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Abstract A measurement is presented of the relative prompt
production rate of χc2 and χc1 with 4.6 fb−1 of data col-
lected by the CMS experiment at the LHC in pp collisions at√

s = 7 TeV. The two states are measured via their radiative
decays χc → J/ψ + γ , with the photon converting into an
e+e− pair for J/ψ rapidity |y(J/ψ)| < 1.0 and photon trans-
verse momentum pT(γ ) > 0.5 GeV/c. The measurement is
given for six intervals of pT(J/ψ) between 7 and 25 GeV/c.
The results are compared to theoretical predictions.

1 Introduction

Understanding charmonium production in hadronic colli-
sions is a challenge for quantum chromodynamics (QCD).
The J/ψ production cross section measurements at the Teva-
tron [1, 2] were found to disagree by about a factor of 50
with theoretical color-singlet calculations [3]. Soon after, the
CDF experiment reported a χc2/χc1 cross section ratio that
extended up to pT(J/ψ) � 10 GeV/c, where pT is the trans-
verse momentum, and favored χc1 production over χc2 [4].
The cross section ratio was also studied recently at the Large
Hadron Collider (LHC) in Ref. [5]. These measurements in-
dependently suggest that charmonium production cannot be
explained through relatively simple models.

This paper presents a measurement of the prompt χc2/χc1

cross section ratio by the Compact Muon Solenoid (CMS)
experiment at the LHC in pp collisions at a center-of-mass
energy of 7 TeV. Prompt refers to the production of χc

mesons that originate from the primary pp interaction point,
as opposed to the ones from the decay of B hadrons. Prompt
production includes both directly produced χc and also in-
directly produced χc from the decays of short-lived inter-
mediate states, e.g. the radiative decay of the ψ(2S). The
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measurement is based on the reconstruction of the χc radia-
tive decays to J/ψ + γ , with the low transverse momentum
photons (less than 5 GeV/c) being detected through their
conversion into electron–positron pairs. The analysis uses
data collected in 2011, corresponding to a total integrated
luminosity of 4.6 fb−1. When estimating acceptance and
efficiencies, we assume that the χc2 and χc1 are produced
unpolarized, and we supply the correction factors needed to
modify the results for several different polarization scenar-
ios.

Due to the extended reach in transverse momentum made
possible by the LHC energies, the cross section ratio mea-
surement is expected to discriminate between different pre-
dictions, such as those provided by the kT-factorization [6]
and next-to-leading order nonrelativistic QCD (NRQCD)
[7] theoretical approaches.

The strength of the ratio measurement is that most theo-
retical uncertainties cancel, including the quark masses, the
value of the strong coupling constant αs , as well as exper-
imental uncertainties on quantities such as integrated lumi-
nosity, trigger efficiencies, and, in part, reconstruction effi-
ciency. Therefore, this ratio can be regarded as an important
reference measurement to test the validity of various theo-
retical quarkonium production models. With this paper, we
hope to provide further guidance for future calculations.

2 CMS detector

A detailed description of the CMS apparatus is given in
Ref. [8]. Here we provide a short summary of the detectors
relevant for this measurement.

The central feature of the CMS apparatus is a super-
conducting solenoid of 6 m internal diameter. Within the
field volume are the silicon pixel and strip tracker, the
crystal electromagnetic calorimeter and the brass/scintillator
hadron calorimeter. Muons are measured in gas-ionization
detectors embedded in the steel return yoke. In addition to
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the barrel and endcap detectors, CMS has extensive forward
calorimetry.

The inner tracker measures charged particles within the
pseudorapidity range |η| < 2.5, where η = − ln[tan(θ/2)],
and θ is the polar angle measured from the beam axis. It
consists of 1440 silicon pixel and 15 148 silicon strip de-
tector modules. In the central region, modules are arranged
in 13 measurement layers. It provides an impact parameter
resolution of ∼15 µm.

Muons are measured in the pseudorapidity range
|η| < 2.4, with detection planes made using three technolo-
gies: drift tubes, cathode strip chambers, and resistive plate
chambers. Matching the muons to the tracks measured in the
silicon tracker results in a transverse momentum resolution
between 1 and 1.5 %, for pT values up to 50 GeV/c.

The first level (L1) of the CMS trigger system, composed
of custom hardware processors, uses information from the
calorimeters and muon detectors to select the most interest-
ing events. The high-level trigger (HLT) processor farm fur-
ther decreases the event rate from around 100 kHz to around
300 Hz, before data storage. The rate of HLT triggers rele-
vant for this analysis was in the range 5–10 Hz. We analyzed
about 60 million such triggers.

3 Experimental method

We select χc1 and χc2 candidates by searching for their ra-
diative decays into the J/ψ + γ final state, with the J/ψ
decaying into two muons. The χc0 has too small a branch-
ing fraction into this final state to perform a useful measure-
ment, but we consider it in the modeling of the signal line-
shape. Given the small difference between the J/ψ mass,
3096.916 ± 0.011 MeV/c2, and the χc1 and χc2 masses,
3510.66 ± 0.07 MeV/c2 and 3556.20 ± 0.09 MeV/c2, re-
spectively [9], the detector must be able to reconstruct pho-
tons of low transverse momentum. In addition, excellent
photon momentum resolution is needed to resolve the two
states. In the center-of-mass frame of the χc states, the pho-
ton has an energy of 390 MeVwhen emitted by a χc1 and
430 MeV when emitted by a χc2. This results in most of the
photons having a pT in the laboratory frame smaller than
6 GeV/c. The precision of the cross section ratio measure-
ment depends crucially on the experimental photon energy
resolution, which must be good enough to separate the two
states. A very accurate measurement of the photon energy
is obtained by measuring electron–positron pairs originat-
ing from a photon conversion in the beampipe or the inner
layers of the silicon tracker. The superior resolution of this
approach, compared to a calorimetric energy measurement,
comes at the cost of a reduced yield due to the small prob-
ability for a conversion to occur in the innermost part of
the tracker detector and, more importantly, by the small re-
construction efficiency for low transverse momentum tracks

whose origin is displaced with respect to the beam axis. Nev-
ertheless, because of the high χc production cross section at
the LHC, the use of conversions leads to the most precise
result.

For each χc1,2 candidate, we evaluate the mass difference
�m = mμμγ − mμμ between the dimuon-plus-photon in-
variant mass, mμμγ , and the dimuon invariant mass, mμμ.
We use the quantity Q = �m + mJ/ψ , where mJ/ψ is the
world-average mass of the J/ψ from Ref. [9], as a conve-
nient variable for plotting the invariant-mass distribution.
We perform an unbinned maximum-likelihood fit to the Q

spectrum to extract the yield of prompt χc1 and χc2 as a
function of the transverse momentum of the J/ψ . A cor-
rection is applied for the differing acceptances for the two
states. Our results are given in terms of the prompt produc-
tion ratio Rp, defined as

Rp ≡ σ(pp → χc2 + X)B(χc2 → J/ψ + γ )

σ (pp → χc1 + X)B(χc1 → J/ψ + γ )
= Nχc2

Nχc1

· ε1

ε2
,

where σ(pp → χc +X) are the χc production cross sections,
B(χc → J/ψ + γ ) are the χc branching fractions, Nχci are
the number of candidates of each type obtained from the fit,
and ε1/ε2 is the ratio of the efficiencies for the two χc states.
The branching fractions B(χc1,2 → J/ψ + γ ), taken from
Ref. [9], are also used to calculate the ratio of production
cross sections.

4 Event reconstruction and selection

In order to select χc signal events, a dimuon trigger is used
to record events containing the decay J/ψ → μμ. The L1
selection requires two muons without an explicit constraint
on their transverse momentum. At the HLT, opposite-charge
dimuons are reconstructed and the dimuon rapidity y(μμ) is
required to satisfy |y(μμ)| < 1.0, while the dimuon pT must
exceed a threshold that increased from 6.5 to 10 GeV/c as
the trigger configuration evolved to cope with the instanta-
neous luminosity increase. Events containing dimuon can-
didates with invariant mass from 2.95 to 3.25 GeV/c2 are
recorded. Our data sample consists of events where multiple
pp interactions occur. At each bunch crossing, an average
of six primary vertices is reconstructed, one of them related
to the interaction that produces the χc in the final state, the
others related to softer collisions (pileup).

In the J/ψ selection, the muon tracks are required to pass
the following criteria. They must have at least 11 hits in the
tracker, with at least two in the pixel layers, to remove back-
ground from decays-in-flight. The χ2 per degree of freedom
of the track fit must be less than 1.8. To remove background
from cosmic-ray muons, the tracks must intersect a cylindri-
cal volume of radius 4 cm and total length 70 cm, centered
at the nominal interaction point and with its axis parallel to
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the beam line. Muon candidate tracks are required to have
pT > 3.3 GeV/c, |η| ≤ 1.3 and match a well-reconstructed
segment in at least one muon detector [10]. Muons with op-
posite charges are paired. The two muon trajectories are fit-
ted with a common vertex constraint, and events are retained
if the fit χ2 probability is larger than 1 %. If more than one
muon pair is found in an event, only the pair with the largest
vertex χ2 probability is selected. For the final χc1 and χc2

selection, a dimuon candidate must have an invariant mass
between 3.0 and 3.2 GeV/c2 and |y| < 1.0.

In order to restrict the measurement to the prompt J/ψ
signal component, the pseudo-proper decay length of the
J/ψ(�J/ψ), defined as �J/ψ = Lxy · mJ/ψ/pT(J/ψ), where
Lxy is the most probable transverse decay length in the lab-
oratory frame [11], is required to be less than 30 µm. In the
region �J/ψ < 30 µm, we estimate, from the observed �J/ψ

distribution, a contamination of the nonprompt component
(originating from the decays of B hadrons) of about 0.7 %,
which has a negligible impact on the total systematic uncer-
tainty.

To reconstruct the photon from radiative decays, we
use the tracker-based conversion reconstruction described in
Refs. [12–14]. We summarize the method here, mentioning
the further requirements needed to specialize the conversion
reconstruction algorithm to the χc case. The algorithm relies
on the capability of iterative tracking to efficiently recon-
struct displaced and low transverse momentum tracks. Pho-
ton conversions are characterized by an electron–positron
pair originating from a common vertex. The e+e− invariant
mass must be consistent with zero within its uncertainties
and the two tracks are required to be parallel at the conver-
sion point.

Opposite-sign track pairs are first required to have more
than four hits and a normalized χ2 less than 10. Then the
reconstruction algorithm exploits the conversion-pair signa-
ture to distinguish between genuine and misidentified back-
ground pairs. Information from the calorimeters is not used
for conversion reconstruction in our analysis. The primary
pp collision vertex associated with the photon conversion,
see below, is required to lie outside both track helices. He-
lices projected onto the transverse plane form circles; we
define dm as the distance between the centers of the two cir-
cles minus the sum of their radii. The value of dm is negative
when the two projected trajectories intersect. We require the
condition −0.25 < dm < 1.0 cm to be satisfied. From simu-
lation, we have found that most of the electron–positron can-
didate pair background comes from misreconstructed track
pairs originating from the primary vertex. These typically
have negative dm values, thus explaining the asymmetric dm

requirements.
In order to reduce the contribution of misidentified con-

versions from low-momentum displaced tracks that are arti-
ficially propagated back to the silicon tracker, the two candi-

date conversion tracks must have one of their two innermost
hits in the same silicon tracker layer.

The distance along the beam line between the extrapola-
tion of each conversion track candidate and the nearest re-
constructed event vertex must be less than five times its esti-
mated uncertainty. Moreover, among the two event vertices
closest to each track along the beam line, at least one vertex
must be in common

A reconstructed primary vertex is assigned to the recon-
structed conversion by projecting the photon momentum
onto the beamline and choosing the closest vertex along the
beam direction. If the value of the distance is larger than
five times its estimated uncertainty, the photon candidate is
rejected.

The primary vertex associated with the conversion is re-
quired to be compatible with the reconstructed J/ψ ver-
tex. This requirement is fulfilled when the three-dimensional
distance between the two vertices is compatible with zero
within five standard deviations. Furthermore, a check is
made that neither of the two muon tracks used to define the
J/ψ vertex is used as one of the conversion track pair.

The e+e− track pairs surviving the selection are then fit-
ted to a common vertex with a kinematic vertex fitter that
constrains the tracks to be parallel at the vertex in both the
transverse and longitudinal planes. The pair is retained if the
fit χ2 probability is greater than 0.05 %. If a track is shared
among two or more reconstructed conversions, only the con-
version with the larger vertex χ2 probability is retained.

Only reconstructed conversions with transverse distance
of the vertex from the center of the mean pp collision po-
sition larger than 1.5 cm are considered. This requirement
suppresses backgrounds caused by track pairs originating
from the primary event vertex that might mimic a conver-
sion, such as from π0 Dalitz decay, while retaining photon
conversions occurring within the beampipe.

Finally, each conversion candidate is associated with ev-
ery other conversion candidate in the event, and with any
photon reconstructed using calorimeter information. Any
pairs of conversions or conversion plus photon with an in-
variant mass between 0.11 and 0.15 GeV/c2, corresponding
to a two-standard-deviation window around the π0 mass, is
rejected. We have verified that the π0 rejection requirement,
while effectively reducing the background, does not affect
the Rp measurement within its uncertainties.

Converted photon candidates are required to have pT >

0.5 GeV/c, while no requirement is imposed on the pseudo-
rapidity of the photon.

The distribution of the photon conversion radius for χc

candidates is shown in Fig. 1. The first peak corresponds to
the beampipe and first pixel barrel layer, the second and third
peaks correspond to the two outermost pixel layers, while
the remaining features at radii larger than 20 cm are due to
the four innermost silicon strip layers. The observed distri-
bution of the photon conversion radius is consistent with the
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Fig. 1 Distribution of the conversion radius for the χc photon candi-
dates

known distribution of material in the tracking volume and
with Monte Carlo simulations [14].

5 Acceptance and efficiencies

In the evaluation of Rp, we must take into account the pos-
sibility that the geometric acceptance and the photon recon-
struction efficiencies are not the same for χc1 and χc2.

In order to determine the acceptance correction, a Monte
Carlo (MC) simulation sample of equal numbers of χc1

and χc2 has been used. This sample was produced using a
PYTHIA [15] single-particle simulation in which a χc1 or χc2

is generated with a transverse momentum distribution pro-
duced from a parameterized fit to the CMS measured ψ(2S)

spectrum [16]. The use of the ψ(2S) spectrum is motivated
by the proximity of the ψ(2S) mass to the states under ex-
amination. The impact of this choice is discussed in Sect. 7.

Both χc states in the simulation are forced to decay to
J/ψ + γ isotropically in their rest frame, i.e., assuming
they are produced unpolarized. We discuss later the im-
pact of this assumption. The decay products are then pro-
cessed through the full CMS detector simulation, based on
GEANT4 [17, 18], and subjected to the trigger emulation
and the full event reconstruction. In order to produce the
most realistic sample of simulated χc decays, digitized sig-
nals from MC-simulated inelastic pp events are mixed with
those from simulated signal tracks. The number of inelas-
tic events to mix with each signal event is sampled from a
Poisson distribution to accurately reproduce the amount of
pileup in the data.

The efficiency ratio ε1/ε2 for different J/ψ transverse
momentum bins is determined using

ε1

ε2
= N rec

χc1

N
gen
χc1

/
N rec

χc2

N
gen
χc2

,

where Ngen is the number of χc candidates generated in the
MC simulation within the kinematic range |y(J/ψ)| < 1.0,
pT(γ ) > 0.5 GeV/c, and N rec is the number of candidates
reconstructed with the selection above. The resulting values
are shown in Table 1, where the uncertainties are statistical
only and determined from the MC sample assuming bino-
mial distributions. The increasing trend of ε1/ε2 is expected,
because pT(J/ψ) is correlated with the pT of the photon,
and at higher photon pT our conversion reconstruction ef-
ficiency is approximately constant. Therefore, efficiencies
for the χc1 and the χc2 are approximately the same at high
pT(J/ψ).

This technique also provides an estimate of the absolute
χc reconstruction efficiency, which is given by the product
of the photon conversion probability, the χc selection effi-
ciency, and, most importantly, the conversion reconstruction
efficiency, which corresponds to the dominant contribution.
This product varies as a function of pT(γ ), and goes from
4 × 10−4 at 0.5 GeV/c to around 10−2 at 4 GeV/c, where it
saturates.

6 Signal extraction

We extract the numbers of χc1 and χc2 events, Nχc1 and
Nχc2 , respectively, from the data by performing an unbinned
maximum-likelihood fit to the Q spectrum in various ranges
of J/ψ transverse momentum.

Because of the small intrinsic width of the χc states we
are investigating, the observed signal shape is dominated
by the experimental resolution. The signal probability den-
sity function (PDF) is derived from the MC simulation de-
scribed in Sect. 5, and is modeled by the superposition of
two double-sided Crystal Ball functions [19] for the χc1 and
χc2 and a single-sided Crystal Ball function for the χc0. Each
double-sided Crystal Ball function consists of a Gaussian

Table 1 Ratio of efficiencies ε1/ε2 as a function of the J/ψ transverse
momentum from MC simulation. The uncertainties are statistical only

pT(J/ψ) [GeV/c] ε1/ε2

7–9 0.903 ± 0.023

9–11 0.935 ± 0.019

11–13 0.945 ± 0.021

13–16 0.917 ± 0.022

16–20 0.981 ± 0.031

20–25 1.028 ± 0.049
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core with exponential tails on both the high- and low-mass
sides. We find this shape to provide an accurate parameteri-
zation of the Q spectra derived from MC simulation. When
fitting the data, we fix all the parameters of the Crystal Ball
function to the values that best fit our MC simulation and use
a maximum-likelihood approach to derive Nχc1 and Nχc2 ,
which are the integrals of the PDFs for the two resonances.
Because the Q resolution depends on the pT of the J/ψ , a set
of shape parameters is determined for each bin of pT(J/ψ).
Simulation shows that the most important feature of the χc0

signal shape is the low-mass tail due to radiation from the
electrons, while the high-mass tail is overwhelmed by the
combinatorial background and the low-mass tail of the other
resonances. Hence the choice to use a single-sided Crys-
tal Ball function to fit the χc0 mass distribution. Different
choices of the χc0 signal parameterization are found to cause
variations in the measured Rp values that are well within the
quoted systematic uncertainties given below.

The background is modeled by a probability distribution
function defined as

Nbkg(Q) = (Q − q0)
α1 · e(Q−q0)·β1,

where α1 and β1 are free parameters in the fit, and q0 is set
to 3.2 GeV/c2.

In Fig. 2 we show the Q distribution for two differ-
ent ranges, 11 < pT(J/ψ) < 13 GeV/c (left) and 16 <

pT(J/ψ) < 20 GeV/c (right). This procedure is repeated for
several ranges in the transverse momentum of the J/ψ in
order to extract Nχc1 and Nχc2 in the corresponding bin.

The results are shown in Table 2, where the reported un-
certainties are statistical only.

7 Systematic uncertainties

Several types of systematic uncertainty are addressed. In
particular, we investigate possible effects that could influ-
ence the measurement of the numbers of χc1 and χc2 from

data, the evaluation of ε1/ε2 from the MC simulation, and
the derivation of the Rp ratio. In Table 3 the various sources
of systematic uncertainties and their contributions to the to-
tal uncertainty are summarized. The following subsections
describe how the various contributions are evaluated.

7.1 Uncertainty from the mass fit and χc1 and χc2 counting

The measurement of the ratio Nχc2/Nχc1 could be affected
by the choice of the functional form used for the maximum-
likelihood fit. The use of an alternative background param-
eterization, a fourth-order polynomial, results in systemati-
cally higher values of the ratio Nχc2/Nχc1 , while keeping the
overall fit quality as high as in the default procedure. From
the difference in the numbers of signal events using the two
background parameterizations, we assign the systematic un-
certainty from the background modeling shown in Table 3.

We evaluate the systematic uncertainty related to the pa-
rameterization of the signal shape by varying the parameters
derived from the MC simulation within their uncertainties.
The results fluctuate within 1–3 % in the various transverse
momentum ranges. We assign the systematic uncertainties
from this source, as shown in Table 3.

The method to disentangle and count the χc1 and χc2

states is validated by using a PYTHIA MC simulation sample
of inclusive J/ψ events, including those from χc decay, pro-

Table 2 Numbers of χc1 and χc2 events extracted from the maximum-
likelihood fit, and the ratio of the two values. Uncertainties are statisti-
cal only

pT(J/ψ) [GeV/c] Nχc1 Nχc2 Nχc2/Nχc1

7–9 618 ± 31 315 ± 24 0.510 ± 0.049

9–11 1680 ± 49 788 ± 37 0.469 ± 0.027

11–13 1819 ± 51 819 ± 38 0.451 ± 0.025

13–16 1767 ± 51 851 ± 39 0.482 ± 0.027

16–20 1269 ± 43 487 ± 30 0.384 ± 0.028

20–25 642 ± 31 236 ± 22 0.368 ± 0.040

Fig. 2 The distribution of the
variable
Q = mμμγ − mμμ + mJ/ψ for
χc candidates with pT(J/ψ)

ranges shown in the figures. The
line shows the fit to the data
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Table 3 Relative systematic
uncertainties on Rp for different
ranges of J/ψ transverse
momentum from different
sources and the total uncertainty

pT(J/ψ) range [GeV/c] 7–9 9–11 11–13 13–16 16–20 20–25

Source of uncertainty Systematic uncertainty (%)

Background shape 1.4 1.5 0.9 1.2 1.8 2.4

Signal shape 1.4 3.0 1.1 1.5 1.5 2.3

Simulation sample size 2.6 2.0 2.2 2.4 3.1 4.8

Choice of pT(χc) spectrum 4.5 3.7 2.9 1.9 0.6 1.1

Total uncertainty 5.5 5.4 3.9 3.6 4.0 5.9

duced in pp collisions and propagated through the full simu-
lation of the detector. The ratio Nχc2/Nχc1 derived from the
fit to the Q distribution of the reconstructed candidates in the
simulation is consistent with the actual number of χc events
contributing to the distribution, within the statistical uncer-
tainty, for all J/ψ momentum ranges. Therefore, we do not
assign any further systematic uncertainty in the determina-
tion of Nχc2/Nχc1 .

The stability of our analysis as a function of the num-
ber of primary vertices in the event has been investigated.
The number of χc candidates per unit of integrated luminos-
ity, once trigger conditions are taken into account, is found
to be independent of the instantaneous luminosity, within
the statistical uncertainties. In addition, the measured ratio
Nχc2/Nχc1 is found to be constant as a function of the num-
ber of primary vertices in the event, within the statistical
uncertainties. Thus, no systematic uncertainty due to pileup
is included in the final results.

7.2 Uncertainty in the ratio of efficiencies

The statistical uncertainty in the measurement of ε1/ε2 from
the simulation, owing to the finite size of the MC sample, is
taken as a systematic uncertainty, as shown in Table 3.

Since the analysis relies on photon conversions, the ef-
fect of a possible incorrect simulation of the tracker detec-
tor material is estimated. Two modified material scenarios,
i.e., special detector geometries prepared for this purpose,
in which the total mass of the silicon tracker varies by up to
5 % from the reference geometry, are used to produce new
MC simulation samples [20]. With these models, local vari-
ations of the radiation length with respect to the reference
simulation can be as large as +8 % and −3 %. No signif-
icant difference in the ratio of efficiencies is observed and
the corresponding systematic uncertainty is taken to be neg-
ligible.

Several choices of the generated pT(χc) spectrum are in-
vestigated. In particular, the use of the measured J/ψ spec-
trum [11] gives values that are compatible with the default
ψ(2S) spectrum used for the final result. The choice of the
spectrum affects the values of ε1/ε2 only inasmuch as we
perform an average measurement in each bin of pT(J/ψ),

and the size of these bins is finite. We choose to assign a
conservative systematic uncertainty by comparing the val-
ues of ε1/ε2 obtained with the ψ(2S) spectrum with those
obtained in the case where the pT(χc) spectrum is taken to
be constant in each pT bin. The corresponding systematic
uncertainties are given in Table 3.

7.3 χc polarization

The polarizations of the χc1 and χc2 are unknown. Efficien-
cies are estimated under the assumption that the two states
are unpolarized. If the χc states are polarized, the resulting
photon angular distribution and transverse momentum dis-
tributions will be affected. This can produce a change in the
photon efficiency ratio ε1/ε2.

In order to investigate the impact of different polarization
scenarios on the ratio of the efficiencies, we reweight the un-
polarized MC distributions to reproduce the theoretical χc

angular distributions [21, 22] for different χc polarizations.
We measure the efficiency ε1/ε2 for the χc1 being unpolar-
ized or with helicity mχc1 = 0,±1, in combination with the
χc2 being unpolarized or having helicity mχc2 = 0,±2 in
both the helicity and Collins–Soper [23] frames. The ratio
of efficiencies for the cases involving mχc2 = ±1 is between
the cases with mχc2 = 0 and mχc2 = ±2. Tables 4 and 5 give
the resulting ε1/ε2 values for each polarization scenario in
different J/ψ transverse momentum bins for the two frames,
relative to the value of the ratio for the unpolarized case.
These tables, therefore, provide the correction that should
be applied to the default value of ε1/ε2 in each polarization
scenario and each range of transverse momentum.

7.4 Branching fractions

The measurement of the prompt χc2 to χc1 production cross
section ratio is affected by the uncertainties in the branching
fractions of the two states into J/ψ + γ . The quantity that
is directly accessible in this analysis is Rp, the product of
the ratio of the χc2 to χc1 cross sections and the ratio of the
branching fractions.

In order to extract the ratio of the prompt production
cross sections, we use the value of 1.76 ± 0.10 for B(χc1 →
J/ψ +γ )/B(χc2 → J/ψ +γ ) as derived from the branching
fractions and associated uncertainties reported in Ref. [9].
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Table 4 The efficiency ratio
ε1/ε2 for different polarization
scenarios in which the χc1 is
either unpolarized or has
helicity mχc1 = 0,±1 and the
χc2 is either unpolarized or has
helicity mχc2 = 0,±2 in the
helicity frame, relative to the
unpolarized case

Polarization scenario
(mχc1 ,mχc2 )

pT(J/ψ) [GeV/c]
7–9 9–11 11–13 13–16 16–20 20–25

(Unpolarized,0) 0.89 0.87 0.85 0.86 0.85 0.86

(Unpolarized,±2) 1.20 1.20 1.21 1.20 1.20 1.17

(0,Unpolarized) 0.83 0.84 0.85 0.85 0.85 0.86

(±1,Unpolarized) 1.08 1.07 1.07 1.07 1.07 1.07

(0,0) 0.74 0.73 0.72 0.73 0.72 0.74

(0,±2) 1.00 1.01 1.03 1.02 1.02 1.01

(±1,0) 0.95 0.93 0.91 0.97 0.90 0.92

(±1,±2) 1.29 1.29 1.29 1.28 1.28 1.25

Table 5 The values of ε1/ε2
for different polarization
scenarios in the Collins–Soper
frame, relative to the
unpolarized case

Polarization scenario
(mχc1 ,mχc2 )

pT(J/ψ) [GeV/c]
7–9 9–11 11–13 13–16 16–20 20–25

(Unpolarized,0) 1.04 1.06 1.08 1.07 1.08 1.08

(Unpolarized,±2) 0.97 0.95 0.93 0.93 0.92 0.92

(0,Unpolarized) 1.04 1.05 1.06 1.07 1.07 1.06

(±1,Unpolarized) 0.98 0.97 0.97 0.96 0.96 0.97

(0,0) 1.08 1.12 1.14 1.15 1.16 1.14

(0,±2) 1.01 0.99 0.98 0.99 0.98 0.98

(±1,0) 1.02 1.03 1.04 1.04 1.04 1.04

(±1,±2) 0.95 0.92 0.90 0.90 0.89 0.89

8 Results and discussion

The results of the measurement of the ratio Rp and of the
ratio of the χc2 to χc1 prompt production cross sections for
the kinematic range pT(γ ) > 0.5 GeV/c and |y(J/ψ)| < 1.0
are reported in Tables 6 and 7, respectively, for different
ranges of pT(J/ψ). The first uncertainty is statistical, the
second is systematic, and the third comes from the uncer-
tainty in the branching fractions in the measurement of the

cross section ratio. Separate columns are dedicated to the
uncertainty derived from the extreme polarization scenar-
ios in the helicity and Collins–Soper frames, by choosing
from Tables 4 and 5 the scenarios that give the largest vari-
ations relative to the unpolarized case. These correspond to
(mχc1 ,mχc2) = (±1,±2) and (mχc1 ,mχc2) = (0,0) for both
the helicity and Collins–Soper frames. Figure 3 displays the
results as a function of the J/ψ transverse momentum for the
hypothesis of unpolarized production. The error bars repre-

Table 6 Measurements of σ(χc2)B(χc2)
σ (χc1)B(χc1)

for the given pT(J/ψ) ranges
in the fiducial kinematic region pT(γ ) > 0.5 GeV/c, |y(J/ψ)| < 1.0,
assuming unpolarized χc production. The first uncertainty is statistical

and the second is systematic. The last two columns report the addi-
tional uncertainties derived from the extreme polarization scenarios in
the helicity (HX) and Collins–Soper (CS) frames

pT(J/ψ) [GeV/c] σ(χc2)B(χc2)
σ (χc1)B(χc1)

HX CS

7–9 0.460 ± 0.044 (stat.) ± 0.025 (syst.) +0.136
−0.121

+0.037
−0.023

9–11 0.439 ± 0.025 (stat.) ± 0.024 (syst.) +0.128
−0.119

+0.052
−0.035

11–13 0.426 ± 0.024 (stat.) ± 0.017 (syst.) +0.125
−0.117

+0.059
−0.042

13–16 0.442 ± 0.025 (stat.) ± 0.016 (syst.) +0.125
−0.121

+0.065
−0.044

16–20 0.377 ± 0.028 (stat.) ± 0.015 (syst.) +0.106
−0.104

+0.059
−0.042

20–25 0.379 ± 0.041 (stat.) ± 0.022 (syst.) +0.094
−0.097

+0.055
−0.040
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Table 7 Measurements of σ(χc2)/σ (χc1) for the given pT(J/ψ)

ranges derived using the branching fractions from Ref. [9], assum-
ing unpolarized χc production. The first uncertainty is statistical, the
second is systematic, and the third from the branching fraction uncer-

tainties. The last two columns report the uncertainties derived from the
extreme polarization scenarios in the helicity (HX) and Collins–Soper
(CS) frames

pT(J/ψ) [GeV/c] σ(χc2)/σ (χc1) HX CS

7–9 0.811 ± 0.078 (stat.) ± 0.045 (syst.) ± 0.046(BR) +0.239
−0.213

+0.066
−0.041

9–11 0.774 ± 0.044 (stat.) ± 0.042 (syst.) ± 0.044(BR) +0.225
−0.209

+0.092
−0.061

11–13 0.752 ± 0.042 (stat.) ± 0.029 (syst.) ± 0.043(BR) +0.221
−0.207

+0.105
−0.074

13–16 0.78 ± 0.044 (stat.) ± 0.028 (syst.) ± 0.044(BR) +0.221
−0.213

+0.115
−0.078

16–20 0.665 ± 0.049 (stat.) ± 0.027 (syst.) ± 0.038(BR) +0.187
−0.184

+0.104
−0.074

20–25 0.669 ± 0.072 (stat.) ± 0.039 (syst.) ± 0.038(BR) +0.165
−0.172

+0.096
−0.070

Fig. 3 Ratio of the χc2 to χc1 production cross sections (circles) and
ratio of the cross sections times the branching fractions to J/ψ + γ

(squares) as a function of the J/ψ transverse momentum with the hy-
pothesis of unpolarized production. The error bars correspond to the
statistical uncertainties and the band corresponds to the systematic un-
certainties. For the cross section ratios, the 5.6 % uncertainty from the
branching fractions is not included

sent the statistical uncertainties and the green bands the sys-
tematic uncertainties.

Our measurement of the ratio of the prompt χc2 to χc1

cross sections includes both directly produced χc mesons
and indirectly produced ones from the decays of interme-
diate states. To convert our result to the ratio of directly
produced χc2 to χc1 mesons requires knowledge of the
amount of feed-down from all possible short-lived interme-
diate states that have a decay mode into χc2 or χc1. The
largest known such feed-down contribution comes from the
ψ(2S). Using the measured prompt J/ψ and ψ(2S) cross
sections in pp collisions at 7 TeV [16], the branching frac-
tions for the decays ψ(2S) → χc1,2 + γ [9], and assum-
ing the same fractional χc contribution to the total prompt
J/ψ production cross section as measured in pp collisions
at 1.96 TeV [24], we estimate that roughly 5 % of both our

prompt χc1 and χc2 samples come from ψ(2S) decays. The
correction in going from the prompt ratio to the direct ratio
is about 1 %. In comparing our results with the theoretical
predictions described below, we have not attempted to cor-
rect for this effect since the uncertainties on the fractions are
difficult to estimate, the correction is much smaller than the
statistical and systematic uncertainties, and our conclusions
on the comparisons with the theoretical predictions would
not be altered by a correction of this magnitude.

We compare our results with theoretical predictions de-
rived from the kT-factorization [6] and NRQCD [7] calcula-
tions in Fig. 4. The kT-factorization approach predicts that
both χc1 and χc2 are produced in an almost pure helicity-
zero state in the helicity frame. Therefore, in our compari-
son, we apply the corresponding correction on the ratio of
efficiencies from Table 4, amounting to a factor of 0.73,
almost independent of pT. The theoretical calculation is
given in the same kinematic range (pT(γ ) > 0.5 GeV/c,
|y(J/ψ)| < 1.0) as our measurement. There is no informa-
tion about the χc polarization from the NRQCD calcula-
tions, so we use the ratio of efficiencies estimated in the un-
polarized case for our comparison. The prediction is given
in the kinematic range pT(γ ) > 0 GeV/c, |y(J/ψ)| < 1.0.
We use the same MC simulation described in Sect. 5 to
derive the small correction factor (ranging from 0.98 to
1.02 depending on pT, with uncertainties from 1 to 4 %)
needed to extrapolate the phase space of our measurement
to the one used for the theoretical calculation. The uncer-
tainty in the correction factor stemming from the assump-
tion of the χc transverse momentum distribution is added as
a systematic uncertainty. The values of Rp after extrapola-
tion are shown in Table 8. The comparison of our measure-
ments with the kT-factorization and NRQCD predictions are
shown in the left and right plots of Fig. 4, respectively. The
kT-factorization prediction agrees well with the trend of Rp

versus transverse momentum of the J/ψ , but with a global
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Fig. 4 Comparison of the measured σ(χc2)B(χc2)
σ (χc1)B(χc1)

values with theoret-
ical predictions from the kT-factorization [6] (left) and NRQCD [7]
(right) calculations (solid red lines). The error bars and bands show
the experimental statistical and systematic uncertainties, respectively.
The measurements in the left plot use an acceptance correction as-
suming zero helicity for the χc, as predicted by the kT-factorization
model. The measurements in the right plot are corrected to match the

kinematic range used in the NRQCD calculation and assume the χc
are produced unpolarized. The measurements assuming two differ-
ent extreme polarization scenarios are shown by the long-dashed and
short-dashed lines in the plot on the right. The 1-standard-deviation
uncertainties in the NRQCD prediction, originating from uncertainties
in the color-octet matrix elements, are displayed as the dotted lines

Table 8 Measurements of
σ(χc2)B(χc2)
σ (χc1)B(χc1)

for the given
pT(J/ψ) ranges after
extrapolating the measurement
to the kinematic region
pT(γ ) > 0 and assuming
unpolarized χc production. The
first uncertainty is statistical and
the second is systematic. The
last column reports the largest
variations due changes in the
assumed χc polarizations

pT(J/ψ) [GeV/c] σ(χc2)B(χc2)
σ (χc1)B(χc1)

Polarization

7–9 0.451 ± 0.043 (stat.) ± 0.025 (syst.) +0.137
−0.153

9–11 0.427 ± 0.024 (stat.) ± 0.023 (syst.) +0.134
−0.144

11–13 0.421 ± 0.024 (stat.) ± 0.017 (syst.) +0.133
−0.142

13–16 0.441 ± 0.025 (stat.) ± 0.017 (syst.) +0.138
−0.143

16–20 0.365 ± 0.027 (stat.) ± 0.016 (syst.) +0.114
−0.115

20–25 0.387 ± 0.042 (stat.) ± 0.026 (syst.) +0.109
−0.105

normalization that is higher by about a factor two with re-
spect to our measurement. It is worth noting that this cal-
culation assumes the same wave function for the χc1 and
the χc2. On the other hand, the NRQCD prediction is com-
patible with our results within the experimental and theoret-
ical uncertainties, though, since predictions for χc1 or χc2

polarizations were not provided, the level of agreement can
vary considerably.

A direct comparison of our results with previous mea-
surements, in particular from [4] and [5], is not straightfor-
ward, because of the different conditions under which they
were carried out. Specifically, there are differences in the
kinematical phase space considered and, in the case of [4],
in the initial-state colliding beams and center-of-mass en-
ergy used. However, with these caveats, a direct comparison
shows that the three results are compatible within their un-
certainties. In particular, all three results confirm the trend
of a decreasing ratio of χc2 to χc1 production cross sections
as a function of pT(J/ψ), under the assumption that the χc2

and χc1 polarizations do not depend on pT(J/ψ).

9 Summary

Measurements have been presented of the ratio

Rp ≡ σ(pp → χc2 + X)B(χc2 → J/ψ + γ )

σ (pp → χc1 + X)B(χc1 → J/ψ + γ )

as a function of the J/ψ transverse momentum up to
pT(J/ψ) = 25 GeV/c for the kinematic range
pT(γ ) > 0.5 GeV/c and |y(J/ψ)| < 1.0 in pp collisions at√

s = 7 TeV with a data sample corresponding to an inte-
grated luminosity of 4.6 fb−1. The corresponding values for
the ratio of the χc2 to χc1 production cross sections have
been determined.

The results have also been shown after extrapolating the
photon acceptance down to zero pT. The effect of several
different χc polarization scenarios on the photon reconstruc-
tion efficiency has been investigated and taken into account
in the comparison of the experimental results with two re-
cent theoretical predictions. This is among the most precise
measurements of the χc production cross section ratio made
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in hadron collisions, and extends the explored J/ψpT range
of previous results. These measurements will provide im-
portant input to and constraints on future theoretical calcu-
lations of quarkonium production, as recently discussed in
[25] for the bottomonium family.
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