.3.2 At most L tokens appear in any consecutive L slots on any template
with probability at least 1 — 1/(mM), where L is defined in (7.4) for a sufficiently

large constant a.

Proof:  Since s; initial tokens for session-¢ are placed in one slot every ¢; slots and
each is delayed by an amount chosen independently and uniformly at random from
[L+ 1, L+ 4], the expected number of session-: tokens in & single slot is s;/£;, which

is 7;. Hence by linearity of expectations and Property 2 of Lemma, 7.3.1, the expected
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number of tokens over all sessions in L consecutive slots is Y=; 7L < (1 — ¢/2)L. For
a particular interval of L consecutive slots on a particular template, let the random
variable X be the number of tokens in these slots. Whether or not a token lands in
these L slots is a Bernoulli event. Since the delays tc the initial tokens are chosen
independently and all session paths are simple, these Bernoulli events are independent.

Since E[X] < (1 — €/2)L, we have the following by Lemma 7.2.1.
Pr[X>L)<Pr[X>(1+¢/2)(1—-¢/2)L]< e—*(1-¢/2)L/12.

In m templates there are at most mM intervals of L consecutive slots. Therefore, by
a union bound the probability that more than L tokens appear in any L consecutive

slots is bounded by,
mMPr[ X > L)< mMe <(U~/DLN2 — py ppe=ec?(1-¢/2}alog(mM)/24

By choosing a sufficiently large constant «, we can bound the above probability by
1/(mM). O

If the first pass of the delay insertion does not produce a token assignment that
satisfies the condition of at most L tokens every L slots, we simply try another pass

until the condition is met.

7.3.3 Smoothing

In order to guarantee one token per slot we carry out a smoothing process. Since
there are at most L tokens in any consecutive L slots, we partition each template
into intervals of L consecutive slots and arbitrarily place at most one token in each
slot within each interval. (Note the template size M is multiple of L, since M and L
are both powers of 2.) Recall we have defined token sequence for each session in the

token placement process.

Lemma 7.3.3 Let Ky, ..., Ky4; be any token sequence for session i, then after the

smoothing process we have,
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1. Token K; appears after K;_,, for 1 < j < d;;

2. The end-to-end delay of the token sequence is bounded by 2d;L + 2L and the
token lag is bounded by 4L.

Proof:  Before the smoothing, K; appears exactly 2L steps after K;_; for 1 < j <
d;, i.e. the token lag is 2L. Since the smoothing process shifts each token by at most
L — 1 slots, K; still appears after K;_; after the smoothing. The token lag therefore
increases to at most 4L. The end-to-end delay for the token sequence increases from

2d;L to at most 2d;L + 2L due to the shift of the first and the last tokens. 0

Theorem 7.3.4 With high probability, the above randomized centralized scheme gen-
erates a template-based schedule that produces a delay bound of O (;1: + d;log :":n-) and

edge queues of size O (log — )

Tmin
Proof: = We first show that each session-z packet, p, is able to catch an initial token
within 2L + 2¢; steps of its injection. Before the initial session-i tokens are delayed,
we have exactly s; tokens every ¢; slots. Since at most s; session-i packets can be
injected during ¢; steps, packet p would be able to obtain an initial token, say K, in
fewer than ¢; steps if the tokens were not delayed or shifted. Let p be injected at time
t and let K appear at T before K is delayed and shifted, then ¢t < T < t + ¢;. Each
initial token is delayed by an amount in the range of [L + 1, L + ¢;] during the token
placement process and shifted by at most L — 1 slots during the smoothing process.
Therefore, after the smoothing process X appears after ¢ but before t + 2L + 2¢;.
By Theorem 7.1.2 and Lemma 7.3.3, any session-7 packet p is able to reach its des-
tination within 2d; L 4+ 2L steps after it obtains its initial token. Therefore, the end-to-
end delay for session-i packets is (2L +2¢;)+(2d; L +2L), which is O (:T + d; log %)
The edge queue size is bounded by the token lag 2L, which is O (log "‘ ) a

Tmin

7.4 A Simple Distributed Scheduler

The above scheme is centralized since the session-: tokens on one template are depen-

dent on the previous template. However, it suggests the following simple distributed
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scheme for scheduling packets so as to achieve small delay. As in Section 7.3.2 we
place initial tokens on the first edge of session : and delay each initial token by an
amount chosen independently and uniformly at random from [1,4;], where ¢; is de-
fined in Equation (7.1). (Note that the delay is from [L + 1, L + £;] in the centralized
scheme.) Suppose that a session-i packet p now obtains its initial token at time 7.
Then for the jth edge on the session-i path, p is given a deadline of T +2L(j — 1)+ L,
where L is defined in (7.4). Whenever two or more packets contend for the same
edge simultaneously. e packet with the earliest deadline moves. Ties are broken
arbitrarily. We call this scheme EARLIEST-DEADLINE-FIRST (EDF). Note that EDF
is no longer template based. We show in Lemma 7.4.1 that the deadlines do not
cluster together with high probability, and show in Lemma 7.4.2 that every packet

meets its deadlines.

Lemma 7.4.1 For any edge, at most L deadlines appear in any consecutive I time
steps with probability at least 1—1/(mM), where L is defined in (7.4) for a sufficiently

large constant a.

Proof:  The deadlines for a packet pare T+ L, T+3L, T+5L,. .., which correspond
to the times that the tokens in a scquence appear. Hence, the proof is identical to

that of Lemma 7.3.2. 0

Lemma 7.4.2 If for any edge at most L deadlines appear in any consecutive L time

steps, then each packet crosses every edge by its deadline by EDF.

Proof:  For the purpose of contradiction, let D be the first deadline that is missed.
This implies all deadlines earlier than D are met. Let p be the packet that misses
deadline D for edge e. Since packet p makes its previous deadlines, p must have
crossed its previous edge by time D — 2L, or else e must be p’s first edge and p must
have obtained its initial token at time D — L. Hence, at every time step from time
D — L 4+ 1 to D packet p is held up by another packet with deadline no later than

D. Furthermore, these deadlines must be later than D — L since all deadline earlier
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than D are met. Therefore, at least L+ 1 packets have deadlines for edge e from time

D — L +1 to D. Our lemma follows from the contradiction. O
By an argument similar to that in Theorem 7.3.4, a session-i packet obtains its

initial token within 2¢; steps of its injection. Combined with Lemmas 7.4.1 and 7.4.2

we have,

Theorem 7.4.3 With high probability, the randomized distributed scheme EARLIEST-
DEADLINE-FIRST generates a schedule that produces an end-to-end delay bound of
O (3 + dilog :2).
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Chapter 8

Our main result for the dynamic scheduling problem parallels an earlier result on
static routing. In Section 8.1 we review techniques used for solving the static case,
and in Section 8.2 we give an outline of the additional complexities that need to be

addressed in the dynamic case. Relevant parameters are defined in Section 8.3.

8.1 A Bound of O(c +d) for Static Routing

Leighton, Maggs and Rao consider the static routing problem for arbitrary networks
in [31]. For static routing, all packets are present in the network initially. Each packet
is associated with a source, a destination and a route. The congestion on each edge
is the total number of routes that require this edge, and the dilation of a route is the
number of edges on the route. Leighton et al. show that for any set of routes with
maximum congestion ¢ (over all edges) and maximum dilation d (over all routes),
there is a schedule of length O(c + d) and edge queue size O(1). In this schedule, at
most one packet traverses each edge at each time step. A packet waits O(c+ d) steps
initially before leaving its source, and it waits O(1) steps to cross each subsequent
edge.

We summarize here the techniques in [31]. The strategy for constructing an ef-
ficient schedule is to make a succession of refinements to an initial greedy schedule.

Let S'9) represent the schedule in the gth iteration. In the initial schedule S©), each
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packet moves at every step until it reaches its destination. This schedule has length
d, but as many as ¢ packets may traverse the same edge at the same step. Each
refinement brings the schedule closer and closer to the requirement that at most one
packet uses one edge per time step.

Let us introduce a few concepts here. A T-frame is a time interval of length T'.
The frame congestion, C, in a T-frame is the largest number of packets that use any
edge during the frame. The relative congestion in a T-frame is the ratio C/T, where
C is the frame congestion.

It is obvious that the initial schedule S( has relative congestion at most 1 for any
c-frame. A refinement transforms a schedule (%) with relative congestion at most ¢(?)
for any frame of size I'9) or larger into a schedule S©*1) with relative congestion at
most ¢{?t)) for any frame of size 1\9t1) or larger. The resulting frame size 11 is
much smaller than (9, whereas the relative congestion c(4*1) is only slightly bigger

than ¢(?. In particular, ¢+ = log® I and ¢tV = (1 + o(1))c®).

Schedule Frame size | Relative congestion
S) 1@ c@
Refinement | log® I(9) (14 o(1))cl®
Sla+1) Jla+1) ola+1)

Each refinement is achieved by inserting random delays to the packets. The intu-
ition is that enough randomness would prevent many packets from crossing the same
edge during any small time intervals. It is the central issue in [31] to show that the
packets can always be delayed in such a way that the relative congestion in every
I@+)_frame is small.

After a series of O(log” c) refinements, a schedule S(¢) is obtained where the relative
congestion ie O(1) for any O(1)-frame. A final schedule that satisfies the condition of
one packet per edge per time step can be constructed by stretching S() by a constant

factor.
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8.2 A Bound of O(1/r; + d;) for Dynamic Routing

Our result for the dynamic routing problem is parallel to that in [31]. For an arbitrary
network where paths (sessions) are defined, we show that there is a schedule such that
every session-¢ packet reaches its destination within O(1/r; +d; ) steps of its injection,
where r; and d; are the injection rate and path length respectively for session 7. A
session-¢ packet waits O(1/r; +d;) steps initially before leaving its source, and it waits
O(1) steps to cross each edge afterwards.

To achieve a session-based, end-to-end delay bound of O(1/r;+d;) for our dynamic
routing problem, we adopt the general approach in [31]. However, there are three
major problems in transforming the solution for the static problem into a solution
for the dynamic problem. In the following we present these three problems and their

solutions.

Problem 1: Infinite Time

In [31] all the packets to be scheduled are present initially. In the dynamic model,
packets are injected over an infinite time line. We would like to partition the infinite
time line into finite time intervals that can be scheduled independently of each other.
We divide time into intervals of length 7, where T is defined in Section 8.3. We shall
independently schedule the time intervals [0, T), [T,27), [27,37), etc.

We associate each session ¢ with a quantity 7; = O(1/r; +d;), which is also defined
in Section 8.3. For any integer £ > 0 consider all the session-z packets that are injected
during interval [kT —T;, (k4 1)7 — T;). We shall provide a schedule in which all these
packets leave their sources no earlier than time k7 and reach their destinations before
time (k 4+ 1)7. (See Figure 8-1.) From now on, we shall concentrate on scheduling

the arrivals that would be serviced during interval [T,27).

Problem 2: Session-Based Delay Guarantees

Once we restrict ourselves to interval [T,27), it seems that dynamic routing problem

is similar to static routing. However, we cannot simply proceed with the successive
r
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Service time for all sessions

Arrival time for session 2

Arrival time for session j

<1 > . =<7
T 2T

Figure 8-1: All the session-i packets that arrive during [k¥7 — T;,(k + 1)7 — T;) are
serviced during [k7,(k + 1)7). In this figure, k = 1.

refinements as in Section 8.1, since some sessions need tighter delay bounds than
others. Session-i packets can only tolerate a delay proportional to 1/r; -+ d;. Sessions
are grouped according to their associated 1/r;+d; values. We start by inserting delays
to sessions having large values of 1/r; + d;, reducing the frame size and bounding the
relative congestion. When the frame size becomes small enough, sessions with smaller
1/r; + d; jein in.

More precisely, we introduce the concept of integral and fractional sessions. When
session z is integral, packets of size 1 are injected at rate r;. When session i is
fractional, a packet of size 7; is injected at every time step, where #; & r; is defined
in Section 8.3. A packet from a fractional session always crosses one edge at a time,
whether cr not other packets are crossing the edge at the same time. Therefore,
a fractional packet from session : always contributes exactly #; to the congestion.
Integral sessions are those to which we can afford to insert delays in order to bound the
congestion. Fractional sessions are those to which we cannot insert delays. However,
congestion due to a fractional session z is only #;, which is small.

As before, S(9) represents the schedule in the gth iteration. The set of integral
sessions for S(?) is denoted by A¥). For the initial schedule S, all the sessions
are fractional and we show that the relative congestion is less than 1. For schedule
8@ we inductively assume that the relative congestion due to the current integral

and fractional sessions is at most ¢ for any frame of size I or larger. To create a
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schedule S+ from schedule S we carry out a frame-refinement step in Section 9.2
and a conversiorn step in Section 9.3.

The frame-refinement step reduces the frame size from I(® to 1(#+1) = Jog® J(9),
while slightly increasing the relative congestion from c{? to (1 4 o(1))c{®). This step
is achieved by delaying the integral packets by up to © ((I ("))2) steps. We make
sure that if session ¢ is in A then 1/r; + d; > (I'9)?, and therefore the delays
inserted can be tolerated. The conversion step converts some sessions from fractional
to integral, while maintaining the frame size of I9*1) and slightly increasing the
relative congestion to ¢*1) = (1 + o(1))2cl9). These newly-converted sessions form a
set B3%1) and have associated values 1/r; + d; > (1(9tV)2, This bound is chosen so
that the sessions in A(@+1) which is A U B4+1), will be able to tolerate the delays
inserted during the next iteration of frame-refinement. During the conversion step we
delay the packets in B(#+1) by up to O(1/r; + d;) steps. We shall show the existence
of “good” delays for both frame-refinement and conversion steps. The following table

summarizes our approach.

Schedule Integral sessions | Frame size | Relative congestion
Sla) Al@ 1) Pk
Refinement AW log® 1@ (14 o(1))c@
Conversion | A(@ y Blatl) log® 1) (14 o(1))2c@
Slgt+1) Ala+1) J(a+1) c(at1)

In Section 9.4 we show that afier a succession of refinement and conversion we
have a schedule ) in which every session is integral and the relative congestion is
at most 1 for all frames of size larger than a certain constant. In S all session-i
arrivals during [T —T;, 2T —T;) are serviced during [T, 27 ). Furthermore, all session-

packets reach their destination within O(7;) steps of their injections.

Problem 3: Constant-Factor Stretching in the Final Schedule

We now have a schedule S() in which all sessions are integral and in which the relative

congestion is 1 for any frames of size larger than a certain constant. In the static
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problem, a final schedule can easily be obtained by stretching S(¢) by a constant
factor. However, we cannot afford to have a constant blowup in our final schedule
for the dynamic routing. This is because we need to independently schedule all time
intervals [0,7), [T,27), etc, and a constant blowup would make these time intervals
overlap.

To overcome this problem, we shall first devise a schedule for an intermediate
network M. We construct M from the original neiwork A as follows. Each edge e
of N is replaced by 2w consecutive edges ey, ..., €3, Where w is a constant defined
in Section 8.3. The rates and routes of the sessions are unaffected. In M, session i
has length D; = 2wd; = O(d;). All the techniques described earlier are applied to the
network M. We carry out successive of refinement and conversion steps for M and
obtain a schedule ${¢), where the relative congestion is 1 for any frame whose size is
larger than w. We then “smooth” S (©) and convert it to a schedule for A~ where only
one packet at a time traverses any link.

The idea behind the smoothing process is as follows. In S{¢), there may be more
than 1 packet which requires some edge of M during a given time step. However, at
most w packets will require any given edge in M within w time steps. This fact means
we can shuffle in time the packets that require the edge, so that exactly one packet
traverses the edge at any time step. Unfortunately, this shuffling in time can lead to
an impossible schedule for M, in that a packet is assigned to traverse its edges out of
order (timewise). However, it turns out that if one only considers the schedule with
respect to the packets traversing edge ey, for all e, then the schedule is completely
legal, i.e. the packets cross these edges in order. The idea is then to schedule edge e
in N in the same way that the corresponding edge e,,, is being scheduled in M. We
shall explain it in detail in Section 9.5.

Figure 8-2 is a schematic picture of our overall approach.
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[Construct new network M ]

Partition time into finite intervals
Schedule intervals independently

4 N\
Repeat:
Refinement
Conversion
\_ J

Smooth schedule
Convert back to network N

Figure 8-2: An overview of our approach for the dynamic rcuting problem.

8.3 Parameter Definitions

Interval Lengths

To resolve Problem 1 of Section 8.2 we independently schedule intervals [0, T), [T, 27),
etc. The parameter 7 also serves as the template size. Qur proof will concentrate
on the interval [T,27). All the session-: packets that arrive during [7 — 7;,27 — T;)
are serviced during [7,27). We define 7 and 7; for session : as follows. Recall

D; = 2wd;, where w is a constant defined at the end of this chapter.

T, = 4D;+1+(8/e+2)/m,

- [(1 +4/e;))max.-7§] "

In other words, 7T is the smallest multiple of w that is greater than or equal to
(1 +4/¢) max; T;.
It is easy to see that 7; = O(1/r; + D;) = O(1/r; + d;). Our choices for T and 7;

are justified in Theorem 9.4.4, Lemma 9.3.1 and the smoothing process of Section 9.5.
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Packet Size for Fractional Sessions

To resolve Problem 2 of Section 8.2, we maintain fractional sessions and integral
sessions. A fractional session-z injects a packet of size 7; at every step. An integral
session injects packets of size 1 at rate r;.

We define 7; to be s;/¢;, a fraction slightly larger than r;. In particular,

& = [8/(er:)] (8.1)
8§ = [Z{T;(1+€/2)J, (8.2)

where ¢ is such that the total injection rate on any edge is at most 1 —¢. An argument

similar to Inequality 7.3 of Lemma 7.3.1 implies,
r,-(1+e/4)+1/£,- ngSTg(l—l—E/Q). (83)

Note that the definition of ¢; and the left-hand side of the above inequality are different
from the ones in Section 7.3.1. We need this stronger lower bound on #; to handle the
extra complexity in the conversion step. In particular, 7; is also used to indicate rate
at which the initial tokens for session-: appear. During the conversion step, the initial
tokens for session- are placed in the interval [T,27T — T;). Since these tokens are to
accommodate all the session-¢ arrivals during [7,27), we need 7(7 — T;) > nT.
This condition is guaranteed by the choices of 7 and 7; and Inequality (8.3). (See
Lemma 9.3.1.)

Since € € (0,1) and the total injection rate on any edge is at most 1 — ¢, the

right-hand side of Inequality (8.3) implies,

Lemma 8.3.1 For all edges e, Y ;ecs, 7i < 1—¢€/2 where S, is the set of sessions that

use edge e.

Parameters for Schedule S

We define relevant parameters for the frame-refinement and conversion steps for sched-

ule S, For 8§, Al consists of all the integral sessions. The relative congestion,
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due to all integral and fractional sessions, is at most c(?) for any frame of size I(9) or
larger. As we construct schedule S(¢+1), sessions in B{9*!) become integral and join
A9, The succession of refinement and conversion terminates at schedule 3¢), when
I€) is less than or equal to a constant w defined in the next section.

The parameters (9, (9, A(@) and B(*1) are defined by the following recurrences.

Let X; = D; + 1/r; for session ¢, and let Xpax = max; X;.

I(O) — 61052/5 Xmax
Jlet)  — 10g5 1@

@ = 1-¢/2
) = (1 4 6@))2)

«

69 = for a sufficiently large constant «
\/log 1@
A® — ¢
Alt) = AWy glat+)
Bl — {z ¢ AW : (I(""'l))2 < X; < VT } for ¢ # ¢ —1
Bl+) - {z ¢ A9 X; < e T forg=¢-1

The above parameter definitions comply with our discussion of Problem 2 in Sec-
tion 8.2. During each iteration, the frame size decreases polylogarithmically and the
relative congestion increases by a small factor of 14+0(1). Sessions with large values of
X; become integral first. In the definition of B(4t1), we use the bound (I (q+1))2 < X;
VI(e+1)

in the frame-refinement step and we use the bound X; < e in the conversion

step.

Definition of w

We define a constant w that has two purposes. First, the process of refinement

and conversion terminates when the fraine size becomes smaller than or equal to w.
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Second, the intermediate network M is constructed from the original network A by
replacing each edge in N with 2w edges. We define w to be a constant that satisfies

the following two bounds.
2
‘e o —_ 1 _ : — p@2(1=4/1-¢/2)"2,
1. w > z, where r satisfies (1 7;:;) =1—-¢/2,ie.x=¢ % ;
2. w > 2log™ w + 2log w — log® w.

The first bound ensures that the relative congestion c(¢) is at most 1. (See Lemma 9.4.2.)
The second bound is to maintain an invariant throughout the frame-refinement steps.

(See Section 9.2.) The second bound also implies the following.
3. w> 2’
4. w > 4log® w, which implies w? + w > 4(log'® w + log® w).

The third bound is to guarantee that the B(9)’s form a partition of all the sessions.
(See Lemma 9.4.1.) The fourth bound is to upper bound the total delay inserted

during the frame-refinement step. (See Lemma 9.4.3.)
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Chapter 9

The Existence of an Optimal
Schedule

In this chapter we show the existence of an asymptotically-optimal schedule. Sec-
tions 9.1 through 9.4 concentrate on Problem 2 of Section 8.2. We begin with an
initial schedule S and transform it to schedule S(¢) through a process of refinement
and conversion. All these schedules are designed for the intermediate network M.
Section 9.5 concentrates on Problem 3 of Section 8.2. We describe how to obtain an

optimal schedule Sy for the original network A from 5.

9.1 An Initial Schedule S©

In SO, all sessions are fractional, i.e. A® = (. Each packet (of a fractional size)
crosses one edge per time step whether or not other packets are using the same edge at
the same time. Since the relative congestion is entirely due to fractional sessions, the
relative congestion is at most " 7; < 1—¢/2 = ¢(® on any edge e due to Lemma 8.3.1.

Note that the above relative congestion holds for any frame size. We choose the
initial frame size 1(© = elog’”® Xmax g0 that J() = log? X;nax. The definition of B()
allows the sessions with the largest X; values to be converted during the first iteration

of the conversion process.
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9.2 Frame-Refinement for Schedule S@

In this section we describe the frame-refinement process. During this process, random
delays are inserted to integral packets in order to reduce the frame size without
increasing the relative congestion by much. For schedule S9), we inductively assume
that the relative congestion is at most c(%) for frames of size I?) or larger. We show
that there is a way to delay the integral packets from A() so that, in the resulting

schedule 8(7+32), the relative congestion is at most (1 4 6@)c(9 for any frame of size

I@+) — Jog® 1) or larger, where 6@ = \/l"’w Throughout the construction we
og

also maintain the following invariant.
{(Invariant] For any q > 0, every integral packet waits at most once every I9) steps
after leaving its source according to schedules $\9+2) and S+1),

The base case of the initial schedule S is described in Section 9.1. Since there
are no integral sessions, no delays are inserted in this step. Trivially, the resulting
relative congestion is at most (1 + 6'9)c(® for any frame of size I(") or larger at the
end of this step, and no packet ever waits. The invariant is also maintained.

Let us now consider refining schedule $(9, for ¢ > 0. Frame refinement is divided
into two steps. In the first refinement step we divide the current sched: ..: into blocks
of length 2(1(@)3 4 2(1(®)2 — [(9) and insert delays into each block so that its length
increases to 2(1(?))3 + 2(1(9))2, We show that these delays can be introduced in such
a way that in the central 2(1(9))3 steps of each block the relative congestion of frames
of at least length I(*1) is only a little larger than c(®). (See Figure 9-1.) At the
beginning and end of each block there are “fuzzy” regions of length (I(9)? each. In
the second step we move the block boundaries so that the fuzzy regions are at the
center of the new blocks of 2(1()3 4 2(I(9))? steps. (See Figure 9-2.) Again, we insert
delays into each block increasing the size of the block by (1(9)? steps. We show that
there is a way to insert these delays so that the final conditions for refining S@ are
indeed satisfied. (See Figure 9-3.)

Before we present the two steps of refinement in Sections 9.2.2 and 9.2.3, we first

prove Lemma 9.2.2 that will be used extensively in both steps of the refinement.
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9.2.1 A Useful Lemma

In the following we present Lemma 9.2.2, which is based on Lemma 9.2.1.

Lemma 9.2.1 Let X and Y be independent random variables. Let Y be binomially
distributed with mean p,, and let oy, 02, and v be values such that o3 = oy — 1/v.
Then,

Pr[X+py>14+mpw]<2Pr[X+Y > (1+02)v].

Proof: Let w=(1+ o1)v — p,. We have,

Pr[X+p,>14+m)w] = Pr[X>w], (9.1)
Pr[X+Y>(1+4o)v] = Pr[X+Y>p,+w—-1]. (9.2)

Note also that,

PriX+Y>p,+w—-1] > Pr[X>p,+w—1—|p,]andY > |p,]]
= Pr{X>w—1+p,— g |Pr[Y =[] |

This last equality follows from the independence of X and Y. Theorem B.1 in [33]
shows that Pr[Y > |p,| ] > 1/2. Since py — |py] < 1, we have,

Pr[X+Y>py+w—1]2%Pr[X>w].

Our Lemma follows from Equalities (9.1) and (9.2) and the above inequality. 0
Given some schedule, a region R is some interval of contiguous time steps in
this schedule. A packet is active during some region if the packet belongs to some
integral session and it traverses at least one edge during the region. Throughout the
construction, the invariant we maintain implies that an inactive packet is either at its
source or its destination during the entire region (as long as the region consists of at
least two time steps). Lemma 9.2.2 below is a stepping stone that allows us to reduce
the frame size from I(? to polylog I9). We invoke this lemma for various values of s,

t,r and R.
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Lemma 9.2.2 Consider some region R of a schedule where the relative congestion is
at most r = O(1) for frames of length s, where log® IV < s < (I19)2, Consider any
edge e and any t-frame, where log? I'9 < t < 2log? I9. Assume each active packet
in the region is delayed between the beginning of R and the beginning of the t-frame by

a number of steps randomly, independently, and uniformly chosen from [1,s]. Then,

o1

such that the probability of having
log I(9)

for any constant k there is some value y =

a relative congestion larger than r(1 + ) on e during the i-frame is at most (I'9)~F,

Proof: Let the random variable X be the frame congestion on e during the t-
frame due to the active packets after they are delayed. If the relative congestion
due to fractional sessions is ry, the frame congestion due to fractional sessions in the
t-frame is exactly r5f. Since the active packets are the only integral-session packets
that can cross e during the region, the frame congestion on e during the t-frame is
X + rst after the delay.

Let Y be a binomial random variable with parameters (rys,t/s) and mean E[Y] =
rst. From Lemma 9.2.1, the probability p that the congestion in the ¢-frame is larger
than (1 + 4)rt after the packets have been delayed is,

p=Pr[X+ri>A+)rt]<2Pr[X+Y>(1+0o)t],

where 0 = y — 1/rt. Since t > log? I'?) and r = ©(1), then vy = 7::)(%1)_(? if and only if
o= 71?%}%)-. Let 0 = 71:%7(:3, where v is a constant. We shall choose an appropriate
value v so that the lemma is satisfied.

To bound probability p we show that X is a binomial random variable with pa-
rameters (m, p), where m < (t +s)(r —rf) and p < t/s. Since the active packets are
delayed up to s steps, an active packet that crosses e in the t-frame after the delay
could only cross e in an interval of ¢+ s steps before the delay. The relative congestion
due to active packets is at most 7 — r; in that interval before the delay. Hence, at
most (¢ -+ s)(r —rs) active packets can cross e in the ¢-frame after the delay. Each of
these packet independently does so with a probability at most ¢/s, since delays are

chosen independently and uniformly from {1, s] and all session paths are simple.
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Recall that Y is a binomial random variable with parameters (rys,t/s). We define
Z to be a binomial random variable with parameters (n,t/s), where n = r(t + s) >

(r —rg)(t + s) + rys. It is easy to see that,
PL<2P:[X+Y>(1+0o)rt]<2Pr[Z>(1+o0o)rt].
We use a Chernoff bound to bound p. Since E[Z] = (¢ + s)rt/s, we have,

rt ] ag—t/s 2
Pr(Z>(L+0)rt]=Pr[ 2> (14 %22) E[2]] < e 30+(ER)

Since t/s = o(c) and t/s = o(1) by the bounds on s and ¢, the above probability is

bounded by e~®("t**), Hence,

p S 26—9(110‘2).

The bound on ¢ and the definitions of r and o imply that we can choose a constant

v large enough so that p < (I(9)~* for any constant k > 0. o

9.2.2 The First Refinement Step for S©@

Suppose the current schedule $) schedules every session-i packet injected during
[T — T;,27 — T;) to move during [T,7T + z), where 0 < z < 7. We first partition
the region (7,7 + z) into consecutive blocks of length 2(1(?)3 4 2(1(9)? — 1), and
reschedule each block independently.

Within each block B only active packets are delayed. In particular, each active
packet in B is assigned a delay randomly, uniformly and independently chosen from
[1,19]. An active packet p, whose assigned delay is z, is delayed in the first zI'?
steps of B once every I1(?) steps. In order to independently reschedule the next block,
packet p is also delayed in the last (I%9) — £)I(® steps of B once every I steps.
Therefore, a rescheduled block has length 2(1(9)3 4 2(1(9))2,

Before the delays are inserted to reschedule block B, an active packet p is delayed
at most once within the block, provided that 2(I1(®)3 4 2(1®}? — 1@ < [~ which

holds as long as I4~1) is larger than w, the constant defined in Section 8.3. (See the

109



second bound in the definition of w.) Prior to inserting any new delay to a block,
we check if it is within I® steps of the single old delay. If the new delay would be
too close to the old delay, then it is simply not inserted. The loss of one delay in a
block has a negligible effect on the probability analysis that follows. In this way, we
maintain the invariant.

Lemma 9.2.4 shows that with the insertion of delays we can dramatically reduce
the frame size in the center of the block and increase the relative congestion only

slightly. The following fact is used in Lemma 9.2.4 and on a few other occasions.

Lemma 9.2.3 If the relutive congestion in every frame of size T to 2T —1 is at mosi

r, then the relative congestion in any frame of size T' or greater is at most r.

Proof:  Consider a frame of size T', where T’ > 2T — 1. The first |T'/T|T - T
steps of the frame can be broken into T-frames, each with relative congestion r. The
remainder of the T'-frame consists of a single frame of size between T and 2T — 1

steps in which the relative congestion is also at most r. 0

Lemma 9.2.4 There exists a way of choosing delays so that in between the first and

last (I()? steps of the block B, the relative congestion of any frame of size log?® 19

or larger is at most (1 + 71)0("); for some 1, = ]e l,(q) :
\log

Proof:  Due to Lemma 9.2.3, it is sufficient to prove the statement for all frames
of size between log® I9) and 2log? I(9). We associate a bad event with each edge
e and each I-frame, where log? I(9 < I < 2log? I'9 and the I-frame lies entirely
between the first and last (I9)? steps of B. A bad event E{e,1ry happens when the
frame congestion on edge e is more than (1 + v;)c(®I during the I-frame. We use the
Lovasz Local Lemma to show that with a nonzero probability no bad event occurs.
We first bound the dependence, d, of bad events. The probability space is given
by the delays assigned to packets from sessions in A(®). Hence, a bad event E(en
is dependent on another bad event Ef. iy only if an integral packet can cross edges
e and € in B. In block B, at most ¢(? (2(] @)3 4 2(1 ("))_2) integral packets cross
the same edge, and each packet crosses at most 2(1(9)3 + 2(1(9)? — I1(9) edges. The

110



number of I-frames in B is at most log?® I(9) (2(] @) +2(I9)2 T (‘1)). Hence, the
dependency d is upper bounded by the product of these three quantities above. Since
A <1,dis 0O (log2 I(q)(I(q))g).

We now bound the probability, p, that one particular bad event E{, ;3 happens,
for some I-frame between the first and last (1(9)? steps of B and for log? I? < J <
2log? 119, By setting R = B, r = ¢, s = I9 zud ¢t = I, we apply Lemma 9.2.2
to show that for any constant k; there is some value y; = \/_19;?—1%5 such that the
probability p of one particular bad event happening is smaller than (I(®)~%. In
particular, we choose k; = 10.

Therefore, we have 4pd <. 1 and our lemma follows from the Lovész Local Lemma.

a

time step
1 (I(9)2 ( .|I. 1 )el®) (I(DY3 4 2(1(0))2 2(1(D)3 4 2(1(2))?

fuzzy region l fuzzy region

€ D

{a+1)

Figure 9-1: Situation after the first refinement step

At the end of the first refinement step, the center of each block has small relative
congestion for small frame sizes. However, there are regions of (I(9)? steps at the
beginning and end of each block that may have very large relative congestion. We

call these “fuzzy” regions, and we deal with them in the second refinement step.

9.2.3 The Second Refinement Step for S©

We start the second step of the refinement by relocating the block boundaries so that
blocks still have 2(1(9))3 + 2(I9))? steps, but now the fuzzy regions that were at the
beginning and end of adjacent blocks are in the center of new blocks. Then, a new
block has two “clean” regions of (I(9))? steps each at the beginning and the end, and
a fuzzy region of length 2(1(9)? steps in the center. (See Figure 9-2.)

As in the first step of the refinement we now concentrate on individual blocks.
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time step

1 Qa T.yl)c(q) (I(q))3 (I(q))3 + 2([(«:))2 2(1(0))3 + 2(i(q))2
l ;uzzy !‘eglon
I(a+1) (1(9)2

Figure 9-2: Situation after relocating block boundaries

We first show that the relative congestion is not very large for frames of size (I1(9))?

or larger even in the fuzzy region.

Lemma 9.2.5 For any choice of delays in the first step of the refinement, the relative

congestion in any frame of size (I19)? or larger is at most (1 + 2/11)c(9),

Proof: Consider any edge e and any I-frame of size (I‘9)? or larger. Suppose
I; steps of this I-frame appear before the center of the block and I, = I — I; steps
after the center. (Either I; or I; can be zero). Each integral packet is delay by at
most (9 steps and each fractional packet is not delayed. Hence, a packet crosses
edge e in the I;-frame only if it did so in some frame of length I, + 19 before the
delays were inserted. Therefore, the frame congestion in the I;-frame on any edge
e at most (f; + I®)cl?). Similarly, the frame congestion on e in the I-frame is
at most (I + ID)c(s). Therefore, the frame congestion in the I-frame is at most
(I + I + 219) (9 = (I +21@)(D), For I > (I'9)? the relative congestion is at most
(14 2/I1@)c0), O

In order to reduce the frame size in the fuzzy region, we insert a random delay
chosen independently and uniformly from [1, (I9)?] to each active packet in the block
B. A packet p with delay = waits once every (I(9)3/z at the beginning of the block
and once every (I(9)3/((I(0)? — z) at the end. As in the first step a delay is not
inserted if it is going to be within I(9) steps of an existing delay for an active packet.
The block length after the delay insertion is 2(1(®)3 4+ 3(19)? and the fuzzy region
can be (I9)? steps longer, spanning steps (I(9)3 to (1(9)3 4 3(19)2,

The following lemma shows that there is some way of inserting delays so that, the

frame size in the fuzzy region is reduced, and the frame size and relative congestion
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in the rest of the block are increased by only a small amount. Figure 9-3 summarizes

the final bounds on the frame size and the relative congestion.

Lemma 9.2.6 In ¢ block B, there exists a way of choosing delays so thet in the fuzzy
region (i.e. region [(I9)3, (ID)3 + 3(ID)?]) the relative congestion of any frame of
size log? I or larger is at most (1 + v;)c®, for some v, = —‘7—%—%, and so that in
the regions [19 log® I(9), (1)3] and [(19)3 4 3(1(9)2,2(1(@)3 4-3(1(0))% — 1) Jog® 1)
the congestion of any frame of size log? I?) or larger is at most (1 +v3)c9, for some

o= 8
\/log I(®)

Proof: Due to Lemma 9.2.3 it is sufficient to prove the statement for all frames
with size between log® I and 2log? I9). As in Lemma 9.2.4, we use the Lovisz
Local Lemma. We associate a bad event with every edge e and every I-frame, for

log2 ID<TI< 2log2 I@_ A bad event E{..ny occurs, if

e more than (1 + v;)c(®I packets cross e in the I-frame in the fuzzy region

[(I(Q))3, (I(q))3 + 3([((1))2], or

e more than (1+73)c{® I packets cross e in the I-frame in the region [I(9) log® I(9),

I))3] or in the region [(I(®)3 4+ 3(I®)2, 2(I@)3 4 3(I@)* — [ ]og® 1()].
g g

The dependency, d, of the bad events is bounded as in Lemma 9.2.4. Two bad
events are dependent if packets from some session ¢ € A cross both edges in the
lock B. In B, O ((I (9))3) integral packets cross any edge, each of them crosses
o ((I ("))3) other edges, and there are O (log2 191 ("))3) I-frames. Therefore, d =
0 (10g2 10)( I(q))9),

To bound the probability p of one particular bad event happening, we consider
the three regions separately and sum their respective probabilities.

We first consider the I-frames in the fuzzy region [(I(9)3, (I1(9))3 4 3(1(9))?]. By
Lemma 9.2.5, the relative congestion for frames of size (I(9)? or longer is at most
(142/1@)c® = ©(1). By choosing R = B, r = (142/1®)c®, s = (I®)? and t = I,
we use Lemma 9.2.2 to show that, for any constant k;, there is some o, = -\7?;(?—11)(7)
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such that the probability of having relative congestion on e in the I-frame larger than
dD(142/19)(1+03) = c'9(1+ ) is smaller than (I(9)~*2. Note that v, = ;?i,—l—gm.

We now consider the I-frames in the region of {19 log® I(9), (I(9)3]. Suppose an
I-frame starts at time step j. Given the way delays are inserted, by the jth step
an active packet with delay z has been delayed jz/(I9)3 steps. Thus, the delay of
an active packet at the jth step is essentially a random value uniformly chosen from
[1,5/19]. For j > I iog® I?, we have j /19 > log® I%). Note that before inserting
delays, from Lemma 9.2.4 the relative congestion in any frame of length log® 19 or
larger in the interval [1, (119)3] was at most (1 + 7 )c(?). By choosing R = [1, (I19)3],
r=(1+m)c, s=1log3I9, and t = I, we use Lemma 9.2.2 to show that, for any

constant k3, the existence of some o3 = ? 1,(.,) such that the probability of having
og
relative congestion larger than (1 + 03)(1 4+ 1)c(® = (1 + 73)c(? on e in the I-frame
is smaller than (1(9)~%. Again, v5 = —2&L—..
log I(a)

By symmetry, the same value 73 makes the probability of a bad event happening
on e in a I-frame in [(1@)3 4 3(1(9)2,2(11)3 4+ 3(19)? — I log® I9)] smaller than
(1@)=ks,

We choose values for k; and k3 such that the probability of one particular bad
event is bounded as p = O((I9)'°). Therefore, we guarantee 4pd < 1 and our lemma
follows from the Lovasz Local Lemma. ]

Finally, we bound the frame size and the relative congestion in the remaining

regions of the block in the following lemma.

Lemma 9.2.7 The relative congestion in any frame of size log* I(® or larger in the
regions [1, 19 1og® I19] and [2(19)3 - 3{119)? — 1@ Jog® 11D, 2(1D)3 + 3(19)?] 45 at
most (1 4+ 7 )(1 + 1/ log ID)c® = (1 + 44)c?, where v, = 71%;%(7)"

Proof:  Let us first consider some I-frame in the region [1, (¥ log® I'9]. Recall
that, before inserting delays, the relative congestion for frames of size log? I9) or
more was at most (1 ++;)c@. In this region no packet is delayed more than log® %)
steps. Therefore, a packet crosses edge e in the I-frame only if it did so in some

(I + log® I'D)-frame before the delay were inserted. The frame congestion for this
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I-frame is therefore at most (I + log® ID)(1 4 71)c®). For I > leg* I'9 our claim
follows. The proof for region [2(1(9))3 + 3(1(®)? — [ 1og® (9, 2(1@)3 - 3(1(D)?] is
similar. 0

From Lemmas 9.2.6 and 9.2.1 we conclude that any frame of size at least log* 1(?)

in each of the different regions has relative congestion at most (1 4 v)c(?), where v =

o(
log 1)
in frames that overlap several regions or several blocks. We can safely say that for any

max(7yz,7s3,va) and y = We need to be careful with the relative congestion

frame of size 141} = log® I(?) or larger in the schedule $(#*%) obtained after the frame-

refinement, the relative congestion is at most (1 + 6(9)c(®), for some 69 = —2—

log I(9)
large enough.
time step
1 (D 10g3 9) (1(4))3 (13 4 3(I(q))2 2(1(0))3 4 3(F(@))2
]

o i A N ol
- G~ - i - —————

L I § I L I

Figure 9-3: Final bounds on frame size and reiative congestion. Here I, = log® I9,

L =log* I, ry = (1 4+ 7,)cl9, r3 = (1 + 43)c® and r3 = (1 + 74)cl?), where 72, 73
o1

and 74 are —23L_
T4 \/logI(Q)

9.3 Conversion for Schedule S@

In the conversion steps we transform the schedule S(q"'%), obtained from the frame-
refinement step, into a new schedule $(#+1). In this new schedule, all the sessions in
Bt which were fractional in S, are made integral, and the relative congestion
of frames of size I(9*)) or larger is at most c(9t1) = (1 4+ 6(9))2¢(®),

At the beginning of this step, we inductively assume that the relative congestion

o
log I(9) )

If the set B(*1) is empty then we skip this conversion step. Obviously, the relative

is at most (1 + 6(®)c( for any frame of size I(*1) or larger, where §(9 =

congestion is at most ¢(#+!) for any frame of size I9*)), and we are done.

On the other hand, if the set B(4*1) is not empty then for each session ¢ € B+1)
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we apply the following two processes. In the discretization process, we transform
fractional sessions in B(+!) into integral sessions such that these new integral packets
do not wait for too long before leaving their sources. In the delay-insertion process,
we insert initial delays to defer the times at which packets leave their sources in order

to satisfy the relative-congestion requirement.

9.3.1 Discretization

We first present the discretization process, in which fractional sessions in B+1) are
transformed into integral sessions. Consider a session i in B{4*Y), When session i is
fractional, a packet of size 7; = s;/¢; is injected at every time step, where ¢; and s;
are integers defined in Equations 8.1 and 8.2 in Section 8.3. Each fractional packet
marches to its destination one edge at a time with no delay. When these fractional
packets are discretized into integral packets, each integral packet waits at its source
until it finds an unused initial token. Then, it crosses one edge every time step until
it reaches its destination. The number of initial tokens and their distribution have to
be carefully chosen so that no packet waits at its source for too long.

We consider the two intervals shown in Figure 9-4, U = [T — T;,27 — T;) and
V = [T,2T — T;). When session 1 is discretized, we distribute enough initial tokens
in the interval V to accommodate all the session-¢ arrivals during U. Integral packets
arrive at a rate r; during U and initial tokens will appear at a rate at least as high as
i during V. Recall from Section 8.3, that #; is slightly larger than r;. By choosing
the interval U long enough (i.e. T large enough), we guarantee more initial tokens
than arrivals.

We place initial tokens for session 7 in the interval V as follows. We first put s;
initial tokens for session 7 in the last slot of V, i.e. at time step 27 — T; — 1. For every
¢; steps before 27 — T; — 1, we also place s; tokens in the same slot until we reach the
beginning of V. (See Figure 9-4.) We show that there are enough initial tokens, and

that no packet waits too long for an unused one.

Lemma 9.3.1 For a discretized session i € BUtY), every session-i packet that is
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Figure 9-4: Session-i packets that are injected in interval U are assigned initial tokens
in interval V. The interval V is divided into consecutive intervals of length ¢;, each
of which has s; initial tokens. The initial tokens are shown in solid dots.

injected during U finds an unused initial token in V within T; + £; = O(1/r; + D;)

steps of its injection.

Proof: Let z = T /(T — T;) be the ratio of the length of interval U to the length
of interval V. It suffices to show that s;, the number of initial tckens during every ¢;
steps in V, is as large as the number of session-: arrivals during =¢; steps. At most
n = zf;r; + 1 packets can arrive during z¢; steps. Since T > (1 + 4/¢)max; T; by
definition, we have z < 1+ £/4 and therefore n < ¢;r;(1 + ¢/4) + 1. By the left-hand
side of Inequality 8.3 in Section 8.3, we have n < s;. Therefore, we have enough
initial tokens. Since the initial tokens appear at the end of every ¢; steps, each packet
can use an initial token that appears after the packet arrival time. It is also easy to
verify that an unused initial token appears within 7; + ¢; = O(T;) steps of the packet

injection. m]

9.3.2 Delay Insertion

Before any delay is inserted to a packet from session i € B(*1), the packet leaves its
source at the time of its initial token and marches to its destination with no more
waiting. Now we insert an initial delay to each session-¢ initial token, which has the
effect of deferring the start time of session-: packets. We choose the delays randomly,
uniformly and independently from [1,4;]. After the initial delay each packet travels

to its destination without further waiting.
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Lemma 9.3.2 Consider any t-frame during the interval [T,27T) and any edge e that
is used by some session i € B, After the random delays are inserted, the ezpected

number of session-i packets using edge e during the t-frame is at most t7;.

Proof: During any time step in the interval [7,27), the expected number of
initial tokens for session ¢ is either 0 or #;. By linearity of expectations, the expected
number of session-z tokens in any ¢-frame is at most ¢7;. Since each initial token is
owned by at most one packet, the expected number of session-z packets using the first
edge along the session-i path is at most ¢7; for during ¢t-frame. After obtaining the
initial token, each session-¢ packet marches to its destination with no further waiting.
Hence, the expected number of session-i packets using any subsequent edge during
any t-frame is also at most t7;.

Note the above proof relies on 7; > ¢; + D;, which is guaranteed by the definition
of 7;. More details are included in Theorem 9.4.4. o

We now use a Chernoff bound and the Lovasz Local Lemma to show the following.

Lemma 9.3.3 There exists a way of choosing the initial delays for sessions in B(a+1)
such that the relative congestion in any frame of size I9%V) or bigger is at most c(t1)

after the delays are inserted.

Proof:  Due to Lemma 9.2.3, it is sufficient to prove the result for all frames of size
I@+1) o 27(0+1) We associate a bad event with each edge e and each I-frame, where
I+ < 1 < 210+ A bad event E{.,1} happens when more than Ic(#*!) packets use
e during the I-frame. We use the Lovasz Local Lemma to show that with a nonzero
probability no bad event occurs.

We first bound the dependency d of bad events. The probability space is given by
the delays assigned to packets from sessions in B(#*1), Hence, a bad event E(n is
dependent on another bad event Ey. 1} only if a packet from a session i € B+ can
possibly cross edge e during the I-frame and can possibly cross e’ during the I’-frame.

Let D = max;¢p(e+1) Di, 7 = mingg(e+1) i and £ = max;cgq+1) £i. By the definition
of B@*), D and 1/r are bounded by /7“7, By the definition of £;, ¢ = o(1/r).

There are at most 1/r sessions in B9+1), each of which is at most D long. Therefore,
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E(..ny depends on E{e 11} for at most D/r choices of e’. Furthermore, intervais I
and I' cannot be more than D + £ steps apart. (Otherwise no session-z packet can
possibly move during both intervals I and I’, and sc Ef. 1} and E{. 1y would have to
be independent.) Therefore, the starting point of I’ is limited to 2D + 2¢ + 41(et1)
locations, and the total possible choices for I’ is at most (2D + 20+ 41(9+1))[(+1) We
conclude that the dependency d is (2D +2¢+41@+t ) [(¢+) D [y which is O (e‘“/ﬂm).

We now bound the probability p that one particular bad event By, happens.
By our inductive assumption, the frame congestion on edge e during the I-frame is
at most (1 + 6®)c9I before the conversion. Let S be the set of sessions in B(st1)
that use edge e. When sessions in B(4t1) are fractional, they contribute exactly
I3 ;es?i to the frame congestion. Lemma 9.3.2 implies that the expected frame
congestion due to the sessions in B+ is at most I Y ;cs#; after ihe initial delays
are inserted. The congestion due to sessions not in B(4t1) does not change during the
conversion. Hence, the expected frame congestion on edge e during the I-frame is at

most (1 + 6(0)c(?] = . We bound the probability of B 1 as follows.

p = Pr [ Frame congestion on e in I > c(#t1) [ ]

Pr [ Frame congestion on e in I > (1 + 69y ]

e~ (5®)2u/3

IA

c—(l—e)azl(q+1)/(3log I(Q))

IA

e-(l—e)‘;—z(l(ﬂl))‘/"

IA

The first inequality follows from Lemma 7.2.1. The second inequality holds since
p > (1—€)I > (1—¢€)I+Y) and from the definition of §(9). The last inequality follows
from the recurrence for 1@+,

When a is a sufficiently large constant, we have 4dp < 1. Hence, the Lovasz Local

Lemma implies that with a nonzero probability no bad events occur. o
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9.4 Termination at Schedule S(¢)

The process of refinement and conversion terminates at schedule S$() when the frame
size I(©) becomes smaller than or equal to w, a constant defined in Section 8.3. We

show that the following two lemmas hold at the termination.
Lemma 9.4.1 In the schedule S©) all sessions are integral.

Proof: It is sufficient to show that the B(9)’s form a partition of all sessions. Since
I = log2 Xmax, sessions with the largest X; values become integral during the first
conversion step. Let 1 < ¢ < ( — 1. Due to the third bound in the definition of w,
we have 1@ > w > ¢?*°, which implies (J19)2 < eVie#® 19 Our lemma follows from

the definition of B, (]

Lemma 9.4.2 In the schedule S©) the relative congestion is at most ¢©) < 1 for any

frame of size I'©) or larger.

Proof: By our induction, the relative congestion is at most ¢() for all frames of

size 1¢) or larger. Hence, we only need to show that ¢/} < 1. By definition,

) = (1+ 5((—1))2(1 +6-2)2... (14 5(0))2 0

lo

2
Due to the first bound in the definition of w, z < I¢~1), where z satisfies (1 ey )
g T

1-— 6/2 Let A = -\/—;:7, then
N < A<l

Due to the second bound in the definition of w, log'® I*~1) < 1=V for g —1 < ¢ —1.

As a result,
@ a

5(9"‘1) = <
VIGe-1 " 10)

< (82,

Hence,

) < (1+A)2(1+A2)2(1+A4)2(1+A8)2...c(0)
< (L=A)2{(1 - AZ(1+AY(1+ A1+ A (1 + A%} O
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< (1-A)"20

-2
= [1-—= ©
Viogz

_1—¢g/2
T o1-¢/2
=1

The first inequality follows from 691 < (§(9)2 and 6§¢~Y < A. The third inequality
holds since A < 1, and therefore the “telescope product” in the braces is less than
1. The last equality holds by the above choice of = and the definition of ¢(® in
Section 8.3. 0
Now, we have to make sure that in S¢) no packet waits for too long. The con-
version step guarantees that when a session ¢ becomes integral, no packet waits for
O(D; + 1/r;) steps before it leaves its source, and it does not wait anymore. The in-
variant we maintain throughout the frame-refinement steps guarantee that a moving
packet never waits more than once every I~V steps by schedule S(). However, each
frame-refinement step can, in fact, delay the time an integral packet leaves its source.
The following lemma shows that this delay does not add up to a large amount, and
therefore that a session-¢ packet reaches its destination in at most O(D; -+ 1/r;) steps

in the schedule S,

Lemma 9.4.3 During frame-refinement a session-i packet is delayed by at most

2(D; + 1/r;) steps before it leaves its source.

Proof: Suppose session ¢ first becomes integral in schedule $(). Consider a
session-i packet p. For schedule S, where ¢ < ¢’ — 1, p is never delayed during
frame-refinement. For schedule S9), where g > ¢/, p is delayed by at most 194 (1(2))?
steps before it starts moving. Therefore, the total delay inserted during all the frame-

refinement steps is at most

) 1@ 4 (1@,

92q'
Since session i becomes integral for schedule $(#), we must i € B(#). By the definition

of B@), D; +1 [ri 2 (9'))2. Due to the fourth bound in the definition of w, (/ (‘1)) +
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(I9D)? > 4(16+) 4 (I+))2) Combining with the fact that (147)2 > 216, we

conclude,

Y I@ 4 (1) < (D; +1/r) (1 + 1) (1 + ! + -%— + )
s 2 4" 4
< 2(D; + 1/7',').

Hence, a session-¢ packet is delayed during frame-refinement by at most 2(D; + 1/r;)
steps before it leaves its source. (]

We proceed to prove that S() has the following properties.

Theorem 9.4.4 Given network M and a set of sessions as defined in Section 6.1

there is a schedule S©) such that the following hold.

1. The relative congestion is at most 1 for any frame of size larger than a certain

constant w;

2. After leaving its source, each packet waits at most once every O(1) steps, which

implies that all edge queues in M have size O(1);

3. For all sessions i, any session-i packel reaches its destination within O(1/r;+D;)

steps of its injection;

4. All session-i arrivals during [T —T;,2T —T;) are serviced during [T,27), i.e. all
packets leave their source no earlier than T and reach their destination before

27.
Proof:

1. By Lemma 9.4.2, the relative congestion is at most 1 for any frame of size 1(¢)

or larger. Due to the termination condition, I¥) < w is a constant.

2. By the invariant maintained throughout the frame-refinement steps, a packet
waits at most once every I(¢~1) steps once it leaves its source. Furthermore, at
most ) packets can cross an edge simultaneously. Therefore, the edge queues

have size 21(%), which is O(1).
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3. We first show that a session-i packet reaches its destination within 7; steps
after it obtains an initial token. After the initial token, a session-i packet is
deferred by an initial delay during the conversion step and other delays during
the frame-refinement step before it could leave its source. The initial delay
is at most £; < 1 + 8/(er;), and the delay during the refinement is at most
2(D; 4 1/r;) by Lemma 9.4.3. Once the packet starts moving, it reaches its
destination in at most 2D; steps by Property 2. Therefore, a session-? packet
reaches its destination within 4D; + 1 + (8/¢ + 2)/r; = 7; steps after obtaining

its initial token.

Since any session-i packet obtains an initial token within 7; + ¢; steps of its
injection by Lemma 9.3.1, the packet reaches its destination within 27; 4+ ¢; =

O(1/r; + D;) steps of its injection.

4. For all session-7 arrivals during [T —7;, 27 —7T;), the initial tokens are in [T, 27 —
T;). From the discussion of Property 3, a session-z packet reaches its destination
within 7; steps after it obtains an initial token. Therefore, all packets leave their

sources no earlier than 7 and reach their destinations before 27°.

9.5 A Schedule for the Original Network

This section concentrates on Problem 3 of Chapter 8. We describe how to create a
schedule Sy for the original network A from the schedule S(¢) for the intermediate
network M. Recall that in the construction of M from N, each edge e in N is replaced
by 2w consecutive edges ey, ..., €2, Where w is a constant defined in Section 8.3.
We first partition the time interval [7,27) into consecutive w-frames. (Recall
that 7 is an integer multiple of w by definition.) For each w-frame and each edge
f in M, as many as w packets, p;,ps,...,Pw, can cross f during the w-frame by
schedule S€). We smooth out S) so that p; is the jth packet to cross f in the

w-frame, where p,,...,p, represents an arbitrary ordering. We refer to the schedule
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after the smoothing as S.

According to Spq, at most one packet at a time crosses each edge. However, Sy
may not schedule the packets to cross the edges on their routes in order. For example,
Sm may schedule to cross edge f before g, whereas f follows g on the route in M.
Sam may also schedule a packet to leave its source before its injectton time. We define
Sy to avoid the ordering problem. Sy schedules a packet p to cross e in A at time ¢

if and only if Sxq schedules p to cross ez, in M at time .

Lemma 9.5.1 In Sy, each packet is scheduled to leave its source after its injection

and is scheduled to cross the edges on its route in order.

Proof: We first show that each packet crosses the edges on its route in order.
Consider a packet p. Let e and é be two edges on p’s route in N, where é follows
e. Let t and { be the times that p crosses e and é in schedule Sy. We show in the
following that ¢ < {.

Let e;,, and €3, be the edges in M that correspond to e and é. Let 7 and 7 be
the times that p crosses e, and é,,, in the schedule ¢, Since S¢) schedules packets

to cross the edges in M in order, we have,
T+2w < 7. (9.3)

In schedule Sy, packet p crosses e at time ¢, which is shifted by at most w — 1 steps

from 7. Similarly, ¢ is shifted by at most w — 1 steps from 7. Hence we have,

T—(w—-1) <t < 74+(w-1),
f-(w-1) <& < F4(w-1).

From Inequality 9.3 and the above inequalities, we have t < {. Therefore, p crosses
the edges on its route in order.

The proof that packet p leaves its source after its injection time is similar. Suppose
that p is injected to the network at time s. Let edge e be the first edge on the route

of p in network N, and let ¢ be the time that p crosses e in Syr. Also let ey, be the
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corresponding edge in M, and let 7 be the time that p crosses e, in S}, Since S¢)
schedules p to cross the edges in order and schedules p to leave its source after its

injection, we have,
s+2w < T.

In schedule Sy, packet p crosses e at time ¥, which is shifted by at most w — 1 steps

from 7. Hence we have,
T—(w—-1) £t £ 7+ (w-1).

Therefore, s < t and packet p leaves its sources in A after the injection time. O

We summarize the properties of Sy.
Theorem 9.5.2 Schedule Sy satisfies the following properties.
1. At most one packet at a time crosses each edge in N;

2. After leaving its source, each packet waits constant number of steps to cross an

edge, which implies all the edge queues in N have constant size;

3. For all .esstons i, any session-i packet reaches its destination within O(1/r;+d;)

steps of its injection;

4. All session-t arrivals during [T —T;,2T —T;) are serviced during [T ,21 }, i.e. all
packets leave their source no earlier than T and reach their destination before

2T.

Proof:  The smoothing process guarantees Property 1. Properties 2 and 3 come
from Properties 2 and 3 of S©) given in Theorem 9.4.4, the construction of M from
N and the fact that each packet is scheduled to reach its destination in Sy at most
w steps later than in S©),

To see Property 4, recall that the interval [T,27) is partitioned into w-frames,

and schedule S© is smoothed out within each w-frame. Therefore, if a packet is
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scheduled to cross an edge e during [T,27) according to S), the packet must also
be scheduled to cross e during [7,27) according to Sy. Property 4 implies that all
intervals of [0,7), [T,2T), etc. can be scheduled independently. o

We now describe how to transform Sy to a template-based schedule. Let T be
the size of each template. Suppose each session-¢ initial token (in the conversion step
of Section 9.3) is owned by a session-¢ packet. We have shown the existence of an
optimal schedule Sy for these packets using the procedure described in this chapter.
The movement of each packet scheduled by Sy determines a token sequence, and
these token sequences define the locations of all the tokens.

Obviously, the token lag is O(1) for all sequences and the end-to-end delay is
O(1/r; + d;) for all session-i token sequences. Since each session-i packet is able
to obtain an initial token within O(1/r; + d;) sieps of its injection, Theorem 7.1.2
implies that the template-based schedule defined by the token sequences achieves a

delay bound of O(1/r; + d;) and constant edge queues. In summary,

Theorem 9.5.3 Consider an arbitrary network in which sessions are defined. Fach
session t is associated with an injection rate r; and path length d;. Packets are injected
to the network along these sessions subject to the injection rates. If the total rate on
each edge is at most 1 — e for a constent € € {0,1), then there ezists a template-based
schedule such that each session-i packet reaches its destination within O(L/r; + d;)
steps of its injection and at most one packet crosses an edge at each time step. This

schedule also maintains constant edge queues.
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Chapter 10

The Construction of an Optimal

Schedule

The analysis so far relies on the Lovasz Local Lemma to show the ezistence of a
schedule with delay bound O(1/r; + d;). In this Chapter, we describe the key ideas
to construct such a schedule. Since we do not present all the details, the results in
this chapter are stated in terms of claims rather than theorems and lemmas.

Let us first revisit the Lovasz Local Lemma. Let E,,..., E, be a set of bad events,
each occurring with probability p and with dependence at most d, i.c. every bad event
is mutually independent of some set of n — d other bad events. If 4pd < 1, then with

a nonzero probability no bad event occurs. In other words,
Pr[ Ny B ] > 0.

In particular, the proof of the Local Lemma, e.g. in [54, pages 57-58], gives the lower

bound,
Pr| Ny B | > TI(1 - 2p) m e,

i=1
which is exponentially small. Hence, the Local Lemma does not provide an efficient
randomized algorithm. The question is how to find a polynomial time algorithm for

finding this exponentially small “reedle” [6).
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In [6], Beck converted some applications of the Local Lemma into polynomial time
algorithms. In [32] Leighton et al. modified Beck’s arguments to efficiently construct
the optimal schedule for their static routing problem. In this chapter, our general
approach is to employ the techniques in [32] to construct an optimal schedule for our
dynamic problem. The construction takes time polynomial in Z and has a success

probability of 1 — EEI(_ZT’ where
Z = mmax(1/r; + d;).

As before, m is the number of edges in the network and r; and d; are the injection
rate and the path length of session ¢ respectively. We also redefine the initial frame

size to be,
7O = melosz/"' max; (1/ri+Di)

All other parameter definitions are the same as in Section 8.3.

Our analysis in Chapter 9 remains unchanged, except in Lemmas 9.2.4, 9.2.6
and 9.3.3 when the Lovasz Local Lemma is used. We focus on the constructive
version of Lemma 9.2.4, which is used for the first step of frame-refinement. Similar

techniques can be applied to Lemmas 9.2.6 and Lemma 9.3.3.

10.1 Refinement

Consider refining the schedule $?). Recall in Section 9.2.2 we first partition the
schedule into blocks of length 2(1(9))3 4 2(I@)? — [@) and reschedule each block
independently. Within each block, random delays in the range of [1..I(9)] are inserted
to each active packet. (Active packets are those integral packets in A® that advance
some edge during the block.) Lemma 9.2.4 shows that a “good” set of delays can
reduce the frame size from I@ to log? I?) for the frames in the center of each block
without increasing the relative congestion by much. We describe in the following how

to find such delays in pelynomial time with high probability.

128



10.1.1 High Level Ideas

To reschedule a particular block B, we define a set of bad events and a dependence
graph induced by these events. For each edge ¢ in the network and each I-frame in the
block B, where log? I'9 < I < 2log? I®), we define a bad event E{y 1y that happens
when the frame congestion on g during I exceeds (1 +7;)c? 1, for some ; = 7%‘-1-}(—‘1)-.
These bad events form a dependence graph G, whose nodes represent the events and
whose edges represent the dependencies between the events. Two events E¢, 5y and
E(y 1} are dependent only if some packet can possibly cross g during I and can
possibly cross ¢’ during I’. The following claim follows from the dependence analysis

in Lemma 9.2.4.

Claim 10.1.1 Let G be the dependence graph of the bad events, then,
1. The number of nodes in G is at most m(I1(D)*, which is O(Z?).
2. The node degree d of G is at most (I9)1°,

Let us first describe the high-level idea. Initially, every bad event can possibly
happen. The dependence graph G consists of one large connected component of
O(Z?) nodes. We assign delays to the active packets one at a time until any further
assignment would bring some bad event close to happening. Let P contain the active
packets whose delays are assigned during this iteration, and let P contain the rest.
For a bad event Ey, s} to be close to happening, the congestion on g during I must
exceed its expectation by a certain amount, and therefore is unlikely. As a result of
the first iteration of the delay assignment, some bad events cannot happen no matter
how delays are assigned to the packets in P.

Consider the subgraph of G that consists of the bad events that can still happen
due to the future delay assignment to P. We argue that the connected components
of this subgraph have a small size of O (poly(d)log Z) with high probability. These
components partition the packets in P into mutually disjoint sets. The delay assign-
ment for each component can therefore be completed independently. There are two

cases to consider. If 119 = poly(log Z), we assign random delays to all the packets in
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P. The combined congestion due to P and P causes no bad event to happen with
high probability. If I'9 = poly(loglog Z) or smaller, we carry out another iteration
of delay assignment to some packets in P. This further reduces the component size
to O (poly(d) loglog Z). The Lovész Local Lemma shows the existence of a delay as-
signment to the remaining packets that causes no bad event to happen. These delays
can be found through an exhaustive search in polynomial time, since the component

gize is small.

10.1.2 One Iteration of Delay Assignment

Let us fill in the details of the above outline. We assign delays to active packets one
at a time. Each delay is chosen uniformly and independently at random from [1, 7(9)].
Suppose ¢ active packets that can possibly use edge g during an I-frame are assigned
delays so far, then a critical event Cy,, 1y happens if the frame congestion due to these

¢ packets exceeds,

I k I
(9)
to + r_—-log o (1 + I(?)> 1, (10.1)

for an appropriately chosen constant k. Let us justify our definition of Cio.ry- The
first term cf{(—,y upper bounds the expected congestion on g during I due to these
¢ packets, since each packet has probability at most 7{;)- to use g during I. The
second term of (10.1) represents the extra congestion that a critical event tolerates.
In particular, (1 + 7{;)-) c9T upper bounds the expected congestion due to all the
packets. To see why, let r; be the relative congestion on g due to fractional packets
according to schedule §(, then the relative congestion due to the active packets is
at most ¢{? — r;. Hence, at most (9 — r;)(I + I®) active packets can possibly use
g during I, each of which has probability at most 1713 to do so. The total expected
congestion is therefore r¢I + (¢ — r;)(I + I9) 15, which is at most (1 + -1{;)-) 9.
In summary, when a critical event happens, the congestion due to ¢ packets exceeds
its expectation by a factor V%sl}m of the expectation due to all the packets. A

Chernoff-type of argument implies,
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Claim 10.1.2 A critical event happens with probability (I19)~* for a positive con-
stant ko determined by the constant k in (19.1).

Proof sketch: By Lemma 7.2.1, the probability that a critical event happens is at
most e~ /1og I A+I/IDNLDI/3 i is at most e~ (1= log I9/3 0

After assigning each delay, we check to see if any critical event happens. If a
packet causes a critical event Cy, 3 to happen, then we set aside all other packets
that can also use g during I but whose delays have not yet been assigned. Checking
whether or not each critical event happens takes polynomial time in Z. The set P
contains all the active packets whose delays are assigned and P contains the rest
of the active packets. We now collapse the dependence graph G into much smaller
connected components.

A node of G is critical if its corresponding event is critical, and a node is endangered
if it is dependent of a critical event. (This implies an endangered node is always
adjacent to some critical node.) Let G; be the subgraph of G consisting of the
critical and endangered nodes and the edges connecting them. If a node is not in
G, then all of the packets that can possibly use the corresponding edge have already
been assigned delays. Therefore, the bad event corresponding to the node cannot
happen no matter how we assign delays to the packets in P. From now on, we only
need to consider the nodes in G;. Since any two connected components of G; do not
share a packet, there is a one-te-one correspondence between components of G; and
disjoint sets in a partition of the packets in P. Hence, we can delay the packets in
each component independently.

Initially, the dependence graph is one single large component. After the first

iteration of the delay assignment, the graph collapses into much smaller pieces.

Claim 10.1.3 The largest connected component of Gy has at most log X - d* nodes
with probability 1 — W(X)’ where X = O(Z?) is the number of nodes in G and d is
the node degree.

The proof of this claim relies on some properties of the cube of a graph. For a graph

H, its cube H? has the same nodes as H. An edge connects two nodes in H3 if and
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only if a path of at most 3 edges connects these two nodes in 4. An independent set
is a subset of the nodes in H in which no two nodes are neighbors. An independent

set is mazimal if any addition to the set makes the set no longer independent.

Observation Let H be any graph and H? be its cube.
1. If H has node degree d, then H® has degree at most d°.

2. If H is connected, then any mazimal independent set of H is connected in H3.
Furthermore, any set that contains e mazimal independent set of H is connected

in H®.

We now sketch the proof of Claim 10.1.3.

Proof sketch: We create a sequence of graphs, Gy, G3, G2, G and G3, where G2
and G3 are cubes of G; and G; respectively, and G, and (33 are subgraphs of G2
and G respectively. Our goal is to bound the largest connected component of G
by log X with probability 1 — m—). We then argue this is sufficient to bound the
largest connected component of G; by log X - d* with the same probability.

The critical nodes in a connected component of G; are connected in G3 by the
Observation. This is because each endangered node of G, is adjacent to some critical
nodes, and so the critical nodes contain a maximal independent set of G;. Let G, be
the subgraph of G? that consists of the critical nodes only and the edges connecting
them. Note that two nodes are in the same connected component of G; only if they
are in G;. Let G3 be a subgraph of G2 whose nodes are induced from any maximal
independent set of nodes in G2. By the Observation, the nodes that are in the same
connected component of G2 are mutually independent in G2, and hence mutually
independent in G,.

In order to bound the size of the largest connected component in G3, we associate
each component with a spanning tree. Note that two distinct connected component
of G5 have disjoint spanning trees. Let us first enumerate the different trees of ¢ nodes
in G3. There are at most X possible roots for each tree. In a depth-first traversal of

a tree starting at the root, there are d° ways to choose each subsequent node. This is
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because the node degree of G3 is at most d® by the Observation. Since each edge is
traversed once in each direction and there are ¢t — 1 edges, the total number of trees
with any cne root is at most (d®)**~1). Hence, the total number of trees of ¢ nodes is
at most Xd'8.

Any tree of size t in G5 corresponds to an independent set of ¢ critical nodes in G}.
Since each critical event happens with probability at most (1(?))~% by Claim 10.1.2,
the probability that all of the nodes in the independent set are critical is at most
(I@)=kt By a union bound, the probability that there exists some tree of ¢ nodes
in G is at most Xd"®(1(®)~%!, Since d = (I9)!°, the probability is X (I(®)~®® for
a sufficiently large ko. Note that a large ko can be obtained from a large k in the
definition of critical events. For ¢ = log X, this probability becomes #(X)‘

We finish the proof by bounding the size of the largest connected component in
G1. Suppose the largest connected component of G5 has t nodes, then the largest
connected component of G has at most ¢ - d°® nodes. Since two critical nodes are in
the same connected component of G, if and only if they are in Gy, each connected
component of G; contains at most ¢ - d® critical nodes. Each critical node in G, has
at most d endangered neighbors. Therefore, the largest connected component of G}

is bounded by ¢ - d*. Our claim follows. O

10.1.3 Schedule SO

We proceed to assign delays to the packets in P. There are two cases to consider.
If we are currently refining the schedule $(!); the frame size is 1Y) = poly(log Z).
Claim 10.1.3 implies that with probability 1 — 5375?7)’ the maximum component size
of G is (I")°, where a is a constant independent of & in (10.1) and ko in Claim 10.1.2.
Since any two components do not share any packets from P, these components cor-
respond one-to-one to the disjoint sets in a partition of the packets in P. Therefore,
the delay assignment to the remaining packets are independent frorn component to
component.

Consider a particular component U of G; that corresponds to a set of packets

@ C P. We assign a random delay chosen uniformly and independently from [1, ()]
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to each packet in (). Consider a node u in U that is associated with edge g and frame
I. Suppose c active packets for u are assigned during the first iteration, then at most é
active packets can be assigned delays thi- tin.e, where ¢ is at most (V) —r;)(I+1V)—c
and ry is the relative congestion on g due to the fractional packets. Claim 10.1.2
implies that with probability (I(!))~%, the congestion associated with node u (i.e. the

congestion on g during I) due to these ¢ packets exceeds,

I k I
S W [ R ¢ 3
T+ T (1+ 7)€L (10.2)

Since at most (I()? nodes can be in the component U, with probability 1 — (1{1))2—%
every node in U has an associated congestion at most (10.2) due to the packets in P.
For a sufficiently large ko, this probability is 1 — po—,y(}—;g—z—). If the delay assignment to
Q is repeated O (E%f)f—z-) times, then the success probability for U can be enhanced
to 1 — s> Where X = O(Z?) is the number of nodes in Gy. We carry out
the above delay assignment process for each mutually independent component of G,.
Since G, has at most X components, with probability 1 — ;;,,—;—(—73 every node in G,
has associated congestion at most (10.2) due to the packets in P.

We now have assigned delays to all the active packets. The congestion due to
the packets in P and P is (10.1) and (10.2) respectively, with probability 1 — ;;,;—(-Z-.T.

Hence, the total congestion due to all packets is bounded by,

2k (1 + —I—) VI

N

2k 1
< 1+ — (1+ )(‘)I
( \/logl(l)) 10
O(1)

= 1+ C(I)I.
( Vlog I “’)

In other words, no bad event happens with probability 1 — th—).
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10.1.4 Schedule S@, etc.

If we are currently refining the schedule 8§, for ¢ > 2, then the frame size is (9 =
poly(loglog Z) or snzller. We go through a second iteration of delay assignment in
a manner similar to the first iteration. We assign random delays to the packets in
P one at a time. Suppose ¢’ packets from P that can possibly use g during I are
assigned delays so far, then a critical event C{, s} happens if the congestion due to

these ¢’ packets exceeds,

c'I—iﬁ + —\/T%I?T) (1+ %) d0F (10.3)
After each delay assignment, we check if this assignment causes any critical event to
happen. If so, we set aside all other packets in P that can also use g during I but
whose delays have not been assigned. Let P and P’ consist of the packets whose delays
are assigned delays during the first and second iteration respectively. Let P consist
of the remaining active packets. Suppose G} is the subgraph of G; that consists of
critical nodes and endangered nodes (due to the second iteration only) and the edges
connecting them. By applying Claim 10.1.3, the largest connected component of G

has size at most O (log(log Z - d*) - d*) with probability 1 — i If we repeat the

log Z

Toglog Z) times, then this probability can be enhanced to 1— p————oI;( 7

second iteration O (

Now suppose each component has poly(loglog Z) nodes. We first show the exis-
tence of a “good” delay assignment to P. Consider a node  in G that is associated
with edge g and frame I. Suppose ¢ packets for u are assigned delays during the
first iteration and ¢’ packets during the second iteration, then at most ¢ packets for v
remain in P, where € is at most (¢{? — r)(I + I9) — ¢~ ¢ and r; is the relative con-

gestion on g due to the fractional packets. Claim 10.1.2 implies that with probability

(I@)~*% | the congestion on g during I due to these ¢ packets exceeds,

I k I
A = — Y pla)
‘ot T (1+ I(q))c I. (10.4)

The dependence of G} is at most (I1(9)!°, For ky = 11, the Lovész Local Lemmas
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implies the existence of some delay assignment to P such that the congestion due to
P on each node in G} is at most (10.4).

We find the “good” delay assignment for each component in G} using an ex-
haustive search. Each packet has I(9 choices for delays, each node in G has at
most (19 + I)c(?) packets that can possibly use the corresponding edge, and each
component has at most poly(loglog Z) nodes. Hence, the total number of choices is
(@U@ +DDpolylloglog2) ¢ o o) component. Since (19 + I)c\? < 219 and 1@ =
poly(loglog Z) or smaller, we need to try out at most poly(log log Z)Polv(losle8 2) Anlay
assignments, which is O(Z), for each component.

Since the first and second iterations of the delay assignment are successful with
high probability, summing up (10.1), (10.3), (10.4) aud rI gives the total congestion
due to all packets with high probability.

1 3k 1
/= —) D
ril +(e+e+ )5+ e (1 + I(v)) 1

3k I
< |+ —7— (1+—) @
( \/log Im) 16

= (14-20 ) oy,
\/log 1@

In other words, no bad event happens with probability 1 — El%(—zi‘

We have thus rescheduled one particular block in polynomial time in Z and with
high probability in Z. Since there are O(Z) blocks, by a union bound ail the blocks
can be successfully rescheduled in polynomial time with high probability. The con-

structive version of Lemma 9.2.4 is as follows.

Claim 10.1.4 There ezists a way of choosing delays so that in between the first and

last (119))? steps of the block B, the relative congestion of any frame of size log? 10

or larger is at most (1 + 71)c9, for some 7, = —=2& This set of delays can be

log I(9) ’
found in time polynomial in Z with probability 1 — 571577'

Similar statement can be made for the constructive version of Lemma 9.2.6.
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10.2 Conversion

We now consider the conversion step of the schedule S{?. Recall in Section 9.3
we inductively assume the frame size is 7(%*!) and the relative congestion is (1 +
6@)c9), Gur goal is to convert the sessions in B'9t!) from fractional to integral
while maintaining the frame size of I1(#+1) and bounding the relative congestion by
7t = (1 4 §@)2c(®), We achieve this by first discretizing the sessions in B(+1)
and then inserting initial delays to these newly-converted packets. The sessions not
in B“*!) remain unaffected during the conversion step. Lemma 9.3.3 shows the
existence of a “good” set of delays. In this section, we aim to find these delays
efficiently.

We first define a set of bad events ¢, 5 for each edge g and each I-frame in the
interval [T,27), where I(0+1) < T < 2](#+1)_ the bad event E{, j; happens when the

total congestion due to all packets exceeds (9t I, where c(9+1) = (1 4 §(@)2¢(9),

Schedule S©

For the initial schedule $(, the argument is simple. By the analysis of Lemma 9.3.3
the probability that one particular bad event on edge g and frame I happens is
e~OUeg* 1) Gince the total number of bad events is at most mT 1) = O(Z2), by a
union bound no bad event happens with probability 1 — m. This explains why

the definition of I(%) in this chapter is different from the definition in Section 8.3.

One Iteration of Delay Assignment

For the conversion step for the schedule S@), where ¢ > 1, we adapt the techniques
used for the refinement step in Section 10.1. The analysis is almost identical, except
for the size and the node degree of the dependence graph, the definition of a critical
event and the probability that a critical event happens. The following claim follows

from the dependence analysis in Lemma 9.3.3.

Claim 10.2.1 Let G be the dependence graph of the bad events, then,
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1. The number of nodes in G is mT I+, which is O(Z?).

2. The node degree d of G is O (641085/2 1(«)) .

We assign initial delays, chosen uniformly and independently from [1..£;], to as
many packets in B(#+1) as possible until critical events happen. (Recall ¢ = ©(1/r;)
is defined in Section 8.3.) Suppose ¢ packets from B(*1) that can possibly use cdge
g during an [-frame are assigned dela.;ys so far. A critical event C, 5} happeus if the

congestion due to these ¢ packetsiexceeds,

"k

pe + ——=—=(1+ 69)c91.
‘ y/log I9)
The first term g, is the expected congestion due to these ¢ packets. Due to the analysis
in Lemma 9.3.3, the quantity (1 + 6(9)c?I upper bounds the expected congestion
due to all packets. (This same quantity also upper bounds the congestion on e during
I at the beginning of this conversion step.) Hence, a critical event Cy, 1} happens
. ‘ . . o(1)

when the congestion due to c packets exceeds its expectation by a factor s 1@ of
the expectation due to all the packets. A Chernoff-type of argument implies,

Claim 10.2.2 A critical event happens with probability e~©Uos* 1?)

Let Gy be a subgraph of G that contains the critical and endangered nodes and
the edges connecting them. The following result follows from a proof analogous tc

Claim 10.1.3.

Claim 10.2.3 The largest connected component of Gy has size at most log X -d* with
probability 1 — m, where X = O(Z?) is the number of nodes in G and d is the

node degree.

Let P contain all the packets in B(*1) whose delays are assigned during the
first iteration, and let P contain the remaining packets in B*Y), Since any two
components of Gy do not share any packets from P, these components correspond
one-to-one to the disjoint sets in a partition of the packets in P. Therefore, the delay

assignment to the packets in P are independent from component to compcnent.
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Schedule SO

For schedule S\), we assign random delays from {1..£;] to all the packets in P. Suppose
for edge g and frame I, the expected congestion due to P is pz. By Claim 10.2.2, the

congestion due to P exceeds,

k

e + —pme
y/log I

with probability e~€&' 1) Claim 10.2.3 implies that the largest connected com:-

(1 4+ 6M)cM7, (10.5)

ponent of G contains at most poly(I™)e®s** 1) podes. For each particular com-
ponent U of Gy, the congestion due to P on each node in /7 is at most (10.5) with
probability 1 — e=©(og* I™)poly (1(1))OUeg®? IV) " which is at most 1 — oy This
probability can be enhanced to 1 — m by repeating the assignment O (iﬁﬁ)}%)
times.

Since the conversion step does not affect the sessions not in B(®), the sum of ., gz
and the congestion due to sessions not in B(® is at most (1+6(1)c(V)I. Hence, the total

. . 2k

congestion on any node of the dependence graph G is bounded by (1 + m) 1+
8N eI with probability 1 — pol;W' In other words, no bad event happens with

probability 1 — m.

Schedule S@, etc.

For schedules S0, where g > 2, we go through another iteration of delay assignment
to the packets in P until critical events due to P happens. By applying Claim 10.2.3,
we can now argue that the largest component size is log(log Z - d%) - d*, which is
O(log log Ze®(os*? 1)) with probability 1 — m. By repeating this second iter-
ation O (EIE"%%) times, the probability can be enhanced to 1 — F,;TZ—).

We first show the existence of a “good” delay assignment to the remaining packets
in P. Suppose a node is associated with an edge g and a frame I, and & remaining
packets can still use g during I. By Claim 10.2.2, the congestion due to these ¢

packets exceeds pz + 7;,-’;7-(:)-(1 + 6(9)¢f9) with probability at most e~©0s* I'?)_ Gipce
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the dependence is O (e‘“°85 /2 ’(")) by Claim 10.2.1, the Lovisz Local Lemma implies
the existence of a delay assignment for the remaining nackets in P such that they
incur a congestion of at most pz + Viﬁ}ﬁf(l + 6()c(9 on each node. Note that this
congestion bound guarantees that the total congestion due to all packets is at most
(1 + 7:;%3-) (1 + 6@)c(?) with probability 1 — ;,—,)!:,(7).

We obtain such 2 delay assignment through an exhaustive search. Let £ =

5/2 . . .
elos®/ I(Q)). For a packet from session i € B, the

max;cp(e+n fi, then £ = O(
total number of choices for delay is at most /. Each node in a component has at
most z packets from B(*!) that can possibly use the corresponding edge, where
T =Y iepetn (14 [I1/4]) s; is O(L + £). (Recall s; = ©(1) is defined in Section 8.3.)
Since each component has O(log log Ze®®s*/* 1)) nodes, the total number of tries

. o(log5/2 (D) g .
for one component is at most £0(I+00(loglog Ze2(o6""150) "y pioh i O(Z).

The constructive version of Lemma 9.3.3 is as follows.

Claim 10.2.4 There erists a way of choosing the initial delays for sessions in B(e+1)
such that the relative congestion in any frame of size I*Y) or bigger is at most (4t
after the delays are inserted. This set of delays can be found in time polynomial in Z

with probability 1 — m.
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Chapter 11
Conclusions

In Part I of this thesis we presented methods for latency hiding in simple networks
such as linear arrays and 2-dimensional arrays. Ultimately, we are interested in the
efficient implementation of algorithms designed for networks that appear often in the
architectures of parallel computers, such as trees, arrays, butterflies and hypercubes,
on a network with arbitrary topology and arbitrary link delays, such as NOWs. The
special case in which two networks have identical topology but different link delays
is a starting point where we can study the effect of latencies in isolation. Indeed,
the general case of simulating a unit-delay guest on a host with arbitrary delays and
arbitrary topology so as to minimize slowdown seems a very challenging problem.
In Part II of this thesis we presented an asymptotically-optimal schedule for a dy-
namic packet routing problem in connection-oriented networks. Qur research demon-
strates the power of randomness and synchronization among switches. Much future
work can be done on this problem. For example, it would be useful to reduce the
complexity of the analysis and the hidden constant in our bounds. It would also be
interesting to see if our scheme can be made distributed while maintaining the optimal
performance guarantees. Scheduling in a more general model that allows packets of
noruniform sizes, switches with different processing powers and traffic streams with

fluctuating rates [4, 9] would be another intriguing problem.
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