Pliant Type

Development and temporal manipulation
of expressive, malleable typography

by Peter Cho

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment cf the Requirements
for the Degree of Bachelor of Science

at the Massachusetts Institute of Technology
May 1997

Copyright 1997 MIT
All rights reserved

Signature of Author
Department of Mechanical Enginee-iig
May 8, 1997

Certified by
John Maeda
Ass. “tant Professor of Design and Computation
MIT Media Laboratory

Thesis Advisor

r7 T

Accepted by
Peter Giriffith
Professor of Mechanicai Engineering o NEiLgr
Chairman of the Undergraduate Thesis Committee VR

LIGRANIES

Pliant Type

Davelopment and temporal manipuiation
of expressive, malleatle typography

by Peter Cho

Submitted to the Department of Mechanical Engineering
on May 9, 1997 in Partial Fulfilment of the Requirements
for the Degree of Bachelor of Science

Abstract

Text is not limited to static presentation in digital communication. Past
research into temporal typography has focused on changing the size,
orientation, color, and position of typographic forms while keeping the
letterforms themselves intact. This thesis proposes pliant type as an area
of study within temporal typography in which letterforms are malleable
shapes which can move in expressive ways. This thesis presents a shape
representation for type which allows the manipulation of typographic
shapes on a basic level. Two shape representations have been imple-
mented: outline and skeletal. In pliant type design experiments,
letterforms are created using a shape builder. These shapes then are
manipulated through interaction with the user and with computational
engines. Pliant typc suggests new ideas for expressive visual communica-
tion. The research contributes to a broader understanding of temporal
typographic design.

Thesis Supervisor: John Maeda
Title: Assistant Professor of Design and Computation, MIT Media Lab

Acknowledgements

I would like to thank John Maeda, my thesis advisor, for his guidance
and constant support. My thanks go to Glorianna Davenport, who first
entrusted work to me as an undergraduate researcher, and Angelynn
Grant, who encouraged my interest in typography. I would also like to
thank my friends and colieagues at the Media Lab—Reed, Chloe, Sawad,
Tom, Dave, Matt, Jared, Elise, and Phillip.

Table of Contents

1 Introduction

Motivation
Organizatlon of this thesis

2 Background and Related Work

Expressive typography
Related research

3 Design Issues

Digital typography and letterform design
Legibility

Scogpe of pliant type expression

Letter shape representation

4 Implementation

Outline shapes
Skeletal shapes
Shape builder

5 Design Experiments

Sleepy

Stitch

Alm

Typographic toolkit
Oh1,2and 3

6 Conclusion and Discussion

Type representation

Level of pliant type manipulation
Other applications

Deslgn and computation

Appendix A Code

References

10

13

16

20

23

1 Introduction

Type is the building block of written communication. Typography
evolved through history—at different points of time, type was carved into
clay, chiseled into stone, and cast in metal to be printed onto paper. Type
in the digital medium is represented as data. On the computer, the outline
of each letter of a font is represented as points in space connected by line
and curve segments. This research approaches type as computational
shapes which can be manipulated expressively in real time. The treatment
of typography as malleable shapes, pliant type, adds new possibilities and
complexities to the design of temporal typography.

Temporal typography is the dynamic treatment of text—essentially, type
that changes its form over time. Examples of temporal typography can be
seen in different time-based media: television commercials, introductory
film and TV sequences, computer games, and most recently, the web.

While these examples of temporal typography often make use of comput-
ers in the design process, the computer in these cases serves as a
high-level designer’s tool. In this research, as well as in other research
condncted at the MIT Media Laboratory and elsewhere, computation is
used to explore typographic expression on the computer through the use
of motion and interactivity.

When type is represented digitally, it becomes relatively easy to manipu-
late the letter shapes. Graphics programs such as Adobe Illustrator allow
the user to convert fonts into vector-based paths which can be modified
point by point. Some experiments in manipulating letter shapes on a
computational basis have been made: Just van Rossum and Erik van
Blokland’s font Beowolf, for example, has “randomness” coded into it so

QRSTUVWXYZa)
ghijklmnopqrstug

Figures 1 and 2: Beowolf and Nimida represent attempts at “computational” type.

that the individual letterforms change every time they are printed. Van
Blokand’s font Nimida randomly degenerates its letterforms. While facili-
ties for manipulating the shape of type are available, the potential for
developing expressive, computational deformation of letters in the
context of words remains unexplored.

Motivation

Letters are abstract shapes. We have the ability to read a wide range of
writing styles: serif, sans serif, script, and display typefaces, calligraphy,
even bad handwriting. Similarly, we can recognize letters in the shapes of
the physical world. If letters are abstract shapes, typefaces represent only
specific instances in a wide spectrum of letter shape possibilities. This
research proposes that new expressive design solutions and possibilities
become available in the digital medium when letterforms are mutable.

This thesis examines some of the issues which arise in temporal typogra-
phy when letterforms themselves change shape. These issues include
devising a flexible shape representation which is responsive to the
specific needs of typography, developing a method for building pliant
type, and exploring the kinds of expression pliant type makes possible.

In order to examine these issues, two letter shape representation schemes,
outline and skeletal, were implemented, a tool was developed for build-
ing pliant type, and several design experiments were made to explore the
possibilities for dynamic and interactive pliant type.

Organization of this thesis

The next chapter contains background information about expressive
typography in print and digital media, including related work in temporal
typography. Chapter 3 discusses the design issues involved in developing
pliant type. Chapter 4 describes the implementation of the two shape
representation schemes and the shape building tool. Chapter 5 discusses
the design experiments. Chapter 6 draws conclusions from the research
and suggests future research in the area.

]

2 Background and Related Work

Expressive typography

Examples of expressive typography, type designed to communicate
emotion and meaning, can be found in print, motion pictures, and digital
media.

Letters on a page have a tremendous opportunity to evoke expression,
through contrasts of size, weight, structure, form, color, direction, texture,
and other attributes. The German typographer Jan Tschichold advocated
in Die Neue Typographie (1928) that a dynamic force should be present
in each design. Tschichold, arguing that type should be placed in motion
rather than at rest, favored kinetic asymmetrical design of contrasting
elements.

Examples of dynamic and expressive typogra-
phy can be found in Bauhaus works. Lazlo
Moholy-Nagy’s poster for Pneumatik tires, for
instance, gives the letterforms a perspective
treatment (Fig. 3). This is an example of
conveying motion on a static page by manipu-
lating and distorting the typography—placing
the type on a plane other than the plane of the
page.

In his design of Eugéne Ionesco’s absurdist
play, The Bald Soprano, Robert Massin treats R

. Figure 3: An example of type
the page as a stage for type (Fig. 4). distortion. Lazlo Moholy-Nagy,
Photographs and lines of text are orchestrated to Pneumatik, 1923
represent the inflections of voice, the awkward
silences, and the commotion of multiple voices in a visual manner. The
characters’ movement on the stage, their vocal expressions, and their
emotions are conveyed through the typography.

Adding the dimension of time creates new possibilities for expressive
typography. Many examples of temporal typorgraphy can be seen in

des,
h ‘
" }s:ei‘mm éﬂg‘mysse

\a!

je n
‘H!JS at)]
cagna da?ﬁ c" d[.-‘ecgcom
- é}ﬂcaca%isadw%ﬁ “Eﬂ!'m donnenl u

Figure 4: An example of expressive typography in print. Robert Massin,
La Cantatrice Chauve, 1964.

motion picture titles, television commercials, and other venues. Saul Bass
pioneered the use of temporal typography in the introductory titles for
many films. In the opening titles for “Psycho,” for example, horizontal
lines move across the picture and reveal broken letterforms, making the
viewer feel the unease associated with the word
“psycho” (Fig. 5).

Interactive temporal typographic examples are not
common in part because the technology needed to
develop such pieces was not available until recently.
Furthermore, most authoring environments which

| ALFRED MITCHCOCK S

allow for complex user interaction and animation of
typography require programming skills most designers
and artists do not possess.

The dynamic, interactive work of John Maeda,
however, serves as an example of what can result when g .
a creative designer has a full grasp of programming. In |8 ' nsvér«g‘. .
his interactive book, Flying Letters, for instance, L
Maeda uses creative typographical experiments to
amuse and to suggest new ways of thinking about
letters and the ways we can interact with the computer.

C..psvcHO

Figure 5: A tempo-

Related research ral typography
)) sequence. Saul
Much of the research in expressive temporal typogra- Bass, titles for

Hitchock's

phy has come from the MIT Media Laboratory. The Psycho, 1060,

work of David Small and Yin Yin Wong in particular

has contributed to this study. Small (1987) develops the notion of
“expressive typography,” creating examples in which object dynamics are
applied to typography, treating type as if it were part of the physical
world. Wong (1995) presents a framework for thinking about and design-
ing temporal typography. In the characterization scheme she develops,
pliant type can be thought of a complex visual technique.

Jason Lewis’ work (1996) at the Royal College of Art focuses on explor-
ing expressive typography within the context of poetry. He stresses the
need for devising new methods of expressing content in the digital
medium.

In a previous design experiment, I looked at a single letterform—the A—
as a playful interactive element. As the user moves the mouse around the
screen, the letter appears to dance and smile. Pliant type builds on the

idea that letterforms are shapes which can move expressively. This
research applies this idea to words, using expressive motion in this larger
context.

Figure 6: The dancing A. Cho, 1996.

3 Design Issues

Digital typography and letterform design

Type design is a painstaking process. In developing a fom, typograpl.:rs
must craft each letter so that each character works both or. its own and
with every other letter. I have great respect for this process. While 1
created my own letterforms in this research, I do not profess to be highly
experienced in type design.

In developing pliant type, I considered using the data from uctual fonts in
my design experiments. While this could be a future step, I decided
instead to create the type from scratch using the tools I built. This gave
me control over the letterforms and thus the most relevant typeface
experiments.

Legibility

The deformation of type brings up the issue of legibility. At a certain
point during deformation, a letter becomes no longer recognizable as that
letter. If the letter is part of a word, the surrounding letters may provide
enough context so that the word’s meaning remains intact. Sometinres
during type deformation, a letter can change shape and be perceived as a
different letter, or as both the original letter and the new letter, as when
the ascender of a lowercase h is low enough so that the A can be seen as a
lowercase n (Fig. 7).

In this research, I became interested in looking at the boundary at which
a form is still recognizable, but distorted in ways that make it a less
pleasing form. This is related to another issue of temporal typographic
design. Many tools for dynamic design allow the author to set keyframes
at specific times, and the system interpolates the frames in between. In
some cases, the designer may create coherent designs at the keyframes

Figure 7: Ambiguity in
transition from lowercase h
to lowercase n.

10

while the interpolated frames are a mess. This issue is aised: does the
author want to have control so that every frame, including every interven-
ing frame, is well-crafted? How does one devise a well-designed motion?

This issue of temporal design is related to pliant type deformations. Some
of the user-controlled deformations of pliant type are open-ended,
meaning the type begins in a certain state designed by the author, then the
reader is free to deform the type in certain ways. In this case, does the
author want to make every possible outcome be well-designed? One solu-
tion is to develop the reader’s interactions carefully so that control over
what he sees is maintained. Another solution is to develop pliant type
which holds a memory of its form so that regardless of user interaction,
rie type shapes remain intelligible.

Scope of pliant type expression

In the pliant type design experiments, my goal was to use the meaning of
words to inform the kind of deformations which take place. The issue of
scope was brought up. Deformation can occur at any number of levels,
from the parts of letters to entire bodies of text. The dancing A showed
that typographic distortion can be effective on the level of a single letter.
One could imagine deformation applied to Just part of a letter—a serif
which expands and shrinks, for cxample. At a much higher level, pliant
type ideas could be used to enhance the expression of a temporal typog-
raphy poem.

While this research considers pliant type expression at the level of single
words, the deformation actually occurs at the level of individual letters.

Letter shape representation

In this research, I was faced with the issue of how to represent letter
shapes. The two basic options—outline and skeletal representation—each
have advantages and disadvantages. The two representations differ in
flexibility and complexity.

Outline representation involves describing a letter as a closed shape. The
data points for such a shape lie on the outline of the shape; the points are
connected by segments, and the shape is filled. Basically, this is the
current implementation of digital fonts.

Skeletal representation, on the other hand, involves conceptualizing a
letter as a path with a stroke width. The data points for a skeletal letter lie

11

Figure 8: Shape representaiions compared. Letters on the left are represented
by the outline shape model. Letters on the right, by the skeletal model.

on the inside of the shape. Each point has a stroke width. The points are
connected, and the shape is filled from the inside out to the specified
stroke width at cach point. This representation is closer to how we
write—we draw letters as paths, where the stroke width is the width of
our pen.

While the outline representation is more flexible than the skeletal repre-
sentation in terms of the letter shapes which can be created, outline fonts
are harder to manipulate in an intuitive manner. Since an outline letter
has no knowledge of its “stroke width,” it is difficult to perform manipu-
lations in which the stroke remains constant. In contrast, a skeletal letter
can be easily manipulated so that the stroke either remains constant or
changes in a controlled manner.

One drawback of the skeletal representation is that it is more complex
and therefore more computationally intensive than the outline representa-
tion. Whereas the data points of an outline letter can easily be converted
into a filled polygon to be drawn to the screen, the filled segments of a
skeletal letter must be calculated before the letter can be displayed. In
additicon, “corner points,” or points where line segments intersect, must
be calculated (see Chapter 4 for details). These complexities make real-
time manipulation of complicated skeletal type less feasible than outline
type manipulation on slower systems.

In this thesis, I implemented both outline and skeletal type representa-
tions and created pliant type experiments to test the features of both
models.

12

4 Implementation

The pliant type design process involves two steps: designing letterforms
using the shape builder, then designing the computational methods that
control the pliant type motion. This section describes the shape represen-
tations, the shape manipulation methods available to thesc
representations, and the shape building tool. This research is imple-
mented in Java.

Outline shapes

The outline shape representatior. was developed first. In this representa-
ilon, a list of coordinates represents the perimeter of the letter shape.
These points are connected in order by straight line segments which
create an open-path shape. A line segment from the last point to the first
point closes the shape. Each point has a weight value which specifies that
point’s tendency to stay where it is during deforination. Though designat-
ing weights for each point was an implemented feature, I did not make
use of it in my design experiments.

Once I created this outline shape representation, [developed the methods
by which the shape could be manipulated on a basic level. Individual
points of the shape can be translated in x and y. Additionally, points of
the shape can be moved so that neighboring points also move, depending
either on their distance in the chain or their absolute distance in the Xy
plane. A point can also move toward or away from another point in the
shape or a specified xy point outside of the shape. Line segments between
two neighboring points can be moved, lengthened or shortened.

Skeletal shapes

The skeletal type representation was developed next. In this representa-
tion, a letter shape, as in the outline representation, consists of a list of
coordinates. However, these points make up the “backbone” of the letter
rather than the outline. The skeletal shape is given an overall stroke
width, and each point is assigned a stroke value which is a fraction of the
overall stroke width,

13

Figure 9: Construction of skeletal shape segments.

This representation involves some geometric calculations. Two adjacent
points in the skeletal shape representation are connected by a quadrilat-
eral as shown in Figure 9. If two adjacent points are called A and B, a
quadrilateral (EFGH) is constructed between these points which has the
following properties:

e A bisects EH
B bisects FG
* EH is perpendicular to AB

* FG is perpendicular to AB

The length of EH is determined by the stroke width at A, and the length
of FG is determined by the stroke width at B.

If B is not an end point of the shape, a quadrilateral (MNOP) is
constructed connecting points B and C. A polygon (FIMGKP) is also
constructed at point B to provide a “corner” at this point. Point J is at the
intersection of EF and MN; point K is at the intersection of GH and OP.
This polygon is constructed instead of the quadrilateral FIMB because. in
the current system, displaying this second quadrilateral leaves und
artifacts along the line segments FB and MB. If the angle of ABC is
below a certain “mitre” value (20°), the quadrilateral FMGP is
constructed instead of FIMGKP.

Skeletal shapes have the same basic methods for manipulations as outline
shapes—methods for moving points, groups of points, and lines—-in
addition to operations for changing line widths.

14

Figure 10: The outline shape builder. Figure 11: The skeletal shape builder.

Both outline shapes and skeletal shapes allow saving and reverting
shapes—storing the current state of a shape, performing some manipula-
tions, then returning to the saved state.

Shape builder

I created a simple tool for building outline and skeletal letter shapes. The
shape builder runs as a Java applet. Using this tool, the author can input
shape points interactively using the mouse. Points can be moved by
selecting and dragging with the mouse, added, or deleted. The shape
builder for skeletal shapes also allows the author to change the stroke
width at each point by using the keyboard. Line segments can be moved
or changed in length. The shape builder permits the user to see informa-
tion about the shape such as point coordinates, line lengths, and angles
formed by line segments. In the shape builder, letter shapes can be
viewed in either filled or outline mode. Figures 10 and 11 show sample
screens from the outline and skeletal shape builders.

15

5 Design Experiments

I designed several pliant type experiments to see the possibilities of
malleable, moving type. In each experiment, I built a simple word using
the shape builder, then made it dynamic and interactive. I chose short
words to make the shape building process simpler. In choosing words for
these design experiments, I avoided words which describe concrete phys-

ical actions—words such as bulge, melt, wiggle—because I wanted to
develop more abstract motions. I also felt action words that were too
specific would give the reader preconceptions about what sort of move-

ments should take place.

Sleepy

In the first pliant type experiment, the
word sleepy is animated over a period of
about 40 seconds. The letters, created
using the outline shape representation,
begin to droop, or elongate vertically,
then jolt back to the original shape.
While drooping, the letters also change
slowly from white against a black back-
ground to a gray color, returning to the
white color when they jolt back. They
begin to droop a second time, again
changing color, then jolt back again.
Finally the letters begin to droop and
continue to droop, while slowly becom-
ing darker. The letters move downward
until they appear to rest on a common
horizon. Once all the letters reach this
resting state, the letters shrink and
expand slowly until the gray color transi-
tions to black.

In this experiment, I attempted to portray
the feeling of being sleepy. The drooping

Figure 12: Pliant type experiment,
Sleepy.

16

downward and jolting back of the letters represents the physical motion
of the head or eyelids as a drowsy person dozes off, then jolts back
awake. The third time the letters begin to droop represents the action of
drifting off to sleep. The expanding and contracting of the letters depicts
a sleeping person’s slow breathing, the motion of the lungs.

In this first experiment, pliant type animation is used to tell a story. The
shape of the word becomes a character who tries to stay awake, then
finally falls asleep. In essence, the motion of the letters in this example
describes the word itself. This is a case in which the motion is integrated
with the definition of the word.

Stitch |

Next I created an animation of the word RO

stitch. In this piece, the word is drawn in A zr

cursive by a single continuous line. The — '<T??’~"; T T e

animation begins with a horizontal line, /\ - j { . f“\
——t A A

then adds points in the line sequentially,
spelling out the word as if the letters
were being stitched like a thread into

cloth. Once the word is complete, points e (/{ :

are removed from the beginning of the) CoL
word, as if the thread were being unrav- e [
elled.

Figure 13: Pliant type example,
While this experiment does not make use ~ Stteh-
of the manipulation features of the outline shape representation, this

example does demonstrate an interesting effect.

Aim

The next design experiment involved an interactive, dynamic treatment of
the word aim. Instead of playing out a pre-programmed animation like
the two previous pieces, this example responds to input from the mouse
in real time. When the mouse button is pressed and the cursor moves
around the screen, the letter shapes deform, moving toward and following
the mouse cursor. When the mouse button is released, the word slowly
returns to its original shape.

The implementation of this interaction is straightforward. Each of the
letters is composed of many data points. When the mouse is moved, each

17

data point moves toward the mouse point
by a certain amount, depending on its
distance from the mouse.

The user interaction is important in the
effectiveness of this piece. In this
example, the word scems to be “sucked
in” by the mouse or recede into the
distance due to the way the letters
become smaller during the mouse
motion. This type manipulation seems to
work well with the word choice,
although the motion illustrates the word’s
meaning only in an abstract way. The
example is helped visually by the fact
that the letters A, /, and M have only
straight line segments. A letter with
curves, approximated by a few straight
line segments, might be distracting in
this example.

Typographic toolkit

This piece was constructed as an

Figure 14: Interactive pliant type
expample, Aim.

example of using pliant type for a more commercial application. The
words typographic toolkit were built crudely using the outline shape

builder.

When the mouse moves near the letters, the letter shapes bulge and
distort. This effect was created by directing the shape points away from

the mouse point.

This piece was used to make a short animated sequence for a video about
this project. In the animation, the words appear, then are “pushed off” of

the screen by some unseen force.

TyPeo
TOoLKT

Figure 15: Application of pliant type, Typographic toolkit.

18

ah

nh

N
QD O D

nh

SEE

oﬂ 2 o

Figure 16: Pliant type experiments using the skeletal shape representation, Oh 1, 2, 3.

Oh1,2and3

In the final experiment, three examples of pliant type manipulation were
created using the same word, oh. A calligraphic oh was created using the
skeletal shape representation. In the first example, the letters distort
according to the mouse position. The letters appear to be “pushed away”
by the mouse. In the second, the letters undulate, or animate in a “wavy”
manner. The amount of wavy action is determined by the horizontal posi-
tion of the mouse. In the third example, the letter shapes become boxy
when the mouse button is pressed, then slowly return to the calligraphic
style on release.

These three examples demonstrate some of the features made easier by
the skeletal shape representation. However, the third of the three experi-
ments is the only manipulation that would be difficult to repeat using the
outline shape representation. In the third example, it is the actual paths of
the letters and the stroke widths that change. The real benefit of using the
skeletal shape representation in this case occurred in the type design
process. Variable stroke, brush-like characters are much easier to create
using this shape model.

19

6 Conclusion and Discussion

This thesis represents a new way of thinking about temporal typographic
expression. The computational treatment of typography as malleable
shapes is a design concept which deserves further study.

Type representation

In this research, type is represented in two ways, outline and skeletal.
Each was found to have its own benefits. Outline representation tends to
lend itself toward more drastic deformations, while the skeletal represen-
tation allows letter shapes to remain more intact. In general, outline
representation seems to be the more flexible of the two in terms of the
kind of shape manipulations which can take place. Skeletal representation
however is more appropriate for deformations in which the path of the
letter is important and the stroke width of the letter stays constant.

The current letter shape representations suffer visually because curved
parts of letters have to be approximated by muitiple straight line
segments. A future development would involve implementing cubic
spline or Bezier curve capabilities so that the letter o, for example, can
appear smooth while being represented by only a few points.

Another possibility for future development is to build the capability of
importing actual fonts and using them in pliant type designs. This step
would likely be appreciated by graphic designers. This would also be a
step towards incorporating pliant type concepts into other temporal
typography designs.

Steve Strassmann’s computer graphics paper Hairy Brushes (1986),
which I received late in the process of this research, focuses on represent-
ing brush strokes on the computer with four variables: the brush shape,
the stroke, the dip in ink, and the paper. Since his brush stroke represen-
tation is similar to the skeletal letter shape model, his work suggests
different ways type shapes could be expressed.

Metafont, developed by computer programming guru Donald Knuth, also
suggests different ways typography could be represented. This system for

20

describing fonts allows for creating type on a high-level computation
basis.

Level of pliant type manipulation

In the pliant type experiments, words are manipulated at the level of indi-
vidual letters. Pliant type expression at different levels is possible. For
example, it may be useful to group points of a letter shape together so
that part of the letter acts as a unit. This unit may have certain behaviors
depending on its position with respect to the mouse or other units. A
parts-based letter representation may have advantages over the current
point-based letter representation.

Computation allows objects to have behaviors and an understanding of
certain rules. Since the objects which are created in pliant type experi-
ments are letters, these letters could be given an understanding of
typographic rules. For example, the letter shapes could be encoded with
knowledge about x-height of letters, ascenders and descenders, kerning,
even ligatures. Since these letters are also elements of written and spoken
language, the pliant type letters could conceivably have information
about vowels and consonants, phonetics, and syllable stress. Pliant type
expression could potentially draw from many levels, from letters to
lexical.

Other applications

Pliant type imparts leiters with character through computational methods.
When designed carefully, pliant type has the potential to create expres-
sions of concepts and emotions difficult to achieve with other methods.
Pliant type ideas may be applied in different contexts. One could imagine
dynamic concrete poetry in which the movement of the typography
evokes images or emotions. An interactive and dynamic logo could also
use type which changes in shape. Pliant type could be used in those
media where temporal typography can be seen—motion picture titles and
television commercials, to name the most prevalent.

Design and computation

Before the computer, designers had many techniques for playing with
type. Using photo type, they experimented with using different lenses,
printing onto glass and other surfaces, and controlling lighting to get
innovative and expressive typographic effects. Massin (Fig. 4), for
instance, experimented with printing type onto a rubber surface, then

21

stretching the sheet to get different effects. Now that the computer is the
the tool of choice for many designers, these techniques for the most part
are no longer being developed.

This researcli has shown that type effects along the same lines as tech-
niques by manual methods can be achieved on the computer.
Reproducing photo type effects exactly through computational methods,
however, would be difficult if not impossible. The question comes to
mind: how does working by computer to create this sort of design differ
from working by hand? In general, how does computation enhance and
detract from the design process?

Certainly, computation makes some tasks, especially those involving
complex calculations, easier. Computation allows for complex interactive
design. It also facilitates trying many different options; changes can
always be undone. On the other hand, traditional methods of design often
have a proclivity toward giving character to crafted pieces. Designs
which are created by traditional methods often convey a sense of handi-
craft—a sense that someone’s hands have crafted the design. This sense
is difficult to achieve with works on the computer.

Both computational and traditional methods have benefits and drawbacks.
The two can be used together. Paul Rand notes, “The conflict between
design and technology, like the conflict between form and content, is not
an either/or problem, it is one of synthesis” (Rand, p. 41). It is hoped that
design on the computer is not perceived as its own category, “multime-
dia,” but that it is realized the computer may be anywhere in the broad
spectrum of design, co-existing with traditional methods at every level of
design.

22

Appendix A Code

This appendix includes the Java implementation of several parts of the
pliant type research: the skeleton shape representation class
SkeletonShape, the set of utilities in the class Utils, and the Oh applet
running the final pliant type experiment described in Chapter 5.

SkeletonShape.java
package pcho.typotool;

import java.awt.”;
import java.lang.*;
import pcho.util.”;

public class SkeletonShape extends Object {
static final int maxPts = 200;
protected int numPoints;
protected int strokeWidth,
protected double[] s; // fraction of strokeWidth. must be greater than O
protected double[] x, y; // arrays to hold x,y coordinates of shape points
// stored as doubles for accuracy, converted to ints for screen

protected int SnumPoinls = 0; // saved number of points
protected int SstrokeWidth;

protected double[] Ss; // saved strokes

protected double[] Sx, Sy; // these hold saved x,y coordinates

// these determine how skeletonshapes are “finished” at the begin and end
public static final int NORM = O;

public static final int HORIZ = 1;

public static final int VERT = 2;

public int begin = NORM;
public int end = NORM,;

// only one item can be active at a time

// activeltem=POINT: point at active

// activeltem=LINE: line i i+1

// activeltem=ANGLE: angle formed by lines i-1,i and i,i+1
public static final int POINT = O;

public static final int LINE = 1;

public static final int ANGLE = 2;

public static final int NONE = -1;

public int activeltem;
public int active; // index of x,y arrays

public boolean showPointinfo = false;
public boolean showLinelnfo = false;

public boolean showAnglelnfo = false;
public boolean showindexinfo = false;

23

public boolean drawPoints = false;
Polygon poly; // use getPolygon() to get a Polygon describing Shape

public SkeletonShape() {
x = new double[maxPts];
y = new double[maxPts];
s = new double[maxPts};
numPoints = O;
strokeWidth = 1;
activeltem = POINT;
active = NONE;

}

public SkeletonShape(int width) {
// Shape with specified stroke width for all points
x = new double[maxPts];
y = new double[maxPts];
s = new double[maxPts];
numPoints = 0;
strokeWidth = width;
activeltem = POINT;
active = NONE;
i
/* saving and restoring SkeletonShapes */

public void save() {
// save info on SkeletonShape
Sx = new double[numPoints];
Sy = new double[numPoints];
Ss = new double[numPaints];
SnumPoints = numPoints;
SstrokeWidth = strokeWidth;
for (int i=0; i<numPoints; i++) {

Sx[i] = x[i};
Syli] = ylil:
Ssfi] = sfij;
}
}

public void restore() {

// reassign values of x,y,strokeWidth,stroke,numPoints from last saved

// do nothing if no shape is saved
if (SnumPoints > Q) {
x = new double[maxPts];
y = new double[maxPts);
s = new double[maxPts];
for (int i=0; i<SnumPoints; i++) {
x[i] = Sx(i];
yli} = Sylil;
s[i] = Ssfil;

numPoints = SnumPoints;
strokeWidth = SstrokeWidth;
}
}

public void restore(double frac) {
// move toward the values of x,y,w,numPoints from last saved
// by the fraction frac, O<frac<1
// do nothing if no shape is saved
// delele any extra points in cunent shape

24

if (SnumPoints > Q) {
if (numPoints > SnumPoints) {
for (int i=SnumPoints; i< numPoints; i++)
deletePoint(i);

for (int i=0; i<SnumPoints; i++) {
x[i] = x[i] + frac*(Sx{i] - x[i});
yli] = yli) + frac’(Syli] - yli));
s[i] = si] + frac*(Ss[i] - sfi]);

}

numPoints = SnumPoints;

strokeWidth = SstrokeWidth;

}
}

/" procs on stroke °/

public void addStroke(int index, double amt) {
if (index>=0)&&(index<numPaints)) {
s[index] += amt;
}
}

public void multStroke(int index, double amt) {
if ((index>=0)&&(index<numPoints)) {
s(index] "= amt;
}
}

/° procs on points °/

public void addPoini(int mouseX, int mouseY) |{
// add a point to the end of shape
if (numPoints<maxPts) {
x[numPoints] = (double)mouseX;
y[numPoints] = (double)mouseY;
if (numPoints == 0)
s[numPoints] = 1.0;
else
s[numPaints} = s[numPoints-1];
numPoints++;
active = numPoints-1;

)
} 7/ addPoint, int x,y

public void addPoint(double inputX, double inputY) {
// add a point to the end of shape
if (numPoints<maxPts) {
x[numPoints) = inputX;
y[numPoints] = inputY;
s[numPoints] = s[numPaints-1];
if (numPoints == 0)
s[numPoints) = 1.0;
else
s[numPoints] = s[numPoints-1];
numPoints++,
active = numPoints-1;

} 7/ addPoint, double x,y
public void addPoint(int index, int mouseX, int mouseY) {

// add a point to shape after index
if ((index<numPoints)&&(index>=0)&&(numPoints<maxPts)) {

25

// move x,y points to “make room" for point after active point
for(int i=numPoints-1; i>index; i—) {

x[i+1] = x{il;

yli+1] =yl

sli+1] = sfi];

// add a point after the point at index
x[index+1] = (double)mouseX;
y[index+1] = (double)mouseY;
s[index+1] = s[index];

numPoints++;

active = index+1;

} /7 addPaint after index, int x,y

public void addPoint(int index, double inputX, double inputY) {
// add a point to shape after index
if ((index<numPoints)&&(index>=0)&&(numPoints<maxPts)) {
// move x,y points to “make room" for point after active point
for(int i=numPoints-1; i>index; i—) {
x[i+1] = x[i];
yli+1] = ylil;
s(i+1] = sfi];

// add a point after the point at index
x[index+1] = inputX;

ylindex+1] = input;

s[index+1] = 1.0;

numPoints++;

active = index+1;

} // addPoint after index, double x,y

public void deletePoint(int index) {
// delete point at index
if ((index<numPoints)&&(index>=0)) {
for (int i=index; i<numPoints-1; i++) {
x[i] = x[i+1];
yli] = yli+1];
sli] = s[i+1);

//x[numPoints-1]
//y[numPoints-1]
//s[numPoints-1]
numPoints—;

o;
0;
1.0

}
active = NONE;
} 7/ deletePoint

public void movePoint(int index, int mouseX, int mouseY) {
// set point at index to coordinates mouseX, mouseY
if ((index<numPoints)&&(index>=0)) {
x[index] = (double)mouseX;
ylindex] = (double)mouse;
}

} 7/ movePoint, int x,y

public void movePoint(int index, double inputX, double inputY) {
// set point at index to coordinates inputX, inputY
if ((index<numPoints)&&(index>=0)) {
x[index] = inputX;
ylindex] = inputY;

26

} 7/ movePoint, double x,y

public void translatePoint(int index, int xAmt, int yAmt) {
// translate point at index by xAmt, yAmt
if ((index<numPoints)&&(index>=0)) {
x[index} += xAmt;
ylindex] += yAmt;

} // translatePoint, int xamt,yamt

publiz: void translatePoint(int index, double xAmt, double yAmt) |
// translate point at index by xAmt, yAmt
if {(index<numPoints)&&(index>=0)) {
x[index] += xAmt;
ylindex] += yAmit;

} 7/ translatePoint, double xamt,yamt

public void changePoint(int index, int radius, int mouseX, int mouseY) {
// move the point at index, pulling along neighboring points
// x[index],y{index] moves to mouseX,mouseY
if (index<numPoints)&&(index>=0)) {
double Xchange = mouseX - x[index];
double Ychange = mouseY - y[index];
// move index point
ylindex] += Ychange;
x[index] += Xchange;
double length, frac;
for (int i=0; i<numPoints; i++) {
if (i 1= index) {
length = this.getLength(index, i);
if (length<radius) {
if (Math.abs(i-index) <= 5) {
frac = 1/Math.pow(2.0,(double)Math.abs(i-index));
x[i] += Xchange®(1-(1-frac)’length/radius);
yli] += Ychange®(1-(1-frac)length/radius);
} else {
x[i} += Xchange®(1-length/radius);
yli] += Ychange®(1-length/radius);

}

}
} 7/ for

}77if
} /7 changePoint

public void changePointinRadius(int index, int radius, int mouseX, int mouseY) {
// move the point at index, pulling along neighboring pointc
// x[index},y(index] moves to mouseX,mouseY
if ((index<numPoints)&&(index>=0)) {
double Xchange = mouseX - x[index];
double Ychange = mouseY - y(index];
// move index point
ylindex] += Ychange;
x[index] += Xchange;
double length, frac;
for (int i=0; i<numPaints; i++) {
if (i 1= index) {
length = this.getlength(index, i);
if (length<radius) {
x[i] += Xchange*(1-length/radius);
yli] += Ychange*(1-length/radius);

27

]
} 7/ for

} /7 i
} 7/ changePointinRadius

public void changePointinChain(int index, int howFar, int mouseX, int mouseY) {
// move the point at index, also moving neighboring points in chain
// movement propagates howFar number of points up and down the chain
// xlindex],y(index] moves to mouseX,mouseY
if ((index<numPoints)&&(index>=0)) {
double Xchange = mouseX - x[index];
double Ychange = mouseY - y[index];

// move index point
ylindex] += ‘Ychange;
x[index] += Xchange;

double frac;
int start=index-howFar, end=index+howFar;
if (start<0)
start = 0;
if (end>=numPoints)
end = numPoints-1;
for (int i=start; i<=end; i++) {
if (i 1= index) {
frac = 1/Math.pow(2.0,(double)Math.abs(i-index));
x[i] += Xchange*frac;
y[i] += Ychange-frac;
}
)

} 7/ changePointinChain, absolute, for ints

public void changePointinChain(int index, int howFar, double Xchange, double Ychange) {
// move the point at index, also moving neighboring points in chain
// movement propagates howfar number of points up and down the chain
// x[index],y[index] moves by Xchange,Ychange
if ((index<numPoints)&&(index>=0)) {
// move index point
ylindex] += Ychange;
x[index] += Xchange;

double frac;
int start=index-howFar, end=index+howFar;
if (start<0)
start = O;
if (end>=numPoints)
end = numPoints- 1,
for (int i=start; i<=end; i++) {
if (i 1= index) {
frac = 1/Math.pow(2.0,(double)Math.abs(i-index));
x[i] += Xchange'frac;
y[i] += Ychange'frac;
}
}

} /7 changePointinChain, relative, for doubles

public void collapsePoint(int index, int mouseX, int mouseY) {
// move point at index to mouseX, mouseY, pulling bordering points along
if ((index<numPoints)&&(index>=0)) {
xlindex] = (double)mouseX;
ylindex] = (double)mouseY;

28

inti=1;
double amt = 1.0;
// move poirits after directly moved point
while (((index+i)<numPoints) && (amt >=1.0) } {
// amnt = distance to previous pt * 1/i2 * weight of point
amt = getLength(index+i- 1)"(1/Math.pow(2.0,(double)i))*(0.5);
//Utils.print(“index="+(index+i)+" amt="+amt);
movelndex 1 TowardIndex2(index+i, index+i-1, amt);
i++;
}
i=1;amt=1.0;
// move paints before directly moved paint
while (((index-i)>=0) && (amt >=1.0)) {
// amt = distance to next pt * 1/i*2 * weight of point
amt = getLength(index-i)*(1/Math.pow(2.0,(double)i))*(0.5);
//Utils.print(“index="+(index+i)+" amt="+aml);
movelndex 1Towardindex2(index-i, index-i+1, amt);
i++,
}
}

} 7/ collapsePoint for ints

public void collapsePoint(int index, double Xchange, double Ychange) {
// move point at index by Xchange, Ychange pulling bordering weighted points alnng
// for floats
if ((index<numPoints)&&(index>=0)) {
x[index] += Xchange;
ylindex] += Ychange;
inti=1;
double amt = 1.0;
// move points after directly moved point
while (((index+i)<numPoints) && (amt >=1.0)) {
// amt = distance to previous pt * 1/i*2 * weight of point
amt = getLength(index-+i- 1)°(1/Math.pow(2.0,(double)i)}*(0.5);
//Utils print(*index="+(index+i)+" amt="+amt),
movelndex 1TowardIndex2(index-+i, index+i- 1, amt);
i++;
}
i=1;amt=1.0;
// move points before directly moved point
while (((index-i)>=0) && (amt >=1.0)) {
// amt = distance to next pt * 1/i~2 * weight of point
amt = getLength(index-i)*(1/Math.pow(2.0,(double)i))*(0.5);
//Utils.print(“index="+(index+i)+" amt="+amt};
movelndex | TowardIndex2(index-i, index-i+1, amt);
i++;
}
}

} // collapsePoint for doubles

public void movelndexTowardPi(int index, double amt, Point pt) {
// move point at index toward Point pt by a distance of amt
// positive amt -> moving towards
if ((index< numPoints)&&(index>=0)) {
double theta = Math.atan2(pt.y-y[index], pt.x-x[index]);
ylindex] += (float)(amt*Math.sin(thetz));
x[index) += (float)(amt*Math.cos(theta));
}

} 7/ movelndexTowardPt
public void movelndex1Towardindex2(int index1, int index2, double amt) {

// move point at index1 toward point at index2 by a distance of amt
if ((index1<numPoints)&&(index1>=0)8&(index2<numPoints)&&(index2>=0)

29

&&(index !l=index?)) {
double theta = Math.atan2(y(index2]-y(index 1], x[index2]-x{index1]);
ylindex1] += (float)(amt'Math.sin(theta));
x(index1] += (float)(amt"Math.cos(theta));
}

} // movelndex 1 Towardindex2
/* procs on lines */

public void setl.ength(int index, double length) {

// move each end point of line from index to index+1 an equal amount

// so that line length = length

if ((index<numPoints- 1)&&(index>=0)) {
double curYLength = y[index+ 1]-y[index];
double curXLength = x[index+ 1}-x{index];
double theta = Math.atan2(curYLength,curXLength);
double newYLength = length*Math.sin(theta);
double newXLength = length"Math.cos(theta);
double Ychange = (newYLength - curYLength)//2.0;
double Xchange = (newXLength - curXLength)/2.0;

ylindex+ 1] += Ychange;
ylindex] -= ‘fchange;
x[index+1] += Xchange;
x[index] -= Xchange;
)
} 77 setLength

public void changeLength(int index, double length) {

// move each end point of line from index to index+1 an amt based on weights
// so that line length = length and pull neighboring weighted points along
if ((index<numPoints-1)&&(index>=0)) {

// move end points at index and index+1

double curYLength = yfindex+ 1]-y[index];

double curXLength = x[index+1]-x[index];

double theta = Math.atan2(curYLength,curXLength);

double newYLength = length*Math.sin(theta);

double newXLength = length*Math.cos(theta);

double Ychange = newYLength - curYLength;

double Xchange = newXLength - curXLength;

ylindex+ 1] += Ychange;
ylindex] -= Ychange;
x[index+1] += Xchange;
x[index] -= Xchange;

// now move points after directly moved point at index+ 1
inti = 1; double frac = (float)1.0;
while (((index+i+1)<numPoints) && (frac >=0.1)) {

frac = 1/Math.pow(2.0,(double)i);

x[index+i+1] += Xchangefrac;

ylindex+i+1] += Ychangefrac;

i++;

}

// now move points before directly moved point at index
i = 1; frac = (float)1.0;
while (((index-i)>=0) && (frac >=0.1)) {

frac = 1/Math.pow(2.0,(double)i);

xlindex-i] -= Xchange'frac;

ylindex-i] -= Ychange'frac;

i++;

}
} /7 changelength

public void moveLine(int index, int mouseX, int mouseY) {
// move the line segment from index to index+1, keeping slope & length constant
// x[index].ylindex] moves to mouseX,mouseY
it ((index<numPoints- 1)&&(index>=0)) {
double curYLength = y(index+ 1}-y[index};
double curXLength = x(index+ 1]-x[index];
ylindex] = mouseY;
x(index] = mouseX;
y(index+ 1] = mouseY+curYLength;
x{index+ 1] = mouseX+curXLength;

} 7/ movel.ine

public void changeLine(int index, int mouseX, int mouseY) {
/7 move the line segment from index to index+ 1, using weights of end points
// and pulling along neighboring points
// x[index],ylindex] moves to mouseX,mouseY
if ((index<numPoints- 1)&&(index>=0)) {
double Xchange = mouseX - x[index};
double Ychange = mouseY - y[index];

// mnve points at index and index+ i
ylindex] += Ychange;

x[index] += Xchange;

ylindex+1] += Ychange;

x[index+ 1] += Xchange;

// now move points after directly moved point at index+1
inti = 1; double frac = 1.0;
while (((index+i+1)<numPoints) && (frac >=0.1)) |

frac = 1/Math.pow(2.0,(double)i);

x{index+i+1] += Xchange'frac;

ylindex+i+1] += Ychange'frac;

i++;

}

// now move points before directly moved point at index
i=1, frac = 1.0;
while (((index-i)>=0) && (frac >=0.1)) {
frac = 1/Math.pow(2.0,(double)i);
x[index-i] += Xchange*frac;
ylindex-i] += Ychange'frac;
i++;
}

}
} // changelLine

public void changeLine(int index, double Xch, double Ych) {
// move the line segment from index to index+ 1, using weights of end points
// and pulling along neighboring points
// x[index],y[index] moves to mouseX,mouseY
if ((index<numPoints-1)&&(index>=0)) {
// move points at index and index+1
ylindex] += Ych;
x[index] += Xch;
ylindex+1] += Ych;
x[index+1] += Xch;

// now move points after directly moved point at index+ 1
inti = 1; double frac = 1.0;

while (((index+i+1)<numPoints) && (frac >=0.1)) {
frac = 1/Math.pow(2.0,(double)i);
x[index+i+1] += Xch*frac;
y[index+i+1] += Ych*frac;
i++;

}

// now move points before directly moved point at index
i =1; frac = (float)1.0;
frac = 1/Math.pow(2.0,(double)i);
x[index-i] += Xch'frac;
ylindex-i] += Ych"frac;
i++;
}
}

} /7 changeLine for doubles

public void deleteLine(int index) {
// delete line from index ‘o index+1
it ((index<numPoints- 1)&&(index>=0)) {
numPoints—;
x[active] = (x[active] + x[active+1])/2;
ylactive] = (y[active] + y[active+1])/2;
s[active] = (s[active] + s[active+1))/2;
for (int i=active+1; i<numPoints; i++) {
x[i] = x[i+1]);
yli] = yli+1];
s[i] = sfi+1];

}
active = NONE;
}
}

/" these five procs are for setting active items,
used for interactively creating shapes °/

public void makePointActive(int index) |
if ((index<numPoints)&&(index>=0)) {
active = index;
activeltem = POINT;
}
}

public void makeLineActive(int index) {
if ((index<numPolnts-1)&&(index>=0)) {
active = index;
activeltem = LINE;
}
}

public void makeAngleActive(int index) {
if ((index<numPoints- 1)&&(index>=0)) {
active = index;
activeltem = ANGLE;
}
}

public void deactivate() {
active = NONE;

}

public void reset() (
showPointinfo = false;

32

showLinelnfo = false;
showAngleinfo = false;
showindexinfo = false;
drawPoints = false;
active = NONE;

}

/* two procs for checking mouse input */

public int isNearPoint(int mouseX, int mouseY) {
// takes in x and v of mouse and returns the index
// which x,y is "near” to (within a certain number of pixels)
// if x,y is not near any point, returns -1

for (int i=0; i<numPoints; i++) {
if ((Math.abs(mouseX-x[i])<4.0) && (Math.abs(mouseY-y[i})<4.0))
return i;
}

return -1;
} 7/ isNearPoint

public int isNearLine(int mouseX, int mouseY) {
// takes in x and y of mouse and returns the index i of the line
// connecting i and j which x,y is “near” to
// if x,y is not near any connecting line, returns -1

// fast 2D point-on-line test from graphics gems p50
int Tx = mouseX, Ty = mouseY;
int Qx, Qy, Px, Py;
for (int i=0; i<numPoints-1; i++) {
Px = (int)Math.round(x{i)); Py = (int)Math.round(y(i]);
Qx = (inf)Math.round(x[i+1]); Qy = (int)Math.round(y[i+1]);
if (Math.abs((Qy-Py)"(Tx-Px)-(Ty-Py)*(Qx-Px))
>= Math.max(Math.abs(Qx-Px), Math.abs(Qy-Py)))
continue;
if (((Ox<Px)&&(Px<Tx)) Il ((Qy<Py)&&(Py<Ty)))
continue;
it (((Tx<Px)&8&(Px<Qx)) Il (Ty<Py)&&(Py<Qy)))
continue;
if ((Px<Qx)&&(Qx<Tx)) Il (Py<Qy)&&(Qy<Ty)))
continue;
if (((Tx<QX)&&(Qx<Px) Il (Ty<Qy)8&(Qy<Fy)))
continue;
return i;
}
return -1;
} // isNearLine

/° procs for getting usetul info on shape “/

public Point getPoint(int i) {
// return a Point describing x[i],y([i]
if ((icnumPoints) && (i>=0))
return (new Point((int)xi],(int)y(i]));
else
return (new Poinl(0,0));
} 7/ getPoint

public Point getAverage() {
// returns a Point representing the average of all points in shape
if (numPoints>0) (
double Xlotal=0, Ytotal=0;

33

for (it i=0; i<numPoints; i++) {
Xtotal += x[i};
Yiotal += y[il;

}
return (new Point((int)(Xtotal/numPoints), (int)(Ytotal/numPoints)));
} else
return (new Point(0,0));
} // getAverage

public double getLength(int DR
// return length of line between x[i}.yli} and i+ 1] yli+1]
if ((ixnurnPaints-1) 8& (i>=0))
return (Math.sqrt((x[i+1]-x[i])*(x[i+1 1-x{il) + i+ 11yl (yli+ 1 1-y{iD:
else
return O;
} 7/ getl.ength

public double getLength(int i, int i2) {
// return length of line between x{i1].y(i1] and x[i2],yli2]
if ((i1<numPoaints) && (i1>=0) && (i2<numPoints) && (12>=0) && (i1 1=12))
return (Math.sqri(((i2)x{i1) (i2]-+(i1) + (i21-yfi1 I yli2l-y[D)
else
return O;
} 7/ getlength

public double getAngle(nt i) {
// return angle of /_(x[i- 11.y{i- DOy 1].yli+1)) in degrees
if ((icnumPoints-1)&&(i>0)) {
double aSqrd = (x[i- 1]-x (] (x[i- 110D + (yli- 1=y yli- 1=y (il
double bSqrd = (x[i+1]-x{il)"(x[i+1 10 + (y[i+l]—y[i])'(y[i+1]-y[i]);
double ¢Sqrd = (x[i+1]--x[i-l])‘(x[i+l]—x[i-1]) + (y[i+l]-y[i—1])'(y[l+l]-y[i-1]);
double angle = Math.acos((aSqrd+bSqrd-cSqrd)
/(Q'Math.sqrt(aSqrd)‘Math.sqrt(bSqrd)))i
return (angle™1 80.0/Math.PIlj;
} else
return 0.,
} 7/ getAngle

public void fill(Graphics g {
Polygon a, b, wedge;
for (int i=0; i<numPoints-1; i++) |
a = this.shapeSegment(x[i], y[il, x[i+1), yli+1],
strokeWidth's[i), strokeWidth"sfi+1]);
// draw normal shape segment
g-filPolygon(a);
if (icnumPoints-2) {
// draw connecting wedge shape between segments
b = this.shapeSegment(x[i+1], yli+ 1], x(i+2], yli+2],
strokeWidth's[i+1), strokeWidth's[i+2]);
if ((getAngle(i+1) > 20.) // mitre value

&& (getLength(i+1,i+2)>5.0) // don't draw wedge if points are too close

&4& (getLength(i,i+1)>5.0)) {

// find corner points

double[] al = Utils.getLineThroughQPis(a.xpoints[O]. a.ypointsfO},
a.xpoints(3], a.ypoints(3]);

double(] b1 = Ulils.getLineThroughQPts(b.xpoints[O], b.ypoints[0],
b.xpoints(3], b.ypoints[3]);

Point int1 = Utils.intersection(p1{0}, b1{1], b1 (21, b1{3],

al(4], a1[5), al[6});

doublef] a2 = Utils.getLlneThroughQPts(a.xpoints[l], a.ypoints[1],
a.xpoints[2], a.ypoints(2]);

double[] b2 = Utils.geiLineThroughQPts(b.xpolntsU]. b.ypoints(1],
b.xpoints[2), b.ypoints{2]);

34

Paint int2 = Utils.intersection(b2[0], b2[1], b2[2], b2[3],
a2(4], a2[5], a2[6]);
wedge = new Polygon();
wedge.addPoint(a.xpoints[2], a.ypoints[2]);
if ((int2.x 1= -1) && (int2.y 1= -1))
wedge.addPoint(int2.x, int2.y);
wedge.addPoint(b.xpoints{ 1], b.ypoints[1]);
wedge.addPoint(a.xpoints[3], a.ypoints[3]);
if ((int1.x 1= -1) && (int1.y I= -1))
wedge.addPoint(int1.x, int1.y);
wedge.addPoint(b.xpoints[0), b.ypoints[0));
} else {
wedge = new Polygon();
wedge.addPaini(a.xpoints(2}, a.ypoints[2]);
wedge.addPoint(b.xpaints[1], b.ypoints[1]);
wedge.addPoint(a.xpoints[3], a.ypoinis[3]);
wedge.addPoint(b.xpoints[0], b.ypoints[0));

g.fillPolygon(wedge);
}

if (numPaints >= 2) { // at least 2 points in shape
a = this.shapeSegment(x[0], y[0], x[1], y[1],
strokeWidth*s[0], strokeWidth*s[1]);
// draw end cap at beginning of shape
if (begin == HORIZ) {
double[] a1 = Utils.getLineThrough2Pts(a.xpoints[0), a.ypoints[0],
a.xpoints(3], a.ypoints[3]);
double[] h1 = Utils.getLineThrough2Pts(a.xpoints[0], a.ypoints[0],
a.xpoints[0]+10.0, a.ypoints[Q]);
double[] a2 = Utiis.getLineThrough2Pis(a.xpaints(1], a.ypoints[1],
a.xpoints[2], a.ypoints[2]);
double[} h2 = Utils.getLineThrough2Pts(a.xpoints[1], a.ypoints{1],
a.xpoints[1}+10.0, a.ypoints[1]);
Point int1 = Utils.intersection(h1[0], h1[1], h1[2], h1[3], a1[4], a1[5], al1[6));
Point int2 = Utils.intersection(a2[0], a2(1], a2[2}, a2(3}, h1[4], h1[5), h1[6));
Point int3 = Utils.intersection(a2[0], a2[1], a2[2], a2[3], h2[4], h2[5], h2[6]);
Point int4 = Utils.intersection(a1{0], a1[1], a1(2), a1[3], h2(4], h2[5], h2[6));
wedge = new Polygon();
if ((int1.x 1= -1) && (int1.y I= -1))
wedge.addPoint(int1.x, int1.y);
if (int2.x I=-1) && (int2.y 1= -1))
wedge.addPoint(int2.x, int2.y);
if ((int3.x 1= -1) && (int3.y I= -1))
wedge.addPoint(int3.x, int3.y);
if ((int4.x I= -1) && (intd.y I= -1))
wedge.addPoint(int4.x, int4.y);
g.fillPolygon(wedge);
} else if (begin == VERT) {
double(] a1 = Utils.getLineThrough2Pts(a.xpoints[0}, a.ypoints[Q],
a.xpoints[3], a.ypoints[3]);
double[] h1 = Utils.getLineThrough2Pts(a.xpoints[0], a.ypoints[0],
a.xpoints[0], a.ypoints[0]+10.0);
double[] a2 = Utils.getLineThrough2Pts(a.xpoints[1], a.ypaints[1],
a.xpoints[2], a.ypoints[2]);
double[] h2 = Utils.getLineThrough2Pis(a.xpoints(1], a.ypoints[1],
a.xpoints[1}, a.ypoints[1]+10.0);
Point int1 = Utils.intersection(h1[0], h1[1], h1[2], h1[3)], a1[4], a1[5]}, al[B));
Point int2 = Utils.intersection(a2[0), a2[1], a2[2), a2[3], h1[4], h1[5], h1[6));
Point int3 = Utils.intersection(a2[0), a2[1], a2{2], a2[3], h2[4], h2[5], h2[6));
Poaint int4 = Utils.intersection(a1({0], a1{1], a1[2], a1[3], h2(4], h2[5], h2[6));
wedge = new Polygon();

if ((int1.x 1= -1) && (int1.y I= -1))
wedge.addPoint(int1.x, int1.y);
if ((int2.x 1= -1) && (int2.y I= -1))
wedge.addPaint(int2.x, int2.y);
if ((int3.x 1= -1) && (int3.y != -1))
wedge.addPoint(int3.x, int3.y);
if ((intd.x 1= -1) && (intd.y I= -1))
wedge.addPoint(int4.x, int4.y);
g-fillPolygon(wedge);
} 7/ begin cap of shape

a = this.shapeSegment(x{numPoints-2], y[numPoints-2], x[numPoints- 1), y[numPoints- 1],
strokeWidth"s{numPoints-2]. strokeWidth's[numPoints-1));
// draw end cap at end of shape
if (end == HORIZ) {
double[] a1 = Utils.gelLineThrough2Pis(a.xpoints[0], a.ypoints[0],
a.xpoints(3], a.ypoints[3]);
double(] h1 = Utils.getLineThrough2Pts(a.xpoints(3], a.ypoints(3],
a.xpoints(3]+10.0, a.ypoints[3]);
double[] a2 = Utils.getLineThrough2Pts(a.xpoints(1}, a.ypoints[1],
a.xpoints(2], a.ypoints[2]);
double[l h2 = Utils.getLineThrough2Pts(a.xpoints[2], a.ypoints[2],
a.xpoints[2]+10.0, a.ypoints[2]);
Point int1 = Utils.intersection(h1[0], h1[1], h1[2], h1[3], a1[4], a1[5], a1[6));
Point int2 = Utils.intersection(a2[0], a2[1], a2[2], a2[3], h1[4}, h1[5], h1[B]);
Point int3 = Utils.intersection(a2[0], a2(1], a2[2], a2{3] h2(4], h2(5], h2[6]);
Point int4 = Utils.intersection(a1{0], a1[1], a1[2], a1{3], h2[4], h2[5], h2[6));

wedge = new Polygon();
if ((int1.x 1= -1) 8& (int1.y I= -1))
wedge.addPoint(int1.x, int1.y);
if ((int2.x = -1) && (int2.y |= -1))
wedge.addPoint(int2.x, int2.y);
if ((int3.x 1= -1) && (int3.y I= -1))
wedge.addPoint(Int3.x, int3.y);
if ((int4.x 1= -1) && (intd.y = -1))
wedge.addPoin(int4.x, int4.y);
g.fillPalygon(wedge);
} else if (end == VERT) {
double[] a1 = Utils.getLineThrough2Pts(a.xpoints[0], a.ypoints[0],
a.xpoints(3], a.ypoints[3]);
double(] h1 = Utils.getLineThrough2Pts(a.xpoints[3], a.ypoints{3],
a.xpoints(3], a.ypoints[3]+10.0);
doublef] a2 = Utils.getLineThrough2Pts(a.xpoints[1], a.ypoints[1],
a.xpoints[2], a.ypoints(2]);
double{] h2 = Utils.getLineThrough2Pts(a.xpoints[2), a.ypoints[2],
a.xpoints{2}, a.ypoints[2]+10.0);
Point int1 = Utils.intersection(h1[0], h1[1], h1[2], h1[3], a1[4], a1[5), al1[6]);
Point int2 = Utils.intersection(a2[0], a2(1], a2(2], a2(3], h1[4], h1[5), h1[6));
Point int3 = Utils.intersection(a2[0], a2[1], a2[2], a2[3], h2[4], h2[5}, h2[6));
Point int4 = Utils.intersection(a1[0], a1[1], a1[2], a1([3], h2[4], h2[5], h2[6));

wedge = new Polygon();

if ((int1.x 1= -1) && (intl.y = -1))
wedge.addPoini(int1.x, int1.y);

if ((int2.x 1= -1) && (int2.y 1= -1))
wedge.addPoint(ini2.x, int2.y);

if ((int3.x 1= -1) && (int3.y I= -1))
wedge.addPoint(int3.x, int3.y);

if ((int4.x 1= -1) && (intd.y I= -1))
wedge.addPoint(int4.x, int4.y);

g.fillPolygon(wedge);

} 7/ end cap of shape

} /7 if numPoints >= 2
} /77 fill

public void draw(Graphics g) {
Polygon a, b, wedge;
for (int i=0; i<numPoints-1; i++) {
a = this.shapeSegment(x[i], y[i], x[i+1], y[i+1],
sirokeWidth's[i], strokeWidth"sfi+1]);

if (i < numPoints-2) {
// draw connecting wedge shape between segments
h = this.shapeSegment(x[i+ 1], y[i+ 1], x[i+2], y[i+2],
strokeWidth's[i+1], strokeWidth's[i+2]);
if ((getAngle(i+1) > 20.) // mitre value
&8& (getLength(i+1,i+2)>5.0) // don't draw wedge if points are too close
&8 (geilength(i,i+1)>5.0)) {
double[] a1 = Utils.getLineThrough2Pts(a.xpoints[0), a.ypoints[0],
a.xpoints(3], a.ypoints(3]);
double(] b1 = Utils.getLineThrough2Pts(b.xpoints[0], b.ypoints[0],
b.xpoints(3], b.ypoints(3]);
Poaint int1 = Utils.intersection(b1[0], b1[1], b1[2], b1(3], a1[4], a1[5], a1[6]);
double[] a2 = Utils.getLineThrough2Pts(a.xpoints[1], a.ypoints[1],
a.xpoints[2], a.ypoints{2});
double(] b2 = Utils.getLineThrough2Pts(b.xpoints(1}, b.ypoints[1],
b.xpoints([2], b.ypoints[2]);
Point int2 = Utils.intersection(b2{0], b2[1], b2[2], b2[3), a2[4], a2[5}, a2[6}));

wedge = new Polygon();
wedge.addPoint(a.xpoints[2], a.ypoints(2]);
if ((int2.x I1=-1) && (int2.y }= -1))
wedge.addPoint(int2.x, int2.y);
wedge.addPoint(b.xpoints[1], b.ypoints[1]);
wedge.addPoint(a.»points[3], a.ypoints[3]);
if ((int1.x 1=-1) && (intl.y I= -1))
wedge.addPoint(int1.x, int1.y);
wedge.addPoint(b.xpoints[0], b.ypoints[O]);
} else {
wedge = new Polygon();
wedge.addPoint(a.xpoints[2], a.ypoints[2]);
wedge.addPoint(b.xpoints[1], b.ypoints[1]);
wedge.addPoint(a.xpoints(3], a.ypoints(3]);
wedge.addPoint(b.xpoints[0), b.ypoints[Q]);

g.drawPolygon(wedge);
}

if (numPoints >= 2) { // at least 2 points in shape
a = this.shapeSegment(x[0], y[O], x[1], y[1],
strokeWidth"s[0], strokeWidth*s[1]);
// draw end cap at beginning of shape
if (begin == HORIZ) {)
double[] a1 = Utils.getLineThrough2Pts(a.xpoints[0)], a.ypoints[0}],
a.xpoints(3], a.ypoints(3]);
double(] h1 = Utils.getLineThrough2Pts(a.xpoints([0], a.ypoints[0],
a.xpoints[0]+10.0, a.ypcints[0]);
double[] a2 = Utils.getLineThrough2Pis(a.xpoints|1], a.ypoints[1],
a.xpoints(2], a.ypoints[2]);
double(] h2 = Utils.getLineThrough2Pts(a.xpoints(1], a.ypoints[1],
a.xpoints[1]+10.0, a.ypoints[1]);
Paint int1 = Utils.intersection(h1[0), h1[1], h1[2), h1[3], a1[4], a1[5), a1[6]);
Point int2 = Utils.intersection(a2(0], a2[1], a2[2], a2[3], h1[4], h1[5], h1[6]);
Point int3 = Utils.intersection(a2[0], a2[1], a2[2], a2[3], h2[4], h2[5], h2[6));

37

Point int4 = Utils.intersection(a1(0], a1[1}, a1{2], a1(3], h2{4], h2[6], h2[6]);

wedge = new Polygon();
if ((int1.x 1= -1) && (intl.y I= -1))
wedge.addPoinf(int1.x, int1.y);
if ((int2.x 1= -1) && (int2.y I= -1))
wedge.addFoint(int2.x, int2.y);
it ((int3.x 1= -1) && (int3.y I= -1))
wedge.addPoint(int3.x, int3.y);
if ((intd.x 1= -1) 8& (intd.y I1= -1))
wedge.addPoint(int4.x, int4.y);
g.drawPolygon(wedge);
} else if (begin == VERT) {
double(] a1 = Utils.getLineThrough2Pts(a.xpoints([0), a.ypoints[0),
a.xpoints[3), a.ypoints[3]);
double[] h1 = Utils.getLineThrough2Pts(a.xpoints(0], a.ypoints[0),
a.xpoints[0], a.ypoints[0]+10.0);
doublef] a2 = Utils.getLineThrough2Pts(a.xpoints[1], a.ypoints[1],
a.xpoints{2], a.ypoints[2]);
double[] h2 = Utils.getLineThrough2Pts(a.xpoints[1], a.ypoints[1],
a.xpoints[1], a.ypoints[1]+10.0);
Point int! = Utils.intersection(h1[0], h1[1], h1[2], h1[3), at[4], a1[5], al1[6));
Point int2 = Utils.intersection(a2[0), a2([1], a2[2], a2[3], h1[4], h1[5], h1[B));
Point int3 = Utils.intersection(a2[0], a2[1}, a2[2], a2(3], h2[4], h2[5], h2[6]);
Point int4 = Utils.intersection(a1[0], a1[1], a1[2], a1[3], h2[4], h2[5], h2[6));

wedge = new Polygon();

if ((int1.x 1= -1) && (int1.y I= -1))
wedge.addPoint(int1.x, int1.y);

if (int2.x 1= -1) && (int2y I= -1))
wedge.addPoint(int2.x, int2.y);

if ((int3.x 1= -1) && (int3.y I= -1))
wedge.addPoint(int3.x, int3.y);

if ((intd.x 1= -1) && (int4.y I= -1))
wedge.addPoin(int4.x, int4.y);

g.drawPolygon(wedge);

} /7 begin cap of shape

a = this.shapeSegment(x[numPoints-2], y[numPoints-2), x[numPoints-1], y[numPoints-1]},
) strokeWidth"s[numPoints-2], strokeWidth"s[numPoints-1]);
// draw end cap at end of shape
if (end == HORIZ) {
double[] a1 = Utils.getLineThrough2Pts(a.xpoints[0)], a.ypoints[0],
a.xpoints(3], a.ypoints[3]);
doublef] h1 = Utils.getLineThrough2Pts(a.xpoints[3], a.ypoints[3],
a.xpoints[3]+10.0, a.ypoints[3]);
double[] a2 = Utils.getLineThrough2Pts(a.xpoints[1], a.ypoints(1],
a.xpoints[2], a.ypoints(2]);
double[] h2 = Utils.getLineThrough2Pts(a.xpoints[2], a.ypoints[2],
a.xpoints[2]+10.0, a.ypoints[2]);
Poaint int1 = Utils.intersection(h1[0), h1[1], h1[2}, h1[3], a1[4), a1[5], a1[6));
Poaint int2 = Utils.intersection(a2[0], a2[1], a2{2], a2(3], h1[4], h1[5], h1[6]);
Point int3 = Utils.intersection(a2(0], a2[1], a2[2], a2[3], h2[4], h2[5], h2[6));
Poaint int4 = Utils.intersection(a1{0], al(1], a1[2], a1[3], h2[4], h2[5], h2[6));

wedge = new Polygon();

if ((int1.x 1= -1) && (intl.y I= -1))
wedge.addPoint(int1.x, int1.y);

if (int2.x I= -1) && (int2.y I= -1))
wedge.addPoint(int2.x, int2.y);

if (int3.x 1= -1) && (int3.y I= -1))
wedge.addPoint(int3.x, int3.y);

if ((intd.x 1= -1) && (intd.y 1= -1))

wedge.addPoint(int4.x, int4.y);
g.drawPolygon(wedge);
} else it (end == VERT) {

double[] al = Utils.getLineThrough2Plts(a.xpoints[0], a.ypoints[0),
a.xpoints(3], a.ypoints(3});

doubte[] h1 = Utils.getLineThrough2Pts(a.xpoints(3], a.ypoints[3],
a.xpoints(3), a.ypoints{3]+10.0);

double|[] a2 = Utils.getLineThrough2Pts(a.xpoints[1], a.ypoints[1],
a.xpoints[2], a.ypoints[2]);

double[] h2 = Utils.getLineThrough2Pis(a.xpoints(2], a.ypoints[2],
a.xpoints(2], a.ypoints(2]+10.0);

Point int1 = Utils.intersection(h1[0), h1{1], h1[2], h1[3], a1{4], a1[5], a1[6));

Point int2 = Utils.intersection(a2[0), a2[1], a2(2], a2[3], h1[4], h1[5), h1[6});

Poaint int3 = Utils.intersection(a2[0), a2[1], a2[2], a2(3], h2[4], h2[5), h2[6]);

Point int4 = Ulils.intersection(a1[0], a1[1], a1[2], a1[3], h2[4], h2[5), h2[6));

wedge = new Polygon();

if ((int1.x 1= -1) && (int1.y I= -1))
wedge.addPoint(int1.x, int1.y);

if (nt2.x 1=-1) && (int2.y I= -1))
wedge.addPoint(int2.x, int2.y);

if (int3.x 1= -1) && (int3.y 1= -1))
wedge.addPoint(int3.x, int3.y);

if ((intd.x 1= -1) 8& (intd.y |= -1))
wedge.addPoint(int4.x, int4.y);

g.drawPolygon(wedgej;

} /7 end cap of shape
} 77 if numPoints >= 2
} /7 draw

public void drawinfo(Graphics g) {
for (int i=0; i<numPoints; i++) {
if (drawPoints) {
// draw filled 3 pixel circle at points
g.setColor(Color.gray);
g-fillOval((int)x[i]- 1, (int)y[i]-1, 3,3);
g.setColor(Color.black);

!

if ((i == active)&&(activeltem == POINT)) {
// draw red outline 3 pixel circle for active point
g.setColor(Color.white); // backgrouna color
g filloval((int)x[i]- 1, (int)y[i]-1, 3,3);

g.setColor(Color.red);
g.drawOval{(int)x[i]- 1, (int)y(i]-1, 3,3);

g.setColor(Color.black); // foreground color

if (| == active)&&(activeltem == LINE)&&(i<numPoinis-1)) {
// draw red line for active line
Polygon seg = this.shapeSegment(x[i], y[i], x[i+1], y[i+1],

strokeWidth's{i], strokeWidth"s[i+1]);

g.setColor(Color.red);
g.drawPolygon(seg);
g.setColor(Color.black);

}

// put info about points

if (showPointinfo) {
g.setColor(Color.gray);
g.drawString((int)x[i]+","+(int)y[i], (int)x[i]+3, (int)y[i]+2);
g.setColor(Color.black);

}

if (i 1= numPoints-1) {

// put info about lines

if (showLinelnfo) {
g.setColor(Color.gray);
g.drawString(*"+(int)getLength(i), (int)((x[i)+x[i+11)/2), (int){(y[i]+yli+1])/2+3));
g.setColor(Color.black);

)
if (i 1=0) (
// put info about angles
if (showAnglelinfo) {
g.selColor(Color.gray);
g.drawString(“"+(int)getAngle(), (int)x(i]-5, (int)yli]+10);
g.setColor(Color.black);
}
}
}

} // drawinfo

public static Polygon shapeSegment(double x1, double y1, double x2, double y2,
double stroke1, double stroke?2) {
// based on Phillip Tiongson's fillLine
// to be filled when get 4 points
// 4 points ordered in clockwise direction
Polygon segment = new Polygon();

// stroke is half of real stroke
strokel /= 2.0,
stroke? /= 2.0;

// slope calulation
double dx = x2 - x1;
double dy = y2 - y1;
double Px, Py,

// must handle special cases
if (dx == 0) {
// if slope of line is zerc, vertical
if (yY2<y1) {
strokel *= -1;
stroke2 *= -1;
}
Px = x1 - stroke1;
Py=y1;
segment.addPoint((int) Px, (int) Py);

Px = x1 + strokel;

segment.addPoint((int) Px, (int) Py);

Px = x1 + stroke2;

Py=yl +dy,
segment.addPoint((int) Px, (inf) Py);

Px = x1 - stroke?2;

Py =yl +dy,
segment.addPoint((int) Px, (int) Py);

Px = x1 - strokel;

Py =yl

segment.addPoint((int) Px, (int) Py);
} else if (dy == 0) {

// if horizontal slope

if (x2<x1) {

Px = x1;
Py = y1 + strokel;
segment.addPoint((int) Px, (int) Py);

Px = x1;
Py = y1 - stroke1;
segment.addPoint((int) Px, (int) Py);

Px = x1 + dx;
Py = y1 - stroke2;
segment.addPoint((int) Px, (int) Py);

Px = x1 + dx;
Py = y1 + stroke2;
segment.addPoint((int) Px, (int) Py);

Px = x1;
Py =y1 + stroke1;
segment.addPoint((int) Px, (int) Py);
} else {
// the usual case
double slope = -1 * dx/dy;

// the increment in the normal vector
double n1 = Math.sgri(stroke 1°stroke 1/(slope’slope + 1));
double n2 = Math.sqrt(stroke2"stroke2/(slope’slope + 1));

// points always ordered in clockwise direction

if (x2>x1)8&(slope > 0) Il (x2<x1)&8&(slope < 0)) {
ni°=-1;
n2 ‘= -1;

}

Px =x1 -nl;

Py =y1 - (n1 * slope);

segment.addPoint((int) Px, (int) Py);

Px =x1 +nl;

Py =y1 + (n1 * slope);
segment.addPoint((int) Px, (int) Py);

Px = x2 + n2;

Py = y2 + (n2 * slope);
segment.addPoint((int) Px, (int) Py);

Px =x2 - n2;

Py = y2 - (n2" slope)
segment.addPoint({int) Px, (int) Py);

Px =x1-n1;

Py =yl - (n1 * slope);

segment.addPoint((int) Px, (int) Py);
} 7/ else

return segment;
} // shapeSegment

public void printPoints((
Utils.prinf*numPoints="+numPoints);
for (int i=0; icnumPoints; i++)
Utils. print(*.addPoint("+(int)Math.round(x[i])+","+(int)Math.round{y[i]}+"); // “+i);

Utils. print(“strokeWidth="+strokeWidth);
for (int i=0; i<numPoints; i++)
Utils. print(“s[“+i+"]="+s[il);
} 7/ printPoints
} 7/ SkeletonShape

Utils.java
package pcho.util;

import java.lang.System;
import java.util. Random;
import java.awt.Point;

public class Utils extends Object {
public static final boolean DEBUG = true;

public static void print(String s) {
if (DEBLG == true)
System.out.printin(s);
} /7 print

public static Point midPoint(Point p1, Point p2) {
// returns a Point which is mid-point between p1 and p2
return {new Point((p2.x-p1.x)/2, (p2.y-p1.y)/2));

} // midPoint

public static double getDistance(int x1, int y1, int x2, int y2) {
// return length of line between x1,y1 and x2,y2
return (Math.sqrt((x2-x1)*(x2-x1) + (y2-y1)"(y2-y1)));

} /7 getDistance

public static double[] getLineThrough2Pts(double x1, double y1, double x2, double y2) {
// returns array: [Ux, Uy, Vx, Wy, Nx, Ny, ¢]
// where N'P+c=0and P=U + 't
// pS graphic gems
double Ux, Uy, Vx, Vy, Nx, Ny, c;
Ux = x1;
Uy = y1,

Vx = (x2-x1)/Math.sqri((x2-x1)*(x2-x 1)+(y2-y 1) (y2-y 1));
Vy = (y2-y1)/Math.sqri((x2-x 1) (x2-x 1)+{y2-y 1)"(y2-y 1));

Nx = -Vy, // <———
Ny =Vx; // <—
c =-(Nx'Ux + Ny'Uy); // <

double[] line = (Ux, Uy, Vx, Vy, Nx, Ny, c};
return iine;
} /7 getLineThrough2Pts

public static Point intersection(double mUx, double mUy, double mVx, double mVy,
double INx, double INy, double IC) (
// p11 graphic gems
double d = IN'mVx + INy*'mVy;

if (Math.abs(d)>0.1) {

double x, y;

x = mUx - (INx’mUx + INy*'mUy) + IC)/d)mVXx;

y = mUy - (INx'mUx + INy*'mUy) + IC)/d)'mVy;

return (new Point((int)Math.round(x), (int)Math.round(y)));
} else

return (new Point(-1,-1));
} 7/ intersection
} 7/ Wils

Oh.java
package pcho.typotool;

import java.awt.”;
import java.applet. Applet;
import java.lang.”;
import pcho.util.”;

public class Oh extends Applet implements Runnable {
Label info = new Label();
Font infoFont;

int gX = 550, gY = 380;

SkeletonShape o, h1, h2;

boolean {il = true;

int lastX=0, lastY=0, curX=gX/5, curY=0;
int mode = 1;

int frameDelay = 50;

public String getAppletinfo() {
return “oh applet, by Peter Cho (c) Copyright 1997 MIT Media Lab";

Thread Motion;

public void start {
Motion.start();
} 7/ start

oublic void stop() {
Motion.stop();
} 77 stop

public void destroy() {
Motion.stop();
} // destroy

public void init() {
Utils. print(*initializing..."”);
this.setBackground(Color.white);
this.setForeground(Color.black);
infoFont = new Font(*Helvetica”, Font.PLAIN, 10);
Motion = new Thread(this);
setlLayout (new BorderLayout());
Panel p = new Panel();
p.setBackground(Color.lightGray);
p.setForeground(Color.black);
p.setLayout(new GridLayout(0, 2));

add(*South”, p);
info.setText(“select points®);
p.add(*West", info);
validate();

o = new SkeletonShape(10);
o0.addPoint(159,135); // 0
o.addPoint(154,139); // 1

43

o.addPoint{149,144); // 2

0.addPoint(144,152); // 3

o.addPoint(140,160); // 4

0.addPoint(135,170); // 5

o.addPoint(131,182); // 6

0.addPoint(127,197); // 7

2.addPoint(126,210); // 8

o.addPoint(128,226); // 9

0.adrPoint(132,233); // 10

o.addPoint(141,241); // 11

0.addPoint(153,249); // 12

o0.addPoint(166,237); // 13

o.addPoint(174,230); // 14

o0.addPoint(180,223); // 15

o0.addPoint(186,213); // 16

0.addPoint(190,203); /7 17

o.addPoint(195,188); // 18

0.addPoint(198,172); // 19

0.addPoint(199,168); // 20

o.addPoint(198,145); // 21

0.addPoint(192,132); // 22

o0.addPoint(188,124); // 23

o0.addPoint(180,119); // 24

0.addPoint(168,119); // 25

o0.addPoint(158,121): // 26

o.addPoint(149,125); // 27

o.addPoint(139,132); // 28

o.addPoint(132,139); // 29

0.s[0]=1;

o.s[1]=1.4;

0.s[2]=1.4;

o.s[3]=1.4;

0.5[4]:1 4,

o.s[5]=1.4;

0.s[6]=1.4;

0.s[7]=1.2;

0.5[8]=1.1;

0.5[9]=0.8;

0.5[10)=0.8;

0.5[11]=0.8;

0.5[12]=0.9;

0.5[13]=0.9;

o.s[14]=1.1;

0.5[15])=1.2,

0.5[16])=1.3;

0.s[17]=1.3;

0.s[18]=1.3;

0.5[19]=1.3;

0.s[20]=1.1;

0.s[21]=1.1;

0.s[22]=0.9;

0.5{23]=0.8;

0.5{24]=0.8;

0.5[25])=0.7;

0.5[26]=0.7;

0.5[27)=0.7;

0.5[28]=0.5;

0.5[29]=0.5;

for (int i=0; i<o.numPoints; i++) {
o.translatePoint(i, 40, 50);

}

o.deactivate();

o.save()

h1 = new SkeletonShape(10);
ht.addPoint(274,10); // 0
h1.addPoint(274,17); // 1
h1.addPoint(272,26); // 2
h1.addPoint(270,37); // 3
h1.addPoint(267,49); // 4
h1.addPoint(265,63); // 5
h1.addPoint(262,77); // 6
h1.addPoint(258,100); // 7
h1.addPoint(254,122); // 8
h1.addPoint(249,147); // 9
h1.addPoint(246,163); // 10
h1.addPoint(242,183); // 11
h1.addPoint(239,198); // 12
h1.addPoint(237,211); // 13
ht.addPoint(235,221); // 14
h1.addPoint(231,237); // 15
h1.s[0]=1;

h1.s[1]=1.3;

h1.s[2]=1.5;

h1.s[3)=1.5;

h1.s[4)=1.5;

h1.s[5]=1.3;

h1.s[6]=1.2;

h1.s[7]=1.15;

h1.s[8]=1.1;

h1.s[9]=1.05;

h1.s[10)=1;

hi.s[11]=1;

h1.s[12]=1;

h1.s(13]=1.1;

hl.s[14]=1.1;

h1.s[15)=1;

h2 = new SkeletonShape(10);
h2.addPoint(231,237); // 0
h2.addPoint(242,214); // 1
h2.addPoint(250,199); // 2
h2.addPoint(257,184); // 3
h2.addPoint(266,166); // 4
h2.addPoint(274,150); // 5
h2.addPoint(287,133); // 6
h2.addPoint(295,127); // 7
h2.addPoint(302,124); // 8
h2.addPoint(308,126); // 9
h2.addPoint(314,139); // 10
h2.addPoint(313,1692); // 11
h2.addPoint(313,179); // 12
h2.addPoint(312,192); // 13
h2.addPoint(312,202); // 14
h2.addPoint(314,211); // 15
h2.addPoint(317,223); // 16
h?2.addPoint(322,232); // 17
h2.addPoint(327,235); // 18
h2.addPoint(335,234); // 19
h2.addPoint(344,226); // 20
h2.addPoint(352,216); // 21
h2.addPoint(360,205); // 22
h2.addPoint(363,199); // 23
h2.s[0]=1;

h2.s[1]=1.1;

h2.s[2]=0.9;

45

h2.5[3]=0.9;
h2.5[4]=0.9;
h2.s[6)=0.9;
h2.5[6]=1.1;
h2.s[7]=1.5;
h2.s[8]=1.4;
h2.s[9]=1.4;
h2.s[10]=1.4;
h2.s[11)=1.4;
h2.s[12]=1.4;
h2.s[13]=1.4,
h2.s{14)=1.4:
h2.s[15]=1.5;
h2.s[16]=1.5;
h2.s[17]=1.5;
h2.s[18]=1.5;
h2.s(19]=1.4;
h2.s[20]=1;
h2.s[21]=0.6;
h2.5[22]=0.4;
h2.s[23]}=0.4;

for (int i=0; i<h1.numPoints; i++) {
h1.translatePoint(i, 40, 50);

]

for (int i=0; i<h2.numPoaints; i++) {
h2.translatePoint(i, 40, 50);

h1.deactivate();
h1.save();
h2.deactivate();
h2.save();
Utils.print(*finished loading.");
} 77 init

boolean restore = false, mouseDown = false;
int counter=0;
double waveAmt = O;

public void run({
System.out.printin(*running...”);
double amt = 2.0;
double odist, h1dist, h2dist;
Point mouse;

while(true) {
if (mcde==1) {
mouse = new Point(curX,curY);
if (restore) {
if (counter<21) {

o.restore((0.25 + (double)counter/28.0) / (21.0-(double)counter));
h1.restore((0.25 + (double)counter/28.0) / (21.0-(double)counter));
h2.restore((0.25 + (double)counter/28.0) / (21.0-(double)counter));

//Utils.print(“counter="+counter);
counter++;
} else if (counter==21) {
restore = false;
counter = 0;

}

repaint();
} else if (mouseDown) { // mouse is down

46

if ((lastX 1= curX) && (lastY I= curY)) { // mouse has moved
for (int i=0; i<o.numPoints; i++) (
odist = Utils.getDistance((into.x[i], (int)o.y[i], curX, curY);
h1dist = Utils.getDistance((int)h 1.x(i), (inthh1.y[i], curX, curY);
h2dist = Utils.getDistance((int)h2.x[i], (int)h2.y[i], curX, curY);
if ((odist<400)&&{odist!=0.0)) {
o.s{i] "= 1-1/odist;
o.movelndexTowardPi(i, -(10.0-odist/40.0), mouse):
}
if ((h1dist<400)&&(h 1dist!=0.0)) {
h1.s[i] *= 1-1/h1dist;
h1.movelndexTowardPt(j, -(10.0-h1dist/40.0), mouse);
}
if (h2dist<400)&&(h2dist=0.0)) {
h2.s{i] *= 1-1/h2dist;
h2.movelndexTowardPi(i, -(10.0-h2dist/40.0), mouse);
}
}
} else { // mouse is still in same place
for (int i=0; i<o.numPoints; i++) {
adist = Utils.getDistance((int)o.x[i], (int)o.y(i], curX, curY);
h1dist = Utils.getDistance((int)h 1.x[i], (int)h1.y[i], curX, curY);
h2dist = Utils.getDistance((int)h2.x[i, (inthh2.y(i}, curX, curY);
if ((odist<400)&&(odist!=0.0)) {
o.s{i] *= 1-0.2/odist;
o.movelndexTowardPi(i, -(10.0-odist/40.0), mouse);
}
if ((h1dist<400)&&(h 1distl=0.0)) {
ht.sfi] "= 1-0.2/h1dist;
h1.movelndexTowardPt(j, -(10.0-h1dist/40.0), mouse);
if ((h2dist<400)&&(h2dist!=0.0)) {
h2.s[i) *= 1-0.2/h2dist;
h2.movelndexTowardPi(i, -(10.0-h2dist/40.0), mouse);
}

}
}
lastX = curX; lastY = curY:
repaint(;
)
} 7/ if (mode==1)

else if (mode==2) {

if ((Math.abs(o.x{0]-0.Sx[0]) <= 1.0) // change wave amt when letters are in place

&&(Math.abs(h1.x[0]-h1.Sx{0]) <= 1.0)
&&(Math.abs(h2.x[0]-h2.Sx[0]) <= 1.0))
waveAmt = 5°((double)curX/(double)gX);
for (int i=0; i< 0.numPoints ; i++) {
o.translatePoint(;, waveAmt-Math.sin(counter+i), 0.0);
h1.translatePoint(i, waveAmt'Math.sin(counter+i), 0.0);
h2.translatePoint(i, waveAmt'Math.sin(counter+1 5-i), 0.0);

o.s[i} += 0.1"Math.cos(counter+i);
h1.s[i] += 0.1"Math.cos(counter+i);
h2.sfi] += 0.1"Math.cos(counter+ 15-i);
}
counter++;
repaint();
//Utils.print(*counter="+counter+" amt="+waveAmt Math.sin(counter));
} 7/ else if (mode==2)

else if (mode==3) {
if (counter==0) {

47

for (int i=0; i<o.numPoints; i++) {
o.sfi] = 1.0;
h1.si] = 1.0;
h2.sfi] = 1.0;

if (i==0) {
o.x[i] = 200; o.y[i] = 182; // top left
} else if (i<9) {
o.x[i] = 200;
o.y[i] = 0.y[0] + ((double)i/9)"(257-182);//(0.y(9]-0.y[0));
} else if (i==9) |
o.x[i] = 200; o.yli] = 257; // bot left
} else if (i<16) {
o.x[i] = 0.x[9] + (((double)i-8)/(16-9))"(250-0.x[9));
oyli] = 0.y[3];
} else if (i==16) {
o.x{i] = 260; a.y[i] = 257; // bot right
} else if (i<22) {
o.x[i] = 0.x[16];
o.y[i] = 0.y[16] + (((double)i-16)/(22-16))(182-0.y[16]);
} else if (i==22) {
o.x[i] = 250; o.y[i] = 182; // top right
} else if (i<29) {
o.x[i] = 0.x[22] + (((double)i-22)/(29-22))(195-0.x[22]);
o.y(i] = 0.y[22];
} else if (i==29) {
o.x[i] = 195; o.y[i]} = 182; // top left

if (i==0) {
h1.x[i] = 288; h1.y[i} = 90; // top
} else if (i==15) {
h1.x[i] = 288; h1.y[i] = 263; // bot
) else if (i<15) {
h1.x[i] = h1.x[0];
h1.y[i] = h1.y[0] + ((double)i/ 15)"(262-h1.y[0)); // mid
}

if (i==0) {
h2.x[i] = 288; h2.y[i] = 2683; // bot left
} else if (i<5) {
h2.x[i] = h2.x[0];
h2.y[i] = h2.y[0] + ((double)i/5)*(182-h2.y[0}); // mid left
) else if (i==5) {
h2.x[i] = 288; h2.y[i] = 182; // top left
} else if (i<11) {
h2.x[i] = h2.x[5] + (((double)i-5)/(11-6))"(338-h2.x[5]); // mid top
h2.y(i = h2,[5};
} else if (i==11) {
h2.x[i] = 338; h2.y[i] = 182; // top right
} else if (i<21) {
h2.x{i} = h2.x[11]; // mid right
h2.y(i] = h2.y[11] + (((double)i-11)/(21-11))'(256-h2.y[11]);
} else it (i==21) {
h2.x[i] = 338; h2.y[i] = 256;
} else if (i==22) {
h2.xfi] = 338; h2.y[i] = 259,
} else if (i==23) {
h2.x(i] = 338; h2.y[i] = 264, // bot right
}
)

//restore = true;
counter++;

} else if (restore) {

if (counter<21) {
o.restore((0.25 + (double)counter/28.0) / (21.0-(double)counter));
h1.restore((0.25 + (double)counter/28.0) / (21.0-(double)counter));
h2.restore((0.25 + (double)counter/28.0) / (21.0-(double)counter));
counter++;

} else if (counter==21) {
restore = false;
counter = -1;

| }
repaint(;

} /7 else it (mode==3)
try { Motion.sleep(frameDelay); }
catch (Exception e) {};

} /7 run

public void update(Graphics g) {
// to prevent flicker
paint(g);

} /7 update

Image offlmage;
Dimension offlmageSize;
Graphics offGraphics;

public void paint(Graphics g) {
// temp variable for current screen size
Dimension d = size();

// if no offscreen buffer image, create a new one
if (offlmage == null) Il (d.width |= offlmageSize.width)

}

I1 (d.height != offimageSize.height)) {
offimage = createlmage(d.width, d.height);
offlmageSize = d;

offlmageSize.height = d.height ;
offGraphics = offimage.getGraphics(;
offGraphics.setFont(infoFont);
offGraphics.setPaintMode();
Utils.print(“created new offscreen buffer.");

// clear the offscreen buffer
offGraphics.setColor(getBackground();

offGraphics.filRect(0, O, offimageSize.width, offimageSize.height);
offGraphics.setColor(getForeground());

// draw shape to offscreen image

if (fill) {

o fill(offGraphics);
h1 fillloffGraphics);
h2.fill(offGraphics);

} else {

o.draw(offGraphics);
h1.draw(offGraphics);
h2.draw(offGraphics);

}
o.drawlinfo(offGraphics);
h1.drawlinfo(offGraphics);
h2.drawlInfo(offGraphics);

// blast offimage to screen

49

g.drawimage(offimage, O, O, null);

public boolean handleEvent(Event e) {
switch(e.id) {
case Event. ACTION_EVENT:
break;

case Event. MOUSE_DOWN:
Utils.print(*mouse down> x="+ e.x + * y=" + e.y);
info.setText(*");
mouseDown = true;
if (mode==1) {
restore = false;
} else if (mode==3) {
counter = 0;
restore = false;
}

lastX = curX; lastY = curY;
curX = e.x; curY = e.y;

repaint();
break;

case Event. MOUSE_DRAG:
if (mode==1) {
mouseDown = true;
lastX = curX; lastY = curY;
curX = e.x; curY = e.y;

repaint();
break;

case Event. MOUSE_UP:
mouseDown = false;
if (mode==1) {
restore = true;

}

if (mode==3) {
restore = true;

repaint();

break;

case Event.KEY_PRESS:
char c1 = (char) e.key;
if (e.id == Event.KEY_PRESS) {
Utils. print(‘key down: * + c1);
switch (c1) {
case '1": // mode 1
Utils. print(“change to mode 17);
info.setText(“1");
mode = 1;
counter = Q;
o.restore();
h1.restore();
h2.restore();
repaint();
return true;
case '2": // mode 2
Utils.print("change to mode 27);
info.setText(*2";
mode = 2;

50

counter = 0;
o.restore();
h1.restore();
h2.restore();
repaint();
return true;

case ‘3" // mode 3
Utils. print(“change to mode 3");
info.setText(“3%);
mode = 3;
counter = -1,
restore = false;
o.restore();
h1.restore();
h2.restore();
repaint();
return true;

case 'S": // Save
o.save();
h1.save();
h2.save();
info.setText(“saving shape”);
return true;

case 'R'": // Restore
o.restore();
h1.restore();
h2.restore();
info.setText(“restoring shape®);
repaint();
return true;

case 'r': // reset
o.reset();
h1.reset(;
h2.reset();
info.setText(*reset");
repaint();
return true;

case 'f': // toggle filled/outline mode
fill = Ifil;
info.setText(*toggle fill mode”);
repaint();
return true;

case 'p": // toggle point info
o.showPoaintinfo = 'o.showPointinfo;
h1.showPointinfo = |h1.showPointinfo;
h2.showPointinfo = 1h2.showPointInfo;
info.setText(“toggle point coordinates”);
repaint();
return true;

case ‘I': // toggle line info
o.showLinelnfo = lo.showLinelnfo;
h1.showLinelnfo = Ih1.showLinelnfo;
h2.showLinelnfo = |h2.showLinelnfo;
info.setText(“toggle line lengths”);
repaint();
return true;

case 'a": // toggle angle info
o.showAnglelnfo = lo.showAnglelnfo;
hi.showAnglelnfo = Ih1.showAnglelnfo;
h2.showAnglelnfo = Ih2.showAnglelnfo;
info.setText(“toggle angles in degrees”);
repaint();
return true;

51

case ‘'h': // toggle drawing point handles
o.drawPoints = lo.drawPoints;
h1.drawPoints = {h1.drawPoints;
h2.drawPoints = 1h2.drawPoints;
repaint();
return true;
}
)
break;
}
return true;
} 7/ handleEvent
} 77 Oh applet

52

References

Cho, Peter. “Dancing Letters: Movement and Expression in Typographic
Elements.” ACG memo, 19v0.

Dair, Carl. Design with Type. University of Toronto Press, Toronto. 1967.

Elam, Kimberly. Expressive Typography. Van Nostrand Reinhold, New
York. 1990

Ionesco, Eugene, Massin, and Cohen. La Cantatrice Chauve. Grove
Press. 1956.

Knuth, Donald. Computer Modern Typefaces. Addison Wesley, Reading,
Massachusetts. 1986.

Lewis, Jason. “Dynamic Poetry: Introductory Remarks to a Digital
Medium.” Masters thesis, Royal College of Art, 1996.

Maeda, John. Flying Letters. Digitalogue, Tokyo. 1996.

Meggs, Philip B. A History of Graphic Design. Van Nostrand Reinhold,
New York. 1992.

Rand, Paul. From Lascaux to Brooklyn.. Yale University Press, New
Haven and London. 1996.

Small, David. “Expressive Typography: High Quality Dynamic and
Responsive Typography in the Electronic Environment.” Masters
thesis, Massachusetts Institute of Technology, 1987.

Soo, Douglas. “Implementation of a Temporal Typography System.”
Master’s thesis, Massachusetts Institute of Technology, 1997.

Strassmann, Steve. “Hairy Brushes.” ACM 20, no. 4 (August 1986): pp
225-232,

Tschichold, Jan. Die neue Typographie. Brinkmann & Bose, Berlin. 1987.

Wong, Yin Yin. “Temporal Typography: Characterication of Time-
Varying Typographic Forms.” Masters thesis, Massachusetts Institute
of Technology, 1995.

53

