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ABSTRACT

A nested logit model (NLM) analysis has been performed to study individual
household response to given merchandising conditions. The model assumes that the
customer makes purchase decisions on two levels, i.e., the product category level (when a
category purchase will occur) and individual brandsize level ( what brandsize will be
chosen). On the brandsize level, the probability that a customer purchases a particular
product is modeled as a function of brandsize loyalty, presence/absence of store
advertisement, presence/absence of store display, regular sheif price, and other possible
variables. On the category level, the probability that a customer makes the purchase
decision on a particular trip is modeled a function of various variables including
household inventory, category price, and the attractiveness of buying on that shopping
trip as affected by the product choice variables at the time.

Using the marketing data containing purchasing information of bottled juice by
more than 2,000 households in Marion, Indiana over a four-year period, we have
demonstrated that the nested logit is an excellent model to explain consumer choice
behavior in packaged consumer goods market. Model parameters obtained are
statistically significant and stable over the entire purchasing pericd. Although the model
is parsimonious in that the major parameters are the same across all the brandsizes and
customers, the predicted data track the actual data remarkably well. Combining product
purchase and category purchase in a nested fashion allows us to calculate not only the
brandsize share but also the actual brandsize sales. On the basis of the model, marketing
responses on both individual customer level and aggregate market level have been
evaluated.

Thesis Supervisor: John D C Little
Title: Institute Professor
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Chapter 1

INTRODUCTION

The battle for markets among manufacturers and merchants is extremely intense
as a result of the increase in number of global competitors and the decline of sales.
According to McCarthy (1993), over $70 billion was spent on marketing in 1991, 50% of
which was on trade promotions. Within this competitive environment, marketers not
only need to understand how markeiing activities affect the sales and shares of the
products they sell, but they aiso need to understand how products interact with each other
within the same product category. To better understand these issues, many marketing
models have been constructed within the past decade (Lilien, Kotler, and Moorthy, 1992;
Hanssens, Parsons, and Schultz, 1990).

In 1983, Guadagni and Little used the Multinomial Logit Model (MNL) to study
the determinants of brand choice for the eight major brand-size combinations of coffee on
the market assuming that customers make category purchases. Their analysis showed
high statistical significance for the explanatory variables of brand loyalty, size loyalty,
presence/absence of store promotion, regular shelf price and promotional price cut. The
model was later extended to include the‘ decision to make a purchase in the category on a
shopping trip (Guadagni and Little, 1987). This extension required generalizing the
MNL to the Nested Logit Model (NLM). The addition of the category choice ster not
only provided a more complete description of the purchasing process, but it also made
possible the better evaluation of sales response by including the effect of marketing

action on category sales as well as brand share.



The calibration and validation of these models usually require the availability of
large amounts of information about customers and merchandising conditions. The
automatic recording of purchases by optical scanning of the Universal Product Code
(UPC) has made the collection of such massive information possible. The data recorded
by a UPC scanner usually come in two forms: store data and panel data. Store data
provide sales information for individual UPCs by store and by week. This may also
include information on other store activities, such as display, coupon redemption, retail
advertising, etc. Panel data record histories of purchases for a panel of households.
Members of the panel identify themselves at checkouts so that their purchase records
could be stored and accumulated over time.

This thesis analyzes UPC panel and store data according to the nested logit model
(NLM) analysis for the bottled drinks market. This analysis assumes that customers
make purchase decisions on two levels, the product category level (when a category
purchase will occur) and individual brandsize level ( what brandsize will be chosen). On
the brandsize level, the probability that a customer purchases a particular product is
modeled as a function of brand-size loyalty, presence/absence of store promotion, regular
shelf price, presence/absence of store display and other possible variables. On the
category level, the probability that a customer makes the purchase decision on a particular
trip is modeled a function of various variables including household inventory, category
price, and the attractiveness of buying on that shopping trip as affected by the product
cheice variables at the time.

The marketing data used in this research come from four years of purchasing

information of bottled juice by more than 2,000 households in Marion, Indiana. Due to



computational limitations, only a subset of households are chosen in this research. The
model is initialized on the first year and calibrated on the second and third years. The last
year is held out for model testing and evaluation. Finally, the model is further evaluated

by comparing the forecast and actual sales data by individual stores.



Chapter 2

DISCRETE CHOICE MODELS

Although we are primarily interested in the collective response of a large number
of individuals, the modeling of the individual behavior should be at the core of all
predictive models of aggregate behavior. This chapter starts with an overview of the
steps of the individual decision-making process and the basic elements of a choice
problem. We then briefly discuss the probabilistic choice theory and its two distinct
approaches, the constant utility approach and the random utility approach. Based on the
latter approach, we then give a brief description of binary logit and multinomial logit
models. We then give a brief discussion of the maximum likelihood method used to
calculate the model parameters. The chapter closes with a brief introduction to various
approaches to assessing model quality.

2.1. The Individual Decision-making Process and the Eiements ¢f A Choice Problem

In order to understand individual purchasing behavior, it is helpful to first
understand the individual decision-making process. When an individual makes a choice,
she usually goes through a sequential process that includes the following steps (Ben-
Akiva and Lerman, 1985):

1. defining the choice problem,

2. generating alternatives,

3. evaluating attributes of the alternatives,

4. making choice,

5. implementing decision.



The decision-making process starts with the definition of the choice problem. For a
shopper, a problem could be that of deciding what to buy in a product category.
Depending on her environment and personal experiences, the shopper generates a list of
alternatives available to her, that is, a list of the products in a certain category available in
a supermarket. In the next step, the shopper seeks information on the attributes of the
alternative products. The shopper then choose a product based on certain decision rule
and finally she actually makes the purchase.

Thus a process-oriented model of the consumer choice process is a collection of
procedures that defines the following eiements:

1. decision maker,

2. alternatives,

3. attributes of alternatives,

4. decision rule.

The decision maker can be an individual person, or a group of people, or an
organization. When we consider a group or an organization as the decision-maker, we
assume that it is possible to abstract partially the complex interactions within the group or
the organization. When a customer makes a choice, her environment defines a so-called
universal set of alternatives. However, the customer only considers a subset of this
universal set, called a choice set. The latter set consists of only those alternatives that are
both known and attainable to the customer. It is worth noting that there are two types of
choice sets. In the first type, the choice is continuous such as the quantities of various

homogeneous consumption commodities (e.g. gasoline). In the second type, the



alternatives are discrete such as the choice between buying or not buying a product
category on a shopping trip.

Facing various alternatives, the customer needs a decision rule to make a choice.
Various decision rules have been documented in the literature. The most widely used
class of decision rules is the hypothesis of utility maximization. This class of decision
rules assumes commensurability of attributes. In practice, the utility of an alternative for
a consumer is often expressed as a linear function of observed attributes.
Mathematically, it can be expressed as follows:

Vi =B Xt BXiurt ...+ B = B'X,, M
where V,, is the so-called deterministic part of utility of alternative i for consumer 7 (see
further discussion below), X,, is the vector of the observed attributes (or predictors) and B
is the vector of utility weights for the attributes. The assumption of commensurability is
based on the notion of trade-offs that a decision-maker uses in comparing different
attributes. One reason for wide application of utility maximization decision rule in many
choice theories, both deterministic and probabilistic, is that it results in formulations of
choice processes that are amenable to mathematical analysis and statistical applications.
In addition, it has been shown to work very well in many discrete choice situations {(Ben-
Akiva, 1973).

2.2. Probabilistic Choice Theory

In a deterministic choice theory, cne expects that an individual would make the

same choice for identical choice situations. However, in reality, violations of this theory

were often observed. In an attempt to explain these inconsistencies, two different
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probabilistic choice approaches, the constant utility approach and the random utility
approach, were developed. In the former approach, the decision rule is subject to
randomness, but individuals’ evaluations of the alternatives are assumed constant (Luce,
1959). According to this approach, choice probabilities are defined by the utility
functions of the product alternatives that form the individual’s choice set. Whereas the
random utility approach hypothesizes that the preduct utility values undergo random
fluctuations, while the choice mechanism is deterministic. In this context, the consumer
utility can be expressed as a combination of a systematic (deterministic) component and a
random component:

Un=Vate, (2)
where U, is the total utility of alternative i for consumer n, V,, is the deterministic
component and €,, is the random component. Therefore, from the perspectives of the
random utility approach and the maximum utility decision-making rule, the choice
probability of alternative i is equal to the probability that the utility of alternative i, U,, is
greater than or equal to the utilities of all other alternatives in the choice set. That is,

P, =PrU,2U,) for all jeC, 3
where C, represents the choice set for the consumer n. Combining equations (2) and (3),
we have,

P,() = Pr{(g;es) 2 (V,,-V;)]  for all jeC,and j#i 4)
This general formula forms the basis for various random utility models including binary
logit, multinomial logit and nested logit models as we shall describe in the following

sections.
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2.3. The Logit Models
In this section, we consider a special case where the probability in eqn. (4) takes
the logistic form. If we order the alternatives so that the one chosen i = 1, then eqn. (4)
can be rewritten as follows:
P,(1)=Pri(g;,e,) 2 (V,,-V,)]  for alljeC, 5)
= Pri(sren) 2 (Vi -Va); €3,761) 2 (Vi ViJino.

(Sjn-sln) 2 (Vln -p;'n); s (SJn-Sln) 2 (I/ln - V/n)’] (6)

The logit model assumes that the random components of the utility are independent and
double-exponentially distributed,
Pr() = exp(-e H(E 1)) n>0 7

where 1 is a location parameter and p is a positive scale parameter. Since the scaling of
utility is not identifiable in advance, we can set p =1. Also we can assume that all
alternatives have a constant 11 or n = 0 since doing so is not in any sense restrictive as
long as each deterministic utility has a constant term. Then the probability of choosing
alternative i by customer n can be expressed in the following simple form (Ben-Akiva

and Lerman, 1985):

i eVln
Pl = 7 ®)
Z j=1€
'x1n
= e.B__ (9)

Yo
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Eqn. (9) is known as the multinomial logit. A special case arises when the choice set C,
only contains two alternatives, say, / and 2. Thus, the probability that decision-maker n

chooses alternative / becomes,

eVln
P n(l) = W (10)
e te
Eqn.(10) is known as binary logit. When V,,is held constant, P.(1) is S-shaped.
Therefore, Pu(1) is insensitive to either very large or very small values of V|,. One can

also straightforwardly verify the following properties of the multinomial logit:

0< Pu(i) <1 a0
o

L Py =1 "

Pki) Yt

PGy € (13)

There are three main criticisms about the logit model. The first arises from the double
exponential distribution of €’s. Although Domencich and McFadden (1975) provided
some support for the soundness of this distribution, sometimes some other distributions
may be more appropriate. The second criticism has to do with the constraint that all €’s
have the same scale factor p . Although the choice of p is arbitrary since it simply sets
the scale of the utilities, tﬁe fact that each € shares the same scaling factor p implies that
the variances of the random components of the utilities are equal. However, the most
serious criticism derives from the so-called Independence from Irrelevant Alternative
(IIA) property of logit models, as shown in eqn. (13). This property states that for a

specific individual the relative odds of choosing between any two alternatives is entirely
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unaffected by the features of any other alternatives. This seemingly simple property
sometimes gives rise to erroneous results. The most widely mentioned example of
abnormality is the red bus-blue bus paradox (Ben-Akiva and Lerman, 1985). Suppose,
currently there exists a transportation system consisting of two transit modes, a red bus
and a train and commuters choose among them with equal probabilities. Now a blue bus
is introduced that is identical in all attributes to the red bus except it is painted in different
color. ‘According to the above logit model, the blue bus will have the same choice
probability as the red bus and the train. However, in reality, the commuter will most
likely treat the two bus modes as a single alternative and the blue bus will draw more
commuters from the red bus than from the train.

Many models have been developed to overcome the IIA problem (Ben-Akiva and
Lerman, 1985). They can be broadly categorized into the following three approaches:
introducing correlation between the €’s explicitly, segmenting decision-makers into
homogeneous groups, and assuming a choice hierarchy with different choice mechanisms
applying to the different stages (or dimensions) of the hierarchy. In the following
chapter, we describe one of the most widely applied hierarchical models — the nested
logit.

2.4. Method of Model Estimation — Maximum Likelithood

Maximum likelihood estimation is the standard for estimating logit model

parameters. If the distribution of the data is fully specified up to a set of parameter

B={B,, B,, ....B.}, and the distribution varies with B in a suitably smooth way, then

maximum likelihood methods can always be applied, and resulting estimators have
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attractive efficiency properties. Consider the likelihood of a sample of N observations.

We first define an indicator variable y,, so that

1 if alternative i is chosen by customer n (14)
Yin =0 otherwise

The likelihood function for a general multinomial choice model is

2By, By, - = [T T BG)" (15)

n ieC,
where P,(i) are the choice probabilities as expressed in eqn. (9). Taking the logarithm of
eqn.( 15), we find the log likelihood function

N N , .
SADWIRLCIOEDIPWM(EASII D (16)

n ieC,

It is noted here that the index n refers to observations rather than the customer. Each
parameter in eqn. (16) varies from observation to observation except the coefficient
vector B. Our task is to find the best coefficients f by maximizing £. Setting the first

derivatives of .Z with respect to the coefficients equal to zero, we obtain the first-order

conditions:

BX
s & g‘e "
LA TS — an
5/ 8

n ieC, BX
Jn
D¢
jeC
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Or, in a more compact form,

N
Z Z[yin - Rﬂ(i)]xink = O’ Vk= 152,---a K (18)

n ieCy

This equation represents a system of K equations which can be solved using various
methods. We applied the Newton-Raphson Method to obtain the maximum likelihood

solution (Ben-Akiva and Lerman, 1985).

2.5. Model Evaluation

A number of methods have been used to evaluate the quality of the nested logit
model in the literature (Guadagni and Little, 1983, 1987). We use the following two
approaches. The first one is to generate the t-value for each parameter and the U7 value
for the overall model in the calibration period. The U’ value provides a measure of

uncertainty explained by the model and is defined as
vt =1-p? =1-4%Y, (19)
0

where 4 is the log likelihood of the null model and £(X) is the log likelihood of the
test model. The null model used in this study assumes that customers choose every
product in the choice set with equal probability. A value of U’=1 indicates that the model
gives perfect prediction, whereas a value of U°=0 indicates that the model explains
nothing new. The second approach is to apply the model to a forecast peried (i.c.,
holdout period). We assess model quality in the forecast period by calculating U’ and

comparing the plots of predicted vs. actual market share and sales.
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Chapter 3
THE NESTED LOGIT AND ITS APPLICATION TO PACKAGED

CONSUMER GOODS

As described in Chapter 2, the simple muitinomial logit model only applies to the
discrete choice situations in which the choice set is simple and uni-dimensional. There
are, however, many situations where the members of the set of feasible alternatives are
combinations of underlying hierarchic choice dimensions. In this chapter, we begin with
an overview of the nested logit model which has been widely applied to many hierarchic
decision situations. We then describé its application to packaged consumer goods in
detail, first on the product choice (or conditional probability) level and then on the
category choice (or the marginal probability) level. Finally, we give a brief discussion on
the estimation of the nested logit model.

3.1 The Nested Logit

The nested logit is a decision model structured in such a way that logit model is
applied at each hierarchic decision stage. Let us begin by considering a product purchase
as a two-stage decision-making process (see Figure 1). On a particular shopping trip, the
customer first decides whether to buy a particular category or not (that is, when to buy).
Having decided to buy a category, she then decides which product to buy (that is, what to

buy). Thus the choice set for the shopper consists of category and product two
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shopping trip

bu buy
cat}:: 0 category

o1y later Category
now o

Level

bu , !
1 2...B | o...p Product

product product Level

Figure 1. The customer’s decision tree on a shopping trip.
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dimensions. Let {a,, a,} represent the category choices buy-now and buy-later and { b,,
b,, ...b, } the products available. With this representation, the customer choice set can be

expressed as:

C.={(a,b),(@,by),..., (2, b), (2, b), (@, b),... (2, b) } (20)
Based on the random utility approach and assuming that the utility associated with
categories and products is separable, the utility of a particular choice (a,5) to customer n
can be represented as follows (omitting the customer index #»):

U,=V,+V,+V,+e+ g+sg, 21
where V,, ¥, and V,, are the deterministic components of utility related to choosing
category a, pr(;duct b and category-product combination (a, b), respectively. Similarly,
€, &, and g, are the random components of utility for category a, product b and category-
product combination (a, b), respectively.

In order to obtain the nested logit form of choice probabilities, we assume the

following (Ben-Akiva and Lerman, 1985, Chapter 10):
1. var(g,) is negligible compared to var(g,), thus can be dropped from eqn.(21),
2. g,and g, are independent for all a and b in the customer’s choice set,

3. The terms g, are independently and identicaily double-exponentially

distributed with a scale factor p,,

4. g,is distributed so that max, U, is double-exponentially distributed with scale

factor p,.

19



As in the case of the multinomial logit, we can also set the scale factor p, to unity. With
these assumptions, one can show that the probability of purchasing product b on the

condition that the category choice is a is

exp(V +V3)
b,
3 @XPV, +V))

P(bla) = (conditional probability)  (22)

and the probability of purchasing category a is

V. + v
Pa) = — 2Rl Vo)l ] (marginal probability)  (23)
2 el XD, + V)]
where
[ by .
V,=In Z,-: 01 €XP; + V) (category attractiveness)  (24)

and the total probability of product purchase is
P(b) = P(a)- P(bla) (25)

As we have seen in Chapter 2, Eqn.(22) is essentially the choice probability for an
ordinary multinomial logit. It only involves variables on the product choice level. The

probability of category choice would also be the same as the ordinary binomial logit

except that it has an additional term from the product choice level Va’, the so-called

inclusive value. The result is that product utilities also affect the decision at the category

choice level. It can be shown that V, is the deterministic component of the maximum

20



utility of the subset of product alternatives that involve a. The larger the Va' , the more

likely the category is chosen. Therefore, Val is also called category attractiveness.

Like in Chapter 2, the deterministic components of utility here can also be
expressed as linear combinations of various explanatory variables. For our purpose, it is

sufficient to ignore the ¥, term. Therefore, we have
V=825t 8325+ ...+ 8240 =8 Lipg (26)
V= Bixipt BoXopt ... BiXes = B,ij 27

where the Z,,, and X, are explanatory variables for category choice and product choice,
respectively. 8 and B are coefficient vectors for category and product variables,
respectively. In the following two sections, we give a detail presentation of the
application of the nested logit to packaged consumer goods, first on the conditional

choice level and then on the marginal choice level.

The estimation of the parameters of the nested logit is carried out in sequential
steps. First, estimate the parameters B at the conditional probability level (bottom level).
Then, calculate the category attractiveness according to eqn.(24). Finally, treat the
category attractiveness as a separate variable and estimate the coefficients & for the
category choice level. We note that, despite the notation, p, does not depend on a and

can be absorbed into the coefficient for the category attractiveness.

21



3.2. Application of Nested Logit to Packaged Consumer Goods

The packaged consumer good markets have been excellent subjects for marketing
model analysis for many reasons. First, they are frequently purchased by consumers, so
massive data are available for analysis. Second, they are highly promoted by both
manufacturers and merchants and price changes are relatively common, generating rich
information suitable for model development and testing. Finally, there exist many

alternative competing brandsizes.
Conditional Purchase Probability — Product Choice I zvel

As we have shown above, the conditional probability level model is essentially
multinomial logit. The main problem for us to solve at this decision stage is to find out
the probability of choosing a particular product by the customer in a product category. In
the juice market studied in this thesis, for example, the problem is to find out the
probability of purchasing a 48 Oz Ocean Spray Bottled Cranberry Juice or a 46 Oz V8
Canned Vegetable Juice, or some other brandsize combinations assuming that the
customer decides to buy the juice category. Therefore, only those trips on which the
customer made category purchases were included as observations on the conditional
level. A brief discussion of model specifications for the juice market at this choice stage

follows.

Observations

22



Each trip on which the customer buys one unit of an alternative juice brandsize
combination represents an observation. In the case where the customer purchases
multiple units of an alternative product on the same trip, the multiple purchases were

treated as multiple single purchases. We define the dependent variable

if alternative i is chosen by

1
Vepy customer » on the kth choice occasion
n(B)=1g otherwise (28)

Alternatives

There are potentially many ways to define the alternatives for the juice market.
Should different flavors or sizes of the same brand be treated as a different product or be
lumped together? With the nested logit model, we can aggregate similarities by defining
alternatives at the same level in a hierarchy. However, since the focus of our study is the
brand competition, we treat different combinations of size and brand as a product
alternatives. Therefore, the Ocean Spray 480z Bottled Cranberry Blend and the Ocean
Spray 640z Bottled Cranberry Blend are considered as two different brandsizes. In the
Marion City juice market used in this study, there are more than 300 brandsize

combinations. For sake of computation, only the top 15 brandsizes were chosen.

Choice Set:

A choice set represents the set of alternatives that are available to a given
household on a particular purchased trip. The number of alternatives included in this set

can vary, depending on the time and the store at which the purchase occurred.
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Observed Attribute Variables

The observed attribute variables can be divided into variables that are unique to

the alternative (alternative specific) and those common across all alternatives (generic).

(A) Alternative Specific Variables

In the utility function expressed in eqn. (1), we included an additive constant
term that is specific to a particular brandsize alternative. This is accomplished by
introducing a set of dummy variables, one for each alternative. It is noted that one of ihe
dummy variables has been omitted to avoid singularity in the estimation. These variables

are defined as follows:

i _J1 if alternative i is chosen
Xon (k) = {0 otherwise (29)

It is noted that for J alternatives, only J-1 alternative specific constants are required by

the model since all that matters are their differences. The omitted variable has an implicit
value of zexv. Thie coefficients of these variables (B, ) capture the difference in utilities

between two alternatives when “all else is equal.”
(B) Variables common across all alternatives

The common variables considered in this study are product price, presence or
absence of display, presence or absence of product advertising in the store’s weekly flier,

and customer brandsize loyalty. The coefficients of these variables are the same for all

alternatives.
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Price. The first variable is the product price. Here the price is measured in

dollars per ounce. It is a continuous variable.

xj, (k) = unit price of brand - size i at time of customer n's kth purchase

Display. The second generic variable is display. The display variable indicates

the presence or absence of any type of in-store display for each alternative.

1 if brand - size 7 is on display at time of
x! (k) = . customer n's kth purchase

otherwise (0

Notice that this variable is a dummy variable and it takes on discrete values of 1 or 0.

Features. The next subset of generic variables includes four variations of

advertising in the newspaper or store’s weekly flier. Of the four variations,

Feature AA ( or feataa): represents store coupons, such as low price, buy-one-
get-one free;

Feature A (or feata): indicates big size advertising, probably having a picture of
the product;

Feature B (or featb): indicates middle size advertising which may or may not have
a picture of the product;

Feature C (or featc): represents small size advertising, usually just a line
indicating the product and price.

Like display, all of these four variables, denoted as x;,(k),x;,(k),x;, (k),x,, (k), are
dummy variables, taking a value of either 1 for presence of advertising or 0 for absence of

advertising.
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Loyalty. The last generic variable is the customer loyalty. This variable captures
differences in purchase probabilities over the sampled population. It is defined as the

individual’s tendency to repurchase a product. It is defined as

1 if customer n bought alternative

i i j at h ion k—1
x5, (k) =y, (k=1)+(1-y)ei, o Pro1ase occasion (31)

where y is termed the loyalty constant. It is noted that x) (k)is an exponentially
weighted average of past purchases of the same product, and it is non-linearly dependent

on y. We will estimate y using an iterative method suggested by Fader, Lattin, and

Little (1992).
Marginal Purchase Probability — Category Choice Level

Alternatives

The model at the marginal purchase probability stage is essentially a binomial
logit. The two alternative choices for the customer is buy-now or buy-later, denoted to
be: a=1 and a=2, respectively.

Observations

One observation at the category choice ievel corresponds to one purchase
opportunity. In most cases where a category is not purchased, one observation simply
means a single shopping trip. However, in order to handle multiple purchases, we view
the purchase of each unit of a product as a separate decision. For example, if a customer

purchases one unit of product A on a trip, we would say the trip represents two purchase

26



opportunities: the first when the customer walks into the store, the second immediately
after the first purchase. Likewise, if the customer purchases N units of a single product,
we would say the trip represents N+I opportunities. When different products are
purchased, we treat them as they were purchased on separate trips. The dependent
variable is defined as follows:

J'l if c}:lustonlller n makes a category purchase on
I _ mth purchase opportunity
w, (m) = 0  otherwise (2)

\

1 if tcl:lustorr;ler n makes no category purchase on
2 _ mth purchase opportunity
w, (m) = 0 otherwise (33)

Category Purchase Attribute Variables

As we have shown above, the utilities of category purchase can be expressed as a
linear function of attribute variables. However, an issue arises that the two alternatives
seem quite different: buy-now has hard data associated with it, buy-later is vague and
uncertain. Any variable defined for one alternative must have a value for the other
(unless the variable is alternative specific, in which case its value for the other is defined
as zero). The natural tendency is to make most variables unique to one or the other
alternative. However, the power of the model is likely to reside in variables that provide
relevant comparisons between buy-now and buy-later. In the rest of the section, we
provide a brief description of each variable, with special attention paid to household
inventory, category attractiveness, and category price.

Buy-now dummy. This dummy variable is devised to capture the uniqueness of

the two alternative buy-now. It takes the following form:
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I _J1 buy - now
Zon (k) = {0 otherwise (34)

22, (m)=0 buy - later. (35)
As was the case at the conditional level, the alternative specific constant for the buy-later
is implicitly zero.

First purchase opportunity dummy. This dummy variable is devised to capture

the difference between the first purchase opportunity and later ones. It has the following

definition:
1 if customer »'s mth purchase opportunity is
Z (m) = the first purchase opportunity of a shopping trip (36)
In 0 otherwise
2 (m)=0 buy - later. 37

It is noted that in the case of multiple product purchases, each product is treated as if it
were purchased on a separate shopping trip. In other words, each product purchase has a

first purchase opportunity.

Household Inventory. Since the amount of drinks the household has on hand
affects its decision of whether to buy now or buy later, it deserves careful treatment. We
will estimate household inventory of drinks at the time of each purchase opportunity. To
adjust for differences in consumption rates across households, inventory is measured in

weeks of supply. Therefore, we define
24,(m) = 2, =D~ (1, ()~ 1,om=~ )+ N oy o) 39)

22 (m)=0 (buy - later) 39
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where:

gq,(m) = quantity of juice drinks purchased by customer n
on n's mth purchase opportunity (ounces)

¢, = n's average consumption rate (ounces/ week)

t,(m) = point in time of customer n's mth purchase opportunity (weeks)
In words, the household’s inventory at purchase opportunity m is its value at the previous
opportunity increased by any purchases and depleted by estimated consumption between
opportunities. Inventories are measured in weeks supply of product. The calculation of
consumption rate is based on the household’s purchase history. According to the
definition, each purchase on a shopping trip increases inventory prior to the decision

whether or not to make another purchase.

Category Attractiveness. A particularly important variable is the attractiveness
of the category as a whole at the purchase opportunity. It is the expected maximum
utility of a product choice as determined from the products available to the customer and
their individual utilities in the product choice model. As discussed earlier, this variable

equals the natural log of the denominator of the product choice probability.
b, n
24, (m) = 1n{ 37, exp(V; ()} 40)
z,(m) = 0. (41)

Marketing activities, such as display and advertising, that increase utilities for individual

brands increase the value of z} and so the probability of buying now rather than later. Itis

noted that because of the multiplicative effect of adding terms to an exponent, a
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promotion on a brand for which a customer has high loyalty will produce a particularly

strong push for buying the category.

Category Price. The next variable is the category price level at the time of the

purchase opportunity:
2 Pu(m)
z},,(m) =k N(m) (42)
23,(m)=0. (43)

where pl, (m) is the price of brandsize k in dollars/ounce at the time of the purchase
opportunity m, and N(m) is the number of brandsizes available. This variable captures the

short-term effect of category price on the decision of category purchase.

Category Loyalty. The last explanatory variable is category loyalty. The

variable is defined as

Npur( n )
: 1
2 ()= 2 (%,p(n) “h

ze,(m) =0 (45)

where N,,.(n) and N,,,(n) are number of single unit purchase and purchase opportunities,
respectively. The category loyalty variable simply reflects the share of buy-now

observations over an initialization period.

30



Basket. This variable is devised to capture the differences between smaller
category-specific shopping trips and larger weekly purchases where the household is
more likely to make a category purchase. The variable, is defined as the size (in dollar

terms) of the bundle of products purchased by the household on a particular shopping

trip.
z,,(m) = dollars spent on current shopping trip  buy-now (46)
zt,(m)=0 buy-later 47)

First Category Purchase Dummy. This dummy variable is meant to
differentiate the first category purchase from later category purchases on the same

purchasing trip. It is defined as

1 first category purchase, buy-now
1 -
Z7,(m) = { ¢ otherwise (48)

22 (m)=0 later category purchases (49)
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Chapter 4

MODEL COMPUTATIONS

The computer programs to implement the nested logit model analysis are written
in Matlab. The programs are executed in a modular fashion and are very generic in that
they can handle arbitrary number of households, brandsizes, displays, features, and any
other variables one wants to incorporate in the model. This chapter describes these
modules and the relationship between them.

4.1. Organization of Computational Modules

There are a total of six modules used in the whole computational process. They
include data preparation, data cleaning, data expansion, nested logit, data reporting, and
data plotting (see Chart 1). The modules are executed sequentially. The code v Matlab

routines are displayed in Appendix 1.

Raw data from pcExpress

gﬁmﬁon \ Q / goe;fd
7 ™~

Data Data
Cleaning Reporting

Data

Data Plotting

Expansion

Chart 1. Organization of computational modules
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The nested logit module contains many subroutines which can be grouped into two

categories, the conditional probability level and the marginal probability level (see Chart

2 and 3).
Conditional Probability Module nest2.m
conprol.m
¢ Marginal Probability Module
hhvector.m
rglcol.m

:

Igglcol.m (function)

}

clcglcol.m (function)

Chart 2 . Matlab routines for determining the conditional probability of product

purchase.

nest2.m ]

To conditional /

probability modules

I I mnl_mal.m I

>
: margprolm

hhvector.m

logitmal.m |

Chart 3 . Matlab routines for determining the marginal probability of category purchase.
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4.2. Description of Modules

Data Preparation The computational model starts with the data preparation
module. The Matlab file for this module is “dataprepl.m”. This program reads in ASCII
data files and converts them into one Matlab data file, “datprep.mat”. The datprep.mat
file is used as the input file for the next module, data cleaning.

Data Cleaning The raw data we used lack information on the retail price of
products for a significant number of purchase opportunities. The purpose of the data
cleaning module is to correct this problem. The module uses “datprep.mat” as the input
file and the outputs file is called “clean.mar”. The module modifies the input data in the
following ways: replacing the missing price data points with the overall mean category
price in cases where the dataset lacks the price information on a non-purchasing
brandsize; discarding purchase opportunities for which the price of no item is available.
In addition, cleanl.m eliminates those households who make no category purchases in
either the initialization period or in the calibration period or in the forecasting period.
This module also allows you to change the length of initialization, calibration, and
forecasting period. It also counts the number of clean households and trips.

Data Expansion In order to deal with multiple purchases on a single trip, we
expand the cleaned data in the way as discussed in chapter 3. About 90% of the overall
computational time is spent in this module due to the mapping processes among several
data files. Typically, it takes about 3 hours to expand a dataset containing one-hundred
households using a 90 MHz Pentium desktop computer. The result is that the size of

expanded dataset is about 1/3 larger than the starting dataset. This module also prepares
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the data files according to the format specified by the nested logit. For example, the
modnle converts the original basket file which centains one column of data into a file that
contains two columns of data. The output file is “clean.mat”

Nested Logit. The nested logit module is the most important module in the whole
computational process. The module is further divided into two groups: the conditional
probability level and the marginal probability level. At the conditional level, the module
consists of five subroutines, condprol.m, rgicol.m, lggicol.m, clcglcol.m, and
hhvector.m (see Chart 2). condprol.m serves as the centerpiece where it calls other
subroutines and links them together. In evaluating the customer loyality smoothing
constant, y, we use three subroutines, rglcol.m, lggicol.m and clcgicol.m following the
method proposed by Fader, Lattin and Little (1992). The method provides a simple
iterative algorithm for estimating nonlinear parameters at the same time as the usual
linear coefficients. The procedure starts with an initial value of y and calculating an
initial loyalty matrix (one row per household, one column per brandsize) based on
household purchasing history in the initialization period. The initial loyalty matrix is

calculated as follows
Loy_ini = —;—(household mkt share) + %(overall mkt share) (50)

where both household market share and overall market share are estimated in the
initialization period. Based on these initial values, the program implements a maximum
likelihood estimation using the Newton-Ralphson optimization, resulting in a new value
of ¥ in an inner loop. A new matrix of customer loyalty is then calculated in the outer

loop. The value of y converges rapidly after several iterations.
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Seven subroutines were used to carry out the calculation at the marginal level (see
Chart 3). catattl.m calculates category attractiveness. catvarl.m calculates other
category variables including category loyalty, category price, and household inventory.
Like the conditional probability level, we use maximum likelihood to estimate the
coefficients for the category variables at the marginal probability level. The estimation is
implemented using three subroutines, margprol.m, mn_mal.m, and logitmal.m. The
subroutine repnesl.m outputs a report of coefficients for all variables at both the
conditional and marginal levels and displays log likelihood values for nested logit.
plotnes2.m plqts nested logit results. At the conditional level, we compare predicted
share of each product in a period of four weeks to the actual share calculated from

aggregated panel data and store data.
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Chapter S

MODEL CALIBRATION AND TESTING

This chapter presents the results of estimating the parameters of the nested logit
model discussed in Chapter 3. In section 5.1 we discuss the sales and merchandising data
used in calibration and forecasting stages. This is followed by an examination of the
calibration results at both the conditional and marginal choice levels. The chapter closes
with a brief discussion of mode] testing.

5.1. Purchase Data

The data used in this research include store and panel information of bottled juice
drinks purchased in Marion, Indiana over a 4 year period. The store data contains weekly
store sales and merchandising activities for six supermarkets. The panel data contain the
items purchased, the date of the purchase, the store the purchase was made from, and the
price paid. In addition, the dataset includes panel information on the household
identification number, week, store, and basket size for each purchase opportunity. The
data are first extracted from flat files into a chxpress1 database. Then files are produced
for Matlab by pcExpress programs. Depending on the number of variables included in
the model, different number of files can be produced. All of the data files are maintained
in matrix form.

Due to .computational limitations, only a subset of brandsizes and households are
chosen for this research. For most of the calculations, we choose the top 15 selling

brandsizes and randomly select predetermined number of juice-purchasing households.

! pcExpress is a database management application from IRI.
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However, in order for the model to be statistically stable, we used 200 households as our
dataset for most of the analysis. Of the 4 years of data available, the first year (week 592
to week 643) is used for various initialization purposes such as obtaining initial loyalty.
The second and third years (week 644 to week 747) are used for calibration. The last
year (week 748 to 800) is held out for model testing and evaluation.

5.2. Model Calibration

This section presents the calibration results obtained on a dataset consisting of the
top 15 selling brandsizes and 200 households. After data cleaning and expansion, only
120 households remain, and the final dataset includes 5974 purchasing events and 28305
purchasing opportunities. Below, we present the calibration results on both the product
purchase level and category purchase level using this clean dataset.

Product Purchase Level. As we have described above, the choice on the product
purchase level assumes that the customer makes the category purchase. Therefore, only
5974 purchasing events are included in the calibration of this stage. Table 1 presents the
coefficient estimates for the observed attribute variables discussed in Chapter 3. For
comparison purposes, a smaller dataset containing 3015 purchases and 14355 purchasing
opportunities made by 60 households is also presented in Table 1. As may be seen, all
the coefficients have the expected sign. It is noted that the coefficient magnitudes per se
are not too instructive because of differing units. The better indicators of model quality
are their t-statistics because the numerator of t is the coefficient itself, and so it increases

as t increases. In addition, the denominator of t is the coefficient’s standard error, which
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Table 1. Maximum likelihood estimation results for nested logit model: product

purchase level

Dataset §974
Standard

Variable Coefficients Error t-Value
price -59.1294 8.0039 -7.3876
disp 0.9037 0.0843 14.0552
feataa 1.5665 0.1549 10.114
feata 0.7801 0.1235 6.3151
featb 0.4137 0.1135 3.6447
featc 0.5012 0.1823 2.7493
loyalty 5.6028 0.0765 73.2404
PL/GEN PL 640Z BTL APLJC 0.0919 0.1033 0.8896
PL/GEN PL 4602 CAN TOM 0.0873 0.0932 0.7219
v8 V3 460Z CAN VEG 0.1672 0.1102 1.5169
GATRD GATRD 320z BTL ISO 0.5412 0.1693 3.1971
RDGLD RDGLD 460Z CAN TOM -0.1365 0.1026 -1.3297
OSPRY CRN 4802 BTL CRNCBLD 1.8209 0.274 6.6456
OSPRY CRN 640Z BTL CRNCBLD 1.6186 0.2436 6.6457
HUNTS HUNTS 460Z CAN TOM -0.0905 0.12 -0.7542
HIC HIC 8.50Z3CT BOX PNCHCHRY 0.7268 0.2239 3.2466
\/:} V8 5.60Z6CT CAN VEG 2.4014 0.365 6.5799
OSPRY GFT 4802 BTL GFTGBLD 0.9623 0.2442 3.9406
SQzZIT SQzIT 6.80Z6CT SQZB PNCHCHRY 1.5009 0.2892 5.1891
GATRD GATRD 6402 BTL ISO 0.7719 0.1875 41158

JcyJc JCYJC 4602 CAN PNCHCHRY 0.7372 0.1953 3.7748

Loglikelihood value = -5521.34
Null Loglikelihood =-12321.6
U-square = 0.5519

N = 5974 purchasing events

will tend to decrease if the data for the attribute have large variance, assuming all else
being equal.

Based on t-statistics, we find brand-size lovalty and display variables most
important. The coefficient and t-statistic for brand-size loyalty are greater than those for
display. This reflects the fact that establishing and maintaining customer loyalty is more
important than arranging displays. The next most important attributes are price, store

coupon and large store advertisements. The sign for price is negative reflecting the fact
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Table 1. (continued)

Dataset 3015
Standard

Variable Coefficients Error t-Vaiue
price -81.0823 12.3084 -6.5876
disp 1.0729 0.0918 11.6865
feataa 1.1394 0.2360 4,8287
feata 0.5294 0.1823 2.9041
featb 0.2817 0.1589 1.7726
featc 0.4406 0.2503 1.7602
loyalty 5.6019 0.1137  49.2824
PLUGEN PL 6402 BTL APLJC 0.0693 0.1555 0.4456
PL/GEN PL 4602 CAN TOM -0.1412 0.1373 -1.0285
\/:] vs 4602 CAN VEG 0.2903 0.1565 1.8310
GATRD GATRD 320z BTL ISO 0.7166 0.2565 2.7943
RDGLD RDGLD 460Z CAN TOM -0.3305 0.1513 -2.1851
OSPRY CRN 4802 BTL CRNCBLD 2.5175 0.4186 6.0145
OSPRY CRM 6402 BTL CRNCBLD 21770 0.3731 5.8352
HUNTS HUNTS 460Z CAN TOM -0.0111 0.1728 -0.0642
HIC HIC 8.50Z3CT BOX PNCHCHRY 1.3290 0.3402 3.9060
\/:} - V8 5.50Z6CT CAN VEG 2.6547 0.5755 4.6127
OSPRY GFT 4802 BTL GFTGBLD 1.6047 0.3615 4.4384
SQzIT SQzZIT 6.80Z6CT SQzZB PNCHCHRY 2.3150 0.4353 5.3188
GATRD GATRD 640Z BTL ISO 1.2191 0.2761 4.4150
JCYJC JCYJC 4602 CAN PNCHCHRY 1.1511 0.2842 4.0505

Loglikelihood value = -2587.36
Null Loglikelihood =-6206.85
U-square = 0.58315

N = 3015 purchasing events

that lower prices yield higher probabilities of being purchased. Similarly, the large t-
statistics for store coupon and store advertisement indicate that the local store
advertisement is an efficient way to sell products. The alternative specific constants
(expressed in brandsize names) form a distinct group. They reflect unique product
characteristics that can not be explained by common variables. If the other explanatory
variables are d;>ing a perfect job, these constants should be close to zero. Note that the
constant for the first product (HIC, HIC, 460Z, CAN, PNCHCHRY) is set to zero for the
reason we discussed in Chapter 3. It is also interesting to note that products with the

same brand name, such as two Ocean Spray drinks (OSPRY) and two private label
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drinks (PL/GEN), have similar coefficients and t-statistics. This may reflect the fact that
products of the same brand name tend to have similar unique characteristics.

Comparing the results for the larger datasets with those for the smaller ones is
revealing. We note that when comparing different datasets, we should understand that we
are dealing with different samples. Therefore, marketing variables may have different
effect on different samples, resulting in different coefficients. Nevertheless, we assume
that both samples represent the overali population so that we should obtain similar
results. In fact, the results obtained from both samples are very similar. However, we
also notice that most of the alternative specific constants and their t-statistics decrease as
the size of the dataset increases while the coefficients and the t-statistics for common
variables increase with the size of the dataset. This is comforting to us since more
uncertainty is explained by common attribute variables across households, a sign of a
more powerful model. in addition, we notice that as sample size increases, the different
kinds of store advertisement become more differentiated. This is what we expect since a
buy-one-get-or}e-ﬁ'ee store coupon (feature aa) has proved to be much more effective than
a large advertisement (feature a) in the store newspaper. The results discussed above are
confirmed by analysis performed on several other different datasets.

Category Purchase Level. At the category purchase level, the model studies the
probability of purchasing a product if the customer is given a purchasing opportunity.
The category choice model is initialized and calibrated on the same households and time
periods as the product choice. The explanatory variables are exactly the same as we have

described in Chapter 3. The model estimates are displayed in Table 2. As may be seen,
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Table 2. Maximum likelihocd estimation results for nested logit model: category

purchase level

Dataset 5974
Standard

Variable Coefficients Error t-Value
category attractiveness -0.0921 0.0493 -1.8674
category ioyalty 3.1548 0.1677 18.8089
househoid inventory -0.0024 0.0020 -1.1725
category price -201.0713 49.8898 -4.0303
basket 0.2801 0.0362 7.7281
first_buy 24.5260 369.1585 0.0664
buy-now dummy 5.0723 1.6981 2.9871
Loglikelihood value = -261.07
Null Loglikelihood = -16225.67
U-square = 0.84493
N = 5974 purchasing events
N =28305 purchasing opportunities
Dataset 3015

. Standard
Variable Coefficients Error t-Value
category attractiveness -0.1186 0.0720 -1.6471
category loyalty 3.2487 0.2701 12.0260
household inventory 0.0018 0.0031 0.5906
category price -275.3130 71.6660 -3.8416
basket 0.2097 0.0502 41756
first_buy 24,5726 516.3943 0.0476
buy-now dummy 7.4670 24138 3.0934

Loglikelihood *salue = -1157.11

Nuli Loglikelihood = -7727.9
U-square = 0.85027

N = 3015 purchasing events

N =14355 purchasing opportunities

the most important variable at the category purchase level is category loyalty, followed
by basket size and category price. These results indicate that purchasing behavior tends

to be fairly stable within household but differ from one households to another; large
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grocery purchases tend to include bottled juice drinks. Comparison of the results from
different datasets reveals that only statistically significant (t>2) variables maintain their
algebraic signs as size of dataset changes, as is displayed in Table 2 for household
inventory. This is also true for category attractiveness. The fact that the category
attractiveness and household inventory are statistically insignificant is a little unexpected.
5.3. Model Testing

As we have discussed in Chapter 2, we shall use two criteria, U’ and the
comparison between actual vs. predicted purchases, to evaluate the model quality. U
measures the amount of uncertainty explained relative to a null model. It measures the
goodness-of-fit of the model to the actual data. Comparing actual vs. predicted purchases
in both calibration and holdout periods poses the ultimate challenge to the model. Like
model calibration, model testing for nested logit is also carried out on both the product
purchase level and category purchase level.

Product Purchase Level At the product purchase level, the null model against
which the model is compared assumes that customers purchase all products with equal
probability no matter how product attractiveness varies. The U7 values for both the
smaller and larger datasets are shown in Table 1. It is noted that U7 improves
dramatically as the sample size increases from 50 households to 100 households, and
beyond 100 households it tends to stabilize around 0.55. This indicates that the model
improvement beyond 100 households is marginal.

The comparison between actual vs. predicted purchases at the product choice level

is performed by tracking market share of purchases by 4-week periods. Figure 2 presents
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some sample plots of the actual and predicted shares. The plots for rest of the brandsizes
are included in Appendix 2. In order to account for sampling variations due to the
relatively small number of purchases in each week, we have plotted 90% confidence
intervals. These confidence intervals are computed based on the assumption that the
actual purchase is binomially distributed with the probability given by the model

(Guadagni & Little, 1983). Mathematically, the standard error is calculated as follows:

5= p,/n (50)

i=1

n 12
SE(s)=[Zp.-(1—p,-)] /n (51)
i=1

where SE(s) is the standard error of share and p is the probability of purchase.

As may be seen, the tracking quality of the model is remarkably good, even into
the forecast period. The model can capture most ups and downs in market shares for all
products. In most cases, the share changes are followed within the 90% confidence
interval. It is noted that in the forecast period, we continue to use the actual prices and
other marketin-g variables of all brandsizes. However, a dilemma arises when we
calculate the loyalty variable. We use purchases to calculate loyalty whereas the purpose
of the holdout sample is to predict purchases. Here we simply use the actual purchases
just for the construction of loyalty. In Figure 2, we have also plotted actual store shares
to look at the representativeness of the panel data. In most of the cases, the actual panel
share matches the actual store share very well.

Category Purchase Level At the category purchase level, the null hypothesis

assumes that the customer chooses the buy-now or the buy-later option with equal



Results of the Nested Model at the Conditional Level
5974 purchases
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Results of the Nested Model at the Conditional Level
5974 purchases
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probability given a purchase opportunity. The U7 values at the category purchase level
are listed in Table 2. As is in the case of product purchase, v improves remarkably
when the number of households increases from 50 to 100, but it stabilizes around 0.85
when the number goes beyond 100.

The tracking quality at category purchase level is assessed by comparing the
actual vs. predicted sales ( number of units in a 4-week period). Plots of actual vs.
predicted sales for four brandsizes are presented in Figure 3, with the rest of plots shown
in Appendix 3. Overall, the predicted sales match the actual sales quite well in both
calibration and forecasting periods. Most of the twists and turns in sales are captured by
the model. However, the fit is generally not quite as good as at the product choice level.
This is not surprising since the model is dealing with much more variables than in the
former case. ’I:he shape of the plots are also noticeably different from what we have seen
at the product purchase level since variables at the category level are now playing roles in

affecting brand-size sales.
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Results of the Overail Nested Model
2.83e+004 purchases opportunities
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Chapter 6

MARKET RESPONSE ANALYSIS AND CONCLUSIONS

Consumer product manufacturers wish to understand how their marketing
activities will affect customer purchases and consequently the company’s bottom line.
The nested logit model provides an excellent tool to fulfill this task since it considers
the effect of xilarketing activities not only on market share but also on total sales. We
begin this chapter by demonstrating individual customer response to a store coupon in a
hypothetical market with only two products. We then discuss short-term market
response, both in terms of price elasticities of sales change and share change for 7 of the
15 brandsizes studied in this research. Wc closes the chapter with conclusions derived
from this research.

6.1. Individual Customer Response

Although the coefficients obtain from nested logit are the same for all
customers, individuals respond differently to marketing activities depending on prior
loyalties and store environment. We illustrate this by examining customer’s response to
a store coupon in a hypothetical market with two products. The results are shown in
Table 3. As may be seen, if we assume all else being equal, placing a store coupon has
much larger effects on a customer with equal loyalties than on a customer with distinct
loyalties. This is consistent with experience in marketing practice. Understanding the

individual customer responses are at the core of building the aggregate market response.
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Table 3. Individual response to store coupons in a hypothetical market with two
Products

Assumptions

Two products: A& B

Loyalty coefficient: 5.0

Coefficient for strore coupons (feataa): 1.0
No cther attributes

Case 1: Store coupon response of customers with equal loyalties
Loyalty to A = loyalty to B = 0.5 ‘
Without store promotion, coupon A = coupon B = 0
Probability of choosing A = e**/(e** +e’*) =05
With store promotion, coupon A= 1, coupon B=0
Probability of choosing A =¢"/(e* +¢*°)=07310
A Probability of choosing = 0.2310

Case 2: Store coupon response of customers with distinct loyailties
Loyalty to A= 0,8, ioyalty to B=0.2
Without store promotion, coupon A = coupon B =0
Probabifity of choosing A = e'/(e’ +¢') = 09526
With store promotion, coupon A =1, coupon B=0
Probability of choosing A =¢*/(e’ +¢')=09820
A Probability of choosing = 0.0294

6.2. Aggregate Market Response

Traditfonally, aggregate market response is determined by integrating the

customer response function over a joint distribution of customer loyalties, prices,

displays, and other marketing variables (Simon, 1982; Mahajan and Muller, 1936).

With the nested logit model, we can accomplish this task in a very straight forward way.

For example, by changing the pricé of a brandsize by 1% over the entire time period and

calculating the change in market share, we obtain an aggregate share response to the

price cut. Moreover, with nested logit model, we can further calculate aggregate sales

response to the price cut. Table 4 summarizes price elasticities of both share and sales.

For sake of computational time, we performed the analysis on a 100-household dataset
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Table 4. Short-term price elasticities of brandsize share and sales

Purchase | Price elasticity of |Price elasticity of]|
Brandsizes share (%) share sales
HIC, HIC, 460Z, CAN, P}{CHCHRY 0.2755 -0.1101 -0.1827
V8, V8, 460Z, CAN, VEG 0.1054 -0.7299 -0.7612
PL/GEN, PL, 640Z, BTL, APJLC 0.0940 -0.5957 -0.6571
PL/GEN, PL, 460Z, CAN, TOM 0.0779 -0.7095 -0.7759
GATRD, GATRD, 3202, BTL, ISO 0.0601 -1.1106 -1.2291
JCYJC, JCYJC, 460Z, CAN, PNCHCHRY 0.0238| . -1.7859 -1.9718
V8, V8, 5.50Z6CT, CAN, VEG 0.0081 -6.8750 -6.4583

and only choose 7 brandsizes. In calculating elasticities, we first assume a 1% price
increase for the product in study and hold other variables constant. We then calculate
the predicted purchase share and sales for the entire purchasing period using the model
parameters ob.tained in the calibration period. The percent change in predicted purchase
share or sales divided by the percent change in price is taken as the short-term price
elasticities. As may be seen, the response varies very widely among brandsizes. This is
not surprising since each brandsize has its own complete set of marketing variables and
brand loyalty. Variations in price elasticity suggest that different pricing policies should
be implemented across brandsizes.

Further examination of price elasticity reveals interesting response patterns by
different brandsizes. Table 4 have been arranged so that the brandsizes are listed in
order of decreasing share of purchases. It can be seen that the elasticity tends to
increase as share decreases. This relationship between sensitivity and share is
embedded in the structure of the logit model, as was discussed previously by Guadagni

and Little (1983). As also may be seen, total brandsize sales shows a higher response
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than brandsize share. The reason for this is that promotion expands category sales in the
short run (Guadagni & Little, 1987).
6.3. Conclusions

Using both store and panel data, we have demonstrated that the nested logit is an
excellent model to explain consumer choice behavior. Model parameters obtained are
statistically significant and stable over the entire purchasing period. Although the
model is parsimonious in that the major model parameters are the same across all the
brandsizes and customers, the predicted data track the actual data remarkably well over
the whole purchasing period. Combining product purchase and category purchase in a
nested fashion has its unique advantages. It allows us to forecast both brandsize share
and total brandsize sales. The model can also allow us to analyze market response to
various changes in marketing variables. Our analysis on market response to price cut
has shown that larger share brandsizes tend to have weaker responses than smaller share
brandsizes.

One of the major goals of this thesis is to develop and implement a generic
marketing decision model. The model developed in this thesis can, in principle,
incorporate any number of new marketing variables (except loyalty) and households in a
fully automatc'zd fashion. It takes into account multiple purchases and allows users to
perform market response analysis. However, the model can be improved in several
areas. First, the program is not very efficient in handling large datasets due to many

looped operations. Second, there are some occasions in which the model prediction
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deviates from the actual purchases. We believe that these deviations can be captured by

introducing new variables such as manufacturer’s coupons.
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APPENDIX 1. Matlab routines for nested logit calculations

%dataprepl.m-- Prepares dataset before running clean.m

% last updated on 5/3/97
outfile='c:\wayne\nest\marion2\datprep.mat';
fprintf{\nPreparing the data...\n\n");

infile1="c:\wayne\nest\marion2\basket.dat';
eval(['load ' infilel ]);

infile2='c:\wayne\nest\marion2\cs.dat';
eval(['load ' infile2 ]);

infile3='c:\wayne\nest\marion2\disp.dat';
eval(['load ' infile3 J);

infile4="c:\wayne\nest\marion2\feata.dat';
eval(['load ' infile4 ]);

infile5='c:\wayne\nest\marion2\feata.dat';
eval(['load ' infile5 ]);

infile6="'c:\wayne\nest\marion2\feataa.dat’;
eval(['load ' infile6 ]);

infile7="c:\wayne\nest\marion2\featb.dat’;
eval({'load ' infile7 ]);

inﬁle8='c:\wayne\negt\marion2\featc.dat';
eval(['load ' infile8 1);

infile9="c:\wayne\nest\marion2\hhwk.dat';
eval(['load ' infile9 ]);

infile10='c:\wayne\nest\marion2\store.dat';
eval(['load ' infile10 ]);

infile11="c:\wayne\nest\marion2\price.dat';
eval(['load ' infilel1 });

%infile12='c:\wayne\nest\marion2\tcs.dat’;
%eval(['load ' infile12 ]);

infile13='c:\wayne\nest\marion2\tdisp.dat';
eval(['load ' infilel3 });

infile14="c:\wayne\nest\marion2\tfeata.dat’;
eval(['load ' infilei4 ]);

infile15="c:\wayne\nest\marion2\tfeataa.dat';
eval(['load ' infilel5 });

infile16="c:\wayne\nest\marion2\tfeatb.dat';
eval(['load ' infilel6 ]);

infile17="c:\wayne\nest\marion2\tfeatc.dat';
eval(['load ' infile17 ]);

infile18='c:\wayne\nest\marion2\tprice.dat';
eval(['load ' infile18 ]);

infile19='c:\wayne\nest\marion2\trip.dat';
eval([load ' infile19 J);

infile20="c:\wayne\nest\marion2\tyy.dat';
eval(['load ' infile20 ]);

infile20='c:\wayne\nest\marion2\unitsvol.dat';
eval(['load ' infile20 ]);

infile21="c:\wayne\nest\marion2\yy.dat';
eval(['load ' infile21 1);

clear infilel;
clear infile2;
clear infile3;
clear infiled;
clear infile5;
clear infile6;
clear infile7;
clear infile8;
clear infile9;
clear infile10;
clear infilel1;
%clear infile12;
clear infilel3;
clear infile14;
clear infilel5;
clear infile16;
clear infile17;
clear infile18;
clear infile19;
clear iniile20;
clear infile21;

eval(['save ',outfile]);
eval(['clear '));

%cleanl.in - Clears data of NaN. Use before running nested.m
% last updated on 5/3/97

infile="c:\wayne\nest\marion2\datprep.mat’;
eval(['load ', infile]);
outfile="c:\wayne\nest\marion2\clean1.mat’;

fprintf("\nCleaning the data...\n\n'");

namgen;
volume=unitsvol;

[s1 s11]=size(namvar);
namvar(l,:)=[];
namvar(sl-1,:)=[];

[s1 ssl]=size(namvar);
{s2 ss2]=size(nampvar);
[s3 ss3]=size(namtvar);

% transform tyy first
s=size(tyy,1);
for i=1:s
if tyy(i+k,1)>1
for j=1:tyy(i+k,1)-1
for m=1:s3
temp=eval(namtvar(m,:));
temp=[temp(1:i+k,:);temp(i+k,:);temp(i+k+1:s+k,:)];
eval([namtvar(m,:) '=temp;']);
end;
trip=[trip(L:i+k,:);trip(i+k, );trip(i+k+1:5+k,:)];
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end;
Idx1=find(tyy>1);
tyy(Idx1)=ones(size(Idx1));

row_ini=size(tyy,1);
numhh_ini=size(hhvector{trip(:,1)),1);

fprintf{'1) Checking entries in price and tprice...\n");

% If NaN in price, but UPC not purchased, then set the
corresponding

% cs entry to zero, and set corresponding price and tprice to
0.0251

% If NaN in price, and UPC is purchased, then delete the
corresponding

% row from al! purchase and trip matrices.

[Ipr Ipc}=find(isnan(price)); %Row and col index for NaNs in
price

Idx=find(tyy(:,1)); %Index of trip purchases

Irem=[];

for i=1:size(lpr,1)
t=yy(Ipr(i),Ipc(i)); %Test for purchase

if ~t %NaN wasn't purchased
es(Ipr(i),Ipe(i))=0; %set cs to zero
price(Ipr(i),Ipc(i))=0.0251; Y%set price to 0.0251

tprice(Idx(Ipr(i),:),Ipc(i))=0.0251; %set tprice to
0.0251
else %NaN was purchsed
Irem={[Irem;Ipr(i)};
end;
end;

%Delete corresponding rows

for m=1:s2
temp=eval(nampvar(m,:));
temp(Irem,:)=[];
eval({nampvar(m,:) ‘=temp;']);
end;

hhiwk(Irera,:)=[];
volume(Irem,:)=[];

for m=1:s3 .
temp=eval(namtvar(m,:));
temp(Idx(Irem),:)=[1;
eval([namtvar(m,:) =temp;']);
end;

trip(Idx(Irem),:)=[];

Itpr=find(sum(isnan(tprice'))==s1); %NaN for whole category
for m=1:s3

temp=cvai{namtvar(m,:));

temp(Itpr,:)=[];

eval([namtvar(m,:) '=temp;']);

end;

trip(Itpr,:)={l;

Itpc=find(isnan(tprice)); %remaining NaN
tprice(Itpc)=0.025 I *ones(size(Itpc),1);
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k=k+1;
end;
end;
row_1=size(tyy,1);
numhh_1=size(hhvector(trip(:,1)),1);

fprintf(\t Got rid of %g HHs, %g rows...\n',numhh_ini-
numhh_1,row_ini-row_lI);

fprintf('2) Checking purchases during initialization...\n');

thh=trip(;,1);
hh=hhwk(:,1);
week=hhwk(:,2);

init=min(week)+ 0.25*(max(week)-min(week));
I_init=find(init>week);

hh_ini=hhwk(I_init,1); %these are the HHs that purchased
something
% during the initialization period.

%list of rows to remove
%list of trows to remove

rem=[];
trem=[J;

for i=1:size(hh)
if ~(any(hh_ini==hh(i,:)))
rem={rem;i];
end;
end;

for i=1:size(thh)
if ~any(hh_ini==thh(i,:))
trem={trem;i];
end;
end;

%rem=find(~any(hh_ini==hh));
%trem=find(~any(hh_ini==thh));

[s1 ss1]=size(namvar);
[s2 ss2]=size(nampvar);
[s3 ss3]=size(namtvar);

for m=1:s2
temp=eval(nampvar(m,:));
temp(rem,:)=[];
eval([nampvar(m,:) '=temp;']);
end;

hhwk(rem,:)=[];
volume(rem,:)=[];

for m=1:s3
temp=eval(namtvar(m,:));
temp(trem,:)=[];
eval([namtvar(m,:) =temp;']);
end;

trip(trem,)=[];

row_2=size(tyy,1);
numhh_2=size(hhvector(trip(:,1)),1);

fprintf("\t Got rid of %g HHs, %g rows...\n',(numhh_1-
numhh_2),(row_1-row_2));



clear Itpr Itpc Ipr Ipc Idx Irem t Idx I temp s1 ss1 s2 ss2 s3 ss3;
hh=hhwk(;,1);
week=hhwk(:,2);

I_init=find(init<=week),
hh_ini=hhwk(l_init,1); %these are the HHs that purchased
something

% after the initialization period.

%list of rows to remove
%ilist of trows to remove

rem={];
trem=[];

for i=1:size(hh)
if ~(any(hh_ini==hh(i,:)))
rem={rem;i];
end;
end;

for i=1:size(thh)
if ~any(hh_ini==thh(i))
trem=[trem;i};
end;
end;

%rem=find(~any(hh_ini=hh));
%trem=find(~any(hh_ini==thh));

[s1 ssl]=size(namvar);
[s2 ss2]=size(nampvar);
[s3 ss3]=size(namtvar);

for m=1:s2
temp=eval(nampvar(m,:));
temp(rem,:)={];
eval([nampvar(m,:) '=temp;']);
end;

hhwk(rem,:)=[];
volume(rem,:)=[];

for m=1:53
temp=eval(namtvar(m,:));
temp(trem,:)={];
eval([namtvar(m,:) '=temp;']);
end;

trip(trem,:)=[};

row_3=size(tyy,1);
numhh_3=size(hhvector(trip(:,1)),1);

fprintf{"\t Got rid of %g HHs, %g rows...\n',numhh_2-
numhh_3,row_2-row_3);

clear rem trem week hh thh init;
pack;

fprintf("\n In total, got rid of %g HHs, %g rows...\n',...
numhh_ini-numhh_3,row_ini-row_3);

fprintf("\t%g Original HHs, %g Clean

HHs\n',numhh_ini,numhh_3);

fprintf(\t%g Original Purchase Opps, %g Clean Purchase

Opps\n',row_ini,row_3);

clear numhh_ini numhh_1 numhh_2 numhh_3 row_ini row_l
row_2 row_3 temp;

clear hh_ini I_init i Idx1 j k m s sl s11 s2 s3 ss1 ss2 ss3;
eval({'save ' outfile]);
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fprintf{'3) Checking purchases after initialization...\n");
thh=trip(,1);

%gltreati.m

% last updated on 5/3/97

%GL treatment of multiple purchases:

%]1: Multiple purchases in one event are translated into
multiple different

% purchase occasions;

%2: Multiple purchases are turned into purchase opportunities:
% 1 purchase becomes 2 purchase opp;

% 2 purchases " 3 " etc.

infile='c:\wayne\nest\marion2\clean1.mat’;
eval(['load ' infile]);
outfile="c:\wayne\nest\marion2\clean.mat';
namgen;

[st sli]=size(namvar);

namvar(l,:)=[];

namvar(s1-1,:)=[];

[sl ss1}=size(namvar);

[s2 ss2]=size(nampvar);

[s3 ss3]=size(namtvar);

unitsvol=volume;

% purchases modification

[p g]=size(volume);
i=1;k=0j=1;m=1;
for i=1:p
if volume((k+i),1)>1 %multiple purchase
v=volume((k+i),2)/volume((k+i),1); %vol per purchase
for j=1:(volume((k+i),1)-1)
for m=1:s2
temp=eval(nampvar(m,:));
temp=[temp(1:(k+i),:); temp((k+i),:);...
temp((k+i+1):(p+k),));
eval([nampvar(m,:) '=temp;']);
end; %end m loop
hhwk=[hhwk(1:(k+i),:); hhwk((k+i),:);...
hhwk((k+i+1):(p+k),));
store=[store(1:(k+i),:); store((k+i),:);...
store((k+i+1):(p+k),));
volume((k+i),1)=1;
volume((k+i),2)=v;
volume=[volume(1:(k+i),:);volume((k+i),:);...
volume((k+i+1):(p+k),:)];
k=k+1;
end; %end j loop
end; %end if
end;
fprintf("\nl just finished purchases modification...\n\n");

%purchase opportunity modification

Idx=find(tyy(:,1));

[pp qq]=size(ldx);

[p ql=size(tyy);

i=1;k=0;j=1;kk=1;

for i=1:pp

for j=1:tyy(1dx(i))
if j==1 %first purchase
for 1=1:unitsvol(kk,1)
for m=2:s3 %exclude tyy

temp=eval(namtvar(m,’));
temp={temp(1:(k+1dx(i)),:);));



eval(['clear ');
eval([namtvar(m,:) '=temp;']);
° end; %end m loop
trip={[trip(1:(1dx(i)+k).");

trip((Idx(i)+k),:);...
trip((Idx(i)+k+1):(p+k),’)];
k=k+1;
end;%end | loop
kk=kk+1;
else
for i=1:unitsvol(kk,1)+1
for m=2:s3 %exclude tyy
temp=eval(namtvar(m,:));
temp=[temp(1:(k+Idx(i)),:);
temp((k+Idx(i)),:);...
temp((k-+1dx(i}+1):(ptk),:)i;
eval([namtvar(m,:)
'=temp;']);
end; %end m loop
trip=[trip(1:(Idx(i)+k),:);
trip((Idx(i)+k),:);...
trip((Idx(iy+k+1):(p+k),:));
k=k+1;
end;%end | loop
kk=kk+1;

end; %end if
end;%end j loop
end; %end i loop
fprintf("\nl just finished purchases opptunities
modification...\n\n");

% special treatment for tyy
i=1;k=0,j=1;kk=1;
tyy_back=tyy,
for i=1:pp
for j=1:tyy_back(Idx(i))
if j==1
temp=eval(namtvar(l,:));

temp=[temp(1:(Idx(i)}+k),:);

ones((unitsvol(kk,1)-1),1);0;...
temp((Idx(i)+k+1):(p+k),)};
eval([namtvar(1,:) '=temp;']);
k=k+unitsvol(kk,1);
kk=kk+1;%finish one same product
multiple units purchase conversion
else
temp=eval(namtvar(1,:));
temp=[temp(1:(1dx(i)+k),:);

ones(unitsvol(kk,1),1);0;...
temp((Tdx(i)y+k+1):(p+k),)];

eval([namtvar(1,:) '=temp;']);

k=k+unitsvol(kk,1)+1;

kk=kk+1;

- end; %end if
end;%end j loop

end; %end i loop

Idx1=find(tyy>1);%Replace greater than 1 numbers with 1
tyy(Idx1)=ones(size(Idx1));

volume=volume(:,2);
basket=[basket,zeros(size(basket))];
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temp((k+1dx(i)),);...
temp((k+1dx(iy+1):(p+k), )

tyy=[tyy,1-tyy];

clear ans p q pp qq tyy_back i j k kk 1 unitsvol Idx Idx1 v...
tyy_back m sl s2 s3 ssl ss2 ss3 temp s11;

eval(['save ' outfile]);

eval(['clear ']);

% nest2.m

% Upper level driver for multistage logit model
%

% updated on 5/3/97

infile='c:\wayne\nest\marion2\clean.mat’;
eval(['load ' infile]); %path of nested.mat

outfile='c:\wayne\nest\marion2\calib.mat';

hh=hhwk(:,1);
week=hhwk(:,2); % Purchase Household and Week identifiers

thh=trip(:,1); % Trip Household identifier
tweek=trip(:,3); % Trip Week identifier

% Calculate conditional probabilities given a category
purchase

%{[beta, gamma, SEbeta,L, L0, loyff,probba,tsum]=
condprol(yy,cs.tcs, ...

%
price,tprice,display,tdisplay,feature,tfeature,hh,thh,week);

conprol;

% Calculate category attractiveness for buy now aiternative
[vpa]= catatt](tsum);

% Build category decision varibles

%[catloy, inventory, catprice,first_buy,ini_inv,crate,catioyff]=
catvarl (yy,tyy,thh,tweek,tprice,volume,week,hh);

catvarl;

basket=basket/mean(basket(:,1));

% Calculate marginal probability of buying from the category
%{delta,SEdelta,Ld,Ld0,probmaj=margpro1(tyy,tcs,vpa,catloy,
inventory,catprice,basket.first_buy,thh,tweek);

margyprol;

% Print out a report to a file
repnesl;

% Plotting stage
plotnes2;

eval(['save ' outfile ' beta delta gamma loyff ini_inv crate
catloyff;']);

% conprol.m -- Determines conditional probabilities given a
purchase
% by Wayne Xiao 4/10/97



tes=ones(size(basket
%
tcs,price,tprice,display,tdisplay,feature,tfeature,hh,thh,week);

% Set Up: Divide data into 3 periods
% Init = 1/2 data, Calib = 1/4 data, Hold Cut = 1/4 data

fprintf{("\n1) Determining conditional probabilities... \n');
[p ql=size(yy);

diff=max(week)-min(week);

init=min(week)+0.25*difT;

cal=init+0.5*diff;

Ivector=find(weck<init);
yy_ini=yy(Ivector,:);
hh_ini=hh(Ivector,:);
purch_ini=hhvector(hh_ini);

[sl ssl]=size(namvar);

[s2 ss2]=size(nampvir);

[s3 ss3]=size(namtvar);

Cvector=find(week<=cal);

pvar_cal=[]; %store purchase variable in calibration period

for m=1:s2
temp=eval(nampvar(m,:));
temp=temp(Cvector,:);
pvar_cal=[pvar_cal;'pvar_cal' int2str(10+m)]; %reason using
'10' here is
%due to string length limitation
eval([pvar_cal(m,:) '=temp;']); %assign temp to pvar_call,and
2 etc.
end;
hh_cal=hh(Cvector,:);
purch_cal=hhvector(hh_cal);

% Initialization period

% Used to determine each household's initial loyalty row
% loy0 == 0.5(overall mkt share) + 0.5(household's mkt
share)

% A row is included for each household in the sample period.
% For households not in the init period, loy0O=tot_mktshr

tot_mktshr(1,:)=mean(yy_ini);

purch=hhvector(hh);"
num_hh=size(purch,1);

hh_mktshr=zeros(num_hh,q);
temp=zeros(num_hh,1);
F=Lk=Ll=1;ptr=1;

for i=1:num_hh

if ~any(hh_ini==hh(j))  %hh not in init period
hh_mktshr(i,:)=tot_mktshr;

elseif purch_ini(k)>1
hh_mktshr(i,:}=mean(yy_ini(ptr:ptr+purch_ini(k)
ptr=ptr+purch_ini(k);
k=k+1;

else
hh_mktshr(i,:)=yy_ini(ptr,:);
ptr=ptr+1;
k=k+1;

bj
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%function [beta, gamma, SEbeta,L,L0,
loyff,probba,tsum}=condprob(yy,cs, ...

if any(hh_cal==hh(j))
temp(i)=purch_cal(l);
I=+1;
end;

J=j+purch(i); %update to the first purch of next hh

end; % for loop

loy0=0.5*(ones(num_hh,1)*tot_mktshr) + 0.5*hh_mktshr;

% Calibration period
% Used to determine the beta coefficients and the gamma
constant

% Call run_gl with the merchandising matrices corresponding
to the

% calibration period. Rename overall merchandising matrices,
and

% rename calibration merchandising matrices.

nampv_bk=[];
for m=1:52
ptemp=eval(nampvar(m,:));
nampv_bk=[nampv_bk;'pvar_bk' int2str(10+m)); %reason
using '10' here is...

%that string length is limited between 10-
99
eval([nampv_bk(m,:) '=ptemp;']); %assign ptemp to
pvar_bkl,and 2 etc.
ptemp=eval([pvar_cal(m,:)]); %assign pvar_cal to nampvar
eval([nampvar(m,:) '=ptemp;']);
end;
purch_bk=purch;

purch=temp;

% Run MNL regression to find maximum likelihood
coefficients

rglcol;
beta=beta(;,1)';

% This step determines the initial loyalty for each HH.

% Use the loyalty row obtained from rungl. If a household is
not

% on the calibration period, then its loyalty is assumed to be
% the same as its loyalty at the end of the initialization period.

for m=1:s2

ptemp=eval(nampv_bk(m,:));

eval([nampvar(m,:) '=ptemp;']); %assign ptemp to nampvar.
eval({'clear ' nampv_bk(m,:)]);

end;

purch=purch_bk;

=1 1=1 pte=1;
[p q)=size(yy);

for i=1:size(purch,1)

if any(hh_cal==hh(j)) %hh in calib pd: use loyalty from



end; % if statement
I=1+1;
end %of while loop

loyfi{(i,:}=loyalty(ptr+purch_cal(l)-1,:);
%take row corresponding to the HH's last purchase
else %hh not in calib pd: use loy0 from init period
loyfii,:)=loy0(i,:);

end; %if statement

j=it+purch(i);
end; % for loop

% Now, caiculate each HH's loyalty for each purchase in the
sample.

% Use initial loyalties obtained in loyff. Hopefully, this will
converge

% to the real HH's loyalty.

=lk=l;
[T J]=size(yy);
loy=zeros(size(price,1),q);

for i=1:size(purch,1)
loy(,)=loyfi(i,:);
=it

%Take the initial loyalty from loyff

while j<k+purch(i)
purchases
loy(j,:}=gamma*loy(j-1,) + (1-gamma)*yy(j-1,:);
=il
end;

%Update loy for all of HH's

k=j;
end;
% Finally, take the foyalty row corresponding to each HH's last
purchase as .
% the convergent loyalty for that particular HH.
ptr=1; loyff=zeros(size(purch, 1),q);
for i=1:size(purch,1)

ptr=ptr+purch(i);

%Go to the row corresponding to the following HH's first
purchase

loyfi(i,:)=loy(ptr-1,:); %take the previous row (previous HH's
last purch)
¢ .d; % for loop

clear loy;

% Determine Conditional Probability Matrix
tpurch=hhvector(thh);

tloy=zeros(size(tprice, 1),q);
=L

for i=1:size(tpurch,1)

rungl
while ~(hh_cal(ptr}=hh(})),
ptr=ptr+purch_cal(l);
aa=[ 'tloy 'k
TVAR=[namtvar(2:s3-1,:);aa];

[T J}=size(tprice);
t=T*J;

[K a}=size(TVAR);
fprintf("\nK  is %g\n’,K);
tcs=ones(T,J);
f=find(tprice==0.0251),
tes1(f)=zeros(size(f),1);
tes1=reshapeqtcs1',t,1);

xtt=[];

for k=1.K
xtt=[xtt;reshape(eval(TVAR(k,))',t,1)];

end;

evb=exp(beta(1:s2-1)*xtt + reshape([0

beta(s2:bb)}"*ones(1,T),t,1)");

%here s2-1 is equal # of price,feat,displ and loyalty

evb=reshape(evb .* tcsl', J, T);

tsum=sum(evb); % sum over all UPC in a given trip

tsum= ~tsum + tsum; % get rid of zeros

probba=(evb ./ (ones(J,1) * tsum})’; % TxJ conditional

probability

% rglcol.m, Last revision: 4/10/97

% Multinomial Logit Guadangi and Little with ASC

VAR2= [ ' DloyDgamma
' loy
[s! ssl]=size(namvar);
[s2 ss2}=size(nampvar);
[s3 ss3}=size(namtvar);
VAR=[nampvar;namvar(2:sl,:)];
[K S] =size(VAR); % K = No. of variables
[Q.r] = size(VAR2);
[T J] = size{eval(VAR(1,:)));
t=T*J;
xt=[}
fork=3:K-J+1
xt = [ xt; reshape(evai(VAR(,:)), t, 1)' ];
eval(['clear ', VAR(.’)])
end;

VAR = [ VAR(1:2,)); VAR2; VARG3:K,) ];

tau=loy0; %total no.of households x J
[q.r] = size(xt);

gamma = [.71];
clearKsrkt

k=tpurch(i);

ttemp=ones(k, 1) * loyff{(i,:); [gammal, loy, beta, ASC, SEcoeff,xt2,xt theta,L,L0,54] = ...
tloy(j:j+k-1,:)=itemp; Igglcol(eval(lyy’), eval(cs"), xt, VAR, ones(1,52-2),

j=ivk; tau,gamma,purch,Q,s1,s2);
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end;
loyalty=xt2;
clear VAR Q xt xt2 tau NHT;

gamma = gammal(1,1);
%beta=[beta(:,1);theta(:,2);ASC(;,1)];

beta=[beta;loy;ASC];

SEbeta=[SEcoefl{3:54-s1+1) SEcoefi{2) SEcoeff(s4-s1+2:54));
bb=size(beta);

function
[gammal,loy,beta,ASC,SEtheta,xt2 xt theta,L,L0,s4]...
= Igglcol(yy, cs, markxt,VAR starting,
tau,gamma,purch,Q,s1,s2)

% Last revision: 4/10/97

converge =.0001;
maxit2 = 20;

epsilon = 10*(-100);

[T J] = size(yy);
t=T*J;

YY =Yy, % IXT
cs = reshape(cs',t,1);
[K1 a] = size(markxt); % K1 = No. of Marketing
vars
K=Q+Kl;
Deriv.loyalty

% K = Total # vars inc.

theta = [zeros(1,Q-1) 4 starting zeros(1,J-1)];
starting values

thetalist = theta;

testthetalist = [];

tolerance = [10°(-2)*ones(1,Q) 10”(-3)*ones(1,K1+J-1)];
%Set low tol. for der.

% preset

maxit = 20;

beta = starting;
L=}

% OUTER LOOP
for it2 = 1: maxit2

ifi2>=1

gamma = gamma + theta(1) ./ theta(2) ;

theta(1:Q-1) = zeros(1,Q-1); % Reset theta deriv. to 0
end;

yy = reshape(yy,J,T);
cs = reshape(cs,,T);

[xt2,xt] = clcglcol(yy,cs,tau,gamma,purch,K,J,T);
xt = [xt;markxt];
cs = reshape(cs,t,1);

% INNER LOOP
for it =1 : maxit

num = exp( theta(1:K) * xt ...
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%1.093 -0.04 0.1480

num=I1xJT
num = reshape(num .* ¢s',J,T); % num=0 (JxT) if not in
choice set
prob = num ./ (ones(J,1) * sum(num)); % IxT
% Gradient
num = yy(:) - prob(:); % JTx1 residual vector
delL = [ xt * num ; sum(reshape(num,J,T)")'l; % (K+J)x1

% Hessian

A=

num = zeros(K.T);

forj=1:J
tmp = xt(;, j:J:J*T) .* (ones(K,1) * prob(j,:)) ); % KxT
A=[A; sum(tmp') ]; % append 1xK
num = num + tmp;

end % num=KxT

H11 = - xt * ((prob(:) * ones(1,K)) .* xt') + num * num';
% kxk

H12=-A'+num * prob"; % KxJ and KxJ

H22 = - diag(sum(prob')) + prob * prob'; % JxJ

H=[H11 HI12; H12' H22]; % merge block matrices
idx=[1:KK+2:K+J];
dtheta = -delL(idx)/ H(idx,idx);

theta = theta + dtheta;

if (abs(dtheta ./ theta ) < tolerance)
break
end;

if ~finite(sum(theta))
break
end;
=nd

format short

L =log(prob(:)'+(1-cs")) * yy(:); % to avoid log(0) for
nonchoice set

share = mean(yy');

L0 = T*log(1/3);

covtheta = -eye(size(H(idx,idx)))/(H(idx,idx));

SEtheta = sqrt(diag(covtheta))';

% 1xT prob of chosen alt
% 1xT predicted choice

num = sum(prob.* yy);
[cs2] = max(prob);

if abs(theta(1,1:Q-1)) < converge
break;

end;

if ~finite(sum(theta))
break

end;

end;

[s s4]=size(theta);
beta = [theta(3:s2)' SEtheta(3:52)']; %s2 is #price +#disp+#feat



+ reshape([0 theta(K+1:K-+J-1)]"* ones(1,T),t,1)"); %

gammal = {gamma SEtheta(1)];

gamma2 = {i 0];

loy = [theta(2) SEtheta(2)];

ASC = [theta(s2+1:54)' Setheta(s2+1:54)'];

function [xt2,xt] = cleglcol(yy,cs,tau,gamma,purch,K,J,T)
% Last revision: 4/10/97 Wayne Xiao

% Estimates Guadagni Little Model Multinomial
% DESCRIPTION OF MODEL
% Model = log(alpha) + BX

% DEFINITIONS

% purch: the matrix of number of purchases for each HH

% alpha_t = alphaattimet  (General notation for all vars)
% alpha_t1 = alpha at time t-1 (General notation for all vars)
% index2A used to develop xt matrix

epsilon = 10°(-100);
JT =J*T,

M = max(purch);
[HH a] = size(purch);

% used to develop xt
% used to develop xt
% used to develop

index1 = 1:HH';
index2A = cumsum(purch) -purch;
index2A_1 = cumsum(purch) -purch;
At

xtl = zeros(J,T);
xt2 = zeros{J,T);

% Step la:
% Calculate B,Y,V's

pit = purch;

index1A =pit> 0;

index! = find(index1A = 1);

index2A_1 = index2A_1 + index1A;
index2 = index2A_1(find(index1A = 1));
[q,r] = size(index2);

Y_t = zeros(J,HH);

fork=1:q .
Y_t(:,index1(k)) = yy(:,index2(k));
end;

% Step 1:

% Calculate: loyalty and Dloy_tDgamma for the first purchase
% at 1st purch Dloy_tDgamma =0

% at 1st purch loyalty = tau (market share)

loy_t=tau'; %JxHH
Dloy_tDgamma = zeros(J,HH);

% Step 3: THE BIG STEP
% Calculate probabilities then alpha and DalphaDtau,
DalphaDgam for each purch

prob={J;
forp=1:M

au=[];
delta=[];

new alpha and S
% But First, some bookkeeping

Y tl=Y_t

loy_tl =loy_t;

Dloy_t1Dgamma = Dloy_tDgamma;
Dloy_tDgamma

%previous purchase
Y%previous loyalty
Y%previous

% Step 3a: Save derivatives in an xt matrix to return to
log3tau.m

% index]1 tells if HH made a purch on this loop or not
% pit decrements the purch vector by 1 at each purchase
% index2A is the index of the purchases for each purch
% index2 is the index for xt

% and YES this is a bit confusing at first!

pit=purch+ 1 -p;

index1A = pit> 0;

index1 = find(index1A = 1),

index2A = index2A + index1A;

index2 = index2A(find(index1A = 1)),
[q,r] = size(index2);

fork=1:q
xt1(:,index2(k)) = Dloy_tDgamma(:,index1(k));
xt2(:,index2(k)) = loy_t(:,index 1{k));

end;
ifp=M

break
else

% Calculate next cycle alpha_t

pit = purch - p;

index1A =pit> 0;

index1 = find(index1A == 1);

index2A_1 = index2A_1 + index1A;
index2 = index2A_1(find(index1A = 1));
[q,r] = size(index2);

Y_t = zeros(J,HH);

fork=1:q
Y _t(;,index1(kj) = yy(;,index2(k));
end;

loy_t=gamma .* loy_tl + Y_t1 .* (1-gamma) ;

Dloy_tDgamma = gamina .* Dloy_t!Dgamma + loy_t! -
Y_tl;
end
end;

xt = [reshape(xt1,1,JT);
reshape(xt2,1,JT)};
xt2=xt2';

% hhvector.m -- creates a vector of the number of purchases
by each hh

% 4/12/97

% requires: vector of household indices: hh



% Calculate the derivatives w.r.t gamma and tau and get
function purch=hhvector(hh)

idx=1;
s=size(hh),
purch(idx)=1;

for n=2:s
if hh(n)==hh(n-1)
purch(idx,1)=purch(idx,1)+1;
else
idx=idx+1;
purch(idx,1)=1;
end;
end;

% catattl.m Calculates category attractiveness for buy now
alternative

% vpais a #trips x 2 matrix.

% 4/11/97

functionfvpal=catatt1(tsum)
fprintf("\n2) Determining category attractiveness...\n');
vpal=log(tsum');

vpa=[vpal zeros(size(vpal,l),1)];

% catvarl.m

% Builds category choice explanatory variables:

% category loyalty, hh inventory, category price

%

% 4/12/97

%function [catloy, inventory, catprice, first_buy, ini_inv,...

%
crate,catloyfl]=catvarl(yy,tyy,thh,tweek,tprice,volume,week,h
h)

fprintf('\n3) Determining category choice variables... \n');
% Setup: identify initialization purchases and trips

diff=max(tweek)-min(tweek);
init=min(tweek)+ 1*diff; % Set initialization period

Itvector=find(tweek<=init);
tyy_ini=tyy(Itvector,:);
thh_ini=thh(Itvector,:);
tprice_ini=tprice(Itvector,:);
tweek_ini=tweek(Itvector,:);
tpurch_ini=hhvector(thh_ini);
tpurch_tot=hhvector(thh);
numhh_tini=size(tpurch_ini,1);
numhh_ttot=size(tpurch,1);

Ivector=find(week<=init),
yy_ini=yy(Ivector,:); % Purchases corresponding to Init
Pd

hh_ini=hh(Ivector,:);

puzch_ini=hhvector(hh_ini);

purch_tot=hhvector(bh);
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% outputs: vector of the number of consecutive purchases by
each hh

numhh_tot=size(purch_tot,1);
volume_ini=volume(Ivector,:);

% Test sample for correctness
fprintf{"\nSample correctness test:\n\n');

if (numhh_ini~=numhh_tini)

fprintf("\tWarning: Number of households in initialization
does not match.\n');

fprintf("\tNumber of households in purchase initialization:
%g\n',numhh_ini);

fprintf("\tNumber of households in trip initialization:
%g\n',numhh_tini);
end;

if sum(sum(yy))~=sum(tyy(:,1))
fprintf("tWarning: Household purchases do not match!\n");
fprintf("\t%g purchases in trip data, %g purchases in purchase
data\n',...
sum(tyy(:,1)), sum(sum(yy)));

end,

if sum(sum(yy_ini))~=sum(tyy_ini(:,1))

fprintf("\tWarning: Household initialization purchases do not
match!\n');

fprintf{(\t%g purchases in trip data, %g purchases in purchase
data\a',...
sumi(tyy_ini(:,1)), sum(sum(yy_ini)));
end;

fprintf(\nTesting household purchases during initialization
period...\n");

if (numhh_ini~=numhh_tot)
fprintf(\tWarning: %g Households are missing from the
initialization period.\n',...
numhh_tot-numhh_ini);
end;

for i=1:numhh_ini
if (purch_ini(i)<2)
fprintf{"\tWarning: Only %g purchases by household %g
during init.\n',purch_ini(i),i);
end;
end;

fprintf("\nTesting household trips during initialization
period..\n'");

for i=1:numhbh_tini
if (tpurch_ini(i)<2)
fprintf{"\tWamning: %g Trips by household
%g\n',numhh_tini,i);
end;
end;

% Category loyalty
ptr=1;

catloy=zeros(size(iyy,1),2);
catloyff=zeros(numhh_tini,2);



numhh_ini=size(purch_ini,1);

temp=mean(tyy_ini(ptr:ptr+tpurch_ini(i)-1,:));
else
temp=tyy_ini(ptr);
end;
catloy(ptr:ptr+tpurch_tot(i)-,:)=ones(tpurch_tot(i),1) * temp;
catloyfKi,:)=temp;
ptr=ptr+tpurch_ini(i);
end;

%Household Inventory

quant=zeros(size(tyy_ini,1),1);
def_quant=zeros(size(tyy,1),1);

Q=find(tyy_ini(;,1}); % Index of buying trips
def_Q=find(tyy(:,1));

quant{Q)=volume_ini;
def_quant(def_Q)=volume;

% A) Consumption Rate
crate=zeros(numhh_tini,1);

ptr=1; def_ptr=1;
for i=1:numhh_tini
n=1+tweek_ini(ptr+tpurch_ini(i)-1)-tweek_ini(ptr);
%number of weeks in initialization period for the household

tot=sum(quant(ptr:ptr+tpurch_ini(i)-1));

if (tot==0)
fprintf("\tWarning: Household %g did not make a purchase
during init\n',i);
tot=sum(def_quant(def_ptr:def_ptr+tpurch_tot(i)-1));
n=tweek(def_ptr+tpurch_tot(i)-1)-tweek(def_ptr)+1;
end;
crate(i,:.)=1.5*tot/n; %150% crate to compensate for
underestimation

ptr=ptr+tpurch_ini(i);
def_ptr=def_ptr+tpurch_tot(i);
end;

% B) Initialize Inventory

inv=zeros(size(yy_ini,1),1);
ini_inv=zeros(numhh_tini,1);
tmp=0;

FLk=l

for i=1:numhh_tini
inv(=ini_inv(i); -
=L

while j<k+tpurch_ini(i)
temp=inv(j-1)-(tweek_ini(j)-tweek_ini(j-1)) + quant(j-
1)/crate(i);

if temp>-100
inv(j)=temp;

else
inv(j)=-100;

for i=1:numhh_tini
if{tpurch_ini(i)>1)

j=ith;
end;

ini_inv(i,;)=-min(inv(k:k+tpurch_ini(i)-1));

k=j;
end;

% C) Run complete inventory

inventory=zeros(size(tyy,1),1);
quant=zeros(size(tyy,1),1);
quant(def_Q)=volume;

k=1,

for i=1:numhh_tini
inventory(j,:)=ini_inv(i);
=L

while j<k+tpurch_tot(i)

temp=inventory(j-1)-(tweek(j)-tweek(j-1)) + quant(j-

1)/crate(i);

if temp<0
temp=0;
elseif temp>100
temp=100;
end;

inventory(j)=temp;
=it
end;

k=j;
end;

%inventory(:,1)=inventory(:,1)/40
inventory=[inventory zeros(size(inventory,1),1)];
% Category price
catprice=zeros(size(tprice,1),1);
for i=1:size(tprice)
f=find(tprice(i,:)~=0.0251);
catprice(i)=mean(tprice(i,f));
end;
catprice=[catprice zeros(size(catprice, 1),1)];
% First purchase opportunity dummy
first_buy=zeros(size(tyy,1),1);
flag=0;
for i=1:size(tyy,i)

if (tyy(i,1) & ~flag) %lf there is a purchase and it is

66

% Loop through all purchase opps



end;
flag=0;
end;
end;
first_buy=[first_buy zeros(size(first_buy,1),1)];
% margprol.m -- Determines the marginal probability of
making a
% category purchase on a shopping trip.

% Wayne Xiao, 4/13/97

%function

[delta,SEdelta,L.d,Ld0,probma]=margpro1(tyy,tcs,vpa,catloy,in

ventory,...
% catprice,basket,first_buy,thh,tweek);

fprintf{\n4) Determining marginal probability coefficients...
\n');

% Set Up: Define a calibration period

diff=max(tweek)-min(tweek);
init=min(tweek)+0.25*diff;
cal=init+0.5*diff;

Cvector=find(tweek<=cal);
tyy_cal=tyy(Cvector,:);
tes_cal=tcs(Cvector,:);
vpa_cal=vpa(Cvector,:);
catloy_cal=catloy(Cvector,:);
inventory_cal=inventory(Cvector,:);
catprice_cal=catpricc(Cvector,:);
basket_cal=basket(Cvector,:);
first_buy_cal=first_buy(Cvector,:);

tyy_bk=tyy; tyy=tyy_cal;

tes_bk=tcs; tcs=tcs_cal;

vpa_bk=vpa; vpa=vpa_cal;

catloy_bk=catloy; catloy=catloy_cal;
inventory_bk=inventory; inventory=inventory_cal;
catprice_bk=catprice; catprice=catprice_cal;
basket_bk=basket; basket=basket_cal;
first_buy_bk=first_buy; first_buy=first_buy_cal;

% Run MNL regresion to find maximum likelihood
coefficients

mnl_mal;

tyy=tyy_bk;

tes=tcs_bk;
vpa=vpa_bk;
catloy=catloy_bk;
inventory=inventory_bk;
catprice=catprice_bk;
basket=basket_bk;
first_buy=first_buy_bk;

% Determine marginal probability matrix

TVAR=['vpa K

¥

first_buy(i)=1;
flag=1;
clseif (~tyy(i,1) & flag) %This is the last purch opp of trip

% the first in that trip

'inventory °;
‘catprice '
‘basket ',
‘first_buy '};

[T J}=size(catloy);
[K aJ=size(TVAR);
t=T*J;
tcs=reshape(tes',t,1);

xtt=[];

for k=1:K
xtt=[xtt;reshape(eval(TVAR(k,:))",t, 1)'L;

end;

eva=exp(delta(1:K)*xtt + reshape(([delta(K+1)
0]"*ones(1,T)),t,1));

eva=reshape(eva .* ics', J, T);
summ=sum(eva);

probma=(eva ./ (ores(J,1) * summ));

probma=probma’;

% mnl_mal.m — Variant of runmnl.m that determines the
coefficients

% delta for category purchase variables.

% Category purchase variables: Buy now dummy, category
attractiveness

% category loyalty, household inventory, and category price.
% Wayne Xiao, 4/12/97

Starting = [0 0 0 0 0 0]; % Any better guesses?

VAR =[tyy kS
'tes s
‘vpa s
‘catloy H
'inventory H
‘catprice 5
‘basket "
‘first_buy 5
'buy_now M

[K S] =size(VAR); % K = No. of variables
[T J] = size(eval(VAR(1,2)));

t=T*]J,

xt=[J

fork=3:K-(J-1)

xt = [ xt; reshape(eval(VAR(k,))), t, 1)' };

end; % fork

[delta,SEdelta,Ld,LdO}=logitmal (tyy, tcs, xt, VAR, Starting);
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‘catloy °;

% logitmal.m -- Variation of logit3.m to optimize coefficents
% delta of category purchase variables.
% 4/12/97

function [delta,SEdelta,Ld,Ld0] = logitmal(tyy, tcs, xt, VAR,
starting) .

{T J] = size(tyy);
t=T*]J,

tyy=tyy; % IxT
tcs = reshape(tes',t,1);

[K a] = size(xt); % K = No. of attributes

delta = [starting 0];

deltalist = delta;

testdeltalist = {];

tolerance = 10”(-8)*ones(1,K+J-1);
maxit = 20;

for it =1 : maxit
% Newton-Raphson

num = exp( delta(1:K) * xt ...

+ reshape([delta(K+1) 0]"* ones(1,T),t,1)); % num=1xJT
num = reshape(num .* tcs',J,T); % num=0 (JxT) if not in
choice set

prob = num ./ (ones(J,1) * sum(num)); % JXT

% Gradient
num = tyy(:) - prob(:); % JTxI residual vector
dell = [ xt * num ; sum(reshape(num,J, T)")']; % (K+J)x1

% Hessian
A=[};
num = zeros(K,T);
forj=1:J
tmp = xt(:, j:J:J*T) .* (ones(K,1) * prob(j,:) ); % KxT
A=[A;sum(tmp)]; % append 1xK
num = num + tmp;
end %num=KxT
H11 = - xt * ((prob(:) * ones(1,K)) .* xt') + num * num’; %
kxk
H12=-A'+ num * prob'; % KxJ and KxJ
H22 = - diag(sum(prob')) + prob * prob'; % JxJ
H=[H11HI12;HI12' H22]; % merge block matrices
idx =[i:K+1]; % index to eliminate ASCI to avoid
singularity

ddelta = -delL(idx)"/ H(idx,idx);
delta = delta + ddelta;

testdelta = abs(ddeita)./abs(delta);
deltalist = [deltalist;delta];
testdeltalist = [testdeltalist;testdelta];

if (abs(ddelta)./abs(delta) < tolerance)
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% clear VARK S TJk txt;

end
end

format short
Lé=log(prob(:)+(1-tcs))*tyy(:);
Ld0=T*log(1/J);

covdelta=-inv(H(idx,idx));
SEdelta=sqrt(diag(covdelta))';

Y%repnesl.m -- Outputs the results of the nested run to a file
% 4/14/97
repfile='c:\wayne\nest\marion2\report.txt';

if exist(repfile)
eval(['delete ' repfile]);
end;

fprintf{\nS) Reporting results... \n');

[s1 ssl1]}=size(namvar);

[s2 ss2]=size(nampvar);

f=["loyalty T
VAR=[nampvar(3:s2,:);f(1,:);namvar(2:s1,:)]; %create the
VAR vector from namvar

TVAR=['category attractiveness'’;
'category loyalty '
‘household inventory *;
‘category price "
‘basket Y
‘first_buy 5
'buy-now dummy T

fprintf{repfile,"\n\tResults from Nested Run on °);

tit=["Data Set ' num2str(size(yy,1))];

fprintf{repfile, tit);

fprintf{repfile,\n\n\t\tConditional probability...\n');

fprintf{repfile, VARIABLE COEFF STD.ERROR T-

VALUEW');

for k=1:size(VAR,1)

fprintf{repfile, VAR(k,:});

fprintf(repfile,! %#8.4f %#8.4f %#8.4f\n'...
beta(k), SEbeta(k), beta(k)./SEbeta(k));

end;

fprintf{repfile,\n Loglikelihood value = %7.2f\n'L);
fprintf{repfile,' Null Loglikelihood = %7.2f\n',L0);
fprintf{repfile,' U-square = %7.5fn’,1-(L/L0));
fprintf(repfile,' N = %g purchasing events\n',size(yy,1));

fprintf{repfile,\n\n\t\tMarginal probability...\n");

fprintf{repfile, VARIABLE COEFF
STD.ERROR  T-VALUEW);
for k=1:size(TVAR,1)

fprintf{repfile, TVAR(,:));

fprintf{repfile,’ %#8.4f  %#84f  %#8.4f\n',..

delta(k), SEdelta(k), delta(k)./SEdelta(k));



break

fprintf(repfile,' Null Loglikelihood = %7.2f\n',Ld0);
fprintf(repfile,’ U-square = %7.5f\n',1-(Ld/Ld0));
fprintf{repfile,' N = %g purchasing events\n',size(yy,1));

fprintf{repfile,' N = %g purchasing opportunities\n',size(tyy,1));

% plotnes2.m -- Plots the overall probability of buying a
particular UPC
% last updated 5/3/97

fprintt{("\n6) Plotting the graphs...\n'");
bsm=namvar;

% Build a full trip driven yy matrix...
tyyf=zeros(size(tyy,1),size(yy,2));

q=find(tyy(:,1));
probtt=probba(qg,:);

[b I]=sort(week);
% Sort trips based on week &day

yyt=yy(l,)';
probtt=probtt(l,:)’;
weektt=week(l,:);

% Print the graphs...

wkcountt=hhvector(weektt);
numofwkt=size(wkcountt,1);
int=4;

fig=3;
for ct=1:size(probtt,1)
=0
xx=[];
p=lj=1;
for i=1:int:numofwkt
if (numofwkt-i)<int

wkprobtt(j)=mean(probtt(ct,p:p+sum{wkcountt(i:numofwkt))-

>

a=(probtt(ct,p:p+sum(wkcountt(i:numofwkt))-1))*...

(1-(probitt(ct,p:p+sum(wkcountt(i:numofwkt))-
ny;
standerr(j)=sqrt(a)/sum(wkcountt(i:numofwkt));
standhi(j)=wkprobtt(j)+standerr(j)*1.67;
standlo(j)=wkprobtt(j)-standerr()*1.67;
%if standlo(j)<=0
% standlo(j)=0;
%end;
wkyytt(j)=mean(yytt(ct,p:p+sum(wkcourtt(i:numofwkt))-
D);
kd=weektt(floor(p+sum(wkcountt(i:numofwkt))/2),1);
p=p+sum(wkcountt(i:numofwkt));
else
wkprobtt(j)=mean(probtt(ct,p:p+sum(wkcountt(i:i+int-1))-

end;

fprintf{repfile,\n Loglikelihood value = %7.2f\n’,Ld);

b=probtt(ct,p:p+sum(wkcountt(i:i+int-1))-1)*...
(1-(probtt(ct,p:p+sum(wkcountt(i:i+int-1))-1)))’;
standerr(j)=sqrt(b)/sum(wkcountt(i:i+int-1));
standhi(j)=wkprobitt(j)+standerr(j)*1.67;
standlo(j)=wkprobtt(j)-standerr(j)*1.67;

%if standlo(j)<=0
% standlo()=0;

%end;
wkyytt(j)}=mean(yytt(ct,p:p+sum(wkcountt(i:i+int-1))-1));
kd=weektt(floor(p+sum(wkcountt(i:i+int-1))/2),1);
p=p+sum(wkcountt(i:i+int-1));

end;

kd=int2str(kd);
if siz 2(kd,2)<4

kd=['0' kd];
end;

xx=[xx;kd];
=[tj}; j=i+1;
end; %end i loop

tx=floor(j/10);

xx=xx(1:tx:size(xx,1),:);
xxt=t(1,1:tx:size(t,2));

% Load totstors.dat to compare store sales data to panel data
infile="c:\wayne\nest\marion2\totstors.dat’;

eval(["load ' infile]);

[b,bb]=size(totstors);

% clean store data so that they are consistent with panel data
rem=[]

fori=1:y

if ~any(find(weektt=totstors(i,1)))

rem=[rem;i];

end;

end;
totstors(rem,:)=[]; % clean data
[b,bb]=size(totstors);
store=totstors';
weeksum=(sum(store(2:bb,:)))";

m=1;
pi=b/int;
fir=floor(b/int);
if pi==fir
for j=1:b/int
storeshr(j)=sum(totstors(m:m+int-
1,ct+1))/sum(weeksum(m:m+int-1,1));
m=m-+int;
end;
else
for j=1:floor(b/int)
storeshr(j)=sum(totstors(m:m+int-
1,ct+1))/sum(weeksum(m:m+int-1,1));
m=m-+int;
end;

storeshr(j+ 1 )=sum(totstors(flr*int+1:b,ct+1))/sum(weeksum(fir
*int+1:b,1));
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n);

if fig<3
subplot(‘position’,[0.15 0.08 0.70 0.42]);
fig=fig+1;
else
figure;
fig=1;
=[num2str(size(yy, 1)) ' purchases'];
text('String', ""-" is predicted share and 90%
CI','fontsize',[12],'position’,...
[-0.05 ~0.15 0],'units','Normalized');
text('String', ""--" is actual panel
share','fontsize',[12],'position’,...
[0.45 -0.15 0],'units','Normalized');
text('String', ".." is actual store
share','fontsize',{12],'position’,...
[-.05 -0.20 0},'ynits','Normalized');
. text('String','Results of the Nested Model at the Conditional
Level','fontsize',[12]....
‘position’,[.12 1.40
0],'Units',' Normalized','fontunderlire','on");
text('String',s,' fontsize',[12],...
‘position',[.35 1.31
0],'Units',' Normalized','fontunderline','on");

set(gca,'Visible','off");
subplot(‘position',[0.15 0.62 0.70 0.42]);
fig=fig+1;

end;

plot(t,wkprobtt,'-',t, wkyytt,'--'t storeshr,".' t,standhi,'-
' t,standlo,’-');

tmax=size(t,2);

%axis([0 800 ])

s1=["IRI week'];

s2=['Average probability of purchase, ' ...
num2str(int) -wk pds'};

tt=[bsm(ct,:)];

set(gca,’XTickLabels',xx, fontsize',[8], X Tick',xxt);
xlabel(s1,'fontsize',[9])

ylabel(s2,'fontsize',[9])

title(tt,'fontsize',[9])

dim=axis;

if fig==3
% print;
end;
end; %end ct loop

for i=1:size(q,1)
tyyfla@,:)=yy(.);

end;

% Build a full trip driven prob matrix...
prob=probba .* (probma(:,1) * ones(1,size(probba,2)));

% Now, sort the data. The trip matrix includes a row for each
trip,
% identifying [HH DAY WEEK STORE].

end;

[b I}=sort((trip(:,3)* 10)+trip(:,2));
% Sort trips based on week &day

tyyf=tyyfil,:);
prob=prob(l,:)';
tweek=tweek(l,:);
sumact=sum(tyyf');
sumpredi=sum(prob');

% Print the graphs...

wkcount=hhvector(tweek);
numofwk=size(wkcount,1);
int=4;

for ct=1:size(prob,1)
t=[;
xx=[];

p=li=1;
for i=1:int:numofwk

if (numofwk-i)<int

wkprob(j)=sum(prob(ct,p:p+sum(wkcount(i:numofwk))-
1)

wkyy(j)=sum(tyyf(ct,p:p+sum(wkcount(i:numofwk))-1));
kd=tweek(floor(p+sum(wkcount(i:numofwk))/2),1);
p=p+sum(wkcount(i:numofwk));

else
wkprob(j)=sum(prob(ct,p:p+sum(wkcount(i:i+int-1))-1));
wKkyy(jy=sum{tyyflct,p:p+sum(wkcount(i:i+int-1))-1));
kd=tweek(floor(p-+sum(wkcount(i:i+int-1))/2),1);
p=p+sum(wkcount(i:i+int-1));

end;

kd=int2str(kd);
if size(kd,2)<4
kd=['0"' kd};
end;

xx=[xx;kd};
t=[tj); j=i+1;
end;

tx=floor(j/10);
xx=xx(1:tx:size(xx,1),:);
xxt=t(1,1:tx:size(t,2));

if fig<3
subplot('position',[0.15 0.08 0.70 0.42]);
fig=fig+1;

else
figure;
s=[num2str(size(tyy,1)) ' purchases opportunities'];
fig=1;
text('String', ""-" is predicted sales

70



level','fontsize',[12],'position,...
[-.05-0.15));
text('String', """ is actual sales
leve!','fontsize',[12],'position’,...
[.45-0.15]);
text('String','Resuits of the Overall Nested
Model','fontsize',[12],...
'position’,[.12 1.40 },'fontunderline','on’);
text('String',s,'fontsize',[12],...
'position’,[.12 1.31
0],'Units','Normalized', fontunderline','on’);

set{gca,'Visible','off’);
subplot('position’,[0.15 0.62 0.70 0.42]);
fig=fig+1;

end;

plot(t,wkprob,"-',t wkyy,'--);

sk=[IRI week'];

s2=['Total units purchased, ' ...
num2str(int) "-wk pds'];

tt=[bsm(ct,’)];

set(gca, X TickLabels',xx,'fontsize',[8],'XTick',xxt);
xlabel(s1,'fontsize’,[9])

ylabel(s2,'fontsize',[9])

title(tt,'fontsize’,[9])

dim=axis;

if fig=3

%print;

end;
end;
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APPENDIX 2, Matlab plots of predicted vs. actual brandsize shares for dataset 5974

Results of the Nested Model at the Conditional Level
: 5974 purchases
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APPENDIX 2 (continued).
Results of the Nested Model at the Conditional Level
5974 purchases
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APPENDIX 2 (continued).
Results of the Nested Model at the Conditional Levei
5974 purchases
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APPENDIX 2 (continued).

.Results of the Nested Model at the Conditional Level
5974 purchases
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APPENDIX 2 (continued).
Results of the Nested Model at the Conditional Level
5974 purchases
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APPENDIX 2 (continued).
Results of the Nested Model at the Conditional Leve!
5974 purchases
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APPENDIX 2 (continued).
Results of the Nested Model at the Conditional Level
5974 purchases
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APPENDIX 2 (continued).
Results of the Nested Model at the Conditional Level
5974 purchases
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APPENDIX 3. Matlab plots of predicted vs. actual brandsize sales for dataset 5974

Results of the Overall Nested Model
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APPENDIX 3 (continued).
.Results of the Overall Nested Model
2.83e+004 purchases opportunities
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APPENDIX 3 (continued).
Results of the Overall Nested Model
2.83e+004 purchases opportunities
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APPENDIX 3 (continued).
'Results of the Overall Nested Model
2.83e+004 purchases opportunities
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APPENDIX 3 (continued).
Resulis of the Overall Nested Model
2.83e+004 purchases opportunities
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APPENDIX 3 (continued).
Results of the Overall Nested Model
2.83e+004 purchases opportunities
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APPENDIX 3 (continued).
-Results of the Overall Nested Model
2.83e+004 purchases opportunities
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.Resuits of the Overall Nested Model
2.83e+004 purchases opportunities
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