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By introducing interacting scalar fields, we tried to engineer physically motivated holographic phase
diagrams which may be interesting in the context of various known condensed matter systems. We
introduce an additional scalar field in the bulk which provides a tunable parameter in the boundary theory.
By exploiting the way the tuning parameter changes the effective masses of the bulk interacting scalar
fields, desired phase diagrams can be engineered for the boundary order parameters dual to those scalar
fields. We give a few examples of generating phase diagrams with phase boundaries which are strikingly
similar to the known quantum phases at low temperature such as the superconducting phases. However, the
important difference is that all the phases we have discussed are characterized by neutral order parameters.
At the end, we discuss if there exists any emerging scaling symmetry associated with a quantum critical
point hidden under the dome in this phase diagram.
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I. INTRODUCTION

In the modern condensed matter physics, one of the
important areas of research is to understand various phases
of quantum matter and their transitions. One of the most
important examples of such an experimental system with a
plethora of phases is the superconducting cuprates. For a
conventional (low temperature) superconductor, its many-
body ground state and low energy behavior can be described
by the Bardeen-cooper-Shrieffer theory [1,2], which is a
weakly coupled theory. However, for high temperature
superconductors, their superconductivity appears to origi-
nate from strongly correlated electrons confined on a two-
dimensional plane due to the special molecular structure of
the cuprates.
Over the years, many other systems with strong corre-

lation have been discovered, such as the superconducting
iron-based compounds known as Pnictides [3]. One of the
common features of these systems is the existence of a
superconducting dome in the phase diagram. It has become
increasingly evident that a significant part of the normal
phase right above the dome in these systems, e.g. the
strange metal phase, can be described by an emergent
conformal field theory (CFT). The CFT is scale free at the
quantum critical point where some parameter is tuned to a
critical value and the temperature is zero [4,5]. Then, near

the critical point, universal, model independent long range
physics exists for models within the same universality class
which is governed by the deformed CFT with a few
symmetry breaking terms. For example, the strange metal
behavior exists not only in the high temperature super-
conductors but also in many-spin systems, e.g. heavy
fermion metals [6], near the quantum critical point. The
quantum critical point could be hidden or screened by the
superconducting dome but revealed by universal low
energy behaviors at temperature higher than the dome,
such as universal dimensionless transport coefficients
which are independent of the microscopic interactions [7].
Sincemost of these systems are strongly coupled, conven-

tional perturbative QFT is not applicable. Different models
are proposed to explain the mechanism; for example,
some systems are believed to accommodate competing
symmetry-breaking order parameters in a specific range
of the physical parameters spanning the phase diagram.
Based on this idea of competing orders, many new concepts
have been introduced, such as the spin fluctuation superglue
[8], the resonating valence bond gauge approach [9,10]
and the SO(5) theory [11]. In spite of all these new concepts,
and their partial success, full understanding of such systems
remains elusive. In view of the nonperturbative nature of the
problem, AdS/CFT correspondence [12–14], a tool devel-
oped in string theory, provides a new approach to attack the
problem.
AdS/CFT correspondence, also called the holographic

principle, is a duality between a weakly coupled gravity in
anti-di Sitter space (AdS) and a strongly coupled CFT
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living on the boundary of the AdS space. This duality
spawns a spate of research on a certain class of condensed
matterlike systems near the quantum critical point. Over the
years, the study in the quantum critical property and the
intriguing universal low energy predictions indicates that
the universality may have some deep connection with the
universal transport properties observed in the normal phase
(e.g. the strange metal) of the aforementioned class of real
systems [15–17].
AdS/CFT correspondence states that for every particle

state in AdS space there exits a dual operator in the
corresponding CFT on the boundary. The isometry
group of the AdS space is identified with the conformal
symmetry of the field theory. This is the symmetry that
plays the main role in characterizing various quantum
phases and their transitions. One of such phases that has
recently been extensively studied at finite charge density
is called the “semilocal quantum liquid” [18]. At low
energy, this quantum state exhibits different scaling
behavior in time and space. Finite temperature phase
transition is realized by considering a charged nonex-
tremal black hole in AdS space. In the extremal limit,
the zero temperature quantum phase transition of this
system is achieved by varying the conformal dimension
of the field theory operators. One way to tune the
conformal dimension of the strongly coupled operator is
by explicitly changing the mass squared of the dual
single particle states in a weakly coupled AdS black
hole background. However, this way of changing the
conformal dimension is not obviously mapped to tuning
an experimental parameter from the boundary theory
point of view.
Based on the above-mentioned AdS/CFT duality, our

main goal in this paper is to construct a minimal bottom-up
model that has a similar phase diagram as is observed in
high temperature superconductivity. However, let us stress
upon the fact that in this paper we are not attempting to
construct the actual higher temperature superconducting
phase diagram. Our first attempt would be to figure out the
most economical way to construct a qualitatively similar
phase diagram as the high temperature superconductor.
Even though we have successfully constructed such a
minimal model, however, we need a certain degrees of
fine-tuning to figure out the coupling functions among the
scalar fields.
The most basic set for our construction would be to

consider a charged black hole which describes a system
of finite temperature and chemical potential. Then, we
introduce a source Jϕ for the boundary field theory as a
tuning parameter which arises from the near boundary
behavior of a dual massive neutral scalar field ϕ in this
background. Then, in order to describe the competing
phases, we introduce two massive scalar fields fψ1;ψ2g.
For simplicity, both scalars fψ1;ψ2g are neutral with no
internal quantum number. By choosing the appropriate

coupling function between the tuning field ϕ and the
order parameter fields fψ1;ψ2g in the gravity theory, we
can design how the effective masses of fψ1;ψ2g depend
on Jϕ at T ¼ 0, then engineer various phase diagrams in
the fJϕ; Tg plane. One can easily generalize this setup to
either the Uð1Þ charged field with superconducting
condensation or a different kind of antiferromagnetic
models, without changing the qualitative behavior of
the phase diagram. Study along the similar line has been
reported very recently in Ref. [19], where a different
system with an extra Uð1Þ gauge field on the gravity
background is introduced to represent a chemical poten-
tial, as an external tuning parameter for the phase
transition in high temperature superconductors. This is
an example of modeling the phase transitions in reality
due to varying a tunable doping parameter. In the global
AdS background, the holographic quantum phase tran-
sitions and interacting bulk scalars are also studied
in Ref. [20].
This paper is organized as follows. In Sec. II, we

introduce the setup and review the holographic properties
of the semilocal quantum liquid. In Sec. III, we discuss the
engineering of phase diagrams in holography to obtain
phase diagrams that are similar to the features of high
temperature superconducting cuprates. In Sec. IV, we
discuss the scaling symmetries near the quantum region
that is not manifest in our models. Our results are
summarized and discussed in Sec. V.

II. BACKGROUND GRAVITY

In this section, we review some basic properties of the
gravitational background. It has a charged black hole in
asymptotic AdS background to describe a system of finite
temperature and chemical potential.
Following the work of Refs. [21,22], we introduce

the action of the Einstein gravity with Maxwell and
other matter fields (which will represent some order
parameters in the dual system) in the 3þ 1-dimensional
bulk,

Sbulk ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
ðR − 2ΛÞ − L2

2κ2
1

g2F
F2

�
þ Sb:t:

þ
Z

d4x
ffiffiffiffiffiffi
−g

p ðLMÞ þ Sc:t:; ð1Þ

where Sb:t and Sc:t denote the boundary terms and the
counterterms respectively. The coupling κ2 ¼ 8πGN=c4

is of dimension ½L�2, related to the Newton’s constant
GN and the speed of light c. The negative cosmological
constant is given by Λ ¼ −3=L2, where L is the AdS
radius. The effective gauge coupling g2F of the Maxwell
term is dimensionless.
If we exclude the matter field for now, the Einstein’s and

Maxwell’s equations of motion are
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Rμν −
1

2
Rgμν þ Λgμν ¼

2L2

g2F

�
FμλFλ

ν −
1

4
F2gμν

�
;

∇μFμ
ν ¼ 0: ð2Þ

The vacuum solution we consider is a charged black brane,

ds2 ¼ r2

L2
½−fðrÞdt2 þ dx2 þ dy2� þ L2

r2
dr2

fðrÞ ;

F ¼ gF
q
L2

r2h
r2

dr∧dt; ð3Þ

where q is the charge density of the black brane. The factor
fðrÞ and electric potential AtðrÞ are

fðrÞ ¼ 1 − ð1þ q2Þ r
3
h

r3
þ q2

r4h
r4

;

AtðrÞ ¼ gF
qrh
L2

�
1 −

rh
r

�
: ð4Þ

We choose the gauge Ar ¼ 0, and rh is the outer horizon of
the charged black brane, satisfying fðrhÞ ¼ 0. According
to the standard AdS/CFT dictionary, the temperature and
the entropy density of the boundary semilocal quantum
liquid are identified as those of the black brane,

T ¼ 3

4π

rh
L2

�
1 −

q2

3

�
; s ¼ 2π

κ2
r2h
L2

: ð5Þ

The chemical potential and the charge density are given
by [21]

μq ¼ gFq
rh
L2

; nq ¼
2q
κ2gF

r2h
L2

: ð6Þ

The temperature in (5) can also be expressed in terms of the
chemical potential and the position of the outer horizon,

Tðμq; rhÞ ¼
3

4π

rh
L2

�
1 −

1

3

L4

g2F

μ2q
r2h

�
: ð7Þ

According to the above expression, there are two ways to
achieve zero temperature. One is to reduce to pure AdS
space, i.e. rh ¼ 0 and μq ¼ 0 such that Tð0; 0Þ ¼ 0, which
also implies vanishing charge density. But we are interested
in systems with finite density, and therefore we achieve
zero temperature by taking the extremal limit of the
charged brane μ�q ¼

ffiffiffi
3

p
gFrh=L2 with nonvanishing rh,

such that Tðμ�q; rhÞ ¼ 0.
The basic guiding principle of AdS/CFT is based on the

symmetries on both sides of the correspondence. Scaling
symmetry is one of those larger symmetries which plays an
important role in understanding the low energy behavior of
the system under consideration in terms of relevant

operators of the definite scaling dimension. One such
interesting system dual to the charged black hole in AdS
space is known as the semilocal quantum liquid [18].
Following Ref. [23], we review the scaling symmetries
for the semilocal quantum liquids. Our solution is para-
metrized in terms of two independent parameters q and rh,
while the appropriate physical parameters we consider are
temperature T and the chemical potential μq. Therefore, in
terms of those thermodynamic variables, the equation of
state of the dual field theory of the charged black brane
turns out to be

nqðμq; TÞ ¼
4π

3κ2
L2

g2F
μqT

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

4π2g2F

μ2q
T2

s !
: ð8Þ

The equations of motion respect two types of scaling
symmetries [24]. The first type is the global scaling

L → aL; fr; t; x; yg → afr; t; x; yg; κ2 → a2κ2;

ð9Þ

which rescales the metric ds2 → a2ds2, and the physical
quantities are scaled accordingly,

fT; μqg → a−1fT; μqg; fs; nqg → a−2fs; nqg: ð10Þ

One can make use of it to scale away L to unity in the
physical quantities, and we will take L ¼ 1 in our numeri-
cal analysis, meaning every length is measured in units of
the AdS radius. The second type is

r → λr; ft; x; yg → λ−1ft; x; yg; ð11Þ

which leaves ds2 invariant and the physical quantities

frh; T; μqg → λfrh; T; μqg; fs; nqg → λ2fs; nqg: ð12Þ

Via this type of scaling, one can initially set horizon size to
unit, i.e. rh ¼ 1, for the convenience of computation. In the
following numerical analysis, we will set in the beginning
rh ¼ 1 for convenience and retain rh in the equations and
diagrams through rescaling it back to the required size
afterward. On the other hand, one can redefine the scaling
invariant charge density ~nq ¼ðnqgFκ2Þ=ðT2L2Þ and chemi-
cal potential ~μq ¼ μq=ðTgFÞ, such that the rescaled equation
of state from Eq. (8) is independent of the temperature T,

~nqð~μqÞ ¼
4π

3
~μq

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

4π2
~μ2q

r �
: ð13Þ

A similar scale invariant equation of state in the quantum
critical region has been observed in experiments [25,26].
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III. PHASE DIAGRAM ENGINEERING

In this section, we would like to construct a mini-
mum holographic model in the bottom-up approach
that has a similar phase diagram to a high temperature
superconducting cuprate (see, e.g., Fig. 1 of Ref. [27]).
As we have already discussed above, at low temper-
ature, distinct phases can be obtained by tuning the
doping parameter. In order to understand the basic
mechanism of quantum phase transition near zero
temperature, we consider interacting order parameter
fields.
According to the standard AdS/CFT dictionary, the

chemical potential μq, conjugate to the charge density
nq, is dual to a bulk gauge field Aμ, such that μq and nq are
encoded in the non-normalizable and normalizable modes
of the asymptotic behavior of Aμ respectively. Similarly, in
our model in this section, the doping parameter should be
dual to a bulk scalar field ϕ. In the asymptotic solution of
this so-called “tuning field” ϕ, the non-normalizable mode
is dual to the source Jϕ on the boundary, interpreted as the
doping parameter since it is an intensive quantity, just like
the role of the chemical potential as the non-normalizable
mode of the asymptotic Aμ. The normalizable mode of ϕ,
on the other hand, is dual to the expectation value of the
conjugate variable to the doping parameter, which we do
not specify.
We consider two order parameter fields to be neutral

scalar fields ψ1, ψ2 in the AdS bulk. We also conjecture that
the controlling parameter of our system is dual to another
neutral field ϕ which is coupled to ψ1, ψ2 with a certain
degree of fine-tuning, such that we can reproduce the
experimental phase diagram.
Our goal is to understand the phase diagram and the

scaling behavior near the quantum critical point in such a
system. In order for the two order parameters to be
controlled by tuning the external parameter, it requires
ψ1, ψ2 to interact with the tuning field ϕ in some nonlinear
way. Therefore, we introduce the following minimal
Lagrangian density,

LM ¼
X
i¼1;2

Lψ i
þ Lϕ þ Lint; ð14Þ

where

g2MLψ i
¼ −

1

2
ð∂ψ iÞ2 − Vðψ iÞ;

Vðψ iÞ ¼
1

2
m2

iψ
2
i þ

1

4
λiψ

4
i ; ð15Þ

g2MLϕ ¼ −
1

2
ð∂ϕÞ2 − VðϕÞ;

VðϕÞ ¼ 1

2
m2

ϕϕ
2 þ 1

4
λϕϕ

4; ð16Þ

with g2M indicate the coupling constant, m2
i , m

2
ϕ < 0 and λi,

λϕ > 0. The interaction terms between ψ1, ψ2 and ϕ are
given by

g2MLint ¼ −
1

2

X
i¼1;2

FiðϕÞψ2
i ; ð17Þ

where the detailed form of the coupling function FiðϕÞ will
be given later. Different FiðϕÞ implies different ways in
which the condensation of ψ1 and ψ2 are controlled by ϕ
via shifting their effective masses. Consequently, different
phase structures arise. Wewill work in the probe limit of the
scalar fields, namely 2κ2=g2M → 0.
The equations of motion for the scalar fields turn out

to be

0 ¼ r−2∂r½r4fðrÞ∂rψ i� − ½m2
i þ FiðϕÞ�ψ i − λiψ

3
i ; ð18Þ

0 ¼ r−2∂r½r4fðrÞ∂rϕ� −m2
ϕϕ −

1

2

X
i¼1;2

F0
iðϕÞψ2

i − λϕϕ
3:

ð19Þ

It is clear from these equations that the tuning field ϕ shifts
the effective mass of ψ i from m2

i to

~m2
i ðrÞ ¼ m2

i þ FiðϕðrÞÞ: ð20Þ

According to the argument in Ref. [18], when the mass
square near the horizon is below theBreitenlohner-Freedman
(BF) bound of AdS2 that limr→rh ~m

2
i ðrÞ < −3=2, there

will be a phase transition near zero temperature. In
order to keep the stability near the AdS4 boundary,
one also needs to keep the mass square near the boundary
above the BF bound of AdS4 that limr→∞ ~m2

i ðrÞ > −9=4. In
the phase diagram, we also need to map the horizon value
ϕðrhÞ into the quantity Jϕ of the dual field.
At finite temperature, the near horizon expansions of the

scalar fields are

ψ iðrÞ ¼ ψ iðrhÞ þ ψ 0
iðrhÞðr − rhÞ þ � � � ; ð21Þ

ϕðrÞ ¼ ϕðrhÞ þ ϕ0ðrhÞðr − rhÞ þ � � � ; ð22Þ

and solving the equation of motion leads to

ψ 0
iðrhÞ ¼ ½m2

iψ iðrhÞ þ λiψ iðrhÞ3�=ð4πTÞ; ð23Þ

ϕ0ðrhÞ ¼
�
m2

iϕðrhÞ þ λiϕðrhÞ3 þ
1

2

X
i

F0
iðϕÞψ2

i

�
=ð4πTÞ:

ð24Þ

These formulas are used to evaluate the scalar field in the
numerical analysis once the boundary values on the horizon
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are specified. On the other hand, the asymptotic forms are
given by

ψ iðrÞ →
Ji
rΔ

−
i
þ Oi

rΔ
þ
i
; Δ�

i ¼ 3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þm2

i

r
; ð25Þ

ϕðrÞ → Jϕ
rΔ

−
ϕ
þ Oϕ

rΔ
þ
ϕ

; Δ�
ϕ ¼ 3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þm2

ϕ

r
: ð26Þ

From the above Eqs. (25) and (26) of the asymptotic
behavior of the bulk fields, one can obtain the scaling
dimension of the dual boundary operators, (Oi, Oϕ) and
their conjugates, (Ji, Jϕ) as

fJi; Jϕg → fλΔ−
i Ji; λ

Δ−
ϕJϕg;

fOi;Oϕg → fλΔþ
i Oi; λ

Δþ
ϕOϕg: ð27Þ

In our analysis, we choose the standard quantization on
the boundary for the asymptotic ψ i, that set the boundary
source Ji ¼ 0. Therefore, we do not need to consider the
correction term in asymptotic ψ i due to ψ4

i self-interaction
in (A11). The cross-interaction FiðϕÞψ2

i will not incur
corrections to either asymptotic ψ i or ϕ due to the same
reason. The ϕ4 interaction induces correction to the
asymptotic ϕ solution, but we will constrain the mass of
ϕ to m2

ϕ < −27=16 in our analysis, so that the correction
contributes at the subleading order in the normalizable
mode and can be neglected at asymptotic infinity.
In the following, we present two different models, with

different sets of fm2
i ; m

2
ϕ; λi; λϕg parameters and the cou-

pling functions FiðϕÞ. As expected, tuning the source
parameter Jϕ (which is the non-normalizable mode of ϕ)
leads to a different phase diagram. Such phenomena have
been observed in the phase diagrams of high temperature
superconductors.
To check the thermodynamic stability of any particular

phase, we need to examine the free energy of the condensed
state and normal state in the ordered phase (see more details
in Appendix A). The free energy densities with and without
ψ i in these states are given by

ΔΩ
Vð2Þ

¼ ΔΩϕ

V2

−
1

4g2M

Z
∞

rh

dr
r2

L2

X
i

½λiψ4
i þ ϕF0

iðϕÞψ2
i �;

ð28Þ

ΔΩϕ

V2

¼ −
λϕ
4g2M

Z
∞

rh

dr
r2

L2
ðϕ4Þ; ð29Þ

where the free energy coming from the pure black brane
background has been subtracted. In the subsequent sub-
sections, we will study two possible phase diagrams by
tuning the temperature and the source parameter Jϕ and
checking the free energies to shed light on the possible
ground states for a given value of fJϕ; Tg.

A. Model I with positive doping parameter

In this model, we engineer a phase diagram with two
condensed phases mimicking the antiferromagnetic phase
and the pseudogap phase. In the Lagrangian density (14),
we choose the following coupling functions F1ðϕÞ and
F2ðϕÞ,

−F2ðϕÞ ¼ ϕ2 −
5

24
ϕ4 ≅ F1ðϕÞ: ð30Þ

To avoid the instability of the scalar fields due to the
unboundedness from below in the potential in (17) and
(30), we can add a small ϕ6 term to F1ðϕÞ, e.g.
F1ðϕÞ ¼ ϕ2 − 5ϕ4=24þ ϕ6=100. This will only change
the full phase diagram slightly. Our choice is tuned to that
particular form, so that we can construct a phase diagram
which mimics the phase boundary of high temperature
superconductors. Moreover, this choice also reduces the
complication in numerical analysis. We also choose the
following set of parameters:

m2
1 ¼ −2.1; λ1 ¼ 2;

m2
2 ¼ −1.0; λ2 ¼ 2;

m2
ϕ ¼ −1.8; λϕ ¼ 1=3: ð31Þ

Together with the boundary condition for ψ i at asymptotic
infinity such that Ji ¼ 0, the correction terms due to the
self- and cross-interaction terms drop out, as explained
below Eq. (27).
The asymptoticallyAdSboundary keeps limr→∞ϕðrÞ¼0,

and with the coupling functions in (30), we have
limr→∞FiðϕðrÞÞ ¼ 0. According to the effective masses
in Eq. (20), our parameters in (31) always meet with the
stable condition near the boundary of AdS4 at which
limr→∞ ~m2

i ðrÞ > −9=4. On the other hand, the effective
masses of the scalar fields near the horizon are

~m2
1ðrhÞ ¼ −2.1þ

�
ϕðrhÞ2 −

5

24
ϕðrhÞ4

�
; ð32Þ

~m2
2ðrhÞ ¼ −1.0 −

�
ϕðrhÞ2 −

5

24
ϕðrhÞ4

�
: ð33Þ

Therefore, if we tune the value of ϕðrhÞ at zero temperature,
there will be a phase transition when the effective mass
square near the horizon crossing the BF bound of AdS2 that
~m2
i ðrhÞ ¼ −3=2. Additionally, the parameters of scalar field

ϕ are chosen to keep a monotonous relation between ϕðrhÞ
andJϕ,whichmaps thephase transitionparameterϕðrhÞ into
the quantity Jϕ of the dual field.
In Fig. 1, we first plot the expectation value of the

dual operator Oϕ with the color gradient on the rescaled
fJϕ; Tg plane. We only consider the Jϕ parameter over a
small positive range in this diagram. The location of
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vanishingOϕ varies with Jϕ, indicated by the dashed line in
the figure. In terms of the order parameter Oϕ, there is no
phase transition across the dashed line. It would be very
interesting if there were a phase transition inOϕ as it would
provide a way to describe the pseudogap as we will discuss
in Sec. IV.
Now, we turn on the fields ψ1 and ψ2; the phase diagram

of this system is presented in Fig. 2. It contains two distinct
ordered phases, characterized by nontrivial values of O1

and O2 respectively, besides the normal one. This diagram

is obtained by setting the sources of ψ1 and ψ2 on the
boundary to zero but turning on the boundary source Jϕ of
scalar field ϕ and the background temperature.
In this phase diagram, we only consider a small range of

positive rescaled Jϕ. The ordered phase 1 (in blue color)
occurs at low Jϕ and extends up to higher temperature,
while the dome-shape ordered phase 2 (in orange color)
covers the low temperature region down to T ¼ 0, over a
finite range of positive Jϕ. This feature is qualitatively
similar to the phase boundary in the phase diagram of the
cuperate superconductors. If one wishes to create a more
realistic model and identify the ordered phase 1 (charac-
terized by nontrivial O1) near Jϕ ¼ 0 to the antiferromag-
netic phase of the cuperates, one needs to generalize ψ1 to
be one component of the SUð2Þ multiplet [18]. This in
principle requires including other components of SUð2Þ
in the Lagrangian but only allows ψ1 to condense. Further,
in order to have more realistic phase diagram, the order
parameters can also be coupled with extraUð1Þ gauge field.
Since the goal of this paper is to explore the possibility of
forming different phases via the tuning field ϕ and the
coupling function FiðϕÞ, the study of the more realistic
model can be left for future work.
Figure 3 shows that the ordered phase 1 and phase 2 are

indeed thermodynamically preferred, by comparing the free
energy density of the solutions with and without the
condensate in the range of Jϕ in those phases at a fixed
temperature. The difference of free energy density is based

FIG. 1. The density plot for the expectation value of Oϕ vs the
rescaled temperature T=μq and the rescaled doping parameter (the

source) Jϕ=ðμqÞΔ
−
ϕ , both by appropriate power in the chemical

potential μq. The dotted line is where Oϕ vanishes. Note that Oϕ

is nonvanishing in general. And the relation betweenOϕ and Jϕ is
similar to the “equation of state” of the doping matter dual to
scalar field ϕ.

FIG. 3. The free energy density difference between the ordered
and normal phases. The rescaled temperature is chosen as
ðT=μqÞ≃ 0.014 × 10−3. The dashed black line stands for the
baseline of the free energy of the normal phase with only the ϕ
condensate. The blue and orange lines correspond to the free
energy difference of phase 1 and phase 2, respectively.

FIG. 2. The phase diagram of model I with positive doping
parameter. It is the density plot for phase 1(blue) and phase 2
(orange) with coupling functions −F2ðϕÞ¼ϕ2−5ϕ4=24≅F1ðϕÞ.
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on formulas (28) and (29), and here we only show the free
energy density difference ΔΩ − ΔΩϕ at a particular value
ðT=μqÞ≃ 0.014 × 10−3. The blue and orange lines corre-
spond to the free energy difference of phase 1 and phase 2,
respectively. And the dashed black line stands for the
baseline of the free energy of the normal phase with only
the ϕ condensate.

B. Model II with competing orders

In this model, we have a region with two condensates
coexisting which provides a model to study the physics
of competing orders. The phase diagram is also similar to
the region with a dome and a pseudogap phase. We start
with the following simple choices of parameters in the
Lagrangian density (14),

m2
1 ¼ −1.5; λ1 ¼ 2; F1ðϕÞ ¼ ϕðϕþ 2Þ

m2
2 ¼ −1.9; λ2 ¼ 2; F2ðϕÞ ¼ ϕ2=2

m2
ϕ ¼ −1.5; λϕ ¼ 0: ð34Þ

Similar to the arguments around Eq. (32), our parameters
in Eq. (34) always meet with the stable condition near the
boundary of AdS4 at which limr→∞ ~m2

i ðrÞ > −9=4. On the
other hand, the effective masses of the scalar fields near the
horizon are

~m2
1ðrhÞ ¼ −1.5þ ϕðrhÞðϕðrhÞ þ 2Þ; ð35Þ

~m2
2ðrhÞ ¼ −1.9þ ϕðrhÞ2=2: ð36Þ

When above effective masses cross the BF bound of the
AdS2, we will have phase transition at zero temperature,
provided one maintains a monotonic relation between
ϕðrhÞ and Jϕ.
We define the normal phase of our system with all the

order parameter fields ψ i ¼ 0, which is to say that there is
no condensation of the corresponding dual field theory
operator. Therefore, the system is in the completely
symmetric phase. We numerically study how different
possible phases and their transitions are occurring as we
go toward the zero temperature limit for different values of
the source parameter Jϕ at the boundary field theory. In this
case, we assume the tuning parameter taking both negative
and positive values, which mimics the electron and hole
doping into the system for the high temperature super-
conductor. Therefore, the Jϕ ¼ 0 can be identified as the
quantum critical point where the transition temperature is
zero. The other motivation of the choices of parameters in
this model refers to the phase diagrams in Ref. [28], which
is related with at zero source J point through scaling
symmetries. But for our specific choices of parameters, we
see from phase diagram 4 that the quantum critical point is
covered by a dome with nonzero condensation of O2 ≠ 0,

which normally happens in real physical systems. One also
notices that there exists an overlapping phase which we left
for future studies.
Once we numerically compute various condensations for

the different phases, one needs to compare the free energy
among various phases in Fig. 4. As we have calculated the
free energy for various phases, in Fig. 5, we have plotted
them using the expressions (28) and (29). We show the free
energy density difference ΔΩ − ΔΩϕ at a particular value
ðT=μqÞ≃ 0.028 × 10−3. The blue and orange lines

FIG. 4. The phase diagram of model II around a natural
quantum critical point. It is the density plot phase 1 (blue)
and phase 2 (orange) with coupling functions F1ðϕÞ ¼ ϕðϕþ 2Þ,
F2ðϕÞ ¼ ϕ2=2. The green parts are the overlap region.

FIG. 5. The energy difference between the ordered and normal
phases in Fig. 4 at ðT=μqÞ × 103 ≃ 0.028. The dashed black line
stands for the baseline of the free energy of the normal phase with
only the ϕ condensate. The blue and orange lines correspond to
the free energy difference of phase 1 and phase 2, respectively.
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correspond to the free energy difference of phase 1 and
phase 2, respectively. And the dashed black line stands for
the baseline of the free energy of the normal phase with
only the ϕ condensate.
One notices that in the region Jϕ < 0, ΔΩ − ΔΩϕ < 0.

Therefore, the ground state of the system will be in the phase
with O1 ≠ 0. On the other hand, near the Jϕ ¼ 0 region, we
found that the free energy ΔΩ becomes almost comparable
to ΔΩϕ, as one sees from Fig. 5. But still O2 ≠ 0 is
preferable near the Jϕ ¼ 0, T ¼ 0. The green region is
the overlap region, and usually there exist some competing
and coexistence orders; see, e.g., Refs. [29–35]. This region
is not the main purpose of our model, and it would be
interesting to explore more on this issue in future work.

IV. TOWARD A MORE REALISTIC
PHASE DIAGRAM

From our toy model to a more realistic holographic
model of a high temperature superconductor, we need at
least the following improvements: (a) realistic condensates
for the antiferromagnetic and superconducting phases, (b) a
pseudogap phase, and (c) scaling symmetry associated with
the screened quantum critical point below the supercon-
ducting dome.
For (a), it is not difficult to replace ψ1 of model I by a

condensate that has SUð2Þ components to make it a
realistic antiferromagnetic phase [18,36]. It is also not
difficult to replace ψ2 of the same model by a complex
scalar field coupled to the bulk Uð1Þ gauge field in Eq. (1)
to have a S-wave superconductor, or different kinds of
holographic P-wave superconductors [37–41]. However,
experimentally, the condensate for the superconductor is of
the D-wave. Naively, one might expect that this can be
achieved by just employing a symmetric traceless second
rank tensor as the order parameter field in the bulk.
However, this naive construction has more components
than needed which need to be removed in a general
covariant way. The fact that this field is charged and
massive in the AdS background makes things even more
complicated [42]. This is the difficulty of constructing high
spin field theory. It is a long-standing problem and is not
yet resolved despite lots of efforts [43–45]. Additionally, it
is also an ingredient to introduce the momentum dissipation
under the dome shaped region [46,47].
In the following subsections, we discuss the missing

pseudogap phase and scaling symmetry in our phase
diagram Fig. 2 or Fig. 4, which is based on the models
presented in Sec. III.

A. Pseudogap phase

The definition of a pseudogap phase is where the fermion
spectral function has a gap but the order parameter is zero.
For cuprate superconductors, the pseudogap phase occurs
at the temperature T� above the superconductor phase

transition Tc (T� > Tc), where the superconducting order
parameter vanishes, but the gap in the fermionic spectral
function remains finite.
A holographic pseudogap model has been realized in

Refs. [48,49]. However, the order parameter field that
couples to fermions to generate the gap in the fermionic
spectral function is also the one characterizing the super-
conductor phase. As a result, when the order parameter
vanishes, the gap disappears. Therefore, the pseudogap
phase appears at the temperature below the superconductor
transition (T� < Tc). This problem can be solved in the
expanse of introducing another field to generate a con-
densate that gives a gap to the fermion spectral function
(analogous to Ref. [19]), while the condensate of another
field is responsible for generating superconductivity. The
explicit model was constructed as our model II. However, it
would be more economical if we could use the field ϕ to do
this job of generating a gap in the fermionic spectral
function. Unfortunately, we have not succeeded in engi-
neering a generic phase transition for ϕ; otherwise, using
fields ϕ, ψ1, and ψ2, we would be able to generate the
antiferromagnetic, superconducting, and pseudogap phases
using the setup of model I.

B. Scaling symmetry in ðμq;TÞ space with Jϕ = 0

Scaling symmetry is an important feature of the phase
diagram of a high temperature superconductor which
suggests there is a quantum critical point hidden under
the superconducting dome. The physics of the scaling
symmetry can be understood from effective field theory. At
the critical point, the theory is scale invariant such that the
theory has no scale in the problem. Away from the critical
point, the theory does not have exact scaling symmetry, but
it is broken softly, and the breaking can be computed in
terms of the soft symmetry breaking parameter(s).
Therefore, near the quantum critical point, the symmetry
breaking at different points of phase space can be related by
scaling. This is the scaling symmetry governed by the
existence of the quantum critical point. A prime example of
this type of scaling is the strange metal phase.
In the context of AdS/CFT, a similar scaling symmetry

has been discussed in holographic superconductor model
[37]. As reviewed in Appendix B, the order parameter vs
temperature relation can be plotted in scaling invariant
parameters as in Fig. 9. This plot is redrawn in Fig. 6 to
demonstrate the scaling symmetry; once the physics on a
constant T slice is known, then the physics at all T is
known. The dashed lines on this plot show physics on this
line can be obtained by scaling. This is a nice demon-
stration that physics away from the quantum critical point at
the origin is related to physics near the quantum critical
point. It is also interesting to consider the condensed
phase in dilaton gravity where the scale invariance is
broken [50,51].
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The scaling symmetry in Fig. 6 seems to capture the
essence of scaling symmetry in superconductors although it
is known that the probe limit fails near zero temperature
[52,53]. On the other hand, some new ground state, such as

the AdS soliton background [54,55], which is dual to an
insulating phase, may appear and hence break the scaling
symmetry [18,56].
In our phase diagrams shown in Figs. 2 and 4, there is

also scaling with respect to physics of different μq which
has the same origin with the HHH model mentioned above
which also has a powerful scaling symmetry for the
condensates. However, the scaling symmetry in the T–Jϕ
plan is not manifest, as μq is assumed constant on the phase
diagram. It is possible that by shrinking the dome phase to a
point certain scaling symmetry on theT–Jϕ can emerge from
the effective field theory argument. But apparently this
cannot be seen easily through the bulk asymptotic equation
of motion near the boundary.

C. Aspect of scaling symmetry in ðJϕ;TÞ space
In Sec. III, all the figures are plotted in terms of scale

invariant quantities, as the usual strategy of presenting
figures in holographic superconductors [23,39]. However,
in the figures of the condensed matter experiment [25,26],
the obvious scaling symmetry only exists in the V-shape
quantum critical region. In this section, we use the
schematic diagram to show the scaling symmetries in
our models.
After adding the doping field ϕ, we have three inde-

pendent parameters fμq; Jϕ; Tg in the dual boundary
system. In order to see the obvious scaling symmetry
similar to that in Fig. 6, we need to transform our
Figs. 2 and 4 into three-dimensional figures in terms of
fμq; Jϕ; Tg. In the following, we only plot the schematic

diagrams, and we introduce the notation ~Jϕ ≡
ðSign½Jϕ�ÞjJϕj1=Δ

−
ϕ instead of Jϕ.

0.0 0.2 0.4 0.6 0.8
0.00

0.01

0.02

0.03

0.04

0.05

T

FIG. 7. Left: the 3D schematic diagram of Fig. 2 in terms of fμq; ~Jϕ; Tg, where the blue and orange regions correspond to ordered
phase 1 and phase 2. Three light green surfaces indicate parameter constraints of constant rh. Right: Phase diagram in terms of fT; ~Jϕg at
a fixed μq=T cross-profile, which corresponds to fixing the parameter q in (5). The dashed line indicates the scalings, and the solid gray
line indicates the parameter constraint of constant rh.

FIG. 6. The density plot of the order parameter OΨ on the
fμq; Tg plane, which is equivalent to Fig. 9 of a single charged
scalar field model in Appendix B. The transparent middle region
has vanishing order parameter and is the normal phase, where the
equation of state ~nqð ~μqÞ in Eq. (13) is independent of the
temperature. There are two condensed phases: the right-hand
side one has a positive charge density nq, while the left-hand side
one has a negative nq. The dashed lines indicate the scaling
trajectories. Note that this toy model has scaling symmetry even
in the condensed phases. In this figure, we have set gF ¼ 1,
L ¼ 1 for convenience.
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As indicated in Figs. 7 and 8, the different color shapes
correspond to different ordered phases. The blue region is
phase 1, and the orange region is phase 2. And the three light
green surfaces indicate the parameter constraint of constant
rh. In more detail, if we assume ~T ¼ T=rh, ~μq ¼ μq=rh,
then from relation (7) we obtain ~T ¼ 3π

4
ð1 − ~μ2q=3Þ. This

indicates that ~T and ~μq are not independent anymore.
The light green surfaces indicate the constraint relation
between T ¼ ~Trh and μq ¼ ~μqrh, with three different
constants rh. The two-dimensional phase diagram crossed
by different light green surfaces can be related through
scaling along with rh.
Our 3D diagrams in this section are similar to Fig. 14 in

Ref. [28]. Although we introduce the external scaler fields
in probe limit, our whole system still has the scaling
symmetries the near Jϕ ¼ 0. However, in the real con-
densed matters systems, the scaling symmetry only exists
in the V-shape quantum critical region, which is generally
at nonzero critical doping parameter. It is destroyed at very
large J and large T. Therefore, it would be interesting find
out some mechanism which will provide such scaling for
nonzero doping in the holographic context.

V. CONCLUSION AND DISCUSSION

We have studied how to engineer holographic models
with features similar to a high temperature superconductor
phase diagram. We introduce a field ϕ in the bulk which
provides a tunable “doping” parameter Jϕ in the boundary
theory. By designing how this field changes the effective
masses of other order parameter fields, desired phase
diagrams can be engineered. We have given examples of
generating phase diagrams with phase boundaries similar to

a superconducting dome and an antiferromagnetic phase by
including two order parameter fields ψ1 and ψ2.
It’s straightforward to change our scalar fields ψ1 and ψ2

into well-studied models of holographic antiferromagnetic
and superconductors. However, the shape of our phase
diagram will not change, as the basic underlying mecha-
nism of phase transition is the same in the holographic
models. As we have also mentioned before, the perturba-
tion of the scalar field near the horizon region becomes
unstable, and a hairy solution with scalar field is perfected
due to lower free energy. More detailed evidence can be
found in Ref. [18].
It is well known that the holographic phase transition is

based on the violation of the BF bound in the near horizon
AdS2 region as explained in Ref. [18]. It is strikingly
similar to the phase transition phenomena in Ginzburg-
Landau theory. Usually in the holographic context, chang-
ing the temperature of a black hole effectively changes the
effective mass of an order parameter field under consid-
eration, and this leads to a spontaneous symmetry breaking
and consequently the phase transition. However, in our
present case, we have an additional tuning parameter which
is the source term of a scalar field in the bulk. Therefore,
even with fixed temperature, we can control the effective
mass of the order parameter field coupled with the tuning
parameter Jϕ field and hence violate the BF bound.
Therefore, we can have the interesting phase diagram in
ðT; JϕÞ space as shown in Figs. 2 and 4. As we have
extensively discussed, choosing different coupling func-
tions for the tuning field with the order parameter fields can
provide us different phase diagrams depending upon the
requirement of a real system.

0.4 0.2 0.0 0.2 0.4

T

0.00

0.01

0.02

0.03

0.04

0.05

FIG. 8. Left: the 3D schematic diagram of Fig. 4 in terms of fμq; ~Jϕ; Tg, where the blue, orange and green regions correspond to
ordered phase 1, phase 2 and the overlap phase. Three light green surfaces indicate the parameter constraint of constant rh. Right: Phase
diagram in terms of fT; ~Jϕg at a fixed μq=T cross profile, which corresponds to fixing the parameter q in (5). The dashed line indicates
the scalings, and the solid gray line indicates the parameter constraint of constant rh.
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Finally, we would like to emphasize the difference
between our minimal model and the model in Ref. [19].
Instead of using the specific holographic models of super-
conductor and anti ferro-magnetism as in Ref. [19], our
model provides a simpler picture to engineer the holo-
graphic phase diagrams based on the setup in Ref. [18]. In
our model I, the coupling functions F1ðϕÞ ¼ −F2ðϕÞ are
enough to change the effective mass of scalar fields ψ1 and
ψ2, with less parameter choice to obtain the desired shapes.
In principle, we can also add and engineer other phases
with different shapes in the phase diagrams. Moreover,
instead of considering additional U(1) gauge field as the
doping parameter, we simply choose a scalar field ϕ, with a
free parameter mϕ to change the scaling dimensions of the
tuning source Jϕ and conjugate physical momenta Oϕ.
Thus, our source field has more freedom to be connected
with other tuning fields in the phase diagrams, such as the
massive field, external magnetic field and pressure induced
space changing in the experiment. Additionally, for our
model II, we have the freedom to realize different phase
diagrams in the positive and negative tuning parameter
regions, through changing the coupling function FiðϕÞ.
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APPENDIX A: FREE ENERGY DENSITY

In this section, we calculate the contribution to the free
energy from the background gravity, the Maxwell field and
the probe scalar fields. We will also follow this approach in
Sec. III for our model to understand the stability of all
possible phases against each other.
In a grand canonical ensemble, the Gibbs free energy Ω

is obtained from the partition function. In the AdS/CFT
correspondence and the semiclassical limit, the partition
function of the bulk theory is the path integral over the
Euclidean metrics

Ω ¼ T logZ; Z ¼ − exp ð−SðEÞtotalÞ; ðA1Þ

where the Euclidean action is obtained via the Wick
rotation

τ ¼ it; τ ∼ τ þ T−1: ðA2Þ

To fulfill our purpose, we mainly follow Ref. [23]. With
a Dirichlet-like conformally flat boundary at infinity, the
Euclidean action of the bulk Einstein-Maxwell theory is
[57–59]

SðEÞR ¼ −
Z

dr
Z

dτd2x
ffiffiffi
g

p �
1

2κ2

�
Rþ 6

L2

�
−

L2

2κ2
1

g2F
F2

�
þ S∂M; ðA3Þ

where S∂M contains the well-known Gibbons-Hawking
term for the well-defined variational problem and a con-
stant boundary counterterm to cancel the divergence of the
bulk action,

S∂M ¼
Z
r→∞

dτd2x
ffiffiffi
h

p

×

�
1

2κ2

�
−2K þ 4

L

�
þ 2L2

κ2
ε

g2F
naFabAb

�
: ðA4Þ

Here, h is the induced metric on boundary at r → ∞, and
K ¼ hμν∇μnν is the trace of the extrinsic curvature of the
boundary hypersurface, with nμ an outward pointing unit
normal vector. ε ¼ 0 corresponds to the grand canonical
ensemble with chemical potential μq fixed, while ε ¼ 1

corresponds to the canonical ensemble with charge density
nq fixed. We choose grand canonical ensemble (ε ¼ 0) and
put the solutions (3) into (A3) to obtain the on-shell

Euclidean action SðEÞR ½gμν; Aμ�. Then, the free energy
density turns out to be

Ω0

V2

¼ −
T
V2

logZR ¼ T
V2

SðEÞR ½g; Aμ�

¼ −
r3h

2κ2L4

�
1þ L4

g2F

μ2q
r2h

�
; ðA5Þ

where V2 is the volume of the boundary system labelled
by ðx; yÞ.
When a system is in thermal equilibrium in a

certain phase, the following thermodynamic relation is
satisfied:

E þ P ¼ Tsþ μqnq: ðA6Þ

And the energy density and pressure of a conformal matter
are

E ¼ T t
t; P ¼ T x

x; E ¼ 2P: ðA7Þ

Using the above thermodynamic relations, one obtains the
free energy of the background gravity

ΩR=V2 ≡ E − Ts − μqnq ¼ −P: ðA8Þ

Let us consider the simplest case for now. The free
energy contributed by a neutral scalar field Ψ at the probe
limit is
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SðEÞM ¼ −
V2

T

�Z
∞

rh

dr
ffiffiffi
g

p
LΨ þ ffiffiffi

γ
p

Lc:t:

�
;

g2MLΨ ¼ −
1

2
ð∂ΨÞ2 − VðΨÞ;

VðΨÞ ¼ 1

2
m2

ΨjΨj2 þ 1

4
λΨjΨj4; ðA9Þ

and Lc:t: is the boundary counterterm to make the on-shell
action finite. The equation of motion for the neutral scalar
field Ψ turns out to be

r−2∂r½r4fðrÞ∂rΨ� −m2
ΨL

2Ψ − λΨL2Ψ3 ¼ 0: ðA10Þ

If we consider the contribution of the self-interaction term
λΨjΨj4 in the Lagrangian density, the asymptotic behavior
of the scalar field receives nontrivial correction as follows:

Ψ →
JΨ
rΔ

−
Ψ
þ OΨ

rΔ
þ
Ψ

þ γ

r3Δ
−
Ψ
þ � � � ; γ ¼ λΨJ3Ψ

2Δ−
Ψð4Δ−

Ψ − 3Þ ;

ðA11Þ

Δ�
Ψ ¼ 3

2
� νΨ; νΨ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þm2

Ψ

r
: ðA12Þ

In the case of 3Δ−
Ψ > Δþ

Ψ, i.e. m
2
Ψ < −27=16, or JΨ ¼ 0,

the correction term in (A11) is of higher order in 1=r and
can be ignored, and the standard quantization scheme is not
altered. However, for 3Δ−

Ψ ≤ Δþ
Ψ, the counterterm needs to

be taken into account,

g2MLc:t: ¼
Δ−

Ψ

2L
Ψ2 þ λΨL

4ð4Δ−
Ψ − 3ÞΨ

4 þ � � � ; ðA13Þ

to make the on-shell action finite at high energy scale.
Considering the (A10), the on-shell action for the neutral

scalar field Ψ turns out to be

LΨ ¼ −
1

2g2M

�
∇μðΨ∇μΨÞ − 1

2
λΨΨ4

�
: ðA14Þ

Considering the background metric in (3), we obtain

−
Z

∞

rh

dr
ffiffiffi
g

p
LΨ ¼ 1

2g2M
lim
r→∞

�
r4

L4
fðrÞðΨ∂rΨÞ

�

−
λΨ
4g2M

�Z
∞

rh

dr
r2

L2
Ψ4

�
: ðA15Þ

Putting (A11) back into (A15), we have

−
Z

∞

rh

dr
ffiffiffi
g

p
LΨ ¼ 1

2g2ML
lim
r→∞

r3

L3

�
−ðJΨÞ2Δ−

Ψ

�
L
r

�
2Δ−

ϕ

− 3JΨOΨ

�
L
r

�
3

− 3JΨγΔ−
ϕ

�
L
r

�
4Δ−

ϕ

�
þ � � � : ðA16Þ

Following the procedure of holographic renormalization
[60], we need to introduce the counterterms in (A13). The
leading order expansions in the action are

Δ−
Ψ

2L

Z ffiffiffi
h

p
Ψ2

¼ 1

2L
lim
r→∞

r3

L3

�
ðJΨÞ2Δ−

Ψ

�
L
r

�
2Δ−

Ψ

þ 2Δ−
ΨJΨOΨ

�
L
r

�
3

þ 2JΨγΔ−
Ψ

�
L
r

�
4Δ−

Ψ

�
þ � � �

λΨL
4ð4Δ−

Ψ − 3Þ
Z ffiffiffi

h
p

Ψ4

¼ 1

2L
lim
r→∞

r3

L3

�
þJΨγΔ−

ϕ

�
L
r

�
4Δ−

Ψ

�
þ � � � ðA17Þ

Putting all of these terms into the total action (A9), we
reach the finite formula of the on-shell Euclidean action. As
a result, the free energy density becomes

ΔΩΨ

V2

¼ 1

g2M

�
−νΨJΨOΨ −

λΨ
4

Z
∞

rh

dr
r2

L2
ðΨ4Þ

− lim
r→∞

λΨJ4ΨL
4ð4Δ−

Ψ − 3Þ
�
L
r

�
4Δ−

Ψ−3
�
: ðA18Þ

To keep our computation simple, we only consider the
scalar field mass m2

Ψ < −27=16 or set λΨ ¼ 0. Therefore,
the last term in (A18) drops out.

APPENDIX B: SCALING SYMMETRY IN THE
HHH MODEL [37]

Here, we review a powerful scaling symmetry shown in
Fig. 9 based on the HHH model [37]. In this model, not
only the unbroken phase in Fig. 9 but also the symmetry
breaking phase enjoy a scaling symmetry. This is more
powerful than a typical field theory system with a quantum
critical point where only the unbroken phase enjoys the
scaling symmetry.
Consider a massive Uð1Þ charged scalar field Ψ coupled

to a Maxwell field A in the gravitational background of
Eq. (1). The dimensionless coupling is qΨ. To initiate the
spontaneous symmetry breaking, it generally requires a
nontrivial potential for Ψ. The simplest form is the Higgs-
like potential VðΨÞ,

CHEN, DAI, MAITY, and ZHANG PHYSICAL REVIEW D 94, 086004 (2016)

086004-12



g2MLM ¼ g2MLΨ ¼ −
1

2
j∂Ψ − iqΨAΨj2 − VðΨÞ;

VðΨÞ ¼ 1

2
m2

ΨjΨj2 þ 1

4
λΨjΨj4: ðB1Þ

(In the model of Ref. [37], λΨ ¼ 0.) For simplicity, we
study the phase transition of Ψ in the probe limit,
namely 2κ2=g2M → 0, such that the energy density of the
fluctuations in Ψ is very small compared to that of the
background. The symmetry broken phase boundary is
obtained as the onset of the condensation of Ψ in the
probe limit of the charged black brane background. The
equation of motion is

1

r2L2
∂r½r4fðrÞ∂rΨ� −

�
m2

Ψ −
L2q2ΨAtðrÞ2

r2fðrÞ
�
Ψ

− λΨjΨj2Ψ ¼ 0: ðB2Þ

Note that near the boundary the last two terms are
negligible compared with the first two terms. This implies
a bigger symmetry near the boundary than near the black
hole horizon.
Near the boundary, Ψ has the asymptotic behavior,

Ψ →
JΨ
rΔ

−
Ψ
þ OΨ

rΔ
þ
Ψ

þ � � � ; Δ�
Ψ ¼ 3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þm2

ΨL
2

r
;

ðB3Þ

where the standard quantization identifies JΨ as the source
and OΨ as the vacuum expectation value in the dual
boundary theory. Under the r → λr scaling of Eq. (11),
the asymptotic equation of motion remains invariant under
the tranformation:

JΨ → λΔ
−
ΨJΨ; OΨ → λΔ

þ
ΨOΨ: ðB4Þ

This implies that, once the OΨ vs T relation is known at
certain chemical potential μq, its relation will be known to
all μq as well.
Therefore, we can plot Fig. 9 in scaling invariant

coordinates. Or we can replot it as Fig. 6 to show the
scaling symmetry more explicitly. This scaling symmetry is
so powerful that it involves not only the normal phase but
also the symmetry breaking phase, which is not usually
seen in condensed matter systems.
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